1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48
49 #include "ext4.h"
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static int ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88 /*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 /*
144 * This works like sb_bread() except it uses ERR_PTR for error
145 * returns. Currently with sb_bread it's impossible to distinguish
146 * between ENOMEM and EIO situations (since both result in a NULL
147 * return.
148 */
149 struct buffer_head *
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151 {
152 struct buffer_head *bh = sb_getblk(sb, block);
153
154 if (bh == NULL)
155 return ERR_PTR(-ENOMEM);
156 if (buffer_uptodate(bh))
157 return bh;
158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 wait_on_buffer(bh);
160 if (buffer_uptodate(bh))
161 return bh;
162 put_bh(bh);
163 return ERR_PTR(-EIO);
164 }
165
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)166 static int ext4_verify_csum_type(struct super_block *sb,
167 struct ext4_super_block *es)
168 {
169 if (!ext4_has_feature_metadata_csum(sb))
170 return 1;
171
172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173 }
174
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)175 static __le32 ext4_superblock_csum(struct super_block *sb,
176 struct ext4_super_block *es)
177 {
178 struct ext4_sb_info *sbi = EXT4_SB(sb);
179 int offset = offsetof(struct ext4_super_block, s_checksum);
180 __u32 csum;
181
182 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183
184 return cpu_to_le32(csum);
185 }
186
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)187 static int ext4_superblock_csum_verify(struct super_block *sb,
188 struct ext4_super_block *es)
189 {
190 if (!ext4_has_metadata_csum(sb))
191 return 1;
192
193 return es->s_checksum == ext4_superblock_csum(sb, es);
194 }
195
ext4_superblock_csum_set(struct super_block * sb)196 void ext4_superblock_csum_set(struct super_block *sb)
197 {
198 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199
200 if (!ext4_has_metadata_csum(sb))
201 return;
202
203 es->s_checksum = ext4_superblock_csum(sb, es);
204 }
205
ext4_kvmalloc(size_t size,gfp_t flags)206 void *ext4_kvmalloc(size_t size, gfp_t flags)
207 {
208 void *ret;
209
210 ret = kmalloc(size, flags | __GFP_NOWARN);
211 if (!ret)
212 ret = __vmalloc(size, flags, PAGE_KERNEL);
213 return ret;
214 }
215
ext4_kvzalloc(size_t size,gfp_t flags)216 void *ext4_kvzalloc(size_t size, gfp_t flags)
217 {
218 void *ret;
219
220 ret = kzalloc(size, flags | __GFP_NOWARN);
221 if (!ret)
222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 return ret;
224 }
225
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232 }
233
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240 }
241
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)242 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 struct ext4_group_desc *bg)
244 {
245 return le32_to_cpu(bg->bg_inode_table_lo) |
246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248 }
249
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)250 __u32 ext4_free_group_clusters(struct super_block *sb,
251 struct ext4_group_desc *bg)
252 {
253 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256 }
257
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)258 __u32 ext4_free_inodes_count(struct super_block *sb,
259 struct ext4_group_desc *bg)
260 {
261 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264 }
265
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)266 __u32 ext4_used_dirs_count(struct super_block *sb,
267 struct ext4_group_desc *bg)
268 {
269 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272 }
273
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)274 __u32 ext4_itable_unused_count(struct super_block *sb,
275 struct ext4_group_desc *bg)
276 {
277 return le16_to_cpu(bg->bg_itable_unused_lo) |
278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280 }
281
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)282 void ext4_block_bitmap_set(struct super_block *sb,
283 struct ext4_group_desc *bg, ext4_fsblk_t blk)
284 {
285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288 }
289
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)290 void ext4_inode_bitmap_set(struct super_block *sb,
291 struct ext4_group_desc *bg, ext4_fsblk_t blk)
292 {
293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296 }
297
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)298 void ext4_inode_table_set(struct super_block *sb,
299 struct ext4_group_desc *bg, ext4_fsblk_t blk)
300 {
301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304 }
305
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)306 void ext4_free_group_clusters_set(struct super_block *sb,
307 struct ext4_group_desc *bg, __u32 count)
308 {
309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312 }
313
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)314 void ext4_free_inodes_set(struct super_block *sb,
315 struct ext4_group_desc *bg, __u32 count)
316 {
317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320 }
321
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)322 void ext4_used_dirs_set(struct super_block *sb,
323 struct ext4_group_desc *bg, __u32 count)
324 {
325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328 }
329
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)330 void ext4_itable_unused_set(struct super_block *sb,
331 struct ext4_group_desc *bg, __u32 count)
332 {
333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336 }
337
__ext4_update_tstamp(__le32 * lo,__u8 * hi)338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339 {
340 time64_t now = ktime_get_real_seconds();
341
342 now = clamp_val(now, 0, (1ull << 40) - 1);
343
344 *lo = cpu_to_le32(lower_32_bits(now));
345 *hi = upper_32_bits(now);
346 }
347
__ext4_get_tstamp(__le32 * lo,__u8 * hi)348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349 {
350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351 }
352 #define ext4_update_tstamp(es, tstamp) \
353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354 #define ext4_get_tstamp(es, tstamp) \
355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356
__save_error_info(struct super_block * sb,const char * func,unsigned int line)357 static void __save_error_info(struct super_block *sb, const char *func,
358 unsigned int line)
359 {
360 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361
362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 if (bdev_read_only(sb->s_bdev))
364 return;
365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 ext4_update_tstamp(es, s_last_error_time);
367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 es->s_last_error_line = cpu_to_le32(line);
369 if (!es->s_first_error_time) {
370 es->s_first_error_time = es->s_last_error_time;
371 es->s_first_error_time_hi = es->s_last_error_time_hi;
372 strncpy(es->s_first_error_func, func,
373 sizeof(es->s_first_error_func));
374 es->s_first_error_line = cpu_to_le32(line);
375 es->s_first_error_ino = es->s_last_error_ino;
376 es->s_first_error_block = es->s_last_error_block;
377 }
378 /*
379 * Start the daily error reporting function if it hasn't been
380 * started already
381 */
382 if (!es->s_error_count)
383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 le32_add_cpu(&es->s_error_count, 1);
385 }
386
save_error_info(struct super_block * sb,const char * func,unsigned int line)387 static void save_error_info(struct super_block *sb, const char *func,
388 unsigned int line)
389 {
390 __save_error_info(sb, func, line);
391 if (!bdev_read_only(sb->s_bdev))
392 ext4_commit_super(sb, 1);
393 }
394
395 /*
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
402 */
block_device_ejected(struct super_block * sb)403 static int block_device_ejected(struct super_block *sb)
404 {
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408 return bdi->dev == NULL;
409 }
410
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
417
418 BUG_ON(txn->t_state == T_FINISHED);
419
420 ext4_process_freed_data(sb, txn->t_tid);
421
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
430 }
431 spin_unlock(&sbi->s_md_lock);
432 }
433
system_going_down(void)434 static bool system_going_down(void)
435 {
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
442 *
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
449 *
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
453 */
454
ext4_handle_error(struct super_block * sb)455 static void ext4_handle_error(struct super_block *sb)
456 {
457 if (test_opt(sb, WARN_ON_ERROR))
458 WARN_ON_ONCE(1);
459
460 if (sb_rdonly(sb))
461 return;
462
463 if (!test_opt(sb, ERRORS_CONT)) {
464 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 if (journal)
468 jbd2_journal_abort(journal, -EIO);
469 }
470 /*
471 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 * could panic during 'reboot -f' as the underlying device got already
473 * disabled.
474 */
475 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 /*
478 * Make sure updated value of ->s_mount_flags will be visible
479 * before ->s_flags update
480 */
481 smp_wmb();
482 sb->s_flags |= SB_RDONLY;
483 } else if (test_opt(sb, ERRORS_PANIC)) {
484 if (EXT4_SB(sb)->s_journal &&
485 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 return;
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
489 }
490 }
491
492 #define ext4_error_ratelimit(sb) \
493 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
494 "EXT4-fs error")
495
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)496 void __ext4_error(struct super_block *sb, const char *function,
497 unsigned int line, const char *fmt, ...)
498 {
499 struct va_format vaf;
500 va_list args;
501
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 return;
504
505 trace_ext4_error(sb, function, line);
506 if (ext4_error_ratelimit(sb)) {
507 va_start(args, fmt);
508 vaf.fmt = fmt;
509 vaf.va = &args;
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 sb->s_id, function, line, current->comm, &vaf);
513 va_end(args);
514 }
515 save_error_info(sb, function, line);
516 ext4_handle_error(sb);
517 }
518
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)519 void __ext4_error_inode(struct inode *inode, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
522 {
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 return;
529
530 trace_ext4_error(inode->i_sb, function, line);
531 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 es->s_last_error_block = cpu_to_le64(block);
533 if (ext4_error_ratelimit(inode->i_sb)) {
534 va_start(args, fmt);
535 vaf.fmt = fmt;
536 vaf.va = &args;
537 if (block)
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 "inode #%lu: block %llu: comm %s: %pV\n",
540 inode->i_sb->s_id, function, line, inode->i_ino,
541 block, current->comm, &vaf);
542 else
543 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 "inode #%lu: comm %s: %pV\n",
545 inode->i_sb->s_id, function, line, inode->i_ino,
546 current->comm, &vaf);
547 va_end(args);
548 }
549 save_error_info(inode->i_sb, function, line);
550 ext4_handle_error(inode->i_sb);
551 }
552
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)553 void __ext4_error_file(struct file *file, const char *function,
554 unsigned int line, ext4_fsblk_t block,
555 const char *fmt, ...)
556 {
557 va_list args;
558 struct va_format vaf;
559 struct ext4_super_block *es;
560 struct inode *inode = file_inode(file);
561 char pathname[80], *path;
562
563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 return;
565
566 trace_ext4_error(inode->i_sb, function, line);
567 es = EXT4_SB(inode->i_sb)->s_es;
568 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 path = file_path(file, pathname, sizeof(pathname));
571 if (IS_ERR(path))
572 path = "(unknown)";
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT
578 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 "block %llu: comm %s: path %s: %pV\n",
580 inode->i_sb->s_id, function, line, inode->i_ino,
581 block, current->comm, path, &vaf);
582 else
583 printk(KERN_CRIT
584 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 "comm %s: path %s: %pV\n",
586 inode->i_sb->s_id, function, line, inode->i_ino,
587 current->comm, path, &vaf);
588 va_end(args);
589 }
590 save_error_info(inode->i_sb, function, line);
591 ext4_handle_error(inode->i_sb);
592 }
593
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 char nbuf[16])
596 {
597 char *errstr = NULL;
598
599 switch (errno) {
600 case -EFSCORRUPTED:
601 errstr = "Corrupt filesystem";
602 break;
603 case -EFSBADCRC:
604 errstr = "Filesystem failed CRC";
605 break;
606 case -EIO:
607 errstr = "IO failure";
608 break;
609 case -ENOMEM:
610 errstr = "Out of memory";
611 break;
612 case -EROFS:
613 if (!sb || (EXT4_SB(sb)->s_journal &&
614 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 errstr = "Journal has aborted";
616 else
617 errstr = "Readonly filesystem";
618 break;
619 default:
620 /* If the caller passed in an extra buffer for unknown
621 * errors, textualise them now. Else we just return
622 * NULL. */
623 if (nbuf) {
624 /* Check for truncated error codes... */
625 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 errstr = nbuf;
627 }
628 break;
629 }
630
631 return errstr;
632 }
633
634 /* __ext4_std_error decodes expected errors from journaling functions
635 * automatically and invokes the appropriate error response. */
636
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)637 void __ext4_std_error(struct super_block *sb, const char *function,
638 unsigned int line, int errno)
639 {
640 char nbuf[16];
641 const char *errstr;
642
643 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 return;
645
646 /* Special case: if the error is EROFS, and we're not already
647 * inside a transaction, then there's really no point in logging
648 * an error. */
649 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 return;
651
652 if (ext4_error_ratelimit(sb)) {
653 errstr = ext4_decode_error(sb, errno, nbuf);
654 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 sb->s_id, function, line, errstr);
656 }
657
658 save_error_info(sb, function, line);
659 ext4_handle_error(sb);
660 }
661
662 /*
663 * ext4_abort is a much stronger failure handler than ext4_error. The
664 * abort function may be used to deal with unrecoverable failures such
665 * as journal IO errors or ENOMEM at a critical moment in log management.
666 *
667 * We unconditionally force the filesystem into an ABORT|READONLY state,
668 * unless the error response on the fs has been set to panic in which
669 * case we take the easy way out and panic immediately.
670 */
671
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)672 void __ext4_abort(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
674 {
675 struct va_format vaf;
676 va_list args;
677
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 return;
680
681 save_error_info(sb, function, line);
682 va_start(args, fmt);
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
687 va_end(args);
688
689 if (sb_rdonly(sb) == 0) {
690 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 /*
693 * Make sure updated value of ->s_mount_flags will be visible
694 * before ->s_flags update
695 */
696 smp_wmb();
697 sb->s_flags |= SB_RDONLY;
698 if (EXT4_SB(sb)->s_journal)
699 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 save_error_info(sb, function, line);
701 }
702 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 if (EXT4_SB(sb)->s_journal &&
704 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 return;
706 panic("EXT4-fs panic from previous error\n");
707 }
708 }
709
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)710 void __ext4_msg(struct super_block *sb,
711 const char *prefix, const char *fmt, ...)
712 {
713 struct va_format vaf;
714 va_list args;
715
716 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 return;
718
719 va_start(args, fmt);
720 vaf.fmt = fmt;
721 vaf.va = &args;
722 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 va_end(args);
724 }
725
726 #define ext4_warning_ratelimit(sb) \
727 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728 "EXT4-fs warning")
729
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)730 void __ext4_warning(struct super_block *sb, const char *function,
731 unsigned int line, const char *fmt, ...)
732 {
733 struct va_format vaf;
734 va_list args;
735
736 if (!ext4_warning_ratelimit(sb))
737 return;
738
739 va_start(args, fmt);
740 vaf.fmt = fmt;
741 vaf.va = &args;
742 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 sb->s_id, function, line, &vaf);
744 va_end(args);
745 }
746
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 unsigned int line, const char *fmt, ...)
749 {
750 struct va_format vaf;
751 va_list args;
752
753 if (!ext4_warning_ratelimit(inode->i_sb))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 function, line, inode->i_ino, current->comm, &vaf);
762 va_end(args);
763 }
764
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 struct super_block *sb, ext4_group_t grp,
767 unsigned long ino, ext4_fsblk_t block,
768 const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772 struct va_format vaf;
773 va_list args;
774 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 return;
778
779 trace_ext4_error(sb, function, line);
780 es->s_last_error_ino = cpu_to_le32(ino);
781 es->s_last_error_block = cpu_to_le64(block);
782 __save_error_info(sb, function, line);
783
784 if (ext4_error_ratelimit(sb)) {
785 va_start(args, fmt);
786 vaf.fmt = fmt;
787 vaf.va = &args;
788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 sb->s_id, function, line, grp);
790 if (ino)
791 printk(KERN_CONT "inode %lu: ", ino);
792 if (block)
793 printk(KERN_CONT "block %llu:",
794 (unsigned long long) block);
795 printk(KERN_CONT "%pV\n", &vaf);
796 va_end(args);
797 }
798
799 if (test_opt(sb, WARN_ON_ERROR))
800 WARN_ON_ONCE(1);
801
802 if (test_opt(sb, ERRORS_CONT)) {
803 ext4_commit_super(sb, 0);
804 return;
805 }
806
807 ext4_unlock_group(sb, grp);
808 ext4_commit_super(sb, 1);
809 ext4_handle_error(sb);
810 /*
811 * We only get here in the ERRORS_RO case; relocking the group
812 * may be dangerous, but nothing bad will happen since the
813 * filesystem will have already been marked read/only and the
814 * journal has been aborted. We return 1 as a hint to callers
815 * who might what to use the return value from
816 * ext4_grp_locked_error() to distinguish between the
817 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 * aggressively from the ext4 function in question, with a
819 * more appropriate error code.
820 */
821 ext4_lock_group(sb, grp);
822 return;
823 }
824
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 ext4_group_t group,
827 unsigned int flags)
828 {
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 int ret;
833
834 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 &grp->bb_state);
837 if (!ret)
838 percpu_counter_sub(&sbi->s_freeclusters_counter,
839 grp->bb_free);
840 }
841
842 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 &grp->bb_state);
845 if (!ret && gdp) {
846 int count;
847
848 count = ext4_free_inodes_count(sb, gdp);
849 percpu_counter_sub(&sbi->s_freeinodes_counter,
850 count);
851 }
852 }
853 }
854
ext4_update_dynamic_rev(struct super_block * sb)855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 return;
861
862 ext4_warning(sb,
863 "updating to rev %d because of new feature flag, "
864 "running e2fsck is recommended",
865 EXT4_DYNAMIC_REV);
866
867 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 /* leave es->s_feature_*compat flags alone */
871 /* es->s_uuid will be set by e2fsck if empty */
872
873 /*
874 * The rest of the superblock fields should be zero, and if not it
875 * means they are likely already in use, so leave them alone. We
876 * can leave it up to e2fsck to clean up any inconsistencies there.
877 */
878 }
879
880 /*
881 * Open the external journal device
882 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885 struct block_device *bdev;
886 char b[BDEVNAME_SIZE];
887
888 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 if (IS_ERR(bdev))
890 goto fail;
891 return bdev;
892
893 fail:
894 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 __bdevname(dev, b), PTR_ERR(bdev));
896 return NULL;
897 }
898
899 /*
900 * Release the journal device
901 */
ext4_blkdev_put(struct block_device * bdev)902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906
ext4_blkdev_remove(struct ext4_sb_info * sbi)907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909 struct block_device *bdev;
910 bdev = sbi->journal_bdev;
911 if (bdev) {
912 ext4_blkdev_put(bdev);
913 sbi->journal_bdev = NULL;
914 }
915 }
916
orphan_list_entry(struct list_head * l)917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924 struct list_head *l;
925
926 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 le32_to_cpu(sbi->s_es->s_last_orphan));
928
929 printk(KERN_ERR "sb_info orphan list:\n");
930 list_for_each(l, &sbi->s_orphan) {
931 struct inode *inode = orphan_list_entry(l);
932 printk(KERN_ERR " "
933 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 inode->i_sb->s_id, inode->i_ino, inode,
935 inode->i_mode, inode->i_nlink,
936 NEXT_ORPHAN(inode));
937 }
938 }
939
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942
ext4_quota_off_umount(struct super_block * sb)943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945 int type;
946
947 /* Use our quota_off function to clear inode flags etc. */
948 for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 ext4_quota_off(sb, type);
950 }
951
952 /*
953 * This is a helper function which is used in the mount/remount
954 * codepaths (which holds s_umount) to fetch the quota file name.
955 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)956 static inline char *get_qf_name(struct super_block *sb,
957 struct ext4_sb_info *sbi,
958 int type)
959 {
960 return rcu_dereference_protected(sbi->s_qf_names[type],
961 lockdep_is_held(&sb->s_umount));
962 }
963 #else
ext4_quota_off_umount(struct super_block * sb)964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968
ext4_put_super(struct super_block * sb)969 static void ext4_put_super(struct super_block *sb)
970 {
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_super_block *es = sbi->s_es;
973 struct buffer_head **group_desc;
974 struct flex_groups **flex_groups;
975 int aborted = 0;
976 int i, err;
977
978 ext4_unregister_li_request(sb);
979 ext4_quota_off_umount(sb);
980
981 destroy_workqueue(sbi->rsv_conversion_wq);
982
983 if (sbi->s_journal) {
984 aborted = is_journal_aborted(sbi->s_journal);
985 err = jbd2_journal_destroy(sbi->s_journal);
986 sbi->s_journal = NULL;
987 if ((err < 0) && !aborted)
988 ext4_abort(sb, "Couldn't clean up the journal");
989 }
990
991 ext4_unregister_sysfs(sb);
992 ext4_es_unregister_shrinker(sbi);
993 del_timer_sync(&sbi->s_err_report);
994 ext4_release_system_zone(sb);
995 ext4_mb_release(sb);
996 ext4_ext_release(sb);
997
998 if (!sb_rdonly(sb) && !aborted) {
999 ext4_clear_feature_journal_needs_recovery(sb);
1000 es->s_state = cpu_to_le16(sbi->s_mount_state);
1001 }
1002 if (!sb_rdonly(sb))
1003 ext4_commit_super(sb, 1);
1004
1005 rcu_read_lock();
1006 group_desc = rcu_dereference(sbi->s_group_desc);
1007 for (i = 0; i < sbi->s_gdb_count; i++)
1008 brelse(group_desc[i]);
1009 kvfree(group_desc);
1010 flex_groups = rcu_dereference(sbi->s_flex_groups);
1011 if (flex_groups) {
1012 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1013 kvfree(flex_groups[i]);
1014 kvfree(flex_groups);
1015 }
1016 rcu_read_unlock();
1017 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1018 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1019 percpu_counter_destroy(&sbi->s_dirs_counter);
1020 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1021 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1022 #ifdef CONFIG_QUOTA
1023 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1024 kfree(get_qf_name(sb, sbi, i));
1025 #endif
1026
1027 /* Debugging code just in case the in-memory inode orphan list
1028 * isn't empty. The on-disk one can be non-empty if we've
1029 * detected an error and taken the fs readonly, but the
1030 * in-memory list had better be clean by this point. */
1031 if (!list_empty(&sbi->s_orphan))
1032 dump_orphan_list(sb, sbi);
1033 J_ASSERT(list_empty(&sbi->s_orphan));
1034
1035 sync_blockdev(sb->s_bdev);
1036 invalidate_bdev(sb->s_bdev);
1037 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1038 /*
1039 * Invalidate the journal device's buffers. We don't want them
1040 * floating about in memory - the physical journal device may
1041 * hotswapped, and it breaks the `ro-after' testing code.
1042 */
1043 sync_blockdev(sbi->journal_bdev);
1044 invalidate_bdev(sbi->journal_bdev);
1045 ext4_blkdev_remove(sbi);
1046 }
1047 if (sbi->s_ea_inode_cache) {
1048 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1049 sbi->s_ea_inode_cache = NULL;
1050 }
1051 if (sbi->s_ea_block_cache) {
1052 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1053 sbi->s_ea_block_cache = NULL;
1054 }
1055 if (sbi->s_mmp_tsk)
1056 kthread_stop(sbi->s_mmp_tsk);
1057 brelse(sbi->s_sbh);
1058 sb->s_fs_info = NULL;
1059 /*
1060 * Now that we are completely done shutting down the
1061 * superblock, we need to actually destroy the kobject.
1062 */
1063 kobject_put(&sbi->s_kobj);
1064 wait_for_completion(&sbi->s_kobj_unregister);
1065 if (sbi->s_chksum_driver)
1066 crypto_free_shash(sbi->s_chksum_driver);
1067 kfree(sbi->s_blockgroup_lock);
1068 fs_put_dax(sbi->s_daxdev);
1069 kfree(sbi);
1070 }
1071
1072 static struct kmem_cache *ext4_inode_cachep;
1073
1074 /*
1075 * Called inside transaction, so use GFP_NOFS
1076 */
ext4_alloc_inode(struct super_block * sb)1077 static struct inode *ext4_alloc_inode(struct super_block *sb)
1078 {
1079 struct ext4_inode_info *ei;
1080
1081 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1082 if (!ei)
1083 return NULL;
1084
1085 inode_set_iversion(&ei->vfs_inode, 1);
1086 spin_lock_init(&ei->i_raw_lock);
1087 INIT_LIST_HEAD(&ei->i_prealloc_list);
1088 spin_lock_init(&ei->i_prealloc_lock);
1089 ext4_es_init_tree(&ei->i_es_tree);
1090 rwlock_init(&ei->i_es_lock);
1091 INIT_LIST_HEAD(&ei->i_es_list);
1092 ei->i_es_all_nr = 0;
1093 ei->i_es_shk_nr = 0;
1094 ei->i_es_shrink_lblk = 0;
1095 ei->i_reserved_data_blocks = 0;
1096 ei->i_da_metadata_calc_len = 0;
1097 ei->i_da_metadata_calc_last_lblock = 0;
1098 spin_lock_init(&(ei->i_block_reservation_lock));
1099 #ifdef CONFIG_QUOTA
1100 ei->i_reserved_quota = 0;
1101 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1102 #endif
1103 ei->jinode = NULL;
1104 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1105 spin_lock_init(&ei->i_completed_io_lock);
1106 ei->i_sync_tid = 0;
1107 ei->i_datasync_tid = 0;
1108 atomic_set(&ei->i_unwritten, 0);
1109 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1110 return &ei->vfs_inode;
1111 }
1112
ext4_drop_inode(struct inode * inode)1113 static int ext4_drop_inode(struct inode *inode)
1114 {
1115 int drop = generic_drop_inode(inode);
1116
1117 trace_ext4_drop_inode(inode, drop);
1118 return drop;
1119 }
1120
ext4_i_callback(struct rcu_head * head)1121 static void ext4_i_callback(struct rcu_head *head)
1122 {
1123 struct inode *inode = container_of(head, struct inode, i_rcu);
1124 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1125 }
1126
ext4_destroy_inode(struct inode * inode)1127 static void ext4_destroy_inode(struct inode *inode)
1128 {
1129 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1130 ext4_msg(inode->i_sb, KERN_ERR,
1131 "Inode %lu (%p): orphan list check failed!",
1132 inode->i_ino, EXT4_I(inode));
1133 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1134 EXT4_I(inode), sizeof(struct ext4_inode_info),
1135 true);
1136 dump_stack();
1137 }
1138 call_rcu(&inode->i_rcu, ext4_i_callback);
1139 }
1140
init_once(void * foo)1141 static void init_once(void *foo)
1142 {
1143 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1144
1145 INIT_LIST_HEAD(&ei->i_orphan);
1146 init_rwsem(&ei->xattr_sem);
1147 init_rwsem(&ei->i_data_sem);
1148 init_rwsem(&ei->i_mmap_sem);
1149 inode_init_once(&ei->vfs_inode);
1150 }
1151
init_inodecache(void)1152 static int __init init_inodecache(void)
1153 {
1154 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1155 sizeof(struct ext4_inode_info), 0,
1156 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1157 SLAB_ACCOUNT),
1158 offsetof(struct ext4_inode_info, i_data),
1159 sizeof_field(struct ext4_inode_info, i_data),
1160 init_once);
1161 if (ext4_inode_cachep == NULL)
1162 return -ENOMEM;
1163 return 0;
1164 }
1165
destroy_inodecache(void)1166 static void destroy_inodecache(void)
1167 {
1168 /*
1169 * Make sure all delayed rcu free inodes are flushed before we
1170 * destroy cache.
1171 */
1172 rcu_barrier();
1173 kmem_cache_destroy(ext4_inode_cachep);
1174 }
1175
ext4_clear_inode(struct inode * inode)1176 void ext4_clear_inode(struct inode *inode)
1177 {
1178 invalidate_inode_buffers(inode);
1179 clear_inode(inode);
1180 dquot_drop(inode);
1181 ext4_discard_preallocations(inode);
1182 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1183 if (EXT4_I(inode)->jinode) {
1184 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1185 EXT4_I(inode)->jinode);
1186 jbd2_free_inode(EXT4_I(inode)->jinode);
1187 EXT4_I(inode)->jinode = NULL;
1188 }
1189 fscrypt_put_encryption_info(inode);
1190 }
1191
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1192 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1193 u64 ino, u32 generation)
1194 {
1195 struct inode *inode;
1196
1197 /*
1198 * Currently we don't know the generation for parent directory, so
1199 * a generation of 0 means "accept any"
1200 */
1201 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1202 if (IS_ERR(inode))
1203 return ERR_CAST(inode);
1204 if (generation && inode->i_generation != generation) {
1205 iput(inode);
1206 return ERR_PTR(-ESTALE);
1207 }
1208
1209 return inode;
1210 }
1211
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1212 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1213 int fh_len, int fh_type)
1214 {
1215 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1216 ext4_nfs_get_inode);
1217 }
1218
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1219 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1220 int fh_len, int fh_type)
1221 {
1222 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1223 ext4_nfs_get_inode);
1224 }
1225
ext4_nfs_commit_metadata(struct inode * inode)1226 static int ext4_nfs_commit_metadata(struct inode *inode)
1227 {
1228 struct writeback_control wbc = {
1229 .sync_mode = WB_SYNC_ALL
1230 };
1231
1232 trace_ext4_nfs_commit_metadata(inode);
1233 return ext4_write_inode(inode, &wbc);
1234 }
1235
1236 /*
1237 * Try to release metadata pages (indirect blocks, directories) which are
1238 * mapped via the block device. Since these pages could have journal heads
1239 * which would prevent try_to_free_buffers() from freeing them, we must use
1240 * jbd2 layer's try_to_free_buffers() function to release them.
1241 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1242 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1243 gfp_t wait)
1244 {
1245 journal_t *journal = EXT4_SB(sb)->s_journal;
1246
1247 WARN_ON(PageChecked(page));
1248 if (!page_has_buffers(page))
1249 return 0;
1250 if (journal)
1251 return jbd2_journal_try_to_free_buffers(journal, page,
1252 wait & ~__GFP_DIRECT_RECLAIM);
1253 return try_to_free_buffers(page);
1254 }
1255
1256 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1257 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1258 {
1259 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1260 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1261 }
1262
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1263 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1264 void *fs_data)
1265 {
1266 handle_t *handle = fs_data;
1267 int res, res2, credits, retries = 0;
1268
1269 /*
1270 * Encrypting the root directory is not allowed because e2fsck expects
1271 * lost+found to exist and be unencrypted, and encrypting the root
1272 * directory would imply encrypting the lost+found directory as well as
1273 * the filename "lost+found" itself.
1274 */
1275 if (inode->i_ino == EXT4_ROOT_INO)
1276 return -EPERM;
1277
1278 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1279 return -EINVAL;
1280
1281 res = ext4_convert_inline_data(inode);
1282 if (res)
1283 return res;
1284
1285 /*
1286 * If a journal handle was specified, then the encryption context is
1287 * being set on a new inode via inheritance and is part of a larger
1288 * transaction to create the inode. Otherwise the encryption context is
1289 * being set on an existing inode in its own transaction. Only in the
1290 * latter case should the "retry on ENOSPC" logic be used.
1291 */
1292
1293 if (handle) {
1294 res = ext4_xattr_set_handle(handle, inode,
1295 EXT4_XATTR_INDEX_ENCRYPTION,
1296 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1297 ctx, len, 0);
1298 if (!res) {
1299 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1300 ext4_clear_inode_state(inode,
1301 EXT4_STATE_MAY_INLINE_DATA);
1302 /*
1303 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1304 * S_DAX may be disabled
1305 */
1306 ext4_set_inode_flags(inode);
1307 }
1308 return res;
1309 }
1310
1311 res = dquot_initialize(inode);
1312 if (res)
1313 return res;
1314 retry:
1315 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1316 &credits);
1317 if (res)
1318 return res;
1319
1320 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1321 if (IS_ERR(handle))
1322 return PTR_ERR(handle);
1323
1324 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1325 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1326 ctx, len, 0);
1327 if (!res) {
1328 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1329 /*
1330 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1331 * S_DAX may be disabled
1332 */
1333 ext4_set_inode_flags(inode);
1334 res = ext4_mark_inode_dirty(handle, inode);
1335 if (res)
1336 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1337 }
1338 res2 = ext4_journal_stop(handle);
1339
1340 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1341 goto retry;
1342 if (!res)
1343 res = res2;
1344 return res;
1345 }
1346
ext4_dummy_context(struct inode * inode)1347 static bool ext4_dummy_context(struct inode *inode)
1348 {
1349 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1350 }
1351
1352 static const struct fscrypt_operations ext4_cryptops = {
1353 .key_prefix = "ext4:",
1354 .get_context = ext4_get_context,
1355 .set_context = ext4_set_context,
1356 .dummy_context = ext4_dummy_context,
1357 .empty_dir = ext4_empty_dir,
1358 .max_namelen = EXT4_NAME_LEN,
1359 };
1360 #endif
1361
1362 #ifdef CONFIG_QUOTA
1363 static const char * const quotatypes[] = INITQFNAMES;
1364 #define QTYPE2NAME(t) (quotatypes[t])
1365
1366 static int ext4_write_dquot(struct dquot *dquot);
1367 static int ext4_acquire_dquot(struct dquot *dquot);
1368 static int ext4_release_dquot(struct dquot *dquot);
1369 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1370 static int ext4_write_info(struct super_block *sb, int type);
1371 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1372 const struct path *path);
1373 static int ext4_quota_on_mount(struct super_block *sb, int type);
1374 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1375 size_t len, loff_t off);
1376 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1377 const char *data, size_t len, loff_t off);
1378 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1379 unsigned int flags);
1380 static int ext4_enable_quotas(struct super_block *sb);
1381 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1382
ext4_get_dquots(struct inode * inode)1383 static struct dquot **ext4_get_dquots(struct inode *inode)
1384 {
1385 return EXT4_I(inode)->i_dquot;
1386 }
1387
1388 static const struct dquot_operations ext4_quota_operations = {
1389 .get_reserved_space = ext4_get_reserved_space,
1390 .write_dquot = ext4_write_dquot,
1391 .acquire_dquot = ext4_acquire_dquot,
1392 .release_dquot = ext4_release_dquot,
1393 .mark_dirty = ext4_mark_dquot_dirty,
1394 .write_info = ext4_write_info,
1395 .alloc_dquot = dquot_alloc,
1396 .destroy_dquot = dquot_destroy,
1397 .get_projid = ext4_get_projid,
1398 .get_inode_usage = ext4_get_inode_usage,
1399 .get_next_id = ext4_get_next_id,
1400 };
1401
1402 static const struct quotactl_ops ext4_qctl_operations = {
1403 .quota_on = ext4_quota_on,
1404 .quota_off = ext4_quota_off,
1405 .quota_sync = dquot_quota_sync,
1406 .get_state = dquot_get_state,
1407 .set_info = dquot_set_dqinfo,
1408 .get_dqblk = dquot_get_dqblk,
1409 .set_dqblk = dquot_set_dqblk,
1410 .get_nextdqblk = dquot_get_next_dqblk,
1411 };
1412 #endif
1413
1414 static const struct super_operations ext4_sops = {
1415 .alloc_inode = ext4_alloc_inode,
1416 .destroy_inode = ext4_destroy_inode,
1417 .write_inode = ext4_write_inode,
1418 .dirty_inode = ext4_dirty_inode,
1419 .drop_inode = ext4_drop_inode,
1420 .evict_inode = ext4_evict_inode,
1421 .put_super = ext4_put_super,
1422 .sync_fs = ext4_sync_fs,
1423 .freeze_fs = ext4_freeze,
1424 .unfreeze_fs = ext4_unfreeze,
1425 .statfs = ext4_statfs,
1426 .remount_fs = ext4_remount,
1427 .show_options = ext4_show_options,
1428 #ifdef CONFIG_QUOTA
1429 .quota_read = ext4_quota_read,
1430 .quota_write = ext4_quota_write,
1431 .get_dquots = ext4_get_dquots,
1432 #endif
1433 .bdev_try_to_free_page = bdev_try_to_free_page,
1434 };
1435
1436 static const struct export_operations ext4_export_ops = {
1437 .fh_to_dentry = ext4_fh_to_dentry,
1438 .fh_to_parent = ext4_fh_to_parent,
1439 .get_parent = ext4_get_parent,
1440 .commit_metadata = ext4_nfs_commit_metadata,
1441 };
1442
1443 enum {
1444 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1445 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1446 Opt_nouid32, Opt_debug, Opt_removed,
1447 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1448 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1449 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1450 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1451 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1452 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1453 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1454 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1455 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1456 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1457 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1458 Opt_nowarn_on_error, Opt_mblk_io_submit,
1459 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1460 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1461 Opt_inode_readahead_blks, Opt_journal_ioprio,
1462 Opt_dioread_nolock, Opt_dioread_lock,
1463 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1464 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1465 };
1466
1467 static const match_table_t tokens = {
1468 {Opt_bsd_df, "bsddf"},
1469 {Opt_minix_df, "minixdf"},
1470 {Opt_grpid, "grpid"},
1471 {Opt_grpid, "bsdgroups"},
1472 {Opt_nogrpid, "nogrpid"},
1473 {Opt_nogrpid, "sysvgroups"},
1474 {Opt_resgid, "resgid=%u"},
1475 {Opt_resuid, "resuid=%u"},
1476 {Opt_sb, "sb=%u"},
1477 {Opt_err_cont, "errors=continue"},
1478 {Opt_err_panic, "errors=panic"},
1479 {Opt_err_ro, "errors=remount-ro"},
1480 {Opt_nouid32, "nouid32"},
1481 {Opt_debug, "debug"},
1482 {Opt_removed, "oldalloc"},
1483 {Opt_removed, "orlov"},
1484 {Opt_user_xattr, "user_xattr"},
1485 {Opt_nouser_xattr, "nouser_xattr"},
1486 {Opt_acl, "acl"},
1487 {Opt_noacl, "noacl"},
1488 {Opt_noload, "norecovery"},
1489 {Opt_noload, "noload"},
1490 {Opt_removed, "nobh"},
1491 {Opt_removed, "bh"},
1492 {Opt_commit, "commit=%u"},
1493 {Opt_min_batch_time, "min_batch_time=%u"},
1494 {Opt_max_batch_time, "max_batch_time=%u"},
1495 {Opt_journal_dev, "journal_dev=%u"},
1496 {Opt_journal_path, "journal_path=%s"},
1497 {Opt_journal_checksum, "journal_checksum"},
1498 {Opt_nojournal_checksum, "nojournal_checksum"},
1499 {Opt_journal_async_commit, "journal_async_commit"},
1500 {Opt_abort, "abort"},
1501 {Opt_data_journal, "data=journal"},
1502 {Opt_data_ordered, "data=ordered"},
1503 {Opt_data_writeback, "data=writeback"},
1504 {Opt_data_err_abort, "data_err=abort"},
1505 {Opt_data_err_ignore, "data_err=ignore"},
1506 {Opt_offusrjquota, "usrjquota="},
1507 {Opt_usrjquota, "usrjquota=%s"},
1508 {Opt_offgrpjquota, "grpjquota="},
1509 {Opt_grpjquota, "grpjquota=%s"},
1510 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1511 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1512 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1513 {Opt_grpquota, "grpquota"},
1514 {Opt_noquota, "noquota"},
1515 {Opt_quota, "quota"},
1516 {Opt_usrquota, "usrquota"},
1517 {Opt_prjquota, "prjquota"},
1518 {Opt_barrier, "barrier=%u"},
1519 {Opt_barrier, "barrier"},
1520 {Opt_nobarrier, "nobarrier"},
1521 {Opt_i_version, "i_version"},
1522 {Opt_dax, "dax"},
1523 {Opt_stripe, "stripe=%u"},
1524 {Opt_delalloc, "delalloc"},
1525 {Opt_warn_on_error, "warn_on_error"},
1526 {Opt_nowarn_on_error, "nowarn_on_error"},
1527 {Opt_lazytime, "lazytime"},
1528 {Opt_nolazytime, "nolazytime"},
1529 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1530 {Opt_nodelalloc, "nodelalloc"},
1531 {Opt_removed, "mblk_io_submit"},
1532 {Opt_removed, "nomblk_io_submit"},
1533 {Opt_block_validity, "block_validity"},
1534 {Opt_noblock_validity, "noblock_validity"},
1535 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1536 {Opt_journal_ioprio, "journal_ioprio=%u"},
1537 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1538 {Opt_auto_da_alloc, "auto_da_alloc"},
1539 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1540 {Opt_dioread_nolock, "dioread_nolock"},
1541 {Opt_dioread_lock, "dioread_lock"},
1542 {Opt_discard, "discard"},
1543 {Opt_nodiscard, "nodiscard"},
1544 {Opt_init_itable, "init_itable=%u"},
1545 {Opt_init_itable, "init_itable"},
1546 {Opt_noinit_itable, "noinit_itable"},
1547 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1548 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1549 {Opt_nombcache, "nombcache"},
1550 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1551 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1552 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1553 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1554 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1555 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1556 {Opt_err, NULL},
1557 };
1558
get_sb_block(void ** data)1559 static ext4_fsblk_t get_sb_block(void **data)
1560 {
1561 ext4_fsblk_t sb_block;
1562 char *options = (char *) *data;
1563
1564 if (!options || strncmp(options, "sb=", 3) != 0)
1565 return 1; /* Default location */
1566
1567 options += 3;
1568 /* TODO: use simple_strtoll with >32bit ext4 */
1569 sb_block = simple_strtoul(options, &options, 0);
1570 if (*options && *options != ',') {
1571 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1572 (char *) *data);
1573 return 1;
1574 }
1575 if (*options == ',')
1576 options++;
1577 *data = (void *) options;
1578
1579 return sb_block;
1580 }
1581
1582 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1583 static const char deprecated_msg[] =
1584 "Mount option \"%s\" will be removed by %s\n"
1585 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1586
1587 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1588 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1589 {
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1592 int ret = -1;
1593
1594 if (sb_any_quota_loaded(sb) && !old_qname) {
1595 ext4_msg(sb, KERN_ERR,
1596 "Cannot change journaled "
1597 "quota options when quota turned on");
1598 return -1;
1599 }
1600 if (ext4_has_feature_quota(sb)) {
1601 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1602 "ignored when QUOTA feature is enabled");
1603 return 1;
1604 }
1605 qname = match_strdup(args);
1606 if (!qname) {
1607 ext4_msg(sb, KERN_ERR,
1608 "Not enough memory for storing quotafile name");
1609 return -1;
1610 }
1611 if (old_qname) {
1612 if (strcmp(old_qname, qname) == 0)
1613 ret = 1;
1614 else
1615 ext4_msg(sb, KERN_ERR,
1616 "%s quota file already specified",
1617 QTYPE2NAME(qtype));
1618 goto errout;
1619 }
1620 if (strchr(qname, '/')) {
1621 ext4_msg(sb, KERN_ERR,
1622 "quotafile must be on filesystem root");
1623 goto errout;
1624 }
1625 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1626 set_opt(sb, QUOTA);
1627 return 1;
1628 errout:
1629 kfree(qname);
1630 return ret;
1631 }
1632
clear_qf_name(struct super_block * sb,int qtype)1633 static int clear_qf_name(struct super_block *sb, int qtype)
1634 {
1635
1636 struct ext4_sb_info *sbi = EXT4_SB(sb);
1637 char *old_qname = get_qf_name(sb, sbi, qtype);
1638
1639 if (sb_any_quota_loaded(sb) && old_qname) {
1640 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1641 " when quota turned on");
1642 return -1;
1643 }
1644 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1645 synchronize_rcu();
1646 kfree(old_qname);
1647 return 1;
1648 }
1649 #endif
1650
1651 #define MOPT_SET 0x0001
1652 #define MOPT_CLEAR 0x0002
1653 #define MOPT_NOSUPPORT 0x0004
1654 #define MOPT_EXPLICIT 0x0008
1655 #define MOPT_CLEAR_ERR 0x0010
1656 #define MOPT_GTE0 0x0020
1657 #ifdef CONFIG_QUOTA
1658 #define MOPT_Q 0
1659 #define MOPT_QFMT 0x0040
1660 #else
1661 #define MOPT_Q MOPT_NOSUPPORT
1662 #define MOPT_QFMT MOPT_NOSUPPORT
1663 #endif
1664 #define MOPT_DATAJ 0x0080
1665 #define MOPT_NO_EXT2 0x0100
1666 #define MOPT_NO_EXT3 0x0200
1667 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1668 #define MOPT_STRING 0x0400
1669
1670 static const struct mount_opts {
1671 int token;
1672 int mount_opt;
1673 int flags;
1674 } ext4_mount_opts[] = {
1675 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1676 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1677 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1678 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1679 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1680 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1681 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1682 MOPT_EXT4_ONLY | MOPT_SET},
1683 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1684 MOPT_EXT4_ONLY | MOPT_CLEAR},
1685 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1686 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1687 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1688 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1689 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1690 MOPT_EXT4_ONLY | MOPT_CLEAR},
1691 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1692 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1693 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1694 MOPT_EXT4_ONLY | MOPT_CLEAR},
1695 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1696 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1697 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1698 EXT4_MOUNT_JOURNAL_CHECKSUM),
1699 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1700 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1701 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1702 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1703 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1704 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1705 MOPT_NO_EXT2},
1706 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1707 MOPT_NO_EXT2},
1708 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1709 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1710 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1711 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1712 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1713 {Opt_commit, 0, MOPT_GTE0},
1714 {Opt_max_batch_time, 0, MOPT_GTE0},
1715 {Opt_min_batch_time, 0, MOPT_GTE0},
1716 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1717 {Opt_init_itable, 0, MOPT_GTE0},
1718 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1719 {Opt_stripe, 0, MOPT_GTE0},
1720 {Opt_resuid, 0, MOPT_GTE0},
1721 {Opt_resgid, 0, MOPT_GTE0},
1722 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1723 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1724 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1725 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1726 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1727 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1728 MOPT_NO_EXT2 | MOPT_DATAJ},
1729 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1730 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1731 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1732 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1733 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1734 #else
1735 {Opt_acl, 0, MOPT_NOSUPPORT},
1736 {Opt_noacl, 0, MOPT_NOSUPPORT},
1737 #endif
1738 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1739 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1740 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1741 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1742 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1743 MOPT_SET | MOPT_Q},
1744 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1745 MOPT_SET | MOPT_Q},
1746 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1747 MOPT_SET | MOPT_Q},
1748 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1749 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1750 MOPT_CLEAR | MOPT_Q},
1751 {Opt_usrjquota, 0, MOPT_Q},
1752 {Opt_grpjquota, 0, MOPT_Q},
1753 {Opt_offusrjquota, 0, MOPT_Q},
1754 {Opt_offgrpjquota, 0, MOPT_Q},
1755 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1756 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1757 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1758 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1759 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1760 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1761 {Opt_err, 0, 0}
1762 };
1763
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1764 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1765 substring_t *args, unsigned long *journal_devnum,
1766 unsigned int *journal_ioprio, int is_remount)
1767 {
1768 struct ext4_sb_info *sbi = EXT4_SB(sb);
1769 const struct mount_opts *m;
1770 kuid_t uid;
1771 kgid_t gid;
1772 int arg = 0;
1773
1774 #ifdef CONFIG_QUOTA
1775 if (token == Opt_usrjquota)
1776 return set_qf_name(sb, USRQUOTA, &args[0]);
1777 else if (token == Opt_grpjquota)
1778 return set_qf_name(sb, GRPQUOTA, &args[0]);
1779 else if (token == Opt_offusrjquota)
1780 return clear_qf_name(sb, USRQUOTA);
1781 else if (token == Opt_offgrpjquota)
1782 return clear_qf_name(sb, GRPQUOTA);
1783 #endif
1784 switch (token) {
1785 case Opt_noacl:
1786 case Opt_nouser_xattr:
1787 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1788 break;
1789 case Opt_sb:
1790 return 1; /* handled by get_sb_block() */
1791 case Opt_removed:
1792 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1793 return 1;
1794 case Opt_abort:
1795 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1796 return 1;
1797 case Opt_i_version:
1798 sb->s_flags |= SB_I_VERSION;
1799 return 1;
1800 case Opt_lazytime:
1801 sb->s_flags |= SB_LAZYTIME;
1802 return 1;
1803 case Opt_nolazytime:
1804 sb->s_flags &= ~SB_LAZYTIME;
1805 return 1;
1806 }
1807
1808 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1809 if (token == m->token)
1810 break;
1811
1812 if (m->token == Opt_err) {
1813 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1814 "or missing value", opt);
1815 return -1;
1816 }
1817
1818 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1819 ext4_msg(sb, KERN_ERR,
1820 "Mount option \"%s\" incompatible with ext2", opt);
1821 return -1;
1822 }
1823 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1824 ext4_msg(sb, KERN_ERR,
1825 "Mount option \"%s\" incompatible with ext3", opt);
1826 return -1;
1827 }
1828
1829 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1830 return -1;
1831 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1832 return -1;
1833 if (m->flags & MOPT_EXPLICIT) {
1834 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1835 set_opt2(sb, EXPLICIT_DELALLOC);
1836 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1837 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1838 } else
1839 return -1;
1840 }
1841 if (m->flags & MOPT_CLEAR_ERR)
1842 clear_opt(sb, ERRORS_MASK);
1843 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1844 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1845 "options when quota turned on");
1846 return -1;
1847 }
1848
1849 if (m->flags & MOPT_NOSUPPORT) {
1850 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1851 } else if (token == Opt_commit) {
1852 if (arg == 0)
1853 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1854 sbi->s_commit_interval = HZ * arg;
1855 } else if (token == Opt_debug_want_extra_isize) {
1856 if ((arg & 1) ||
1857 (arg < 4) ||
1858 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1859 ext4_msg(sb, KERN_ERR,
1860 "Invalid want_extra_isize %d", arg);
1861 return -1;
1862 }
1863 sbi->s_want_extra_isize = arg;
1864 } else if (token == Opt_max_batch_time) {
1865 sbi->s_max_batch_time = arg;
1866 } else if (token == Opt_min_batch_time) {
1867 sbi->s_min_batch_time = arg;
1868 } else if (token == Opt_inode_readahead_blks) {
1869 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1870 ext4_msg(sb, KERN_ERR,
1871 "EXT4-fs: inode_readahead_blks must be "
1872 "0 or a power of 2 smaller than 2^31");
1873 return -1;
1874 }
1875 sbi->s_inode_readahead_blks = arg;
1876 } else if (token == Opt_init_itable) {
1877 set_opt(sb, INIT_INODE_TABLE);
1878 if (!args->from)
1879 arg = EXT4_DEF_LI_WAIT_MULT;
1880 sbi->s_li_wait_mult = arg;
1881 } else if (token == Opt_max_dir_size_kb) {
1882 sbi->s_max_dir_size_kb = arg;
1883 } else if (token == Opt_stripe) {
1884 sbi->s_stripe = arg;
1885 } else if (token == Opt_resuid) {
1886 uid = make_kuid(current_user_ns(), arg);
1887 if (!uid_valid(uid)) {
1888 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1889 return -1;
1890 }
1891 sbi->s_resuid = uid;
1892 } else if (token == Opt_resgid) {
1893 gid = make_kgid(current_user_ns(), arg);
1894 if (!gid_valid(gid)) {
1895 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1896 return -1;
1897 }
1898 sbi->s_resgid = gid;
1899 } else if (token == Opt_journal_dev) {
1900 if (is_remount) {
1901 ext4_msg(sb, KERN_ERR,
1902 "Cannot specify journal on remount");
1903 return -1;
1904 }
1905 *journal_devnum = arg;
1906 } else if (token == Opt_journal_path) {
1907 char *journal_path;
1908 struct inode *journal_inode;
1909 struct path path;
1910 int error;
1911
1912 if (is_remount) {
1913 ext4_msg(sb, KERN_ERR,
1914 "Cannot specify journal on remount");
1915 return -1;
1916 }
1917 journal_path = match_strdup(&args[0]);
1918 if (!journal_path) {
1919 ext4_msg(sb, KERN_ERR, "error: could not dup "
1920 "journal device string");
1921 return -1;
1922 }
1923
1924 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1925 if (error) {
1926 ext4_msg(sb, KERN_ERR, "error: could not find "
1927 "journal device path: error %d", error);
1928 kfree(journal_path);
1929 return -1;
1930 }
1931
1932 journal_inode = d_inode(path.dentry);
1933 if (!S_ISBLK(journal_inode->i_mode)) {
1934 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1935 "is not a block device", journal_path);
1936 path_put(&path);
1937 kfree(journal_path);
1938 return -1;
1939 }
1940
1941 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1942 path_put(&path);
1943 kfree(journal_path);
1944 } else if (token == Opt_journal_ioprio) {
1945 if (arg > 7) {
1946 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1947 " (must be 0-7)");
1948 return -1;
1949 }
1950 *journal_ioprio =
1951 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1952 } else if (token == Opt_test_dummy_encryption) {
1953 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1954 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1955 ext4_msg(sb, KERN_WARNING,
1956 "Test dummy encryption mode enabled");
1957 #else
1958 ext4_msg(sb, KERN_WARNING,
1959 "Test dummy encryption mount option ignored");
1960 #endif
1961 } else if (m->flags & MOPT_DATAJ) {
1962 if (is_remount) {
1963 if (!sbi->s_journal)
1964 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1965 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1966 ext4_msg(sb, KERN_ERR,
1967 "Cannot change data mode on remount");
1968 return -1;
1969 }
1970 } else {
1971 clear_opt(sb, DATA_FLAGS);
1972 sbi->s_mount_opt |= m->mount_opt;
1973 }
1974 #ifdef CONFIG_QUOTA
1975 } else if (m->flags & MOPT_QFMT) {
1976 if (sb_any_quota_loaded(sb) &&
1977 sbi->s_jquota_fmt != m->mount_opt) {
1978 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1979 "quota options when quota turned on");
1980 return -1;
1981 }
1982 if (ext4_has_feature_quota(sb)) {
1983 ext4_msg(sb, KERN_INFO,
1984 "Quota format mount options ignored "
1985 "when QUOTA feature is enabled");
1986 return 1;
1987 }
1988 sbi->s_jquota_fmt = m->mount_opt;
1989 #endif
1990 } else if (token == Opt_dax) {
1991 #ifdef CONFIG_FS_DAX
1992 if (is_remount && test_opt(sb, DAX)) {
1993 ext4_msg(sb, KERN_ERR, "can't mount with "
1994 "both data=journal and dax");
1995 return -1;
1996 }
1997 if (is_remount && !(sbi->s_mount_opt & EXT4_MOUNT_DAX)) {
1998 ext4_msg(sb, KERN_ERR, "can't change "
1999 "dax mount option while remounting");
2000 return -1;
2001 }
2002 ext4_msg(sb, KERN_WARNING,
2003 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2004 sbi->s_mount_opt |= m->mount_opt;
2005 #else
2006 ext4_msg(sb, KERN_INFO, "dax option not supported");
2007 return -1;
2008 #endif
2009 } else if (token == Opt_data_err_abort) {
2010 sbi->s_mount_opt |= m->mount_opt;
2011 } else if (token == Opt_data_err_ignore) {
2012 sbi->s_mount_opt &= ~m->mount_opt;
2013 } else {
2014 if (!args->from)
2015 arg = 1;
2016 if (m->flags & MOPT_CLEAR)
2017 arg = !arg;
2018 else if (unlikely(!(m->flags & MOPT_SET))) {
2019 ext4_msg(sb, KERN_WARNING,
2020 "buggy handling of option %s", opt);
2021 WARN_ON(1);
2022 return -1;
2023 }
2024 if (arg != 0)
2025 sbi->s_mount_opt |= m->mount_opt;
2026 else
2027 sbi->s_mount_opt &= ~m->mount_opt;
2028 }
2029 return 1;
2030 }
2031
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2032 static int parse_options(char *options, struct super_block *sb,
2033 unsigned long *journal_devnum,
2034 unsigned int *journal_ioprio,
2035 int is_remount)
2036 {
2037 struct ext4_sb_info *sbi = EXT4_SB(sb);
2038 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2039 substring_t args[MAX_OPT_ARGS];
2040 int token;
2041
2042 if (!options)
2043 return 1;
2044
2045 while ((p = strsep(&options, ",")) != NULL) {
2046 if (!*p)
2047 continue;
2048 /*
2049 * Initialize args struct so we know whether arg was
2050 * found; some options take optional arguments.
2051 */
2052 args[0].to = args[0].from = NULL;
2053 token = match_token(p, tokens, args);
2054 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2055 journal_ioprio, is_remount) < 0)
2056 return 0;
2057 }
2058 #ifdef CONFIG_QUOTA
2059 /*
2060 * We do the test below only for project quotas. 'usrquota' and
2061 * 'grpquota' mount options are allowed even without quota feature
2062 * to support legacy quotas in quota files.
2063 */
2064 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2065 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2066 "Cannot enable project quota enforcement.");
2067 return 0;
2068 }
2069 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2070 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2071 if (usr_qf_name || grp_qf_name) {
2072 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2073 clear_opt(sb, USRQUOTA);
2074
2075 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2076 clear_opt(sb, GRPQUOTA);
2077
2078 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2079 ext4_msg(sb, KERN_ERR, "old and new quota "
2080 "format mixing");
2081 return 0;
2082 }
2083
2084 if (!sbi->s_jquota_fmt) {
2085 ext4_msg(sb, KERN_ERR, "journaled quota format "
2086 "not specified");
2087 return 0;
2088 }
2089 }
2090 #endif
2091 if (test_opt(sb, DIOREAD_NOLOCK)) {
2092 int blocksize =
2093 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2094
2095 if (blocksize < PAGE_SIZE) {
2096 ext4_msg(sb, KERN_ERR, "can't mount with "
2097 "dioread_nolock if block size != PAGE_SIZE");
2098 return 0;
2099 }
2100 }
2101 return 1;
2102 }
2103
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2104 static inline void ext4_show_quota_options(struct seq_file *seq,
2105 struct super_block *sb)
2106 {
2107 #if defined(CONFIG_QUOTA)
2108 struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 char *usr_qf_name, *grp_qf_name;
2110
2111 if (sbi->s_jquota_fmt) {
2112 char *fmtname = "";
2113
2114 switch (sbi->s_jquota_fmt) {
2115 case QFMT_VFS_OLD:
2116 fmtname = "vfsold";
2117 break;
2118 case QFMT_VFS_V0:
2119 fmtname = "vfsv0";
2120 break;
2121 case QFMT_VFS_V1:
2122 fmtname = "vfsv1";
2123 break;
2124 }
2125 seq_printf(seq, ",jqfmt=%s", fmtname);
2126 }
2127
2128 rcu_read_lock();
2129 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2130 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2131 if (usr_qf_name)
2132 seq_show_option(seq, "usrjquota", usr_qf_name);
2133 if (grp_qf_name)
2134 seq_show_option(seq, "grpjquota", grp_qf_name);
2135 rcu_read_unlock();
2136 #endif
2137 }
2138
token2str(int token)2139 static const char *token2str(int token)
2140 {
2141 const struct match_token *t;
2142
2143 for (t = tokens; t->token != Opt_err; t++)
2144 if (t->token == token && !strchr(t->pattern, '='))
2145 break;
2146 return t->pattern;
2147 }
2148
2149 /*
2150 * Show an option if
2151 * - it's set to a non-default value OR
2152 * - if the per-sb default is different from the global default
2153 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2154 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2155 int nodefs)
2156 {
2157 struct ext4_sb_info *sbi = EXT4_SB(sb);
2158 struct ext4_super_block *es = sbi->s_es;
2159 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2160 const struct mount_opts *m;
2161 char sep = nodefs ? '\n' : ',';
2162
2163 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2164 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2165
2166 if (sbi->s_sb_block != 1)
2167 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2168
2169 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2170 int want_set = m->flags & MOPT_SET;
2171 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2172 (m->flags & MOPT_CLEAR_ERR))
2173 continue;
2174 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2175 continue; /* skip if same as the default */
2176 if ((want_set &&
2177 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2178 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2179 continue; /* select Opt_noFoo vs Opt_Foo */
2180 SEQ_OPTS_PRINT("%s", token2str(m->token));
2181 }
2182
2183 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2184 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2185 SEQ_OPTS_PRINT("resuid=%u",
2186 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2187 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2188 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2189 SEQ_OPTS_PRINT("resgid=%u",
2190 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2191 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2192 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2193 SEQ_OPTS_PUTS("errors=remount-ro");
2194 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2195 SEQ_OPTS_PUTS("errors=continue");
2196 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2197 SEQ_OPTS_PUTS("errors=panic");
2198 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2199 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2200 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2201 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2202 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2203 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2204 if (sb->s_flags & SB_I_VERSION)
2205 SEQ_OPTS_PUTS("i_version");
2206 if (nodefs || sbi->s_stripe)
2207 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2208 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2209 (sbi->s_mount_opt ^ def_mount_opt)) {
2210 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2211 SEQ_OPTS_PUTS("data=journal");
2212 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2213 SEQ_OPTS_PUTS("data=ordered");
2214 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2215 SEQ_OPTS_PUTS("data=writeback");
2216 }
2217 if (nodefs ||
2218 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2219 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2220 sbi->s_inode_readahead_blks);
2221
2222 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2223 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2224 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2225 if (nodefs || sbi->s_max_dir_size_kb)
2226 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2227 if (test_opt(sb, DATA_ERR_ABORT))
2228 SEQ_OPTS_PUTS("data_err=abort");
2229 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2230 SEQ_OPTS_PUTS("test_dummy_encryption");
2231
2232 ext4_show_quota_options(seq, sb);
2233 return 0;
2234 }
2235
ext4_show_options(struct seq_file * seq,struct dentry * root)2236 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2237 {
2238 return _ext4_show_options(seq, root->d_sb, 0);
2239 }
2240
ext4_seq_options_show(struct seq_file * seq,void * offset)2241 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2242 {
2243 struct super_block *sb = seq->private;
2244 int rc;
2245
2246 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2247 rc = _ext4_show_options(seq, sb, 1);
2248 seq_puts(seq, "\n");
2249 return rc;
2250 }
2251
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2252 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2253 int read_only)
2254 {
2255 struct ext4_sb_info *sbi = EXT4_SB(sb);
2256 int err = 0;
2257
2258 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2259 ext4_msg(sb, KERN_ERR, "revision level too high, "
2260 "forcing read-only mode");
2261 err = -EROFS;
2262 goto done;
2263 }
2264 if (read_only)
2265 goto done;
2266 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2267 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2268 "running e2fsck is recommended");
2269 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2270 ext4_msg(sb, KERN_WARNING,
2271 "warning: mounting fs with errors, "
2272 "running e2fsck is recommended");
2273 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2274 le16_to_cpu(es->s_mnt_count) >=
2275 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2276 ext4_msg(sb, KERN_WARNING,
2277 "warning: maximal mount count reached, "
2278 "running e2fsck is recommended");
2279 else if (le32_to_cpu(es->s_checkinterval) &&
2280 (ext4_get_tstamp(es, s_lastcheck) +
2281 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2282 ext4_msg(sb, KERN_WARNING,
2283 "warning: checktime reached, "
2284 "running e2fsck is recommended");
2285 if (!sbi->s_journal)
2286 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2287 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2288 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2289 le16_add_cpu(&es->s_mnt_count, 1);
2290 ext4_update_tstamp(es, s_mtime);
2291 if (sbi->s_journal)
2292 ext4_set_feature_journal_needs_recovery(sb);
2293
2294 err = ext4_commit_super(sb, 1);
2295 done:
2296 if (test_opt(sb, DEBUG))
2297 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2298 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2299 sb->s_blocksize,
2300 sbi->s_groups_count,
2301 EXT4_BLOCKS_PER_GROUP(sb),
2302 EXT4_INODES_PER_GROUP(sb),
2303 sbi->s_mount_opt, sbi->s_mount_opt2);
2304
2305 cleancache_init_fs(sb);
2306 return err;
2307 }
2308
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2309 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2310 {
2311 struct ext4_sb_info *sbi = EXT4_SB(sb);
2312 struct flex_groups **old_groups, **new_groups;
2313 int size, i, j;
2314
2315 if (!sbi->s_log_groups_per_flex)
2316 return 0;
2317
2318 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2319 if (size <= sbi->s_flex_groups_allocated)
2320 return 0;
2321
2322 new_groups = kvzalloc(roundup_pow_of_two(size *
2323 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2324 if (!new_groups) {
2325 ext4_msg(sb, KERN_ERR,
2326 "not enough memory for %d flex group pointers", size);
2327 return -ENOMEM;
2328 }
2329 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2330 new_groups[i] = kvzalloc(roundup_pow_of_two(
2331 sizeof(struct flex_groups)),
2332 GFP_KERNEL);
2333 if (!new_groups[i]) {
2334 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2335 kvfree(new_groups[j]);
2336 kvfree(new_groups);
2337 ext4_msg(sb, KERN_ERR,
2338 "not enough memory for %d flex groups", size);
2339 return -ENOMEM;
2340 }
2341 }
2342 rcu_read_lock();
2343 old_groups = rcu_dereference(sbi->s_flex_groups);
2344 if (old_groups)
2345 memcpy(new_groups, old_groups,
2346 (sbi->s_flex_groups_allocated *
2347 sizeof(struct flex_groups *)));
2348 rcu_read_unlock();
2349 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2350 sbi->s_flex_groups_allocated = size;
2351 if (old_groups)
2352 ext4_kvfree_array_rcu(old_groups);
2353 return 0;
2354 }
2355
ext4_fill_flex_info(struct super_block * sb)2356 static int ext4_fill_flex_info(struct super_block *sb)
2357 {
2358 struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 struct ext4_group_desc *gdp = NULL;
2360 struct flex_groups *fg;
2361 ext4_group_t flex_group;
2362 int i, err;
2363
2364 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2365 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2366 sbi->s_log_groups_per_flex = 0;
2367 return 1;
2368 }
2369
2370 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2371 if (err)
2372 goto failed;
2373
2374 for (i = 0; i < sbi->s_groups_count; i++) {
2375 gdp = ext4_get_group_desc(sb, i, NULL);
2376
2377 flex_group = ext4_flex_group(sbi, i);
2378 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2379 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2380 atomic64_add(ext4_free_group_clusters(sb, gdp),
2381 &fg->free_clusters);
2382 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2383 }
2384
2385 return 1;
2386 failed:
2387 return 0;
2388 }
2389
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2390 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2391 struct ext4_group_desc *gdp)
2392 {
2393 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2394 __u16 crc = 0;
2395 __le32 le_group = cpu_to_le32(block_group);
2396 struct ext4_sb_info *sbi = EXT4_SB(sb);
2397
2398 if (ext4_has_metadata_csum(sbi->s_sb)) {
2399 /* Use new metadata_csum algorithm */
2400 __u32 csum32;
2401 __u16 dummy_csum = 0;
2402
2403 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2404 sizeof(le_group));
2405 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2406 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2407 sizeof(dummy_csum));
2408 offset += sizeof(dummy_csum);
2409 if (offset < sbi->s_desc_size)
2410 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2411 sbi->s_desc_size - offset);
2412
2413 crc = csum32 & 0xFFFF;
2414 goto out;
2415 }
2416
2417 /* old crc16 code */
2418 if (!ext4_has_feature_gdt_csum(sb))
2419 return 0;
2420
2421 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2422 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2423 crc = crc16(crc, (__u8 *)gdp, offset);
2424 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2425 /* for checksum of struct ext4_group_desc do the rest...*/
2426 if (ext4_has_feature_64bit(sb) &&
2427 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2428 crc = crc16(crc, (__u8 *)gdp + offset,
2429 le16_to_cpu(sbi->s_es->s_desc_size) -
2430 offset);
2431
2432 out:
2433 return cpu_to_le16(crc);
2434 }
2435
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2436 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2437 struct ext4_group_desc *gdp)
2438 {
2439 if (ext4_has_group_desc_csum(sb) &&
2440 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2441 return 0;
2442
2443 return 1;
2444 }
2445
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2446 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2447 struct ext4_group_desc *gdp)
2448 {
2449 if (!ext4_has_group_desc_csum(sb))
2450 return;
2451 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2452 }
2453
2454 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2455 static int ext4_check_descriptors(struct super_block *sb,
2456 ext4_fsblk_t sb_block,
2457 ext4_group_t *first_not_zeroed)
2458 {
2459 struct ext4_sb_info *sbi = EXT4_SB(sb);
2460 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2461 ext4_fsblk_t last_block;
2462 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2463 ext4_fsblk_t block_bitmap;
2464 ext4_fsblk_t inode_bitmap;
2465 ext4_fsblk_t inode_table;
2466 int flexbg_flag = 0;
2467 ext4_group_t i, grp = sbi->s_groups_count;
2468
2469 if (ext4_has_feature_flex_bg(sb))
2470 flexbg_flag = 1;
2471
2472 ext4_debug("Checking group descriptors");
2473
2474 for (i = 0; i < sbi->s_groups_count; i++) {
2475 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2476
2477 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2478 last_block = ext4_blocks_count(sbi->s_es) - 1;
2479 else
2480 last_block = first_block +
2481 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2482
2483 if ((grp == sbi->s_groups_count) &&
2484 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2485 grp = i;
2486
2487 block_bitmap = ext4_block_bitmap(sb, gdp);
2488 if (block_bitmap == sb_block) {
2489 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2490 "Block bitmap for group %u overlaps "
2491 "superblock", i);
2492 if (!sb_rdonly(sb))
2493 return 0;
2494 }
2495 if (block_bitmap >= sb_block + 1 &&
2496 block_bitmap <= last_bg_block) {
2497 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2498 "Block bitmap for group %u overlaps "
2499 "block group descriptors", i);
2500 if (!sb_rdonly(sb))
2501 return 0;
2502 }
2503 if (block_bitmap < first_block || block_bitmap > last_block) {
2504 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2505 "Block bitmap for group %u not in group "
2506 "(block %llu)!", i, block_bitmap);
2507 return 0;
2508 }
2509 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2510 if (inode_bitmap == sb_block) {
2511 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2512 "Inode bitmap for group %u overlaps "
2513 "superblock", i);
2514 if (!sb_rdonly(sb))
2515 return 0;
2516 }
2517 if (inode_bitmap >= sb_block + 1 &&
2518 inode_bitmap <= last_bg_block) {
2519 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2520 "Inode bitmap for group %u overlaps "
2521 "block group descriptors", i);
2522 if (!sb_rdonly(sb))
2523 return 0;
2524 }
2525 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2526 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2527 "Inode bitmap for group %u not in group "
2528 "(block %llu)!", i, inode_bitmap);
2529 return 0;
2530 }
2531 inode_table = ext4_inode_table(sb, gdp);
2532 if (inode_table == sb_block) {
2533 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2534 "Inode table for group %u overlaps "
2535 "superblock", i);
2536 if (!sb_rdonly(sb))
2537 return 0;
2538 }
2539 if (inode_table >= sb_block + 1 &&
2540 inode_table <= last_bg_block) {
2541 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2542 "Inode table for group %u overlaps "
2543 "block group descriptors", i);
2544 if (!sb_rdonly(sb))
2545 return 0;
2546 }
2547 if (inode_table < first_block ||
2548 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2549 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2550 "Inode table for group %u not in group "
2551 "(block %llu)!", i, inode_table);
2552 return 0;
2553 }
2554 ext4_lock_group(sb, i);
2555 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2556 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2557 "Checksum for group %u failed (%u!=%u)",
2558 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2559 gdp)), le16_to_cpu(gdp->bg_checksum));
2560 if (!sb_rdonly(sb)) {
2561 ext4_unlock_group(sb, i);
2562 return 0;
2563 }
2564 }
2565 ext4_unlock_group(sb, i);
2566 if (!flexbg_flag)
2567 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2568 }
2569 if (NULL != first_not_zeroed)
2570 *first_not_zeroed = grp;
2571 return 1;
2572 }
2573
2574 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2575 * the superblock) which were deleted from all directories, but held open by
2576 * a process at the time of a crash. We walk the list and try to delete these
2577 * inodes at recovery time (only with a read-write filesystem).
2578 *
2579 * In order to keep the orphan inode chain consistent during traversal (in
2580 * case of crash during recovery), we link each inode into the superblock
2581 * orphan list_head and handle it the same way as an inode deletion during
2582 * normal operation (which journals the operations for us).
2583 *
2584 * We only do an iget() and an iput() on each inode, which is very safe if we
2585 * accidentally point at an in-use or already deleted inode. The worst that
2586 * can happen in this case is that we get a "bit already cleared" message from
2587 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2588 * e2fsck was run on this filesystem, and it must have already done the orphan
2589 * inode cleanup for us, so we can safely abort without any further action.
2590 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2591 static void ext4_orphan_cleanup(struct super_block *sb,
2592 struct ext4_super_block *es)
2593 {
2594 unsigned int s_flags = sb->s_flags;
2595 int ret, nr_orphans = 0, nr_truncates = 0;
2596 #ifdef CONFIG_QUOTA
2597 int quota_update = 0;
2598 int i;
2599 #endif
2600 if (!es->s_last_orphan) {
2601 jbd_debug(4, "no orphan inodes to clean up\n");
2602 return;
2603 }
2604
2605 if (bdev_read_only(sb->s_bdev)) {
2606 ext4_msg(sb, KERN_ERR, "write access "
2607 "unavailable, skipping orphan cleanup");
2608 return;
2609 }
2610
2611 /* Check if feature set would not allow a r/w mount */
2612 if (!ext4_feature_set_ok(sb, 0)) {
2613 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2614 "unknown ROCOMPAT features");
2615 return;
2616 }
2617
2618 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2619 /* don't clear list on RO mount w/ errors */
2620 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2621 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2622 "clearing orphan list.\n");
2623 es->s_last_orphan = 0;
2624 }
2625 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2626 return;
2627 }
2628
2629 if (s_flags & SB_RDONLY) {
2630 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2631 sb->s_flags &= ~SB_RDONLY;
2632 }
2633 #ifdef CONFIG_QUOTA
2634 /* Needed for iput() to work correctly and not trash data */
2635 sb->s_flags |= SB_ACTIVE;
2636
2637 /*
2638 * Turn on quotas which were not enabled for read-only mounts if
2639 * filesystem has quota feature, so that they are updated correctly.
2640 */
2641 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2642 int ret = ext4_enable_quotas(sb);
2643
2644 if (!ret)
2645 quota_update = 1;
2646 else
2647 ext4_msg(sb, KERN_ERR,
2648 "Cannot turn on quotas: error %d", ret);
2649 }
2650
2651 /* Turn on journaled quotas used for old sytle */
2652 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2653 if (EXT4_SB(sb)->s_qf_names[i]) {
2654 int ret = ext4_quota_on_mount(sb, i);
2655
2656 if (!ret)
2657 quota_update = 1;
2658 else
2659 ext4_msg(sb, KERN_ERR,
2660 "Cannot turn on journaled "
2661 "quota: type %d: error %d", i, ret);
2662 }
2663 }
2664 #endif
2665
2666 while (es->s_last_orphan) {
2667 struct inode *inode;
2668
2669 /*
2670 * We may have encountered an error during cleanup; if
2671 * so, skip the rest.
2672 */
2673 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2674 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2675 es->s_last_orphan = 0;
2676 break;
2677 }
2678
2679 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2680 if (IS_ERR(inode)) {
2681 es->s_last_orphan = 0;
2682 break;
2683 }
2684
2685 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2686 dquot_initialize(inode);
2687 if (inode->i_nlink) {
2688 if (test_opt(sb, DEBUG))
2689 ext4_msg(sb, KERN_DEBUG,
2690 "%s: truncating inode %lu to %lld bytes",
2691 __func__, inode->i_ino, inode->i_size);
2692 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2693 inode->i_ino, inode->i_size);
2694 inode_lock(inode);
2695 truncate_inode_pages(inode->i_mapping, inode->i_size);
2696 ret = ext4_truncate(inode);
2697 if (ret)
2698 ext4_std_error(inode->i_sb, ret);
2699 inode_unlock(inode);
2700 nr_truncates++;
2701 } else {
2702 if (test_opt(sb, DEBUG))
2703 ext4_msg(sb, KERN_DEBUG,
2704 "%s: deleting unreferenced inode %lu",
2705 __func__, inode->i_ino);
2706 jbd_debug(2, "deleting unreferenced inode %lu\n",
2707 inode->i_ino);
2708 nr_orphans++;
2709 }
2710 iput(inode); /* The delete magic happens here! */
2711 }
2712
2713 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2714
2715 if (nr_orphans)
2716 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2717 PLURAL(nr_orphans));
2718 if (nr_truncates)
2719 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2720 PLURAL(nr_truncates));
2721 #ifdef CONFIG_QUOTA
2722 /* Turn off quotas if they were enabled for orphan cleanup */
2723 if (quota_update) {
2724 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2725 if (sb_dqopt(sb)->files[i])
2726 dquot_quota_off(sb, i);
2727 }
2728 }
2729 #endif
2730 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2731 }
2732
2733 /*
2734 * Maximal extent format file size.
2735 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2736 * extent format containers, within a sector_t, and within i_blocks
2737 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2738 * so that won't be a limiting factor.
2739 *
2740 * However there is other limiting factor. We do store extents in the form
2741 * of starting block and length, hence the resulting length of the extent
2742 * covering maximum file size must fit into on-disk format containers as
2743 * well. Given that length is always by 1 unit bigger than max unit (because
2744 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2745 *
2746 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2747 */
ext4_max_size(int blkbits,int has_huge_files)2748 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2749 {
2750 loff_t res;
2751 loff_t upper_limit = MAX_LFS_FILESIZE;
2752
2753 /* small i_blocks in vfs inode? */
2754 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2755 /*
2756 * CONFIG_LBDAF is not enabled implies the inode
2757 * i_block represent total blocks in 512 bytes
2758 * 32 == size of vfs inode i_blocks * 8
2759 */
2760 upper_limit = (1LL << 32) - 1;
2761
2762 /* total blocks in file system block size */
2763 upper_limit >>= (blkbits - 9);
2764 upper_limit <<= blkbits;
2765 }
2766
2767 /*
2768 * 32-bit extent-start container, ee_block. We lower the maxbytes
2769 * by one fs block, so ee_len can cover the extent of maximum file
2770 * size
2771 */
2772 res = (1LL << 32) - 1;
2773 res <<= blkbits;
2774
2775 /* Sanity check against vm- & vfs- imposed limits */
2776 if (res > upper_limit)
2777 res = upper_limit;
2778
2779 return res;
2780 }
2781
2782 /*
2783 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2784 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2785 * We need to be 1 filesystem block less than the 2^48 sector limit.
2786 */
ext4_max_bitmap_size(int bits,int has_huge_files)2787 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2788 {
2789 loff_t res = EXT4_NDIR_BLOCKS;
2790 int meta_blocks;
2791 loff_t upper_limit;
2792 /* This is calculated to be the largest file size for a dense, block
2793 * mapped file such that the file's total number of 512-byte sectors,
2794 * including data and all indirect blocks, does not exceed (2^48 - 1).
2795 *
2796 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2797 * number of 512-byte sectors of the file.
2798 */
2799
2800 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2801 /*
2802 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2803 * the inode i_block field represents total file blocks in
2804 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2805 */
2806 upper_limit = (1LL << 32) - 1;
2807
2808 /* total blocks in file system block size */
2809 upper_limit >>= (bits - 9);
2810
2811 } else {
2812 /*
2813 * We use 48 bit ext4_inode i_blocks
2814 * With EXT4_HUGE_FILE_FL set the i_blocks
2815 * represent total number of blocks in
2816 * file system block size
2817 */
2818 upper_limit = (1LL << 48) - 1;
2819
2820 }
2821
2822 /* indirect blocks */
2823 meta_blocks = 1;
2824 /* double indirect blocks */
2825 meta_blocks += 1 + (1LL << (bits-2));
2826 /* tripple indirect blocks */
2827 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2828
2829 upper_limit -= meta_blocks;
2830 upper_limit <<= bits;
2831
2832 res += 1LL << (bits-2);
2833 res += 1LL << (2*(bits-2));
2834 res += 1LL << (3*(bits-2));
2835 res <<= bits;
2836 if (res > upper_limit)
2837 res = upper_limit;
2838
2839 if (res > MAX_LFS_FILESIZE)
2840 res = MAX_LFS_FILESIZE;
2841
2842 return res;
2843 }
2844
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2845 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2846 ext4_fsblk_t logical_sb_block, int nr)
2847 {
2848 struct ext4_sb_info *sbi = EXT4_SB(sb);
2849 ext4_group_t bg, first_meta_bg;
2850 int has_super = 0;
2851
2852 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2853
2854 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2855 return logical_sb_block + nr + 1;
2856 bg = sbi->s_desc_per_block * nr;
2857 if (ext4_bg_has_super(sb, bg))
2858 has_super = 1;
2859
2860 /*
2861 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2862 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2863 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2864 * compensate.
2865 */
2866 if (sb->s_blocksize == 1024 && nr == 0 &&
2867 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2868 has_super++;
2869
2870 return (has_super + ext4_group_first_block_no(sb, bg));
2871 }
2872
2873 /**
2874 * ext4_get_stripe_size: Get the stripe size.
2875 * @sbi: In memory super block info
2876 *
2877 * If we have specified it via mount option, then
2878 * use the mount option value. If the value specified at mount time is
2879 * greater than the blocks per group use the super block value.
2880 * If the super block value is greater than blocks per group return 0.
2881 * Allocator needs it be less than blocks per group.
2882 *
2883 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2884 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2885 {
2886 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2887 unsigned long stripe_width =
2888 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2889 int ret;
2890
2891 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2892 ret = sbi->s_stripe;
2893 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2894 ret = stripe_width;
2895 else if (stride && stride <= sbi->s_blocks_per_group)
2896 ret = stride;
2897 else
2898 ret = 0;
2899
2900 /*
2901 * If the stripe width is 1, this makes no sense and
2902 * we set it to 0 to turn off stripe handling code.
2903 */
2904 if (ret <= 1)
2905 ret = 0;
2906
2907 return ret;
2908 }
2909
2910 /*
2911 * Check whether this filesystem can be mounted based on
2912 * the features present and the RDONLY/RDWR mount requested.
2913 * Returns 1 if this filesystem can be mounted as requested,
2914 * 0 if it cannot be.
2915 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2916 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2917 {
2918 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2919 ext4_msg(sb, KERN_ERR,
2920 "Couldn't mount because of "
2921 "unsupported optional features (%x)",
2922 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2923 ~EXT4_FEATURE_INCOMPAT_SUPP));
2924 return 0;
2925 }
2926
2927 if (readonly)
2928 return 1;
2929
2930 if (ext4_has_feature_readonly(sb)) {
2931 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2932 sb->s_flags |= SB_RDONLY;
2933 return 1;
2934 }
2935
2936 /* Check that feature set is OK for a read-write mount */
2937 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2938 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2939 "unsupported optional features (%x)",
2940 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2941 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2942 return 0;
2943 }
2944 /*
2945 * Large file size enabled file system can only be mounted
2946 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2947 */
2948 if (ext4_has_feature_huge_file(sb)) {
2949 if (sizeof(blkcnt_t) < sizeof(u64)) {
2950 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2951 "cannot be mounted RDWR without "
2952 "CONFIG_LBDAF");
2953 return 0;
2954 }
2955 }
2956 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2957 ext4_msg(sb, KERN_ERR,
2958 "Can't support bigalloc feature without "
2959 "extents feature\n");
2960 return 0;
2961 }
2962
2963 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
2964 if (!readonly && (ext4_has_feature_quota(sb) ||
2965 ext4_has_feature_project(sb))) {
2966 ext4_msg(sb, KERN_ERR,
2967 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
2968 return 0;
2969 }
2970 #endif /* CONFIG_QUOTA */
2971 return 1;
2972 }
2973
2974 /*
2975 * This function is called once a day if we have errors logged
2976 * on the file system
2977 */
print_daily_error_info(struct timer_list * t)2978 static void print_daily_error_info(struct timer_list *t)
2979 {
2980 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2981 struct super_block *sb = sbi->s_sb;
2982 struct ext4_super_block *es = sbi->s_es;
2983
2984 if (es->s_error_count)
2985 /* fsck newer than v1.41.13 is needed to clean this condition. */
2986 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2987 le32_to_cpu(es->s_error_count));
2988 if (es->s_first_error_time) {
2989 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2990 sb->s_id,
2991 ext4_get_tstamp(es, s_first_error_time),
2992 (int) sizeof(es->s_first_error_func),
2993 es->s_first_error_func,
2994 le32_to_cpu(es->s_first_error_line));
2995 if (es->s_first_error_ino)
2996 printk(KERN_CONT ": inode %u",
2997 le32_to_cpu(es->s_first_error_ino));
2998 if (es->s_first_error_block)
2999 printk(KERN_CONT ": block %llu", (unsigned long long)
3000 le64_to_cpu(es->s_first_error_block));
3001 printk(KERN_CONT "\n");
3002 }
3003 if (es->s_last_error_time) {
3004 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3005 sb->s_id,
3006 ext4_get_tstamp(es, s_last_error_time),
3007 (int) sizeof(es->s_last_error_func),
3008 es->s_last_error_func,
3009 le32_to_cpu(es->s_last_error_line));
3010 if (es->s_last_error_ino)
3011 printk(KERN_CONT ": inode %u",
3012 le32_to_cpu(es->s_last_error_ino));
3013 if (es->s_last_error_block)
3014 printk(KERN_CONT ": block %llu", (unsigned long long)
3015 le64_to_cpu(es->s_last_error_block));
3016 printk(KERN_CONT "\n");
3017 }
3018 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3019 }
3020
3021 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3022 static int ext4_run_li_request(struct ext4_li_request *elr)
3023 {
3024 struct ext4_group_desc *gdp = NULL;
3025 ext4_group_t group, ngroups;
3026 struct super_block *sb;
3027 unsigned long timeout = 0;
3028 int ret = 0;
3029
3030 sb = elr->lr_super;
3031 ngroups = EXT4_SB(sb)->s_groups_count;
3032
3033 for (group = elr->lr_next_group; group < ngroups; group++) {
3034 gdp = ext4_get_group_desc(sb, group, NULL);
3035 if (!gdp) {
3036 ret = 1;
3037 break;
3038 }
3039
3040 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3041 break;
3042 }
3043
3044 if (group >= ngroups)
3045 ret = 1;
3046
3047 if (!ret) {
3048 timeout = jiffies;
3049 ret = ext4_init_inode_table(sb, group,
3050 elr->lr_timeout ? 0 : 1);
3051 if (elr->lr_timeout == 0) {
3052 timeout = (jiffies - timeout) *
3053 elr->lr_sbi->s_li_wait_mult;
3054 elr->lr_timeout = timeout;
3055 }
3056 elr->lr_next_sched = jiffies + elr->lr_timeout;
3057 elr->lr_next_group = group + 1;
3058 }
3059 return ret;
3060 }
3061
3062 /*
3063 * Remove lr_request from the list_request and free the
3064 * request structure. Should be called with li_list_mtx held
3065 */
ext4_remove_li_request(struct ext4_li_request * elr)3066 static void ext4_remove_li_request(struct ext4_li_request *elr)
3067 {
3068 struct ext4_sb_info *sbi;
3069
3070 if (!elr)
3071 return;
3072
3073 sbi = elr->lr_sbi;
3074
3075 list_del(&elr->lr_request);
3076 sbi->s_li_request = NULL;
3077 kfree(elr);
3078 }
3079
ext4_unregister_li_request(struct super_block * sb)3080 static void ext4_unregister_li_request(struct super_block *sb)
3081 {
3082 mutex_lock(&ext4_li_mtx);
3083 if (!ext4_li_info) {
3084 mutex_unlock(&ext4_li_mtx);
3085 return;
3086 }
3087
3088 mutex_lock(&ext4_li_info->li_list_mtx);
3089 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3090 mutex_unlock(&ext4_li_info->li_list_mtx);
3091 mutex_unlock(&ext4_li_mtx);
3092 }
3093
3094 static struct task_struct *ext4_lazyinit_task;
3095
3096 /*
3097 * This is the function where ext4lazyinit thread lives. It walks
3098 * through the request list searching for next scheduled filesystem.
3099 * When such a fs is found, run the lazy initialization request
3100 * (ext4_rn_li_request) and keep track of the time spend in this
3101 * function. Based on that time we compute next schedule time of
3102 * the request. When walking through the list is complete, compute
3103 * next waking time and put itself into sleep.
3104 */
ext4_lazyinit_thread(void * arg)3105 static int ext4_lazyinit_thread(void *arg)
3106 {
3107 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3108 struct list_head *pos, *n;
3109 struct ext4_li_request *elr;
3110 unsigned long next_wakeup, cur;
3111
3112 BUG_ON(NULL == eli);
3113
3114 cont_thread:
3115 while (true) {
3116 next_wakeup = MAX_JIFFY_OFFSET;
3117
3118 mutex_lock(&eli->li_list_mtx);
3119 if (list_empty(&eli->li_request_list)) {
3120 mutex_unlock(&eli->li_list_mtx);
3121 goto exit_thread;
3122 }
3123 list_for_each_safe(pos, n, &eli->li_request_list) {
3124 int err = 0;
3125 int progress = 0;
3126 elr = list_entry(pos, struct ext4_li_request,
3127 lr_request);
3128
3129 if (time_before(jiffies, elr->lr_next_sched)) {
3130 if (time_before(elr->lr_next_sched, next_wakeup))
3131 next_wakeup = elr->lr_next_sched;
3132 continue;
3133 }
3134 if (down_read_trylock(&elr->lr_super->s_umount)) {
3135 if (sb_start_write_trylock(elr->lr_super)) {
3136 progress = 1;
3137 /*
3138 * We hold sb->s_umount, sb can not
3139 * be removed from the list, it is
3140 * now safe to drop li_list_mtx
3141 */
3142 mutex_unlock(&eli->li_list_mtx);
3143 err = ext4_run_li_request(elr);
3144 sb_end_write(elr->lr_super);
3145 mutex_lock(&eli->li_list_mtx);
3146 n = pos->next;
3147 }
3148 up_read((&elr->lr_super->s_umount));
3149 }
3150 /* error, remove the lazy_init job */
3151 if (err) {
3152 ext4_remove_li_request(elr);
3153 continue;
3154 }
3155 if (!progress) {
3156 elr->lr_next_sched = jiffies +
3157 (prandom_u32()
3158 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3159 }
3160 if (time_before(elr->lr_next_sched, next_wakeup))
3161 next_wakeup = elr->lr_next_sched;
3162 }
3163 mutex_unlock(&eli->li_list_mtx);
3164
3165 try_to_freeze();
3166
3167 cur = jiffies;
3168 if ((time_after_eq(cur, next_wakeup)) ||
3169 (MAX_JIFFY_OFFSET == next_wakeup)) {
3170 cond_resched();
3171 continue;
3172 }
3173
3174 schedule_timeout_interruptible(next_wakeup - cur);
3175
3176 if (kthread_should_stop()) {
3177 ext4_clear_request_list();
3178 goto exit_thread;
3179 }
3180 }
3181
3182 exit_thread:
3183 /*
3184 * It looks like the request list is empty, but we need
3185 * to check it under the li_list_mtx lock, to prevent any
3186 * additions into it, and of course we should lock ext4_li_mtx
3187 * to atomically free the list and ext4_li_info, because at
3188 * this point another ext4 filesystem could be registering
3189 * new one.
3190 */
3191 mutex_lock(&ext4_li_mtx);
3192 mutex_lock(&eli->li_list_mtx);
3193 if (!list_empty(&eli->li_request_list)) {
3194 mutex_unlock(&eli->li_list_mtx);
3195 mutex_unlock(&ext4_li_mtx);
3196 goto cont_thread;
3197 }
3198 mutex_unlock(&eli->li_list_mtx);
3199 kfree(ext4_li_info);
3200 ext4_li_info = NULL;
3201 mutex_unlock(&ext4_li_mtx);
3202
3203 return 0;
3204 }
3205
ext4_clear_request_list(void)3206 static void ext4_clear_request_list(void)
3207 {
3208 struct list_head *pos, *n;
3209 struct ext4_li_request *elr;
3210
3211 mutex_lock(&ext4_li_info->li_list_mtx);
3212 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3213 elr = list_entry(pos, struct ext4_li_request,
3214 lr_request);
3215 ext4_remove_li_request(elr);
3216 }
3217 mutex_unlock(&ext4_li_info->li_list_mtx);
3218 }
3219
ext4_run_lazyinit_thread(void)3220 static int ext4_run_lazyinit_thread(void)
3221 {
3222 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3223 ext4_li_info, "ext4lazyinit");
3224 if (IS_ERR(ext4_lazyinit_task)) {
3225 int err = PTR_ERR(ext4_lazyinit_task);
3226 ext4_clear_request_list();
3227 kfree(ext4_li_info);
3228 ext4_li_info = NULL;
3229 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3230 "initialization thread\n",
3231 err);
3232 return err;
3233 }
3234 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3235 return 0;
3236 }
3237
3238 /*
3239 * Check whether it make sense to run itable init. thread or not.
3240 * If there is at least one uninitialized inode table, return
3241 * corresponding group number, else the loop goes through all
3242 * groups and return total number of groups.
3243 */
ext4_has_uninit_itable(struct super_block * sb)3244 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3245 {
3246 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3247 struct ext4_group_desc *gdp = NULL;
3248
3249 if (!ext4_has_group_desc_csum(sb))
3250 return ngroups;
3251
3252 for (group = 0; group < ngroups; group++) {
3253 gdp = ext4_get_group_desc(sb, group, NULL);
3254 if (!gdp)
3255 continue;
3256
3257 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3258 break;
3259 }
3260
3261 return group;
3262 }
3263
ext4_li_info_new(void)3264 static int ext4_li_info_new(void)
3265 {
3266 struct ext4_lazy_init *eli = NULL;
3267
3268 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3269 if (!eli)
3270 return -ENOMEM;
3271
3272 INIT_LIST_HEAD(&eli->li_request_list);
3273 mutex_init(&eli->li_list_mtx);
3274
3275 eli->li_state |= EXT4_LAZYINIT_QUIT;
3276
3277 ext4_li_info = eli;
3278
3279 return 0;
3280 }
3281
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3282 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3283 ext4_group_t start)
3284 {
3285 struct ext4_sb_info *sbi = EXT4_SB(sb);
3286 struct ext4_li_request *elr;
3287
3288 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3289 if (!elr)
3290 return NULL;
3291
3292 elr->lr_super = sb;
3293 elr->lr_sbi = sbi;
3294 elr->lr_next_group = start;
3295
3296 /*
3297 * Randomize first schedule time of the request to
3298 * spread the inode table initialization requests
3299 * better.
3300 */
3301 elr->lr_next_sched = jiffies + (prandom_u32() %
3302 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3303 return elr;
3304 }
3305
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3306 int ext4_register_li_request(struct super_block *sb,
3307 ext4_group_t first_not_zeroed)
3308 {
3309 struct ext4_sb_info *sbi = EXT4_SB(sb);
3310 struct ext4_li_request *elr = NULL;
3311 ext4_group_t ngroups = sbi->s_groups_count;
3312 int ret = 0;
3313
3314 mutex_lock(&ext4_li_mtx);
3315 if (sbi->s_li_request != NULL) {
3316 /*
3317 * Reset timeout so it can be computed again, because
3318 * s_li_wait_mult might have changed.
3319 */
3320 sbi->s_li_request->lr_timeout = 0;
3321 goto out;
3322 }
3323
3324 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3325 !test_opt(sb, INIT_INODE_TABLE))
3326 goto out;
3327
3328 elr = ext4_li_request_new(sb, first_not_zeroed);
3329 if (!elr) {
3330 ret = -ENOMEM;
3331 goto out;
3332 }
3333
3334 if (NULL == ext4_li_info) {
3335 ret = ext4_li_info_new();
3336 if (ret)
3337 goto out;
3338 }
3339
3340 mutex_lock(&ext4_li_info->li_list_mtx);
3341 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3342 mutex_unlock(&ext4_li_info->li_list_mtx);
3343
3344 sbi->s_li_request = elr;
3345 /*
3346 * set elr to NULL here since it has been inserted to
3347 * the request_list and the removal and free of it is
3348 * handled by ext4_clear_request_list from now on.
3349 */
3350 elr = NULL;
3351
3352 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3353 ret = ext4_run_lazyinit_thread();
3354 if (ret)
3355 goto out;
3356 }
3357 out:
3358 mutex_unlock(&ext4_li_mtx);
3359 if (ret)
3360 kfree(elr);
3361 return ret;
3362 }
3363
3364 /*
3365 * We do not need to lock anything since this is called on
3366 * module unload.
3367 */
ext4_destroy_lazyinit_thread(void)3368 static void ext4_destroy_lazyinit_thread(void)
3369 {
3370 /*
3371 * If thread exited earlier
3372 * there's nothing to be done.
3373 */
3374 if (!ext4_li_info || !ext4_lazyinit_task)
3375 return;
3376
3377 kthread_stop(ext4_lazyinit_task);
3378 }
3379
set_journal_csum_feature_set(struct super_block * sb)3380 static int set_journal_csum_feature_set(struct super_block *sb)
3381 {
3382 int ret = 1;
3383 int compat, incompat;
3384 struct ext4_sb_info *sbi = EXT4_SB(sb);
3385
3386 if (ext4_has_metadata_csum(sb)) {
3387 /* journal checksum v3 */
3388 compat = 0;
3389 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3390 } else {
3391 /* journal checksum v1 */
3392 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3393 incompat = 0;
3394 }
3395
3396 jbd2_journal_clear_features(sbi->s_journal,
3397 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3398 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3399 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3400 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3401 ret = jbd2_journal_set_features(sbi->s_journal,
3402 compat, 0,
3403 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3404 incompat);
3405 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3406 ret = jbd2_journal_set_features(sbi->s_journal,
3407 compat, 0,
3408 incompat);
3409 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3410 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3411 } else {
3412 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3413 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3414 }
3415
3416 return ret;
3417 }
3418
3419 /*
3420 * Note: calculating the overhead so we can be compatible with
3421 * historical BSD practice is quite difficult in the face of
3422 * clusters/bigalloc. This is because multiple metadata blocks from
3423 * different block group can end up in the same allocation cluster.
3424 * Calculating the exact overhead in the face of clustered allocation
3425 * requires either O(all block bitmaps) in memory or O(number of block
3426 * groups**2) in time. We will still calculate the superblock for
3427 * older file systems --- and if we come across with a bigalloc file
3428 * system with zero in s_overhead_clusters the estimate will be close to
3429 * correct especially for very large cluster sizes --- but for newer
3430 * file systems, it's better to calculate this figure once at mkfs
3431 * time, and store it in the superblock. If the superblock value is
3432 * present (even for non-bigalloc file systems), we will use it.
3433 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3434 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3435 char *buf)
3436 {
3437 struct ext4_sb_info *sbi = EXT4_SB(sb);
3438 struct ext4_group_desc *gdp;
3439 ext4_fsblk_t first_block, last_block, b;
3440 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3441 int s, j, count = 0;
3442
3443 if (!ext4_has_feature_bigalloc(sb))
3444 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3445 sbi->s_itb_per_group + 2);
3446
3447 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3448 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3449 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3450 for (i = 0; i < ngroups; i++) {
3451 gdp = ext4_get_group_desc(sb, i, NULL);
3452 b = ext4_block_bitmap(sb, gdp);
3453 if (b >= first_block && b <= last_block) {
3454 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3455 count++;
3456 }
3457 b = ext4_inode_bitmap(sb, gdp);
3458 if (b >= first_block && b <= last_block) {
3459 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3460 count++;
3461 }
3462 b = ext4_inode_table(sb, gdp);
3463 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3464 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3465 int c = EXT4_B2C(sbi, b - first_block);
3466 ext4_set_bit(c, buf);
3467 count++;
3468 }
3469 if (i != grp)
3470 continue;
3471 s = 0;
3472 if (ext4_bg_has_super(sb, grp)) {
3473 ext4_set_bit(s++, buf);
3474 count++;
3475 }
3476 j = ext4_bg_num_gdb(sb, grp);
3477 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3478 ext4_error(sb, "Invalid number of block group "
3479 "descriptor blocks: %d", j);
3480 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3481 }
3482 count += j;
3483 for (; j > 0; j--)
3484 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3485 }
3486 if (!count)
3487 return 0;
3488 return EXT4_CLUSTERS_PER_GROUP(sb) -
3489 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3490 }
3491
3492 /*
3493 * Compute the overhead and stash it in sbi->s_overhead
3494 */
ext4_calculate_overhead(struct super_block * sb)3495 int ext4_calculate_overhead(struct super_block *sb)
3496 {
3497 struct ext4_sb_info *sbi = EXT4_SB(sb);
3498 struct ext4_super_block *es = sbi->s_es;
3499 struct inode *j_inode;
3500 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3501 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3502 ext4_fsblk_t overhead = 0;
3503 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3504
3505 if (!buf)
3506 return -ENOMEM;
3507
3508 /*
3509 * Compute the overhead (FS structures). This is constant
3510 * for a given filesystem unless the number of block groups
3511 * changes so we cache the previous value until it does.
3512 */
3513
3514 /*
3515 * All of the blocks before first_data_block are overhead
3516 */
3517 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3518
3519 /*
3520 * Add the overhead found in each block group
3521 */
3522 for (i = 0; i < ngroups; i++) {
3523 int blks;
3524
3525 blks = count_overhead(sb, i, buf);
3526 overhead += blks;
3527 if (blks)
3528 memset(buf, 0, PAGE_SIZE);
3529 cond_resched();
3530 }
3531
3532 /*
3533 * Add the internal journal blocks whether the journal has been
3534 * loaded or not
3535 */
3536 if (sbi->s_journal && !sbi->journal_bdev)
3537 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3538 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3539 /* j_inum for internal journal is non-zero */
3540 j_inode = ext4_get_journal_inode(sb, j_inum);
3541 if (j_inode) {
3542 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3543 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3544 iput(j_inode);
3545 } else {
3546 ext4_msg(sb, KERN_ERR, "can't get journal size");
3547 }
3548 }
3549 sbi->s_overhead = overhead;
3550 smp_wmb();
3551 free_page((unsigned long) buf);
3552 return 0;
3553 }
3554
ext4_set_resv_clusters(struct super_block * sb)3555 static void ext4_set_resv_clusters(struct super_block *sb)
3556 {
3557 ext4_fsblk_t resv_clusters;
3558 struct ext4_sb_info *sbi = EXT4_SB(sb);
3559
3560 /*
3561 * There's no need to reserve anything when we aren't using extents.
3562 * The space estimates are exact, there are no unwritten extents,
3563 * hole punching doesn't need new metadata... This is needed especially
3564 * to keep ext2/3 backward compatibility.
3565 */
3566 if (!ext4_has_feature_extents(sb))
3567 return;
3568 /*
3569 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3570 * This should cover the situations where we can not afford to run
3571 * out of space like for example punch hole, or converting
3572 * unwritten extents in delalloc path. In most cases such
3573 * allocation would require 1, or 2 blocks, higher numbers are
3574 * very rare.
3575 */
3576 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3577 sbi->s_cluster_bits);
3578
3579 do_div(resv_clusters, 50);
3580 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3581
3582 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3583 }
3584
ext4_fill_super(struct super_block * sb,void * data,int silent)3585 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3586 {
3587 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3588 char *orig_data = kstrdup(data, GFP_KERNEL);
3589 struct buffer_head *bh, **group_desc;
3590 struct ext4_super_block *es = NULL;
3591 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3592 struct flex_groups **flex_groups;
3593 ext4_fsblk_t block;
3594 ext4_fsblk_t sb_block = get_sb_block(&data);
3595 ext4_fsblk_t logical_sb_block;
3596 unsigned long offset = 0;
3597 unsigned long journal_devnum = 0;
3598 unsigned long def_mount_opts;
3599 struct inode *root;
3600 const char *descr;
3601 int ret = -ENOMEM;
3602 int blocksize, clustersize;
3603 unsigned int db_count;
3604 unsigned int i;
3605 int needs_recovery, has_huge_files, has_bigalloc;
3606 __u64 blocks_count;
3607 int err = 0;
3608 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3609 ext4_group_t first_not_zeroed;
3610
3611 if ((data && !orig_data) || !sbi)
3612 goto out_free_base;
3613
3614 sbi->s_daxdev = dax_dev;
3615 sbi->s_blockgroup_lock =
3616 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3617 if (!sbi->s_blockgroup_lock)
3618 goto out_free_base;
3619
3620 sb->s_fs_info = sbi;
3621 sbi->s_sb = sb;
3622 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3623 sbi->s_sb_block = sb_block;
3624 if (sb->s_bdev->bd_part)
3625 sbi->s_sectors_written_start =
3626 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3627
3628 /* Cleanup superblock name */
3629 strreplace(sb->s_id, '/', '!');
3630
3631 /* -EINVAL is default */
3632 ret = -EINVAL;
3633 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3634 if (!blocksize) {
3635 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3636 goto out_fail;
3637 }
3638
3639 /*
3640 * The ext4 superblock will not be buffer aligned for other than 1kB
3641 * block sizes. We need to calculate the offset from buffer start.
3642 */
3643 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3644 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3645 offset = do_div(logical_sb_block, blocksize);
3646 } else {
3647 logical_sb_block = sb_block;
3648 }
3649
3650 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3651 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3652 goto out_fail;
3653 }
3654 /*
3655 * Note: s_es must be initialized as soon as possible because
3656 * some ext4 macro-instructions depend on its value
3657 */
3658 es = (struct ext4_super_block *) (bh->b_data + offset);
3659 sbi->s_es = es;
3660 sb->s_magic = le16_to_cpu(es->s_magic);
3661 if (sb->s_magic != EXT4_SUPER_MAGIC)
3662 goto cantfind_ext4;
3663 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3664
3665 /* Warn if metadata_csum and gdt_csum are both set. */
3666 if (ext4_has_feature_metadata_csum(sb) &&
3667 ext4_has_feature_gdt_csum(sb))
3668 ext4_warning(sb, "metadata_csum and uninit_bg are "
3669 "redundant flags; please run fsck.");
3670
3671 /* Check for a known checksum algorithm */
3672 if (!ext4_verify_csum_type(sb, es)) {
3673 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3674 "unknown checksum algorithm.");
3675 silent = 1;
3676 goto cantfind_ext4;
3677 }
3678
3679 /* Load the checksum driver */
3680 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3681 if (IS_ERR(sbi->s_chksum_driver)) {
3682 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3683 ret = PTR_ERR(sbi->s_chksum_driver);
3684 sbi->s_chksum_driver = NULL;
3685 goto failed_mount;
3686 }
3687
3688 /* Check superblock checksum */
3689 if (!ext4_superblock_csum_verify(sb, es)) {
3690 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3691 "invalid superblock checksum. Run e2fsck?");
3692 silent = 1;
3693 ret = -EFSBADCRC;
3694 goto cantfind_ext4;
3695 }
3696
3697 /* Precompute checksum seed for all metadata */
3698 if (ext4_has_feature_csum_seed(sb))
3699 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3700 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3701 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3702 sizeof(es->s_uuid));
3703
3704 /* Set defaults before we parse the mount options */
3705 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3706 set_opt(sb, INIT_INODE_TABLE);
3707 if (def_mount_opts & EXT4_DEFM_DEBUG)
3708 set_opt(sb, DEBUG);
3709 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3710 set_opt(sb, GRPID);
3711 if (def_mount_opts & EXT4_DEFM_UID16)
3712 set_opt(sb, NO_UID32);
3713 /* xattr user namespace & acls are now defaulted on */
3714 set_opt(sb, XATTR_USER);
3715 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3716 set_opt(sb, POSIX_ACL);
3717 #endif
3718 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3719 if (ext4_has_metadata_csum(sb))
3720 set_opt(sb, JOURNAL_CHECKSUM);
3721
3722 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3723 set_opt(sb, JOURNAL_DATA);
3724 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3725 set_opt(sb, ORDERED_DATA);
3726 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3727 set_opt(sb, WRITEBACK_DATA);
3728
3729 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3730 set_opt(sb, ERRORS_PANIC);
3731 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3732 set_opt(sb, ERRORS_CONT);
3733 else
3734 set_opt(sb, ERRORS_RO);
3735 /* block_validity enabled by default; disable with noblock_validity */
3736 set_opt(sb, BLOCK_VALIDITY);
3737 if (def_mount_opts & EXT4_DEFM_DISCARD)
3738 set_opt(sb, DISCARD);
3739
3740 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3741 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3742 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3743 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3744 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3745
3746 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3747 set_opt(sb, BARRIER);
3748
3749 /*
3750 * enable delayed allocation by default
3751 * Use -o nodelalloc to turn it off
3752 */
3753 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3754 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3755 set_opt(sb, DELALLOC);
3756
3757 /*
3758 * set default s_li_wait_mult for lazyinit, for the case there is
3759 * no mount option specified.
3760 */
3761 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3762
3763 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3764 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3765 blocksize > EXT4_MAX_BLOCK_SIZE) {
3766 ext4_msg(sb, KERN_ERR,
3767 "Unsupported filesystem blocksize %d (%d log_block_size)",
3768 blocksize, le32_to_cpu(es->s_log_block_size));
3769 goto failed_mount;
3770 }
3771
3772 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3773 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3774 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3775 } else {
3776 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3777 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3778 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3779 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3780 sbi->s_first_ino);
3781 goto failed_mount;
3782 }
3783 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3784 (!is_power_of_2(sbi->s_inode_size)) ||
3785 (sbi->s_inode_size > blocksize)) {
3786 ext4_msg(sb, KERN_ERR,
3787 "unsupported inode size: %d",
3788 sbi->s_inode_size);
3789 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3790 goto failed_mount;
3791 }
3792 /*
3793 * i_atime_extra is the last extra field available for
3794 * [acm]times in struct ext4_inode. Checking for that
3795 * field should suffice to ensure we have extra space
3796 * for all three.
3797 */
3798 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3799 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3800 sb->s_time_gran = 1;
3801 } else {
3802 sb->s_time_gran = NSEC_PER_SEC;
3803 }
3804 }
3805 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3806 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3807 EXT4_GOOD_OLD_INODE_SIZE;
3808 if (ext4_has_feature_extra_isize(sb)) {
3809 unsigned v, max = (sbi->s_inode_size -
3810 EXT4_GOOD_OLD_INODE_SIZE);
3811
3812 v = le16_to_cpu(es->s_want_extra_isize);
3813 if (v > max) {
3814 ext4_msg(sb, KERN_ERR,
3815 "bad s_want_extra_isize: %d", v);
3816 goto failed_mount;
3817 }
3818 if (sbi->s_want_extra_isize < v)
3819 sbi->s_want_extra_isize = v;
3820
3821 v = le16_to_cpu(es->s_min_extra_isize);
3822 if (v > max) {
3823 ext4_msg(sb, KERN_ERR,
3824 "bad s_min_extra_isize: %d", v);
3825 goto failed_mount;
3826 }
3827 if (sbi->s_want_extra_isize < v)
3828 sbi->s_want_extra_isize = v;
3829 }
3830 }
3831
3832 if (sbi->s_es->s_mount_opts[0]) {
3833 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3834 sizeof(sbi->s_es->s_mount_opts),
3835 GFP_KERNEL);
3836 if (!s_mount_opts)
3837 goto failed_mount;
3838 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3839 &journal_ioprio, 0)) {
3840 ext4_msg(sb, KERN_WARNING,
3841 "failed to parse options in superblock: %s",
3842 s_mount_opts);
3843 }
3844 kfree(s_mount_opts);
3845 }
3846 sbi->s_def_mount_opt = sbi->s_mount_opt;
3847 if (!parse_options((char *) data, sb, &journal_devnum,
3848 &journal_ioprio, 0))
3849 goto failed_mount;
3850
3851 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3852 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3853 "with data=journal disables delayed "
3854 "allocation and O_DIRECT support!\n");
3855 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3856 ext4_msg(sb, KERN_ERR, "can't mount with "
3857 "both data=journal and delalloc");
3858 goto failed_mount;
3859 }
3860 if (test_opt(sb, DIOREAD_NOLOCK)) {
3861 ext4_msg(sb, KERN_ERR, "can't mount with "
3862 "both data=journal and dioread_nolock");
3863 goto failed_mount;
3864 }
3865 if (test_opt(sb, DAX)) {
3866 ext4_msg(sb, KERN_ERR, "can't mount with "
3867 "both data=journal and dax");
3868 goto failed_mount;
3869 }
3870 if (ext4_has_feature_encrypt(sb)) {
3871 ext4_msg(sb, KERN_WARNING,
3872 "encrypted files will use data=ordered "
3873 "instead of data journaling mode");
3874 }
3875 if (test_opt(sb, DELALLOC))
3876 clear_opt(sb, DELALLOC);
3877 } else {
3878 sb->s_iflags |= SB_I_CGROUPWB;
3879 }
3880
3881 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3882 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3883
3884 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3885 (ext4_has_compat_features(sb) ||
3886 ext4_has_ro_compat_features(sb) ||
3887 ext4_has_incompat_features(sb)))
3888 ext4_msg(sb, KERN_WARNING,
3889 "feature flags set on rev 0 fs, "
3890 "running e2fsck is recommended");
3891
3892 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3893 set_opt2(sb, HURD_COMPAT);
3894 if (ext4_has_feature_64bit(sb)) {
3895 ext4_msg(sb, KERN_ERR,
3896 "The Hurd can't support 64-bit file systems");
3897 goto failed_mount;
3898 }
3899
3900 /*
3901 * ea_inode feature uses l_i_version field which is not
3902 * available in HURD_COMPAT mode.
3903 */
3904 if (ext4_has_feature_ea_inode(sb)) {
3905 ext4_msg(sb, KERN_ERR,
3906 "ea_inode feature is not supported for Hurd");
3907 goto failed_mount;
3908 }
3909 }
3910
3911 if (IS_EXT2_SB(sb)) {
3912 if (ext2_feature_set_ok(sb))
3913 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3914 "using the ext4 subsystem");
3915 else {
3916 /*
3917 * If we're probing be silent, if this looks like
3918 * it's actually an ext[34] filesystem.
3919 */
3920 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3921 goto failed_mount;
3922 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3923 "to feature incompatibilities");
3924 goto failed_mount;
3925 }
3926 }
3927
3928 if (IS_EXT3_SB(sb)) {
3929 if (ext3_feature_set_ok(sb))
3930 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3931 "using the ext4 subsystem");
3932 else {
3933 /*
3934 * If we're probing be silent, if this looks like
3935 * it's actually an ext4 filesystem.
3936 */
3937 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3938 goto failed_mount;
3939 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3940 "to feature incompatibilities");
3941 goto failed_mount;
3942 }
3943 }
3944
3945 /*
3946 * Check feature flags regardless of the revision level, since we
3947 * previously didn't change the revision level when setting the flags,
3948 * so there is a chance incompat flags are set on a rev 0 filesystem.
3949 */
3950 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3951 goto failed_mount;
3952
3953 if (le32_to_cpu(es->s_log_block_size) >
3954 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3955 ext4_msg(sb, KERN_ERR,
3956 "Invalid log block size: %u",
3957 le32_to_cpu(es->s_log_block_size));
3958 goto failed_mount;
3959 }
3960 if (le32_to_cpu(es->s_log_cluster_size) >
3961 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3962 ext4_msg(sb, KERN_ERR,
3963 "Invalid log cluster size: %u",
3964 le32_to_cpu(es->s_log_cluster_size));
3965 goto failed_mount;
3966 }
3967
3968 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3969 ext4_msg(sb, KERN_ERR,
3970 "Number of reserved GDT blocks insanely large: %d",
3971 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3972 goto failed_mount;
3973 }
3974
3975 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3976 if (ext4_has_feature_inline_data(sb)) {
3977 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3978 " that may contain inline data");
3979 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3980 }
3981 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3982 ext4_msg(sb, KERN_ERR,
3983 "DAX unsupported by block device. Turning off DAX.");
3984 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3985 }
3986 }
3987
3988 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3989 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3990 es->s_encryption_level);
3991 goto failed_mount;
3992 }
3993
3994 if (sb->s_blocksize != blocksize) {
3995 /* Validate the filesystem blocksize */
3996 if (!sb_set_blocksize(sb, blocksize)) {
3997 ext4_msg(sb, KERN_ERR, "bad block size %d",
3998 blocksize);
3999 goto failed_mount;
4000 }
4001
4002 brelse(bh);
4003 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4004 offset = do_div(logical_sb_block, blocksize);
4005 bh = sb_bread_unmovable(sb, logical_sb_block);
4006 if (!bh) {
4007 ext4_msg(sb, KERN_ERR,
4008 "Can't read superblock on 2nd try");
4009 goto failed_mount;
4010 }
4011 es = (struct ext4_super_block *)(bh->b_data + offset);
4012 sbi->s_es = es;
4013 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4014 ext4_msg(sb, KERN_ERR,
4015 "Magic mismatch, very weird!");
4016 goto failed_mount;
4017 }
4018 }
4019
4020 has_huge_files = ext4_has_feature_huge_file(sb);
4021 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4022 has_huge_files);
4023 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4024
4025 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4026 if (ext4_has_feature_64bit(sb)) {
4027 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4028 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4029 !is_power_of_2(sbi->s_desc_size)) {
4030 ext4_msg(sb, KERN_ERR,
4031 "unsupported descriptor size %lu",
4032 sbi->s_desc_size);
4033 goto failed_mount;
4034 }
4035 } else
4036 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4037
4038 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4039 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4040
4041 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4042 if (sbi->s_inodes_per_block == 0)
4043 goto cantfind_ext4;
4044 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4045 sbi->s_inodes_per_group > blocksize * 8) {
4046 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4047 sbi->s_inodes_per_group);
4048 goto failed_mount;
4049 }
4050 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4051 sbi->s_inodes_per_block;
4052 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4053 sbi->s_sbh = bh;
4054 sbi->s_mount_state = le16_to_cpu(es->s_state);
4055 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4056 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4057
4058 for (i = 0; i < 4; i++)
4059 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4060 sbi->s_def_hash_version = es->s_def_hash_version;
4061 if (ext4_has_feature_dir_index(sb)) {
4062 i = le32_to_cpu(es->s_flags);
4063 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4064 sbi->s_hash_unsigned = 3;
4065 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4066 #ifdef __CHAR_UNSIGNED__
4067 if (!sb_rdonly(sb))
4068 es->s_flags |=
4069 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4070 sbi->s_hash_unsigned = 3;
4071 #else
4072 if (!sb_rdonly(sb))
4073 es->s_flags |=
4074 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4075 #endif
4076 }
4077 }
4078
4079 /* Handle clustersize */
4080 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4081 has_bigalloc = ext4_has_feature_bigalloc(sb);
4082 if (has_bigalloc) {
4083 if (clustersize < blocksize) {
4084 ext4_msg(sb, KERN_ERR,
4085 "cluster size (%d) smaller than "
4086 "block size (%d)", clustersize, blocksize);
4087 goto failed_mount;
4088 }
4089 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4090 le32_to_cpu(es->s_log_block_size);
4091 sbi->s_clusters_per_group =
4092 le32_to_cpu(es->s_clusters_per_group);
4093 if (sbi->s_clusters_per_group > blocksize * 8) {
4094 ext4_msg(sb, KERN_ERR,
4095 "#clusters per group too big: %lu",
4096 sbi->s_clusters_per_group);
4097 goto failed_mount;
4098 }
4099 if (sbi->s_blocks_per_group !=
4100 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4101 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4102 "clusters per group (%lu) inconsistent",
4103 sbi->s_blocks_per_group,
4104 sbi->s_clusters_per_group);
4105 goto failed_mount;
4106 }
4107 } else {
4108 if (clustersize != blocksize) {
4109 ext4_msg(sb, KERN_ERR,
4110 "fragment/cluster size (%d) != "
4111 "block size (%d)", clustersize, blocksize);
4112 goto failed_mount;
4113 }
4114 if (sbi->s_blocks_per_group > blocksize * 8) {
4115 ext4_msg(sb, KERN_ERR,
4116 "#blocks per group too big: %lu",
4117 sbi->s_blocks_per_group);
4118 goto failed_mount;
4119 }
4120 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4121 sbi->s_cluster_bits = 0;
4122 }
4123 sbi->s_cluster_ratio = clustersize / blocksize;
4124
4125 /* Do we have standard group size of clustersize * 8 blocks ? */
4126 if (sbi->s_blocks_per_group == clustersize << 3)
4127 set_opt2(sb, STD_GROUP_SIZE);
4128
4129 /*
4130 * Test whether we have more sectors than will fit in sector_t,
4131 * and whether the max offset is addressable by the page cache.
4132 */
4133 err = generic_check_addressable(sb->s_blocksize_bits,
4134 ext4_blocks_count(es));
4135 if (err) {
4136 ext4_msg(sb, KERN_ERR, "filesystem"
4137 " too large to mount safely on this system");
4138 if (sizeof(sector_t) < 8)
4139 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4140 goto failed_mount;
4141 }
4142
4143 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4144 goto cantfind_ext4;
4145
4146 /* check blocks count against device size */
4147 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4148 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4149 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4150 "exceeds size of device (%llu blocks)",
4151 ext4_blocks_count(es), blocks_count);
4152 goto failed_mount;
4153 }
4154
4155 /*
4156 * It makes no sense for the first data block to be beyond the end
4157 * of the filesystem.
4158 */
4159 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4160 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4161 "block %u is beyond end of filesystem (%llu)",
4162 le32_to_cpu(es->s_first_data_block),
4163 ext4_blocks_count(es));
4164 goto failed_mount;
4165 }
4166 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4167 (sbi->s_cluster_ratio == 1)) {
4168 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4169 "block is 0 with a 1k block and cluster size");
4170 goto failed_mount;
4171 }
4172
4173 blocks_count = (ext4_blocks_count(es) -
4174 le32_to_cpu(es->s_first_data_block) +
4175 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4176 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4177 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4178 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4179 "(block count %llu, first data block %u, "
4180 "blocks per group %lu)", blocks_count,
4181 ext4_blocks_count(es),
4182 le32_to_cpu(es->s_first_data_block),
4183 EXT4_BLOCKS_PER_GROUP(sb));
4184 goto failed_mount;
4185 }
4186 sbi->s_groups_count = blocks_count;
4187 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4188 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4189 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4190 le32_to_cpu(es->s_inodes_count)) {
4191 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4192 le32_to_cpu(es->s_inodes_count),
4193 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4194 ret = -EINVAL;
4195 goto failed_mount;
4196 }
4197 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4198 EXT4_DESC_PER_BLOCK(sb);
4199 if (ext4_has_feature_meta_bg(sb)) {
4200 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4201 ext4_msg(sb, KERN_WARNING,
4202 "first meta block group too large: %u "
4203 "(group descriptor block count %u)",
4204 le32_to_cpu(es->s_first_meta_bg), db_count);
4205 goto failed_mount;
4206 }
4207 }
4208 rcu_assign_pointer(sbi->s_group_desc,
4209 kvmalloc_array(db_count,
4210 sizeof(struct buffer_head *),
4211 GFP_KERNEL));
4212 if (sbi->s_group_desc == NULL) {
4213 ext4_msg(sb, KERN_ERR, "not enough memory");
4214 ret = -ENOMEM;
4215 goto failed_mount;
4216 }
4217
4218 bgl_lock_init(sbi->s_blockgroup_lock);
4219
4220 /* Pre-read the descriptors into the buffer cache */
4221 for (i = 0; i < db_count; i++) {
4222 block = descriptor_loc(sb, logical_sb_block, i);
4223 sb_breadahead_unmovable(sb, block);
4224 }
4225
4226 for (i = 0; i < db_count; i++) {
4227 struct buffer_head *bh;
4228
4229 block = descriptor_loc(sb, logical_sb_block, i);
4230 bh = sb_bread_unmovable(sb, block);
4231 if (!bh) {
4232 ext4_msg(sb, KERN_ERR,
4233 "can't read group descriptor %d", i);
4234 db_count = i;
4235 goto failed_mount2;
4236 }
4237 rcu_read_lock();
4238 rcu_dereference(sbi->s_group_desc)[i] = bh;
4239 rcu_read_unlock();
4240 }
4241 sbi->s_gdb_count = db_count;
4242 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4243 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4244 ret = -EFSCORRUPTED;
4245 goto failed_mount2;
4246 }
4247
4248 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4249
4250 /* Register extent status tree shrinker */
4251 if (ext4_es_register_shrinker(sbi))
4252 goto failed_mount3;
4253
4254 sbi->s_stripe = ext4_get_stripe_size(sbi);
4255 sbi->s_extent_max_zeroout_kb = 32;
4256
4257 /*
4258 * set up enough so that it can read an inode
4259 */
4260 sb->s_op = &ext4_sops;
4261 sb->s_export_op = &ext4_export_ops;
4262 sb->s_xattr = ext4_xattr_handlers;
4263 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4264 sb->s_cop = &ext4_cryptops;
4265 #endif
4266 #ifdef CONFIG_QUOTA
4267 sb->dq_op = &ext4_quota_operations;
4268 if (ext4_has_feature_quota(sb))
4269 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4270 else
4271 sb->s_qcop = &ext4_qctl_operations;
4272 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4273 #endif
4274 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4275
4276 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4277 mutex_init(&sbi->s_orphan_lock);
4278
4279 sb->s_root = NULL;
4280
4281 needs_recovery = (es->s_last_orphan != 0 ||
4282 ext4_has_feature_journal_needs_recovery(sb));
4283
4284 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4285 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4286 goto failed_mount3a;
4287
4288 /*
4289 * The first inode we look at is the journal inode. Don't try
4290 * root first: it may be modified in the journal!
4291 */
4292 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4293 err = ext4_load_journal(sb, es, journal_devnum);
4294 if (err)
4295 goto failed_mount3a;
4296 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4297 ext4_has_feature_journal_needs_recovery(sb)) {
4298 ext4_msg(sb, KERN_ERR, "required journal recovery "
4299 "suppressed and not mounted read-only");
4300 goto failed_mount_wq;
4301 } else {
4302 /* Nojournal mode, all journal mount options are illegal */
4303 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4304 ext4_msg(sb, KERN_ERR, "can't mount with "
4305 "journal_checksum, fs mounted w/o journal");
4306 goto failed_mount_wq;
4307 }
4308 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4309 ext4_msg(sb, KERN_ERR, "can't mount with "
4310 "journal_async_commit, fs mounted w/o journal");
4311 goto failed_mount_wq;
4312 }
4313 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4314 ext4_msg(sb, KERN_ERR, "can't mount with "
4315 "commit=%lu, fs mounted w/o journal",
4316 sbi->s_commit_interval / HZ);
4317 goto failed_mount_wq;
4318 }
4319 if (EXT4_MOUNT_DATA_FLAGS &
4320 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4321 ext4_msg(sb, KERN_ERR, "can't mount with "
4322 "data=, fs mounted w/o journal");
4323 goto failed_mount_wq;
4324 }
4325 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4326 clear_opt(sb, JOURNAL_CHECKSUM);
4327 clear_opt(sb, DATA_FLAGS);
4328 sbi->s_journal = NULL;
4329 needs_recovery = 0;
4330 goto no_journal;
4331 }
4332
4333 if (ext4_has_feature_64bit(sb) &&
4334 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4335 JBD2_FEATURE_INCOMPAT_64BIT)) {
4336 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4337 goto failed_mount_wq;
4338 }
4339
4340 if (!set_journal_csum_feature_set(sb)) {
4341 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4342 "feature set");
4343 goto failed_mount_wq;
4344 }
4345
4346 /* We have now updated the journal if required, so we can
4347 * validate the data journaling mode. */
4348 switch (test_opt(sb, DATA_FLAGS)) {
4349 case 0:
4350 /* No mode set, assume a default based on the journal
4351 * capabilities: ORDERED_DATA if the journal can
4352 * cope, else JOURNAL_DATA
4353 */
4354 if (jbd2_journal_check_available_features
4355 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4356 set_opt(sb, ORDERED_DATA);
4357 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4358 } else {
4359 set_opt(sb, JOURNAL_DATA);
4360 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4361 }
4362 break;
4363
4364 case EXT4_MOUNT_ORDERED_DATA:
4365 case EXT4_MOUNT_WRITEBACK_DATA:
4366 if (!jbd2_journal_check_available_features
4367 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4368 ext4_msg(sb, KERN_ERR, "Journal does not support "
4369 "requested data journaling mode");
4370 goto failed_mount_wq;
4371 }
4372 default:
4373 break;
4374 }
4375
4376 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4377 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4378 ext4_msg(sb, KERN_ERR, "can't mount with "
4379 "journal_async_commit in data=ordered mode");
4380 goto failed_mount_wq;
4381 }
4382
4383 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4384
4385 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4386
4387 no_journal:
4388 if (!test_opt(sb, NO_MBCACHE)) {
4389 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4390 if (!sbi->s_ea_block_cache) {
4391 ext4_msg(sb, KERN_ERR,
4392 "Failed to create ea_block_cache");
4393 goto failed_mount_wq;
4394 }
4395
4396 if (ext4_has_feature_ea_inode(sb)) {
4397 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4398 if (!sbi->s_ea_inode_cache) {
4399 ext4_msg(sb, KERN_ERR,
4400 "Failed to create ea_inode_cache");
4401 goto failed_mount_wq;
4402 }
4403 }
4404 }
4405
4406 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4407 (blocksize != PAGE_SIZE)) {
4408 ext4_msg(sb, KERN_ERR,
4409 "Unsupported blocksize for fs encryption");
4410 goto failed_mount_wq;
4411 }
4412
4413 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4414 !ext4_has_feature_encrypt(sb)) {
4415 ext4_set_feature_encrypt(sb);
4416 ext4_commit_super(sb, 1);
4417 }
4418
4419 /*
4420 * Get the # of file system overhead blocks from the
4421 * superblock if present.
4422 */
4423 if (es->s_overhead_clusters)
4424 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4425 else {
4426 err = ext4_calculate_overhead(sb);
4427 if (err)
4428 goto failed_mount_wq;
4429 }
4430
4431 /*
4432 * The maximum number of concurrent works can be high and
4433 * concurrency isn't really necessary. Limit it to 1.
4434 */
4435 EXT4_SB(sb)->rsv_conversion_wq =
4436 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4437 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4438 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4439 ret = -ENOMEM;
4440 goto failed_mount4;
4441 }
4442
4443 /*
4444 * The jbd2_journal_load will have done any necessary log recovery,
4445 * so we can safely mount the rest of the filesystem now.
4446 */
4447
4448 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4449 if (IS_ERR(root)) {
4450 ext4_msg(sb, KERN_ERR, "get root inode failed");
4451 ret = PTR_ERR(root);
4452 root = NULL;
4453 goto failed_mount4;
4454 }
4455 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4456 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4457 iput(root);
4458 goto failed_mount4;
4459 }
4460 sb->s_root = d_make_root(root);
4461 if (!sb->s_root) {
4462 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4463 ret = -ENOMEM;
4464 goto failed_mount4;
4465 }
4466
4467 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4468 if (ret == -EROFS) {
4469 sb->s_flags |= SB_RDONLY;
4470 ret = 0;
4471 } else if (ret)
4472 goto failed_mount4a;
4473
4474 ext4_set_resv_clusters(sb);
4475
4476 if (test_opt(sb, BLOCK_VALIDITY)) {
4477 err = ext4_setup_system_zone(sb);
4478 if (err) {
4479 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4480 "zone (%d)", err);
4481 goto failed_mount4a;
4482 }
4483 }
4484
4485 ext4_ext_init(sb);
4486 err = ext4_mb_init(sb);
4487 if (err) {
4488 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4489 err);
4490 goto failed_mount5;
4491 }
4492
4493 block = ext4_count_free_clusters(sb);
4494 ext4_free_blocks_count_set(sbi->s_es,
4495 EXT4_C2B(sbi, block));
4496 ext4_superblock_csum_set(sb);
4497 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4498 GFP_KERNEL);
4499 if (!err) {
4500 unsigned long freei = ext4_count_free_inodes(sb);
4501 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4502 ext4_superblock_csum_set(sb);
4503 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4504 GFP_KERNEL);
4505 }
4506 if (!err)
4507 err = percpu_counter_init(&sbi->s_dirs_counter,
4508 ext4_count_dirs(sb), GFP_KERNEL);
4509 if (!err)
4510 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4511 GFP_KERNEL);
4512 if (!err)
4513 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4514
4515 if (err) {
4516 ext4_msg(sb, KERN_ERR, "insufficient memory");
4517 goto failed_mount6;
4518 }
4519
4520 if (ext4_has_feature_flex_bg(sb))
4521 if (!ext4_fill_flex_info(sb)) {
4522 ext4_msg(sb, KERN_ERR,
4523 "unable to initialize "
4524 "flex_bg meta info!");
4525 goto failed_mount6;
4526 }
4527
4528 err = ext4_register_li_request(sb, first_not_zeroed);
4529 if (err)
4530 goto failed_mount6;
4531
4532 err = ext4_register_sysfs(sb);
4533 if (err)
4534 goto failed_mount7;
4535
4536 #ifdef CONFIG_QUOTA
4537 /* Enable quota usage during mount. */
4538 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4539 err = ext4_enable_quotas(sb);
4540 if (err)
4541 goto failed_mount8;
4542 }
4543 #endif /* CONFIG_QUOTA */
4544
4545 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4546 ext4_orphan_cleanup(sb, es);
4547 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4548 if (needs_recovery) {
4549 ext4_msg(sb, KERN_INFO, "recovery complete");
4550 err = ext4_mark_recovery_complete(sb, es);
4551 if (err)
4552 goto failed_mount8;
4553 }
4554 if (EXT4_SB(sb)->s_journal) {
4555 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4556 descr = " journalled data mode";
4557 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4558 descr = " ordered data mode";
4559 else
4560 descr = " writeback data mode";
4561 } else
4562 descr = "out journal";
4563
4564 if (test_opt(sb, DISCARD)) {
4565 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4566 if (!blk_queue_discard(q))
4567 ext4_msg(sb, KERN_WARNING,
4568 "mounting with \"discard\" option, but "
4569 "the device does not support discard");
4570 }
4571
4572 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4573 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4574 "Opts: %.*s%s%s", descr,
4575 (int) sizeof(sbi->s_es->s_mount_opts),
4576 sbi->s_es->s_mount_opts,
4577 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4578
4579 if (es->s_error_count)
4580 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4581
4582 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4583 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4584 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4585 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4586
4587 kfree(orig_data);
4588 return 0;
4589
4590 cantfind_ext4:
4591 if (!silent)
4592 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4593 goto failed_mount;
4594
4595 failed_mount8:
4596 ext4_unregister_sysfs(sb);
4597 kobject_put(&sbi->s_kobj);
4598 failed_mount7:
4599 ext4_unregister_li_request(sb);
4600 failed_mount6:
4601 ext4_mb_release(sb);
4602 rcu_read_lock();
4603 flex_groups = rcu_dereference(sbi->s_flex_groups);
4604 if (flex_groups) {
4605 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4606 kvfree(flex_groups[i]);
4607 kvfree(flex_groups);
4608 }
4609 rcu_read_unlock();
4610 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4611 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4612 percpu_counter_destroy(&sbi->s_dirs_counter);
4613 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4614 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4615 failed_mount5:
4616 ext4_ext_release(sb);
4617 ext4_release_system_zone(sb);
4618 failed_mount4a:
4619 dput(sb->s_root);
4620 sb->s_root = NULL;
4621 failed_mount4:
4622 ext4_msg(sb, KERN_ERR, "mount failed");
4623 if (EXT4_SB(sb)->rsv_conversion_wq)
4624 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4625 failed_mount_wq:
4626 if (sbi->s_ea_inode_cache) {
4627 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4628 sbi->s_ea_inode_cache = NULL;
4629 }
4630 if (sbi->s_ea_block_cache) {
4631 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4632 sbi->s_ea_block_cache = NULL;
4633 }
4634 if (sbi->s_journal) {
4635 jbd2_journal_destroy(sbi->s_journal);
4636 sbi->s_journal = NULL;
4637 }
4638 failed_mount3a:
4639 ext4_es_unregister_shrinker(sbi);
4640 failed_mount3:
4641 del_timer_sync(&sbi->s_err_report);
4642 if (sbi->s_mmp_tsk)
4643 kthread_stop(sbi->s_mmp_tsk);
4644 failed_mount2:
4645 rcu_read_lock();
4646 group_desc = rcu_dereference(sbi->s_group_desc);
4647 for (i = 0; i < db_count; i++)
4648 brelse(group_desc[i]);
4649 kvfree(group_desc);
4650 rcu_read_unlock();
4651 failed_mount:
4652 if (sbi->s_chksum_driver)
4653 crypto_free_shash(sbi->s_chksum_driver);
4654 #ifdef CONFIG_QUOTA
4655 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4656 kfree(sbi->s_qf_names[i]);
4657 #endif
4658 ext4_blkdev_remove(sbi);
4659 brelse(bh);
4660 out_fail:
4661 sb->s_fs_info = NULL;
4662 kfree(sbi->s_blockgroup_lock);
4663 out_free_base:
4664 kfree(sbi);
4665 kfree(orig_data);
4666 fs_put_dax(dax_dev);
4667 return err ? err : ret;
4668 }
4669
4670 /*
4671 * Setup any per-fs journal parameters now. We'll do this both on
4672 * initial mount, once the journal has been initialised but before we've
4673 * done any recovery; and again on any subsequent remount.
4674 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4675 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4676 {
4677 struct ext4_sb_info *sbi = EXT4_SB(sb);
4678
4679 journal->j_commit_interval = sbi->s_commit_interval;
4680 journal->j_min_batch_time = sbi->s_min_batch_time;
4681 journal->j_max_batch_time = sbi->s_max_batch_time;
4682
4683 write_lock(&journal->j_state_lock);
4684 if (test_opt(sb, BARRIER))
4685 journal->j_flags |= JBD2_BARRIER;
4686 else
4687 journal->j_flags &= ~JBD2_BARRIER;
4688 if (test_opt(sb, DATA_ERR_ABORT))
4689 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4690 else
4691 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4692 write_unlock(&journal->j_state_lock);
4693 }
4694
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4695 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4696 unsigned int journal_inum)
4697 {
4698 struct inode *journal_inode;
4699
4700 /*
4701 * Test for the existence of a valid inode on disk. Bad things
4702 * happen if we iget() an unused inode, as the subsequent iput()
4703 * will try to delete it.
4704 */
4705 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4706 if (IS_ERR(journal_inode)) {
4707 ext4_msg(sb, KERN_ERR, "no journal found");
4708 return NULL;
4709 }
4710 if (!journal_inode->i_nlink) {
4711 make_bad_inode(journal_inode);
4712 iput(journal_inode);
4713 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4714 return NULL;
4715 }
4716
4717 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4718 journal_inode, journal_inode->i_size);
4719 if (!S_ISREG(journal_inode->i_mode)) {
4720 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4721 iput(journal_inode);
4722 return NULL;
4723 }
4724 return journal_inode;
4725 }
4726
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4727 static journal_t *ext4_get_journal(struct super_block *sb,
4728 unsigned int journal_inum)
4729 {
4730 struct inode *journal_inode;
4731 journal_t *journal;
4732
4733 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4734 return NULL;
4735
4736 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4737 if (!journal_inode)
4738 return NULL;
4739
4740 journal = jbd2_journal_init_inode(journal_inode);
4741 if (!journal) {
4742 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4743 iput(journal_inode);
4744 return NULL;
4745 }
4746 journal->j_private = sb;
4747 ext4_init_journal_params(sb, journal);
4748 return journal;
4749 }
4750
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4751 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4752 dev_t j_dev)
4753 {
4754 struct buffer_head *bh;
4755 journal_t *journal;
4756 ext4_fsblk_t start;
4757 ext4_fsblk_t len;
4758 int hblock, blocksize;
4759 ext4_fsblk_t sb_block;
4760 unsigned long offset;
4761 struct ext4_super_block *es;
4762 struct block_device *bdev;
4763
4764 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4765 return NULL;
4766
4767 bdev = ext4_blkdev_get(j_dev, sb);
4768 if (bdev == NULL)
4769 return NULL;
4770
4771 blocksize = sb->s_blocksize;
4772 hblock = bdev_logical_block_size(bdev);
4773 if (blocksize < hblock) {
4774 ext4_msg(sb, KERN_ERR,
4775 "blocksize too small for journal device");
4776 goto out_bdev;
4777 }
4778
4779 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4780 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4781 set_blocksize(bdev, blocksize);
4782 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4783 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4784 "external journal");
4785 goto out_bdev;
4786 }
4787
4788 es = (struct ext4_super_block *) (bh->b_data + offset);
4789 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4790 !(le32_to_cpu(es->s_feature_incompat) &
4791 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4792 ext4_msg(sb, KERN_ERR, "external journal has "
4793 "bad superblock");
4794 brelse(bh);
4795 goto out_bdev;
4796 }
4797
4798 if ((le32_to_cpu(es->s_feature_ro_compat) &
4799 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4800 es->s_checksum != ext4_superblock_csum(sb, es)) {
4801 ext4_msg(sb, KERN_ERR, "external journal has "
4802 "corrupt superblock");
4803 brelse(bh);
4804 goto out_bdev;
4805 }
4806
4807 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4808 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4809 brelse(bh);
4810 goto out_bdev;
4811 }
4812
4813 len = ext4_blocks_count(es);
4814 start = sb_block + 1;
4815 brelse(bh); /* we're done with the superblock */
4816
4817 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4818 start, len, blocksize);
4819 if (!journal) {
4820 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4821 goto out_bdev;
4822 }
4823 journal->j_private = sb;
4824 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4825 wait_on_buffer(journal->j_sb_buffer);
4826 if (!buffer_uptodate(journal->j_sb_buffer)) {
4827 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4828 goto out_journal;
4829 }
4830 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4831 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4832 "user (unsupported) - %d",
4833 be32_to_cpu(journal->j_superblock->s_nr_users));
4834 goto out_journal;
4835 }
4836 EXT4_SB(sb)->journal_bdev = bdev;
4837 ext4_init_journal_params(sb, journal);
4838 return journal;
4839
4840 out_journal:
4841 jbd2_journal_destroy(journal);
4842 out_bdev:
4843 ext4_blkdev_put(bdev);
4844 return NULL;
4845 }
4846
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4847 static int ext4_load_journal(struct super_block *sb,
4848 struct ext4_super_block *es,
4849 unsigned long journal_devnum)
4850 {
4851 journal_t *journal;
4852 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4853 dev_t journal_dev;
4854 int err = 0;
4855 int really_read_only;
4856 int journal_dev_ro;
4857
4858 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4859 return -EFSCORRUPTED;
4860
4861 if (journal_devnum &&
4862 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4863 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4864 "numbers have changed");
4865 journal_dev = new_decode_dev(journal_devnum);
4866 } else
4867 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4868
4869 if (journal_inum && journal_dev) {
4870 ext4_msg(sb, KERN_ERR,
4871 "filesystem has both journal inode and journal device!");
4872 return -EINVAL;
4873 }
4874
4875 if (journal_inum) {
4876 journal = ext4_get_journal(sb, journal_inum);
4877 if (!journal)
4878 return -EINVAL;
4879 } else {
4880 journal = ext4_get_dev_journal(sb, journal_dev);
4881 if (!journal)
4882 return -EINVAL;
4883 }
4884
4885 journal_dev_ro = bdev_read_only(journal->j_dev);
4886 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
4887
4888 if (journal_dev_ro && !sb_rdonly(sb)) {
4889 ext4_msg(sb, KERN_ERR,
4890 "journal device read-only, try mounting with '-o ro'");
4891 err = -EROFS;
4892 goto err_out;
4893 }
4894
4895 /*
4896 * Are we loading a blank journal or performing recovery after a
4897 * crash? For recovery, we need to check in advance whether we
4898 * can get read-write access to the device.
4899 */
4900 if (ext4_has_feature_journal_needs_recovery(sb)) {
4901 if (sb_rdonly(sb)) {
4902 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4903 "required on readonly filesystem");
4904 if (really_read_only) {
4905 ext4_msg(sb, KERN_ERR, "write access "
4906 "unavailable, cannot proceed "
4907 "(try mounting with noload)");
4908 err = -EROFS;
4909 goto err_out;
4910 }
4911 ext4_msg(sb, KERN_INFO, "write access will "
4912 "be enabled during recovery");
4913 }
4914 }
4915
4916 if (!(journal->j_flags & JBD2_BARRIER))
4917 ext4_msg(sb, KERN_INFO, "barriers disabled");
4918
4919 if (!ext4_has_feature_journal_needs_recovery(sb))
4920 err = jbd2_journal_wipe(journal, !really_read_only);
4921 if (!err) {
4922 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4923 if (save)
4924 memcpy(save, ((char *) es) +
4925 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4926 err = jbd2_journal_load(journal);
4927 if (save)
4928 memcpy(((char *) es) + EXT4_S_ERR_START,
4929 save, EXT4_S_ERR_LEN);
4930 kfree(save);
4931 }
4932
4933 if (err) {
4934 ext4_msg(sb, KERN_ERR, "error loading journal");
4935 goto err_out;
4936 }
4937
4938 EXT4_SB(sb)->s_journal = journal;
4939 err = ext4_clear_journal_err(sb, es);
4940 if (err) {
4941 EXT4_SB(sb)->s_journal = NULL;
4942 jbd2_journal_destroy(journal);
4943 return err;
4944 }
4945
4946 if (!really_read_only && journal_devnum &&
4947 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4948 es->s_journal_dev = cpu_to_le32(journal_devnum);
4949
4950 /* Make sure we flush the recovery flag to disk. */
4951 ext4_commit_super(sb, 1);
4952 }
4953
4954 return 0;
4955
4956 err_out:
4957 jbd2_journal_destroy(journal);
4958 return err;
4959 }
4960
ext4_commit_super(struct super_block * sb,int sync)4961 static int ext4_commit_super(struct super_block *sb, int sync)
4962 {
4963 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4964 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4965 int error = 0;
4966
4967 if (!sbh || block_device_ejected(sb))
4968 return error;
4969
4970 /*
4971 * If the file system is mounted read-only, don't update the
4972 * superblock write time. This avoids updating the superblock
4973 * write time when we are mounting the root file system
4974 * read/only but we need to replay the journal; at that point,
4975 * for people who are east of GMT and who make their clock
4976 * tick in localtime for Windows bug-for-bug compatibility,
4977 * the clock is set in the future, and this will cause e2fsck
4978 * to complain and force a full file system check.
4979 */
4980 if (!(sb->s_flags & SB_RDONLY))
4981 ext4_update_tstamp(es, s_wtime);
4982 if (sb->s_bdev->bd_part)
4983 es->s_kbytes_written =
4984 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4985 ((part_stat_read(sb->s_bdev->bd_part,
4986 sectors[STAT_WRITE]) -
4987 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4988 else
4989 es->s_kbytes_written =
4990 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4991 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4992 ext4_free_blocks_count_set(es,
4993 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4994 &EXT4_SB(sb)->s_freeclusters_counter)));
4995 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4996 es->s_free_inodes_count =
4997 cpu_to_le32(percpu_counter_sum_positive(
4998 &EXT4_SB(sb)->s_freeinodes_counter));
4999 BUFFER_TRACE(sbh, "marking dirty");
5000 ext4_superblock_csum_set(sb);
5001 if (sync)
5002 lock_buffer(sbh);
5003 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5004 /*
5005 * Oh, dear. A previous attempt to write the
5006 * superblock failed. This could happen because the
5007 * USB device was yanked out. Or it could happen to
5008 * be a transient write error and maybe the block will
5009 * be remapped. Nothing we can do but to retry the
5010 * write and hope for the best.
5011 */
5012 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5013 "superblock detected");
5014 clear_buffer_write_io_error(sbh);
5015 set_buffer_uptodate(sbh);
5016 }
5017 mark_buffer_dirty(sbh);
5018 if (sync) {
5019 unlock_buffer(sbh);
5020 error = __sync_dirty_buffer(sbh,
5021 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5022 if (buffer_write_io_error(sbh)) {
5023 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5024 "superblock");
5025 clear_buffer_write_io_error(sbh);
5026 set_buffer_uptodate(sbh);
5027 }
5028 }
5029 return error;
5030 }
5031
5032 /*
5033 * Have we just finished recovery? If so, and if we are mounting (or
5034 * remounting) the filesystem readonly, then we will end up with a
5035 * consistent fs on disk. Record that fact.
5036 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5037 static int ext4_mark_recovery_complete(struct super_block *sb,
5038 struct ext4_super_block *es)
5039 {
5040 int err;
5041 journal_t *journal = EXT4_SB(sb)->s_journal;
5042
5043 if (!ext4_has_feature_journal(sb)) {
5044 if (journal != NULL) {
5045 ext4_error(sb, "Journal got removed while the fs was "
5046 "mounted!");
5047 return -EFSCORRUPTED;
5048 }
5049 return 0;
5050 }
5051 jbd2_journal_lock_updates(journal);
5052 err = jbd2_journal_flush(journal);
5053 if (err < 0)
5054 goto out;
5055
5056 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5057 ext4_clear_feature_journal_needs_recovery(sb);
5058 ext4_commit_super(sb, 1);
5059 }
5060 out:
5061 jbd2_journal_unlock_updates(journal);
5062 return err;
5063 }
5064
5065 /*
5066 * If we are mounting (or read-write remounting) a filesystem whose journal
5067 * has recorded an error from a previous lifetime, move that error to the
5068 * main filesystem now.
5069 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5070 static int ext4_clear_journal_err(struct super_block *sb,
5071 struct ext4_super_block *es)
5072 {
5073 journal_t *journal;
5074 int j_errno;
5075 const char *errstr;
5076
5077 if (!ext4_has_feature_journal(sb)) {
5078 ext4_error(sb, "Journal got removed while the fs was mounted!");
5079 return -EFSCORRUPTED;
5080 }
5081
5082 journal = EXT4_SB(sb)->s_journal;
5083
5084 /*
5085 * Now check for any error status which may have been recorded in the
5086 * journal by a prior ext4_error() or ext4_abort()
5087 */
5088
5089 j_errno = jbd2_journal_errno(journal);
5090 if (j_errno) {
5091 char nbuf[16];
5092
5093 errstr = ext4_decode_error(sb, j_errno, nbuf);
5094 ext4_warning(sb, "Filesystem error recorded "
5095 "from previous mount: %s", errstr);
5096 ext4_warning(sb, "Marking fs in need of filesystem check.");
5097
5098 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5099 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5100 ext4_commit_super(sb, 1);
5101
5102 jbd2_journal_clear_err(journal);
5103 jbd2_journal_update_sb_errno(journal);
5104 }
5105 return 0;
5106 }
5107
5108 /*
5109 * Force the running and committing transactions to commit,
5110 * and wait on the commit.
5111 */
ext4_force_commit(struct super_block * sb)5112 int ext4_force_commit(struct super_block *sb)
5113 {
5114 journal_t *journal;
5115
5116 if (sb_rdonly(sb))
5117 return 0;
5118
5119 journal = EXT4_SB(sb)->s_journal;
5120 return ext4_journal_force_commit(journal);
5121 }
5122
ext4_sync_fs(struct super_block * sb,int wait)5123 static int ext4_sync_fs(struct super_block *sb, int wait)
5124 {
5125 int ret = 0;
5126 tid_t target;
5127 bool needs_barrier = false;
5128 struct ext4_sb_info *sbi = EXT4_SB(sb);
5129
5130 if (unlikely(ext4_forced_shutdown(sbi)))
5131 return 0;
5132
5133 trace_ext4_sync_fs(sb, wait);
5134 flush_workqueue(sbi->rsv_conversion_wq);
5135 /*
5136 * Writeback quota in non-journalled quota case - journalled quota has
5137 * no dirty dquots
5138 */
5139 dquot_writeback_dquots(sb, -1);
5140 /*
5141 * Data writeback is possible w/o journal transaction, so barrier must
5142 * being sent at the end of the function. But we can skip it if
5143 * transaction_commit will do it for us.
5144 */
5145 if (sbi->s_journal) {
5146 target = jbd2_get_latest_transaction(sbi->s_journal);
5147 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5148 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5149 needs_barrier = true;
5150
5151 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5152 if (wait)
5153 ret = jbd2_log_wait_commit(sbi->s_journal,
5154 target);
5155 }
5156 } else if (wait && test_opt(sb, BARRIER))
5157 needs_barrier = true;
5158 if (needs_barrier) {
5159 int err;
5160 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5161 if (!ret)
5162 ret = err;
5163 }
5164
5165 return ret;
5166 }
5167
5168 /*
5169 * LVM calls this function before a (read-only) snapshot is created. This
5170 * gives us a chance to flush the journal completely and mark the fs clean.
5171 *
5172 * Note that only this function cannot bring a filesystem to be in a clean
5173 * state independently. It relies on upper layer to stop all data & metadata
5174 * modifications.
5175 */
ext4_freeze(struct super_block * sb)5176 static int ext4_freeze(struct super_block *sb)
5177 {
5178 int error = 0;
5179 journal_t *journal;
5180
5181 if (sb_rdonly(sb))
5182 return 0;
5183
5184 journal = EXT4_SB(sb)->s_journal;
5185
5186 if (journal) {
5187 /* Now we set up the journal barrier. */
5188 jbd2_journal_lock_updates(journal);
5189
5190 /*
5191 * Don't clear the needs_recovery flag if we failed to
5192 * flush the journal.
5193 */
5194 error = jbd2_journal_flush(journal);
5195 if (error < 0)
5196 goto out;
5197
5198 /* Journal blocked and flushed, clear needs_recovery flag. */
5199 ext4_clear_feature_journal_needs_recovery(sb);
5200 }
5201
5202 error = ext4_commit_super(sb, 1);
5203 out:
5204 if (journal)
5205 /* we rely on upper layer to stop further updates */
5206 jbd2_journal_unlock_updates(journal);
5207 return error;
5208 }
5209
5210 /*
5211 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5212 * flag here, even though the filesystem is not technically dirty yet.
5213 */
ext4_unfreeze(struct super_block * sb)5214 static int ext4_unfreeze(struct super_block *sb)
5215 {
5216 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5217 return 0;
5218
5219 if (EXT4_SB(sb)->s_journal) {
5220 /* Reset the needs_recovery flag before the fs is unlocked. */
5221 ext4_set_feature_journal_needs_recovery(sb);
5222 }
5223
5224 ext4_commit_super(sb, 1);
5225 return 0;
5226 }
5227
5228 /*
5229 * Structure to save mount options for ext4_remount's benefit
5230 */
5231 struct ext4_mount_options {
5232 unsigned long s_mount_opt;
5233 unsigned long s_mount_opt2;
5234 kuid_t s_resuid;
5235 kgid_t s_resgid;
5236 unsigned long s_commit_interval;
5237 u32 s_min_batch_time, s_max_batch_time;
5238 #ifdef CONFIG_QUOTA
5239 int s_jquota_fmt;
5240 char *s_qf_names[EXT4_MAXQUOTAS];
5241 #endif
5242 };
5243
ext4_remount(struct super_block * sb,int * flags,char * data)5244 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5245 {
5246 struct ext4_super_block *es;
5247 struct ext4_sb_info *sbi = EXT4_SB(sb);
5248 unsigned long old_sb_flags, vfs_flags;
5249 struct ext4_mount_options old_opts;
5250 int enable_quota = 0;
5251 ext4_group_t g;
5252 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5253 int err = 0;
5254 #ifdef CONFIG_QUOTA
5255 int i, j;
5256 char *to_free[EXT4_MAXQUOTAS];
5257 #endif
5258 char *orig_data = kstrdup(data, GFP_KERNEL);
5259
5260 if (data && !orig_data)
5261 return -ENOMEM;
5262
5263 /* Store the original options */
5264 old_sb_flags = sb->s_flags;
5265 old_opts.s_mount_opt = sbi->s_mount_opt;
5266 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5267 old_opts.s_resuid = sbi->s_resuid;
5268 old_opts.s_resgid = sbi->s_resgid;
5269 old_opts.s_commit_interval = sbi->s_commit_interval;
5270 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5271 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5272 #ifdef CONFIG_QUOTA
5273 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5274 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5275 if (sbi->s_qf_names[i]) {
5276 char *qf_name = get_qf_name(sb, sbi, i);
5277
5278 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5279 if (!old_opts.s_qf_names[i]) {
5280 for (j = 0; j < i; j++)
5281 kfree(old_opts.s_qf_names[j]);
5282 kfree(orig_data);
5283 return -ENOMEM;
5284 }
5285 } else
5286 old_opts.s_qf_names[i] = NULL;
5287 #endif
5288 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5289 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5290
5291 /*
5292 * Some options can be enabled by ext4 and/or by VFS mount flag
5293 * either way we need to make sure it matches in both *flags and
5294 * s_flags. Copy those selected flags from *flags to s_flags
5295 */
5296 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5297 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5298
5299 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5300 err = -EINVAL;
5301 goto restore_opts;
5302 }
5303
5304 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5305 test_opt(sb, JOURNAL_CHECKSUM)) {
5306 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5307 "during remount not supported; ignoring");
5308 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5309 }
5310
5311 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5312 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5313 ext4_msg(sb, KERN_ERR, "can't mount with "
5314 "both data=journal and delalloc");
5315 err = -EINVAL;
5316 goto restore_opts;
5317 }
5318 if (test_opt(sb, DIOREAD_NOLOCK)) {
5319 ext4_msg(sb, KERN_ERR, "can't mount with "
5320 "both data=journal and dioread_nolock");
5321 err = -EINVAL;
5322 goto restore_opts;
5323 }
5324 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5325 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5326 ext4_msg(sb, KERN_ERR, "can't mount with "
5327 "journal_async_commit in data=ordered mode");
5328 err = -EINVAL;
5329 goto restore_opts;
5330 }
5331 }
5332
5333 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5334 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5335 err = -EINVAL;
5336 goto restore_opts;
5337 }
5338
5339 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5340 ext4_abort(sb, "Abort forced by user");
5341
5342 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5343 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5344
5345 es = sbi->s_es;
5346
5347 if (sbi->s_journal) {
5348 ext4_init_journal_params(sb, sbi->s_journal);
5349 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5350 }
5351
5352 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5353 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5354 err = -EROFS;
5355 goto restore_opts;
5356 }
5357
5358 if (*flags & SB_RDONLY) {
5359 err = sync_filesystem(sb);
5360 if (err < 0)
5361 goto restore_opts;
5362 err = dquot_suspend(sb, -1);
5363 if (err < 0)
5364 goto restore_opts;
5365
5366 /*
5367 * First of all, the unconditional stuff we have to do
5368 * to disable replay of the journal when we next remount
5369 */
5370 sb->s_flags |= SB_RDONLY;
5371
5372 /*
5373 * OK, test if we are remounting a valid rw partition
5374 * readonly, and if so set the rdonly flag and then
5375 * mark the partition as valid again.
5376 */
5377 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5378 (sbi->s_mount_state & EXT4_VALID_FS))
5379 es->s_state = cpu_to_le16(sbi->s_mount_state);
5380
5381 if (sbi->s_journal) {
5382 /*
5383 * We let remount-ro finish even if marking fs
5384 * as clean failed...
5385 */
5386 ext4_mark_recovery_complete(sb, es);
5387 }
5388 if (sbi->s_mmp_tsk)
5389 kthread_stop(sbi->s_mmp_tsk);
5390 } else {
5391 /* Make sure we can mount this feature set readwrite */
5392 if (ext4_has_feature_readonly(sb) ||
5393 !ext4_feature_set_ok(sb, 0)) {
5394 err = -EROFS;
5395 goto restore_opts;
5396 }
5397 /*
5398 * Make sure the group descriptor checksums
5399 * are sane. If they aren't, refuse to remount r/w.
5400 */
5401 for (g = 0; g < sbi->s_groups_count; g++) {
5402 struct ext4_group_desc *gdp =
5403 ext4_get_group_desc(sb, g, NULL);
5404
5405 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5406 ext4_msg(sb, KERN_ERR,
5407 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5408 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5409 le16_to_cpu(gdp->bg_checksum));
5410 err = -EFSBADCRC;
5411 goto restore_opts;
5412 }
5413 }
5414
5415 /*
5416 * If we have an unprocessed orphan list hanging
5417 * around from a previously readonly bdev mount,
5418 * require a full umount/remount for now.
5419 */
5420 if (es->s_last_orphan) {
5421 ext4_msg(sb, KERN_WARNING, "Couldn't "
5422 "remount RDWR because of unprocessed "
5423 "orphan inode list. Please "
5424 "umount/remount instead");
5425 err = -EINVAL;
5426 goto restore_opts;
5427 }
5428
5429 /*
5430 * Mounting a RDONLY partition read-write, so reread
5431 * and store the current valid flag. (It may have
5432 * been changed by e2fsck since we originally mounted
5433 * the partition.)
5434 */
5435 if (sbi->s_journal) {
5436 err = ext4_clear_journal_err(sb, es);
5437 if (err)
5438 goto restore_opts;
5439 }
5440 sbi->s_mount_state = le16_to_cpu(es->s_state);
5441
5442 err = ext4_setup_super(sb, es, 0);
5443 if (err)
5444 goto restore_opts;
5445
5446 sb->s_flags &= ~SB_RDONLY;
5447 if (ext4_has_feature_mmp(sb))
5448 if (ext4_multi_mount_protect(sb,
5449 le64_to_cpu(es->s_mmp_block))) {
5450 err = -EROFS;
5451 goto restore_opts;
5452 }
5453 enable_quota = 1;
5454 }
5455 }
5456
5457 /*
5458 * Reinitialize lazy itable initialization thread based on
5459 * current settings
5460 */
5461 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5462 ext4_unregister_li_request(sb);
5463 else {
5464 ext4_group_t first_not_zeroed;
5465 first_not_zeroed = ext4_has_uninit_itable(sb);
5466 ext4_register_li_request(sb, first_not_zeroed);
5467 }
5468
5469 /*
5470 * Handle creation of system zone data early because it can fail.
5471 * Releasing of existing data is done when we are sure remount will
5472 * succeed.
5473 */
5474 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5475 err = ext4_setup_system_zone(sb);
5476 if (err)
5477 goto restore_opts;
5478 }
5479
5480 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5481 err = ext4_commit_super(sb, 1);
5482 if (err)
5483 goto restore_opts;
5484 }
5485
5486 #ifdef CONFIG_QUOTA
5487 /* Release old quota file names */
5488 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5489 kfree(old_opts.s_qf_names[i]);
5490 if (enable_quota) {
5491 if (sb_any_quota_suspended(sb))
5492 dquot_resume(sb, -1);
5493 else if (ext4_has_feature_quota(sb)) {
5494 err = ext4_enable_quotas(sb);
5495 if (err)
5496 goto restore_opts;
5497 }
5498 }
5499 #endif
5500 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5501 ext4_release_system_zone(sb);
5502
5503 /*
5504 * Some options can be enabled by ext4 and/or by VFS mount flag
5505 * either way we need to make sure it matches in both *flags and
5506 * s_flags. Copy those selected flags from s_flags to *flags
5507 */
5508 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5509
5510 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5511 kfree(orig_data);
5512 return 0;
5513
5514 restore_opts:
5515 sb->s_flags = old_sb_flags;
5516 sbi->s_mount_opt = old_opts.s_mount_opt;
5517 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5518 sbi->s_resuid = old_opts.s_resuid;
5519 sbi->s_resgid = old_opts.s_resgid;
5520 sbi->s_commit_interval = old_opts.s_commit_interval;
5521 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5522 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5523 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5524 ext4_release_system_zone(sb);
5525 #ifdef CONFIG_QUOTA
5526 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5527 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5528 to_free[i] = get_qf_name(sb, sbi, i);
5529 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5530 }
5531 synchronize_rcu();
5532 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5533 kfree(to_free[i]);
5534 #endif
5535 kfree(orig_data);
5536 return err;
5537 }
5538
5539 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5540 static int ext4_statfs_project(struct super_block *sb,
5541 kprojid_t projid, struct kstatfs *buf)
5542 {
5543 struct kqid qid;
5544 struct dquot *dquot;
5545 u64 limit;
5546 u64 curblock;
5547
5548 qid = make_kqid_projid(projid);
5549 dquot = dqget(sb, qid);
5550 if (IS_ERR(dquot))
5551 return PTR_ERR(dquot);
5552 spin_lock(&dquot->dq_dqb_lock);
5553
5554 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5555 dquot->dq_dqb.dqb_bsoftlimit :
5556 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5557 if (limit && buf->f_blocks > limit) {
5558 curblock = (dquot->dq_dqb.dqb_curspace +
5559 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5560 buf->f_blocks = limit;
5561 buf->f_bfree = buf->f_bavail =
5562 (buf->f_blocks > curblock) ?
5563 (buf->f_blocks - curblock) : 0;
5564 }
5565
5566 limit = dquot->dq_dqb.dqb_isoftlimit ?
5567 dquot->dq_dqb.dqb_isoftlimit :
5568 dquot->dq_dqb.dqb_ihardlimit;
5569 if (limit && buf->f_files > limit) {
5570 buf->f_files = limit;
5571 buf->f_ffree =
5572 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5573 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5574 }
5575
5576 spin_unlock(&dquot->dq_dqb_lock);
5577 dqput(dquot);
5578 return 0;
5579 }
5580 #endif
5581
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5582 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5583 {
5584 struct super_block *sb = dentry->d_sb;
5585 struct ext4_sb_info *sbi = EXT4_SB(sb);
5586 struct ext4_super_block *es = sbi->s_es;
5587 ext4_fsblk_t overhead = 0, resv_blocks;
5588 u64 fsid;
5589 s64 bfree;
5590 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5591
5592 if (!test_opt(sb, MINIX_DF))
5593 overhead = sbi->s_overhead;
5594
5595 buf->f_type = EXT4_SUPER_MAGIC;
5596 buf->f_bsize = sb->s_blocksize;
5597 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5598 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5599 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5600 /* prevent underflow in case that few free space is available */
5601 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5602 buf->f_bavail = buf->f_bfree -
5603 (ext4_r_blocks_count(es) + resv_blocks);
5604 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5605 buf->f_bavail = 0;
5606 buf->f_files = le32_to_cpu(es->s_inodes_count);
5607 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5608 buf->f_namelen = EXT4_NAME_LEN;
5609 fsid = le64_to_cpup((void *)es->s_uuid) ^
5610 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5611 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5612 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5613
5614 #ifdef CONFIG_QUOTA
5615 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5616 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5617 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5618 #endif
5619 return 0;
5620 }
5621
5622
5623 #ifdef CONFIG_QUOTA
5624
5625 /*
5626 * Helper functions so that transaction is started before we acquire dqio_sem
5627 * to keep correct lock ordering of transaction > dqio_sem
5628 */
dquot_to_inode(struct dquot * dquot)5629 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5630 {
5631 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5632 }
5633
ext4_write_dquot(struct dquot * dquot)5634 static int ext4_write_dquot(struct dquot *dquot)
5635 {
5636 int ret, err;
5637 handle_t *handle;
5638 struct inode *inode;
5639
5640 inode = dquot_to_inode(dquot);
5641 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5642 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5643 if (IS_ERR(handle))
5644 return PTR_ERR(handle);
5645 ret = dquot_commit(dquot);
5646 err = ext4_journal_stop(handle);
5647 if (!ret)
5648 ret = err;
5649 return ret;
5650 }
5651
ext4_acquire_dquot(struct dquot * dquot)5652 static int ext4_acquire_dquot(struct dquot *dquot)
5653 {
5654 int ret, err;
5655 handle_t *handle;
5656
5657 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5658 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5659 if (IS_ERR(handle))
5660 return PTR_ERR(handle);
5661 ret = dquot_acquire(dquot);
5662 err = ext4_journal_stop(handle);
5663 if (!ret)
5664 ret = err;
5665 return ret;
5666 }
5667
ext4_release_dquot(struct dquot * dquot)5668 static int ext4_release_dquot(struct dquot *dquot)
5669 {
5670 int ret, err;
5671 handle_t *handle;
5672
5673 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5674 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5675 if (IS_ERR(handle)) {
5676 /* Release dquot anyway to avoid endless cycle in dqput() */
5677 dquot_release(dquot);
5678 return PTR_ERR(handle);
5679 }
5680 ret = dquot_release(dquot);
5681 err = ext4_journal_stop(handle);
5682 if (!ret)
5683 ret = err;
5684 return ret;
5685 }
5686
ext4_mark_dquot_dirty(struct dquot * dquot)5687 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5688 {
5689 struct super_block *sb = dquot->dq_sb;
5690 struct ext4_sb_info *sbi = EXT4_SB(sb);
5691
5692 /* Are we journaling quotas? */
5693 if (ext4_has_feature_quota(sb) ||
5694 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5695 dquot_mark_dquot_dirty(dquot);
5696 return ext4_write_dquot(dquot);
5697 } else {
5698 return dquot_mark_dquot_dirty(dquot);
5699 }
5700 }
5701
ext4_write_info(struct super_block * sb,int type)5702 static int ext4_write_info(struct super_block *sb, int type)
5703 {
5704 int ret, err;
5705 handle_t *handle;
5706
5707 /* Data block + inode block */
5708 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5709 if (IS_ERR(handle))
5710 return PTR_ERR(handle);
5711 ret = dquot_commit_info(sb, type);
5712 err = ext4_journal_stop(handle);
5713 if (!ret)
5714 ret = err;
5715 return ret;
5716 }
5717
5718 /*
5719 * Turn on quotas during mount time - we need to find
5720 * the quota file and such...
5721 */
ext4_quota_on_mount(struct super_block * sb,int type)5722 static int ext4_quota_on_mount(struct super_block *sb, int type)
5723 {
5724 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5725 EXT4_SB(sb)->s_jquota_fmt, type);
5726 }
5727
lockdep_set_quota_inode(struct inode * inode,int subclass)5728 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5729 {
5730 struct ext4_inode_info *ei = EXT4_I(inode);
5731
5732 /* The first argument of lockdep_set_subclass has to be
5733 * *exactly* the same as the argument to init_rwsem() --- in
5734 * this case, in init_once() --- or lockdep gets unhappy
5735 * because the name of the lock is set using the
5736 * stringification of the argument to init_rwsem().
5737 */
5738 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5739 lockdep_set_subclass(&ei->i_data_sem, subclass);
5740 }
5741
5742 /*
5743 * Standard function to be called on quota_on
5744 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)5745 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5746 const struct path *path)
5747 {
5748 int err;
5749
5750 if (!test_opt(sb, QUOTA))
5751 return -EINVAL;
5752
5753 /* Quotafile not on the same filesystem? */
5754 if (path->dentry->d_sb != sb)
5755 return -EXDEV;
5756
5757 /* Quota already enabled for this file? */
5758 if (IS_NOQUOTA(d_inode(path->dentry)))
5759 return -EBUSY;
5760
5761 /* Journaling quota? */
5762 if (EXT4_SB(sb)->s_qf_names[type]) {
5763 /* Quotafile not in fs root? */
5764 if (path->dentry->d_parent != sb->s_root)
5765 ext4_msg(sb, KERN_WARNING,
5766 "Quota file not on filesystem root. "
5767 "Journaled quota will not work");
5768 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5769 } else {
5770 /*
5771 * Clear the flag just in case mount options changed since
5772 * last time.
5773 */
5774 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5775 }
5776
5777 /*
5778 * When we journal data on quota file, we have to flush journal to see
5779 * all updates to the file when we bypass pagecache...
5780 */
5781 if (EXT4_SB(sb)->s_journal &&
5782 ext4_should_journal_data(d_inode(path->dentry))) {
5783 /*
5784 * We don't need to lock updates but journal_flush() could
5785 * otherwise be livelocked...
5786 */
5787 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5788 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5789 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5790 if (err)
5791 return err;
5792 }
5793
5794 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5795 err = dquot_quota_on(sb, type, format_id, path);
5796 if (err) {
5797 lockdep_set_quota_inode(path->dentry->d_inode,
5798 I_DATA_SEM_NORMAL);
5799 } else {
5800 struct inode *inode = d_inode(path->dentry);
5801 handle_t *handle;
5802
5803 /*
5804 * Set inode flags to prevent userspace from messing with quota
5805 * files. If this fails, we return success anyway since quotas
5806 * are already enabled and this is not a hard failure.
5807 */
5808 inode_lock(inode);
5809 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5810 if (IS_ERR(handle))
5811 goto unlock_inode;
5812 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5813 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5814 S_NOATIME | S_IMMUTABLE);
5815 ext4_mark_inode_dirty(handle, inode);
5816 ext4_journal_stop(handle);
5817 unlock_inode:
5818 inode_unlock(inode);
5819 }
5820 return err;
5821 }
5822
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5823 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5824 unsigned int flags)
5825 {
5826 int err;
5827 struct inode *qf_inode;
5828 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5829 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5830 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5831 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5832 };
5833
5834 BUG_ON(!ext4_has_feature_quota(sb));
5835
5836 if (!qf_inums[type])
5837 return -EPERM;
5838
5839 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5840 if (IS_ERR(qf_inode)) {
5841 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5842 return PTR_ERR(qf_inode);
5843 }
5844
5845 /* Don't account quota for quota files to avoid recursion */
5846 qf_inode->i_flags |= S_NOQUOTA;
5847 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5848 err = dquot_enable(qf_inode, type, format_id, flags);
5849 if (err)
5850 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5851 iput(qf_inode);
5852
5853 return err;
5854 }
5855
5856 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5857 static int ext4_enable_quotas(struct super_block *sb)
5858 {
5859 int type, err = 0;
5860 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5861 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5862 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5863 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5864 };
5865 bool quota_mopt[EXT4_MAXQUOTAS] = {
5866 test_opt(sb, USRQUOTA),
5867 test_opt(sb, GRPQUOTA),
5868 test_opt(sb, PRJQUOTA),
5869 };
5870
5871 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5872 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5873 if (qf_inums[type]) {
5874 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5875 DQUOT_USAGE_ENABLED |
5876 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5877 if (err) {
5878 ext4_warning(sb,
5879 "Failed to enable quota tracking "
5880 "(type=%d, err=%d). Please run "
5881 "e2fsck to fix.", type, err);
5882 for (type--; type >= 0; type--)
5883 dquot_quota_off(sb, type);
5884
5885 return err;
5886 }
5887 }
5888 }
5889 return 0;
5890 }
5891
ext4_quota_off(struct super_block * sb,int type)5892 static int ext4_quota_off(struct super_block *sb, int type)
5893 {
5894 struct inode *inode = sb_dqopt(sb)->files[type];
5895 handle_t *handle;
5896 int err;
5897
5898 /* Force all delayed allocation blocks to be allocated.
5899 * Caller already holds s_umount sem */
5900 if (test_opt(sb, DELALLOC))
5901 sync_filesystem(sb);
5902
5903 if (!inode || !igrab(inode))
5904 goto out;
5905
5906 err = dquot_quota_off(sb, type);
5907 if (err || ext4_has_feature_quota(sb))
5908 goto out_put;
5909
5910 inode_lock(inode);
5911 /*
5912 * Update modification times of quota files when userspace can
5913 * start looking at them. If we fail, we return success anyway since
5914 * this is not a hard failure and quotas are already disabled.
5915 */
5916 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5917 if (IS_ERR(handle))
5918 goto out_unlock;
5919 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5920 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5921 inode->i_mtime = inode->i_ctime = current_time(inode);
5922 ext4_mark_inode_dirty(handle, inode);
5923 ext4_journal_stop(handle);
5924 out_unlock:
5925 inode_unlock(inode);
5926 out_put:
5927 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5928 iput(inode);
5929 return err;
5930 out:
5931 return dquot_quota_off(sb, type);
5932 }
5933
5934 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5935 * acquiring the locks... As quota files are never truncated and quota code
5936 * itself serializes the operations (and no one else should touch the files)
5937 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5938 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5939 size_t len, loff_t off)
5940 {
5941 struct inode *inode = sb_dqopt(sb)->files[type];
5942 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5943 int offset = off & (sb->s_blocksize - 1);
5944 int tocopy;
5945 size_t toread;
5946 struct buffer_head *bh;
5947 loff_t i_size = i_size_read(inode);
5948
5949 if (off > i_size)
5950 return 0;
5951 if (off+len > i_size)
5952 len = i_size-off;
5953 toread = len;
5954 while (toread > 0) {
5955 tocopy = sb->s_blocksize - offset < toread ?
5956 sb->s_blocksize - offset : toread;
5957 bh = ext4_bread(NULL, inode, blk, 0);
5958 if (IS_ERR(bh))
5959 return PTR_ERR(bh);
5960 if (!bh) /* A hole? */
5961 memset(data, 0, tocopy);
5962 else
5963 memcpy(data, bh->b_data+offset, tocopy);
5964 brelse(bh);
5965 offset = 0;
5966 toread -= tocopy;
5967 data += tocopy;
5968 blk++;
5969 }
5970 return len;
5971 }
5972
5973 /* Write to quotafile (we know the transaction is already started and has
5974 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5975 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5976 const char *data, size_t len, loff_t off)
5977 {
5978 struct inode *inode = sb_dqopt(sb)->files[type];
5979 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5980 int err, offset = off & (sb->s_blocksize - 1);
5981 int retries = 0;
5982 struct buffer_head *bh;
5983 handle_t *handle = journal_current_handle();
5984
5985 if (EXT4_SB(sb)->s_journal && !handle) {
5986 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5987 " cancelled because transaction is not started",
5988 (unsigned long long)off, (unsigned long long)len);
5989 return -EIO;
5990 }
5991 /*
5992 * Since we account only one data block in transaction credits,
5993 * then it is impossible to cross a block boundary.
5994 */
5995 if (sb->s_blocksize - offset < len) {
5996 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5997 " cancelled because not block aligned",
5998 (unsigned long long)off, (unsigned long long)len);
5999 return -EIO;
6000 }
6001
6002 do {
6003 bh = ext4_bread(handle, inode, blk,
6004 EXT4_GET_BLOCKS_CREATE |
6005 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6006 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
6007 ext4_should_retry_alloc(inode->i_sb, &retries));
6008 if (IS_ERR(bh))
6009 return PTR_ERR(bh);
6010 if (!bh)
6011 goto out;
6012 BUFFER_TRACE(bh, "get write access");
6013 err = ext4_journal_get_write_access(handle, bh);
6014 if (err) {
6015 brelse(bh);
6016 return err;
6017 }
6018 lock_buffer(bh);
6019 memcpy(bh->b_data+offset, data, len);
6020 flush_dcache_page(bh->b_page);
6021 unlock_buffer(bh);
6022 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6023 brelse(bh);
6024 out:
6025 if (inode->i_size < off + len) {
6026 i_size_write(inode, off + len);
6027 EXT4_I(inode)->i_disksize = inode->i_size;
6028 ext4_mark_inode_dirty(handle, inode);
6029 }
6030 return len;
6031 }
6032
ext4_get_next_id(struct super_block * sb,struct kqid * qid)6033 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6034 {
6035 const struct quota_format_ops *ops;
6036
6037 if (!sb_has_quota_loaded(sb, qid->type))
6038 return -ESRCH;
6039 ops = sb_dqopt(sb)->ops[qid->type];
6040 if (!ops || !ops->get_next_id)
6041 return -ENOSYS;
6042 return dquot_get_next_id(sb, qid);
6043 }
6044 #endif
6045
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6046 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6047 const char *dev_name, void *data)
6048 {
6049 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6050 }
6051
6052 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6053 static inline void register_as_ext2(void)
6054 {
6055 int err = register_filesystem(&ext2_fs_type);
6056 if (err)
6057 printk(KERN_WARNING
6058 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6059 }
6060
unregister_as_ext2(void)6061 static inline void unregister_as_ext2(void)
6062 {
6063 unregister_filesystem(&ext2_fs_type);
6064 }
6065
ext2_feature_set_ok(struct super_block * sb)6066 static inline int ext2_feature_set_ok(struct super_block *sb)
6067 {
6068 if (ext4_has_unknown_ext2_incompat_features(sb))
6069 return 0;
6070 if (sb_rdonly(sb))
6071 return 1;
6072 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6073 return 0;
6074 return 1;
6075 }
6076 #else
register_as_ext2(void)6077 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6078 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6079 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6080 #endif
6081
register_as_ext3(void)6082 static inline void register_as_ext3(void)
6083 {
6084 int err = register_filesystem(&ext3_fs_type);
6085 if (err)
6086 printk(KERN_WARNING
6087 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6088 }
6089
unregister_as_ext3(void)6090 static inline void unregister_as_ext3(void)
6091 {
6092 unregister_filesystem(&ext3_fs_type);
6093 }
6094
ext3_feature_set_ok(struct super_block * sb)6095 static inline int ext3_feature_set_ok(struct super_block *sb)
6096 {
6097 if (ext4_has_unknown_ext3_incompat_features(sb))
6098 return 0;
6099 if (!ext4_has_feature_journal(sb))
6100 return 0;
6101 if (sb_rdonly(sb))
6102 return 1;
6103 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6104 return 0;
6105 return 1;
6106 }
6107
6108 static struct file_system_type ext4_fs_type = {
6109 .owner = THIS_MODULE,
6110 .name = "ext4",
6111 .mount = ext4_mount,
6112 .kill_sb = kill_block_super,
6113 .fs_flags = FS_REQUIRES_DEV,
6114 };
6115 MODULE_ALIAS_FS("ext4");
6116
6117 /* Shared across all ext4 file systems */
6118 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6119
ext4_init_fs(void)6120 static int __init ext4_init_fs(void)
6121 {
6122 int i, err;
6123
6124 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6125 ext4_li_info = NULL;
6126 mutex_init(&ext4_li_mtx);
6127
6128 /* Build-time check for flags consistency */
6129 ext4_check_flag_values();
6130
6131 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6132 init_waitqueue_head(&ext4__ioend_wq[i]);
6133
6134 err = ext4_init_es();
6135 if (err)
6136 return err;
6137
6138 err = ext4_init_pageio();
6139 if (err)
6140 goto out5;
6141
6142 err = ext4_init_system_zone();
6143 if (err)
6144 goto out4;
6145
6146 err = ext4_init_sysfs();
6147 if (err)
6148 goto out3;
6149
6150 err = ext4_init_mballoc();
6151 if (err)
6152 goto out2;
6153 err = init_inodecache();
6154 if (err)
6155 goto out1;
6156 register_as_ext3();
6157 register_as_ext2();
6158 err = register_filesystem(&ext4_fs_type);
6159 if (err)
6160 goto out;
6161
6162 return 0;
6163 out:
6164 unregister_as_ext2();
6165 unregister_as_ext3();
6166 destroy_inodecache();
6167 out1:
6168 ext4_exit_mballoc();
6169 out2:
6170 ext4_exit_sysfs();
6171 out3:
6172 ext4_exit_system_zone();
6173 out4:
6174 ext4_exit_pageio();
6175 out5:
6176 ext4_exit_es();
6177
6178 return err;
6179 }
6180
ext4_exit_fs(void)6181 static void __exit ext4_exit_fs(void)
6182 {
6183 ext4_destroy_lazyinit_thread();
6184 unregister_as_ext2();
6185 unregister_as_ext3();
6186 unregister_filesystem(&ext4_fs_type);
6187 destroy_inodecache();
6188 ext4_exit_mballoc();
6189 ext4_exit_sysfs();
6190 ext4_exit_system_zone();
6191 ext4_exit_pageio();
6192 ext4_exit_es();
6193 }
6194
6195 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6196 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6197 MODULE_LICENSE("GPL");
6198 MODULE_SOFTDEP("pre: crc32c");
6199 module_init(ext4_init_fs)
6200 module_exit(ext4_exit_fs)
6201