• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 		ext4_fc_track_range(handle, inode, map->m_lblk,
745 			    map->m_lblk + map->m_len - 1);
746 	}
747 
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		 || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		J_ASSERT(create != 0);
859 		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			 || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, bh);
872 		if (unlikely(err)) {
873 			unlock_buffer(bh);
874 			goto errout;
875 		}
876 		if (!buffer_uptodate(bh)) {
877 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
878 			set_buffer_uptodate(bh);
879 		}
880 		unlock_buffer(bh);
881 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
882 		err = ext4_handle_dirty_metadata(handle, inode, bh);
883 		if (unlikely(err))
884 			goto errout;
885 	} else
886 		BUFFER_TRACE(bh, "not a new buffer");
887 	return bh;
888 errout:
889 	brelse(bh);
890 	return ERR_PTR(err);
891 }
892 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
894 			       ext4_lblk_t block, int map_flags)
895 {
896 	struct buffer_head *bh;
897 	int ret;
898 
899 	bh = ext4_getblk(handle, inode, block, map_flags);
900 	if (IS_ERR(bh))
901 		return bh;
902 	if (!bh || ext4_buffer_uptodate(bh))
903 		return bh;
904 
905 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
906 	if (ret) {
907 		put_bh(bh);
908 		return ERR_PTR(ret);
909 	}
910 	return bh;
911 }
912 
913 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
915 		     bool wait, struct buffer_head **bhs)
916 {
917 	int i, err;
918 
919 	for (i = 0; i < bh_count; i++) {
920 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
921 		if (IS_ERR(bhs[i])) {
922 			err = PTR_ERR(bhs[i]);
923 			bh_count = i;
924 			goto out_brelse;
925 		}
926 	}
927 
928 	for (i = 0; i < bh_count; i++)
929 		/* Note that NULL bhs[i] is valid because of holes. */
930 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
931 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
932 
933 	if (!wait)
934 		return 0;
935 
936 	for (i = 0; i < bh_count; i++)
937 		if (bhs[i])
938 			wait_on_buffer(bhs[i]);
939 
940 	for (i = 0; i < bh_count; i++) {
941 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
942 			err = -EIO;
943 			goto out_brelse;
944 		}
945 	}
946 	return 0;
947 
948 out_brelse:
949 	for (i = 0; i < bh_count; i++) {
950 		brelse(bhs[i]);
951 		bhs[i] = NULL;
952 	}
953 	return err;
954 }
955 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))956 int ext4_walk_page_buffers(handle_t *handle,
957 			   struct buffer_head *head,
958 			   unsigned from,
959 			   unsigned to,
960 			   int *partial,
961 			   int (*fn)(handle_t *handle,
962 				     struct buffer_head *bh))
963 {
964 	struct buffer_head *bh;
965 	unsigned block_start, block_end;
966 	unsigned blocksize = head->b_size;
967 	int err, ret = 0;
968 	struct buffer_head *next;
969 
970 	for (bh = head, block_start = 0;
971 	     ret == 0 && (bh != head || !block_start);
972 	     block_start = block_end, bh = next) {
973 		next = bh->b_this_page;
974 		block_end = block_start + blocksize;
975 		if (block_end <= from || block_start >= to) {
976 			if (partial && !buffer_uptodate(bh))
977 				*partial = 1;
978 			continue;
979 		}
980 		err = (*fn)(handle, bh);
981 		if (!ret)
982 			ret = err;
983 	}
984 	return ret;
985 }
986 
987 /*
988  * To preserve ordering, it is essential that the hole instantiation and
989  * the data write be encapsulated in a single transaction.  We cannot
990  * close off a transaction and start a new one between the ext4_get_block()
991  * and the commit_write().  So doing the jbd2_journal_start at the start of
992  * prepare_write() is the right place.
993  *
994  * Also, this function can nest inside ext4_writepage().  In that case, we
995  * *know* that ext4_writepage() has generated enough buffer credits to do the
996  * whole page.  So we won't block on the journal in that case, which is good,
997  * because the caller may be PF_MEMALLOC.
998  *
999  * By accident, ext4 can be reentered when a transaction is open via
1000  * quota file writes.  If we were to commit the transaction while thus
1001  * reentered, there can be a deadlock - we would be holding a quota
1002  * lock, and the commit would never complete if another thread had a
1003  * transaction open and was blocking on the quota lock - a ranking
1004  * violation.
1005  *
1006  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007  * will _not_ run commit under these circumstances because handle->h_ref
1008  * is elevated.  We'll still have enough credits for the tiny quotafile
1009  * write.
1010  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1011 int do_journal_get_write_access(handle_t *handle,
1012 				struct buffer_head *bh)
1013 {
1014 	int dirty = buffer_dirty(bh);
1015 	int ret;
1016 
1017 	if (!buffer_mapped(bh) || buffer_freed(bh))
1018 		return 0;
1019 	/*
1020 	 * __block_write_begin() could have dirtied some buffers. Clean
1021 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1022 	 * otherwise about fs integrity issues. Setting of the dirty bit
1023 	 * by __block_write_begin() isn't a real problem here as we clear
1024 	 * the bit before releasing a page lock and thus writeback cannot
1025 	 * ever write the buffer.
1026 	 */
1027 	if (dirty)
1028 		clear_buffer_dirty(bh);
1029 	BUFFER_TRACE(bh, "get write access");
1030 	ret = ext4_journal_get_write_access(handle, bh);
1031 	if (!ret && dirty)
1032 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1033 	return ret;
1034 }
1035 
1036 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1037 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1038 				  get_block_t *get_block)
1039 {
1040 	unsigned from = pos & (PAGE_SIZE - 1);
1041 	unsigned to = from + len;
1042 	struct inode *inode = page->mapping->host;
1043 	unsigned block_start, block_end;
1044 	sector_t block;
1045 	int err = 0;
1046 	unsigned blocksize = inode->i_sb->s_blocksize;
1047 	unsigned bbits;
1048 	struct buffer_head *bh, *head, *wait[2];
1049 	int nr_wait = 0;
1050 	int i;
1051 
1052 	BUG_ON(!PageLocked(page));
1053 	BUG_ON(from > PAGE_SIZE);
1054 	BUG_ON(to > PAGE_SIZE);
1055 	BUG_ON(from > to);
1056 
1057 	if (!page_has_buffers(page))
1058 		create_empty_buffers(page, blocksize, 0);
1059 	head = page_buffers(page);
1060 	bbits = ilog2(blocksize);
1061 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1062 
1063 	for (bh = head, block_start = 0; bh != head || !block_start;
1064 	    block++, block_start = block_end, bh = bh->b_this_page) {
1065 		block_end = block_start + blocksize;
1066 		if (block_end <= from || block_start >= to) {
1067 			if (PageUptodate(page)) {
1068 				if (!buffer_uptodate(bh))
1069 					set_buffer_uptodate(bh);
1070 			}
1071 			continue;
1072 		}
1073 		if (buffer_new(bh))
1074 			clear_buffer_new(bh);
1075 		if (!buffer_mapped(bh)) {
1076 			WARN_ON(bh->b_size != blocksize);
1077 			err = get_block(inode, block, bh, 1);
1078 			if (err)
1079 				break;
1080 			if (buffer_new(bh)) {
1081 				if (PageUptodate(page)) {
1082 					clear_buffer_new(bh);
1083 					set_buffer_uptodate(bh);
1084 					mark_buffer_dirty(bh);
1085 					continue;
1086 				}
1087 				if (block_end > to || block_start < from)
1088 					zero_user_segments(page, to, block_end,
1089 							   block_start, from);
1090 				continue;
1091 			}
1092 		}
1093 		if (PageUptodate(page)) {
1094 			if (!buffer_uptodate(bh))
1095 				set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1213 					     from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_mutex.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1258 {
1259 	int ret;
1260 	if (!buffer_mapped(bh) || buffer_freed(bh))
1261 		return 0;
1262 	set_buffer_uptodate(bh);
1263 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1264 	clear_buffer_meta(bh);
1265 	clear_buffer_prio(bh);
1266 	return ret;
1267 }
1268 
1269 /*
1270  * We need to pick up the new inode size which generic_commit_write gave us
1271  * `file' can be NULL - eg, when called from page_symlink().
1272  *
1273  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1274  * buffers are managed internally.
1275  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1276 static int ext4_write_end(struct file *file,
1277 			  struct address_space *mapping,
1278 			  loff_t pos, unsigned len, unsigned copied,
1279 			  struct page *page, void *fsdata)
1280 {
1281 	handle_t *handle = ext4_journal_current_handle();
1282 	struct inode *inode = mapping->host;
1283 	loff_t old_size = inode->i_size;
1284 	int ret = 0, ret2;
1285 	int i_size_changed = 0;
1286 	bool verity = ext4_verity_in_progress(inode);
1287 
1288 	trace_ext4_write_end(inode, pos, len, copied);
1289 
1290 	if (ext4_has_inline_data(inode))
1291 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1292 
1293 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1294 	/*
1295 	 * it's important to update i_size while still holding page lock:
1296 	 * page writeout could otherwise come in and zero beyond i_size.
1297 	 *
1298 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1299 	 * blocks are being written past EOF, so skip the i_size update.
1300 	 */
1301 	if (!verity)
1302 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1303 	unlock_page(page);
1304 	put_page(page);
1305 
1306 	if (old_size < pos && !verity)
1307 		pagecache_isize_extended(inode, old_size, pos);
1308 	/*
1309 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1310 	 * makes the holding time of page lock longer. Second, it forces lock
1311 	 * ordering of page lock and transaction start for journaling
1312 	 * filesystems.
1313 	 */
1314 	if (i_size_changed)
1315 		ret = ext4_mark_inode_dirty(handle, inode);
1316 
1317 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1318 		/* if we have allocated more blocks and copied
1319 		 * less. We will have blocks allocated outside
1320 		 * inode->i_size. So truncate them
1321 		 */
1322 		ext4_orphan_add(handle, inode);
1323 
1324 	ret2 = ext4_journal_stop(handle);
1325 	if (!ret)
1326 		ret = ret2;
1327 
1328 	if (pos + len > inode->i_size && !verity) {
1329 		ext4_truncate_failed_write(inode);
1330 		/*
1331 		 * If truncate failed early the inode might still be
1332 		 * on the orphan list; we need to make sure the inode
1333 		 * is removed from the orphan list in that case.
1334 		 */
1335 		if (inode->i_nlink)
1336 			ext4_orphan_del(NULL, inode);
1337 	}
1338 
1339 	return ret ? ret : copied;
1340 }
1341 
1342 /*
1343  * This is a private version of page_zero_new_buffers() which doesn't
1344  * set the buffer to be dirty, since in data=journalled mode we need
1345  * to call ext4_handle_dirty_metadata() instead.
1346  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1347 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1348 					    struct page *page,
1349 					    unsigned from, unsigned to)
1350 {
1351 	unsigned int block_start = 0, block_end;
1352 	struct buffer_head *head, *bh;
1353 
1354 	bh = head = page_buffers(page);
1355 	do {
1356 		block_end = block_start + bh->b_size;
1357 		if (buffer_new(bh)) {
1358 			if (block_end > from && block_start < to) {
1359 				if (!PageUptodate(page)) {
1360 					unsigned start, size;
1361 
1362 					start = max(from, block_start);
1363 					size = min(to, block_end) - start;
1364 
1365 					zero_user(page, start, size);
1366 					write_end_fn(handle, bh);
1367 				}
1368 				clear_buffer_new(bh);
1369 			}
1370 		}
1371 		block_start = block_end;
1372 		bh = bh->b_this_page;
1373 	} while (bh != head);
1374 }
1375 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1376 static int ext4_journalled_write_end(struct file *file,
1377 				     struct address_space *mapping,
1378 				     loff_t pos, unsigned len, unsigned copied,
1379 				     struct page *page, void *fsdata)
1380 {
1381 	handle_t *handle = ext4_journal_current_handle();
1382 	struct inode *inode = mapping->host;
1383 	loff_t old_size = inode->i_size;
1384 	int ret = 0, ret2;
1385 	int partial = 0;
1386 	unsigned from, to;
1387 	int size_changed = 0;
1388 	bool verity = ext4_verity_in_progress(inode);
1389 
1390 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1391 	from = pos & (PAGE_SIZE - 1);
1392 	to = from + len;
1393 
1394 	BUG_ON(!ext4_handle_valid(handle));
1395 
1396 	if (ext4_has_inline_data(inode))
1397 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1398 
1399 	if (unlikely(copied < len) && !PageUptodate(page)) {
1400 		copied = 0;
1401 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1402 	} else {
1403 		if (unlikely(copied < len))
1404 			ext4_journalled_zero_new_buffers(handle, page,
1405 							 from + copied, to);
1406 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1407 					     from + copied, &partial,
1408 					     write_end_fn);
1409 		if (!partial)
1410 			SetPageUptodate(page);
1411 	}
1412 	if (!verity)
1413 		size_changed = ext4_update_inode_size(inode, pos + copied);
1414 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1415 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416 	unlock_page(page);
1417 	put_page(page);
1418 
1419 	if (old_size < pos && !verity)
1420 		pagecache_isize_extended(inode, old_size, pos);
1421 
1422 	if (size_changed) {
1423 		ret2 = ext4_mark_inode_dirty(handle, inode);
1424 		if (!ret)
1425 			ret = ret2;
1426 	}
1427 
1428 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429 		/* if we have allocated more blocks and copied
1430 		 * less. We will have blocks allocated outside
1431 		 * inode->i_size. So truncate them
1432 		 */
1433 		ext4_orphan_add(handle, inode);
1434 
1435 	ret2 = ext4_journal_stop(handle);
1436 	if (!ret)
1437 		ret = ret2;
1438 	if (pos + len > inode->i_size && !verity) {
1439 		ext4_truncate_failed_write(inode);
1440 		/*
1441 		 * If truncate failed early the inode might still be
1442 		 * on the orphan list; we need to make sure the inode
1443 		 * is removed from the orphan list in that case.
1444 		 */
1445 		if (inode->i_nlink)
1446 			ext4_orphan_del(NULL, inode);
1447 	}
1448 
1449 	return ret ? ret : copied;
1450 }
1451 
1452 /*
1453  * Reserve space for a single cluster
1454  */
ext4_da_reserve_space(struct inode * inode)1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 	struct ext4_inode_info *ei = EXT4_I(inode);
1459 	int ret;
1460 
1461 	/*
1462 	 * We will charge metadata quota at writeout time; this saves
1463 	 * us from metadata over-estimation, though we may go over by
1464 	 * a small amount in the end.  Here we just reserve for data.
1465 	 */
1466 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 	if (ret)
1468 		return ret;
1469 
1470 	spin_lock(&ei->i_block_reservation_lock);
1471 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472 		spin_unlock(&ei->i_block_reservation_lock);
1473 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 		return -ENOSPC;
1475 	}
1476 	ei->i_reserved_data_blocks++;
1477 	trace_ext4_da_reserve_space(inode);
1478 	spin_unlock(&ei->i_block_reservation_lock);
1479 
1480 	return 0;       /* success */
1481 }
1482 
ext4_da_release_space(struct inode * inode,int to_free)1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486 	struct ext4_inode_info *ei = EXT4_I(inode);
1487 
1488 	if (!to_free)
1489 		return;		/* Nothing to release, exit */
1490 
1491 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492 
1493 	trace_ext4_da_release_space(inode, to_free);
1494 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495 		/*
1496 		 * if there aren't enough reserved blocks, then the
1497 		 * counter is messed up somewhere.  Since this
1498 		 * function is called from invalidate page, it's
1499 		 * harmless to return without any action.
1500 		 */
1501 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 			 "ino %lu, to_free %d with only %d reserved "
1503 			 "data blocks", inode->i_ino, to_free,
1504 			 ei->i_reserved_data_blocks);
1505 		WARN_ON(1);
1506 		to_free = ei->i_reserved_data_blocks;
1507 	}
1508 	ei->i_reserved_data_blocks -= to_free;
1509 
1510 	/* update fs dirty data blocks counter */
1511 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512 
1513 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517 
1518 /*
1519  * Delayed allocation stuff
1520  */
1521 
1522 struct mpage_da_data {
1523 	struct inode *inode;
1524 	struct writeback_control *wbc;
1525 
1526 	pgoff_t first_page;	/* The first page to write */
1527 	pgoff_t next_page;	/* Current page to examine */
1528 	pgoff_t last_page;	/* Last page to examine */
1529 	/*
1530 	 * Extent to map - this can be after first_page because that can be
1531 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1532 	 * is delalloc or unwritten.
1533 	 */
1534 	struct ext4_map_blocks map;
1535 	struct ext4_io_submit io_submit;	/* IO submission data */
1536 	unsigned int do_map:1;
1537 	unsigned int scanned_until_end:1;
1538 };
1539 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1540 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1541 				       bool invalidate)
1542 {
1543 	int nr_pages, i;
1544 	pgoff_t index, end;
1545 	struct pagevec pvec;
1546 	struct inode *inode = mpd->inode;
1547 	struct address_space *mapping = inode->i_mapping;
1548 
1549 	/* This is necessary when next_page == 0. */
1550 	if (mpd->first_page >= mpd->next_page)
1551 		return;
1552 
1553 	mpd->scanned_until_end = 0;
1554 	index = mpd->first_page;
1555 	end   = mpd->next_page - 1;
1556 	if (invalidate) {
1557 		ext4_lblk_t start, last;
1558 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1559 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1560 		ext4_es_remove_extent(inode, start, last - start + 1);
1561 	}
1562 
1563 	pagevec_init(&pvec);
1564 	while (index <= end) {
1565 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1566 		if (nr_pages == 0)
1567 			break;
1568 		for (i = 0; i < nr_pages; i++) {
1569 			struct page *page = pvec.pages[i];
1570 
1571 			BUG_ON(!PageLocked(page));
1572 			BUG_ON(PageWriteback(page));
1573 			if (invalidate) {
1574 				if (page_mapped(page))
1575 					clear_page_dirty_for_io(page);
1576 				block_invalidatepage(page, 0, PAGE_SIZE);
1577 				ClearPageUptodate(page);
1578 			}
1579 			unlock_page(page);
1580 		}
1581 		pagevec_release(&pvec);
1582 	}
1583 }
1584 
ext4_print_free_blocks(struct inode * inode)1585 static void ext4_print_free_blocks(struct inode *inode)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 	struct super_block *sb = inode->i_sb;
1589 	struct ext4_inode_info *ei = EXT4_I(inode);
1590 
1591 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1592 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1593 			ext4_count_free_clusters(sb)));
1594 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1595 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1596 	       (long long) EXT4_C2B(EXT4_SB(sb),
1597 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1598 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1599 	       (long long) EXT4_C2B(EXT4_SB(sb),
1600 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1601 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1602 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1603 		 ei->i_reserved_data_blocks);
1604 	return;
1605 }
1606 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1607 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1608 {
1609 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1610 }
1611 
1612 /*
1613  * ext4_insert_delayed_block - adds a delayed block to the extents status
1614  *                             tree, incrementing the reserved cluster/block
1615  *                             count or making a pending reservation
1616  *                             where needed
1617  *
1618  * @inode - file containing the newly added block
1619  * @lblk - logical block to be added
1620  *
1621  * Returns 0 on success, negative error code on failure.
1622  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1623 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1624 {
1625 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 	int ret;
1627 	bool allocated = false;
1628 	bool reserved = false;
1629 
1630 	/*
1631 	 * If the cluster containing lblk is shared with a delayed,
1632 	 * written, or unwritten extent in a bigalloc file system, it's
1633 	 * already been accounted for and does not need to be reserved.
1634 	 * A pending reservation must be made for the cluster if it's
1635 	 * shared with a written or unwritten extent and doesn't already
1636 	 * have one.  Written and unwritten extents can be purged from the
1637 	 * extents status tree if the system is under memory pressure, so
1638 	 * it's necessary to examine the extent tree if a search of the
1639 	 * extents status tree doesn't get a match.
1640 	 */
1641 	if (sbi->s_cluster_ratio == 1) {
1642 		ret = ext4_da_reserve_space(inode);
1643 		if (ret != 0)   /* ENOSPC */
1644 			goto errout;
1645 		reserved = true;
1646 	} else {   /* bigalloc */
1647 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1648 			if (!ext4_es_scan_clu(inode,
1649 					      &ext4_es_is_mapped, lblk)) {
1650 				ret = ext4_clu_mapped(inode,
1651 						      EXT4_B2C(sbi, lblk));
1652 				if (ret < 0)
1653 					goto errout;
1654 				if (ret == 0) {
1655 					ret = ext4_da_reserve_space(inode);
1656 					if (ret != 0)   /* ENOSPC */
1657 						goto errout;
1658 					reserved = true;
1659 				} else {
1660 					allocated = true;
1661 				}
1662 			} else {
1663 				allocated = true;
1664 			}
1665 		}
1666 	}
1667 
1668 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1669 	if (ret && reserved)
1670 		ext4_da_release_space(inode, 1);
1671 
1672 errout:
1673 	return ret;
1674 }
1675 
1676 /*
1677  * This function is grabs code from the very beginning of
1678  * ext4_map_blocks, but assumes that the caller is from delayed write
1679  * time. This function looks up the requested blocks and sets the
1680  * buffer delay bit under the protection of i_data_sem.
1681  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683 			      struct ext4_map_blocks *map,
1684 			      struct buffer_head *bh)
1685 {
1686 	struct extent_status es;
1687 	int retval;
1688 	sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690 	struct ext4_map_blocks orig_map;
1691 
1692 	memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694 
1695 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696 		invalid_block = ~0;
1697 
1698 	map->m_flags = 0;
1699 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1700 		  (unsigned long) map->m_lblk);
1701 
1702 	/* Lookup extent status tree firstly */
1703 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1704 		if (ext4_es_is_hole(&es)) {
1705 			retval = 0;
1706 			down_read(&EXT4_I(inode)->i_data_sem);
1707 			goto add_delayed;
1708 		}
1709 
1710 		/*
1711 		 * Delayed extent could be allocated by fallocate.
1712 		 * So we need to check it.
1713 		 */
1714 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1715 			map_bh(bh, inode->i_sb, invalid_block);
1716 			set_buffer_new(bh);
1717 			set_buffer_delay(bh);
1718 			return 0;
1719 		}
1720 
1721 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1722 		retval = es.es_len - (iblock - es.es_lblk);
1723 		if (retval > map->m_len)
1724 			retval = map->m_len;
1725 		map->m_len = retval;
1726 		if (ext4_es_is_written(&es))
1727 			map->m_flags |= EXT4_MAP_MAPPED;
1728 		else if (ext4_es_is_unwritten(&es))
1729 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1730 		else
1731 			BUG();
1732 
1733 #ifdef ES_AGGRESSIVE_TEST
1734 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1735 #endif
1736 		return retval;
1737 	}
1738 
1739 	/*
1740 	 * Try to see if we can get the block without requesting a new
1741 	 * file system block.
1742 	 */
1743 	down_read(&EXT4_I(inode)->i_data_sem);
1744 	if (ext4_has_inline_data(inode))
1745 		retval = 0;
1746 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1747 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1748 	else
1749 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1750 
1751 add_delayed:
1752 	if (retval == 0) {
1753 		int ret;
1754 
1755 		/*
1756 		 * XXX: __block_prepare_write() unmaps passed block,
1757 		 * is it OK?
1758 		 */
1759 
1760 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1761 		if (ret != 0) {
1762 			retval = ret;
1763 			goto out_unlock;
1764 		}
1765 
1766 		map_bh(bh, inode->i_sb, invalid_block);
1767 		set_buffer_new(bh);
1768 		set_buffer_delay(bh);
1769 	} else if (retval > 0) {
1770 		int ret;
1771 		unsigned int status;
1772 
1773 		if (unlikely(retval != map->m_len)) {
1774 			ext4_warning(inode->i_sb,
1775 				     "ES len assertion failed for inode "
1776 				     "%lu: retval %d != map->m_len %d",
1777 				     inode->i_ino, retval, map->m_len);
1778 			WARN_ON(1);
1779 		}
1780 
1781 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1782 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1783 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1784 					    map->m_pblk, status);
1785 		if (ret != 0)
1786 			retval = ret;
1787 	}
1788 
1789 out_unlock:
1790 	up_read((&EXT4_I(inode)->i_data_sem));
1791 
1792 	return retval;
1793 }
1794 
1795 /*
1796  * This is a special get_block_t callback which is used by
1797  * ext4_da_write_begin().  It will either return mapped block or
1798  * reserve space for a single block.
1799  *
1800  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1801  * We also have b_blocknr = -1 and b_bdev initialized properly
1802  *
1803  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1804  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1805  * initialized properly.
1806  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1807 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1808 			   struct buffer_head *bh, int create)
1809 {
1810 	struct ext4_map_blocks map;
1811 	int ret = 0;
1812 
1813 	BUG_ON(create == 0);
1814 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1815 
1816 	map.m_lblk = iblock;
1817 	map.m_len = 1;
1818 
1819 	/*
1820 	 * first, we need to know whether the block is allocated already
1821 	 * preallocated blocks are unmapped but should treated
1822 	 * the same as allocated blocks.
1823 	 */
1824 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1825 	if (ret <= 0)
1826 		return ret;
1827 
1828 	map_bh(bh, inode->i_sb, map.m_pblk);
1829 	ext4_update_bh_state(bh, map.m_flags);
1830 
1831 	if (buffer_unwritten(bh)) {
1832 		/* A delayed write to unwritten bh should be marked
1833 		 * new and mapped.  Mapped ensures that we don't do
1834 		 * get_block multiple times when we write to the same
1835 		 * offset and new ensures that we do proper zero out
1836 		 * for partial write.
1837 		 */
1838 		set_buffer_new(bh);
1839 		set_buffer_mapped(bh);
1840 	}
1841 	return 0;
1842 }
1843 
bget_one(handle_t * handle,struct buffer_head * bh)1844 static int bget_one(handle_t *handle, struct buffer_head *bh)
1845 {
1846 	get_bh(bh);
1847 	return 0;
1848 }
1849 
bput_one(handle_t * handle,struct buffer_head * bh)1850 static int bput_one(handle_t *handle, struct buffer_head *bh)
1851 {
1852 	put_bh(bh);
1853 	return 0;
1854 }
1855 
__ext4_journalled_writepage(struct page * page,unsigned int len)1856 static int __ext4_journalled_writepage(struct page *page,
1857 				       unsigned int len)
1858 {
1859 	struct address_space *mapping = page->mapping;
1860 	struct inode *inode = mapping->host;
1861 	struct buffer_head *page_bufs = NULL;
1862 	handle_t *handle = NULL;
1863 	int ret = 0, err = 0;
1864 	int inline_data = ext4_has_inline_data(inode);
1865 	struct buffer_head *inode_bh = NULL;
1866 
1867 	ClearPageChecked(page);
1868 
1869 	if (inline_data) {
1870 		BUG_ON(page->index != 0);
1871 		BUG_ON(len > ext4_get_max_inline_size(inode));
1872 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1873 		if (inode_bh == NULL)
1874 			goto out;
1875 	} else {
1876 		page_bufs = page_buffers(page);
1877 		if (!page_bufs) {
1878 			BUG();
1879 			goto out;
1880 		}
1881 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1882 				       NULL, bget_one);
1883 	}
1884 	/*
1885 	 * We need to release the page lock before we start the
1886 	 * journal, so grab a reference so the page won't disappear
1887 	 * out from under us.
1888 	 */
1889 	get_page(page);
1890 	unlock_page(page);
1891 
1892 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1893 				    ext4_writepage_trans_blocks(inode));
1894 	if (IS_ERR(handle)) {
1895 		ret = PTR_ERR(handle);
1896 		put_page(page);
1897 		goto out_no_pagelock;
1898 	}
1899 	BUG_ON(!ext4_handle_valid(handle));
1900 
1901 	lock_page(page);
1902 	put_page(page);
1903 	if (page->mapping != mapping) {
1904 		/* The page got truncated from under us */
1905 		ext4_journal_stop(handle);
1906 		ret = 0;
1907 		goto out;
1908 	}
1909 
1910 	if (inline_data) {
1911 		ret = ext4_mark_inode_dirty(handle, inode);
1912 	} else {
1913 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 					     do_journal_get_write_access);
1915 
1916 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1917 					     write_end_fn);
1918 	}
1919 	if (ret == 0)
1920 		ret = err;
1921 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1922 	if (ret == 0)
1923 		ret = err;
1924 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1925 	err = ext4_journal_stop(handle);
1926 	if (!ret)
1927 		ret = err;
1928 
1929 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930 out:
1931 	unlock_page(page);
1932 out_no_pagelock:
1933 	if (!inline_data && page_bufs)
1934 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1935 				       NULL, bput_one);
1936 	brelse(inode_bh);
1937 	return ret;
1938 }
1939 
cancel_page_dirty_status(struct page * page)1940 static void cancel_page_dirty_status(struct page *page)
1941 {
1942 	struct address_space *mapping = page_mapping(page);
1943 	unsigned long flags;
1944 
1945 	cancel_dirty_page(page);
1946 	xa_lock_irqsave(&mapping->i_pages, flags);
1947 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1948 			PAGECACHE_TAG_DIRTY);
1949 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1950 			PAGECACHE_TAG_TOWRITE);
1951 	xa_unlock_irqrestore(&mapping->i_pages, flags);
1952 }
1953 
1954 /*
1955  * Note that we don't need to start a transaction unless we're journaling data
1956  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957  * need to file the inode to the transaction's list in ordered mode because if
1958  * we are writing back data added by write(), the inode is already there and if
1959  * we are writing back data modified via mmap(), no one guarantees in which
1960  * transaction the data will hit the disk. In case we are journaling data, we
1961  * cannot start transaction directly because transaction start ranks above page
1962  * lock so we have to do some magic.
1963  *
1964  * This function can get called via...
1965  *   - ext4_writepages after taking page lock (have journal handle)
1966  *   - journal_submit_inode_data_buffers (no journal handle)
1967  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968  *   - grab_page_cache when doing write_begin (have journal handle)
1969  *
1970  * We don't do any block allocation in this function. If we have page with
1971  * multiple blocks we need to write those buffer_heads that are mapped. This
1972  * is important for mmaped based write. So if we do with blocksize 1K
1973  * truncate(f, 1024);
1974  * a = mmap(f, 0, 4096);
1975  * a[0] = 'a';
1976  * truncate(f, 4096);
1977  * we have in the page first buffer_head mapped via page_mkwrite call back
1978  * but other buffer_heads would be unmapped but dirty (dirty done via the
1979  * do_wp_page). So writepage should write the first block. If we modify
1980  * the mmap area beyond 1024 we will again get a page_fault and the
1981  * page_mkwrite callback will do the block allocation and mark the
1982  * buffer_heads mapped.
1983  *
1984  * We redirty the page if we have any buffer_heads that is either delay or
1985  * unwritten in the page.
1986  *
1987  * We can get recursively called as show below.
1988  *
1989  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990  *		ext4_writepage()
1991  *
1992  * But since we don't do any block allocation we should not deadlock.
1993  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994  */
ext4_writepage(struct page * page,struct writeback_control * wbc)1995 static int ext4_writepage(struct page *page,
1996 			  struct writeback_control *wbc)
1997 {
1998 	int ret = 0;
1999 	loff_t size;
2000 	unsigned int len;
2001 	struct buffer_head *page_bufs = NULL;
2002 	struct inode *inode = page->mapping->host;
2003 	struct ext4_io_submit io_submit;
2004 	bool keep_towrite = false;
2005 
2006 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2007 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2008 		unlock_page(page);
2009 		return -EIO;
2010 	}
2011 
2012 	if (WARN_ON(!page_has_buffers(page))) {
2013 		cancel_page_dirty_status(page);
2014 		unlock_page(page);
2015 		return 0;
2016 	}
2017 
2018 	trace_ext4_writepage(page);
2019 	size = i_size_read(inode);
2020 	if (page->index == size >> PAGE_SHIFT &&
2021 	    !ext4_verity_in_progress(inode))
2022 		len = size & ~PAGE_MASK;
2023 	else
2024 		len = PAGE_SIZE;
2025 
2026 	page_bufs = page_buffers(page);
2027 	/*
2028 	 * We cannot do block allocation or other extent handling in this
2029 	 * function. If there are buffers needing that, we have to redirty
2030 	 * the page. But we may reach here when we do a journal commit via
2031 	 * journal_submit_inode_data_buffers() and in that case we must write
2032 	 * allocated buffers to achieve data=ordered mode guarantees.
2033 	 *
2034 	 * Also, if there is only one buffer per page (the fs block
2035 	 * size == the page size), if one buffer needs block
2036 	 * allocation or needs to modify the extent tree to clear the
2037 	 * unwritten flag, we know that the page can't be written at
2038 	 * all, so we might as well refuse the write immediately.
2039 	 * Unfortunately if the block size != page size, we can't as
2040 	 * easily detect this case using ext4_walk_page_buffers(), but
2041 	 * for the extremely common case, this is an optimization that
2042 	 * skips a useless round trip through ext4_bio_write_page().
2043 	 */
2044 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2045 				   ext4_bh_delay_or_unwritten)) {
2046 		redirty_page_for_writepage(wbc, page);
2047 		if ((current->flags & PF_MEMALLOC) ||
2048 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2049 			/*
2050 			 * For memory cleaning there's no point in writing only
2051 			 * some buffers. So just bail out. Warn if we came here
2052 			 * from direct reclaim.
2053 			 */
2054 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2055 							== PF_MEMALLOC);
2056 			unlock_page(page);
2057 			return 0;
2058 		}
2059 		keep_towrite = true;
2060 	}
2061 
2062 	if (PageChecked(page) && ext4_should_journal_data(inode))
2063 		/*
2064 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2065 		 * doesn't seem much point in redirtying the page here.
2066 		 */
2067 		return __ext4_journalled_writepage(page, len);
2068 
2069 	ext4_io_submit_init(&io_submit, wbc);
2070 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2071 	if (!io_submit.io_end) {
2072 		redirty_page_for_writepage(wbc, page);
2073 		unlock_page(page);
2074 		return -ENOMEM;
2075 	}
2076 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2077 	ext4_io_submit(&io_submit);
2078 	/* Drop io_end reference we got from init */
2079 	ext4_put_io_end_defer(io_submit.io_end);
2080 	return ret;
2081 }
2082 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2083 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2084 {
2085 	int len;
2086 	loff_t size;
2087 	int err;
2088 
2089 	BUG_ON(page->index != mpd->first_page);
2090 	clear_page_dirty_for_io(page);
2091 	/*
2092 	 * We have to be very careful here!  Nothing protects writeback path
2093 	 * against i_size changes and the page can be writeably mapped into
2094 	 * page tables. So an application can be growing i_size and writing
2095 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2096 	 * write-protects our page in page tables and the page cannot get
2097 	 * written to again until we release page lock. So only after
2098 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2099 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2100 	 * on the barrier provided by TestClearPageDirty in
2101 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2102 	 * after page tables are updated.
2103 	 */
2104 	size = i_size_read(mpd->inode);
2105 	if (page->index == size >> PAGE_SHIFT &&
2106 	    !ext4_verity_in_progress(mpd->inode))
2107 		len = size & ~PAGE_MASK;
2108 	else
2109 		len = PAGE_SIZE;
2110 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2111 	if (!err)
2112 		mpd->wbc->nr_to_write--;
2113 	mpd->first_page++;
2114 
2115 	return err;
2116 }
2117 
2118 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2119 
2120 /*
2121  * mballoc gives us at most this number of blocks...
2122  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2123  * The rest of mballoc seems to handle chunks up to full group size.
2124  */
2125 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2126 
2127 /*
2128  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2129  *
2130  * @mpd - extent of blocks
2131  * @lblk - logical number of the block in the file
2132  * @bh - buffer head we want to add to the extent
2133  *
2134  * The function is used to collect contig. blocks in the same state. If the
2135  * buffer doesn't require mapping for writeback and we haven't started the
2136  * extent of buffers to map yet, the function returns 'true' immediately - the
2137  * caller can write the buffer right away. Otherwise the function returns true
2138  * if the block has been added to the extent, false if the block couldn't be
2139  * added.
2140  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2141 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2142 				   struct buffer_head *bh)
2143 {
2144 	struct ext4_map_blocks *map = &mpd->map;
2145 
2146 	/* Buffer that doesn't need mapping for writeback? */
2147 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2148 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2149 		/* So far no extent to map => we write the buffer right away */
2150 		if (map->m_len == 0)
2151 			return true;
2152 		return false;
2153 	}
2154 
2155 	/* First block in the extent? */
2156 	if (map->m_len == 0) {
2157 		/* We cannot map unless handle is started... */
2158 		if (!mpd->do_map)
2159 			return false;
2160 		map->m_lblk = lblk;
2161 		map->m_len = 1;
2162 		map->m_flags = bh->b_state & BH_FLAGS;
2163 		return true;
2164 	}
2165 
2166 	/* Don't go larger than mballoc is willing to allocate */
2167 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168 		return false;
2169 
2170 	/* Can we merge the block to our big extent? */
2171 	if (lblk == map->m_lblk + map->m_len &&
2172 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2173 		map->m_len++;
2174 		return true;
2175 	}
2176 	return false;
2177 }
2178 
2179 /*
2180  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181  *
2182  * @mpd - extent of blocks for mapping
2183  * @head - the first buffer in the page
2184  * @bh - buffer we should start processing from
2185  * @lblk - logical number of the block in the file corresponding to @bh
2186  *
2187  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188  * the page for IO if all buffers in this page were mapped and there's no
2189  * accumulated extent of buffers to map or add buffers in the page to the
2190  * extent of buffers to map. The function returns 1 if the caller can continue
2191  * by processing the next page, 0 if it should stop adding buffers to the
2192  * extent to map because we cannot extend it anymore. It can also return value
2193  * < 0 in case of error during IO submission.
2194  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2195 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196 				   struct buffer_head *head,
2197 				   struct buffer_head *bh,
2198 				   ext4_lblk_t lblk)
2199 {
2200 	struct inode *inode = mpd->inode;
2201 	int err;
2202 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2203 							>> inode->i_blkbits;
2204 
2205 	if (ext4_verity_in_progress(inode))
2206 		blocks = EXT_MAX_BLOCKS;
2207 
2208 	do {
2209 		BUG_ON(buffer_locked(bh));
2210 
2211 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2212 			/* Found extent to map? */
2213 			if (mpd->map.m_len)
2214 				return 0;
2215 			/* Buffer needs mapping and handle is not started? */
2216 			if (!mpd->do_map)
2217 				return 0;
2218 			/* Everything mapped so far and we hit EOF */
2219 			break;
2220 		}
2221 	} while (lblk++, (bh = bh->b_this_page) != head);
2222 	/* So far everything mapped? Submit the page for IO. */
2223 	if (mpd->map.m_len == 0) {
2224 		err = mpage_submit_page(mpd, head->b_page);
2225 		if (err < 0)
2226 			return err;
2227 	}
2228 	if (lblk >= blocks) {
2229 		mpd->scanned_until_end = 1;
2230 		return 0;
2231 	}
2232 	return 1;
2233 }
2234 
2235 /*
2236  * mpage_process_page - update page buffers corresponding to changed extent and
2237  *		       may submit fully mapped page for IO
2238  *
2239  * @mpd		- description of extent to map, on return next extent to map
2240  * @m_lblk	- logical block mapping.
2241  * @m_pblk	- corresponding physical mapping.
2242  * @map_bh	- determines on return whether this page requires any further
2243  *		  mapping or not.
2244  * Scan given page buffers corresponding to changed extent and update buffer
2245  * state according to new extent state.
2246  * We map delalloc buffers to their physical location, clear unwritten bits.
2247  * If the given page is not fully mapped, we update @map to the next extent in
2248  * the given page that needs mapping & return @map_bh as true.
2249  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2250 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2251 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2252 			      bool *map_bh)
2253 {
2254 	struct buffer_head *head, *bh;
2255 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2256 	ext4_lblk_t lblk = *m_lblk;
2257 	ext4_fsblk_t pblock = *m_pblk;
2258 	int err = 0;
2259 	int blkbits = mpd->inode->i_blkbits;
2260 	ssize_t io_end_size = 0;
2261 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2262 
2263 	bh = head = page_buffers(page);
2264 	do {
2265 		if (lblk < mpd->map.m_lblk)
2266 			continue;
2267 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2268 			/*
2269 			 * Buffer after end of mapped extent.
2270 			 * Find next buffer in the page to map.
2271 			 */
2272 			mpd->map.m_len = 0;
2273 			mpd->map.m_flags = 0;
2274 			io_end_vec->size += io_end_size;
2275 			io_end_size = 0;
2276 
2277 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2278 			if (err > 0)
2279 				err = 0;
2280 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2281 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2282 				if (IS_ERR(io_end_vec)) {
2283 					err = PTR_ERR(io_end_vec);
2284 					goto out;
2285 				}
2286 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2287 			}
2288 			*map_bh = true;
2289 			goto out;
2290 		}
2291 		if (buffer_delay(bh)) {
2292 			clear_buffer_delay(bh);
2293 			bh->b_blocknr = pblock++;
2294 		}
2295 		clear_buffer_unwritten(bh);
2296 		io_end_size += (1 << blkbits);
2297 	} while (lblk++, (bh = bh->b_this_page) != head);
2298 
2299 	io_end_vec->size += io_end_size;
2300 	io_end_size = 0;
2301 	*map_bh = false;
2302 out:
2303 	*m_lblk = lblk;
2304 	*m_pblk = pblock;
2305 	return err;
2306 }
2307 
2308 /*
2309  * mpage_map_buffers - update buffers corresponding to changed extent and
2310  *		       submit fully mapped pages for IO
2311  *
2312  * @mpd - description of extent to map, on return next extent to map
2313  *
2314  * Scan buffers corresponding to changed extent (we expect corresponding pages
2315  * to be already locked) and update buffer state according to new extent state.
2316  * We map delalloc buffers to their physical location, clear unwritten bits,
2317  * and mark buffers as uninit when we perform writes to unwritten extents
2318  * and do extent conversion after IO is finished. If the last page is not fully
2319  * mapped, we update @map to the next extent in the last page that needs
2320  * mapping. Otherwise we submit the page for IO.
2321  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2322 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2323 {
2324 	struct pagevec pvec;
2325 	int nr_pages, i;
2326 	struct inode *inode = mpd->inode;
2327 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2328 	pgoff_t start, end;
2329 	ext4_lblk_t lblk;
2330 	ext4_fsblk_t pblock;
2331 	int err;
2332 	bool map_bh = false;
2333 
2334 	start = mpd->map.m_lblk >> bpp_bits;
2335 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2336 	lblk = start << bpp_bits;
2337 	pblock = mpd->map.m_pblk;
2338 
2339 	pagevec_init(&pvec);
2340 	while (start <= end) {
2341 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2342 						&start, end);
2343 		if (nr_pages == 0)
2344 			break;
2345 		for (i = 0; i < nr_pages; i++) {
2346 			struct page *page = pvec.pages[i];
2347 
2348 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2349 						 &map_bh);
2350 			/*
2351 			 * If map_bh is true, means page may require further bh
2352 			 * mapping, or maybe the page was submitted for IO.
2353 			 * So we return to call further extent mapping.
2354 			 */
2355 			if (err < 0 || map_bh)
2356 				goto out;
2357 			/* Page fully mapped - let IO run! */
2358 			err = mpage_submit_page(mpd, page);
2359 			if (err < 0)
2360 				goto out;
2361 		}
2362 		pagevec_release(&pvec);
2363 	}
2364 	/* Extent fully mapped and matches with page boundary. We are done. */
2365 	mpd->map.m_len = 0;
2366 	mpd->map.m_flags = 0;
2367 	return 0;
2368 out:
2369 	pagevec_release(&pvec);
2370 	return err;
2371 }
2372 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2373 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2374 {
2375 	struct inode *inode = mpd->inode;
2376 	struct ext4_map_blocks *map = &mpd->map;
2377 	int get_blocks_flags;
2378 	int err, dioread_nolock;
2379 
2380 	trace_ext4_da_write_pages_extent(inode, map);
2381 	/*
2382 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2383 	 * to convert an unwritten extent to be initialized (in the case
2384 	 * where we have written into one or more preallocated blocks).  It is
2385 	 * possible that we're going to need more metadata blocks than
2386 	 * previously reserved. However we must not fail because we're in
2387 	 * writeback and there is nothing we can do about it so it might result
2388 	 * in data loss.  So use reserved blocks to allocate metadata if
2389 	 * possible.
2390 	 *
2391 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2392 	 * the blocks in question are delalloc blocks.  This indicates
2393 	 * that the blocks and quotas has already been checked when
2394 	 * the data was copied into the page cache.
2395 	 */
2396 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2397 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2398 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2399 	dioread_nolock = ext4_should_dioread_nolock(inode);
2400 	if (dioread_nolock)
2401 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2402 	if (map->m_flags & BIT(BH_Delay))
2403 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2404 
2405 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2406 	if (err < 0)
2407 		return err;
2408 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2409 		if (!mpd->io_submit.io_end->handle &&
2410 		    ext4_handle_valid(handle)) {
2411 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2412 			handle->h_rsv_handle = NULL;
2413 		}
2414 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2415 	}
2416 
2417 	BUG_ON(map->m_len == 0);
2418 	return 0;
2419 }
2420 
2421 /*
2422  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2423  *				 mpd->len and submit pages underlying it for IO
2424  *
2425  * @handle - handle for journal operations
2426  * @mpd - extent to map
2427  * @give_up_on_write - we set this to true iff there is a fatal error and there
2428  *                     is no hope of writing the data. The caller should discard
2429  *                     dirty pages to avoid infinite loops.
2430  *
2431  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2432  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2433  * them to initialized or split the described range from larger unwritten
2434  * extent. Note that we need not map all the described range since allocation
2435  * can return less blocks or the range is covered by more unwritten extents. We
2436  * cannot map more because we are limited by reserved transaction credits. On
2437  * the other hand we always make sure that the last touched page is fully
2438  * mapped so that it can be written out (and thus forward progress is
2439  * guaranteed). After mapping we submit all mapped pages for IO.
2440  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2441 static int mpage_map_and_submit_extent(handle_t *handle,
2442 				       struct mpage_da_data *mpd,
2443 				       bool *give_up_on_write)
2444 {
2445 	struct inode *inode = mpd->inode;
2446 	struct ext4_map_blocks *map = &mpd->map;
2447 	int err;
2448 	loff_t disksize;
2449 	int progress = 0;
2450 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2451 	struct ext4_io_end_vec *io_end_vec;
2452 
2453 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2454 	if (IS_ERR(io_end_vec))
2455 		return PTR_ERR(io_end_vec);
2456 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2457 	do {
2458 		err = mpage_map_one_extent(handle, mpd);
2459 		if (err < 0) {
2460 			struct super_block *sb = inode->i_sb;
2461 
2462 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2463 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2464 				goto invalidate_dirty_pages;
2465 			/*
2466 			 * Let the uper layers retry transient errors.
2467 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2468 			 * is non-zero, a commit should free up blocks.
2469 			 */
2470 			if ((err == -ENOMEM) ||
2471 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2472 				if (progress)
2473 					goto update_disksize;
2474 				return err;
2475 			}
2476 			ext4_msg(sb, KERN_CRIT,
2477 				 "Delayed block allocation failed for "
2478 				 "inode %lu at logical offset %llu with"
2479 				 " max blocks %u with error %d",
2480 				 inode->i_ino,
2481 				 (unsigned long long)map->m_lblk,
2482 				 (unsigned)map->m_len, -err);
2483 			ext4_msg(sb, KERN_CRIT,
2484 				 "This should not happen!! Data will "
2485 				 "be lost\n");
2486 			if (err == -ENOSPC)
2487 				ext4_print_free_blocks(inode);
2488 		invalidate_dirty_pages:
2489 			*give_up_on_write = true;
2490 			return err;
2491 		}
2492 		progress = 1;
2493 		/*
2494 		 * Update buffer state, submit mapped pages, and get us new
2495 		 * extent to map
2496 		 */
2497 		err = mpage_map_and_submit_buffers(mpd);
2498 		if (err < 0)
2499 			goto update_disksize;
2500 	} while (map->m_len);
2501 
2502 update_disksize:
2503 	/*
2504 	 * Update on-disk size after IO is submitted.  Races with
2505 	 * truncate are avoided by checking i_size under i_data_sem.
2506 	 */
2507 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2508 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2509 		int err2;
2510 		loff_t i_size;
2511 
2512 		down_write(&EXT4_I(inode)->i_data_sem);
2513 		i_size = i_size_read(inode);
2514 		if (disksize > i_size)
2515 			disksize = i_size;
2516 		if (disksize > EXT4_I(inode)->i_disksize)
2517 			EXT4_I(inode)->i_disksize = disksize;
2518 		up_write(&EXT4_I(inode)->i_data_sem);
2519 		err2 = ext4_mark_inode_dirty(handle, inode);
2520 		if (err2) {
2521 			ext4_error_err(inode->i_sb, -err2,
2522 				       "Failed to mark inode %lu dirty",
2523 				       inode->i_ino);
2524 		}
2525 		if (!err)
2526 			err = err2;
2527 	}
2528 	return err;
2529 }
2530 
2531 /*
2532  * Calculate the total number of credits to reserve for one writepages
2533  * iteration. This is called from ext4_writepages(). We map an extent of
2534  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2535  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2536  * bpp - 1 blocks in bpp different extents.
2537  */
ext4_da_writepages_trans_blocks(struct inode * inode)2538 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2539 {
2540 	int bpp = ext4_journal_blocks_per_page(inode);
2541 
2542 	return ext4_meta_trans_blocks(inode,
2543 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2544 }
2545 
2546 /*
2547  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2548  * 				 and underlying extent to map
2549  *
2550  * @mpd - where to look for pages
2551  *
2552  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2553  * IO immediately. When we find a page which isn't mapped we start accumulating
2554  * extent of buffers underlying these pages that needs mapping (formed by
2555  * either delayed or unwritten buffers). We also lock the pages containing
2556  * these buffers. The extent found is returned in @mpd structure (starting at
2557  * mpd->lblk with length mpd->len blocks).
2558  *
2559  * Note that this function can attach bios to one io_end structure which are
2560  * neither logically nor physically contiguous. Although it may seem as an
2561  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2562  * case as we need to track IO to all buffers underlying a page in one io_end.
2563  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2564 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2565 {
2566 	struct address_space *mapping = mpd->inode->i_mapping;
2567 	struct pagevec pvec;
2568 	unsigned int nr_pages;
2569 	long left = mpd->wbc->nr_to_write;
2570 	pgoff_t index = mpd->first_page;
2571 	pgoff_t end = mpd->last_page;
2572 	xa_mark_t tag;
2573 	int i, err = 0;
2574 	int blkbits = mpd->inode->i_blkbits;
2575 	ext4_lblk_t lblk;
2576 	struct buffer_head *head;
2577 
2578 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2579 		tag = PAGECACHE_TAG_TOWRITE;
2580 	else
2581 		tag = PAGECACHE_TAG_DIRTY;
2582 
2583 	pagevec_init(&pvec);
2584 	mpd->map.m_len = 0;
2585 	mpd->next_page = index;
2586 	while (index <= end) {
2587 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2588 				tag);
2589 		if (nr_pages == 0)
2590 			break;
2591 
2592 		for (i = 0; i < nr_pages; i++) {
2593 			struct page *page = pvec.pages[i];
2594 
2595 			/*
2596 			 * Accumulated enough dirty pages? This doesn't apply
2597 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2598 			 * keep going because someone may be concurrently
2599 			 * dirtying pages, and we might have synced a lot of
2600 			 * newly appeared dirty pages, but have not synced all
2601 			 * of the old dirty pages.
2602 			 */
2603 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2604 				goto out;
2605 
2606 			/* If we can't merge this page, we are done. */
2607 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2608 				goto out;
2609 
2610 			lock_page(page);
2611 			/*
2612 			 * If the page is no longer dirty, or its mapping no
2613 			 * longer corresponds to inode we are writing (which
2614 			 * means it has been truncated or invalidated), or the
2615 			 * page is already under writeback and we are not doing
2616 			 * a data integrity writeback, skip the page
2617 			 */
2618 			if (!PageDirty(page) ||
2619 			    (PageWriteback(page) &&
2620 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2621 			    unlikely(page->mapping != mapping)) {
2622 				unlock_page(page);
2623 				continue;
2624 			}
2625 
2626 			if (WARN_ON(!page_has_buffers(page))) {
2627 				cancel_page_dirty_status(page);
2628 				unlock_page(page);
2629 				continue;
2630 			}
2631 
2632 			wait_on_page_writeback(page);
2633 			BUG_ON(PageWriteback(page));
2634 
2635 			if (mpd->map.m_len == 0)
2636 				mpd->first_page = page->index;
2637 			mpd->next_page = page->index + 1;
2638 			/* Add all dirty buffers to mpd */
2639 			lblk = ((ext4_lblk_t)page->index) <<
2640 				(PAGE_SHIFT - blkbits);
2641 			head = page_buffers(page);
2642 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2643 			if (err <= 0)
2644 				goto out;
2645 			err = 0;
2646 			left--;
2647 		}
2648 		pagevec_release(&pvec);
2649 		cond_resched();
2650 	}
2651 	mpd->scanned_until_end = 1;
2652 	return 0;
2653 out:
2654 	pagevec_release(&pvec);
2655 	return err;
2656 }
2657 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2658 static int ext4_writepages(struct address_space *mapping,
2659 			   struct writeback_control *wbc)
2660 {
2661 	pgoff_t	writeback_index = 0;
2662 	long nr_to_write = wbc->nr_to_write;
2663 	int range_whole = 0;
2664 	int cycled = 1;
2665 	handle_t *handle = NULL;
2666 	struct mpage_da_data mpd;
2667 	struct inode *inode = mapping->host;
2668 	int needed_blocks, rsv_blocks = 0, ret = 0;
2669 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2670 	struct blk_plug plug;
2671 	bool give_up_on_write = false;
2672 
2673 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2674 		return -EIO;
2675 
2676 	percpu_down_read(&sbi->s_writepages_rwsem);
2677 	trace_ext4_writepages(inode, wbc);
2678 
2679 	/*
2680 	 * No pages to write? This is mainly a kludge to avoid starting
2681 	 * a transaction for special inodes like journal inode on last iput()
2682 	 * because that could violate lock ordering on umount
2683 	 */
2684 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2685 		goto out_writepages;
2686 
2687 	if (ext4_should_journal_data(inode)) {
2688 		ret = generic_writepages(mapping, wbc);
2689 		goto out_writepages;
2690 	}
2691 
2692 	/*
2693 	 * If the filesystem has aborted, it is read-only, so return
2694 	 * right away instead of dumping stack traces later on that
2695 	 * will obscure the real source of the problem.  We test
2696 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2697 	 * the latter could be true if the filesystem is mounted
2698 	 * read-only, and in that case, ext4_writepages should
2699 	 * *never* be called, so if that ever happens, we would want
2700 	 * the stack trace.
2701 	 */
2702 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2703 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2704 		ret = -EROFS;
2705 		goto out_writepages;
2706 	}
2707 
2708 	/*
2709 	 * If we have inline data and arrive here, it means that
2710 	 * we will soon create the block for the 1st page, so
2711 	 * we'd better clear the inline data here.
2712 	 */
2713 	if (ext4_has_inline_data(inode)) {
2714 		/* Just inode will be modified... */
2715 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2716 		if (IS_ERR(handle)) {
2717 			ret = PTR_ERR(handle);
2718 			goto out_writepages;
2719 		}
2720 		BUG_ON(ext4_test_inode_state(inode,
2721 				EXT4_STATE_MAY_INLINE_DATA));
2722 		ext4_destroy_inline_data(handle, inode);
2723 		ext4_journal_stop(handle);
2724 	}
2725 
2726 	if (ext4_should_dioread_nolock(inode)) {
2727 		/*
2728 		 * We may need to convert up to one extent per block in
2729 		 * the page and we may dirty the inode.
2730 		 */
2731 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2732 						PAGE_SIZE >> inode->i_blkbits);
2733 	}
2734 
2735 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736 		range_whole = 1;
2737 
2738 	if (wbc->range_cyclic) {
2739 		writeback_index = mapping->writeback_index;
2740 		if (writeback_index)
2741 			cycled = 0;
2742 		mpd.first_page = writeback_index;
2743 		mpd.last_page = -1;
2744 	} else {
2745 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2747 	}
2748 
2749 	mpd.inode = inode;
2750 	mpd.wbc = wbc;
2751 	ext4_io_submit_init(&mpd.io_submit, wbc);
2752 retry:
2753 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 	blk_start_plug(&plug);
2756 
2757 	/*
2758 	 * First writeback pages that don't need mapping - we can avoid
2759 	 * starting a transaction unnecessarily and also avoid being blocked
2760 	 * in the block layer on device congestion while having transaction
2761 	 * started.
2762 	 */
2763 	mpd.do_map = 0;
2764 	mpd.scanned_until_end = 0;
2765 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 	if (!mpd.io_submit.io_end) {
2767 		ret = -ENOMEM;
2768 		goto unplug;
2769 	}
2770 	ret = mpage_prepare_extent_to_map(&mpd);
2771 	/* Unlock pages we didn't use */
2772 	mpage_release_unused_pages(&mpd, false);
2773 	/* Submit prepared bio */
2774 	ext4_io_submit(&mpd.io_submit);
2775 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2776 	mpd.io_submit.io_end = NULL;
2777 	if (ret < 0)
2778 		goto unplug;
2779 
2780 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2781 		/* For each extent of pages we use new io_end */
2782 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 		if (!mpd.io_submit.io_end) {
2784 			ret = -ENOMEM;
2785 			break;
2786 		}
2787 
2788 		/*
2789 		 * We have two constraints: We find one extent to map and we
2790 		 * must always write out whole page (makes a difference when
2791 		 * blocksize < pagesize) so that we don't block on IO when we
2792 		 * try to write out the rest of the page. Journalled mode is
2793 		 * not supported by delalloc.
2794 		 */
2795 		BUG_ON(ext4_should_journal_data(inode));
2796 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2797 
2798 		/* start a new transaction */
2799 		handle = ext4_journal_start_with_reserve(inode,
2800 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801 		if (IS_ERR(handle)) {
2802 			ret = PTR_ERR(handle);
2803 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804 			       "%ld pages, ino %lu; err %d", __func__,
2805 				wbc->nr_to_write, inode->i_ino, ret);
2806 			/* Release allocated io_end */
2807 			ext4_put_io_end(mpd.io_submit.io_end);
2808 			mpd.io_submit.io_end = NULL;
2809 			break;
2810 		}
2811 		mpd.do_map = 1;
2812 
2813 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 		ret = mpage_prepare_extent_to_map(&mpd);
2815 		if (!ret && mpd.map.m_len)
2816 			ret = mpage_map_and_submit_extent(handle, &mpd,
2817 					&give_up_on_write);
2818 		/*
2819 		 * Caution: If the handle is synchronous,
2820 		 * ext4_journal_stop() can wait for transaction commit
2821 		 * to finish which may depend on writeback of pages to
2822 		 * complete or on page lock to be released.  In that
2823 		 * case, we have to wait until after we have
2824 		 * submitted all the IO, released page locks we hold,
2825 		 * and dropped io_end reference (for extent conversion
2826 		 * to be able to complete) before stopping the handle.
2827 		 */
2828 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2829 			ext4_journal_stop(handle);
2830 			handle = NULL;
2831 			mpd.do_map = 0;
2832 		}
2833 		/* Unlock pages we didn't use */
2834 		mpage_release_unused_pages(&mpd, give_up_on_write);
2835 		/* Submit prepared bio */
2836 		ext4_io_submit(&mpd.io_submit);
2837 
2838 		/*
2839 		 * Drop our io_end reference we got from init. We have
2840 		 * to be careful and use deferred io_end finishing if
2841 		 * we are still holding the transaction as we can
2842 		 * release the last reference to io_end which may end
2843 		 * up doing unwritten extent conversion.
2844 		 */
2845 		if (handle) {
2846 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2847 			ext4_journal_stop(handle);
2848 		} else
2849 			ext4_put_io_end(mpd.io_submit.io_end);
2850 		mpd.io_submit.io_end = NULL;
2851 
2852 		if (ret == -ENOSPC && sbi->s_journal) {
2853 			/*
2854 			 * Commit the transaction which would
2855 			 * free blocks released in the transaction
2856 			 * and try again
2857 			 */
2858 			jbd2_journal_force_commit_nested(sbi->s_journal);
2859 			ret = 0;
2860 			continue;
2861 		}
2862 		/* Fatal error - ENOMEM, EIO... */
2863 		if (ret)
2864 			break;
2865 	}
2866 unplug:
2867 	blk_finish_plug(&plug);
2868 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2869 		cycled = 1;
2870 		mpd.last_page = writeback_index - 1;
2871 		mpd.first_page = 0;
2872 		goto retry;
2873 	}
2874 
2875 	/* Update index */
2876 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2877 		/*
2878 		 * Set the writeback_index so that range_cyclic
2879 		 * mode will write it back later
2880 		 */
2881 		mapping->writeback_index = mpd.first_page;
2882 
2883 out_writepages:
2884 	trace_ext4_writepages_result(inode, wbc, ret,
2885 				     nr_to_write - wbc->nr_to_write);
2886 	percpu_up_read(&sbi->s_writepages_rwsem);
2887 	return ret;
2888 }
2889 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2890 static int ext4_dax_writepages(struct address_space *mapping,
2891 			       struct writeback_control *wbc)
2892 {
2893 	int ret;
2894 	long nr_to_write = wbc->nr_to_write;
2895 	struct inode *inode = mapping->host;
2896 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2897 
2898 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2899 		return -EIO;
2900 
2901 	percpu_down_read(&sbi->s_writepages_rwsem);
2902 	trace_ext4_writepages(inode, wbc);
2903 
2904 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2905 	trace_ext4_writepages_result(inode, wbc, ret,
2906 				     nr_to_write - wbc->nr_to_write);
2907 	percpu_up_read(&sbi->s_writepages_rwsem);
2908 	return ret;
2909 }
2910 
ext4_nonda_switch(struct super_block * sb)2911 static int ext4_nonda_switch(struct super_block *sb)
2912 {
2913 	s64 free_clusters, dirty_clusters;
2914 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2915 
2916 	/*
2917 	 * switch to non delalloc mode if we are running low
2918 	 * on free block. The free block accounting via percpu
2919 	 * counters can get slightly wrong with percpu_counter_batch getting
2920 	 * accumulated on each CPU without updating global counters
2921 	 * Delalloc need an accurate free block accounting. So switch
2922 	 * to non delalloc when we are near to error range.
2923 	 */
2924 	free_clusters =
2925 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2926 	dirty_clusters =
2927 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2928 	/*
2929 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2930 	 */
2931 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2932 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2933 
2934 	if (2 * free_clusters < 3 * dirty_clusters ||
2935 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2936 		/*
2937 		 * free block count is less than 150% of dirty blocks
2938 		 * or free blocks is less than watermark
2939 		 */
2940 		return 1;
2941 	}
2942 	return 0;
2943 }
2944 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2945 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2946 			       loff_t pos, unsigned len, unsigned flags,
2947 			       struct page **pagep, void **fsdata)
2948 {
2949 	int ret, retries = 0;
2950 	struct page *page;
2951 	pgoff_t index;
2952 	struct inode *inode = mapping->host;
2953 
2954 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955 		return -EIO;
2956 
2957 	index = pos >> PAGE_SHIFT;
2958 
2959 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2960 	    ext4_verity_in_progress(inode)) {
2961 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2962 		return ext4_write_begin(file, mapping, pos,
2963 					len, flags, pagep, fsdata);
2964 	}
2965 	*fsdata = (void *)0;
2966 	trace_ext4_da_write_begin(inode, pos, len, flags);
2967 
2968 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2969 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2970 						      pos, len, flags,
2971 						      pagep, fsdata);
2972 		if (ret < 0)
2973 			return ret;
2974 		if (ret == 1)
2975 			return 0;
2976 	}
2977 
2978 retry:
2979 	page = grab_cache_page_write_begin(mapping, index, flags);
2980 	if (!page)
2981 		return -ENOMEM;
2982 
2983 	/* In case writeback began while the page was unlocked */
2984 	wait_for_stable_page(page);
2985 
2986 #ifdef CONFIG_FS_ENCRYPTION
2987 	ret = ext4_block_write_begin(page, pos, len,
2988 				     ext4_da_get_block_prep);
2989 #else
2990 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2991 #endif
2992 	if (ret < 0) {
2993 		unlock_page(page);
2994 		put_page(page);
2995 		/*
2996 		 * block_write_begin may have instantiated a few blocks
2997 		 * outside i_size.  Trim these off again. Don't need
2998 		 * i_size_read because we hold inode lock.
2999 		 */
3000 		if (pos + len > inode->i_size)
3001 			ext4_truncate_failed_write(inode);
3002 
3003 		if (ret == -ENOSPC &&
3004 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3005 			goto retry;
3006 		return ret;
3007 	}
3008 
3009 	*pagep = page;
3010 	return ret;
3011 }
3012 
3013 /*
3014  * Check if we should update i_disksize
3015  * when write to the end of file but not require block allocation
3016  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3017 static int ext4_da_should_update_i_disksize(struct page *page,
3018 					    unsigned long offset)
3019 {
3020 	struct buffer_head *bh;
3021 	struct inode *inode = page->mapping->host;
3022 	unsigned int idx;
3023 	int i;
3024 
3025 	bh = page_buffers(page);
3026 	idx = offset >> inode->i_blkbits;
3027 
3028 	for (i = 0; i < idx; i++)
3029 		bh = bh->b_this_page;
3030 
3031 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3032 		return 0;
3033 	return 1;
3034 }
3035 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3036 static int ext4_da_write_end(struct file *file,
3037 			     struct address_space *mapping,
3038 			     loff_t pos, unsigned len, unsigned copied,
3039 			     struct page *page, void *fsdata)
3040 {
3041 	struct inode *inode = mapping->host;
3042 	loff_t new_i_size;
3043 	unsigned long start, end;
3044 	int write_mode = (int)(unsigned long)fsdata;
3045 
3046 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3047 		return ext4_write_end(file, mapping, pos,
3048 				      len, copied, page, fsdata);
3049 
3050 	trace_ext4_da_write_end(inode, pos, len, copied);
3051 
3052 	if (write_mode != CONVERT_INLINE_DATA &&
3053 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 	    ext4_has_inline_data(inode))
3055 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3056 
3057 	start = pos & (PAGE_SIZE - 1);
3058 	end = start + copied - 1;
3059 
3060 	/*
3061 	 * Since we are holding inode lock, we are sure i_disksize <=
3062 	 * i_size. We also know that if i_disksize < i_size, there are
3063 	 * delalloc writes pending in the range upto i_size. If the end of
3064 	 * the current write is <= i_size, there's no need to touch
3065 	 * i_disksize since writeback will push i_disksize upto i_size
3066 	 * eventually. If the end of the current write is > i_size and
3067 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3068 	 * check), we need to update i_disksize here as neither
3069 	 * ext4_writepage() nor certain ext4_writepages() paths not
3070 	 * allocating blocks update i_disksize.
3071 	 *
3072 	 * Note that we defer inode dirtying to generic_write_end() /
3073 	 * ext4_da_write_inline_data_end().
3074 	 */
3075 	new_i_size = pos + copied;
3076 	if (copied && new_i_size > inode->i_size &&
3077 	    ext4_da_should_update_i_disksize(page, end))
3078 		ext4_update_i_disksize(inode, new_i_size);
3079 
3080 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3081 }
3082 
3083 /*
3084  * Force all delayed allocation blocks to be allocated for a given inode.
3085  */
ext4_alloc_da_blocks(struct inode * inode)3086 int ext4_alloc_da_blocks(struct inode *inode)
3087 {
3088 	trace_ext4_alloc_da_blocks(inode);
3089 
3090 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3091 		return 0;
3092 
3093 	/*
3094 	 * We do something simple for now.  The filemap_flush() will
3095 	 * also start triggering a write of the data blocks, which is
3096 	 * not strictly speaking necessary (and for users of
3097 	 * laptop_mode, not even desirable).  However, to do otherwise
3098 	 * would require replicating code paths in:
3099 	 *
3100 	 * ext4_writepages() ->
3101 	 *    write_cache_pages() ---> (via passed in callback function)
3102 	 *        __mpage_da_writepage() -->
3103 	 *           mpage_add_bh_to_extent()
3104 	 *           mpage_da_map_blocks()
3105 	 *
3106 	 * The problem is that write_cache_pages(), located in
3107 	 * mm/page-writeback.c, marks pages clean in preparation for
3108 	 * doing I/O, which is not desirable if we're not planning on
3109 	 * doing I/O at all.
3110 	 *
3111 	 * We could call write_cache_pages(), and then redirty all of
3112 	 * the pages by calling redirty_page_for_writepage() but that
3113 	 * would be ugly in the extreme.  So instead we would need to
3114 	 * replicate parts of the code in the above functions,
3115 	 * simplifying them because we wouldn't actually intend to
3116 	 * write out the pages, but rather only collect contiguous
3117 	 * logical block extents, call the multi-block allocator, and
3118 	 * then update the buffer heads with the block allocations.
3119 	 *
3120 	 * For now, though, we'll cheat by calling filemap_flush(),
3121 	 * which will map the blocks, and start the I/O, but not
3122 	 * actually wait for the I/O to complete.
3123 	 */
3124 	return filemap_flush(inode->i_mapping);
3125 }
3126 
3127 /*
3128  * bmap() is special.  It gets used by applications such as lilo and by
3129  * the swapper to find the on-disk block of a specific piece of data.
3130  *
3131  * Naturally, this is dangerous if the block concerned is still in the
3132  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3133  * filesystem and enables swap, then they may get a nasty shock when the
3134  * data getting swapped to that swapfile suddenly gets overwritten by
3135  * the original zero's written out previously to the journal and
3136  * awaiting writeback in the kernel's buffer cache.
3137  *
3138  * So, if we see any bmap calls here on a modified, data-journaled file,
3139  * take extra steps to flush any blocks which might be in the cache.
3140  */
ext4_bmap(struct address_space * mapping,sector_t block)3141 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3142 {
3143 	struct inode *inode = mapping->host;
3144 	journal_t *journal;
3145 	int err;
3146 
3147 	/*
3148 	 * We can get here for an inline file via the FIBMAP ioctl
3149 	 */
3150 	if (ext4_has_inline_data(inode))
3151 		return 0;
3152 
3153 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3154 			test_opt(inode->i_sb, DELALLOC)) {
3155 		/*
3156 		 * With delalloc we want to sync the file
3157 		 * so that we can make sure we allocate
3158 		 * blocks for file
3159 		 */
3160 		filemap_write_and_wait(mapping);
3161 	}
3162 
3163 	if (EXT4_JOURNAL(inode) &&
3164 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3165 		/*
3166 		 * This is a REALLY heavyweight approach, but the use of
3167 		 * bmap on dirty files is expected to be extremely rare:
3168 		 * only if we run lilo or swapon on a freshly made file
3169 		 * do we expect this to happen.
3170 		 *
3171 		 * (bmap requires CAP_SYS_RAWIO so this does not
3172 		 * represent an unprivileged user DOS attack --- we'd be
3173 		 * in trouble if mortal users could trigger this path at
3174 		 * will.)
3175 		 *
3176 		 * NB. EXT4_STATE_JDATA is not set on files other than
3177 		 * regular files.  If somebody wants to bmap a directory
3178 		 * or symlink and gets confused because the buffer
3179 		 * hasn't yet been flushed to disk, they deserve
3180 		 * everything they get.
3181 		 */
3182 
3183 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3184 		journal = EXT4_JOURNAL(inode);
3185 		jbd2_journal_lock_updates(journal);
3186 		err = jbd2_journal_flush(journal);
3187 		jbd2_journal_unlock_updates(journal);
3188 
3189 		if (err)
3190 			return 0;
3191 	}
3192 
3193 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3194 }
3195 
ext4_readpage(struct file * file,struct page * page)3196 static int ext4_readpage(struct file *file, struct page *page)
3197 {
3198 	int ret = -EAGAIN;
3199 	struct inode *inode = page->mapping->host;
3200 
3201 	trace_ext4_readpage(page);
3202 
3203 	if (ext4_has_inline_data(inode))
3204 		ret = ext4_readpage_inline(inode, page);
3205 
3206 	if (ret == -EAGAIN)
3207 		return ext4_mpage_readpages(inode, NULL, page);
3208 
3209 	return ret;
3210 }
3211 
ext4_readahead(struct readahead_control * rac)3212 static void ext4_readahead(struct readahead_control *rac)
3213 {
3214 	struct inode *inode = rac->mapping->host;
3215 
3216 	/* If the file has inline data, no need to do readahead. */
3217 	if (ext4_has_inline_data(inode))
3218 		return;
3219 
3220 	ext4_mpage_readpages(inode, rac, NULL);
3221 }
3222 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3223 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224 				unsigned int length)
3225 {
3226 	trace_ext4_invalidatepage(page, offset, length);
3227 
3228 	/* No journalling happens on data buffers when this function is used */
3229 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230 
3231 	block_invalidatepage(page, offset, length);
3232 }
3233 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3234 static int __ext4_journalled_invalidatepage(struct page *page,
3235 					    unsigned int offset,
3236 					    unsigned int length)
3237 {
3238 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239 
3240 	trace_ext4_journalled_invalidatepage(page, offset, length);
3241 
3242 	/*
3243 	 * If it's a full truncate we just forget about the pending dirtying
3244 	 */
3245 	if (offset == 0 && length == PAGE_SIZE)
3246 		ClearPageChecked(page);
3247 
3248 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3249 }
3250 
3251 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3252 static void ext4_journalled_invalidatepage(struct page *page,
3253 					   unsigned int offset,
3254 					   unsigned int length)
3255 {
3256 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3257 }
3258 
ext4_releasepage(struct page * page,gfp_t wait)3259 static int ext4_releasepage(struct page *page, gfp_t wait)
3260 {
3261 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262 
3263 	trace_ext4_releasepage(page);
3264 
3265 	/* Page has dirty journalled data -> cannot release */
3266 	if (PageChecked(page))
3267 		return 0;
3268 	if (journal)
3269 		return jbd2_journal_try_to_free_buffers(journal, page);
3270 	else
3271 		return try_to_free_buffers(page);
3272 }
3273 
ext4_inode_datasync_dirty(struct inode * inode)3274 static bool ext4_inode_datasync_dirty(struct inode *inode)
3275 {
3276 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3277 
3278 	if (journal) {
3279 		if (jbd2_transaction_committed(journal,
3280 			EXT4_I(inode)->i_datasync_tid))
3281 			return false;
3282 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3283 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3284 		return true;
3285 	}
3286 
3287 	/* Any metadata buffers to write? */
3288 	if (!list_empty(&inode->i_mapping->private_list))
3289 		return true;
3290 	return inode->i_state & I_DIRTY_DATASYNC;
3291 }
3292 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3293 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3294 			   struct ext4_map_blocks *map, loff_t offset,
3295 			   loff_t length)
3296 {
3297 	u8 blkbits = inode->i_blkbits;
3298 
3299 	/*
3300 	 * Writes that span EOF might trigger an I/O size update on completion,
3301 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3302 	 * there is no other metadata changes being made or are pending.
3303 	 */
3304 	iomap->flags = 0;
3305 	if (ext4_inode_datasync_dirty(inode) ||
3306 	    offset + length > i_size_read(inode))
3307 		iomap->flags |= IOMAP_F_DIRTY;
3308 
3309 	if (map->m_flags & EXT4_MAP_NEW)
3310 		iomap->flags |= IOMAP_F_NEW;
3311 
3312 	iomap->bdev = inode->i_sb->s_bdev;
3313 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3314 	iomap->offset = (u64) map->m_lblk << blkbits;
3315 	iomap->length = (u64) map->m_len << blkbits;
3316 
3317 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3318 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3319 		iomap->flags |= IOMAP_F_MERGED;
3320 
3321 	/*
3322 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3323 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3324 	 * set. In order for any allocated unwritten extents to be converted
3325 	 * into written extents correctly within the ->end_io() handler, we
3326 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3327 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3328 	 * been set first.
3329 	 */
3330 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3331 		iomap->type = IOMAP_UNWRITTEN;
3332 		iomap->addr = (u64) map->m_pblk << blkbits;
3333 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3334 		iomap->type = IOMAP_MAPPED;
3335 		iomap->addr = (u64) map->m_pblk << blkbits;
3336 	} else {
3337 		iomap->type = IOMAP_HOLE;
3338 		iomap->addr = IOMAP_NULL_ADDR;
3339 	}
3340 }
3341 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3342 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3343 			    unsigned int flags)
3344 {
3345 	handle_t *handle;
3346 	u8 blkbits = inode->i_blkbits;
3347 	int ret, dio_credits, m_flags = 0, retries = 0;
3348 
3349 	/*
3350 	 * Trim the mapping request to the maximum value that we can map at
3351 	 * once for direct I/O.
3352 	 */
3353 	if (map->m_len > DIO_MAX_BLOCKS)
3354 		map->m_len = DIO_MAX_BLOCKS;
3355 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3356 
3357 retry:
3358 	/*
3359 	 * Either we allocate blocks and then don't get an unwritten extent, so
3360 	 * in that case we have reserved enough credits. Or, the blocks are
3361 	 * already allocated and unwritten. In that case, the extent conversion
3362 	 * fits into the credits as well.
3363 	 */
3364 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3365 	if (IS_ERR(handle))
3366 		return PTR_ERR(handle);
3367 
3368 	/*
3369 	 * DAX and direct I/O are the only two operations that are currently
3370 	 * supported with IOMAP_WRITE.
3371 	 */
3372 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3373 	if (IS_DAX(inode))
3374 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3375 	/*
3376 	 * We use i_size instead of i_disksize here because delalloc writeback
3377 	 * can complete at any point during the I/O and subsequently push the
3378 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3379 	 * happening and thus expose allocated blocks to direct I/O reads.
3380 	 */
3381 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3382 		m_flags = EXT4_GET_BLOCKS_CREATE;
3383 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3384 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3385 
3386 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3387 
3388 	/*
3389 	 * We cannot fill holes in indirect tree based inodes as that could
3390 	 * expose stale data in the case of a crash. Use the magic error code
3391 	 * to fallback to buffered I/O.
3392 	 */
3393 	if (!m_flags && !ret)
3394 		ret = -ENOTBLK;
3395 
3396 	ext4_journal_stop(handle);
3397 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3398 		goto retry;
3399 
3400 	return ret;
3401 }
3402 
3403 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3405 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3406 {
3407 	int ret;
3408 	struct ext4_map_blocks map;
3409 	u8 blkbits = inode->i_blkbits;
3410 
3411 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3412 		return -EINVAL;
3413 
3414 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3415 		return -ERANGE;
3416 
3417 	/*
3418 	 * Calculate the first and last logical blocks respectively.
3419 	 */
3420 	map.m_lblk = offset >> blkbits;
3421 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3422 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3423 
3424 	if (flags & IOMAP_WRITE) {
3425 		/*
3426 		 * We check here if the blocks are already allocated, then we
3427 		 * don't need to start a journal txn and we can directly return
3428 		 * the mapping information. This could boost performance
3429 		 * especially in multi-threaded overwrite requests.
3430 		 */
3431 		if (offset + length <= i_size_read(inode)) {
3432 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3433 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3434 				goto out;
3435 		}
3436 		ret = ext4_iomap_alloc(inode, &map, flags);
3437 	} else {
3438 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3439 	}
3440 
3441 	if (ret < 0)
3442 		return ret;
3443 out:
3444 	ext4_set_iomap(inode, iomap, &map, offset, length);
3445 
3446 	return 0;
3447 }
3448 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3449 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3450 		loff_t length, unsigned flags, struct iomap *iomap,
3451 		struct iomap *srcmap)
3452 {
3453 	int ret;
3454 
3455 	/*
3456 	 * Even for writes we don't need to allocate blocks, so just pretend
3457 	 * we are reading to save overhead of starting a transaction.
3458 	 */
3459 	flags &= ~IOMAP_WRITE;
3460 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3461 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3462 	return ret;
3463 }
3464 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3465 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3466 			  ssize_t written, unsigned flags, struct iomap *iomap)
3467 {
3468 	/*
3469 	 * Check to see whether an error occurred while writing out the data to
3470 	 * the allocated blocks. If so, return the magic error code so that we
3471 	 * fallback to buffered I/O and attempt to complete the remainder of
3472 	 * the I/O. Any blocks that may have been allocated in preparation for
3473 	 * the direct I/O will be reused during buffered I/O.
3474 	 */
3475 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3476 		return -ENOTBLK;
3477 
3478 	return 0;
3479 }
3480 
3481 const struct iomap_ops ext4_iomap_ops = {
3482 	.iomap_begin		= ext4_iomap_begin,
3483 	.iomap_end		= ext4_iomap_end,
3484 };
3485 
3486 const struct iomap_ops ext4_iomap_overwrite_ops = {
3487 	.iomap_begin		= ext4_iomap_overwrite_begin,
3488 	.iomap_end		= ext4_iomap_end,
3489 };
3490 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3491 static bool ext4_iomap_is_delalloc(struct inode *inode,
3492 				   struct ext4_map_blocks *map)
3493 {
3494 	struct extent_status es;
3495 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3496 
3497 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3498 				  map->m_lblk, end, &es);
3499 
3500 	if (!es.es_len || es.es_lblk > end)
3501 		return false;
3502 
3503 	if (es.es_lblk > map->m_lblk) {
3504 		map->m_len = es.es_lblk - map->m_lblk;
3505 		return false;
3506 	}
3507 
3508 	offset = map->m_lblk - es.es_lblk;
3509 	map->m_len = es.es_len - offset;
3510 
3511 	return true;
3512 }
3513 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3514 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3515 				   loff_t length, unsigned int flags,
3516 				   struct iomap *iomap, struct iomap *srcmap)
3517 {
3518 	int ret;
3519 	bool delalloc = false;
3520 	struct ext4_map_blocks map;
3521 	u8 blkbits = inode->i_blkbits;
3522 
3523 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3524 		return -EINVAL;
3525 
3526 	if (ext4_has_inline_data(inode)) {
3527 		ret = ext4_inline_data_iomap(inode, iomap);
3528 		if (ret != -EAGAIN) {
3529 			if (ret == 0 && offset >= iomap->length)
3530 				ret = -ENOENT;
3531 			return ret;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * Calculate the first and last logical block respectively.
3537 	 */
3538 	map.m_lblk = offset >> blkbits;
3539 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3540 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3541 
3542 	/*
3543 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3544 	 * So handle it here itself instead of querying ext4_map_blocks().
3545 	 * Since ext4_map_blocks() will warn about it and will return
3546 	 * -EIO error.
3547 	 */
3548 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3549 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3550 
3551 		if (offset >= sbi->s_bitmap_maxbytes) {
3552 			map.m_flags = 0;
3553 			goto set_iomap;
3554 		}
3555 	}
3556 
3557 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3558 	if (ret < 0)
3559 		return ret;
3560 	if (ret == 0)
3561 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3562 
3563 set_iomap:
3564 	ext4_set_iomap(inode, iomap, &map, offset, length);
3565 	if (delalloc && iomap->type == IOMAP_HOLE)
3566 		iomap->type = IOMAP_DELALLOC;
3567 
3568 	return 0;
3569 }
3570 
3571 const struct iomap_ops ext4_iomap_report_ops = {
3572 	.iomap_begin = ext4_iomap_begin_report,
3573 };
3574 
3575 /*
3576  * Pages can be marked dirty completely asynchronously from ext4's journalling
3577  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3578  * much here because ->set_page_dirty is called under VFS locks.  The page is
3579  * not necessarily locked.
3580  *
3581  * We cannot just dirty the page and leave attached buffers clean, because the
3582  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3583  * or jbddirty because all the journalling code will explode.
3584  *
3585  * So what we do is to mark the page "pending dirty" and next time writepage
3586  * is called, propagate that into the buffers appropriately.
3587  */
ext4_journalled_set_page_dirty(struct page * page)3588 static int ext4_journalled_set_page_dirty(struct page *page)
3589 {
3590 	SetPageChecked(page);
3591 	return __set_page_dirty_nobuffers(page);
3592 }
3593 
ext4_set_page_dirty(struct page * page)3594 static int ext4_set_page_dirty(struct page *page)
3595 {
3596 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3597 	WARN_ON_ONCE(!page_has_buffers(page));
3598 	return __set_page_dirty_buffers(page);
3599 }
3600 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3601 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3602 				    struct file *file, sector_t *span)
3603 {
3604 	return iomap_swapfile_activate(sis, file, span,
3605 				       &ext4_iomap_report_ops);
3606 }
3607 
3608 static const struct address_space_operations ext4_aops = {
3609 	.readpage		= ext4_readpage,
3610 	.readahead		= ext4_readahead,
3611 	.writepage		= ext4_writepage,
3612 	.writepages		= ext4_writepages,
3613 	.write_begin		= ext4_write_begin,
3614 	.write_end		= ext4_write_end,
3615 	.set_page_dirty		= ext4_set_page_dirty,
3616 	.bmap			= ext4_bmap,
3617 	.invalidatepage		= ext4_invalidatepage,
3618 	.releasepage		= ext4_releasepage,
3619 	.direct_IO		= noop_direct_IO,
3620 	.migratepage		= buffer_migrate_page,
3621 	.is_partially_uptodate  = block_is_partially_uptodate,
3622 	.error_remove_page	= generic_error_remove_page,
3623 	.swap_activate		= ext4_iomap_swap_activate,
3624 };
3625 
3626 static const struct address_space_operations ext4_journalled_aops = {
3627 	.readpage		= ext4_readpage,
3628 	.readahead		= ext4_readahead,
3629 	.writepage		= ext4_writepage,
3630 	.writepages		= ext4_writepages,
3631 	.write_begin		= ext4_write_begin,
3632 	.write_end		= ext4_journalled_write_end,
3633 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3634 	.bmap			= ext4_bmap,
3635 	.invalidatepage		= ext4_journalled_invalidatepage,
3636 	.releasepage		= ext4_releasepage,
3637 	.direct_IO		= noop_direct_IO,
3638 	.is_partially_uptodate  = block_is_partially_uptodate,
3639 	.error_remove_page	= generic_error_remove_page,
3640 	.swap_activate		= ext4_iomap_swap_activate,
3641 };
3642 
3643 static const struct address_space_operations ext4_da_aops = {
3644 	.readpage		= ext4_readpage,
3645 	.readahead		= ext4_readahead,
3646 	.writepage		= ext4_writepage,
3647 	.writepages		= ext4_writepages,
3648 	.write_begin		= ext4_da_write_begin,
3649 	.write_end		= ext4_da_write_end,
3650 	.set_page_dirty		= ext4_set_page_dirty,
3651 	.bmap			= ext4_bmap,
3652 	.invalidatepage		= ext4_invalidatepage,
3653 	.releasepage		= ext4_releasepage,
3654 	.direct_IO		= noop_direct_IO,
3655 	.migratepage		= buffer_migrate_page,
3656 	.is_partially_uptodate  = block_is_partially_uptodate,
3657 	.error_remove_page	= generic_error_remove_page,
3658 	.swap_activate		= ext4_iomap_swap_activate,
3659 };
3660 
3661 static const struct address_space_operations ext4_dax_aops = {
3662 	.writepages		= ext4_dax_writepages,
3663 	.direct_IO		= noop_direct_IO,
3664 	.set_page_dirty		= noop_set_page_dirty,
3665 	.bmap			= ext4_bmap,
3666 	.invalidatepage		= noop_invalidatepage,
3667 	.swap_activate		= ext4_iomap_swap_activate,
3668 };
3669 
ext4_set_aops(struct inode * inode)3670 void ext4_set_aops(struct inode *inode)
3671 {
3672 	switch (ext4_inode_journal_mode(inode)) {
3673 	case EXT4_INODE_ORDERED_DATA_MODE:
3674 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3675 		break;
3676 	case EXT4_INODE_JOURNAL_DATA_MODE:
3677 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3678 		return;
3679 	default:
3680 		BUG();
3681 	}
3682 	if (IS_DAX(inode))
3683 		inode->i_mapping->a_ops = &ext4_dax_aops;
3684 	else if (test_opt(inode->i_sb, DELALLOC))
3685 		inode->i_mapping->a_ops = &ext4_da_aops;
3686 	else
3687 		inode->i_mapping->a_ops = &ext4_aops;
3688 }
3689 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3690 static int __ext4_block_zero_page_range(handle_t *handle,
3691 		struct address_space *mapping, loff_t from, loff_t length)
3692 {
3693 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3694 	unsigned offset = from & (PAGE_SIZE-1);
3695 	unsigned blocksize, pos;
3696 	ext4_lblk_t iblock;
3697 	struct inode *inode = mapping->host;
3698 	struct buffer_head *bh;
3699 	struct page *page;
3700 	int err = 0;
3701 
3702 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3703 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3704 	if (!page)
3705 		return -ENOMEM;
3706 
3707 	blocksize = inode->i_sb->s_blocksize;
3708 
3709 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3710 
3711 	if (!page_has_buffers(page))
3712 		create_empty_buffers(page, blocksize, 0);
3713 
3714 	/* Find the buffer that contains "offset" */
3715 	bh = page_buffers(page);
3716 	pos = blocksize;
3717 	while (offset >= pos) {
3718 		bh = bh->b_this_page;
3719 		iblock++;
3720 		pos += blocksize;
3721 	}
3722 	if (buffer_freed(bh)) {
3723 		BUFFER_TRACE(bh, "freed: skip");
3724 		goto unlock;
3725 	}
3726 	if (!buffer_mapped(bh)) {
3727 		BUFFER_TRACE(bh, "unmapped");
3728 		ext4_get_block(inode, iblock, bh, 0);
3729 		/* unmapped? It's a hole - nothing to do */
3730 		if (!buffer_mapped(bh)) {
3731 			BUFFER_TRACE(bh, "still unmapped");
3732 			goto unlock;
3733 		}
3734 	}
3735 
3736 	/* Ok, it's mapped. Make sure it's up-to-date */
3737 	if (PageUptodate(page))
3738 		set_buffer_uptodate(bh);
3739 
3740 	if (!buffer_uptodate(bh)) {
3741 		err = ext4_read_bh_lock(bh, 0, true);
3742 		if (err)
3743 			goto unlock;
3744 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3745 			/* We expect the key to be set. */
3746 			BUG_ON(!fscrypt_has_encryption_key(inode));
3747 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3748 							       bh_offset(bh));
3749 			if (err) {
3750 				clear_buffer_uptodate(bh);
3751 				goto unlock;
3752 			}
3753 		}
3754 	}
3755 	if (ext4_should_journal_data(inode)) {
3756 		BUFFER_TRACE(bh, "get write access");
3757 		err = ext4_journal_get_write_access(handle, bh);
3758 		if (err)
3759 			goto unlock;
3760 	}
3761 	zero_user(page, offset, length);
3762 	BUFFER_TRACE(bh, "zeroed end of block");
3763 
3764 	if (ext4_should_journal_data(inode)) {
3765 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3766 	} else {
3767 		err = 0;
3768 		mark_buffer_dirty(bh);
3769 		if (ext4_should_order_data(inode))
3770 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3771 					length);
3772 	}
3773 
3774 unlock:
3775 	unlock_page(page);
3776 	put_page(page);
3777 	return err;
3778 }
3779 
3780 /*
3781  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3782  * starting from file offset 'from'.  The range to be zero'd must
3783  * be contained with in one block.  If the specified range exceeds
3784  * the end of the block it will be shortened to end of the block
3785  * that cooresponds to 'from'
3786  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3787 static int ext4_block_zero_page_range(handle_t *handle,
3788 		struct address_space *mapping, loff_t from, loff_t length)
3789 {
3790 	struct inode *inode = mapping->host;
3791 	unsigned offset = from & (PAGE_SIZE-1);
3792 	unsigned blocksize = inode->i_sb->s_blocksize;
3793 	unsigned max = blocksize - (offset & (blocksize - 1));
3794 
3795 	/*
3796 	 * correct length if it does not fall between
3797 	 * 'from' and the end of the block
3798 	 */
3799 	if (length > max || length < 0)
3800 		length = max;
3801 
3802 	if (IS_DAX(inode)) {
3803 		return iomap_zero_range(inode, from, length, NULL,
3804 					&ext4_iomap_ops);
3805 	}
3806 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3807 }
3808 
3809 /*
3810  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3811  * up to the end of the block which corresponds to `from'.
3812  * This required during truncate. We need to physically zero the tail end
3813  * of that block so it doesn't yield old data if the file is later grown.
3814  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3815 static int ext4_block_truncate_page(handle_t *handle,
3816 		struct address_space *mapping, loff_t from)
3817 {
3818 	unsigned offset = from & (PAGE_SIZE-1);
3819 	unsigned length;
3820 	unsigned blocksize;
3821 	struct inode *inode = mapping->host;
3822 
3823 	/* If we are processing an encrypted inode during orphan list handling */
3824 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3825 		return 0;
3826 
3827 	blocksize = inode->i_sb->s_blocksize;
3828 	length = blocksize - (offset & (blocksize - 1));
3829 
3830 	return ext4_block_zero_page_range(handle, mapping, from, length);
3831 }
3832 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3833 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3834 			     loff_t lstart, loff_t length)
3835 {
3836 	struct super_block *sb = inode->i_sb;
3837 	struct address_space *mapping = inode->i_mapping;
3838 	unsigned partial_start, partial_end;
3839 	ext4_fsblk_t start, end;
3840 	loff_t byte_end = (lstart + length - 1);
3841 	int err = 0;
3842 
3843 	partial_start = lstart & (sb->s_blocksize - 1);
3844 	partial_end = byte_end & (sb->s_blocksize - 1);
3845 
3846 	start = lstart >> sb->s_blocksize_bits;
3847 	end = byte_end >> sb->s_blocksize_bits;
3848 
3849 	/* Handle partial zero within the single block */
3850 	if (start == end &&
3851 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3852 		err = ext4_block_zero_page_range(handle, mapping,
3853 						 lstart, length);
3854 		return err;
3855 	}
3856 	/* Handle partial zero out on the start of the range */
3857 	if (partial_start) {
3858 		err = ext4_block_zero_page_range(handle, mapping,
3859 						 lstart, sb->s_blocksize);
3860 		if (err)
3861 			return err;
3862 	}
3863 	/* Handle partial zero out on the end of the range */
3864 	if (partial_end != sb->s_blocksize - 1)
3865 		err = ext4_block_zero_page_range(handle, mapping,
3866 						 byte_end - partial_end,
3867 						 partial_end + 1);
3868 	return err;
3869 }
3870 
ext4_can_truncate(struct inode * inode)3871 int ext4_can_truncate(struct inode *inode)
3872 {
3873 	if (S_ISREG(inode->i_mode))
3874 		return 1;
3875 	if (S_ISDIR(inode->i_mode))
3876 		return 1;
3877 	if (S_ISLNK(inode->i_mode))
3878 		return !ext4_inode_is_fast_symlink(inode);
3879 	return 0;
3880 }
3881 
3882 /*
3883  * We have to make sure i_disksize gets properly updated before we truncate
3884  * page cache due to hole punching or zero range. Otherwise i_disksize update
3885  * can get lost as it may have been postponed to submission of writeback but
3886  * that will never happen after we truncate page cache.
3887  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3888 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3889 				      loff_t len)
3890 {
3891 	handle_t *handle;
3892 	int ret;
3893 
3894 	loff_t size = i_size_read(inode);
3895 
3896 	WARN_ON(!inode_is_locked(inode));
3897 	if (offset > size || offset + len < size)
3898 		return 0;
3899 
3900 	if (EXT4_I(inode)->i_disksize >= size)
3901 		return 0;
3902 
3903 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3904 	if (IS_ERR(handle))
3905 		return PTR_ERR(handle);
3906 	ext4_update_i_disksize(inode, size);
3907 	ret = ext4_mark_inode_dirty(handle, inode);
3908 	ext4_journal_stop(handle);
3909 
3910 	return ret;
3911 }
3912 
ext4_wait_dax_page(struct ext4_inode_info * ei)3913 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3914 {
3915 	up_write(&ei->i_mmap_sem);
3916 	schedule();
3917 	down_write(&ei->i_mmap_sem);
3918 }
3919 
ext4_break_layouts(struct inode * inode)3920 int ext4_break_layouts(struct inode *inode)
3921 {
3922 	struct ext4_inode_info *ei = EXT4_I(inode);
3923 	struct page *page;
3924 	int error;
3925 
3926 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3927 		return -EINVAL;
3928 
3929 	do {
3930 		page = dax_layout_busy_page(inode->i_mapping);
3931 		if (!page)
3932 			return 0;
3933 
3934 		error = ___wait_var_event(&page->_refcount,
3935 				atomic_read(&page->_refcount) == 1,
3936 				TASK_INTERRUPTIBLE, 0, 0,
3937 				ext4_wait_dax_page(ei));
3938 	} while (error == 0);
3939 
3940 	return error;
3941 }
3942 
3943 /*
3944  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3945  * associated with the given offset and length
3946  *
3947  * @inode:  File inode
3948  * @offset: The offset where the hole will begin
3949  * @len:    The length of the hole
3950  *
3951  * Returns: 0 on success or negative on failure
3952  */
3953 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3954 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3955 {
3956 	struct super_block *sb = inode->i_sb;
3957 	ext4_lblk_t first_block, stop_block;
3958 	struct address_space *mapping = inode->i_mapping;
3959 	loff_t first_block_offset, last_block_offset;
3960 	handle_t *handle;
3961 	unsigned int credits;
3962 	int ret = 0, ret2 = 0;
3963 
3964 	trace_ext4_punch_hole(inode, offset, length, 0);
3965 
3966 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3967 	if (ext4_has_inline_data(inode)) {
3968 		down_write(&EXT4_I(inode)->i_mmap_sem);
3969 		ret = ext4_convert_inline_data(inode);
3970 		up_write(&EXT4_I(inode)->i_mmap_sem);
3971 		if (ret)
3972 			return ret;
3973 	}
3974 
3975 	/*
3976 	 * Write out all dirty pages to avoid race conditions
3977 	 * Then release them.
3978 	 */
3979 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3980 		ret = filemap_write_and_wait_range(mapping, offset,
3981 						   offset + length - 1);
3982 		if (ret)
3983 			return ret;
3984 	}
3985 
3986 	inode_lock(inode);
3987 
3988 	/* No need to punch hole beyond i_size */
3989 	if (offset >= inode->i_size)
3990 		goto out_mutex;
3991 
3992 	/*
3993 	 * If the hole extends beyond i_size, set the hole
3994 	 * to end after the page that contains i_size
3995 	 */
3996 	if (offset + length > inode->i_size) {
3997 		length = inode->i_size +
3998 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3999 		   offset;
4000 	}
4001 
4002 	if (offset & (sb->s_blocksize - 1) ||
4003 	    (offset + length) & (sb->s_blocksize - 1)) {
4004 		/*
4005 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4006 		 * partial block
4007 		 */
4008 		ret = ext4_inode_attach_jinode(inode);
4009 		if (ret < 0)
4010 			goto out_mutex;
4011 
4012 	}
4013 
4014 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4015 	inode_dio_wait(inode);
4016 
4017 	/*
4018 	 * Prevent page faults from reinstantiating pages we have released from
4019 	 * page cache.
4020 	 */
4021 	down_write(&EXT4_I(inode)->i_mmap_sem);
4022 
4023 	ret = ext4_break_layouts(inode);
4024 	if (ret)
4025 		goto out_dio;
4026 
4027 	first_block_offset = round_up(offset, sb->s_blocksize);
4028 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4029 
4030 	/* Now release the pages and zero block aligned part of pages*/
4031 	if (last_block_offset > first_block_offset) {
4032 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4033 		if (ret)
4034 			goto out_dio;
4035 		truncate_pagecache_range(inode, first_block_offset,
4036 					 last_block_offset);
4037 	}
4038 
4039 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4040 		credits = ext4_writepage_trans_blocks(inode);
4041 	else
4042 		credits = ext4_blocks_for_truncate(inode);
4043 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4044 	if (IS_ERR(handle)) {
4045 		ret = PTR_ERR(handle);
4046 		ext4_std_error(sb, ret);
4047 		goto out_dio;
4048 	}
4049 
4050 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4051 				       length);
4052 	if (ret)
4053 		goto out_stop;
4054 
4055 	first_block = (offset + sb->s_blocksize - 1) >>
4056 		EXT4_BLOCK_SIZE_BITS(sb);
4057 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4058 
4059 	/* If there are blocks to remove, do it */
4060 	if (stop_block > first_block) {
4061 
4062 		down_write(&EXT4_I(inode)->i_data_sem);
4063 		ext4_discard_preallocations(inode, 0);
4064 
4065 		ret = ext4_es_remove_extent(inode, first_block,
4066 					    stop_block - first_block);
4067 		if (ret) {
4068 			up_write(&EXT4_I(inode)->i_data_sem);
4069 			goto out_stop;
4070 		}
4071 
4072 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4073 			ret = ext4_ext_remove_space(inode, first_block,
4074 						    stop_block - 1);
4075 		else
4076 			ret = ext4_ind_remove_space(handle, inode, first_block,
4077 						    stop_block);
4078 
4079 		up_write(&EXT4_I(inode)->i_data_sem);
4080 	}
4081 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4082 	if (IS_SYNC(inode))
4083 		ext4_handle_sync(handle);
4084 
4085 	inode->i_mtime = inode->i_ctime = current_time(inode);
4086 	ret2 = ext4_mark_inode_dirty(handle, inode);
4087 	if (unlikely(ret2))
4088 		ret = ret2;
4089 	if (ret >= 0)
4090 		ext4_update_inode_fsync_trans(handle, inode, 1);
4091 out_stop:
4092 	ext4_journal_stop(handle);
4093 out_dio:
4094 	up_write(&EXT4_I(inode)->i_mmap_sem);
4095 out_mutex:
4096 	inode_unlock(inode);
4097 	return ret;
4098 }
4099 
ext4_inode_attach_jinode(struct inode * inode)4100 int ext4_inode_attach_jinode(struct inode *inode)
4101 {
4102 	struct ext4_inode_info *ei = EXT4_I(inode);
4103 	struct jbd2_inode *jinode;
4104 
4105 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4106 		return 0;
4107 
4108 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4109 	spin_lock(&inode->i_lock);
4110 	if (!ei->jinode) {
4111 		if (!jinode) {
4112 			spin_unlock(&inode->i_lock);
4113 			return -ENOMEM;
4114 		}
4115 		ei->jinode = jinode;
4116 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4117 		jinode = NULL;
4118 	}
4119 	spin_unlock(&inode->i_lock);
4120 	if (unlikely(jinode != NULL))
4121 		jbd2_free_inode(jinode);
4122 	return 0;
4123 }
4124 
4125 /*
4126  * ext4_truncate()
4127  *
4128  * We block out ext4_get_block() block instantiations across the entire
4129  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4130  * simultaneously on behalf of the same inode.
4131  *
4132  * As we work through the truncate and commit bits of it to the journal there
4133  * is one core, guiding principle: the file's tree must always be consistent on
4134  * disk.  We must be able to restart the truncate after a crash.
4135  *
4136  * The file's tree may be transiently inconsistent in memory (although it
4137  * probably isn't), but whenever we close off and commit a journal transaction,
4138  * the contents of (the filesystem + the journal) must be consistent and
4139  * restartable.  It's pretty simple, really: bottom up, right to left (although
4140  * left-to-right works OK too).
4141  *
4142  * Note that at recovery time, journal replay occurs *before* the restart of
4143  * truncate against the orphan inode list.
4144  *
4145  * The committed inode has the new, desired i_size (which is the same as
4146  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4147  * that this inode's truncate did not complete and it will again call
4148  * ext4_truncate() to have another go.  So there will be instantiated blocks
4149  * to the right of the truncation point in a crashed ext4 filesystem.  But
4150  * that's fine - as long as they are linked from the inode, the post-crash
4151  * ext4_truncate() run will find them and release them.
4152  */
ext4_truncate(struct inode * inode)4153 int ext4_truncate(struct inode *inode)
4154 {
4155 	struct ext4_inode_info *ei = EXT4_I(inode);
4156 	unsigned int credits;
4157 	int err = 0, err2;
4158 	handle_t *handle;
4159 	struct address_space *mapping = inode->i_mapping;
4160 
4161 	/*
4162 	 * There is a possibility that we're either freeing the inode
4163 	 * or it's a completely new inode. In those cases we might not
4164 	 * have i_mutex locked because it's not necessary.
4165 	 */
4166 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4167 		WARN_ON(!inode_is_locked(inode));
4168 	trace_ext4_truncate_enter(inode);
4169 
4170 	if (!ext4_can_truncate(inode))
4171 		goto out_trace;
4172 
4173 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4174 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4175 
4176 	if (ext4_has_inline_data(inode)) {
4177 		int has_inline = 1;
4178 
4179 		err = ext4_inline_data_truncate(inode, &has_inline);
4180 		if (err || has_inline)
4181 			goto out_trace;
4182 	}
4183 
4184 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4185 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4186 		if (ext4_inode_attach_jinode(inode) < 0)
4187 			goto out_trace;
4188 	}
4189 
4190 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4191 		credits = ext4_writepage_trans_blocks(inode);
4192 	else
4193 		credits = ext4_blocks_for_truncate(inode);
4194 
4195 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4196 	if (IS_ERR(handle)) {
4197 		err = PTR_ERR(handle);
4198 		goto out_trace;
4199 	}
4200 
4201 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4202 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4203 
4204 	/*
4205 	 * We add the inode to the orphan list, so that if this
4206 	 * truncate spans multiple transactions, and we crash, we will
4207 	 * resume the truncate when the filesystem recovers.  It also
4208 	 * marks the inode dirty, to catch the new size.
4209 	 *
4210 	 * Implication: the file must always be in a sane, consistent
4211 	 * truncatable state while each transaction commits.
4212 	 */
4213 	err = ext4_orphan_add(handle, inode);
4214 	if (err)
4215 		goto out_stop;
4216 
4217 	down_write(&EXT4_I(inode)->i_data_sem);
4218 
4219 	ext4_discard_preallocations(inode, 0);
4220 
4221 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4222 		err = ext4_ext_truncate(handle, inode);
4223 	else
4224 		ext4_ind_truncate(handle, inode);
4225 
4226 	up_write(&ei->i_data_sem);
4227 	if (err)
4228 		goto out_stop;
4229 
4230 	if (IS_SYNC(inode))
4231 		ext4_handle_sync(handle);
4232 
4233 out_stop:
4234 	/*
4235 	 * If this was a simple ftruncate() and the file will remain alive,
4236 	 * then we need to clear up the orphan record which we created above.
4237 	 * However, if this was a real unlink then we were called by
4238 	 * ext4_evict_inode(), and we allow that function to clean up the
4239 	 * orphan info for us.
4240 	 */
4241 	if (inode->i_nlink)
4242 		ext4_orphan_del(handle, inode);
4243 
4244 	inode->i_mtime = inode->i_ctime = current_time(inode);
4245 	err2 = ext4_mark_inode_dirty(handle, inode);
4246 	if (unlikely(err2 && !err))
4247 		err = err2;
4248 	ext4_journal_stop(handle);
4249 
4250 out_trace:
4251 	trace_ext4_truncate_exit(inode);
4252 	return err;
4253 }
4254 
ext4_inode_peek_iversion(const struct inode * inode)4255 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4256 {
4257 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4258 		return inode_peek_iversion_raw(inode);
4259 	else
4260 		return inode_peek_iversion(inode);
4261 }
4262 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4263 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4264 				 struct ext4_inode_info *ei)
4265 {
4266 	struct inode *inode = &(ei->vfs_inode);
4267 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4268 	struct super_block *sb = inode->i_sb;
4269 
4270 	if (i_blocks <= ~0U) {
4271 		/*
4272 		 * i_blocks can be represented in a 32 bit variable
4273 		 * as multiple of 512 bytes
4274 		 */
4275 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4276 		raw_inode->i_blocks_high = 0;
4277 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278 		return 0;
4279 	}
4280 
4281 	/*
4282 	 * This should never happen since sb->s_maxbytes should not have
4283 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4284 	 * feature in ext4_fill_super().
4285 	 */
4286 	if (!ext4_has_feature_huge_file(sb))
4287 		return -EFSCORRUPTED;
4288 
4289 	if (i_blocks <= 0xffffffffffffULL) {
4290 		/*
4291 		 * i_blocks can be represented in a 48 bit variable
4292 		 * as multiple of 512 bytes
4293 		 */
4294 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4295 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4296 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4297 	} else {
4298 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4299 		/* i_block is stored in file system block size */
4300 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4301 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4302 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4303 	}
4304 	return 0;
4305 }
4306 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4307 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4308 {
4309 	struct ext4_inode_info *ei = EXT4_I(inode);
4310 	uid_t i_uid;
4311 	gid_t i_gid;
4312 	projid_t i_projid;
4313 	int block;
4314 	int err;
4315 
4316 	err = ext4_inode_blocks_set(raw_inode, ei);
4317 
4318 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319 	i_uid = i_uid_read(inode);
4320 	i_gid = i_gid_read(inode);
4321 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4322 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4323 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4324 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4325 		/*
4326 		 * Fix up interoperability with old kernels. Otherwise,
4327 		 * old inodes get re-used with the upper 16 bits of the
4328 		 * uid/gid intact.
4329 		 */
4330 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4331 			raw_inode->i_uid_high = 0;
4332 			raw_inode->i_gid_high = 0;
4333 		} else {
4334 			raw_inode->i_uid_high =
4335 				cpu_to_le16(high_16_bits(i_uid));
4336 			raw_inode->i_gid_high =
4337 				cpu_to_le16(high_16_bits(i_gid));
4338 		}
4339 	} else {
4340 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4341 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4342 		raw_inode->i_uid_high = 0;
4343 		raw_inode->i_gid_high = 0;
4344 	}
4345 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4346 
4347 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4348 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4349 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4350 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4351 
4352 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355 		raw_inode->i_file_acl_high =
4356 			cpu_to_le16(ei->i_file_acl >> 32);
4357 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358 	ext4_isize_set(raw_inode, ei->i_disksize);
4359 
4360 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4361 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4362 		if (old_valid_dev(inode->i_rdev)) {
4363 			raw_inode->i_block[0] =
4364 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4365 			raw_inode->i_block[1] = 0;
4366 		} else {
4367 			raw_inode->i_block[0] = 0;
4368 			raw_inode->i_block[1] =
4369 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4370 			raw_inode->i_block[2] = 0;
4371 		}
4372 	} else if (!ext4_has_inline_data(inode)) {
4373 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4374 			raw_inode->i_block[block] = ei->i_data[block];
4375 	}
4376 
4377 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4378 		u64 ivers = ext4_inode_peek_iversion(inode);
4379 
4380 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4381 		if (ei->i_extra_isize) {
4382 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4383 				raw_inode->i_version_hi =
4384 					cpu_to_le32(ivers >> 32);
4385 			raw_inode->i_extra_isize =
4386 				cpu_to_le16(ei->i_extra_isize);
4387 		}
4388 	}
4389 
4390 	if (i_projid != EXT4_DEF_PROJID &&
4391 	    !ext4_has_feature_project(inode->i_sb))
4392 		err = err ?: -EFSCORRUPTED;
4393 
4394 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4395 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4396 		raw_inode->i_projid = cpu_to_le32(i_projid);
4397 
4398 	ext4_inode_csum_set(inode, raw_inode, ei);
4399 	return err;
4400 }
4401 
4402 /*
4403  * ext4_get_inode_loc returns with an extra refcount against the inode's
4404  * underlying buffer_head on success. If we pass 'inode' and it does not
4405  * have in-inode xattr, we have all inode data in memory that is needed
4406  * to recreate the on-disk version of this inode.
4407  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4408 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4409 				struct inode *inode, struct ext4_iloc *iloc,
4410 				ext4_fsblk_t *ret_block)
4411 {
4412 	struct ext4_group_desc	*gdp;
4413 	struct buffer_head	*bh;
4414 	ext4_fsblk_t		block;
4415 	struct blk_plug		plug;
4416 	int			inodes_per_block, inode_offset;
4417 
4418 	iloc->bh = NULL;
4419 	if (ino < EXT4_ROOT_INO ||
4420 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4421 		return -EFSCORRUPTED;
4422 
4423 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4424 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4425 	if (!gdp)
4426 		return -EIO;
4427 
4428 	/*
4429 	 * Figure out the offset within the block group inode table
4430 	 */
4431 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4432 	inode_offset = ((ino - 1) %
4433 			EXT4_INODES_PER_GROUP(sb));
4434 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4435 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4436 
4437 	bh = sb_getblk(sb, block);
4438 	if (unlikely(!bh))
4439 		return -ENOMEM;
4440 	if (!buffer_uptodate(bh)) {
4441 		lock_buffer(bh);
4442 
4443 		if (ext4_buffer_uptodate(bh)) {
4444 			/* someone brought it uptodate while we waited */
4445 			unlock_buffer(bh);
4446 			goto has_buffer;
4447 		}
4448 
4449 		/*
4450 		 * If we have all information of the inode in memory and this
4451 		 * is the only valid inode in the block, we need not read the
4452 		 * block.
4453 		 */
4454 		if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4455 			struct buffer_head *bitmap_bh;
4456 			int i, start;
4457 
4458 			start = inode_offset & ~(inodes_per_block - 1);
4459 
4460 			/* Is the inode bitmap in cache? */
4461 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4462 			if (unlikely(!bitmap_bh))
4463 				goto make_io;
4464 
4465 			/*
4466 			 * If the inode bitmap isn't in cache then the
4467 			 * optimisation may end up performing two reads instead
4468 			 * of one, so skip it.
4469 			 */
4470 			if (!buffer_uptodate(bitmap_bh)) {
4471 				brelse(bitmap_bh);
4472 				goto make_io;
4473 			}
4474 			for (i = start; i < start + inodes_per_block; i++) {
4475 				if (i == inode_offset)
4476 					continue;
4477 				if (ext4_test_bit(i, bitmap_bh->b_data))
4478 					break;
4479 			}
4480 			brelse(bitmap_bh);
4481 			if (i == start + inodes_per_block) {
4482 				struct ext4_inode *raw_inode =
4483 					(struct ext4_inode *) (bh->b_data + iloc->offset);
4484 
4485 				/* all other inodes are free, so skip I/O */
4486 				memset(bh->b_data, 0, bh->b_size);
4487 				if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4488 					ext4_fill_raw_inode(inode, raw_inode);
4489 				set_buffer_uptodate(bh);
4490 				unlock_buffer(bh);
4491 				goto has_buffer;
4492 			}
4493 		}
4494 
4495 make_io:
4496 		/*
4497 		 * If we need to do any I/O, try to pre-readahead extra
4498 		 * blocks from the inode table.
4499 		 */
4500 		blk_start_plug(&plug);
4501 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4502 			ext4_fsblk_t b, end, table;
4503 			unsigned num;
4504 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4505 
4506 			table = ext4_inode_table(sb, gdp);
4507 			/* s_inode_readahead_blks is always a power of 2 */
4508 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4509 			if (table > b)
4510 				b = table;
4511 			end = b + ra_blks;
4512 			num = EXT4_INODES_PER_GROUP(sb);
4513 			if (ext4_has_group_desc_csum(sb))
4514 				num -= ext4_itable_unused_count(sb, gdp);
4515 			table += num / inodes_per_block;
4516 			if (end > table)
4517 				end = table;
4518 			while (b <= end)
4519 				ext4_sb_breadahead_unmovable(sb, b++);
4520 		}
4521 
4522 		/*
4523 		 * There are other valid inodes in the buffer, this inode
4524 		 * has in-inode xattrs, or we don't have this inode in memory.
4525 		 * Read the block from disk.
4526 		 */
4527 		trace_ext4_load_inode(sb, ino);
4528 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4529 		blk_finish_plug(&plug);
4530 		wait_on_buffer(bh);
4531 		ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4532 		if (!buffer_uptodate(bh)) {
4533 			if (ret_block)
4534 				*ret_block = block;
4535 			brelse(bh);
4536 			return -EIO;
4537 		}
4538 	}
4539 has_buffer:
4540 	iloc->bh = bh;
4541 	return 0;
4542 }
4543 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4544 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4545 					struct ext4_iloc *iloc)
4546 {
4547 	ext4_fsblk_t err_blk;
4548 	int ret;
4549 
4550 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4551 					&err_blk);
4552 
4553 	if (ret == -EIO)
4554 		ext4_error_inode_block(inode, err_blk, EIO,
4555 					"unable to read itable block");
4556 
4557 	return ret;
4558 }
4559 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4560 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4561 {
4562 	ext4_fsblk_t err_blk;
4563 	int ret;
4564 
4565 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4566 					&err_blk);
4567 
4568 	if (ret == -EIO)
4569 		ext4_error_inode_block(inode, err_blk, EIO,
4570 					"unable to read itable block");
4571 
4572 	return ret;
4573 }
4574 
4575 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4576 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4577 			  struct ext4_iloc *iloc)
4578 {
4579 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4580 }
4581 
ext4_should_enable_dax(struct inode * inode)4582 static bool ext4_should_enable_dax(struct inode *inode)
4583 {
4584 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585 
4586 	if (test_opt2(inode->i_sb, DAX_NEVER))
4587 		return false;
4588 	if (!S_ISREG(inode->i_mode))
4589 		return false;
4590 	if (ext4_should_journal_data(inode))
4591 		return false;
4592 	if (ext4_has_inline_data(inode))
4593 		return false;
4594 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4595 		return false;
4596 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4597 		return false;
4598 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4599 		return false;
4600 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4601 		return true;
4602 
4603 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4604 }
4605 
ext4_set_inode_flags(struct inode * inode,bool init)4606 void ext4_set_inode_flags(struct inode *inode, bool init)
4607 {
4608 	unsigned int flags = EXT4_I(inode)->i_flags;
4609 	unsigned int new_fl = 0;
4610 
4611 	WARN_ON_ONCE(IS_DAX(inode) && init);
4612 
4613 	if (flags & EXT4_SYNC_FL)
4614 		new_fl |= S_SYNC;
4615 	if (flags & EXT4_APPEND_FL)
4616 		new_fl |= S_APPEND;
4617 	if (flags & EXT4_IMMUTABLE_FL)
4618 		new_fl |= S_IMMUTABLE;
4619 	if (flags & EXT4_NOATIME_FL)
4620 		new_fl |= S_NOATIME;
4621 	if (flags & EXT4_DIRSYNC_FL)
4622 		new_fl |= S_DIRSYNC;
4623 
4624 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4625 	 * here if already set. */
4626 	new_fl |= (inode->i_flags & S_DAX);
4627 	if (init && ext4_should_enable_dax(inode))
4628 		new_fl |= S_DAX;
4629 
4630 	if (flags & EXT4_ENCRYPT_FL)
4631 		new_fl |= S_ENCRYPTED;
4632 	if (flags & EXT4_CASEFOLD_FL)
4633 		new_fl |= S_CASEFOLD;
4634 	if (flags & EXT4_VERITY_FL)
4635 		new_fl |= S_VERITY;
4636 	inode_set_flags(inode, new_fl,
4637 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4638 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4639 }
4640 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4641 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4642 				  struct ext4_inode_info *ei)
4643 {
4644 	blkcnt_t i_blocks ;
4645 	struct inode *inode = &(ei->vfs_inode);
4646 	struct super_block *sb = inode->i_sb;
4647 
4648 	if (ext4_has_feature_huge_file(sb)) {
4649 		/* we are using combined 48 bit field */
4650 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4651 					le32_to_cpu(raw_inode->i_blocks_lo);
4652 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4653 			/* i_blocks represent file system block size */
4654 			return i_blocks  << (inode->i_blkbits - 9);
4655 		} else {
4656 			return i_blocks;
4657 		}
4658 	} else {
4659 		return le32_to_cpu(raw_inode->i_blocks_lo);
4660 	}
4661 }
4662 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4663 static inline int ext4_iget_extra_inode(struct inode *inode,
4664 					 struct ext4_inode *raw_inode,
4665 					 struct ext4_inode_info *ei)
4666 {
4667 	__le32 *magic = (void *)raw_inode +
4668 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4669 
4670 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4671 	    EXT4_INODE_SIZE(inode->i_sb) &&
4672 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4673 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4674 		return ext4_find_inline_data_nolock(inode);
4675 	} else
4676 		EXT4_I(inode)->i_inline_off = 0;
4677 	return 0;
4678 }
4679 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4680 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4681 {
4682 	if (!ext4_has_feature_project(inode->i_sb))
4683 		return -EOPNOTSUPP;
4684 	*projid = EXT4_I(inode)->i_projid;
4685 	return 0;
4686 }
4687 
4688 /*
4689  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4690  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4691  * set.
4692  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4693 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4694 {
4695 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4696 		inode_set_iversion_raw(inode, val);
4697 	else
4698 		inode_set_iversion_queried(inode, val);
4699 }
4700 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4701 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4702 			  ext4_iget_flags flags, const char *function,
4703 			  unsigned int line)
4704 {
4705 	struct ext4_iloc iloc;
4706 	struct ext4_inode *raw_inode;
4707 	struct ext4_inode_info *ei;
4708 	struct inode *inode;
4709 	journal_t *journal = EXT4_SB(sb)->s_journal;
4710 	long ret;
4711 	loff_t size;
4712 	int block;
4713 	uid_t i_uid;
4714 	gid_t i_gid;
4715 	projid_t i_projid;
4716 
4717 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4718 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4719 	    (ino < EXT4_ROOT_INO) ||
4720 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4721 		if (flags & EXT4_IGET_HANDLE)
4722 			return ERR_PTR(-ESTALE);
4723 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4724 			     "inode #%lu: comm %s: iget: illegal inode #",
4725 			     ino, current->comm);
4726 		return ERR_PTR(-EFSCORRUPTED);
4727 	}
4728 
4729 	inode = iget_locked(sb, ino);
4730 	if (!inode)
4731 		return ERR_PTR(-ENOMEM);
4732 	if (!(inode->i_state & I_NEW))
4733 		return inode;
4734 
4735 	ei = EXT4_I(inode);
4736 	iloc.bh = NULL;
4737 
4738 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4739 	if (ret < 0)
4740 		goto bad_inode;
4741 	raw_inode = ext4_raw_inode(&iloc);
4742 
4743 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4744 		ext4_error_inode(inode, function, line, 0,
4745 				 "iget: root inode unallocated");
4746 		ret = -EFSCORRUPTED;
4747 		goto bad_inode;
4748 	}
4749 
4750 	if ((flags & EXT4_IGET_HANDLE) &&
4751 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4752 		ret = -ESTALE;
4753 		goto bad_inode;
4754 	}
4755 
4756 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4757 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4758 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4759 			EXT4_INODE_SIZE(inode->i_sb) ||
4760 		    (ei->i_extra_isize & 3)) {
4761 			ext4_error_inode(inode, function, line, 0,
4762 					 "iget: bad extra_isize %u "
4763 					 "(inode size %u)",
4764 					 ei->i_extra_isize,
4765 					 EXT4_INODE_SIZE(inode->i_sb));
4766 			ret = -EFSCORRUPTED;
4767 			goto bad_inode;
4768 		}
4769 	} else
4770 		ei->i_extra_isize = 0;
4771 
4772 	/* Precompute checksum seed for inode metadata */
4773 	if (ext4_has_metadata_csum(sb)) {
4774 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4775 		__u32 csum;
4776 		__le32 inum = cpu_to_le32(inode->i_ino);
4777 		__le32 gen = raw_inode->i_generation;
4778 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4779 				   sizeof(inum));
4780 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4781 					      sizeof(gen));
4782 	}
4783 
4784 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4785 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4786 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4787 		ext4_error_inode_err(inode, function, line, 0,
4788 				EFSBADCRC, "iget: checksum invalid");
4789 		ret = -EFSBADCRC;
4790 		goto bad_inode;
4791 	}
4792 
4793 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4794 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4795 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4796 	if (ext4_has_feature_project(sb) &&
4797 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4798 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4799 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4800 	else
4801 		i_projid = EXT4_DEF_PROJID;
4802 
4803 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4804 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4805 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4806 	}
4807 	i_uid_write(inode, i_uid);
4808 	i_gid_write(inode, i_gid);
4809 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4810 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4811 
4812 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4813 	ei->i_inline_off = 0;
4814 	ei->i_dir_start_lookup = 0;
4815 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4816 	/* We now have enough fields to check if the inode was active or not.
4817 	 * This is needed because nfsd might try to access dead inodes
4818 	 * the test is that same one that e2fsck uses
4819 	 * NeilBrown 1999oct15
4820 	 */
4821 	if (inode->i_nlink == 0) {
4822 		if ((inode->i_mode == 0 ||
4823 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4824 		    ino != EXT4_BOOT_LOADER_INO) {
4825 			/* this inode is deleted */
4826 			ret = -ESTALE;
4827 			goto bad_inode;
4828 		}
4829 		/* The only unlinked inodes we let through here have
4830 		 * valid i_mode and are being read by the orphan
4831 		 * recovery code: that's fine, we're about to complete
4832 		 * the process of deleting those.
4833 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4834 		 * not initialized on a new filesystem. */
4835 	}
4836 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4837 	ext4_set_inode_flags(inode, true);
4838 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840 	if (ext4_has_feature_64bit(sb))
4841 		ei->i_file_acl |=
4842 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843 	inode->i_size = ext4_isize(sb, raw_inode);
4844 	if ((size = i_size_read(inode)) < 0) {
4845 		ext4_error_inode(inode, function, line, 0,
4846 				 "iget: bad i_size value: %lld", size);
4847 		ret = -EFSCORRUPTED;
4848 		goto bad_inode;
4849 	}
4850 	/*
4851 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4852 	 * we'd normally treat htree data as empty space. But with metadata
4853 	 * checksumming that corrupts checksums so forbid that.
4854 	 */
4855 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4856 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4857 		ext4_error_inode(inode, function, line, 0,
4858 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4859 		ret = -EFSCORRUPTED;
4860 		goto bad_inode;
4861 	}
4862 	ei->i_disksize = inode->i_size;
4863 #ifdef CONFIG_QUOTA
4864 	ei->i_reserved_quota = 0;
4865 #endif
4866 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4867 	ei->i_block_group = iloc.block_group;
4868 	ei->i_last_alloc_group = ~0;
4869 	/*
4870 	 * NOTE! The in-memory inode i_data array is in little-endian order
4871 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4872 	 */
4873 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4874 		ei->i_data[block] = raw_inode->i_block[block];
4875 	INIT_LIST_HEAD(&ei->i_orphan);
4876 	ext4_fc_init_inode(&ei->vfs_inode);
4877 
4878 	/*
4879 	 * Set transaction id's of transactions that have to be committed
4880 	 * to finish f[data]sync. We set them to currently running transaction
4881 	 * as we cannot be sure that the inode or some of its metadata isn't
4882 	 * part of the transaction - the inode could have been reclaimed and
4883 	 * now it is reread from disk.
4884 	 */
4885 	if (journal) {
4886 		transaction_t *transaction;
4887 		tid_t tid;
4888 
4889 		read_lock(&journal->j_state_lock);
4890 		if (journal->j_running_transaction)
4891 			transaction = journal->j_running_transaction;
4892 		else
4893 			transaction = journal->j_committing_transaction;
4894 		if (transaction)
4895 			tid = transaction->t_tid;
4896 		else
4897 			tid = journal->j_commit_sequence;
4898 		read_unlock(&journal->j_state_lock);
4899 		ei->i_sync_tid = tid;
4900 		ei->i_datasync_tid = tid;
4901 	}
4902 
4903 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4904 		if (ei->i_extra_isize == 0) {
4905 			/* The extra space is currently unused. Use it. */
4906 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4907 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4908 					    EXT4_GOOD_OLD_INODE_SIZE;
4909 		} else {
4910 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4911 			if (ret)
4912 				goto bad_inode;
4913 		}
4914 	}
4915 
4916 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4917 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4918 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4919 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4920 
4921 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4922 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4923 
4924 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4925 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4926 				ivers |=
4927 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4928 		}
4929 		ext4_inode_set_iversion_queried(inode, ivers);
4930 	}
4931 
4932 	ret = 0;
4933 	if (ei->i_file_acl &&
4934 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4935 		ext4_error_inode(inode, function, line, 0,
4936 				 "iget: bad extended attribute block %llu",
4937 				 ei->i_file_acl);
4938 		ret = -EFSCORRUPTED;
4939 		goto bad_inode;
4940 	} else if (!ext4_has_inline_data(inode)) {
4941 		/* validate the block references in the inode */
4942 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4943 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4944 			(S_ISLNK(inode->i_mode) &&
4945 			!ext4_inode_is_fast_symlink(inode)))) {
4946 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4947 				ret = ext4_ext_check_inode(inode);
4948 			else
4949 				ret = ext4_ind_check_inode(inode);
4950 		}
4951 	}
4952 	if (ret)
4953 		goto bad_inode;
4954 
4955 	if (S_ISREG(inode->i_mode)) {
4956 		inode->i_op = &ext4_file_inode_operations;
4957 		inode->i_fop = &ext4_file_operations;
4958 		ext4_set_aops(inode);
4959 	} else if (S_ISDIR(inode->i_mode)) {
4960 		inode->i_op = &ext4_dir_inode_operations;
4961 		inode->i_fop = &ext4_dir_operations;
4962 	} else if (S_ISLNK(inode->i_mode)) {
4963 		/* VFS does not allow setting these so must be corruption */
4964 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4965 			ext4_error_inode(inode, function, line, 0,
4966 					 "iget: immutable or append flags "
4967 					 "not allowed on symlinks");
4968 			ret = -EFSCORRUPTED;
4969 			goto bad_inode;
4970 		}
4971 		if (IS_ENCRYPTED(inode)) {
4972 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4973 			ext4_set_aops(inode);
4974 		} else if (ext4_inode_is_fast_symlink(inode)) {
4975 			inode->i_link = (char *)ei->i_data;
4976 			inode->i_op = &ext4_fast_symlink_inode_operations;
4977 			nd_terminate_link(ei->i_data, inode->i_size,
4978 				sizeof(ei->i_data) - 1);
4979 		} else {
4980 			inode->i_op = &ext4_symlink_inode_operations;
4981 			ext4_set_aops(inode);
4982 		}
4983 		inode_nohighmem(inode);
4984 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4985 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4986 		inode->i_op = &ext4_special_inode_operations;
4987 		if (raw_inode->i_block[0])
4988 			init_special_inode(inode, inode->i_mode,
4989 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4990 		else
4991 			init_special_inode(inode, inode->i_mode,
4992 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4993 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4994 		make_bad_inode(inode);
4995 	} else {
4996 		ret = -EFSCORRUPTED;
4997 		ext4_error_inode(inode, function, line, 0,
4998 				 "iget: bogus i_mode (%o)", inode->i_mode);
4999 		goto bad_inode;
5000 	}
5001 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5002 		ext4_error_inode(inode, function, line, 0,
5003 				 "casefold flag without casefold feature");
5004 	brelse(iloc.bh);
5005 
5006 	unlock_new_inode(inode);
5007 	return inode;
5008 
5009 bad_inode:
5010 	brelse(iloc.bh);
5011 	iget_failed(inode);
5012 	return ERR_PTR(ret);
5013 }
5014 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5015 static void __ext4_update_other_inode_time(struct super_block *sb,
5016 					   unsigned long orig_ino,
5017 					   unsigned long ino,
5018 					   struct ext4_inode *raw_inode)
5019 {
5020 	struct inode *inode;
5021 
5022 	inode = find_inode_by_ino_rcu(sb, ino);
5023 	if (!inode)
5024 		return;
5025 
5026 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5027 			       I_DIRTY_INODE)) ||
5028 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5029 		return;
5030 
5031 	spin_lock(&inode->i_lock);
5032 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5033 				I_DIRTY_INODE)) == 0) &&
5034 	    (inode->i_state & I_DIRTY_TIME)) {
5035 		struct ext4_inode_info	*ei = EXT4_I(inode);
5036 
5037 		inode->i_state &= ~I_DIRTY_TIME;
5038 		spin_unlock(&inode->i_lock);
5039 
5040 		spin_lock(&ei->i_raw_lock);
5041 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5042 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5043 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5044 		ext4_inode_csum_set(inode, raw_inode, ei);
5045 		spin_unlock(&ei->i_raw_lock);
5046 		trace_ext4_other_inode_update_time(inode, orig_ino);
5047 		return;
5048 	}
5049 	spin_unlock(&inode->i_lock);
5050 }
5051 
5052 /*
5053  * Opportunistically update the other time fields for other inodes in
5054  * the same inode table block.
5055  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5056 static void ext4_update_other_inodes_time(struct super_block *sb,
5057 					  unsigned long orig_ino, char *buf)
5058 {
5059 	unsigned long ino;
5060 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5061 	int inode_size = EXT4_INODE_SIZE(sb);
5062 
5063 	/*
5064 	 * Calculate the first inode in the inode table block.  Inode
5065 	 * numbers are one-based.  That is, the first inode in a block
5066 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5067 	 */
5068 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5069 	rcu_read_lock();
5070 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5071 		if (ino == orig_ino)
5072 			continue;
5073 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5074 					       (struct ext4_inode *)buf);
5075 	}
5076 	rcu_read_unlock();
5077 }
5078 
5079 /*
5080  * Post the struct inode info into an on-disk inode location in the
5081  * buffer-cache.  This gobbles the caller's reference to the
5082  * buffer_head in the inode location struct.
5083  *
5084  * The caller must have write access to iloc->bh.
5085  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5086 static int ext4_do_update_inode(handle_t *handle,
5087 				struct inode *inode,
5088 				struct ext4_iloc *iloc)
5089 {
5090 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5091 	struct ext4_inode_info *ei = EXT4_I(inode);
5092 	struct buffer_head *bh = iloc->bh;
5093 	struct super_block *sb = inode->i_sb;
5094 	int err;
5095 	int need_datasync = 0, set_large_file = 0;
5096 
5097 	spin_lock(&ei->i_raw_lock);
5098 
5099 	/*
5100 	 * For fields not tracked in the in-memory inode, initialise them
5101 	 * to zero for new inodes.
5102 	 */
5103 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5104 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5105 
5106 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5107 		need_datasync = 1;
5108 	if (ei->i_disksize > 0x7fffffffULL) {
5109 		if (!ext4_has_feature_large_file(sb) ||
5110 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5111 			set_large_file = 1;
5112 	}
5113 
5114 	err = ext4_fill_raw_inode(inode, raw_inode);
5115 	spin_unlock(&ei->i_raw_lock);
5116 	if (err) {
5117 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5118 		goto out_brelse;
5119 	}
5120 
5121 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5122 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5123 					      bh->b_data);
5124 
5125 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5126 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5127 	if (err)
5128 		goto out_error;
5129 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5130 	if (set_large_file) {
5131 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5132 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5133 		if (err)
5134 			goto out_error;
5135 		lock_buffer(EXT4_SB(sb)->s_sbh);
5136 		ext4_set_feature_large_file(sb);
5137 		ext4_superblock_csum_set(sb);
5138 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5139 		ext4_handle_sync(handle);
5140 		err = ext4_handle_dirty_metadata(handle, NULL,
5141 						 EXT4_SB(sb)->s_sbh);
5142 	}
5143 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5144 out_error:
5145 	ext4_std_error(inode->i_sb, err);
5146 out_brelse:
5147 	brelse(bh);
5148 	return err;
5149 }
5150 
5151 /*
5152  * ext4_write_inode()
5153  *
5154  * We are called from a few places:
5155  *
5156  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5157  *   Here, there will be no transaction running. We wait for any running
5158  *   transaction to commit.
5159  *
5160  * - Within flush work (sys_sync(), kupdate and such).
5161  *   We wait on commit, if told to.
5162  *
5163  * - Within iput_final() -> write_inode_now()
5164  *   We wait on commit, if told to.
5165  *
5166  * In all cases it is actually safe for us to return without doing anything,
5167  * because the inode has been copied into a raw inode buffer in
5168  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5169  * writeback.
5170  *
5171  * Note that we are absolutely dependent upon all inode dirtiers doing the
5172  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5173  * which we are interested.
5174  *
5175  * It would be a bug for them to not do this.  The code:
5176  *
5177  *	mark_inode_dirty(inode)
5178  *	stuff();
5179  *	inode->i_size = expr;
5180  *
5181  * is in error because write_inode() could occur while `stuff()' is running,
5182  * and the new i_size will be lost.  Plus the inode will no longer be on the
5183  * superblock's dirty inode list.
5184  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5185 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5186 {
5187 	int err;
5188 
5189 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5190 	    sb_rdonly(inode->i_sb))
5191 		return 0;
5192 
5193 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5194 		return -EIO;
5195 
5196 	if (EXT4_SB(inode->i_sb)->s_journal) {
5197 		if (ext4_journal_current_handle()) {
5198 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5199 			dump_stack();
5200 			return -EIO;
5201 		}
5202 
5203 		/*
5204 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5205 		 * ext4_sync_fs() will force the commit after everything is
5206 		 * written.
5207 		 */
5208 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5209 			return 0;
5210 
5211 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5212 						EXT4_I(inode)->i_sync_tid);
5213 	} else {
5214 		struct ext4_iloc iloc;
5215 
5216 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5217 		if (err)
5218 			return err;
5219 		/*
5220 		 * sync(2) will flush the whole buffer cache. No need to do
5221 		 * it here separately for each inode.
5222 		 */
5223 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5224 			sync_dirty_buffer(iloc.bh);
5225 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5226 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5227 					       "IO error syncing inode");
5228 			err = -EIO;
5229 		}
5230 		brelse(iloc.bh);
5231 	}
5232 	return err;
5233 }
5234 
5235 /*
5236  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5237  * buffers that are attached to a page stradding i_size and are undergoing
5238  * commit. In that case we have to wait for commit to finish and try again.
5239  */
ext4_wait_for_tail_page_commit(struct inode * inode)5240 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5241 {
5242 	struct page *page;
5243 	unsigned offset;
5244 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5245 	tid_t commit_tid = 0;
5246 	int ret;
5247 
5248 	offset = inode->i_size & (PAGE_SIZE - 1);
5249 	/*
5250 	 * If the page is fully truncated, we don't need to wait for any commit
5251 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5252 	 * strip all buffers from the page but keep the page dirty which can then
5253 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5254 	 * buffers). Also we don't need to wait for any commit if all buffers in
5255 	 * the page remain valid. This is most beneficial for the common case of
5256 	 * blocksize == PAGESIZE.
5257 	 */
5258 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5259 		return;
5260 	while (1) {
5261 		page = find_lock_page(inode->i_mapping,
5262 				      inode->i_size >> PAGE_SHIFT);
5263 		if (!page)
5264 			return;
5265 		ret = __ext4_journalled_invalidatepage(page, offset,
5266 						PAGE_SIZE - offset);
5267 		unlock_page(page);
5268 		put_page(page);
5269 		if (ret != -EBUSY)
5270 			return;
5271 		commit_tid = 0;
5272 		read_lock(&journal->j_state_lock);
5273 		if (journal->j_committing_transaction)
5274 			commit_tid = journal->j_committing_transaction->t_tid;
5275 		read_unlock(&journal->j_state_lock);
5276 		if (commit_tid)
5277 			jbd2_log_wait_commit(journal, commit_tid);
5278 	}
5279 }
5280 
5281 /*
5282  * ext4_setattr()
5283  *
5284  * Called from notify_change.
5285  *
5286  * We want to trap VFS attempts to truncate the file as soon as
5287  * possible.  In particular, we want to make sure that when the VFS
5288  * shrinks i_size, we put the inode on the orphan list and modify
5289  * i_disksize immediately, so that during the subsequent flushing of
5290  * dirty pages and freeing of disk blocks, we can guarantee that any
5291  * commit will leave the blocks being flushed in an unused state on
5292  * disk.  (On recovery, the inode will get truncated and the blocks will
5293  * be freed, so we have a strong guarantee that no future commit will
5294  * leave these blocks visible to the user.)
5295  *
5296  * Another thing we have to assure is that if we are in ordered mode
5297  * and inode is still attached to the committing transaction, we must
5298  * we start writeout of all the dirty pages which are being truncated.
5299  * This way we are sure that all the data written in the previous
5300  * transaction are already on disk (truncate waits for pages under
5301  * writeback).
5302  *
5303  * Called with inode->i_mutex down.
5304  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5305 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5306 {
5307 	struct inode *inode = d_inode(dentry);
5308 	int error, rc = 0;
5309 	int orphan = 0;
5310 	const unsigned int ia_valid = attr->ia_valid;
5311 
5312 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5313 		return -EIO;
5314 
5315 	if (unlikely(IS_IMMUTABLE(inode)))
5316 		return -EPERM;
5317 
5318 	if (unlikely(IS_APPEND(inode) &&
5319 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5320 				  ATTR_GID | ATTR_TIMES_SET))))
5321 		return -EPERM;
5322 
5323 	error = setattr_prepare(dentry, attr);
5324 	if (error)
5325 		return error;
5326 
5327 	error = fscrypt_prepare_setattr(dentry, attr);
5328 	if (error)
5329 		return error;
5330 
5331 	error = fsverity_prepare_setattr(dentry, attr);
5332 	if (error)
5333 		return error;
5334 
5335 	if (is_quota_modification(inode, attr)) {
5336 		error = dquot_initialize(inode);
5337 		if (error)
5338 			return error;
5339 	}
5340 	ext4_fc_start_update(inode);
5341 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5342 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5343 		handle_t *handle;
5344 
5345 		/* (user+group)*(old+new) structure, inode write (sb,
5346 		 * inode block, ? - but truncate inode update has it) */
5347 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5348 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5349 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5350 		if (IS_ERR(handle)) {
5351 			error = PTR_ERR(handle);
5352 			goto err_out;
5353 		}
5354 
5355 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5356 		 * counts xattr inode references.
5357 		 */
5358 		down_read(&EXT4_I(inode)->xattr_sem);
5359 		error = dquot_transfer(inode, attr);
5360 		up_read(&EXT4_I(inode)->xattr_sem);
5361 
5362 		if (error) {
5363 			ext4_journal_stop(handle);
5364 			ext4_fc_stop_update(inode);
5365 			return error;
5366 		}
5367 		/* Update corresponding info in inode so that everything is in
5368 		 * one transaction */
5369 		if (attr->ia_valid & ATTR_UID)
5370 			inode->i_uid = attr->ia_uid;
5371 		if (attr->ia_valid & ATTR_GID)
5372 			inode->i_gid = attr->ia_gid;
5373 		error = ext4_mark_inode_dirty(handle, inode);
5374 		ext4_journal_stop(handle);
5375 		if (unlikely(error)) {
5376 			ext4_fc_stop_update(inode);
5377 			return error;
5378 		}
5379 	}
5380 
5381 	if (attr->ia_valid & ATTR_SIZE) {
5382 		handle_t *handle;
5383 		loff_t oldsize = inode->i_size;
5384 		int shrink = (attr->ia_size < inode->i_size);
5385 
5386 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5387 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5388 
5389 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5390 				ext4_fc_stop_update(inode);
5391 				return -EFBIG;
5392 			}
5393 		}
5394 		if (!S_ISREG(inode->i_mode)) {
5395 			ext4_fc_stop_update(inode);
5396 			return -EINVAL;
5397 		}
5398 
5399 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5400 			inode_inc_iversion(inode);
5401 
5402 		if (shrink) {
5403 			if (ext4_should_order_data(inode)) {
5404 				error = ext4_begin_ordered_truncate(inode,
5405 							    attr->ia_size);
5406 				if (error)
5407 					goto err_out;
5408 			}
5409 			/*
5410 			 * Blocks are going to be removed from the inode. Wait
5411 			 * for dio in flight.
5412 			 */
5413 			inode_dio_wait(inode);
5414 		}
5415 
5416 		down_write(&EXT4_I(inode)->i_mmap_sem);
5417 
5418 		rc = ext4_break_layouts(inode);
5419 		if (rc) {
5420 			up_write(&EXT4_I(inode)->i_mmap_sem);
5421 			goto err_out;
5422 		}
5423 
5424 		if (attr->ia_size != inode->i_size) {
5425 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5426 			if (IS_ERR(handle)) {
5427 				error = PTR_ERR(handle);
5428 				goto out_mmap_sem;
5429 			}
5430 			if (ext4_handle_valid(handle) && shrink) {
5431 				error = ext4_orphan_add(handle, inode);
5432 				orphan = 1;
5433 			}
5434 			/*
5435 			 * Update c/mtime on truncate up, ext4_truncate() will
5436 			 * update c/mtime in shrink case below
5437 			 */
5438 			if (!shrink) {
5439 				inode->i_mtime = current_time(inode);
5440 				inode->i_ctime = inode->i_mtime;
5441 			}
5442 
5443 			if (shrink)
5444 				ext4_fc_track_range(handle, inode,
5445 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5446 					inode->i_sb->s_blocksize_bits,
5447 					(oldsize > 0 ? oldsize - 1 : 0) >>
5448 					inode->i_sb->s_blocksize_bits);
5449 			else
5450 				ext4_fc_track_range(
5451 					handle, inode,
5452 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5453 					inode->i_sb->s_blocksize_bits,
5454 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5455 					inode->i_sb->s_blocksize_bits);
5456 
5457 			down_write(&EXT4_I(inode)->i_data_sem);
5458 			EXT4_I(inode)->i_disksize = attr->ia_size;
5459 			rc = ext4_mark_inode_dirty(handle, inode);
5460 			if (!error)
5461 				error = rc;
5462 			/*
5463 			 * We have to update i_size under i_data_sem together
5464 			 * with i_disksize to avoid races with writeback code
5465 			 * running ext4_wb_update_i_disksize().
5466 			 */
5467 			if (!error)
5468 				i_size_write(inode, attr->ia_size);
5469 			up_write(&EXT4_I(inode)->i_data_sem);
5470 			ext4_journal_stop(handle);
5471 			if (error)
5472 				goto out_mmap_sem;
5473 			if (!shrink) {
5474 				pagecache_isize_extended(inode, oldsize,
5475 							 inode->i_size);
5476 			} else if (ext4_should_journal_data(inode)) {
5477 				ext4_wait_for_tail_page_commit(inode);
5478 			}
5479 		}
5480 
5481 		/*
5482 		 * Truncate pagecache after we've waited for commit
5483 		 * in data=journal mode to make pages freeable.
5484 		 */
5485 		truncate_pagecache(inode, inode->i_size);
5486 		/*
5487 		 * Call ext4_truncate() even if i_size didn't change to
5488 		 * truncate possible preallocated blocks.
5489 		 */
5490 		if (attr->ia_size <= oldsize) {
5491 			rc = ext4_truncate(inode);
5492 			if (rc)
5493 				error = rc;
5494 		}
5495 out_mmap_sem:
5496 		up_write(&EXT4_I(inode)->i_mmap_sem);
5497 	}
5498 
5499 	if (!error) {
5500 		setattr_copy(inode, attr);
5501 		mark_inode_dirty(inode);
5502 	}
5503 
5504 	/*
5505 	 * If the call to ext4_truncate failed to get a transaction handle at
5506 	 * all, we need to clean up the in-core orphan list manually.
5507 	 */
5508 	if (orphan && inode->i_nlink)
5509 		ext4_orphan_del(NULL, inode);
5510 
5511 	if (!error && (ia_valid & ATTR_MODE))
5512 		rc = posix_acl_chmod(inode, inode->i_mode);
5513 
5514 err_out:
5515 	if  (error)
5516 		ext4_std_error(inode->i_sb, error);
5517 	if (!error)
5518 		error = rc;
5519 	ext4_fc_stop_update(inode);
5520 	return error;
5521 }
5522 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5523 int ext4_getattr(const struct path *path, struct kstat *stat,
5524 		 u32 request_mask, unsigned int query_flags)
5525 {
5526 	struct inode *inode = d_inode(path->dentry);
5527 	struct ext4_inode *raw_inode;
5528 	struct ext4_inode_info *ei = EXT4_I(inode);
5529 	unsigned int flags;
5530 
5531 	if ((request_mask & STATX_BTIME) &&
5532 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5533 		stat->result_mask |= STATX_BTIME;
5534 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5535 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5536 	}
5537 
5538 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5539 	if (flags & EXT4_APPEND_FL)
5540 		stat->attributes |= STATX_ATTR_APPEND;
5541 	if (flags & EXT4_COMPR_FL)
5542 		stat->attributes |= STATX_ATTR_COMPRESSED;
5543 	if (flags & EXT4_ENCRYPT_FL)
5544 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5545 	if (flags & EXT4_IMMUTABLE_FL)
5546 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5547 	if (flags & EXT4_NODUMP_FL)
5548 		stat->attributes |= STATX_ATTR_NODUMP;
5549 	if (flags & EXT4_VERITY_FL)
5550 		stat->attributes |= STATX_ATTR_VERITY;
5551 
5552 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5553 				  STATX_ATTR_COMPRESSED |
5554 				  STATX_ATTR_ENCRYPTED |
5555 				  STATX_ATTR_IMMUTABLE |
5556 				  STATX_ATTR_NODUMP |
5557 				  STATX_ATTR_VERITY);
5558 
5559 	generic_fillattr(inode, stat);
5560 	return 0;
5561 }
5562 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5563 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5564 		      u32 request_mask, unsigned int query_flags)
5565 {
5566 	struct inode *inode = d_inode(path->dentry);
5567 	u64 delalloc_blocks;
5568 
5569 	ext4_getattr(path, stat, request_mask, query_flags);
5570 
5571 	/*
5572 	 * If there is inline data in the inode, the inode will normally not
5573 	 * have data blocks allocated (it may have an external xattr block).
5574 	 * Report at least one sector for such files, so tools like tar, rsync,
5575 	 * others don't incorrectly think the file is completely sparse.
5576 	 */
5577 	if (unlikely(ext4_has_inline_data(inode)))
5578 		stat->blocks += (stat->size + 511) >> 9;
5579 
5580 	/*
5581 	 * We can't update i_blocks if the block allocation is delayed
5582 	 * otherwise in the case of system crash before the real block
5583 	 * allocation is done, we will have i_blocks inconsistent with
5584 	 * on-disk file blocks.
5585 	 * We always keep i_blocks updated together with real
5586 	 * allocation. But to not confuse with user, stat
5587 	 * will return the blocks that include the delayed allocation
5588 	 * blocks for this file.
5589 	 */
5590 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5591 				   EXT4_I(inode)->i_reserved_data_blocks);
5592 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5593 	return 0;
5594 }
5595 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5596 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5597 				   int pextents)
5598 {
5599 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5600 		return ext4_ind_trans_blocks(inode, lblocks);
5601 	return ext4_ext_index_trans_blocks(inode, pextents);
5602 }
5603 
5604 /*
5605  * Account for index blocks, block groups bitmaps and block group
5606  * descriptor blocks if modify datablocks and index blocks
5607  * worse case, the indexs blocks spread over different block groups
5608  *
5609  * If datablocks are discontiguous, they are possible to spread over
5610  * different block groups too. If they are contiguous, with flexbg,
5611  * they could still across block group boundary.
5612  *
5613  * Also account for superblock, inode, quota and xattr blocks
5614  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5615 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5616 				  int pextents)
5617 {
5618 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5619 	int gdpblocks;
5620 	int idxblocks;
5621 	int ret = 0;
5622 
5623 	/*
5624 	 * How many index blocks need to touch to map @lblocks logical blocks
5625 	 * to @pextents physical extents?
5626 	 */
5627 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5628 
5629 	ret = idxblocks;
5630 
5631 	/*
5632 	 * Now let's see how many group bitmaps and group descriptors need
5633 	 * to account
5634 	 */
5635 	groups = idxblocks + pextents;
5636 	gdpblocks = groups;
5637 	if (groups > ngroups)
5638 		groups = ngroups;
5639 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5640 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5641 
5642 	/* bitmaps and block group descriptor blocks */
5643 	ret += groups + gdpblocks;
5644 
5645 	/* Blocks for super block, inode, quota and xattr blocks */
5646 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5647 
5648 	return ret;
5649 }
5650 
5651 /*
5652  * Calculate the total number of credits to reserve to fit
5653  * the modification of a single pages into a single transaction,
5654  * which may include multiple chunks of block allocations.
5655  *
5656  * This could be called via ext4_write_begin()
5657  *
5658  * We need to consider the worse case, when
5659  * one new block per extent.
5660  */
ext4_writepage_trans_blocks(struct inode * inode)5661 int ext4_writepage_trans_blocks(struct inode *inode)
5662 {
5663 	int bpp = ext4_journal_blocks_per_page(inode);
5664 	int ret;
5665 
5666 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5667 
5668 	/* Account for data blocks for journalled mode */
5669 	if (ext4_should_journal_data(inode))
5670 		ret += bpp;
5671 	return ret;
5672 }
5673 
5674 /*
5675  * Calculate the journal credits for a chunk of data modification.
5676  *
5677  * This is called from DIO, fallocate or whoever calling
5678  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5679  *
5680  * journal buffers for data blocks are not included here, as DIO
5681  * and fallocate do no need to journal data buffers.
5682  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5683 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5684 {
5685 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5686 }
5687 
5688 /*
5689  * The caller must have previously called ext4_reserve_inode_write().
5690  * Give this, we know that the caller already has write access to iloc->bh.
5691  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5692 int ext4_mark_iloc_dirty(handle_t *handle,
5693 			 struct inode *inode, struct ext4_iloc *iloc)
5694 {
5695 	int err = 0;
5696 
5697 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5698 		put_bh(iloc->bh);
5699 		return -EIO;
5700 	}
5701 	ext4_fc_track_inode(handle, inode);
5702 
5703 	if (IS_I_VERSION(inode))
5704 		inode_inc_iversion(inode);
5705 
5706 	/* the do_update_inode consumes one bh->b_count */
5707 	get_bh(iloc->bh);
5708 
5709 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5710 	err = ext4_do_update_inode(handle, inode, iloc);
5711 	put_bh(iloc->bh);
5712 	return err;
5713 }
5714 
5715 /*
5716  * On success, We end up with an outstanding reference count against
5717  * iloc->bh.  This _must_ be cleaned up later.
5718  */
5719 
5720 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5722 			 struct ext4_iloc *iloc)
5723 {
5724 	int err;
5725 
5726 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5727 		return -EIO;
5728 
5729 	err = ext4_get_inode_loc(inode, iloc);
5730 	if (!err) {
5731 		BUFFER_TRACE(iloc->bh, "get_write_access");
5732 		err = ext4_journal_get_write_access(handle, iloc->bh);
5733 		if (err) {
5734 			brelse(iloc->bh);
5735 			iloc->bh = NULL;
5736 		}
5737 	}
5738 	ext4_std_error(inode->i_sb, err);
5739 	return err;
5740 }
5741 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5742 static int __ext4_expand_extra_isize(struct inode *inode,
5743 				     unsigned int new_extra_isize,
5744 				     struct ext4_iloc *iloc,
5745 				     handle_t *handle, int *no_expand)
5746 {
5747 	struct ext4_inode *raw_inode;
5748 	struct ext4_xattr_ibody_header *header;
5749 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5750 	struct ext4_inode_info *ei = EXT4_I(inode);
5751 	int error;
5752 
5753 	/* this was checked at iget time, but double check for good measure */
5754 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5755 	    (ei->i_extra_isize & 3)) {
5756 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5757 				 ei->i_extra_isize,
5758 				 EXT4_INODE_SIZE(inode->i_sb));
5759 		return -EFSCORRUPTED;
5760 	}
5761 	if ((new_extra_isize < ei->i_extra_isize) ||
5762 	    (new_extra_isize < 4) ||
5763 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5764 		return -EINVAL;	/* Should never happen */
5765 
5766 	raw_inode = ext4_raw_inode(iloc);
5767 
5768 	header = IHDR(inode, raw_inode);
5769 
5770 	/* No extended attributes present */
5771 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5772 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5773 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5774 		       EXT4_I(inode)->i_extra_isize, 0,
5775 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5776 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5777 		return 0;
5778 	}
5779 
5780 	/* try to expand with EAs present */
5781 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5782 					   raw_inode, handle);
5783 	if (error) {
5784 		/*
5785 		 * Inode size expansion failed; don't try again
5786 		 */
5787 		*no_expand = 1;
5788 	}
5789 
5790 	return error;
5791 }
5792 
5793 /*
5794  * Expand an inode by new_extra_isize bytes.
5795  * Returns 0 on success or negative error number on failure.
5796  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5797 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5798 					  unsigned int new_extra_isize,
5799 					  struct ext4_iloc iloc,
5800 					  handle_t *handle)
5801 {
5802 	int no_expand;
5803 	int error;
5804 
5805 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5806 		return -EOVERFLOW;
5807 
5808 	/*
5809 	 * In nojournal mode, we can immediately attempt to expand
5810 	 * the inode.  When journaled, we first need to obtain extra
5811 	 * buffer credits since we may write into the EA block
5812 	 * with this same handle. If journal_extend fails, then it will
5813 	 * only result in a minor loss of functionality for that inode.
5814 	 * If this is felt to be critical, then e2fsck should be run to
5815 	 * force a large enough s_min_extra_isize.
5816 	 */
5817 	if (ext4_journal_extend(handle,
5818 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5819 		return -ENOSPC;
5820 
5821 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5822 		return -EBUSY;
5823 
5824 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5825 					  handle, &no_expand);
5826 	ext4_write_unlock_xattr(inode, &no_expand);
5827 
5828 	return error;
5829 }
5830 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5831 int ext4_expand_extra_isize(struct inode *inode,
5832 			    unsigned int new_extra_isize,
5833 			    struct ext4_iloc *iloc)
5834 {
5835 	handle_t *handle;
5836 	int no_expand;
5837 	int error, rc;
5838 
5839 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5840 		brelse(iloc->bh);
5841 		return -EOVERFLOW;
5842 	}
5843 
5844 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5845 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5846 	if (IS_ERR(handle)) {
5847 		error = PTR_ERR(handle);
5848 		brelse(iloc->bh);
5849 		return error;
5850 	}
5851 
5852 	ext4_write_lock_xattr(inode, &no_expand);
5853 
5854 	BUFFER_TRACE(iloc->bh, "get_write_access");
5855 	error = ext4_journal_get_write_access(handle, iloc->bh);
5856 	if (error) {
5857 		brelse(iloc->bh);
5858 		goto out_unlock;
5859 	}
5860 
5861 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5862 					  handle, &no_expand);
5863 
5864 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5865 	if (!error)
5866 		error = rc;
5867 
5868 out_unlock:
5869 	ext4_write_unlock_xattr(inode, &no_expand);
5870 	ext4_journal_stop(handle);
5871 	return error;
5872 }
5873 
5874 /*
5875  * What we do here is to mark the in-core inode as clean with respect to inode
5876  * dirtiness (it may still be data-dirty).
5877  * This means that the in-core inode may be reaped by prune_icache
5878  * without having to perform any I/O.  This is a very good thing,
5879  * because *any* task may call prune_icache - even ones which
5880  * have a transaction open against a different journal.
5881  *
5882  * Is this cheating?  Not really.  Sure, we haven't written the
5883  * inode out, but prune_icache isn't a user-visible syncing function.
5884  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5885  * we start and wait on commits.
5886  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5887 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5888 				const char *func, unsigned int line)
5889 {
5890 	struct ext4_iloc iloc;
5891 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5892 	int err;
5893 
5894 	might_sleep();
5895 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5896 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5897 	if (err)
5898 		goto out;
5899 
5900 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5901 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5902 					       iloc, handle);
5903 
5904 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5905 out:
5906 	if (unlikely(err))
5907 		ext4_error_inode_err(inode, func, line, 0, err,
5908 					"mark_inode_dirty error");
5909 	return err;
5910 }
5911 
5912 /*
5913  * ext4_dirty_inode() is called from __mark_inode_dirty()
5914  *
5915  * We're really interested in the case where a file is being extended.
5916  * i_size has been changed by generic_commit_write() and we thus need
5917  * to include the updated inode in the current transaction.
5918  *
5919  * Also, dquot_alloc_block() will always dirty the inode when blocks
5920  * are allocated to the file.
5921  *
5922  * If the inode is marked synchronous, we don't honour that here - doing
5923  * so would cause a commit on atime updates, which we don't bother doing.
5924  * We handle synchronous inodes at the highest possible level.
5925  *
5926  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5927  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5928  * to copy into the on-disk inode structure are the timestamp files.
5929  */
ext4_dirty_inode(struct inode * inode,int flags)5930 void ext4_dirty_inode(struct inode *inode, int flags)
5931 {
5932 	handle_t *handle;
5933 
5934 	if (flags == I_DIRTY_TIME)
5935 		return;
5936 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5937 	if (IS_ERR(handle))
5938 		goto out;
5939 
5940 	ext4_mark_inode_dirty(handle, inode);
5941 
5942 	ext4_journal_stop(handle);
5943 out:
5944 	return;
5945 }
5946 
ext4_change_inode_journal_flag(struct inode * inode,int val)5947 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5948 {
5949 	journal_t *journal;
5950 	handle_t *handle;
5951 	int err;
5952 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5953 
5954 	/*
5955 	 * We have to be very careful here: changing a data block's
5956 	 * journaling status dynamically is dangerous.  If we write a
5957 	 * data block to the journal, change the status and then delete
5958 	 * that block, we risk forgetting to revoke the old log record
5959 	 * from the journal and so a subsequent replay can corrupt data.
5960 	 * So, first we make sure that the journal is empty and that
5961 	 * nobody is changing anything.
5962 	 */
5963 
5964 	journal = EXT4_JOURNAL(inode);
5965 	if (!journal)
5966 		return 0;
5967 	if (is_journal_aborted(journal))
5968 		return -EROFS;
5969 
5970 	/* Wait for all existing dio workers */
5971 	inode_dio_wait(inode);
5972 
5973 	/*
5974 	 * Before flushing the journal and switching inode's aops, we have
5975 	 * to flush all dirty data the inode has. There can be outstanding
5976 	 * delayed allocations, there can be unwritten extents created by
5977 	 * fallocate or buffered writes in dioread_nolock mode covered by
5978 	 * dirty data which can be converted only after flushing the dirty
5979 	 * data (and journalled aops don't know how to handle these cases).
5980 	 */
5981 	if (val) {
5982 		down_write(&EXT4_I(inode)->i_mmap_sem);
5983 		err = filemap_write_and_wait(inode->i_mapping);
5984 		if (err < 0) {
5985 			up_write(&EXT4_I(inode)->i_mmap_sem);
5986 			return err;
5987 		}
5988 	}
5989 
5990 	percpu_down_write(&sbi->s_writepages_rwsem);
5991 	jbd2_journal_lock_updates(journal);
5992 
5993 	/*
5994 	 * OK, there are no updates running now, and all cached data is
5995 	 * synced to disk.  We are now in a completely consistent state
5996 	 * which doesn't have anything in the journal, and we know that
5997 	 * no filesystem updates are running, so it is safe to modify
5998 	 * the inode's in-core data-journaling state flag now.
5999 	 */
6000 
6001 	if (val)
6002 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003 	else {
6004 		err = jbd2_journal_flush(journal);
6005 		if (err < 0) {
6006 			jbd2_journal_unlock_updates(journal);
6007 			percpu_up_write(&sbi->s_writepages_rwsem);
6008 			return err;
6009 		}
6010 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6011 	}
6012 	ext4_set_aops(inode);
6013 
6014 	jbd2_journal_unlock_updates(journal);
6015 	percpu_up_write(&sbi->s_writepages_rwsem);
6016 
6017 	if (val)
6018 		up_write(&EXT4_I(inode)->i_mmap_sem);
6019 
6020 	/* Finally we can mark the inode as dirty. */
6021 
6022 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6023 	if (IS_ERR(handle))
6024 		return PTR_ERR(handle);
6025 
6026 	ext4_fc_mark_ineligible(inode->i_sb,
6027 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6028 	err = ext4_mark_inode_dirty(handle, inode);
6029 	ext4_handle_sync(handle);
6030 	ext4_journal_stop(handle);
6031 	ext4_std_error(inode->i_sb, err);
6032 
6033 	return err;
6034 }
6035 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6036 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6037 {
6038 	return !buffer_mapped(bh);
6039 }
6040 
ext4_page_mkwrite(struct vm_fault * vmf)6041 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6042 {
6043 	struct vm_area_struct *vma = vmf->vma;
6044 	struct page *page = vmf->page;
6045 	loff_t size;
6046 	unsigned long len;
6047 	int err;
6048 	vm_fault_t ret;
6049 	struct file *file = vma->vm_file;
6050 	struct inode *inode = file_inode(file);
6051 	struct address_space *mapping = inode->i_mapping;
6052 	handle_t *handle;
6053 	get_block_t *get_block;
6054 	int retries = 0;
6055 
6056 	if (unlikely(IS_IMMUTABLE(inode)))
6057 		return VM_FAULT_SIGBUS;
6058 
6059 	sb_start_pagefault(inode->i_sb);
6060 	file_update_time(vma->vm_file);
6061 
6062 	down_read(&EXT4_I(inode)->i_mmap_sem);
6063 
6064 	err = ext4_convert_inline_data(inode);
6065 	if (err)
6066 		goto out_ret;
6067 
6068 	/*
6069 	 * On data journalling we skip straight to the transaction handle:
6070 	 * there's no delalloc; page truncated will be checked later; the
6071 	 * early return w/ all buffers mapped (calculates size/len) can't
6072 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6073 	 */
6074 	if (ext4_should_journal_data(inode))
6075 		goto retry_alloc;
6076 
6077 	/* Delalloc case is easy... */
6078 	if (test_opt(inode->i_sb, DELALLOC) &&
6079 	    !ext4_nonda_switch(inode->i_sb)) {
6080 		do {
6081 			err = block_page_mkwrite(vma, vmf,
6082 						   ext4_da_get_block_prep);
6083 		} while (err == -ENOSPC &&
6084 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6085 		goto out_ret;
6086 	}
6087 
6088 	lock_page(page);
6089 	size = i_size_read(inode);
6090 	/* Page got truncated from under us? */
6091 	if (page->mapping != mapping || page_offset(page) > size) {
6092 		unlock_page(page);
6093 		ret = VM_FAULT_NOPAGE;
6094 		goto out;
6095 	}
6096 
6097 	if (page->index == size >> PAGE_SHIFT)
6098 		len = size & ~PAGE_MASK;
6099 	else
6100 		len = PAGE_SIZE;
6101 	/*
6102 	 * Return if we have all the buffers mapped. This avoids the need to do
6103 	 * journal_start/journal_stop which can block and take a long time
6104 	 *
6105 	 * This cannot be done for data journalling, as we have to add the
6106 	 * inode to the transaction's list to writeprotect pages on commit.
6107 	 */
6108 	if (page_has_buffers(page)) {
6109 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6110 					    0, len, NULL,
6111 					    ext4_bh_unmapped)) {
6112 			/* Wait so that we don't change page under IO */
6113 			wait_for_stable_page(page);
6114 			ret = VM_FAULT_LOCKED;
6115 			goto out;
6116 		}
6117 	}
6118 	unlock_page(page);
6119 	/* OK, we need to fill the hole... */
6120 	if (ext4_should_dioread_nolock(inode))
6121 		get_block = ext4_get_block_unwritten;
6122 	else
6123 		get_block = ext4_get_block;
6124 retry_alloc:
6125 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6126 				    ext4_writepage_trans_blocks(inode));
6127 	if (IS_ERR(handle)) {
6128 		ret = VM_FAULT_SIGBUS;
6129 		goto out;
6130 	}
6131 	/*
6132 	 * Data journalling can't use block_page_mkwrite() because it
6133 	 * will set_buffer_dirty() before do_journal_get_write_access()
6134 	 * thus might hit warning messages for dirty metadata buffers.
6135 	 */
6136 	if (!ext4_should_journal_data(inode)) {
6137 		err = block_page_mkwrite(vma, vmf, get_block);
6138 	} else {
6139 		lock_page(page);
6140 		size = i_size_read(inode);
6141 		/* Page got truncated from under us? */
6142 		if (page->mapping != mapping || page_offset(page) > size) {
6143 			ret = VM_FAULT_NOPAGE;
6144 			goto out_error;
6145 		}
6146 
6147 		if (page->index == size >> PAGE_SHIFT)
6148 			len = size & ~PAGE_MASK;
6149 		else
6150 			len = PAGE_SIZE;
6151 
6152 		err = __block_write_begin(page, 0, len, ext4_get_block);
6153 		if (!err) {
6154 			ret = VM_FAULT_SIGBUS;
6155 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6156 					0, len, NULL, do_journal_get_write_access))
6157 				goto out_error;
6158 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6159 					0, len, NULL, write_end_fn))
6160 				goto out_error;
6161 			if (ext4_jbd2_inode_add_write(handle, inode,
6162 						      page_offset(page), len))
6163 				goto out_error;
6164 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165 		} else {
6166 			unlock_page(page);
6167 		}
6168 	}
6169 	ext4_journal_stop(handle);
6170 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6171 		goto retry_alloc;
6172 out_ret:
6173 	ret = block_page_mkwrite_return(err);
6174 out:
6175 	up_read(&EXT4_I(inode)->i_mmap_sem);
6176 	sb_end_pagefault(inode->i_sb);
6177 	return ret;
6178 out_error:
6179 	unlock_page(page);
6180 	ext4_journal_stop(handle);
6181 	goto out;
6182 }
6183 
ext4_filemap_fault(struct vm_fault * vmf)6184 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6185 {
6186 	struct inode *inode = file_inode(vmf->vma->vm_file);
6187 	vm_fault_t ret;
6188 
6189 	down_read(&EXT4_I(inode)->i_mmap_sem);
6190 	ret = filemap_fault(vmf);
6191 	up_read(&EXT4_I(inode)->i_mmap_sem);
6192 
6193 	return ret;
6194 }
6195