• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
mce_log(struct mce * m)156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
mce_unregister_decode_chain(struct notifier_block * nb)173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
ctl_reg(int bank)179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
status_reg(int bank)184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
addr_reg(int bank)189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
misc_reg(int bank)194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
smca_ctl_reg(int bank)199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
smca_status_reg(int bank)204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
smca_addr_reg(int bank)209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
smca_misc_reg(int bank)214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
__print_mce(struct mce * m)226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
print_mce(struct mce * m)269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
mce_panic(const char * msg,struct mce * final,char * exp)298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
msr_to_offset(u32 msr)359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
ex_handler_rdmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
ex_handler_wrmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
mce_wrmsrl(u32 msr,u64 v)449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
mce_gather_info(struct mce * m,struct pt_regs * regs)482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
mce_available(struct cpuinfo_x86 * c)510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
mce_schedule_work(void)517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
mce_irq_work_cb(struct irq_work * entry)523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granuality for now.
533  */
mce_usable_address(struct mce * m)534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
mce_is_memory_error(struct mce * m)557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
whole_page(struct mce * m)589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
mce_is_correctable(struct mce * m)597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
mce_read_aux(struct mce * m,int i)685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		if (flags & MCP_QUEUE_LOG)
821 			mce_gen_pool_add(&m);
822 		else
823 			mce_log(&m);
824 
825 clear_it:
826 		/*
827 		 * Clear state for this bank.
828 		 */
829 		mce_wrmsrl(msr_ops.status(i), 0);
830 	}
831 
832 	/*
833 	 * Don't clear MCG_STATUS here because it's only defined for
834 	 * exceptions.
835 	 */
836 
837 	sync_core();
838 
839 	return error_seen;
840 }
841 EXPORT_SYMBOL_GPL(machine_check_poll);
842 
843 /*
844  * Do a quick check if any of the events requires a panic.
845  * This decides if we keep the events around or clear them.
846  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)847 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
848 			  struct pt_regs *regs)
849 {
850 	char *tmp = *msg;
851 	int i;
852 
853 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
854 		m->status = mce_rdmsrl(msr_ops.status(i));
855 		if (!(m->status & MCI_STATUS_VAL))
856 			continue;
857 
858 		__set_bit(i, validp);
859 		if (quirk_no_way_out)
860 			quirk_no_way_out(i, m, regs);
861 
862 		m->bank = i;
863 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
864 			mce_read_aux(m, i);
865 			*msg = tmp;
866 			return 1;
867 		}
868 	}
869 	return 0;
870 }
871 
872 /*
873  * Variable to establish order between CPUs while scanning.
874  * Each CPU spins initially until executing is equal its number.
875  */
876 static atomic_t mce_executing;
877 
878 /*
879  * Defines order of CPUs on entry. First CPU becomes Monarch.
880  */
881 static atomic_t mce_callin;
882 
883 /*
884  * Check if a timeout waiting for other CPUs happened.
885  */
mce_timed_out(u64 * t,const char * msg)886 static int mce_timed_out(u64 *t, const char *msg)
887 {
888 	/*
889 	 * The others already did panic for some reason.
890 	 * Bail out like in a timeout.
891 	 * rmb() to tell the compiler that system_state
892 	 * might have been modified by someone else.
893 	 */
894 	rmb();
895 	if (atomic_read(&mce_panicked))
896 		wait_for_panic();
897 	if (!mca_cfg.monarch_timeout)
898 		goto out;
899 	if ((s64)*t < SPINUNIT) {
900 		if (mca_cfg.tolerant <= 1)
901 			mce_panic(msg, NULL, NULL);
902 		cpu_missing = 1;
903 		return 1;
904 	}
905 	*t -= SPINUNIT;
906 out:
907 	touch_nmi_watchdog();
908 	return 0;
909 }
910 
911 /*
912  * The Monarch's reign.  The Monarch is the CPU who entered
913  * the machine check handler first. It waits for the others to
914  * raise the exception too and then grades them. When any
915  * error is fatal panic. Only then let the others continue.
916  *
917  * The other CPUs entering the MCE handler will be controlled by the
918  * Monarch. They are called Subjects.
919  *
920  * This way we prevent any potential data corruption in a unrecoverable case
921  * and also makes sure always all CPU's errors are examined.
922  *
923  * Also this detects the case of a machine check event coming from outer
924  * space (not detected by any CPUs) In this case some external agent wants
925  * us to shut down, so panic too.
926  *
927  * The other CPUs might still decide to panic if the handler happens
928  * in a unrecoverable place, but in this case the system is in a semi-stable
929  * state and won't corrupt anything by itself. It's ok to let the others
930  * continue for a bit first.
931  *
932  * All the spin loops have timeouts; when a timeout happens a CPU
933  * typically elects itself to be Monarch.
934  */
mce_reign(void)935 static void mce_reign(void)
936 {
937 	int cpu;
938 	struct mce *m = NULL;
939 	int global_worst = 0;
940 	char *msg = NULL;
941 
942 	/*
943 	 * This CPU is the Monarch and the other CPUs have run
944 	 * through their handlers.
945 	 * Grade the severity of the errors of all the CPUs.
946 	 */
947 	for_each_possible_cpu(cpu) {
948 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
949 
950 		if (mtmp->severity > global_worst) {
951 			global_worst = mtmp->severity;
952 			m = &per_cpu(mces_seen, cpu);
953 		}
954 	}
955 
956 	/*
957 	 * Cannot recover? Panic here then.
958 	 * This dumps all the mces in the log buffer and stops the
959 	 * other CPUs.
960 	 */
961 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
962 		/* call mce_severity() to get "msg" for panic */
963 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
964 		mce_panic("Fatal machine check", m, msg);
965 	}
966 
967 	/*
968 	 * For UC somewhere we let the CPU who detects it handle it.
969 	 * Also must let continue the others, otherwise the handling
970 	 * CPU could deadlock on a lock.
971 	 */
972 
973 	/*
974 	 * No machine check event found. Must be some external
975 	 * source or one CPU is hung. Panic.
976 	 */
977 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
978 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
979 
980 	/*
981 	 * Now clear all the mces_seen so that they don't reappear on
982 	 * the next mce.
983 	 */
984 	for_each_possible_cpu(cpu)
985 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
986 }
987 
988 static atomic_t global_nwo;
989 
990 /*
991  * Start of Monarch synchronization. This waits until all CPUs have
992  * entered the exception handler and then determines if any of them
993  * saw a fatal event that requires panic. Then it executes them
994  * in the entry order.
995  * TBD double check parallel CPU hotunplug
996  */
mce_start(int * no_way_out)997 static int mce_start(int *no_way_out)
998 {
999 	int order;
1000 	int cpus = num_online_cpus();
1001 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1002 
1003 	if (!timeout)
1004 		return -1;
1005 
1006 	atomic_add(*no_way_out, &global_nwo);
1007 	/*
1008 	 * Rely on the implied barrier below, such that global_nwo
1009 	 * is updated before mce_callin.
1010 	 */
1011 	order = atomic_inc_return(&mce_callin);
1012 
1013 	/*
1014 	 * Wait for everyone.
1015 	 */
1016 	while (atomic_read(&mce_callin) != cpus) {
1017 		if (mce_timed_out(&timeout,
1018 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1019 			atomic_set(&global_nwo, 0);
1020 			return -1;
1021 		}
1022 		ndelay(SPINUNIT);
1023 	}
1024 
1025 	/*
1026 	 * mce_callin should be read before global_nwo
1027 	 */
1028 	smp_rmb();
1029 
1030 	if (order == 1) {
1031 		/*
1032 		 * Monarch: Starts executing now, the others wait.
1033 		 */
1034 		atomic_set(&mce_executing, 1);
1035 	} else {
1036 		/*
1037 		 * Subject: Now start the scanning loop one by one in
1038 		 * the original callin order.
1039 		 * This way when there are any shared banks it will be
1040 		 * only seen by one CPU before cleared, avoiding duplicates.
1041 		 */
1042 		while (atomic_read(&mce_executing) < order) {
1043 			if (mce_timed_out(&timeout,
1044 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1045 				atomic_set(&global_nwo, 0);
1046 				return -1;
1047 			}
1048 			ndelay(SPINUNIT);
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * Cache the global no_way_out state.
1054 	 */
1055 	*no_way_out = atomic_read(&global_nwo);
1056 
1057 	return order;
1058 }
1059 
1060 /*
1061  * Synchronize between CPUs after main scanning loop.
1062  * This invokes the bulk of the Monarch processing.
1063  */
mce_end(int order)1064 static int mce_end(int order)
1065 {
1066 	int ret = -1;
1067 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1068 
1069 	if (!timeout)
1070 		goto reset;
1071 	if (order < 0)
1072 		goto reset;
1073 
1074 	/*
1075 	 * Allow others to run.
1076 	 */
1077 	atomic_inc(&mce_executing);
1078 
1079 	if (order == 1) {
1080 		/* CHECKME: Can this race with a parallel hotplug? */
1081 		int cpus = num_online_cpus();
1082 
1083 		/*
1084 		 * Monarch: Wait for everyone to go through their scanning
1085 		 * loops.
1086 		 */
1087 		while (atomic_read(&mce_executing) <= cpus) {
1088 			if (mce_timed_out(&timeout,
1089 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1090 				goto reset;
1091 			ndelay(SPINUNIT);
1092 		}
1093 
1094 		mce_reign();
1095 		barrier();
1096 		ret = 0;
1097 	} else {
1098 		/*
1099 		 * Subject: Wait for Monarch to finish.
1100 		 */
1101 		while (atomic_read(&mce_executing) != 0) {
1102 			if (mce_timed_out(&timeout,
1103 					  "Timeout: Monarch CPU did not finish machine check processing"))
1104 				goto reset;
1105 			ndelay(SPINUNIT);
1106 		}
1107 
1108 		/*
1109 		 * Don't reset anything. That's done by the Monarch.
1110 		 */
1111 		return 0;
1112 	}
1113 
1114 	/*
1115 	 * Reset all global state.
1116 	 */
1117 reset:
1118 	atomic_set(&global_nwo, 0);
1119 	atomic_set(&mce_callin, 0);
1120 	barrier();
1121 
1122 	/*
1123 	 * Let others run again.
1124 	 */
1125 	atomic_set(&mce_executing, 0);
1126 	return ret;
1127 }
1128 
mce_clear_state(unsigned long * toclear)1129 static void mce_clear_state(unsigned long *toclear)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1134 		if (test_bit(i, toclear))
1135 			mce_wrmsrl(msr_ops.status(i), 0);
1136 	}
1137 }
1138 
1139 /*
1140  * Cases where we avoid rendezvous handler timeout:
1141  * 1) If this CPU is offline.
1142  *
1143  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1144  *  skip those CPUs which remain looping in the 1st kernel - see
1145  *  crash_nmi_callback().
1146  *
1147  * Note: there still is a small window between kexec-ing and the new,
1148  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1149  * might not get handled properly.
1150  */
mce_check_crashing_cpu(void)1151 static noinstr bool mce_check_crashing_cpu(void)
1152 {
1153 	unsigned int cpu = smp_processor_id();
1154 
1155 	if (arch_cpu_is_offline(cpu) ||
1156 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1157 		u64 mcgstatus;
1158 
1159 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1160 
1161 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1162 			if (mcgstatus & MCG_STATUS_LMCES)
1163 				return false;
1164 		}
1165 
1166 		if (mcgstatus & MCG_STATUS_RIPV) {
1167 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1168 			return true;
1169 		}
1170 	}
1171 	return false;
1172 }
1173 
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1174 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1175 			    unsigned long *toclear, unsigned long *valid_banks,
1176 			    int no_way_out, int *worst)
1177 {
1178 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1179 	struct mca_config *cfg = &mca_cfg;
1180 	int severity, i;
1181 
1182 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1183 		__clear_bit(i, toclear);
1184 		if (!test_bit(i, valid_banks))
1185 			continue;
1186 
1187 		if (!mce_banks[i].ctl)
1188 			continue;
1189 
1190 		m->misc = 0;
1191 		m->addr = 0;
1192 		m->bank = i;
1193 
1194 		m->status = mce_rdmsrl(msr_ops.status(i));
1195 		if (!(m->status & MCI_STATUS_VAL))
1196 			continue;
1197 
1198 		/*
1199 		 * Corrected or non-signaled errors are handled by
1200 		 * machine_check_poll(). Leave them alone, unless this panics.
1201 		 */
1202 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1203 			!no_way_out)
1204 			continue;
1205 
1206 		/* Set taint even when machine check was not enabled. */
1207 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1208 
1209 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1210 
1211 		/*
1212 		 * When machine check was for corrected/deferred handler don't
1213 		 * touch, unless we're panicking.
1214 		 */
1215 		if ((severity == MCE_KEEP_SEVERITY ||
1216 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1217 			continue;
1218 
1219 		__set_bit(i, toclear);
1220 
1221 		/* Machine check event was not enabled. Clear, but ignore. */
1222 		if (severity == MCE_NO_SEVERITY)
1223 			continue;
1224 
1225 		mce_read_aux(m, i);
1226 
1227 		/* assuming valid severity level != 0 */
1228 		m->severity = severity;
1229 
1230 		mce_log(m);
1231 
1232 		if (severity > *worst) {
1233 			*final = *m;
1234 			*worst = severity;
1235 		}
1236 	}
1237 
1238 	/* mce_clear_state will clear *final, save locally for use later */
1239 	*m = *final;
1240 }
1241 
kill_me_now(struct callback_head * ch)1242 static void kill_me_now(struct callback_head *ch)
1243 {
1244 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1245 
1246 	p->mce_count = 0;
1247 	force_sig(SIGBUS);
1248 }
1249 
kill_me_maybe(struct callback_head * cb)1250 static void kill_me_maybe(struct callback_head *cb)
1251 {
1252 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1253 	int flags = MF_ACTION_REQUIRED;
1254 
1255 	p->mce_count = 0;
1256 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1257 
1258 	if (!p->mce_ripv)
1259 		flags |= MF_MUST_KILL;
1260 
1261 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1262 	    !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1263 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1264 		sync_core();
1265 		return;
1266 	}
1267 
1268 	if (p->mce_vaddr != (void __user *)-1l) {
1269 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1270 	} else {
1271 		pr_err("Memory error not recovered");
1272 		kill_me_now(cb);
1273 	}
1274 }
1275 
queue_task_work(struct mce * m,char * msg,int kill_current_task)1276 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1277 {
1278 	int count = ++current->mce_count;
1279 
1280 	/* First call, save all the details */
1281 	if (count == 1) {
1282 		current->mce_addr = m->addr;
1283 		current->mce_kflags = m->kflags;
1284 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1285 		current->mce_whole_page = whole_page(m);
1286 
1287 		if (kill_current_task)
1288 			current->mce_kill_me.func = kill_me_now;
1289 		else
1290 			current->mce_kill_me.func = kill_me_maybe;
1291 	}
1292 
1293 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1294 	if (count > 10)
1295 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1296 
1297 	/* Second or later call, make sure page address matches the one from first call */
1298 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1299 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1300 
1301 	/* Do not call task_work_add() more than once */
1302 	if (count > 1)
1303 		return;
1304 
1305 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1306 }
1307 
1308 /*
1309  * The actual machine check handler. This only handles real
1310  * exceptions when something got corrupted coming in through int 18.
1311  *
1312  * This is executed in NMI context not subject to normal locking rules. This
1313  * implies that most kernel services cannot be safely used. Don't even
1314  * think about putting a printk in there!
1315  *
1316  * On Intel systems this is entered on all CPUs in parallel through
1317  * MCE broadcast. However some CPUs might be broken beyond repair,
1318  * so be always careful when synchronizing with others.
1319  *
1320  * Tracing and kprobes are disabled: if we interrupted a kernel context
1321  * with IF=1, we need to minimize stack usage.  There are also recursion
1322  * issues: if the machine check was due to a failure of the memory
1323  * backing the user stack, tracing that reads the user stack will cause
1324  * potentially infinite recursion.
1325  */
do_machine_check(struct pt_regs * regs)1326 noinstr void do_machine_check(struct pt_regs *regs)
1327 {
1328 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1329 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1330 	struct mca_config *cfg = &mca_cfg;
1331 	struct mce m, *final;
1332 	char *msg = NULL;
1333 	int worst = 0;
1334 
1335 	/*
1336 	 * Establish sequential order between the CPUs entering the machine
1337 	 * check handler.
1338 	 */
1339 	int order = -1;
1340 
1341 	/*
1342 	 * If no_way_out gets set, there is no safe way to recover from this
1343 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1344 	 */
1345 	int no_way_out = 0;
1346 
1347 	/*
1348 	 * If kill_it gets set, there might be a way to recover from this
1349 	 * error.
1350 	 */
1351 	int kill_it = 0;
1352 
1353 	/*
1354 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1355 	 * on Intel.
1356 	 */
1357 	int lmce = 1;
1358 
1359 	this_cpu_inc(mce_exception_count);
1360 
1361 	mce_gather_info(&m, regs);
1362 	m.tsc = rdtsc();
1363 
1364 	final = this_cpu_ptr(&mces_seen);
1365 	*final = m;
1366 
1367 	memset(valid_banks, 0, sizeof(valid_banks));
1368 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1369 
1370 	barrier();
1371 
1372 	/*
1373 	 * When no restart IP might need to kill or panic.
1374 	 * Assume the worst for now, but if we find the
1375 	 * severity is MCE_AR_SEVERITY we have other options.
1376 	 */
1377 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1378 		kill_it = 1;
1379 
1380 	/*
1381 	 * Check if this MCE is signaled to only this logical processor,
1382 	 * on Intel, Zhaoxin only.
1383 	 */
1384 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1385 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1386 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1387 
1388 	/*
1389 	 * Local machine check may already know that we have to panic.
1390 	 * Broadcast machine check begins rendezvous in mce_start()
1391 	 * Go through all banks in exclusion of the other CPUs. This way we
1392 	 * don't report duplicated events on shared banks because the first one
1393 	 * to see it will clear it.
1394 	 */
1395 	if (lmce) {
1396 		if (no_way_out)
1397 			mce_panic("Fatal local machine check", &m, msg);
1398 	} else {
1399 		order = mce_start(&no_way_out);
1400 	}
1401 
1402 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1403 
1404 	if (!no_way_out)
1405 		mce_clear_state(toclear);
1406 
1407 	/*
1408 	 * Do most of the synchronization with other CPUs.
1409 	 * When there's any problem use only local no_way_out state.
1410 	 */
1411 	if (!lmce) {
1412 		if (mce_end(order) < 0) {
1413 			if (!no_way_out)
1414 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1415 		}
1416 	} else {
1417 		/*
1418 		 * If there was a fatal machine check we should have
1419 		 * already called mce_panic earlier in this function.
1420 		 * Since we re-read the banks, we might have found
1421 		 * something new. Check again to see if we found a
1422 		 * fatal error. We call "mce_severity()" again to
1423 		 * make sure we have the right "msg".
1424 		 */
1425 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1426 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1427 			mce_panic("Local fatal machine check!", &m, msg);
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * If tolerant is at an insane level we drop requests to kill
1433 	 * processes and continue even when there is no way out.
1434 	 */
1435 	if (cfg->tolerant == 3)
1436 		kill_it = 0;
1437 	else if (no_way_out)
1438 		mce_panic("Fatal machine check on current CPU", &m, msg);
1439 
1440 	if (worst > 0)
1441 		irq_work_queue(&mce_irq_work);
1442 
1443 	if (worst != MCE_AR_SEVERITY && !kill_it)
1444 		goto out;
1445 
1446 	/* Fault was in user mode and we need to take some action */
1447 	if ((m.cs & 3) == 3) {
1448 		/* If this triggers there is no way to recover. Die hard. */
1449 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1450 
1451 		queue_task_work(&m, msg, kill_it);
1452 
1453 	} else {
1454 		/*
1455 		 * Handle an MCE which has happened in kernel space but from
1456 		 * which the kernel can recover: ex_has_fault_handler() has
1457 		 * already verified that the rIP at which the error happened is
1458 		 * a rIP from which the kernel can recover (by jumping to
1459 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1460 		 * corresponding exception handler which would do that is the
1461 		 * proper one.
1462 		 */
1463 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1464 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1465 				mce_panic("Failed kernel mode recovery", &m, msg);
1466 		}
1467 
1468 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1469 			queue_task_work(&m, msg, kill_it);
1470 	}
1471 out:
1472 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1473 }
1474 EXPORT_SYMBOL_GPL(do_machine_check);
1475 
1476 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1477 int memory_failure(unsigned long pfn, int flags)
1478 {
1479 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1480 	BUG_ON(flags & MF_ACTION_REQUIRED);
1481 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1482 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1483 	       pfn);
1484 
1485 	return 0;
1486 }
1487 #endif
1488 
1489 /*
1490  * Periodic polling timer for "silent" machine check errors.  If the
1491  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1492  * errors, poll 2x slower (up to check_interval seconds).
1493  */
1494 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1495 
1496 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1497 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1498 
mce_adjust_timer_default(unsigned long interval)1499 static unsigned long mce_adjust_timer_default(unsigned long interval)
1500 {
1501 	return interval;
1502 }
1503 
1504 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1505 
__start_timer(struct timer_list * t,unsigned long interval)1506 static void __start_timer(struct timer_list *t, unsigned long interval)
1507 {
1508 	unsigned long when = jiffies + interval;
1509 	unsigned long flags;
1510 
1511 	local_irq_save(flags);
1512 
1513 	if (!timer_pending(t) || time_before(when, t->expires))
1514 		mod_timer(t, round_jiffies(when));
1515 
1516 	local_irq_restore(flags);
1517 }
1518 
mce_timer_fn(struct timer_list * t)1519 static void mce_timer_fn(struct timer_list *t)
1520 {
1521 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1522 	unsigned long iv;
1523 
1524 	WARN_ON(cpu_t != t);
1525 
1526 	iv = __this_cpu_read(mce_next_interval);
1527 
1528 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1529 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1530 
1531 		if (mce_intel_cmci_poll()) {
1532 			iv = mce_adjust_timer(iv);
1533 			goto done;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1539 	 * interval, otherwise increase the polling interval.
1540 	 */
1541 	if (mce_notify_irq())
1542 		iv = max(iv / 2, (unsigned long) HZ/100);
1543 	else
1544 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1545 
1546 done:
1547 	__this_cpu_write(mce_next_interval, iv);
1548 	__start_timer(t, iv);
1549 }
1550 
1551 /*
1552  * Ensure that the timer is firing in @interval from now.
1553  */
mce_timer_kick(unsigned long interval)1554 void mce_timer_kick(unsigned long interval)
1555 {
1556 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1557 	unsigned long iv = __this_cpu_read(mce_next_interval);
1558 
1559 	__start_timer(t, interval);
1560 
1561 	if (interval < iv)
1562 		__this_cpu_write(mce_next_interval, interval);
1563 }
1564 
1565 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1566 static void mce_timer_delete_all(void)
1567 {
1568 	int cpu;
1569 
1570 	for_each_online_cpu(cpu)
1571 		del_timer_sync(&per_cpu(mce_timer, cpu));
1572 }
1573 
1574 /*
1575  * Notify the user(s) about new machine check events.
1576  * Can be called from interrupt context, but not from machine check/NMI
1577  * context.
1578  */
mce_notify_irq(void)1579 int mce_notify_irq(void)
1580 {
1581 	/* Not more than two messages every minute */
1582 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1583 
1584 	if (test_and_clear_bit(0, &mce_need_notify)) {
1585 		mce_work_trigger();
1586 
1587 		if (__ratelimit(&ratelimit))
1588 			pr_info(HW_ERR "Machine check events logged\n");
1589 
1590 		return 1;
1591 	}
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(mce_notify_irq);
1595 
__mcheck_cpu_mce_banks_init(void)1596 static void __mcheck_cpu_mce_banks_init(void)
1597 {
1598 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1599 	u8 n_banks = this_cpu_read(mce_num_banks);
1600 	int i;
1601 
1602 	for (i = 0; i < n_banks; i++) {
1603 		struct mce_bank *b = &mce_banks[i];
1604 
1605 		/*
1606 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1607 		 * the required vendor quirks before
1608 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1609 		 */
1610 		b->ctl = -1ULL;
1611 		b->init = 1;
1612 	}
1613 }
1614 
1615 /*
1616  * Initialize Machine Checks for a CPU.
1617  */
__mcheck_cpu_cap_init(void)1618 static void __mcheck_cpu_cap_init(void)
1619 {
1620 	u64 cap;
1621 	u8 b;
1622 
1623 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1624 
1625 	b = cap & MCG_BANKCNT_MASK;
1626 
1627 	if (b > MAX_NR_BANKS) {
1628 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1629 			smp_processor_id(), MAX_NR_BANKS, b);
1630 		b = MAX_NR_BANKS;
1631 	}
1632 
1633 	this_cpu_write(mce_num_banks, b);
1634 
1635 	__mcheck_cpu_mce_banks_init();
1636 
1637 	/* Use accurate RIP reporting if available. */
1638 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1639 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1640 
1641 	if (cap & MCG_SER_P)
1642 		mca_cfg.ser = 1;
1643 }
1644 
__mcheck_cpu_init_generic(void)1645 static void __mcheck_cpu_init_generic(void)
1646 {
1647 	enum mcp_flags m_fl = 0;
1648 	mce_banks_t all_banks;
1649 	u64 cap;
1650 
1651 	if (!mca_cfg.bootlog)
1652 		m_fl = MCP_DONTLOG;
1653 
1654 	/*
1655 	 * Log the machine checks left over from the previous reset. Log them
1656 	 * only, do not start processing them. That will happen in mcheck_late_init()
1657 	 * when all consumers have been registered on the notifier chain.
1658 	 */
1659 	bitmap_fill(all_banks, MAX_NR_BANKS);
1660 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1661 
1662 	cr4_set_bits(X86_CR4_MCE);
1663 
1664 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1665 	if (cap & MCG_CTL_P)
1666 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1667 }
1668 
__mcheck_cpu_init_clear_banks(void)1669 static void __mcheck_cpu_init_clear_banks(void)
1670 {
1671 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1672 	int i;
1673 
1674 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1675 		struct mce_bank *b = &mce_banks[i];
1676 
1677 		if (!b->init)
1678 			continue;
1679 		wrmsrl(msr_ops.ctl(i), b->ctl);
1680 		wrmsrl(msr_ops.status(i), 0);
1681 	}
1682 }
1683 
1684 /*
1685  * Do a final check to see if there are any unused/RAZ banks.
1686  *
1687  * This must be done after the banks have been initialized and any quirks have
1688  * been applied.
1689  *
1690  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1691  * Otherwise, a user who disables a bank will not be able to re-enable it
1692  * without a system reboot.
1693  */
__mcheck_cpu_check_banks(void)1694 static void __mcheck_cpu_check_banks(void)
1695 {
1696 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1697 	u64 msrval;
1698 	int i;
1699 
1700 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1701 		struct mce_bank *b = &mce_banks[i];
1702 
1703 		if (!b->init)
1704 			continue;
1705 
1706 		rdmsrl(msr_ops.ctl(i), msrval);
1707 		b->init = !!msrval;
1708 	}
1709 }
1710 
1711 /*
1712  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1713  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1714  * Vol 3B Table 15-20). But this confuses both the code that determines
1715  * whether the machine check occurred in kernel or user mode, and also
1716  * the severity assessment code. Pretend that EIPV was set, and take the
1717  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1718  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1719 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1720 {
1721 	if (bank != 0)
1722 		return;
1723 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1724 		return;
1725 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1726 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1727 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1728 			  MCACOD)) !=
1729 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1730 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1731 			  MCI_STATUS_AR|MCACOD_INSTR))
1732 		return;
1733 
1734 	m->mcgstatus |= MCG_STATUS_EIPV;
1735 	m->ip = regs->ip;
1736 	m->cs = regs->cs;
1737 }
1738 
1739 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1740 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1741 {
1742 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1743 	struct mca_config *cfg = &mca_cfg;
1744 
1745 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1746 		pr_info("unknown CPU type - not enabling MCE support\n");
1747 		return -EOPNOTSUPP;
1748 	}
1749 
1750 	/* This should be disabled by the BIOS, but isn't always */
1751 	if (c->x86_vendor == X86_VENDOR_AMD) {
1752 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1753 			/*
1754 			 * disable GART TBL walk error reporting, which
1755 			 * trips off incorrectly with the IOMMU & 3ware
1756 			 * & Cerberus:
1757 			 */
1758 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1759 		}
1760 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1761 			/*
1762 			 * Lots of broken BIOS around that don't clear them
1763 			 * by default and leave crap in there. Don't log:
1764 			 */
1765 			cfg->bootlog = 0;
1766 		}
1767 		/*
1768 		 * Various K7s with broken bank 0 around. Always disable
1769 		 * by default.
1770 		 */
1771 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1772 			mce_banks[0].ctl = 0;
1773 
1774 		/*
1775 		 * overflow_recov is supported for F15h Models 00h-0fh
1776 		 * even though we don't have a CPUID bit for it.
1777 		 */
1778 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1779 			mce_flags.overflow_recov = 1;
1780 
1781 	}
1782 
1783 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1784 		/*
1785 		 * SDM documents that on family 6 bank 0 should not be written
1786 		 * because it aliases to another special BIOS controlled
1787 		 * register.
1788 		 * But it's not aliased anymore on model 0x1a+
1789 		 * Don't ignore bank 0 completely because there could be a
1790 		 * valid event later, merely don't write CTL0.
1791 		 */
1792 
1793 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1794 			mce_banks[0].init = 0;
1795 
1796 		/*
1797 		 * All newer Intel systems support MCE broadcasting. Enable
1798 		 * synchronization with a one second timeout.
1799 		 */
1800 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1801 			cfg->monarch_timeout < 0)
1802 			cfg->monarch_timeout = USEC_PER_SEC;
1803 
1804 		/*
1805 		 * There are also broken BIOSes on some Pentium M and
1806 		 * earlier systems:
1807 		 */
1808 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1809 			cfg->bootlog = 0;
1810 
1811 		if (c->x86 == 6 && c->x86_model == 45)
1812 			quirk_no_way_out = quirk_sandybridge_ifu;
1813 	}
1814 
1815 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1816 		/*
1817 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1818 		 * synchronization with a one second timeout.
1819 		 */
1820 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1821 			if (cfg->monarch_timeout < 0)
1822 				cfg->monarch_timeout = USEC_PER_SEC;
1823 		}
1824 	}
1825 
1826 	if (cfg->monarch_timeout < 0)
1827 		cfg->monarch_timeout = 0;
1828 	if (cfg->bootlog != 0)
1829 		cfg->panic_timeout = 30;
1830 
1831 	return 0;
1832 }
1833 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1834 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1835 {
1836 	if (c->x86 != 5)
1837 		return 0;
1838 
1839 	switch (c->x86_vendor) {
1840 	case X86_VENDOR_INTEL:
1841 		intel_p5_mcheck_init(c);
1842 		return 1;
1843 		break;
1844 	case X86_VENDOR_CENTAUR:
1845 		winchip_mcheck_init(c);
1846 		return 1;
1847 		break;
1848 	default:
1849 		return 0;
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Init basic CPU features needed for early decoding of MCEs.
1857  */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1858 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1859 {
1860 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1861 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1862 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1863 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1864 		mce_flags.amd_threshold	 = 1;
1865 
1866 		if (mce_flags.smca) {
1867 			msr_ops.ctl	= smca_ctl_reg;
1868 			msr_ops.status	= smca_status_reg;
1869 			msr_ops.addr	= smca_addr_reg;
1870 			msr_ops.misc	= smca_misc_reg;
1871 		}
1872 	}
1873 }
1874 
mce_centaur_feature_init(struct cpuinfo_x86 * c)1875 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1876 {
1877 	struct mca_config *cfg = &mca_cfg;
1878 
1879 	 /*
1880 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1881 	  * synchronization with a one second timeout.
1882 	  */
1883 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1884 	     c->x86 > 6) {
1885 		if (cfg->monarch_timeout < 0)
1886 			cfg->monarch_timeout = USEC_PER_SEC;
1887 	}
1888 }
1889 
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1890 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1891 {
1892 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1893 
1894 	/*
1895 	 * These CPUs have MCA bank 8 which reports only one error type called
1896 	 * SVAD (System View Address Decoder). The reporting of that error is
1897 	 * controlled by IA32_MC8.CTL.0.
1898 	 *
1899 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1900 	 * virtual machines start and result in a system  panic. Always disable
1901 	 * bank 8 SVAD error by default.
1902 	 */
1903 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1904 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1905 		if (this_cpu_read(mce_num_banks) > 8)
1906 			mce_banks[8].ctl = 0;
1907 	}
1908 
1909 	intel_init_cmci();
1910 	intel_init_lmce();
1911 	mce_adjust_timer = cmci_intel_adjust_timer;
1912 }
1913 
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1914 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1915 {
1916 	intel_clear_lmce();
1917 }
1918 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1919 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1920 {
1921 	switch (c->x86_vendor) {
1922 	case X86_VENDOR_INTEL:
1923 		mce_intel_feature_init(c);
1924 		mce_adjust_timer = cmci_intel_adjust_timer;
1925 		break;
1926 
1927 	case X86_VENDOR_AMD: {
1928 		mce_amd_feature_init(c);
1929 		break;
1930 		}
1931 
1932 	case X86_VENDOR_HYGON:
1933 		mce_hygon_feature_init(c);
1934 		break;
1935 
1936 	case X86_VENDOR_CENTAUR:
1937 		mce_centaur_feature_init(c);
1938 		break;
1939 
1940 	case X86_VENDOR_ZHAOXIN:
1941 		mce_zhaoxin_feature_init(c);
1942 		break;
1943 
1944 	default:
1945 		break;
1946 	}
1947 }
1948 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1949 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1950 {
1951 	switch (c->x86_vendor) {
1952 	case X86_VENDOR_INTEL:
1953 		mce_intel_feature_clear(c);
1954 		break;
1955 
1956 	case X86_VENDOR_ZHAOXIN:
1957 		mce_zhaoxin_feature_clear(c);
1958 		break;
1959 
1960 	default:
1961 		break;
1962 	}
1963 }
1964 
mce_start_timer(struct timer_list * t)1965 static void mce_start_timer(struct timer_list *t)
1966 {
1967 	unsigned long iv = check_interval * HZ;
1968 
1969 	if (mca_cfg.ignore_ce || !iv)
1970 		return;
1971 
1972 	this_cpu_write(mce_next_interval, iv);
1973 	__start_timer(t, iv);
1974 }
1975 
__mcheck_cpu_setup_timer(void)1976 static void __mcheck_cpu_setup_timer(void)
1977 {
1978 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1979 
1980 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1981 }
1982 
__mcheck_cpu_init_timer(void)1983 static void __mcheck_cpu_init_timer(void)
1984 {
1985 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1986 
1987 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1988 	mce_start_timer(t);
1989 }
1990 
filter_mce(struct mce * m)1991 bool filter_mce(struct mce *m)
1992 {
1993 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1994 		return amd_filter_mce(m);
1995 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1996 		return intel_filter_mce(m);
1997 
1998 	return false;
1999 }
2000 
2001 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)2002 static noinstr void unexpected_machine_check(struct pt_regs *regs)
2003 {
2004 	instrumentation_begin();
2005 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2006 	       smp_processor_id());
2007 	instrumentation_end();
2008 }
2009 
2010 /* Call the installed machine check handler for this CPU setup. */
2011 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2012 
exc_machine_check_kernel(struct pt_regs * regs)2013 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2014 {
2015 	irqentry_state_t irq_state;
2016 
2017 	WARN_ON_ONCE(user_mode(regs));
2018 
2019 	/*
2020 	 * Only required when from kernel mode. See
2021 	 * mce_check_crashing_cpu() for details.
2022 	 */
2023 	if (machine_check_vector == do_machine_check &&
2024 	    mce_check_crashing_cpu())
2025 		return;
2026 
2027 	irq_state = irqentry_nmi_enter(regs);
2028 	/*
2029 	 * The call targets are marked noinstr, but objtool can't figure
2030 	 * that out because it's an indirect call. Annotate it.
2031 	 */
2032 	instrumentation_begin();
2033 	trace_hardirqs_off_finish();
2034 	machine_check_vector(regs);
2035 	if (regs->flags & X86_EFLAGS_IF)
2036 		trace_hardirqs_on_prepare();
2037 	instrumentation_end();
2038 	irqentry_nmi_exit(regs, irq_state);
2039 }
2040 
exc_machine_check_user(struct pt_regs * regs)2041 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2042 {
2043 	irqentry_enter_from_user_mode(regs);
2044 	instrumentation_begin();
2045 	machine_check_vector(regs);
2046 	instrumentation_end();
2047 	irqentry_exit_to_user_mode(regs);
2048 }
2049 
2050 #ifdef CONFIG_X86_64
2051 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2052 DEFINE_IDTENTRY_MCE(exc_machine_check)
2053 {
2054 	unsigned long dr7;
2055 
2056 	dr7 = local_db_save();
2057 	exc_machine_check_kernel(regs);
2058 	local_db_restore(dr7);
2059 }
2060 
2061 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2062 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2063 {
2064 	unsigned long dr7;
2065 
2066 	dr7 = local_db_save();
2067 	exc_machine_check_user(regs);
2068 	local_db_restore(dr7);
2069 }
2070 #else
2071 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2072 DEFINE_IDTENTRY_RAW(exc_machine_check)
2073 {
2074 	unsigned long dr7;
2075 
2076 	dr7 = local_db_save();
2077 	if (user_mode(regs))
2078 		exc_machine_check_user(regs);
2079 	else
2080 		exc_machine_check_kernel(regs);
2081 	local_db_restore(dr7);
2082 }
2083 #endif
2084 
2085 /*
2086  * Called for each booted CPU to set up machine checks.
2087  * Must be called with preempt off:
2088  */
mcheck_cpu_init(struct cpuinfo_x86 * c)2089 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2090 {
2091 	if (mca_cfg.disabled)
2092 		return;
2093 
2094 	if (__mcheck_cpu_ancient_init(c))
2095 		return;
2096 
2097 	if (!mce_available(c))
2098 		return;
2099 
2100 	__mcheck_cpu_cap_init();
2101 
2102 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2103 		mca_cfg.disabled = 1;
2104 		return;
2105 	}
2106 
2107 	if (mce_gen_pool_init()) {
2108 		mca_cfg.disabled = 1;
2109 		pr_emerg("Couldn't allocate MCE records pool!\n");
2110 		return;
2111 	}
2112 
2113 	machine_check_vector = do_machine_check;
2114 
2115 	__mcheck_cpu_init_early(c);
2116 	__mcheck_cpu_init_generic();
2117 	__mcheck_cpu_init_vendor(c);
2118 	__mcheck_cpu_init_clear_banks();
2119 	__mcheck_cpu_check_banks();
2120 	__mcheck_cpu_setup_timer();
2121 }
2122 
2123 /*
2124  * Called for each booted CPU to clear some machine checks opt-ins
2125  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2126 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2127 {
2128 	if (mca_cfg.disabled)
2129 		return;
2130 
2131 	if (!mce_available(c))
2132 		return;
2133 
2134 	/*
2135 	 * Possibly to clear general settings generic to x86
2136 	 * __mcheck_cpu_clear_generic(c);
2137 	 */
2138 	__mcheck_cpu_clear_vendor(c);
2139 
2140 }
2141 
__mce_disable_bank(void * arg)2142 static void __mce_disable_bank(void *arg)
2143 {
2144 	int bank = *((int *)arg);
2145 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2146 	cmci_disable_bank(bank);
2147 }
2148 
mce_disable_bank(int bank)2149 void mce_disable_bank(int bank)
2150 {
2151 	if (bank >= this_cpu_read(mce_num_banks)) {
2152 		pr_warn(FW_BUG
2153 			"Ignoring request to disable invalid MCA bank %d.\n",
2154 			bank);
2155 		return;
2156 	}
2157 	set_bit(bank, mce_banks_ce_disabled);
2158 	on_each_cpu(__mce_disable_bank, &bank, 1);
2159 }
2160 
2161 /*
2162  * mce=off Disables machine check
2163  * mce=no_cmci Disables CMCI
2164  * mce=no_lmce Disables LMCE
2165  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2166  * mce=print_all Print all machine check logs to console
2167  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2168  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2169  *	monarchtimeout is how long to wait for other CPUs on machine
2170  *	check, or 0 to not wait
2171  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2172 	and older.
2173  * mce=nobootlog Don't log MCEs from before booting.
2174  * mce=bios_cmci_threshold Don't program the CMCI threshold
2175  * mce=recovery force enable copy_mc_fragile()
2176  */
mcheck_enable(char * str)2177 static int __init mcheck_enable(char *str)
2178 {
2179 	struct mca_config *cfg = &mca_cfg;
2180 
2181 	if (*str == 0) {
2182 		enable_p5_mce();
2183 		return 1;
2184 	}
2185 	if (*str == '=')
2186 		str++;
2187 	if (!strcmp(str, "off"))
2188 		cfg->disabled = 1;
2189 	else if (!strcmp(str, "no_cmci"))
2190 		cfg->cmci_disabled = true;
2191 	else if (!strcmp(str, "no_lmce"))
2192 		cfg->lmce_disabled = 1;
2193 	else if (!strcmp(str, "dont_log_ce"))
2194 		cfg->dont_log_ce = true;
2195 	else if (!strcmp(str, "print_all"))
2196 		cfg->print_all = true;
2197 	else if (!strcmp(str, "ignore_ce"))
2198 		cfg->ignore_ce = true;
2199 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2200 		cfg->bootlog = (str[0] == 'b');
2201 	else if (!strcmp(str, "bios_cmci_threshold"))
2202 		cfg->bios_cmci_threshold = 1;
2203 	else if (!strcmp(str, "recovery"))
2204 		cfg->recovery = 1;
2205 	else if (isdigit(str[0])) {
2206 		if (get_option(&str, &cfg->tolerant) == 2)
2207 			get_option(&str, &(cfg->monarch_timeout));
2208 	} else {
2209 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2210 		return 0;
2211 	}
2212 	return 1;
2213 }
2214 __setup("mce", mcheck_enable);
2215 
mcheck_init(void)2216 int __init mcheck_init(void)
2217 {
2218 	mcheck_intel_therm_init();
2219 	mce_register_decode_chain(&early_nb);
2220 	mce_register_decode_chain(&mce_uc_nb);
2221 	mce_register_decode_chain(&mce_default_nb);
2222 	mcheck_vendor_init_severity();
2223 
2224 	INIT_WORK(&mce_work, mce_gen_pool_process);
2225 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * mce_syscore: PM support
2232  */
2233 
2234 /*
2235  * Disable machine checks on suspend and shutdown. We can't really handle
2236  * them later.
2237  */
mce_disable_error_reporting(void)2238 static void mce_disable_error_reporting(void)
2239 {
2240 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2241 	int i;
2242 
2243 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2244 		struct mce_bank *b = &mce_banks[i];
2245 
2246 		if (b->init)
2247 			wrmsrl(msr_ops.ctl(i), 0);
2248 	}
2249 	return;
2250 }
2251 
vendor_disable_error_reporting(void)2252 static void vendor_disable_error_reporting(void)
2253 {
2254 	/*
2255 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2256 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2257 	 * is bad, since it will inhibit reporting for all shared resources on
2258 	 * the socket like the last level cache (LLC), the integrated memory
2259 	 * controller (iMC), etc.
2260 	 */
2261 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2262 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2263 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2264 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2265 		return;
2266 
2267 	mce_disable_error_reporting();
2268 }
2269 
mce_syscore_suspend(void)2270 static int mce_syscore_suspend(void)
2271 {
2272 	vendor_disable_error_reporting();
2273 	return 0;
2274 }
2275 
mce_syscore_shutdown(void)2276 static void mce_syscore_shutdown(void)
2277 {
2278 	vendor_disable_error_reporting();
2279 }
2280 
2281 /*
2282  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2283  * Only one CPU is active at this time, the others get re-added later using
2284  * CPU hotplug:
2285  */
mce_syscore_resume(void)2286 static void mce_syscore_resume(void)
2287 {
2288 	__mcheck_cpu_init_generic();
2289 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2290 	__mcheck_cpu_init_clear_banks();
2291 }
2292 
2293 static struct syscore_ops mce_syscore_ops = {
2294 	.suspend	= mce_syscore_suspend,
2295 	.shutdown	= mce_syscore_shutdown,
2296 	.resume		= mce_syscore_resume,
2297 };
2298 
2299 /*
2300  * mce_device: Sysfs support
2301  */
2302 
mce_cpu_restart(void * data)2303 static void mce_cpu_restart(void *data)
2304 {
2305 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2306 		return;
2307 	__mcheck_cpu_init_generic();
2308 	__mcheck_cpu_init_clear_banks();
2309 	__mcheck_cpu_init_timer();
2310 }
2311 
2312 /* Reinit MCEs after user configuration changes */
mce_restart(void)2313 static void mce_restart(void)
2314 {
2315 	mce_timer_delete_all();
2316 	on_each_cpu(mce_cpu_restart, NULL, 1);
2317 }
2318 
2319 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2320 static void mce_disable_cmci(void *data)
2321 {
2322 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2323 		return;
2324 	cmci_clear();
2325 }
2326 
mce_enable_ce(void * all)2327 static void mce_enable_ce(void *all)
2328 {
2329 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2330 		return;
2331 	cmci_reenable();
2332 	cmci_recheck();
2333 	if (all)
2334 		__mcheck_cpu_init_timer();
2335 }
2336 
2337 static struct bus_type mce_subsys = {
2338 	.name		= "machinecheck",
2339 	.dev_name	= "machinecheck",
2340 };
2341 
2342 DEFINE_PER_CPU(struct device *, mce_device);
2343 
attr_to_bank(struct device_attribute * attr)2344 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2345 {
2346 	return container_of(attr, struct mce_bank_dev, attr);
2347 }
2348 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2349 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2350 			 char *buf)
2351 {
2352 	u8 bank = attr_to_bank(attr)->bank;
2353 	struct mce_bank *b;
2354 
2355 	if (bank >= per_cpu(mce_num_banks, s->id))
2356 		return -EINVAL;
2357 
2358 	b = &per_cpu(mce_banks_array, s->id)[bank];
2359 
2360 	if (!b->init)
2361 		return -ENODEV;
2362 
2363 	return sprintf(buf, "%llx\n", b->ctl);
2364 }
2365 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2366 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2367 			const char *buf, size_t size)
2368 {
2369 	u8 bank = attr_to_bank(attr)->bank;
2370 	struct mce_bank *b;
2371 	u64 new;
2372 
2373 	if (kstrtou64(buf, 0, &new) < 0)
2374 		return -EINVAL;
2375 
2376 	if (bank >= per_cpu(mce_num_banks, s->id))
2377 		return -EINVAL;
2378 
2379 	b = &per_cpu(mce_banks_array, s->id)[bank];
2380 
2381 	if (!b->init)
2382 		return -ENODEV;
2383 
2384 	b->ctl = new;
2385 	mce_restart();
2386 
2387 	return size;
2388 }
2389 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2390 static ssize_t set_ignore_ce(struct device *s,
2391 			     struct device_attribute *attr,
2392 			     const char *buf, size_t size)
2393 {
2394 	u64 new;
2395 
2396 	if (kstrtou64(buf, 0, &new) < 0)
2397 		return -EINVAL;
2398 
2399 	mutex_lock(&mce_sysfs_mutex);
2400 	if (mca_cfg.ignore_ce ^ !!new) {
2401 		if (new) {
2402 			/* disable ce features */
2403 			mce_timer_delete_all();
2404 			on_each_cpu(mce_disable_cmci, NULL, 1);
2405 			mca_cfg.ignore_ce = true;
2406 		} else {
2407 			/* enable ce features */
2408 			mca_cfg.ignore_ce = false;
2409 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2410 		}
2411 	}
2412 	mutex_unlock(&mce_sysfs_mutex);
2413 
2414 	return size;
2415 }
2416 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2417 static ssize_t set_cmci_disabled(struct device *s,
2418 				 struct device_attribute *attr,
2419 				 const char *buf, size_t size)
2420 {
2421 	u64 new;
2422 
2423 	if (kstrtou64(buf, 0, &new) < 0)
2424 		return -EINVAL;
2425 
2426 	mutex_lock(&mce_sysfs_mutex);
2427 	if (mca_cfg.cmci_disabled ^ !!new) {
2428 		if (new) {
2429 			/* disable cmci */
2430 			on_each_cpu(mce_disable_cmci, NULL, 1);
2431 			mca_cfg.cmci_disabled = true;
2432 		} else {
2433 			/* enable cmci */
2434 			mca_cfg.cmci_disabled = false;
2435 			on_each_cpu(mce_enable_ce, NULL, 1);
2436 		}
2437 	}
2438 	mutex_unlock(&mce_sysfs_mutex);
2439 
2440 	return size;
2441 }
2442 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2443 static ssize_t store_int_with_restart(struct device *s,
2444 				      struct device_attribute *attr,
2445 				      const char *buf, size_t size)
2446 {
2447 	unsigned long old_check_interval = check_interval;
2448 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2449 
2450 	if (check_interval == old_check_interval)
2451 		return ret;
2452 
2453 	mutex_lock(&mce_sysfs_mutex);
2454 	mce_restart();
2455 	mutex_unlock(&mce_sysfs_mutex);
2456 
2457 	return ret;
2458 }
2459 
2460 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2461 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2462 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2463 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2464 
2465 static struct dev_ext_attribute dev_attr_check_interval = {
2466 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2467 	&check_interval
2468 };
2469 
2470 static struct dev_ext_attribute dev_attr_ignore_ce = {
2471 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2472 	&mca_cfg.ignore_ce
2473 };
2474 
2475 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2476 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2477 	&mca_cfg.cmci_disabled
2478 };
2479 
2480 static struct device_attribute *mce_device_attrs[] = {
2481 	&dev_attr_tolerant.attr,
2482 	&dev_attr_check_interval.attr,
2483 #ifdef CONFIG_X86_MCELOG_LEGACY
2484 	&dev_attr_trigger,
2485 #endif
2486 	&dev_attr_monarch_timeout.attr,
2487 	&dev_attr_dont_log_ce.attr,
2488 	&dev_attr_print_all.attr,
2489 	&dev_attr_ignore_ce.attr,
2490 	&dev_attr_cmci_disabled.attr,
2491 	NULL
2492 };
2493 
2494 static cpumask_var_t mce_device_initialized;
2495 
mce_device_release(struct device * dev)2496 static void mce_device_release(struct device *dev)
2497 {
2498 	kfree(dev);
2499 }
2500 
2501 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2502 static int mce_device_create(unsigned int cpu)
2503 {
2504 	struct device *dev;
2505 	int err;
2506 	int i, j;
2507 
2508 	if (!mce_available(&boot_cpu_data))
2509 		return -EIO;
2510 
2511 	dev = per_cpu(mce_device, cpu);
2512 	if (dev)
2513 		return 0;
2514 
2515 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2516 	if (!dev)
2517 		return -ENOMEM;
2518 	dev->id  = cpu;
2519 	dev->bus = &mce_subsys;
2520 	dev->release = &mce_device_release;
2521 
2522 	err = device_register(dev);
2523 	if (err) {
2524 		put_device(dev);
2525 		return err;
2526 	}
2527 
2528 	for (i = 0; mce_device_attrs[i]; i++) {
2529 		err = device_create_file(dev, mce_device_attrs[i]);
2530 		if (err)
2531 			goto error;
2532 	}
2533 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2534 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2535 		if (err)
2536 			goto error2;
2537 	}
2538 	cpumask_set_cpu(cpu, mce_device_initialized);
2539 	per_cpu(mce_device, cpu) = dev;
2540 
2541 	return 0;
2542 error2:
2543 	while (--j >= 0)
2544 		device_remove_file(dev, &mce_bank_devs[j].attr);
2545 error:
2546 	while (--i >= 0)
2547 		device_remove_file(dev, mce_device_attrs[i]);
2548 
2549 	device_unregister(dev);
2550 
2551 	return err;
2552 }
2553 
mce_device_remove(unsigned int cpu)2554 static void mce_device_remove(unsigned int cpu)
2555 {
2556 	struct device *dev = per_cpu(mce_device, cpu);
2557 	int i;
2558 
2559 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2560 		return;
2561 
2562 	for (i = 0; mce_device_attrs[i]; i++)
2563 		device_remove_file(dev, mce_device_attrs[i]);
2564 
2565 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2566 		device_remove_file(dev, &mce_bank_devs[i].attr);
2567 
2568 	device_unregister(dev);
2569 	cpumask_clear_cpu(cpu, mce_device_initialized);
2570 	per_cpu(mce_device, cpu) = NULL;
2571 }
2572 
2573 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2574 static void mce_disable_cpu(void)
2575 {
2576 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2577 		return;
2578 
2579 	if (!cpuhp_tasks_frozen)
2580 		cmci_clear();
2581 
2582 	vendor_disable_error_reporting();
2583 }
2584 
mce_reenable_cpu(void)2585 static void mce_reenable_cpu(void)
2586 {
2587 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2588 	int i;
2589 
2590 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2591 		return;
2592 
2593 	if (!cpuhp_tasks_frozen)
2594 		cmci_reenable();
2595 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2596 		struct mce_bank *b = &mce_banks[i];
2597 
2598 		if (b->init)
2599 			wrmsrl(msr_ops.ctl(i), b->ctl);
2600 	}
2601 }
2602 
mce_cpu_dead(unsigned int cpu)2603 static int mce_cpu_dead(unsigned int cpu)
2604 {
2605 	mce_intel_hcpu_update(cpu);
2606 
2607 	/* intentionally ignoring frozen here */
2608 	if (!cpuhp_tasks_frozen)
2609 		cmci_rediscover();
2610 	return 0;
2611 }
2612 
mce_cpu_online(unsigned int cpu)2613 static int mce_cpu_online(unsigned int cpu)
2614 {
2615 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2616 	int ret;
2617 
2618 	mce_device_create(cpu);
2619 
2620 	ret = mce_threshold_create_device(cpu);
2621 	if (ret) {
2622 		mce_device_remove(cpu);
2623 		return ret;
2624 	}
2625 	mce_reenable_cpu();
2626 	mce_start_timer(t);
2627 	return 0;
2628 }
2629 
mce_cpu_pre_down(unsigned int cpu)2630 static int mce_cpu_pre_down(unsigned int cpu)
2631 {
2632 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2633 
2634 	mce_disable_cpu();
2635 	del_timer_sync(t);
2636 	mce_threshold_remove_device(cpu);
2637 	mce_device_remove(cpu);
2638 	return 0;
2639 }
2640 
mce_init_banks(void)2641 static __init void mce_init_banks(void)
2642 {
2643 	int i;
2644 
2645 	for (i = 0; i < MAX_NR_BANKS; i++) {
2646 		struct mce_bank_dev *b = &mce_bank_devs[i];
2647 		struct device_attribute *a = &b->attr;
2648 
2649 		b->bank = i;
2650 
2651 		sysfs_attr_init(&a->attr);
2652 		a->attr.name	= b->attrname;
2653 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2654 
2655 		a->attr.mode	= 0644;
2656 		a->show		= show_bank;
2657 		a->store	= set_bank;
2658 	}
2659 }
2660 
2661 /*
2662  * When running on XEN, this initcall is ordered against the XEN mcelog
2663  * initcall:
2664  *
2665  *   device_initcall(xen_late_init_mcelog);
2666  *   device_initcall_sync(mcheck_init_device);
2667  */
mcheck_init_device(void)2668 static __init int mcheck_init_device(void)
2669 {
2670 	int err;
2671 
2672 	/*
2673 	 * Check if we have a spare virtual bit. This will only become
2674 	 * a problem if/when we move beyond 5-level page tables.
2675 	 */
2676 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2677 
2678 	if (!mce_available(&boot_cpu_data)) {
2679 		err = -EIO;
2680 		goto err_out;
2681 	}
2682 
2683 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2684 		err = -ENOMEM;
2685 		goto err_out;
2686 	}
2687 
2688 	mce_init_banks();
2689 
2690 	err = subsys_system_register(&mce_subsys, NULL);
2691 	if (err)
2692 		goto err_out_mem;
2693 
2694 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2695 				mce_cpu_dead);
2696 	if (err)
2697 		goto err_out_mem;
2698 
2699 	/*
2700 	 * Invokes mce_cpu_online() on all CPUs which are online when
2701 	 * the state is installed.
2702 	 */
2703 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2704 				mce_cpu_online, mce_cpu_pre_down);
2705 	if (err < 0)
2706 		goto err_out_online;
2707 
2708 	register_syscore_ops(&mce_syscore_ops);
2709 
2710 	return 0;
2711 
2712 err_out_online:
2713 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2714 
2715 err_out_mem:
2716 	free_cpumask_var(mce_device_initialized);
2717 
2718 err_out:
2719 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2720 
2721 	return err;
2722 }
2723 device_initcall_sync(mcheck_init_device);
2724 
2725 /*
2726  * Old style boot options parsing. Only for compatibility.
2727  */
mcheck_disable(char * str)2728 static int __init mcheck_disable(char *str)
2729 {
2730 	mca_cfg.disabled = 1;
2731 	return 1;
2732 }
2733 __setup("nomce", mcheck_disable);
2734 
2735 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2736 struct dentry *mce_get_debugfs_dir(void)
2737 {
2738 	static struct dentry *dmce;
2739 
2740 	if (!dmce)
2741 		dmce = debugfs_create_dir("mce", NULL);
2742 
2743 	return dmce;
2744 }
2745 
mce_reset(void)2746 static void mce_reset(void)
2747 {
2748 	cpu_missing = 0;
2749 	atomic_set(&mce_fake_panicked, 0);
2750 	atomic_set(&mce_executing, 0);
2751 	atomic_set(&mce_callin, 0);
2752 	atomic_set(&global_nwo, 0);
2753 }
2754 
fake_panic_get(void * data,u64 * val)2755 static int fake_panic_get(void *data, u64 *val)
2756 {
2757 	*val = fake_panic;
2758 	return 0;
2759 }
2760 
fake_panic_set(void * data,u64 val)2761 static int fake_panic_set(void *data, u64 val)
2762 {
2763 	mce_reset();
2764 	fake_panic = val;
2765 	return 0;
2766 }
2767 
2768 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2769 			 "%llu\n");
2770 
mcheck_debugfs_init(void)2771 static void __init mcheck_debugfs_init(void)
2772 {
2773 	struct dentry *dmce;
2774 
2775 	dmce = mce_get_debugfs_dir();
2776 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2777 				   &fake_panic_fops);
2778 }
2779 #else
mcheck_debugfs_init(void)2780 static void __init mcheck_debugfs_init(void) { }
2781 #endif
2782 
mcheck_late_init(void)2783 static int __init mcheck_late_init(void)
2784 {
2785 	if (mca_cfg.recovery)
2786 		enable_copy_mc_fragile();
2787 
2788 	mcheck_debugfs_init();
2789 
2790 	/*
2791 	 * Flush out everything that has been logged during early boot, now that
2792 	 * everything has been initialized (workqueues, decoders, ...).
2793 	 */
2794 	mce_schedule_work();
2795 
2796 	return 0;
2797 }
2798 late_initcall(mcheck_late_init);
2799