• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 
49 #include "ext4.h"
50 #include "ext4_extents.h"	/* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59 
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static int ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static int ext4_clear_journal_err(struct super_block *sb,
71 				  struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 
88 /*
89  * Lock ordering
90  *
91  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92  * i_mmap_rwsem (inode->i_mmap_rwsem)!
93  *
94  * page fault path:
95  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96  *   page lock -> i_data_sem (rw)
97  *
98  * buffered write path:
99  * sb_start_write -> i_mutex -> mmap_sem
100  * sb_start_write -> i_mutex -> transaction start -> page lock ->
101  *   i_data_sem (rw)
102  *
103  * truncate:
104  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106  *   i_data_sem (rw)
107  *
108  * direct IO:
109  * sb_start_write -> i_mutex -> mmap_sem
110  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 /*
144  * This works like sb_bread() except it uses ERR_PTR for error
145  * returns.  Currently with sb_bread it's impossible to distinguish
146  * between ENOMEM and EIO situations (since both result in a NULL
147  * return.
148  */
149 struct buffer_head *
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151 {
152 	struct buffer_head *bh = sb_getblk(sb, block);
153 
154 	if (bh == NULL)
155 		return ERR_PTR(-ENOMEM);
156 	if (buffer_uptodate(bh))
157 		return bh;
158 	ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 	wait_on_buffer(bh);
160 	if (buffer_uptodate(bh))
161 		return bh;
162 	put_bh(bh);
163 	return ERR_PTR(-EIO);
164 }
165 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)166 static int ext4_verify_csum_type(struct super_block *sb,
167 				 struct ext4_super_block *es)
168 {
169 	if (!ext4_has_feature_metadata_csum(sb))
170 		return 1;
171 
172 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173 }
174 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)175 static __le32 ext4_superblock_csum(struct super_block *sb,
176 				   struct ext4_super_block *es)
177 {
178 	struct ext4_sb_info *sbi = EXT4_SB(sb);
179 	int offset = offsetof(struct ext4_super_block, s_checksum);
180 	__u32 csum;
181 
182 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183 
184 	return cpu_to_le32(csum);
185 }
186 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)187 static int ext4_superblock_csum_verify(struct super_block *sb,
188 				       struct ext4_super_block *es)
189 {
190 	if (!ext4_has_metadata_csum(sb))
191 		return 1;
192 
193 	return es->s_checksum == ext4_superblock_csum(sb, es);
194 }
195 
ext4_superblock_csum_set(struct super_block * sb)196 void ext4_superblock_csum_set(struct super_block *sb)
197 {
198 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199 
200 	if (!ext4_has_metadata_csum(sb))
201 		return;
202 
203 	es->s_checksum = ext4_superblock_csum(sb, es);
204 }
205 
ext4_kvmalloc(size_t size,gfp_t flags)206 void *ext4_kvmalloc(size_t size, gfp_t flags)
207 {
208 	void *ret;
209 
210 	ret = kmalloc(size, flags | __GFP_NOWARN);
211 	if (!ret)
212 		ret = __vmalloc(size, flags, PAGE_KERNEL);
213 	return ret;
214 }
215 
ext4_kvzalloc(size_t size,gfp_t flags)216 void *ext4_kvzalloc(size_t size, gfp_t flags)
217 {
218 	void *ret;
219 
220 	ret = kzalloc(size, flags | __GFP_NOWARN);
221 	if (!ret)
222 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 	return ret;
224 }
225 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 			       struct ext4_group_desc *bg)
228 {
229 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232 }
233 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 			       struct ext4_group_desc *bg)
236 {
237 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240 }
241 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)242 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 			      struct ext4_group_desc *bg)
244 {
245 	return le32_to_cpu(bg->bg_inode_table_lo) |
246 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248 }
249 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)250 __u32 ext4_free_group_clusters(struct super_block *sb,
251 			       struct ext4_group_desc *bg)
252 {
253 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256 }
257 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)258 __u32 ext4_free_inodes_count(struct super_block *sb,
259 			      struct ext4_group_desc *bg)
260 {
261 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264 }
265 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)266 __u32 ext4_used_dirs_count(struct super_block *sb,
267 			      struct ext4_group_desc *bg)
268 {
269 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272 }
273 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)274 __u32 ext4_itable_unused_count(struct super_block *sb,
275 			      struct ext4_group_desc *bg)
276 {
277 	return le16_to_cpu(bg->bg_itable_unused_lo) |
278 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280 }
281 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)282 void ext4_block_bitmap_set(struct super_block *sb,
283 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
284 {
285 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288 }
289 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)290 void ext4_inode_bitmap_set(struct super_block *sb,
291 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
292 {
293 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
294 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296 }
297 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)298 void ext4_inode_table_set(struct super_block *sb,
299 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
300 {
301 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304 }
305 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)306 void ext4_free_group_clusters_set(struct super_block *sb,
307 				  struct ext4_group_desc *bg, __u32 count)
308 {
309 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312 }
313 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)314 void ext4_free_inodes_set(struct super_block *sb,
315 			  struct ext4_group_desc *bg, __u32 count)
316 {
317 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320 }
321 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)322 void ext4_used_dirs_set(struct super_block *sb,
323 			  struct ext4_group_desc *bg, __u32 count)
324 {
325 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328 }
329 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)330 void ext4_itable_unused_set(struct super_block *sb,
331 			  struct ext4_group_desc *bg, __u32 count)
332 {
333 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336 }
337 
__ext4_update_tstamp(__le32 * lo,__u8 * hi)338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339 {
340 	time64_t now = ktime_get_real_seconds();
341 
342 	now = clamp_val(now, 0, (1ull << 40) - 1);
343 
344 	*lo = cpu_to_le32(lower_32_bits(now));
345 	*hi = upper_32_bits(now);
346 }
347 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349 {
350 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351 }
352 #define ext4_update_tstamp(es, tstamp) \
353 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354 #define ext4_get_tstamp(es, tstamp) \
355 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)357 static void __save_error_info(struct super_block *sb, const char *func,
358 			    unsigned int line)
359 {
360 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361 
362 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 	if (bdev_read_only(sb->s_bdev))
364 		return;
365 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 	ext4_update_tstamp(es, s_last_error_time);
367 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 	es->s_last_error_line = cpu_to_le32(line);
369 	if (!es->s_first_error_time) {
370 		es->s_first_error_time = es->s_last_error_time;
371 		es->s_first_error_time_hi = es->s_last_error_time_hi;
372 		strncpy(es->s_first_error_func, func,
373 			sizeof(es->s_first_error_func));
374 		es->s_first_error_line = cpu_to_le32(line);
375 		es->s_first_error_ino = es->s_last_error_ino;
376 		es->s_first_error_block = es->s_last_error_block;
377 	}
378 	/*
379 	 * Start the daily error reporting function if it hasn't been
380 	 * started already
381 	 */
382 	if (!es->s_error_count)
383 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 	le32_add_cpu(&es->s_error_count, 1);
385 }
386 
save_error_info(struct super_block * sb,const char * func,unsigned int line)387 static void save_error_info(struct super_block *sb, const char *func,
388 			    unsigned int line)
389 {
390 	__save_error_info(sb, func, line);
391 	if (!bdev_read_only(sb->s_bdev))
392 		ext4_commit_super(sb, 1);
393 }
394 
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
block_device_ejected(struct super_block * sb)403 static int block_device_ejected(struct super_block *sb)
404 {
405 	struct inode *bd_inode = sb->s_bdev->bd_inode;
406 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407 
408 	return bdi->dev == NULL;
409 }
410 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 	struct super_block		*sb = journal->j_private;
414 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
415 	int				error = is_journal_aborted(journal);
416 	struct ext4_journal_cb_entry	*jce;
417 
418 	BUG_ON(txn->t_state == T_FINISHED);
419 
420 	ext4_process_freed_data(sb, txn->t_tid);
421 
422 	spin_lock(&sbi->s_md_lock);
423 	while (!list_empty(&txn->t_private_list)) {
424 		jce = list_entry(txn->t_private_list.next,
425 				 struct ext4_journal_cb_entry, jce_list);
426 		list_del_init(&jce->jce_list);
427 		spin_unlock(&sbi->s_md_lock);
428 		jce->jce_func(sb, jce, error);
429 		spin_lock(&sbi->s_md_lock);
430 	}
431 	spin_unlock(&sbi->s_md_lock);
432 }
433 
system_going_down(void)434 static bool system_going_down(void)
435 {
436 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 		|| system_state == SYSTEM_RESTART;
438 }
439 
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454 
ext4_handle_error(struct super_block * sb)455 static void ext4_handle_error(struct super_block *sb)
456 {
457 	if (test_opt(sb, WARN_ON_ERROR))
458 		WARN_ON_ONCE(1);
459 
460 	if (sb_rdonly(sb))
461 		return;
462 
463 	if (!test_opt(sb, ERRORS_CONT)) {
464 		journal_t *journal = EXT4_SB(sb)->s_journal;
465 
466 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 		if (journal)
468 			jbd2_journal_abort(journal, -EIO);
469 	}
470 	/*
471 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 	 * could panic during 'reboot -f' as the underlying device got already
473 	 * disabled.
474 	 */
475 	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 		/*
478 		 * Make sure updated value of ->s_mount_flags will be visible
479 		 * before ->s_flags update
480 		 */
481 		smp_wmb();
482 		sb->s_flags |= SB_RDONLY;
483 	} else if (test_opt(sb, ERRORS_PANIC)) {
484 		if (EXT4_SB(sb)->s_journal &&
485 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 			return;
487 		panic("EXT4-fs (device %s): panic forced after error\n",
488 			sb->s_id);
489 	}
490 }
491 
492 #define ext4_error_ratelimit(sb)					\
493 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
494 			     "EXT4-fs error")
495 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)496 void __ext4_error(struct super_block *sb, const char *function,
497 		  unsigned int line, const char *fmt, ...)
498 {
499 	struct va_format vaf;
500 	va_list args;
501 
502 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 		return;
504 
505 	trace_ext4_error(sb, function, line);
506 	if (ext4_error_ratelimit(sb)) {
507 		va_start(args, fmt);
508 		vaf.fmt = fmt;
509 		vaf.va = &args;
510 		printk(KERN_CRIT
511 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 		       sb->s_id, function, line, current->comm, &vaf);
513 		va_end(args);
514 	}
515 	save_error_info(sb, function, line);
516 	ext4_handle_error(sb);
517 }
518 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)519 void __ext4_error_inode(struct inode *inode, const char *function,
520 			unsigned int line, ext4_fsblk_t block,
521 			const char *fmt, ...)
522 {
523 	va_list args;
524 	struct va_format vaf;
525 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526 
527 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 		return;
529 
530 	trace_ext4_error(inode->i_sb, function, line);
531 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 	es->s_last_error_block = cpu_to_le64(block);
533 	if (ext4_error_ratelimit(inode->i_sb)) {
534 		va_start(args, fmt);
535 		vaf.fmt = fmt;
536 		vaf.va = &args;
537 		if (block)
538 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 			       "inode #%lu: block %llu: comm %s: %pV\n",
540 			       inode->i_sb->s_id, function, line, inode->i_ino,
541 			       block, current->comm, &vaf);
542 		else
543 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 			       "inode #%lu: comm %s: %pV\n",
545 			       inode->i_sb->s_id, function, line, inode->i_ino,
546 			       current->comm, &vaf);
547 		va_end(args);
548 	}
549 	save_error_info(inode->i_sb, function, line);
550 	ext4_handle_error(inode->i_sb);
551 }
552 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)553 void __ext4_error_file(struct file *file, const char *function,
554 		       unsigned int line, ext4_fsblk_t block,
555 		       const char *fmt, ...)
556 {
557 	va_list args;
558 	struct va_format vaf;
559 	struct ext4_super_block *es;
560 	struct inode *inode = file_inode(file);
561 	char pathname[80], *path;
562 
563 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 		return;
565 
566 	trace_ext4_error(inode->i_sb, function, line);
567 	es = EXT4_SB(inode->i_sb)->s_es;
568 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 	if (ext4_error_ratelimit(inode->i_sb)) {
570 		path = file_path(file, pathname, sizeof(pathname));
571 		if (IS_ERR(path))
572 			path = "(unknown)";
573 		va_start(args, fmt);
574 		vaf.fmt = fmt;
575 		vaf.va = &args;
576 		if (block)
577 			printk(KERN_CRIT
578 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 			       "block %llu: comm %s: path %s: %pV\n",
580 			       inode->i_sb->s_id, function, line, inode->i_ino,
581 			       block, current->comm, path, &vaf);
582 		else
583 			printk(KERN_CRIT
584 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 			       "comm %s: path %s: %pV\n",
586 			       inode->i_sb->s_id, function, line, inode->i_ino,
587 			       current->comm, path, &vaf);
588 		va_end(args);
589 	}
590 	save_error_info(inode->i_sb, function, line);
591 	ext4_handle_error(inode->i_sb);
592 }
593 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 			      char nbuf[16])
596 {
597 	char *errstr = NULL;
598 
599 	switch (errno) {
600 	case -EFSCORRUPTED:
601 		errstr = "Corrupt filesystem";
602 		break;
603 	case -EFSBADCRC:
604 		errstr = "Filesystem failed CRC";
605 		break;
606 	case -EIO:
607 		errstr = "IO failure";
608 		break;
609 	case -ENOMEM:
610 		errstr = "Out of memory";
611 		break;
612 	case -EROFS:
613 		if (!sb || (EXT4_SB(sb)->s_journal &&
614 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 			errstr = "Journal has aborted";
616 		else
617 			errstr = "Readonly filesystem";
618 		break;
619 	default:
620 		/* If the caller passed in an extra buffer for unknown
621 		 * errors, textualise them now.  Else we just return
622 		 * NULL. */
623 		if (nbuf) {
624 			/* Check for truncated error codes... */
625 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 				errstr = nbuf;
627 		}
628 		break;
629 	}
630 
631 	return errstr;
632 }
633 
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)637 void __ext4_std_error(struct super_block *sb, const char *function,
638 		      unsigned int line, int errno)
639 {
640 	char nbuf[16];
641 	const char *errstr;
642 
643 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 		return;
645 
646 	/* Special case: if the error is EROFS, and we're not already
647 	 * inside a transaction, then there's really no point in logging
648 	 * an error. */
649 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 		return;
651 
652 	if (ext4_error_ratelimit(sb)) {
653 		errstr = ext4_decode_error(sb, errno, nbuf);
654 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 		       sb->s_id, function, line, errstr);
656 	}
657 
658 	save_error_info(sb, function, line);
659 	ext4_handle_error(sb);
660 }
661 
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)672 void __ext4_abort(struct super_block *sb, const char *function,
673 		unsigned int line, const char *fmt, ...)
674 {
675 	struct va_format vaf;
676 	va_list args;
677 
678 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 		return;
680 
681 	save_error_info(sb, function, line);
682 	va_start(args, fmt);
683 	vaf.fmt = fmt;
684 	vaf.va = &args;
685 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 	       sb->s_id, function, line, &vaf);
687 	va_end(args);
688 
689 	if (sb_rdonly(sb) == 0) {
690 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 		/*
693 		 * Make sure updated value of ->s_mount_flags will be visible
694 		 * before ->s_flags update
695 		 */
696 		smp_wmb();
697 		sb->s_flags |= SB_RDONLY;
698 		if (EXT4_SB(sb)->s_journal)
699 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 		save_error_info(sb, function, line);
701 	}
702 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 		if (EXT4_SB(sb)->s_journal &&
704 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 			return;
706 		panic("EXT4-fs panic from previous error\n");
707 	}
708 }
709 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)710 void __ext4_msg(struct super_block *sb,
711 		const char *prefix, const char *fmt, ...)
712 {
713 	struct va_format vaf;
714 	va_list args;
715 
716 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 		return;
718 
719 	va_start(args, fmt);
720 	vaf.fmt = fmt;
721 	vaf.va = &args;
722 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 	va_end(args);
724 }
725 
726 #define ext4_warning_ratelimit(sb)					\
727 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
728 			     "EXT4-fs warning")
729 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)730 void __ext4_warning(struct super_block *sb, const char *function,
731 		    unsigned int line, const char *fmt, ...)
732 {
733 	struct va_format vaf;
734 	va_list args;
735 
736 	if (!ext4_warning_ratelimit(sb))
737 		return;
738 
739 	va_start(args, fmt);
740 	vaf.fmt = fmt;
741 	vaf.va = &args;
742 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 	       sb->s_id, function, line, &vaf);
744 	va_end(args);
745 }
746 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 			  unsigned int line, const char *fmt, ...)
749 {
750 	struct va_format vaf;
751 	va_list args;
752 
753 	if (!ext4_warning_ratelimit(inode->i_sb))
754 		return;
755 
756 	va_start(args, fmt);
757 	vaf.fmt = fmt;
758 	vaf.va = &args;
759 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 	       function, line, inode->i_ino, current->comm, &vaf);
762 	va_end(args);
763 }
764 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 			     struct super_block *sb, ext4_group_t grp,
767 			     unsigned long ino, ext4_fsblk_t block,
768 			     const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772 	struct va_format vaf;
773 	va_list args;
774 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775 
776 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 		return;
778 
779 	trace_ext4_error(sb, function, line);
780 	es->s_last_error_ino = cpu_to_le32(ino);
781 	es->s_last_error_block = cpu_to_le64(block);
782 	__save_error_info(sb, function, line);
783 
784 	if (ext4_error_ratelimit(sb)) {
785 		va_start(args, fmt);
786 		vaf.fmt = fmt;
787 		vaf.va = &args;
788 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 		       sb->s_id, function, line, grp);
790 		if (ino)
791 			printk(KERN_CONT "inode %lu: ", ino);
792 		if (block)
793 			printk(KERN_CONT "block %llu:",
794 			       (unsigned long long) block);
795 		printk(KERN_CONT "%pV\n", &vaf);
796 		va_end(args);
797 	}
798 
799 	if (test_opt(sb, WARN_ON_ERROR))
800 		WARN_ON_ONCE(1);
801 
802 	if (test_opt(sb, ERRORS_CONT)) {
803 		ext4_commit_super(sb, 0);
804 		return;
805 	}
806 
807 	ext4_unlock_group(sb, grp);
808 	ext4_commit_super(sb, 1);
809 	ext4_handle_error(sb);
810 	/*
811 	 * We only get here in the ERRORS_RO case; relocking the group
812 	 * may be dangerous, but nothing bad will happen since the
813 	 * filesystem will have already been marked read/only and the
814 	 * journal has been aborted.  We return 1 as a hint to callers
815 	 * who might what to use the return value from
816 	 * ext4_grp_locked_error() to distinguish between the
817 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 	 * aggressively from the ext4 function in question, with a
819 	 * more appropriate error code.
820 	 */
821 	ext4_lock_group(sb, grp);
822 	return;
823 }
824 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 				     ext4_group_t group,
827 				     unsigned int flags)
828 {
829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
830 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 	int ret;
833 
834 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 					    &grp->bb_state);
837 		if (!ret)
838 			percpu_counter_sub(&sbi->s_freeclusters_counter,
839 					   grp->bb_free);
840 	}
841 
842 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 					    &grp->bb_state);
845 		if (!ret && gdp) {
846 			int count;
847 
848 			count = ext4_free_inodes_count(sb, gdp);
849 			percpu_counter_sub(&sbi->s_freeinodes_counter,
850 					   count);
851 		}
852 	}
853 }
854 
ext4_update_dynamic_rev(struct super_block * sb)855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858 
859 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 		return;
861 
862 	ext4_warning(sb,
863 		     "updating to rev %d because of new feature flag, "
864 		     "running e2fsck is recommended",
865 		     EXT4_DYNAMIC_REV);
866 
867 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 	/* leave es->s_feature_*compat flags alone */
871 	/* es->s_uuid will be set by e2fsck if empty */
872 
873 	/*
874 	 * The rest of the superblock fields should be zero, and if not it
875 	 * means they are likely already in use, so leave them alone.  We
876 	 * can leave it up to e2fsck to clean up any inconsistencies there.
877 	 */
878 }
879 
880 /*
881  * Open the external journal device
882  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885 	struct block_device *bdev;
886 	char b[BDEVNAME_SIZE];
887 
888 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 	if (IS_ERR(bdev))
890 		goto fail;
891 	return bdev;
892 
893 fail:
894 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 			__bdevname(dev, b), PTR_ERR(bdev));
896 	return NULL;
897 }
898 
899 /*
900  * Release the journal device
901  */
ext4_blkdev_put(struct block_device * bdev)902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906 
ext4_blkdev_remove(struct ext4_sb_info * sbi)907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909 	struct block_device *bdev;
910 	bdev = sbi->journal_bdev;
911 	if (bdev) {
912 		ext4_blkdev_put(bdev);
913 		sbi->journal_bdev = NULL;
914 	}
915 }
916 
orphan_list_entry(struct list_head * l)917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924 	struct list_head *l;
925 
926 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 		 le32_to_cpu(sbi->s_es->s_last_orphan));
928 
929 	printk(KERN_ERR "sb_info orphan list:\n");
930 	list_for_each(l, &sbi->s_orphan) {
931 		struct inode *inode = orphan_list_entry(l);
932 		printk(KERN_ERR "  "
933 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 		       inode->i_sb->s_id, inode->i_ino, inode,
935 		       inode->i_mode, inode->i_nlink,
936 		       NEXT_ORPHAN(inode));
937 	}
938 }
939 
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942 
ext4_quota_off_umount(struct super_block * sb)943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945 	int type;
946 
947 	/* Use our quota_off function to clear inode flags etc. */
948 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 		ext4_quota_off(sb, type);
950 }
951 
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)956 static inline char *get_qf_name(struct super_block *sb,
957 				struct ext4_sb_info *sbi,
958 				int type)
959 {
960 	return rcu_dereference_protected(sbi->s_qf_names[type],
961 					 lockdep_is_held(&sb->s_umount));
962 }
963 #else
ext4_quota_off_umount(struct super_block * sb)964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968 
ext4_put_super(struct super_block * sb)969 static void ext4_put_super(struct super_block *sb)
970 {
971 	struct ext4_sb_info *sbi = EXT4_SB(sb);
972 	struct ext4_super_block *es = sbi->s_es;
973 	struct buffer_head **group_desc;
974 	struct flex_groups **flex_groups;
975 	int aborted = 0;
976 	int i, err;
977 
978 	ext4_unregister_li_request(sb);
979 	ext4_quota_off_umount(sb);
980 
981 	destroy_workqueue(sbi->rsv_conversion_wq);
982 
983 	if (sbi->s_journal) {
984 		aborted = is_journal_aborted(sbi->s_journal);
985 		err = jbd2_journal_destroy(sbi->s_journal);
986 		sbi->s_journal = NULL;
987 		if ((err < 0) && !aborted)
988 			ext4_abort(sb, "Couldn't clean up the journal");
989 	}
990 
991 	ext4_unregister_sysfs(sb);
992 	ext4_es_unregister_shrinker(sbi);
993 	del_timer_sync(&sbi->s_err_report);
994 	ext4_release_system_zone(sb);
995 	ext4_mb_release(sb);
996 	ext4_ext_release(sb);
997 
998 	if (!sb_rdonly(sb) && !aborted) {
999 		ext4_clear_feature_journal_needs_recovery(sb);
1000 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1001 	}
1002 	if (!sb_rdonly(sb))
1003 		ext4_commit_super(sb, 1);
1004 
1005 	rcu_read_lock();
1006 	group_desc = rcu_dereference(sbi->s_group_desc);
1007 	for (i = 0; i < sbi->s_gdb_count; i++)
1008 		brelse(group_desc[i]);
1009 	kvfree(group_desc);
1010 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1011 	if (flex_groups) {
1012 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1013 			kvfree(flex_groups[i]);
1014 		kvfree(flex_groups);
1015 	}
1016 	rcu_read_unlock();
1017 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1018 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1019 	percpu_counter_destroy(&sbi->s_dirs_counter);
1020 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1021 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1022 #ifdef CONFIG_QUOTA
1023 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1024 		kfree(get_qf_name(sb, sbi, i));
1025 #endif
1026 
1027 	/* Debugging code just in case the in-memory inode orphan list
1028 	 * isn't empty.  The on-disk one can be non-empty if we've
1029 	 * detected an error and taken the fs readonly, but the
1030 	 * in-memory list had better be clean by this point. */
1031 	if (!list_empty(&sbi->s_orphan))
1032 		dump_orphan_list(sb, sbi);
1033 	J_ASSERT(list_empty(&sbi->s_orphan));
1034 
1035 	sync_blockdev(sb->s_bdev);
1036 	invalidate_bdev(sb->s_bdev);
1037 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1038 		/*
1039 		 * Invalidate the journal device's buffers.  We don't want them
1040 		 * floating about in memory - the physical journal device may
1041 		 * hotswapped, and it breaks the `ro-after' testing code.
1042 		 */
1043 		sync_blockdev(sbi->journal_bdev);
1044 		invalidate_bdev(sbi->journal_bdev);
1045 		ext4_blkdev_remove(sbi);
1046 	}
1047 	if (sbi->s_ea_inode_cache) {
1048 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1049 		sbi->s_ea_inode_cache = NULL;
1050 	}
1051 	if (sbi->s_ea_block_cache) {
1052 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1053 		sbi->s_ea_block_cache = NULL;
1054 	}
1055 	if (sbi->s_mmp_tsk)
1056 		kthread_stop(sbi->s_mmp_tsk);
1057 	brelse(sbi->s_sbh);
1058 	sb->s_fs_info = NULL;
1059 	/*
1060 	 * Now that we are completely done shutting down the
1061 	 * superblock, we need to actually destroy the kobject.
1062 	 */
1063 	kobject_put(&sbi->s_kobj);
1064 	wait_for_completion(&sbi->s_kobj_unregister);
1065 	if (sbi->s_chksum_driver)
1066 		crypto_free_shash(sbi->s_chksum_driver);
1067 	kfree(sbi->s_blockgroup_lock);
1068 	fs_put_dax(sbi->s_daxdev);
1069 	kfree(sbi);
1070 }
1071 
1072 static struct kmem_cache *ext4_inode_cachep;
1073 
1074 /*
1075  * Called inside transaction, so use GFP_NOFS
1076  */
ext4_alloc_inode(struct super_block * sb)1077 static struct inode *ext4_alloc_inode(struct super_block *sb)
1078 {
1079 	struct ext4_inode_info *ei;
1080 
1081 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1082 	if (!ei)
1083 		return NULL;
1084 
1085 	inode_set_iversion(&ei->vfs_inode, 1);
1086 	spin_lock_init(&ei->i_raw_lock);
1087 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1088 	spin_lock_init(&ei->i_prealloc_lock);
1089 	ext4_es_init_tree(&ei->i_es_tree);
1090 	rwlock_init(&ei->i_es_lock);
1091 	INIT_LIST_HEAD(&ei->i_es_list);
1092 	ei->i_es_all_nr = 0;
1093 	ei->i_es_shk_nr = 0;
1094 	ei->i_es_shrink_lblk = 0;
1095 	ei->i_reserved_data_blocks = 0;
1096 	ei->i_da_metadata_calc_len = 0;
1097 	ei->i_da_metadata_calc_last_lblock = 0;
1098 	spin_lock_init(&(ei->i_block_reservation_lock));
1099 #ifdef CONFIG_QUOTA
1100 	ei->i_reserved_quota = 0;
1101 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1102 #endif
1103 	ei->jinode = NULL;
1104 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1105 	spin_lock_init(&ei->i_completed_io_lock);
1106 	ei->i_sync_tid = 0;
1107 	ei->i_datasync_tid = 0;
1108 	atomic_set(&ei->i_unwritten, 0);
1109 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1110 	return &ei->vfs_inode;
1111 }
1112 
ext4_drop_inode(struct inode * inode)1113 static int ext4_drop_inode(struct inode *inode)
1114 {
1115 	int drop = generic_drop_inode(inode);
1116 
1117 	trace_ext4_drop_inode(inode, drop);
1118 	return drop;
1119 }
1120 
ext4_i_callback(struct rcu_head * head)1121 static void ext4_i_callback(struct rcu_head *head)
1122 {
1123 	struct inode *inode = container_of(head, struct inode, i_rcu);
1124 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1125 }
1126 
ext4_destroy_inode(struct inode * inode)1127 static void ext4_destroy_inode(struct inode *inode)
1128 {
1129 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1130 		ext4_msg(inode->i_sb, KERN_ERR,
1131 			 "Inode %lu (%p): orphan list check failed!",
1132 			 inode->i_ino, EXT4_I(inode));
1133 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1134 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1135 				true);
1136 		dump_stack();
1137 	}
1138 	call_rcu(&inode->i_rcu, ext4_i_callback);
1139 }
1140 
init_once(void * foo)1141 static void init_once(void *foo)
1142 {
1143 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1144 
1145 	INIT_LIST_HEAD(&ei->i_orphan);
1146 	init_rwsem(&ei->xattr_sem);
1147 	init_rwsem(&ei->i_data_sem);
1148 	init_rwsem(&ei->i_mmap_sem);
1149 	inode_init_once(&ei->vfs_inode);
1150 }
1151 
init_inodecache(void)1152 static int __init init_inodecache(void)
1153 {
1154 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1155 				sizeof(struct ext4_inode_info), 0,
1156 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1157 					SLAB_ACCOUNT),
1158 				offsetof(struct ext4_inode_info, i_data),
1159 				sizeof_field(struct ext4_inode_info, i_data),
1160 				init_once);
1161 	if (ext4_inode_cachep == NULL)
1162 		return -ENOMEM;
1163 	return 0;
1164 }
1165 
destroy_inodecache(void)1166 static void destroy_inodecache(void)
1167 {
1168 	/*
1169 	 * Make sure all delayed rcu free inodes are flushed before we
1170 	 * destroy cache.
1171 	 */
1172 	rcu_barrier();
1173 	kmem_cache_destroy(ext4_inode_cachep);
1174 }
1175 
ext4_clear_inode(struct inode * inode)1176 void ext4_clear_inode(struct inode *inode)
1177 {
1178 	invalidate_inode_buffers(inode);
1179 	clear_inode(inode);
1180 	dquot_drop(inode);
1181 	ext4_discard_preallocations(inode);
1182 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1183 	if (EXT4_I(inode)->jinode) {
1184 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1185 					       EXT4_I(inode)->jinode);
1186 		jbd2_free_inode(EXT4_I(inode)->jinode);
1187 		EXT4_I(inode)->jinode = NULL;
1188 	}
1189 	fscrypt_put_encryption_info(inode);
1190 }
1191 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1192 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1193 					u64 ino, u32 generation)
1194 {
1195 	struct inode *inode;
1196 
1197 	/*
1198 	 * Currently we don't know the generation for parent directory, so
1199 	 * a generation of 0 means "accept any"
1200 	 */
1201 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1202 	if (IS_ERR(inode))
1203 		return ERR_CAST(inode);
1204 	if (generation && inode->i_generation != generation) {
1205 		iput(inode);
1206 		return ERR_PTR(-ESTALE);
1207 	}
1208 
1209 	return inode;
1210 }
1211 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1212 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1213 					int fh_len, int fh_type)
1214 {
1215 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1216 				    ext4_nfs_get_inode);
1217 }
1218 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1219 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1220 					int fh_len, int fh_type)
1221 {
1222 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1223 				    ext4_nfs_get_inode);
1224 }
1225 
ext4_nfs_commit_metadata(struct inode * inode)1226 static int ext4_nfs_commit_metadata(struct inode *inode)
1227 {
1228 	struct writeback_control wbc = {
1229 		.sync_mode = WB_SYNC_ALL
1230 	};
1231 
1232 	trace_ext4_nfs_commit_metadata(inode);
1233 	return ext4_write_inode(inode, &wbc);
1234 }
1235 
1236 /*
1237  * Try to release metadata pages (indirect blocks, directories) which are
1238  * mapped via the block device.  Since these pages could have journal heads
1239  * which would prevent try_to_free_buffers() from freeing them, we must use
1240  * jbd2 layer's try_to_free_buffers() function to release them.
1241  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1242 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1243 				 gfp_t wait)
1244 {
1245 	journal_t *journal = EXT4_SB(sb)->s_journal;
1246 
1247 	WARN_ON(PageChecked(page));
1248 	if (!page_has_buffers(page))
1249 		return 0;
1250 	if (journal)
1251 		return jbd2_journal_try_to_free_buffers(journal, page,
1252 						wait & ~__GFP_DIRECT_RECLAIM);
1253 	return try_to_free_buffers(page);
1254 }
1255 
1256 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1257 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1258 {
1259 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1260 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1261 }
1262 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1263 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1264 							void *fs_data)
1265 {
1266 	handle_t *handle = fs_data;
1267 	int res, res2, credits, retries = 0;
1268 
1269 	/*
1270 	 * Encrypting the root directory is not allowed because e2fsck expects
1271 	 * lost+found to exist and be unencrypted, and encrypting the root
1272 	 * directory would imply encrypting the lost+found directory as well as
1273 	 * the filename "lost+found" itself.
1274 	 */
1275 	if (inode->i_ino == EXT4_ROOT_INO)
1276 		return -EPERM;
1277 
1278 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1279 		return -EINVAL;
1280 
1281 	res = ext4_convert_inline_data(inode);
1282 	if (res)
1283 		return res;
1284 
1285 	/*
1286 	 * If a journal handle was specified, then the encryption context is
1287 	 * being set on a new inode via inheritance and is part of a larger
1288 	 * transaction to create the inode.  Otherwise the encryption context is
1289 	 * being set on an existing inode in its own transaction.  Only in the
1290 	 * latter case should the "retry on ENOSPC" logic be used.
1291 	 */
1292 
1293 	if (handle) {
1294 		res = ext4_xattr_set_handle(handle, inode,
1295 					    EXT4_XATTR_INDEX_ENCRYPTION,
1296 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1297 					    ctx, len, 0);
1298 		if (!res) {
1299 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1300 			ext4_clear_inode_state(inode,
1301 					EXT4_STATE_MAY_INLINE_DATA);
1302 			/*
1303 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1304 			 * S_DAX may be disabled
1305 			 */
1306 			ext4_set_inode_flags(inode);
1307 		}
1308 		return res;
1309 	}
1310 
1311 	res = dquot_initialize(inode);
1312 	if (res)
1313 		return res;
1314 retry:
1315 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1316 				     &credits);
1317 	if (res)
1318 		return res;
1319 
1320 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1321 	if (IS_ERR(handle))
1322 		return PTR_ERR(handle);
1323 
1324 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1325 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1326 				    ctx, len, 0);
1327 	if (!res) {
1328 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1329 		/*
1330 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1331 		 * S_DAX may be disabled
1332 		 */
1333 		ext4_set_inode_flags(inode);
1334 		res = ext4_mark_inode_dirty(handle, inode);
1335 		if (res)
1336 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1337 	}
1338 	res2 = ext4_journal_stop(handle);
1339 
1340 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1341 		goto retry;
1342 	if (!res)
1343 		res = res2;
1344 	return res;
1345 }
1346 
ext4_dummy_context(struct inode * inode)1347 static bool ext4_dummy_context(struct inode *inode)
1348 {
1349 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1350 }
1351 
1352 static const struct fscrypt_operations ext4_cryptops = {
1353 	.key_prefix		= "ext4:",
1354 	.get_context		= ext4_get_context,
1355 	.set_context		= ext4_set_context,
1356 	.dummy_context		= ext4_dummy_context,
1357 	.empty_dir		= ext4_empty_dir,
1358 	.max_namelen		= EXT4_NAME_LEN,
1359 };
1360 #endif
1361 
1362 #ifdef CONFIG_QUOTA
1363 static const char * const quotatypes[] = INITQFNAMES;
1364 #define QTYPE2NAME(t) (quotatypes[t])
1365 
1366 static int ext4_write_dquot(struct dquot *dquot);
1367 static int ext4_acquire_dquot(struct dquot *dquot);
1368 static int ext4_release_dquot(struct dquot *dquot);
1369 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1370 static int ext4_write_info(struct super_block *sb, int type);
1371 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1372 			 const struct path *path);
1373 static int ext4_quota_on_mount(struct super_block *sb, int type);
1374 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1375 			       size_t len, loff_t off);
1376 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1377 				const char *data, size_t len, loff_t off);
1378 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1379 			     unsigned int flags);
1380 static int ext4_enable_quotas(struct super_block *sb);
1381 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1382 
ext4_get_dquots(struct inode * inode)1383 static struct dquot **ext4_get_dquots(struct inode *inode)
1384 {
1385 	return EXT4_I(inode)->i_dquot;
1386 }
1387 
1388 static const struct dquot_operations ext4_quota_operations = {
1389 	.get_reserved_space	= ext4_get_reserved_space,
1390 	.write_dquot		= ext4_write_dquot,
1391 	.acquire_dquot		= ext4_acquire_dquot,
1392 	.release_dquot		= ext4_release_dquot,
1393 	.mark_dirty		= ext4_mark_dquot_dirty,
1394 	.write_info		= ext4_write_info,
1395 	.alloc_dquot		= dquot_alloc,
1396 	.destroy_dquot		= dquot_destroy,
1397 	.get_projid		= ext4_get_projid,
1398 	.get_inode_usage	= ext4_get_inode_usage,
1399 	.get_next_id		= ext4_get_next_id,
1400 };
1401 
1402 static const struct quotactl_ops ext4_qctl_operations = {
1403 	.quota_on	= ext4_quota_on,
1404 	.quota_off	= ext4_quota_off,
1405 	.quota_sync	= dquot_quota_sync,
1406 	.get_state	= dquot_get_state,
1407 	.set_info	= dquot_set_dqinfo,
1408 	.get_dqblk	= dquot_get_dqblk,
1409 	.set_dqblk	= dquot_set_dqblk,
1410 	.get_nextdqblk	= dquot_get_next_dqblk,
1411 };
1412 #endif
1413 
1414 static const struct super_operations ext4_sops = {
1415 	.alloc_inode	= ext4_alloc_inode,
1416 	.destroy_inode	= ext4_destroy_inode,
1417 	.write_inode	= ext4_write_inode,
1418 	.dirty_inode	= ext4_dirty_inode,
1419 	.drop_inode	= ext4_drop_inode,
1420 	.evict_inode	= ext4_evict_inode,
1421 	.put_super	= ext4_put_super,
1422 	.sync_fs	= ext4_sync_fs,
1423 	.freeze_fs	= ext4_freeze,
1424 	.unfreeze_fs	= ext4_unfreeze,
1425 	.statfs		= ext4_statfs,
1426 	.remount_fs	= ext4_remount,
1427 	.show_options	= ext4_show_options,
1428 #ifdef CONFIG_QUOTA
1429 	.quota_read	= ext4_quota_read,
1430 	.quota_write	= ext4_quota_write,
1431 	.get_dquots	= ext4_get_dquots,
1432 #endif
1433 	.bdev_try_to_free_page = bdev_try_to_free_page,
1434 };
1435 
1436 static const struct export_operations ext4_export_ops = {
1437 	.fh_to_dentry = ext4_fh_to_dentry,
1438 	.fh_to_parent = ext4_fh_to_parent,
1439 	.get_parent = ext4_get_parent,
1440 	.commit_metadata = ext4_nfs_commit_metadata,
1441 };
1442 
1443 enum {
1444 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1445 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1446 	Opt_nouid32, Opt_debug, Opt_removed,
1447 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1448 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1449 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1450 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1451 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1452 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1453 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1454 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1455 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1456 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1457 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1458 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1459 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1460 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1461 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1462 	Opt_dioread_nolock, Opt_dioread_lock,
1463 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1464 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1465 };
1466 
1467 static const match_table_t tokens = {
1468 	{Opt_bsd_df, "bsddf"},
1469 	{Opt_minix_df, "minixdf"},
1470 	{Opt_grpid, "grpid"},
1471 	{Opt_grpid, "bsdgroups"},
1472 	{Opt_nogrpid, "nogrpid"},
1473 	{Opt_nogrpid, "sysvgroups"},
1474 	{Opt_resgid, "resgid=%u"},
1475 	{Opt_resuid, "resuid=%u"},
1476 	{Opt_sb, "sb=%u"},
1477 	{Opt_err_cont, "errors=continue"},
1478 	{Opt_err_panic, "errors=panic"},
1479 	{Opt_err_ro, "errors=remount-ro"},
1480 	{Opt_nouid32, "nouid32"},
1481 	{Opt_debug, "debug"},
1482 	{Opt_removed, "oldalloc"},
1483 	{Opt_removed, "orlov"},
1484 	{Opt_user_xattr, "user_xattr"},
1485 	{Opt_nouser_xattr, "nouser_xattr"},
1486 	{Opt_acl, "acl"},
1487 	{Opt_noacl, "noacl"},
1488 	{Opt_noload, "norecovery"},
1489 	{Opt_noload, "noload"},
1490 	{Opt_removed, "nobh"},
1491 	{Opt_removed, "bh"},
1492 	{Opt_commit, "commit=%u"},
1493 	{Opt_min_batch_time, "min_batch_time=%u"},
1494 	{Opt_max_batch_time, "max_batch_time=%u"},
1495 	{Opt_journal_dev, "journal_dev=%u"},
1496 	{Opt_journal_path, "journal_path=%s"},
1497 	{Opt_journal_checksum, "journal_checksum"},
1498 	{Opt_nojournal_checksum, "nojournal_checksum"},
1499 	{Opt_journal_async_commit, "journal_async_commit"},
1500 	{Opt_abort, "abort"},
1501 	{Opt_data_journal, "data=journal"},
1502 	{Opt_data_ordered, "data=ordered"},
1503 	{Opt_data_writeback, "data=writeback"},
1504 	{Opt_data_err_abort, "data_err=abort"},
1505 	{Opt_data_err_ignore, "data_err=ignore"},
1506 	{Opt_offusrjquota, "usrjquota="},
1507 	{Opt_usrjquota, "usrjquota=%s"},
1508 	{Opt_offgrpjquota, "grpjquota="},
1509 	{Opt_grpjquota, "grpjquota=%s"},
1510 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1511 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1512 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1513 	{Opt_grpquota, "grpquota"},
1514 	{Opt_noquota, "noquota"},
1515 	{Opt_quota, "quota"},
1516 	{Opt_usrquota, "usrquota"},
1517 	{Opt_prjquota, "prjquota"},
1518 	{Opt_barrier, "barrier=%u"},
1519 	{Opt_barrier, "barrier"},
1520 	{Opt_nobarrier, "nobarrier"},
1521 	{Opt_i_version, "i_version"},
1522 	{Opt_dax, "dax"},
1523 	{Opt_stripe, "stripe=%u"},
1524 	{Opt_delalloc, "delalloc"},
1525 	{Opt_warn_on_error, "warn_on_error"},
1526 	{Opt_nowarn_on_error, "nowarn_on_error"},
1527 	{Opt_lazytime, "lazytime"},
1528 	{Opt_nolazytime, "nolazytime"},
1529 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1530 	{Opt_nodelalloc, "nodelalloc"},
1531 	{Opt_removed, "mblk_io_submit"},
1532 	{Opt_removed, "nomblk_io_submit"},
1533 	{Opt_block_validity, "block_validity"},
1534 	{Opt_noblock_validity, "noblock_validity"},
1535 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1536 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1537 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1538 	{Opt_auto_da_alloc, "auto_da_alloc"},
1539 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1540 	{Opt_dioread_nolock, "dioread_nolock"},
1541 	{Opt_dioread_lock, "dioread_lock"},
1542 	{Opt_discard, "discard"},
1543 	{Opt_nodiscard, "nodiscard"},
1544 	{Opt_init_itable, "init_itable=%u"},
1545 	{Opt_init_itable, "init_itable"},
1546 	{Opt_noinit_itable, "noinit_itable"},
1547 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1548 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1549 	{Opt_nombcache, "nombcache"},
1550 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1551 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1552 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1553 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1554 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1555 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1556 	{Opt_err, NULL},
1557 };
1558 
get_sb_block(void ** data)1559 static ext4_fsblk_t get_sb_block(void **data)
1560 {
1561 	ext4_fsblk_t	sb_block;
1562 	char		*options = (char *) *data;
1563 
1564 	if (!options || strncmp(options, "sb=", 3) != 0)
1565 		return 1;	/* Default location */
1566 
1567 	options += 3;
1568 	/* TODO: use simple_strtoll with >32bit ext4 */
1569 	sb_block = simple_strtoul(options, &options, 0);
1570 	if (*options && *options != ',') {
1571 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1572 		       (char *) *data);
1573 		return 1;
1574 	}
1575 	if (*options == ',')
1576 		options++;
1577 	*data = (void *) options;
1578 
1579 	return sb_block;
1580 }
1581 
1582 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1583 static const char deprecated_msg[] =
1584 	"Mount option \"%s\" will be removed by %s\n"
1585 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1586 
1587 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1588 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1589 {
1590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1592 	int ret = -1;
1593 
1594 	if (sb_any_quota_loaded(sb) && !old_qname) {
1595 		ext4_msg(sb, KERN_ERR,
1596 			"Cannot change journaled "
1597 			"quota options when quota turned on");
1598 		return -1;
1599 	}
1600 	if (ext4_has_feature_quota(sb)) {
1601 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1602 			 "ignored when QUOTA feature is enabled");
1603 		return 1;
1604 	}
1605 	qname = match_strdup(args);
1606 	if (!qname) {
1607 		ext4_msg(sb, KERN_ERR,
1608 			"Not enough memory for storing quotafile name");
1609 		return -1;
1610 	}
1611 	if (old_qname) {
1612 		if (strcmp(old_qname, qname) == 0)
1613 			ret = 1;
1614 		else
1615 			ext4_msg(sb, KERN_ERR,
1616 				 "%s quota file already specified",
1617 				 QTYPE2NAME(qtype));
1618 		goto errout;
1619 	}
1620 	if (strchr(qname, '/')) {
1621 		ext4_msg(sb, KERN_ERR,
1622 			"quotafile must be on filesystem root");
1623 		goto errout;
1624 	}
1625 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1626 	set_opt(sb, QUOTA);
1627 	return 1;
1628 errout:
1629 	kfree(qname);
1630 	return ret;
1631 }
1632 
clear_qf_name(struct super_block * sb,int qtype)1633 static int clear_qf_name(struct super_block *sb, int qtype)
1634 {
1635 
1636 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1637 	char *old_qname = get_qf_name(sb, sbi, qtype);
1638 
1639 	if (sb_any_quota_loaded(sb) && old_qname) {
1640 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1641 			" when quota turned on");
1642 		return -1;
1643 	}
1644 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1645 	synchronize_rcu();
1646 	kfree(old_qname);
1647 	return 1;
1648 }
1649 #endif
1650 
1651 #define MOPT_SET	0x0001
1652 #define MOPT_CLEAR	0x0002
1653 #define MOPT_NOSUPPORT	0x0004
1654 #define MOPT_EXPLICIT	0x0008
1655 #define MOPT_CLEAR_ERR	0x0010
1656 #define MOPT_GTE0	0x0020
1657 #ifdef CONFIG_QUOTA
1658 #define MOPT_Q		0
1659 #define MOPT_QFMT	0x0040
1660 #else
1661 #define MOPT_Q		MOPT_NOSUPPORT
1662 #define MOPT_QFMT	MOPT_NOSUPPORT
1663 #endif
1664 #define MOPT_DATAJ	0x0080
1665 #define MOPT_NO_EXT2	0x0100
1666 #define MOPT_NO_EXT3	0x0200
1667 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1668 #define MOPT_STRING	0x0400
1669 
1670 static const struct mount_opts {
1671 	int	token;
1672 	int	mount_opt;
1673 	int	flags;
1674 } ext4_mount_opts[] = {
1675 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1676 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1677 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1678 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1679 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1680 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1681 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1682 	 MOPT_EXT4_ONLY | MOPT_SET},
1683 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1684 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1685 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1686 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1687 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1688 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1689 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1690 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1691 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1692 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1693 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1694 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1695 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1696 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1697 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1698 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1699 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1700 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1701 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1702 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1703 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1704 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1705 	 MOPT_NO_EXT2},
1706 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1707 	 MOPT_NO_EXT2},
1708 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1709 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1710 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1711 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1712 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1713 	{Opt_commit, 0, MOPT_GTE0},
1714 	{Opt_max_batch_time, 0, MOPT_GTE0},
1715 	{Opt_min_batch_time, 0, MOPT_GTE0},
1716 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1717 	{Opt_init_itable, 0, MOPT_GTE0},
1718 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1719 	{Opt_stripe, 0, MOPT_GTE0},
1720 	{Opt_resuid, 0, MOPT_GTE0},
1721 	{Opt_resgid, 0, MOPT_GTE0},
1722 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1723 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1724 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1725 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1726 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1727 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1728 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1729 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1730 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1731 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1732 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1733 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1734 #else
1735 	{Opt_acl, 0, MOPT_NOSUPPORT},
1736 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1737 #endif
1738 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1739 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1740 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1741 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1742 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1743 							MOPT_SET | MOPT_Q},
1744 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1745 							MOPT_SET | MOPT_Q},
1746 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1747 							MOPT_SET | MOPT_Q},
1748 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1749 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1750 							MOPT_CLEAR | MOPT_Q},
1751 	{Opt_usrjquota, 0, MOPT_Q},
1752 	{Opt_grpjquota, 0, MOPT_Q},
1753 	{Opt_offusrjquota, 0, MOPT_Q},
1754 	{Opt_offgrpjquota, 0, MOPT_Q},
1755 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1756 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1757 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1758 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1759 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1760 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1761 	{Opt_err, 0, 0}
1762 };
1763 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1764 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1765 			    substring_t *args, unsigned long *journal_devnum,
1766 			    unsigned int *journal_ioprio, int is_remount)
1767 {
1768 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1769 	const struct mount_opts *m;
1770 	kuid_t uid;
1771 	kgid_t gid;
1772 	int arg = 0;
1773 
1774 #ifdef CONFIG_QUOTA
1775 	if (token == Opt_usrjquota)
1776 		return set_qf_name(sb, USRQUOTA, &args[0]);
1777 	else if (token == Opt_grpjquota)
1778 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1779 	else if (token == Opt_offusrjquota)
1780 		return clear_qf_name(sb, USRQUOTA);
1781 	else if (token == Opt_offgrpjquota)
1782 		return clear_qf_name(sb, GRPQUOTA);
1783 #endif
1784 	switch (token) {
1785 	case Opt_noacl:
1786 	case Opt_nouser_xattr:
1787 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1788 		break;
1789 	case Opt_sb:
1790 		return 1;	/* handled by get_sb_block() */
1791 	case Opt_removed:
1792 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1793 		return 1;
1794 	case Opt_abort:
1795 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1796 		return 1;
1797 	case Opt_i_version:
1798 		sb->s_flags |= SB_I_VERSION;
1799 		return 1;
1800 	case Opt_lazytime:
1801 		sb->s_flags |= SB_LAZYTIME;
1802 		return 1;
1803 	case Opt_nolazytime:
1804 		sb->s_flags &= ~SB_LAZYTIME;
1805 		return 1;
1806 	}
1807 
1808 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1809 		if (token == m->token)
1810 			break;
1811 
1812 	if (m->token == Opt_err) {
1813 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1814 			 "or missing value", opt);
1815 		return -1;
1816 	}
1817 
1818 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1819 		ext4_msg(sb, KERN_ERR,
1820 			 "Mount option \"%s\" incompatible with ext2", opt);
1821 		return -1;
1822 	}
1823 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1824 		ext4_msg(sb, KERN_ERR,
1825 			 "Mount option \"%s\" incompatible with ext3", opt);
1826 		return -1;
1827 	}
1828 
1829 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1830 		return -1;
1831 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1832 		return -1;
1833 	if (m->flags & MOPT_EXPLICIT) {
1834 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1835 			set_opt2(sb, EXPLICIT_DELALLOC);
1836 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1837 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1838 		} else
1839 			return -1;
1840 	}
1841 	if (m->flags & MOPT_CLEAR_ERR)
1842 		clear_opt(sb, ERRORS_MASK);
1843 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1844 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1845 			 "options when quota turned on");
1846 		return -1;
1847 	}
1848 
1849 	if (m->flags & MOPT_NOSUPPORT) {
1850 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1851 	} else if (token == Opt_commit) {
1852 		if (arg == 0)
1853 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1854 		sbi->s_commit_interval = HZ * arg;
1855 	} else if (token == Opt_debug_want_extra_isize) {
1856 		if ((arg & 1) ||
1857 		    (arg < 4) ||
1858 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1859 			ext4_msg(sb, KERN_ERR,
1860 				 "Invalid want_extra_isize %d", arg);
1861 			return -1;
1862 		}
1863 		sbi->s_want_extra_isize = arg;
1864 	} else if (token == Opt_max_batch_time) {
1865 		sbi->s_max_batch_time = arg;
1866 	} else if (token == Opt_min_batch_time) {
1867 		sbi->s_min_batch_time = arg;
1868 	} else if (token == Opt_inode_readahead_blks) {
1869 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1870 			ext4_msg(sb, KERN_ERR,
1871 				 "EXT4-fs: inode_readahead_blks must be "
1872 				 "0 or a power of 2 smaller than 2^31");
1873 			return -1;
1874 		}
1875 		sbi->s_inode_readahead_blks = arg;
1876 	} else if (token == Opt_init_itable) {
1877 		set_opt(sb, INIT_INODE_TABLE);
1878 		if (!args->from)
1879 			arg = EXT4_DEF_LI_WAIT_MULT;
1880 		sbi->s_li_wait_mult = arg;
1881 	} else if (token == Opt_max_dir_size_kb) {
1882 		sbi->s_max_dir_size_kb = arg;
1883 	} else if (token == Opt_stripe) {
1884 		sbi->s_stripe = arg;
1885 	} else if (token == Opt_resuid) {
1886 		uid = make_kuid(current_user_ns(), arg);
1887 		if (!uid_valid(uid)) {
1888 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1889 			return -1;
1890 		}
1891 		sbi->s_resuid = uid;
1892 	} else if (token == Opt_resgid) {
1893 		gid = make_kgid(current_user_ns(), arg);
1894 		if (!gid_valid(gid)) {
1895 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1896 			return -1;
1897 		}
1898 		sbi->s_resgid = gid;
1899 	} else if (token == Opt_journal_dev) {
1900 		if (is_remount) {
1901 			ext4_msg(sb, KERN_ERR,
1902 				 "Cannot specify journal on remount");
1903 			return -1;
1904 		}
1905 		*journal_devnum = arg;
1906 	} else if (token == Opt_journal_path) {
1907 		char *journal_path;
1908 		struct inode *journal_inode;
1909 		struct path path;
1910 		int error;
1911 
1912 		if (is_remount) {
1913 			ext4_msg(sb, KERN_ERR,
1914 				 "Cannot specify journal on remount");
1915 			return -1;
1916 		}
1917 		journal_path = match_strdup(&args[0]);
1918 		if (!journal_path) {
1919 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1920 				"journal device string");
1921 			return -1;
1922 		}
1923 
1924 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1925 		if (error) {
1926 			ext4_msg(sb, KERN_ERR, "error: could not find "
1927 				"journal device path: error %d", error);
1928 			kfree(journal_path);
1929 			return -1;
1930 		}
1931 
1932 		journal_inode = d_inode(path.dentry);
1933 		if (!S_ISBLK(journal_inode->i_mode)) {
1934 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1935 				"is not a block device", journal_path);
1936 			path_put(&path);
1937 			kfree(journal_path);
1938 			return -1;
1939 		}
1940 
1941 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1942 		path_put(&path);
1943 		kfree(journal_path);
1944 	} else if (token == Opt_journal_ioprio) {
1945 		if (arg > 7) {
1946 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1947 				 " (must be 0-7)");
1948 			return -1;
1949 		}
1950 		*journal_ioprio =
1951 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1952 	} else if (token == Opt_test_dummy_encryption) {
1953 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1954 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1955 		ext4_msg(sb, KERN_WARNING,
1956 			 "Test dummy encryption mode enabled");
1957 #else
1958 		ext4_msg(sb, KERN_WARNING,
1959 			 "Test dummy encryption mount option ignored");
1960 #endif
1961 	} else if (m->flags & MOPT_DATAJ) {
1962 		if (is_remount) {
1963 			if (!sbi->s_journal)
1964 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1965 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1966 				ext4_msg(sb, KERN_ERR,
1967 					 "Cannot change data mode on remount");
1968 				return -1;
1969 			}
1970 		} else {
1971 			clear_opt(sb, DATA_FLAGS);
1972 			sbi->s_mount_opt |= m->mount_opt;
1973 		}
1974 #ifdef CONFIG_QUOTA
1975 	} else if (m->flags & MOPT_QFMT) {
1976 		if (sb_any_quota_loaded(sb) &&
1977 		    sbi->s_jquota_fmt != m->mount_opt) {
1978 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1979 				 "quota options when quota turned on");
1980 			return -1;
1981 		}
1982 		if (ext4_has_feature_quota(sb)) {
1983 			ext4_msg(sb, KERN_INFO,
1984 				 "Quota format mount options ignored "
1985 				 "when QUOTA feature is enabled");
1986 			return 1;
1987 		}
1988 		sbi->s_jquota_fmt = m->mount_opt;
1989 #endif
1990 	} else if (token == Opt_dax) {
1991 #ifdef CONFIG_FS_DAX
1992 		if (is_remount && test_opt(sb, DAX)) {
1993 			ext4_msg(sb, KERN_ERR, "can't mount with "
1994 				"both data=journal and dax");
1995 			return -1;
1996 		}
1997 		if (is_remount && !(sbi->s_mount_opt & EXT4_MOUNT_DAX)) {
1998 			ext4_msg(sb, KERN_ERR, "can't change "
1999 					"dax mount option while remounting");
2000 			return -1;
2001 		}
2002 		ext4_msg(sb, KERN_WARNING,
2003 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2004 			sbi->s_mount_opt |= m->mount_opt;
2005 #else
2006 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2007 		return -1;
2008 #endif
2009 	} else if (token == Opt_data_err_abort) {
2010 		sbi->s_mount_opt |= m->mount_opt;
2011 	} else if (token == Opt_data_err_ignore) {
2012 		sbi->s_mount_opt &= ~m->mount_opt;
2013 	} else {
2014 		if (!args->from)
2015 			arg = 1;
2016 		if (m->flags & MOPT_CLEAR)
2017 			arg = !arg;
2018 		else if (unlikely(!(m->flags & MOPT_SET))) {
2019 			ext4_msg(sb, KERN_WARNING,
2020 				 "buggy handling of option %s", opt);
2021 			WARN_ON(1);
2022 			return -1;
2023 		}
2024 		if (arg != 0)
2025 			sbi->s_mount_opt |= m->mount_opt;
2026 		else
2027 			sbi->s_mount_opt &= ~m->mount_opt;
2028 	}
2029 	return 1;
2030 }
2031 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2032 static int parse_options(char *options, struct super_block *sb,
2033 			 unsigned long *journal_devnum,
2034 			 unsigned int *journal_ioprio,
2035 			 int is_remount)
2036 {
2037 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2038 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2039 	substring_t args[MAX_OPT_ARGS];
2040 	int token;
2041 
2042 	if (!options)
2043 		return 1;
2044 
2045 	while ((p = strsep(&options, ",")) != NULL) {
2046 		if (!*p)
2047 			continue;
2048 		/*
2049 		 * Initialize args struct so we know whether arg was
2050 		 * found; some options take optional arguments.
2051 		 */
2052 		args[0].to = args[0].from = NULL;
2053 		token = match_token(p, tokens, args);
2054 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2055 				     journal_ioprio, is_remount) < 0)
2056 			return 0;
2057 	}
2058 #ifdef CONFIG_QUOTA
2059 	/*
2060 	 * We do the test below only for project quotas. 'usrquota' and
2061 	 * 'grpquota' mount options are allowed even without quota feature
2062 	 * to support legacy quotas in quota files.
2063 	 */
2064 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2065 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2066 			 "Cannot enable project quota enforcement.");
2067 		return 0;
2068 	}
2069 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2070 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2071 	if (usr_qf_name || grp_qf_name) {
2072 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2073 			clear_opt(sb, USRQUOTA);
2074 
2075 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2076 			clear_opt(sb, GRPQUOTA);
2077 
2078 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2079 			ext4_msg(sb, KERN_ERR, "old and new quota "
2080 					"format mixing");
2081 			return 0;
2082 		}
2083 
2084 		if (!sbi->s_jquota_fmt) {
2085 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2086 					"not specified");
2087 			return 0;
2088 		}
2089 	}
2090 #endif
2091 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2092 		int blocksize =
2093 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2094 
2095 		if (blocksize < PAGE_SIZE) {
2096 			ext4_msg(sb, KERN_ERR, "can't mount with "
2097 				 "dioread_nolock if block size != PAGE_SIZE");
2098 			return 0;
2099 		}
2100 	}
2101 	return 1;
2102 }
2103 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2104 static inline void ext4_show_quota_options(struct seq_file *seq,
2105 					   struct super_block *sb)
2106 {
2107 #if defined(CONFIG_QUOTA)
2108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 	char *usr_qf_name, *grp_qf_name;
2110 
2111 	if (sbi->s_jquota_fmt) {
2112 		char *fmtname = "";
2113 
2114 		switch (sbi->s_jquota_fmt) {
2115 		case QFMT_VFS_OLD:
2116 			fmtname = "vfsold";
2117 			break;
2118 		case QFMT_VFS_V0:
2119 			fmtname = "vfsv0";
2120 			break;
2121 		case QFMT_VFS_V1:
2122 			fmtname = "vfsv1";
2123 			break;
2124 		}
2125 		seq_printf(seq, ",jqfmt=%s", fmtname);
2126 	}
2127 
2128 	rcu_read_lock();
2129 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2130 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2131 	if (usr_qf_name)
2132 		seq_show_option(seq, "usrjquota", usr_qf_name);
2133 	if (grp_qf_name)
2134 		seq_show_option(seq, "grpjquota", grp_qf_name);
2135 	rcu_read_unlock();
2136 #endif
2137 }
2138 
token2str(int token)2139 static const char *token2str(int token)
2140 {
2141 	const struct match_token *t;
2142 
2143 	for (t = tokens; t->token != Opt_err; t++)
2144 		if (t->token == token && !strchr(t->pattern, '='))
2145 			break;
2146 	return t->pattern;
2147 }
2148 
2149 /*
2150  * Show an option if
2151  *  - it's set to a non-default value OR
2152  *  - if the per-sb default is different from the global default
2153  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2154 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2155 			      int nodefs)
2156 {
2157 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2158 	struct ext4_super_block *es = sbi->s_es;
2159 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2160 	const struct mount_opts *m;
2161 	char sep = nodefs ? '\n' : ',';
2162 
2163 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2164 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2165 
2166 	if (sbi->s_sb_block != 1)
2167 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2168 
2169 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2170 		int want_set = m->flags & MOPT_SET;
2171 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2172 		    (m->flags & MOPT_CLEAR_ERR))
2173 			continue;
2174 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2175 			continue; /* skip if same as the default */
2176 		if ((want_set &&
2177 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2178 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2179 			continue; /* select Opt_noFoo vs Opt_Foo */
2180 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2181 	}
2182 
2183 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2184 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2185 		SEQ_OPTS_PRINT("resuid=%u",
2186 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2187 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2188 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2189 		SEQ_OPTS_PRINT("resgid=%u",
2190 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2191 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2192 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2193 		SEQ_OPTS_PUTS("errors=remount-ro");
2194 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2195 		SEQ_OPTS_PUTS("errors=continue");
2196 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2197 		SEQ_OPTS_PUTS("errors=panic");
2198 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2199 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2200 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2201 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2202 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2203 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2204 	if (sb->s_flags & SB_I_VERSION)
2205 		SEQ_OPTS_PUTS("i_version");
2206 	if (nodefs || sbi->s_stripe)
2207 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2208 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2209 			(sbi->s_mount_opt ^ def_mount_opt)) {
2210 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2211 			SEQ_OPTS_PUTS("data=journal");
2212 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2213 			SEQ_OPTS_PUTS("data=ordered");
2214 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2215 			SEQ_OPTS_PUTS("data=writeback");
2216 	}
2217 	if (nodefs ||
2218 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2219 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2220 			       sbi->s_inode_readahead_blks);
2221 
2222 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2223 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2224 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2225 	if (nodefs || sbi->s_max_dir_size_kb)
2226 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2227 	if (test_opt(sb, DATA_ERR_ABORT))
2228 		SEQ_OPTS_PUTS("data_err=abort");
2229 	if (DUMMY_ENCRYPTION_ENABLED(sbi))
2230 		SEQ_OPTS_PUTS("test_dummy_encryption");
2231 
2232 	ext4_show_quota_options(seq, sb);
2233 	return 0;
2234 }
2235 
ext4_show_options(struct seq_file * seq,struct dentry * root)2236 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2237 {
2238 	return _ext4_show_options(seq, root->d_sb, 0);
2239 }
2240 
ext4_seq_options_show(struct seq_file * seq,void * offset)2241 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2242 {
2243 	struct super_block *sb = seq->private;
2244 	int rc;
2245 
2246 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2247 	rc = _ext4_show_options(seq, sb, 1);
2248 	seq_puts(seq, "\n");
2249 	return rc;
2250 }
2251 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2252 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2253 			    int read_only)
2254 {
2255 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2256 	int err = 0;
2257 
2258 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2259 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2260 			 "forcing read-only mode");
2261 		err = -EROFS;
2262 		goto done;
2263 	}
2264 	if (read_only)
2265 		goto done;
2266 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2267 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2268 			 "running e2fsck is recommended");
2269 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2270 		ext4_msg(sb, KERN_WARNING,
2271 			 "warning: mounting fs with errors, "
2272 			 "running e2fsck is recommended");
2273 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2274 		 le16_to_cpu(es->s_mnt_count) >=
2275 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2276 		ext4_msg(sb, KERN_WARNING,
2277 			 "warning: maximal mount count reached, "
2278 			 "running e2fsck is recommended");
2279 	else if (le32_to_cpu(es->s_checkinterval) &&
2280 		 (ext4_get_tstamp(es, s_lastcheck) +
2281 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2282 		ext4_msg(sb, KERN_WARNING,
2283 			 "warning: checktime reached, "
2284 			 "running e2fsck is recommended");
2285 	if (!sbi->s_journal)
2286 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2287 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2288 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2289 	le16_add_cpu(&es->s_mnt_count, 1);
2290 	ext4_update_tstamp(es, s_mtime);
2291 	if (sbi->s_journal)
2292 		ext4_set_feature_journal_needs_recovery(sb);
2293 
2294 	err = ext4_commit_super(sb, 1);
2295 done:
2296 	if (test_opt(sb, DEBUG))
2297 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2298 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2299 			sb->s_blocksize,
2300 			sbi->s_groups_count,
2301 			EXT4_BLOCKS_PER_GROUP(sb),
2302 			EXT4_INODES_PER_GROUP(sb),
2303 			sbi->s_mount_opt, sbi->s_mount_opt2);
2304 
2305 	cleancache_init_fs(sb);
2306 	return err;
2307 }
2308 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2309 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2310 {
2311 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2312 	struct flex_groups **old_groups, **new_groups;
2313 	int size, i, j;
2314 
2315 	if (!sbi->s_log_groups_per_flex)
2316 		return 0;
2317 
2318 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2319 	if (size <= sbi->s_flex_groups_allocated)
2320 		return 0;
2321 
2322 	new_groups = kvzalloc(roundup_pow_of_two(size *
2323 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2324 	if (!new_groups) {
2325 		ext4_msg(sb, KERN_ERR,
2326 			 "not enough memory for %d flex group pointers", size);
2327 		return -ENOMEM;
2328 	}
2329 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2330 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2331 					 sizeof(struct flex_groups)),
2332 					 GFP_KERNEL);
2333 		if (!new_groups[i]) {
2334 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2335 				kvfree(new_groups[j]);
2336 			kvfree(new_groups);
2337 			ext4_msg(sb, KERN_ERR,
2338 				 "not enough memory for %d flex groups", size);
2339 			return -ENOMEM;
2340 		}
2341 	}
2342 	rcu_read_lock();
2343 	old_groups = rcu_dereference(sbi->s_flex_groups);
2344 	if (old_groups)
2345 		memcpy(new_groups, old_groups,
2346 		       (sbi->s_flex_groups_allocated *
2347 			sizeof(struct flex_groups *)));
2348 	rcu_read_unlock();
2349 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2350 	sbi->s_flex_groups_allocated = size;
2351 	if (old_groups)
2352 		ext4_kvfree_array_rcu(old_groups);
2353 	return 0;
2354 }
2355 
ext4_fill_flex_info(struct super_block * sb)2356 static int ext4_fill_flex_info(struct super_block *sb)
2357 {
2358 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 	struct ext4_group_desc *gdp = NULL;
2360 	struct flex_groups *fg;
2361 	ext4_group_t flex_group;
2362 	int i, err;
2363 
2364 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2365 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2366 		sbi->s_log_groups_per_flex = 0;
2367 		return 1;
2368 	}
2369 
2370 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2371 	if (err)
2372 		goto failed;
2373 
2374 	for (i = 0; i < sbi->s_groups_count; i++) {
2375 		gdp = ext4_get_group_desc(sb, i, NULL);
2376 
2377 		flex_group = ext4_flex_group(sbi, i);
2378 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2379 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2380 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2381 			     &fg->free_clusters);
2382 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2383 	}
2384 
2385 	return 1;
2386 failed:
2387 	return 0;
2388 }
2389 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2390 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2391 				   struct ext4_group_desc *gdp)
2392 {
2393 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2394 	__u16 crc = 0;
2395 	__le32 le_group = cpu_to_le32(block_group);
2396 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2397 
2398 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2399 		/* Use new metadata_csum algorithm */
2400 		__u32 csum32;
2401 		__u16 dummy_csum = 0;
2402 
2403 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2404 				     sizeof(le_group));
2405 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2406 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2407 				     sizeof(dummy_csum));
2408 		offset += sizeof(dummy_csum);
2409 		if (offset < sbi->s_desc_size)
2410 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2411 					     sbi->s_desc_size - offset);
2412 
2413 		crc = csum32 & 0xFFFF;
2414 		goto out;
2415 	}
2416 
2417 	/* old crc16 code */
2418 	if (!ext4_has_feature_gdt_csum(sb))
2419 		return 0;
2420 
2421 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2422 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2423 	crc = crc16(crc, (__u8 *)gdp, offset);
2424 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2425 	/* for checksum of struct ext4_group_desc do the rest...*/
2426 	if (ext4_has_feature_64bit(sb) &&
2427 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2428 		crc = crc16(crc, (__u8 *)gdp + offset,
2429 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2430 				offset);
2431 
2432 out:
2433 	return cpu_to_le16(crc);
2434 }
2435 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2436 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2437 				struct ext4_group_desc *gdp)
2438 {
2439 	if (ext4_has_group_desc_csum(sb) &&
2440 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2441 		return 0;
2442 
2443 	return 1;
2444 }
2445 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2446 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2447 			      struct ext4_group_desc *gdp)
2448 {
2449 	if (!ext4_has_group_desc_csum(sb))
2450 		return;
2451 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2452 }
2453 
2454 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2455 static int ext4_check_descriptors(struct super_block *sb,
2456 				  ext4_fsblk_t sb_block,
2457 				  ext4_group_t *first_not_zeroed)
2458 {
2459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2460 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2461 	ext4_fsblk_t last_block;
2462 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2463 	ext4_fsblk_t block_bitmap;
2464 	ext4_fsblk_t inode_bitmap;
2465 	ext4_fsblk_t inode_table;
2466 	int flexbg_flag = 0;
2467 	ext4_group_t i, grp = sbi->s_groups_count;
2468 
2469 	if (ext4_has_feature_flex_bg(sb))
2470 		flexbg_flag = 1;
2471 
2472 	ext4_debug("Checking group descriptors");
2473 
2474 	for (i = 0; i < sbi->s_groups_count; i++) {
2475 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2476 
2477 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2478 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2479 		else
2480 			last_block = first_block +
2481 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2482 
2483 		if ((grp == sbi->s_groups_count) &&
2484 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2485 			grp = i;
2486 
2487 		block_bitmap = ext4_block_bitmap(sb, gdp);
2488 		if (block_bitmap == sb_block) {
2489 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2490 				 "Block bitmap for group %u overlaps "
2491 				 "superblock", i);
2492 			if (!sb_rdonly(sb))
2493 				return 0;
2494 		}
2495 		if (block_bitmap >= sb_block + 1 &&
2496 		    block_bitmap <= last_bg_block) {
2497 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2498 				 "Block bitmap for group %u overlaps "
2499 				 "block group descriptors", i);
2500 			if (!sb_rdonly(sb))
2501 				return 0;
2502 		}
2503 		if (block_bitmap < first_block || block_bitmap > last_block) {
2504 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2505 			       "Block bitmap for group %u not in group "
2506 			       "(block %llu)!", i, block_bitmap);
2507 			return 0;
2508 		}
2509 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2510 		if (inode_bitmap == sb_block) {
2511 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2512 				 "Inode bitmap for group %u overlaps "
2513 				 "superblock", i);
2514 			if (!sb_rdonly(sb))
2515 				return 0;
2516 		}
2517 		if (inode_bitmap >= sb_block + 1 &&
2518 		    inode_bitmap <= last_bg_block) {
2519 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2520 				 "Inode bitmap for group %u overlaps "
2521 				 "block group descriptors", i);
2522 			if (!sb_rdonly(sb))
2523 				return 0;
2524 		}
2525 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2526 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2527 			       "Inode bitmap for group %u not in group "
2528 			       "(block %llu)!", i, inode_bitmap);
2529 			return 0;
2530 		}
2531 		inode_table = ext4_inode_table(sb, gdp);
2532 		if (inode_table == sb_block) {
2533 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2534 				 "Inode table for group %u overlaps "
2535 				 "superblock", i);
2536 			if (!sb_rdonly(sb))
2537 				return 0;
2538 		}
2539 		if (inode_table >= sb_block + 1 &&
2540 		    inode_table <= last_bg_block) {
2541 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2542 				 "Inode table for group %u overlaps "
2543 				 "block group descriptors", i);
2544 			if (!sb_rdonly(sb))
2545 				return 0;
2546 		}
2547 		if (inode_table < first_block ||
2548 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2549 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2550 			       "Inode table for group %u not in group "
2551 			       "(block %llu)!", i, inode_table);
2552 			return 0;
2553 		}
2554 		ext4_lock_group(sb, i);
2555 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2556 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2557 				 "Checksum for group %u failed (%u!=%u)",
2558 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2559 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2560 			if (!sb_rdonly(sb)) {
2561 				ext4_unlock_group(sb, i);
2562 				return 0;
2563 			}
2564 		}
2565 		ext4_unlock_group(sb, i);
2566 		if (!flexbg_flag)
2567 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2568 	}
2569 	if (NULL != first_not_zeroed)
2570 		*first_not_zeroed = grp;
2571 	return 1;
2572 }
2573 
2574 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2575  * the superblock) which were deleted from all directories, but held open by
2576  * a process at the time of a crash.  We walk the list and try to delete these
2577  * inodes at recovery time (only with a read-write filesystem).
2578  *
2579  * In order to keep the orphan inode chain consistent during traversal (in
2580  * case of crash during recovery), we link each inode into the superblock
2581  * orphan list_head and handle it the same way as an inode deletion during
2582  * normal operation (which journals the operations for us).
2583  *
2584  * We only do an iget() and an iput() on each inode, which is very safe if we
2585  * accidentally point at an in-use or already deleted inode.  The worst that
2586  * can happen in this case is that we get a "bit already cleared" message from
2587  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2588  * e2fsck was run on this filesystem, and it must have already done the orphan
2589  * inode cleanup for us, so we can safely abort without any further action.
2590  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2591 static void ext4_orphan_cleanup(struct super_block *sb,
2592 				struct ext4_super_block *es)
2593 {
2594 	unsigned int s_flags = sb->s_flags;
2595 	int ret, nr_orphans = 0, nr_truncates = 0;
2596 #ifdef CONFIG_QUOTA
2597 	int quota_update = 0;
2598 	int i;
2599 #endif
2600 	if (!es->s_last_orphan) {
2601 		jbd_debug(4, "no orphan inodes to clean up\n");
2602 		return;
2603 	}
2604 
2605 	if (bdev_read_only(sb->s_bdev)) {
2606 		ext4_msg(sb, KERN_ERR, "write access "
2607 			"unavailable, skipping orphan cleanup");
2608 		return;
2609 	}
2610 
2611 	/* Check if feature set would not allow a r/w mount */
2612 	if (!ext4_feature_set_ok(sb, 0)) {
2613 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2614 			 "unknown ROCOMPAT features");
2615 		return;
2616 	}
2617 
2618 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2619 		/* don't clear list on RO mount w/ errors */
2620 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2621 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2622 				  "clearing orphan list.\n");
2623 			es->s_last_orphan = 0;
2624 		}
2625 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2626 		return;
2627 	}
2628 
2629 	if (s_flags & SB_RDONLY) {
2630 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2631 		sb->s_flags &= ~SB_RDONLY;
2632 	}
2633 #ifdef CONFIG_QUOTA
2634 	/* Needed for iput() to work correctly and not trash data */
2635 	sb->s_flags |= SB_ACTIVE;
2636 
2637 	/*
2638 	 * Turn on quotas which were not enabled for read-only mounts if
2639 	 * filesystem has quota feature, so that they are updated correctly.
2640 	 */
2641 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2642 		int ret = ext4_enable_quotas(sb);
2643 
2644 		if (!ret)
2645 			quota_update = 1;
2646 		else
2647 			ext4_msg(sb, KERN_ERR,
2648 				"Cannot turn on quotas: error %d", ret);
2649 	}
2650 
2651 	/* Turn on journaled quotas used for old sytle */
2652 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2653 		if (EXT4_SB(sb)->s_qf_names[i]) {
2654 			int ret = ext4_quota_on_mount(sb, i);
2655 
2656 			if (!ret)
2657 				quota_update = 1;
2658 			else
2659 				ext4_msg(sb, KERN_ERR,
2660 					"Cannot turn on journaled "
2661 					"quota: type %d: error %d", i, ret);
2662 		}
2663 	}
2664 #endif
2665 
2666 	while (es->s_last_orphan) {
2667 		struct inode *inode;
2668 
2669 		/*
2670 		 * We may have encountered an error during cleanup; if
2671 		 * so, skip the rest.
2672 		 */
2673 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2674 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2675 			es->s_last_orphan = 0;
2676 			break;
2677 		}
2678 
2679 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2680 		if (IS_ERR(inode)) {
2681 			es->s_last_orphan = 0;
2682 			break;
2683 		}
2684 
2685 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2686 		dquot_initialize(inode);
2687 		if (inode->i_nlink) {
2688 			if (test_opt(sb, DEBUG))
2689 				ext4_msg(sb, KERN_DEBUG,
2690 					"%s: truncating inode %lu to %lld bytes",
2691 					__func__, inode->i_ino, inode->i_size);
2692 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2693 				  inode->i_ino, inode->i_size);
2694 			inode_lock(inode);
2695 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2696 			ret = ext4_truncate(inode);
2697 			if (ret)
2698 				ext4_std_error(inode->i_sb, ret);
2699 			inode_unlock(inode);
2700 			nr_truncates++;
2701 		} else {
2702 			if (test_opt(sb, DEBUG))
2703 				ext4_msg(sb, KERN_DEBUG,
2704 					"%s: deleting unreferenced inode %lu",
2705 					__func__, inode->i_ino);
2706 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2707 				  inode->i_ino);
2708 			nr_orphans++;
2709 		}
2710 		iput(inode);  /* The delete magic happens here! */
2711 	}
2712 
2713 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2714 
2715 	if (nr_orphans)
2716 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2717 		       PLURAL(nr_orphans));
2718 	if (nr_truncates)
2719 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2720 		       PLURAL(nr_truncates));
2721 #ifdef CONFIG_QUOTA
2722 	/* Turn off quotas if they were enabled for orphan cleanup */
2723 	if (quota_update) {
2724 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2725 			if (sb_dqopt(sb)->files[i])
2726 				dquot_quota_off(sb, i);
2727 		}
2728 	}
2729 #endif
2730 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2731 }
2732 
2733 /*
2734  * Maximal extent format file size.
2735  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2736  * extent format containers, within a sector_t, and within i_blocks
2737  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2738  * so that won't be a limiting factor.
2739  *
2740  * However there is other limiting factor. We do store extents in the form
2741  * of starting block and length, hence the resulting length of the extent
2742  * covering maximum file size must fit into on-disk format containers as
2743  * well. Given that length is always by 1 unit bigger than max unit (because
2744  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2745  *
2746  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2747  */
ext4_max_size(int blkbits,int has_huge_files)2748 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2749 {
2750 	loff_t res;
2751 	loff_t upper_limit = MAX_LFS_FILESIZE;
2752 
2753 	/* small i_blocks in vfs inode? */
2754 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2755 		/*
2756 		 * CONFIG_LBDAF is not enabled implies the inode
2757 		 * i_block represent total blocks in 512 bytes
2758 		 * 32 == size of vfs inode i_blocks * 8
2759 		 */
2760 		upper_limit = (1LL << 32) - 1;
2761 
2762 		/* total blocks in file system block size */
2763 		upper_limit >>= (blkbits - 9);
2764 		upper_limit <<= blkbits;
2765 	}
2766 
2767 	/*
2768 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2769 	 * by one fs block, so ee_len can cover the extent of maximum file
2770 	 * size
2771 	 */
2772 	res = (1LL << 32) - 1;
2773 	res <<= blkbits;
2774 
2775 	/* Sanity check against vm- & vfs- imposed limits */
2776 	if (res > upper_limit)
2777 		res = upper_limit;
2778 
2779 	return res;
2780 }
2781 
2782 /*
2783  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2784  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2785  * We need to be 1 filesystem block less than the 2^48 sector limit.
2786  */
ext4_max_bitmap_size(int bits,int has_huge_files)2787 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2788 {
2789 	loff_t res = EXT4_NDIR_BLOCKS;
2790 	int meta_blocks;
2791 	loff_t upper_limit;
2792 	/* This is calculated to be the largest file size for a dense, block
2793 	 * mapped file such that the file's total number of 512-byte sectors,
2794 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2795 	 *
2796 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2797 	 * number of 512-byte sectors of the file.
2798 	 */
2799 
2800 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2801 		/*
2802 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2803 		 * the inode i_block field represents total file blocks in
2804 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2805 		 */
2806 		upper_limit = (1LL << 32) - 1;
2807 
2808 		/* total blocks in file system block size */
2809 		upper_limit >>= (bits - 9);
2810 
2811 	} else {
2812 		/*
2813 		 * We use 48 bit ext4_inode i_blocks
2814 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2815 		 * represent total number of blocks in
2816 		 * file system block size
2817 		 */
2818 		upper_limit = (1LL << 48) - 1;
2819 
2820 	}
2821 
2822 	/* indirect blocks */
2823 	meta_blocks = 1;
2824 	/* double indirect blocks */
2825 	meta_blocks += 1 + (1LL << (bits-2));
2826 	/* tripple indirect blocks */
2827 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2828 
2829 	upper_limit -= meta_blocks;
2830 	upper_limit <<= bits;
2831 
2832 	res += 1LL << (bits-2);
2833 	res += 1LL << (2*(bits-2));
2834 	res += 1LL << (3*(bits-2));
2835 	res <<= bits;
2836 	if (res > upper_limit)
2837 		res = upper_limit;
2838 
2839 	if (res > MAX_LFS_FILESIZE)
2840 		res = MAX_LFS_FILESIZE;
2841 
2842 	return res;
2843 }
2844 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2845 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2846 				   ext4_fsblk_t logical_sb_block, int nr)
2847 {
2848 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2849 	ext4_group_t bg, first_meta_bg;
2850 	int has_super = 0;
2851 
2852 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2853 
2854 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2855 		return logical_sb_block + nr + 1;
2856 	bg = sbi->s_desc_per_block * nr;
2857 	if (ext4_bg_has_super(sb, bg))
2858 		has_super = 1;
2859 
2860 	/*
2861 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2862 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2863 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2864 	 * compensate.
2865 	 */
2866 	if (sb->s_blocksize == 1024 && nr == 0 &&
2867 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2868 		has_super++;
2869 
2870 	return (has_super + ext4_group_first_block_no(sb, bg));
2871 }
2872 
2873 /**
2874  * ext4_get_stripe_size: Get the stripe size.
2875  * @sbi: In memory super block info
2876  *
2877  * If we have specified it via mount option, then
2878  * use the mount option value. If the value specified at mount time is
2879  * greater than the blocks per group use the super block value.
2880  * If the super block value is greater than blocks per group return 0.
2881  * Allocator needs it be less than blocks per group.
2882  *
2883  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2884 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2885 {
2886 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2887 	unsigned long stripe_width =
2888 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2889 	int ret;
2890 
2891 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2892 		ret = sbi->s_stripe;
2893 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2894 		ret = stripe_width;
2895 	else if (stride && stride <= sbi->s_blocks_per_group)
2896 		ret = stride;
2897 	else
2898 		ret = 0;
2899 
2900 	/*
2901 	 * If the stripe width is 1, this makes no sense and
2902 	 * we set it to 0 to turn off stripe handling code.
2903 	 */
2904 	if (ret <= 1)
2905 		ret = 0;
2906 
2907 	return ret;
2908 }
2909 
2910 /*
2911  * Check whether this filesystem can be mounted based on
2912  * the features present and the RDONLY/RDWR mount requested.
2913  * Returns 1 if this filesystem can be mounted as requested,
2914  * 0 if it cannot be.
2915  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2916 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2917 {
2918 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2919 		ext4_msg(sb, KERN_ERR,
2920 			"Couldn't mount because of "
2921 			"unsupported optional features (%x)",
2922 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2923 			~EXT4_FEATURE_INCOMPAT_SUPP));
2924 		return 0;
2925 	}
2926 
2927 	if (readonly)
2928 		return 1;
2929 
2930 	if (ext4_has_feature_readonly(sb)) {
2931 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2932 		sb->s_flags |= SB_RDONLY;
2933 		return 1;
2934 	}
2935 
2936 	/* Check that feature set is OK for a read-write mount */
2937 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2938 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2939 			 "unsupported optional features (%x)",
2940 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2941 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2942 		return 0;
2943 	}
2944 	/*
2945 	 * Large file size enabled file system can only be mounted
2946 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2947 	 */
2948 	if (ext4_has_feature_huge_file(sb)) {
2949 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2950 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2951 				 "cannot be mounted RDWR without "
2952 				 "CONFIG_LBDAF");
2953 			return 0;
2954 		}
2955 	}
2956 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2957 		ext4_msg(sb, KERN_ERR,
2958 			 "Can't support bigalloc feature without "
2959 			 "extents feature\n");
2960 		return 0;
2961 	}
2962 
2963 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
2964 	if (!readonly && (ext4_has_feature_quota(sb) ||
2965 			  ext4_has_feature_project(sb))) {
2966 		ext4_msg(sb, KERN_ERR,
2967 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
2968 		return 0;
2969 	}
2970 #endif  /* CONFIG_QUOTA */
2971 	return 1;
2972 }
2973 
2974 /*
2975  * This function is called once a day if we have errors logged
2976  * on the file system
2977  */
print_daily_error_info(struct timer_list * t)2978 static void print_daily_error_info(struct timer_list *t)
2979 {
2980 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2981 	struct super_block *sb = sbi->s_sb;
2982 	struct ext4_super_block *es = sbi->s_es;
2983 
2984 	if (es->s_error_count)
2985 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2986 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2987 			 le32_to_cpu(es->s_error_count));
2988 	if (es->s_first_error_time) {
2989 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2990 		       sb->s_id,
2991 		       ext4_get_tstamp(es, s_first_error_time),
2992 		       (int) sizeof(es->s_first_error_func),
2993 		       es->s_first_error_func,
2994 		       le32_to_cpu(es->s_first_error_line));
2995 		if (es->s_first_error_ino)
2996 			printk(KERN_CONT ": inode %u",
2997 			       le32_to_cpu(es->s_first_error_ino));
2998 		if (es->s_first_error_block)
2999 			printk(KERN_CONT ": block %llu", (unsigned long long)
3000 			       le64_to_cpu(es->s_first_error_block));
3001 		printk(KERN_CONT "\n");
3002 	}
3003 	if (es->s_last_error_time) {
3004 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3005 		       sb->s_id,
3006 		       ext4_get_tstamp(es, s_last_error_time),
3007 		       (int) sizeof(es->s_last_error_func),
3008 		       es->s_last_error_func,
3009 		       le32_to_cpu(es->s_last_error_line));
3010 		if (es->s_last_error_ino)
3011 			printk(KERN_CONT ": inode %u",
3012 			       le32_to_cpu(es->s_last_error_ino));
3013 		if (es->s_last_error_block)
3014 			printk(KERN_CONT ": block %llu", (unsigned long long)
3015 			       le64_to_cpu(es->s_last_error_block));
3016 		printk(KERN_CONT "\n");
3017 	}
3018 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3019 }
3020 
3021 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3022 static int ext4_run_li_request(struct ext4_li_request *elr)
3023 {
3024 	struct ext4_group_desc *gdp = NULL;
3025 	ext4_group_t group, ngroups;
3026 	struct super_block *sb;
3027 	unsigned long timeout = 0;
3028 	int ret = 0;
3029 
3030 	sb = elr->lr_super;
3031 	ngroups = EXT4_SB(sb)->s_groups_count;
3032 
3033 	for (group = elr->lr_next_group; group < ngroups; group++) {
3034 		gdp = ext4_get_group_desc(sb, group, NULL);
3035 		if (!gdp) {
3036 			ret = 1;
3037 			break;
3038 		}
3039 
3040 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3041 			break;
3042 	}
3043 
3044 	if (group >= ngroups)
3045 		ret = 1;
3046 
3047 	if (!ret) {
3048 		timeout = jiffies;
3049 		ret = ext4_init_inode_table(sb, group,
3050 					    elr->lr_timeout ? 0 : 1);
3051 		if (elr->lr_timeout == 0) {
3052 			timeout = (jiffies - timeout) *
3053 				  elr->lr_sbi->s_li_wait_mult;
3054 			elr->lr_timeout = timeout;
3055 		}
3056 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3057 		elr->lr_next_group = group + 1;
3058 	}
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Remove lr_request from the list_request and free the
3064  * request structure. Should be called with li_list_mtx held
3065  */
ext4_remove_li_request(struct ext4_li_request * elr)3066 static void ext4_remove_li_request(struct ext4_li_request *elr)
3067 {
3068 	struct ext4_sb_info *sbi;
3069 
3070 	if (!elr)
3071 		return;
3072 
3073 	sbi = elr->lr_sbi;
3074 
3075 	list_del(&elr->lr_request);
3076 	sbi->s_li_request = NULL;
3077 	kfree(elr);
3078 }
3079 
ext4_unregister_li_request(struct super_block * sb)3080 static void ext4_unregister_li_request(struct super_block *sb)
3081 {
3082 	mutex_lock(&ext4_li_mtx);
3083 	if (!ext4_li_info) {
3084 		mutex_unlock(&ext4_li_mtx);
3085 		return;
3086 	}
3087 
3088 	mutex_lock(&ext4_li_info->li_list_mtx);
3089 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3090 	mutex_unlock(&ext4_li_info->li_list_mtx);
3091 	mutex_unlock(&ext4_li_mtx);
3092 }
3093 
3094 static struct task_struct *ext4_lazyinit_task;
3095 
3096 /*
3097  * This is the function where ext4lazyinit thread lives. It walks
3098  * through the request list searching for next scheduled filesystem.
3099  * When such a fs is found, run the lazy initialization request
3100  * (ext4_rn_li_request) and keep track of the time spend in this
3101  * function. Based on that time we compute next schedule time of
3102  * the request. When walking through the list is complete, compute
3103  * next waking time and put itself into sleep.
3104  */
ext4_lazyinit_thread(void * arg)3105 static int ext4_lazyinit_thread(void *arg)
3106 {
3107 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3108 	struct list_head *pos, *n;
3109 	struct ext4_li_request *elr;
3110 	unsigned long next_wakeup, cur;
3111 
3112 	BUG_ON(NULL == eli);
3113 
3114 cont_thread:
3115 	while (true) {
3116 		next_wakeup = MAX_JIFFY_OFFSET;
3117 
3118 		mutex_lock(&eli->li_list_mtx);
3119 		if (list_empty(&eli->li_request_list)) {
3120 			mutex_unlock(&eli->li_list_mtx);
3121 			goto exit_thread;
3122 		}
3123 		list_for_each_safe(pos, n, &eli->li_request_list) {
3124 			int err = 0;
3125 			int progress = 0;
3126 			elr = list_entry(pos, struct ext4_li_request,
3127 					 lr_request);
3128 
3129 			if (time_before(jiffies, elr->lr_next_sched)) {
3130 				if (time_before(elr->lr_next_sched, next_wakeup))
3131 					next_wakeup = elr->lr_next_sched;
3132 				continue;
3133 			}
3134 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3135 				if (sb_start_write_trylock(elr->lr_super)) {
3136 					progress = 1;
3137 					/*
3138 					 * We hold sb->s_umount, sb can not
3139 					 * be removed from the list, it is
3140 					 * now safe to drop li_list_mtx
3141 					 */
3142 					mutex_unlock(&eli->li_list_mtx);
3143 					err = ext4_run_li_request(elr);
3144 					sb_end_write(elr->lr_super);
3145 					mutex_lock(&eli->li_list_mtx);
3146 					n = pos->next;
3147 				}
3148 				up_read((&elr->lr_super->s_umount));
3149 			}
3150 			/* error, remove the lazy_init job */
3151 			if (err) {
3152 				ext4_remove_li_request(elr);
3153 				continue;
3154 			}
3155 			if (!progress) {
3156 				elr->lr_next_sched = jiffies +
3157 					(prandom_u32()
3158 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3159 			}
3160 			if (time_before(elr->lr_next_sched, next_wakeup))
3161 				next_wakeup = elr->lr_next_sched;
3162 		}
3163 		mutex_unlock(&eli->li_list_mtx);
3164 
3165 		try_to_freeze();
3166 
3167 		cur = jiffies;
3168 		if ((time_after_eq(cur, next_wakeup)) ||
3169 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3170 			cond_resched();
3171 			continue;
3172 		}
3173 
3174 		schedule_timeout_interruptible(next_wakeup - cur);
3175 
3176 		if (kthread_should_stop()) {
3177 			ext4_clear_request_list();
3178 			goto exit_thread;
3179 		}
3180 	}
3181 
3182 exit_thread:
3183 	/*
3184 	 * It looks like the request list is empty, but we need
3185 	 * to check it under the li_list_mtx lock, to prevent any
3186 	 * additions into it, and of course we should lock ext4_li_mtx
3187 	 * to atomically free the list and ext4_li_info, because at
3188 	 * this point another ext4 filesystem could be registering
3189 	 * new one.
3190 	 */
3191 	mutex_lock(&ext4_li_mtx);
3192 	mutex_lock(&eli->li_list_mtx);
3193 	if (!list_empty(&eli->li_request_list)) {
3194 		mutex_unlock(&eli->li_list_mtx);
3195 		mutex_unlock(&ext4_li_mtx);
3196 		goto cont_thread;
3197 	}
3198 	mutex_unlock(&eli->li_list_mtx);
3199 	kfree(ext4_li_info);
3200 	ext4_li_info = NULL;
3201 	mutex_unlock(&ext4_li_mtx);
3202 
3203 	return 0;
3204 }
3205 
ext4_clear_request_list(void)3206 static void ext4_clear_request_list(void)
3207 {
3208 	struct list_head *pos, *n;
3209 	struct ext4_li_request *elr;
3210 
3211 	mutex_lock(&ext4_li_info->li_list_mtx);
3212 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3213 		elr = list_entry(pos, struct ext4_li_request,
3214 				 lr_request);
3215 		ext4_remove_li_request(elr);
3216 	}
3217 	mutex_unlock(&ext4_li_info->li_list_mtx);
3218 }
3219 
ext4_run_lazyinit_thread(void)3220 static int ext4_run_lazyinit_thread(void)
3221 {
3222 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3223 					 ext4_li_info, "ext4lazyinit");
3224 	if (IS_ERR(ext4_lazyinit_task)) {
3225 		int err = PTR_ERR(ext4_lazyinit_task);
3226 		ext4_clear_request_list();
3227 		kfree(ext4_li_info);
3228 		ext4_li_info = NULL;
3229 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3230 				 "initialization thread\n",
3231 				 err);
3232 		return err;
3233 	}
3234 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3235 	return 0;
3236 }
3237 
3238 /*
3239  * Check whether it make sense to run itable init. thread or not.
3240  * If there is at least one uninitialized inode table, return
3241  * corresponding group number, else the loop goes through all
3242  * groups and return total number of groups.
3243  */
ext4_has_uninit_itable(struct super_block * sb)3244 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3245 {
3246 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3247 	struct ext4_group_desc *gdp = NULL;
3248 
3249 	if (!ext4_has_group_desc_csum(sb))
3250 		return ngroups;
3251 
3252 	for (group = 0; group < ngroups; group++) {
3253 		gdp = ext4_get_group_desc(sb, group, NULL);
3254 		if (!gdp)
3255 			continue;
3256 
3257 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3258 			break;
3259 	}
3260 
3261 	return group;
3262 }
3263 
ext4_li_info_new(void)3264 static int ext4_li_info_new(void)
3265 {
3266 	struct ext4_lazy_init *eli = NULL;
3267 
3268 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3269 	if (!eli)
3270 		return -ENOMEM;
3271 
3272 	INIT_LIST_HEAD(&eli->li_request_list);
3273 	mutex_init(&eli->li_list_mtx);
3274 
3275 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3276 
3277 	ext4_li_info = eli;
3278 
3279 	return 0;
3280 }
3281 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3282 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3283 					    ext4_group_t start)
3284 {
3285 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3286 	struct ext4_li_request *elr;
3287 
3288 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3289 	if (!elr)
3290 		return NULL;
3291 
3292 	elr->lr_super = sb;
3293 	elr->lr_sbi = sbi;
3294 	elr->lr_next_group = start;
3295 
3296 	/*
3297 	 * Randomize first schedule time of the request to
3298 	 * spread the inode table initialization requests
3299 	 * better.
3300 	 */
3301 	elr->lr_next_sched = jiffies + (prandom_u32() %
3302 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3303 	return elr;
3304 }
3305 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3306 int ext4_register_li_request(struct super_block *sb,
3307 			     ext4_group_t first_not_zeroed)
3308 {
3309 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3310 	struct ext4_li_request *elr = NULL;
3311 	ext4_group_t ngroups = sbi->s_groups_count;
3312 	int ret = 0;
3313 
3314 	mutex_lock(&ext4_li_mtx);
3315 	if (sbi->s_li_request != NULL) {
3316 		/*
3317 		 * Reset timeout so it can be computed again, because
3318 		 * s_li_wait_mult might have changed.
3319 		 */
3320 		sbi->s_li_request->lr_timeout = 0;
3321 		goto out;
3322 	}
3323 
3324 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3325 	    !test_opt(sb, INIT_INODE_TABLE))
3326 		goto out;
3327 
3328 	elr = ext4_li_request_new(sb, first_not_zeroed);
3329 	if (!elr) {
3330 		ret = -ENOMEM;
3331 		goto out;
3332 	}
3333 
3334 	if (NULL == ext4_li_info) {
3335 		ret = ext4_li_info_new();
3336 		if (ret)
3337 			goto out;
3338 	}
3339 
3340 	mutex_lock(&ext4_li_info->li_list_mtx);
3341 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3342 	mutex_unlock(&ext4_li_info->li_list_mtx);
3343 
3344 	sbi->s_li_request = elr;
3345 	/*
3346 	 * set elr to NULL here since it has been inserted to
3347 	 * the request_list and the removal and free of it is
3348 	 * handled by ext4_clear_request_list from now on.
3349 	 */
3350 	elr = NULL;
3351 
3352 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3353 		ret = ext4_run_lazyinit_thread();
3354 		if (ret)
3355 			goto out;
3356 	}
3357 out:
3358 	mutex_unlock(&ext4_li_mtx);
3359 	if (ret)
3360 		kfree(elr);
3361 	return ret;
3362 }
3363 
3364 /*
3365  * We do not need to lock anything since this is called on
3366  * module unload.
3367  */
ext4_destroy_lazyinit_thread(void)3368 static void ext4_destroy_lazyinit_thread(void)
3369 {
3370 	/*
3371 	 * If thread exited earlier
3372 	 * there's nothing to be done.
3373 	 */
3374 	if (!ext4_li_info || !ext4_lazyinit_task)
3375 		return;
3376 
3377 	kthread_stop(ext4_lazyinit_task);
3378 }
3379 
set_journal_csum_feature_set(struct super_block * sb)3380 static int set_journal_csum_feature_set(struct super_block *sb)
3381 {
3382 	int ret = 1;
3383 	int compat, incompat;
3384 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3385 
3386 	if (ext4_has_metadata_csum(sb)) {
3387 		/* journal checksum v3 */
3388 		compat = 0;
3389 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3390 	} else {
3391 		/* journal checksum v1 */
3392 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3393 		incompat = 0;
3394 	}
3395 
3396 	jbd2_journal_clear_features(sbi->s_journal,
3397 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3398 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3399 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3400 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3401 		ret = jbd2_journal_set_features(sbi->s_journal,
3402 				compat, 0,
3403 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3404 				incompat);
3405 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3406 		ret = jbd2_journal_set_features(sbi->s_journal,
3407 				compat, 0,
3408 				incompat);
3409 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3410 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3411 	} else {
3412 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3413 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3414 	}
3415 
3416 	return ret;
3417 }
3418 
3419 /*
3420  * Note: calculating the overhead so we can be compatible with
3421  * historical BSD practice is quite difficult in the face of
3422  * clusters/bigalloc.  This is because multiple metadata blocks from
3423  * different block group can end up in the same allocation cluster.
3424  * Calculating the exact overhead in the face of clustered allocation
3425  * requires either O(all block bitmaps) in memory or O(number of block
3426  * groups**2) in time.  We will still calculate the superblock for
3427  * older file systems --- and if we come across with a bigalloc file
3428  * system with zero in s_overhead_clusters the estimate will be close to
3429  * correct especially for very large cluster sizes --- but for newer
3430  * file systems, it's better to calculate this figure once at mkfs
3431  * time, and store it in the superblock.  If the superblock value is
3432  * present (even for non-bigalloc file systems), we will use it.
3433  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3434 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3435 			  char *buf)
3436 {
3437 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3438 	struct ext4_group_desc	*gdp;
3439 	ext4_fsblk_t		first_block, last_block, b;
3440 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3441 	int			s, j, count = 0;
3442 
3443 	if (!ext4_has_feature_bigalloc(sb))
3444 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3445 			sbi->s_itb_per_group + 2);
3446 
3447 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3448 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3449 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3450 	for (i = 0; i < ngroups; i++) {
3451 		gdp = ext4_get_group_desc(sb, i, NULL);
3452 		b = ext4_block_bitmap(sb, gdp);
3453 		if (b >= first_block && b <= last_block) {
3454 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3455 			count++;
3456 		}
3457 		b = ext4_inode_bitmap(sb, gdp);
3458 		if (b >= first_block && b <= last_block) {
3459 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3460 			count++;
3461 		}
3462 		b = ext4_inode_table(sb, gdp);
3463 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3464 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3465 				int c = EXT4_B2C(sbi, b - first_block);
3466 				ext4_set_bit(c, buf);
3467 				count++;
3468 			}
3469 		if (i != grp)
3470 			continue;
3471 		s = 0;
3472 		if (ext4_bg_has_super(sb, grp)) {
3473 			ext4_set_bit(s++, buf);
3474 			count++;
3475 		}
3476 		j = ext4_bg_num_gdb(sb, grp);
3477 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3478 			ext4_error(sb, "Invalid number of block group "
3479 				   "descriptor blocks: %d", j);
3480 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3481 		}
3482 		count += j;
3483 		for (; j > 0; j--)
3484 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3485 	}
3486 	if (!count)
3487 		return 0;
3488 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3489 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3490 }
3491 
3492 /*
3493  * Compute the overhead and stash it in sbi->s_overhead
3494  */
ext4_calculate_overhead(struct super_block * sb)3495 int ext4_calculate_overhead(struct super_block *sb)
3496 {
3497 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3498 	struct ext4_super_block *es = sbi->s_es;
3499 	struct inode *j_inode;
3500 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3501 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3502 	ext4_fsblk_t overhead = 0;
3503 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3504 
3505 	if (!buf)
3506 		return -ENOMEM;
3507 
3508 	/*
3509 	 * Compute the overhead (FS structures).  This is constant
3510 	 * for a given filesystem unless the number of block groups
3511 	 * changes so we cache the previous value until it does.
3512 	 */
3513 
3514 	/*
3515 	 * All of the blocks before first_data_block are overhead
3516 	 */
3517 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3518 
3519 	/*
3520 	 * Add the overhead found in each block group
3521 	 */
3522 	for (i = 0; i < ngroups; i++) {
3523 		int blks;
3524 
3525 		blks = count_overhead(sb, i, buf);
3526 		overhead += blks;
3527 		if (blks)
3528 			memset(buf, 0, PAGE_SIZE);
3529 		cond_resched();
3530 	}
3531 
3532 	/*
3533 	 * Add the internal journal blocks whether the journal has been
3534 	 * loaded or not
3535 	 */
3536 	if (sbi->s_journal && !sbi->journal_bdev)
3537 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3538 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3539 		/* j_inum for internal journal is non-zero */
3540 		j_inode = ext4_get_journal_inode(sb, j_inum);
3541 		if (j_inode) {
3542 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3543 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3544 			iput(j_inode);
3545 		} else {
3546 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3547 		}
3548 	}
3549 	sbi->s_overhead = overhead;
3550 	smp_wmb();
3551 	free_page((unsigned long) buf);
3552 	return 0;
3553 }
3554 
ext4_set_resv_clusters(struct super_block * sb)3555 static void ext4_set_resv_clusters(struct super_block *sb)
3556 {
3557 	ext4_fsblk_t resv_clusters;
3558 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3559 
3560 	/*
3561 	 * There's no need to reserve anything when we aren't using extents.
3562 	 * The space estimates are exact, there are no unwritten extents,
3563 	 * hole punching doesn't need new metadata... This is needed especially
3564 	 * to keep ext2/3 backward compatibility.
3565 	 */
3566 	if (!ext4_has_feature_extents(sb))
3567 		return;
3568 	/*
3569 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3570 	 * This should cover the situations where we can not afford to run
3571 	 * out of space like for example punch hole, or converting
3572 	 * unwritten extents in delalloc path. In most cases such
3573 	 * allocation would require 1, or 2 blocks, higher numbers are
3574 	 * very rare.
3575 	 */
3576 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3577 			 sbi->s_cluster_bits);
3578 
3579 	do_div(resv_clusters, 50);
3580 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3581 
3582 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3583 }
3584 
ext4_fill_super(struct super_block * sb,void * data,int silent)3585 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3586 {
3587 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3588 	char *orig_data = kstrdup(data, GFP_KERNEL);
3589 	struct buffer_head *bh, **group_desc;
3590 	struct ext4_super_block *es = NULL;
3591 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3592 	struct flex_groups **flex_groups;
3593 	ext4_fsblk_t block;
3594 	ext4_fsblk_t sb_block = get_sb_block(&data);
3595 	ext4_fsblk_t logical_sb_block;
3596 	unsigned long offset = 0;
3597 	unsigned long journal_devnum = 0;
3598 	unsigned long def_mount_opts;
3599 	struct inode *root;
3600 	const char *descr;
3601 	int ret = -ENOMEM;
3602 	int blocksize, clustersize;
3603 	unsigned int db_count;
3604 	unsigned int i;
3605 	int needs_recovery, has_huge_files, has_bigalloc;
3606 	__u64 blocks_count;
3607 	int err = 0;
3608 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3609 	ext4_group_t first_not_zeroed;
3610 
3611 	if ((data && !orig_data) || !sbi)
3612 		goto out_free_base;
3613 
3614 	sbi->s_daxdev = dax_dev;
3615 	sbi->s_blockgroup_lock =
3616 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3617 	if (!sbi->s_blockgroup_lock)
3618 		goto out_free_base;
3619 
3620 	sb->s_fs_info = sbi;
3621 	sbi->s_sb = sb;
3622 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3623 	sbi->s_sb_block = sb_block;
3624 	if (sb->s_bdev->bd_part)
3625 		sbi->s_sectors_written_start =
3626 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3627 
3628 	/* Cleanup superblock name */
3629 	strreplace(sb->s_id, '/', '!');
3630 
3631 	/* -EINVAL is default */
3632 	ret = -EINVAL;
3633 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3634 	if (!blocksize) {
3635 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3636 		goto out_fail;
3637 	}
3638 
3639 	/*
3640 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3641 	 * block sizes.  We need to calculate the offset from buffer start.
3642 	 */
3643 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3644 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3645 		offset = do_div(logical_sb_block, blocksize);
3646 	} else {
3647 		logical_sb_block = sb_block;
3648 	}
3649 
3650 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3651 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3652 		goto out_fail;
3653 	}
3654 	/*
3655 	 * Note: s_es must be initialized as soon as possible because
3656 	 *       some ext4 macro-instructions depend on its value
3657 	 */
3658 	es = (struct ext4_super_block *) (bh->b_data + offset);
3659 	sbi->s_es = es;
3660 	sb->s_magic = le16_to_cpu(es->s_magic);
3661 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3662 		goto cantfind_ext4;
3663 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3664 
3665 	/* Warn if metadata_csum and gdt_csum are both set. */
3666 	if (ext4_has_feature_metadata_csum(sb) &&
3667 	    ext4_has_feature_gdt_csum(sb))
3668 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3669 			     "redundant flags; please run fsck.");
3670 
3671 	/* Check for a known checksum algorithm */
3672 	if (!ext4_verify_csum_type(sb, es)) {
3673 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3674 			 "unknown checksum algorithm.");
3675 		silent = 1;
3676 		goto cantfind_ext4;
3677 	}
3678 
3679 	/* Load the checksum driver */
3680 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3681 	if (IS_ERR(sbi->s_chksum_driver)) {
3682 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3683 		ret = PTR_ERR(sbi->s_chksum_driver);
3684 		sbi->s_chksum_driver = NULL;
3685 		goto failed_mount;
3686 	}
3687 
3688 	/* Check superblock checksum */
3689 	if (!ext4_superblock_csum_verify(sb, es)) {
3690 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3691 			 "invalid superblock checksum.  Run e2fsck?");
3692 		silent = 1;
3693 		ret = -EFSBADCRC;
3694 		goto cantfind_ext4;
3695 	}
3696 
3697 	/* Precompute checksum seed for all metadata */
3698 	if (ext4_has_feature_csum_seed(sb))
3699 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3700 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3701 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3702 					       sizeof(es->s_uuid));
3703 
3704 	/* Set defaults before we parse the mount options */
3705 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3706 	set_opt(sb, INIT_INODE_TABLE);
3707 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3708 		set_opt(sb, DEBUG);
3709 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3710 		set_opt(sb, GRPID);
3711 	if (def_mount_opts & EXT4_DEFM_UID16)
3712 		set_opt(sb, NO_UID32);
3713 	/* xattr user namespace & acls are now defaulted on */
3714 	set_opt(sb, XATTR_USER);
3715 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3716 	set_opt(sb, POSIX_ACL);
3717 #endif
3718 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3719 	if (ext4_has_metadata_csum(sb))
3720 		set_opt(sb, JOURNAL_CHECKSUM);
3721 
3722 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3723 		set_opt(sb, JOURNAL_DATA);
3724 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3725 		set_opt(sb, ORDERED_DATA);
3726 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3727 		set_opt(sb, WRITEBACK_DATA);
3728 
3729 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3730 		set_opt(sb, ERRORS_PANIC);
3731 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3732 		set_opt(sb, ERRORS_CONT);
3733 	else
3734 		set_opt(sb, ERRORS_RO);
3735 	/* block_validity enabled by default; disable with noblock_validity */
3736 	set_opt(sb, BLOCK_VALIDITY);
3737 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3738 		set_opt(sb, DISCARD);
3739 
3740 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3741 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3742 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3743 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3744 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3745 
3746 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3747 		set_opt(sb, BARRIER);
3748 
3749 	/*
3750 	 * enable delayed allocation by default
3751 	 * Use -o nodelalloc to turn it off
3752 	 */
3753 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3754 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3755 		set_opt(sb, DELALLOC);
3756 
3757 	/*
3758 	 * set default s_li_wait_mult for lazyinit, for the case there is
3759 	 * no mount option specified.
3760 	 */
3761 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3762 
3763 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3764 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3765 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3766 		ext4_msg(sb, KERN_ERR,
3767 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3768 			 blocksize, le32_to_cpu(es->s_log_block_size));
3769 		goto failed_mount;
3770 	}
3771 
3772 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3773 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3774 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3775 	} else {
3776 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3777 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3778 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3779 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3780 				 sbi->s_first_ino);
3781 			goto failed_mount;
3782 		}
3783 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3784 		    (!is_power_of_2(sbi->s_inode_size)) ||
3785 		    (sbi->s_inode_size > blocksize)) {
3786 			ext4_msg(sb, KERN_ERR,
3787 			       "unsupported inode size: %d",
3788 			       sbi->s_inode_size);
3789 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3790 			goto failed_mount;
3791 		}
3792 		/*
3793 		 * i_atime_extra is the last extra field available for
3794 		 * [acm]times in struct ext4_inode. Checking for that
3795 		 * field should suffice to ensure we have extra space
3796 		 * for all three.
3797 		 */
3798 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3799 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3800 			sb->s_time_gran = 1;
3801 		} else {
3802 			sb->s_time_gran = NSEC_PER_SEC;
3803 		}
3804 	}
3805 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3806 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3807 			EXT4_GOOD_OLD_INODE_SIZE;
3808 		if (ext4_has_feature_extra_isize(sb)) {
3809 			unsigned v, max = (sbi->s_inode_size -
3810 					   EXT4_GOOD_OLD_INODE_SIZE);
3811 
3812 			v = le16_to_cpu(es->s_want_extra_isize);
3813 			if (v > max) {
3814 				ext4_msg(sb, KERN_ERR,
3815 					 "bad s_want_extra_isize: %d", v);
3816 				goto failed_mount;
3817 			}
3818 			if (sbi->s_want_extra_isize < v)
3819 				sbi->s_want_extra_isize = v;
3820 
3821 			v = le16_to_cpu(es->s_min_extra_isize);
3822 			if (v > max) {
3823 				ext4_msg(sb, KERN_ERR,
3824 					 "bad s_min_extra_isize: %d", v);
3825 				goto failed_mount;
3826 			}
3827 			if (sbi->s_want_extra_isize < v)
3828 				sbi->s_want_extra_isize = v;
3829 		}
3830 	}
3831 
3832 	if (sbi->s_es->s_mount_opts[0]) {
3833 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3834 					      sizeof(sbi->s_es->s_mount_opts),
3835 					      GFP_KERNEL);
3836 		if (!s_mount_opts)
3837 			goto failed_mount;
3838 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3839 				   &journal_ioprio, 0)) {
3840 			ext4_msg(sb, KERN_WARNING,
3841 				 "failed to parse options in superblock: %s",
3842 				 s_mount_opts);
3843 		}
3844 		kfree(s_mount_opts);
3845 	}
3846 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3847 	if (!parse_options((char *) data, sb, &journal_devnum,
3848 			   &journal_ioprio, 0))
3849 		goto failed_mount;
3850 
3851 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3852 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3853 			    "with data=journal disables delayed "
3854 			    "allocation and O_DIRECT support!\n");
3855 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3856 			ext4_msg(sb, KERN_ERR, "can't mount with "
3857 				 "both data=journal and delalloc");
3858 			goto failed_mount;
3859 		}
3860 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3861 			ext4_msg(sb, KERN_ERR, "can't mount with "
3862 				 "both data=journal and dioread_nolock");
3863 			goto failed_mount;
3864 		}
3865 		if (test_opt(sb, DAX)) {
3866 			ext4_msg(sb, KERN_ERR, "can't mount with "
3867 				 "both data=journal and dax");
3868 			goto failed_mount;
3869 		}
3870 		if (ext4_has_feature_encrypt(sb)) {
3871 			ext4_msg(sb, KERN_WARNING,
3872 				 "encrypted files will use data=ordered "
3873 				 "instead of data journaling mode");
3874 		}
3875 		if (test_opt(sb, DELALLOC))
3876 			clear_opt(sb, DELALLOC);
3877 	} else {
3878 		sb->s_iflags |= SB_I_CGROUPWB;
3879 	}
3880 
3881 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3882 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3883 
3884 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3885 	    (ext4_has_compat_features(sb) ||
3886 	     ext4_has_ro_compat_features(sb) ||
3887 	     ext4_has_incompat_features(sb)))
3888 		ext4_msg(sb, KERN_WARNING,
3889 		       "feature flags set on rev 0 fs, "
3890 		       "running e2fsck is recommended");
3891 
3892 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3893 		set_opt2(sb, HURD_COMPAT);
3894 		if (ext4_has_feature_64bit(sb)) {
3895 			ext4_msg(sb, KERN_ERR,
3896 				 "The Hurd can't support 64-bit file systems");
3897 			goto failed_mount;
3898 		}
3899 
3900 		/*
3901 		 * ea_inode feature uses l_i_version field which is not
3902 		 * available in HURD_COMPAT mode.
3903 		 */
3904 		if (ext4_has_feature_ea_inode(sb)) {
3905 			ext4_msg(sb, KERN_ERR,
3906 				 "ea_inode feature is not supported for Hurd");
3907 			goto failed_mount;
3908 		}
3909 	}
3910 
3911 	if (IS_EXT2_SB(sb)) {
3912 		if (ext2_feature_set_ok(sb))
3913 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3914 				 "using the ext4 subsystem");
3915 		else {
3916 			/*
3917 			 * If we're probing be silent, if this looks like
3918 			 * it's actually an ext[34] filesystem.
3919 			 */
3920 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3921 				goto failed_mount;
3922 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3923 				 "to feature incompatibilities");
3924 			goto failed_mount;
3925 		}
3926 	}
3927 
3928 	if (IS_EXT3_SB(sb)) {
3929 		if (ext3_feature_set_ok(sb))
3930 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3931 				 "using the ext4 subsystem");
3932 		else {
3933 			/*
3934 			 * If we're probing be silent, if this looks like
3935 			 * it's actually an ext4 filesystem.
3936 			 */
3937 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3938 				goto failed_mount;
3939 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3940 				 "to feature incompatibilities");
3941 			goto failed_mount;
3942 		}
3943 	}
3944 
3945 	/*
3946 	 * Check feature flags regardless of the revision level, since we
3947 	 * previously didn't change the revision level when setting the flags,
3948 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3949 	 */
3950 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3951 		goto failed_mount;
3952 
3953 	if (le32_to_cpu(es->s_log_block_size) >
3954 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3955 		ext4_msg(sb, KERN_ERR,
3956 			 "Invalid log block size: %u",
3957 			 le32_to_cpu(es->s_log_block_size));
3958 		goto failed_mount;
3959 	}
3960 	if (le32_to_cpu(es->s_log_cluster_size) >
3961 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3962 		ext4_msg(sb, KERN_ERR,
3963 			 "Invalid log cluster size: %u",
3964 			 le32_to_cpu(es->s_log_cluster_size));
3965 		goto failed_mount;
3966 	}
3967 
3968 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3969 		ext4_msg(sb, KERN_ERR,
3970 			 "Number of reserved GDT blocks insanely large: %d",
3971 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3972 		goto failed_mount;
3973 	}
3974 
3975 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3976 		if (ext4_has_feature_inline_data(sb)) {
3977 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3978 					" that may contain inline data");
3979 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3980 		}
3981 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3982 			ext4_msg(sb, KERN_ERR,
3983 				"DAX unsupported by block device. Turning off DAX.");
3984 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3985 		}
3986 	}
3987 
3988 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3989 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3990 			 es->s_encryption_level);
3991 		goto failed_mount;
3992 	}
3993 
3994 	if (sb->s_blocksize != blocksize) {
3995 		/* Validate the filesystem blocksize */
3996 		if (!sb_set_blocksize(sb, blocksize)) {
3997 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3998 					blocksize);
3999 			goto failed_mount;
4000 		}
4001 
4002 		brelse(bh);
4003 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4004 		offset = do_div(logical_sb_block, blocksize);
4005 		bh = sb_bread_unmovable(sb, logical_sb_block);
4006 		if (!bh) {
4007 			ext4_msg(sb, KERN_ERR,
4008 			       "Can't read superblock on 2nd try");
4009 			goto failed_mount;
4010 		}
4011 		es = (struct ext4_super_block *)(bh->b_data + offset);
4012 		sbi->s_es = es;
4013 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4014 			ext4_msg(sb, KERN_ERR,
4015 			       "Magic mismatch, very weird!");
4016 			goto failed_mount;
4017 		}
4018 	}
4019 
4020 	has_huge_files = ext4_has_feature_huge_file(sb);
4021 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4022 						      has_huge_files);
4023 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4024 
4025 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4026 	if (ext4_has_feature_64bit(sb)) {
4027 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4028 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4029 		    !is_power_of_2(sbi->s_desc_size)) {
4030 			ext4_msg(sb, KERN_ERR,
4031 			       "unsupported descriptor size %lu",
4032 			       sbi->s_desc_size);
4033 			goto failed_mount;
4034 		}
4035 	} else
4036 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4037 
4038 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4039 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4040 
4041 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4042 	if (sbi->s_inodes_per_block == 0)
4043 		goto cantfind_ext4;
4044 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4045 	    sbi->s_inodes_per_group > blocksize * 8) {
4046 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4047 			 sbi->s_inodes_per_group);
4048 		goto failed_mount;
4049 	}
4050 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4051 					sbi->s_inodes_per_block;
4052 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4053 	sbi->s_sbh = bh;
4054 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4055 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4056 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4057 
4058 	for (i = 0; i < 4; i++)
4059 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4060 	sbi->s_def_hash_version = es->s_def_hash_version;
4061 	if (ext4_has_feature_dir_index(sb)) {
4062 		i = le32_to_cpu(es->s_flags);
4063 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4064 			sbi->s_hash_unsigned = 3;
4065 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4066 #ifdef __CHAR_UNSIGNED__
4067 			if (!sb_rdonly(sb))
4068 				es->s_flags |=
4069 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4070 			sbi->s_hash_unsigned = 3;
4071 #else
4072 			if (!sb_rdonly(sb))
4073 				es->s_flags |=
4074 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4075 #endif
4076 		}
4077 	}
4078 
4079 	/* Handle clustersize */
4080 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4081 	has_bigalloc = ext4_has_feature_bigalloc(sb);
4082 	if (has_bigalloc) {
4083 		if (clustersize < blocksize) {
4084 			ext4_msg(sb, KERN_ERR,
4085 				 "cluster size (%d) smaller than "
4086 				 "block size (%d)", clustersize, blocksize);
4087 			goto failed_mount;
4088 		}
4089 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4090 			le32_to_cpu(es->s_log_block_size);
4091 		sbi->s_clusters_per_group =
4092 			le32_to_cpu(es->s_clusters_per_group);
4093 		if (sbi->s_clusters_per_group > blocksize * 8) {
4094 			ext4_msg(sb, KERN_ERR,
4095 				 "#clusters per group too big: %lu",
4096 				 sbi->s_clusters_per_group);
4097 			goto failed_mount;
4098 		}
4099 		if (sbi->s_blocks_per_group !=
4100 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4101 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4102 				 "clusters per group (%lu) inconsistent",
4103 				 sbi->s_blocks_per_group,
4104 				 sbi->s_clusters_per_group);
4105 			goto failed_mount;
4106 		}
4107 	} else {
4108 		if (clustersize != blocksize) {
4109 			ext4_msg(sb, KERN_ERR,
4110 				 "fragment/cluster size (%d) != "
4111 				 "block size (%d)", clustersize, blocksize);
4112 			goto failed_mount;
4113 		}
4114 		if (sbi->s_blocks_per_group > blocksize * 8) {
4115 			ext4_msg(sb, KERN_ERR,
4116 				 "#blocks per group too big: %lu",
4117 				 sbi->s_blocks_per_group);
4118 			goto failed_mount;
4119 		}
4120 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4121 		sbi->s_cluster_bits = 0;
4122 	}
4123 	sbi->s_cluster_ratio = clustersize / blocksize;
4124 
4125 	/* Do we have standard group size of clustersize * 8 blocks ? */
4126 	if (sbi->s_blocks_per_group == clustersize << 3)
4127 		set_opt2(sb, STD_GROUP_SIZE);
4128 
4129 	/*
4130 	 * Test whether we have more sectors than will fit in sector_t,
4131 	 * and whether the max offset is addressable by the page cache.
4132 	 */
4133 	err = generic_check_addressable(sb->s_blocksize_bits,
4134 					ext4_blocks_count(es));
4135 	if (err) {
4136 		ext4_msg(sb, KERN_ERR, "filesystem"
4137 			 " too large to mount safely on this system");
4138 		if (sizeof(sector_t) < 8)
4139 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4140 		goto failed_mount;
4141 	}
4142 
4143 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4144 		goto cantfind_ext4;
4145 
4146 	/* check blocks count against device size */
4147 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4148 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4149 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4150 		       "exceeds size of device (%llu blocks)",
4151 		       ext4_blocks_count(es), blocks_count);
4152 		goto failed_mount;
4153 	}
4154 
4155 	/*
4156 	 * It makes no sense for the first data block to be beyond the end
4157 	 * of the filesystem.
4158 	 */
4159 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4160 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4161 			 "block %u is beyond end of filesystem (%llu)",
4162 			 le32_to_cpu(es->s_first_data_block),
4163 			 ext4_blocks_count(es));
4164 		goto failed_mount;
4165 	}
4166 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4167 	    (sbi->s_cluster_ratio == 1)) {
4168 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4169 			 "block is 0 with a 1k block and cluster size");
4170 		goto failed_mount;
4171 	}
4172 
4173 	blocks_count = (ext4_blocks_count(es) -
4174 			le32_to_cpu(es->s_first_data_block) +
4175 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4176 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4177 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4178 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4179 		       "(block count %llu, first data block %u, "
4180 		       "blocks per group %lu)", blocks_count,
4181 		       ext4_blocks_count(es),
4182 		       le32_to_cpu(es->s_first_data_block),
4183 		       EXT4_BLOCKS_PER_GROUP(sb));
4184 		goto failed_mount;
4185 	}
4186 	sbi->s_groups_count = blocks_count;
4187 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4188 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4189 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4190 	    le32_to_cpu(es->s_inodes_count)) {
4191 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4192 			 le32_to_cpu(es->s_inodes_count),
4193 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4194 		ret = -EINVAL;
4195 		goto failed_mount;
4196 	}
4197 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4198 		   EXT4_DESC_PER_BLOCK(sb);
4199 	if (ext4_has_feature_meta_bg(sb)) {
4200 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4201 			ext4_msg(sb, KERN_WARNING,
4202 				 "first meta block group too large: %u "
4203 				 "(group descriptor block count %u)",
4204 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4205 			goto failed_mount;
4206 		}
4207 	}
4208 	rcu_assign_pointer(sbi->s_group_desc,
4209 			   kvmalloc_array(db_count,
4210 					  sizeof(struct buffer_head *),
4211 					  GFP_KERNEL));
4212 	if (sbi->s_group_desc == NULL) {
4213 		ext4_msg(sb, KERN_ERR, "not enough memory");
4214 		ret = -ENOMEM;
4215 		goto failed_mount;
4216 	}
4217 
4218 	bgl_lock_init(sbi->s_blockgroup_lock);
4219 
4220 	/* Pre-read the descriptors into the buffer cache */
4221 	for (i = 0; i < db_count; i++) {
4222 		block = descriptor_loc(sb, logical_sb_block, i);
4223 		sb_breadahead_unmovable(sb, block);
4224 	}
4225 
4226 	for (i = 0; i < db_count; i++) {
4227 		struct buffer_head *bh;
4228 
4229 		block = descriptor_loc(sb, logical_sb_block, i);
4230 		bh = sb_bread_unmovable(sb, block);
4231 		if (!bh) {
4232 			ext4_msg(sb, KERN_ERR,
4233 			       "can't read group descriptor %d", i);
4234 			db_count = i;
4235 			goto failed_mount2;
4236 		}
4237 		rcu_read_lock();
4238 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4239 		rcu_read_unlock();
4240 	}
4241 	sbi->s_gdb_count = db_count;
4242 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4243 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4244 		ret = -EFSCORRUPTED;
4245 		goto failed_mount2;
4246 	}
4247 
4248 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4249 
4250 	/* Register extent status tree shrinker */
4251 	if (ext4_es_register_shrinker(sbi))
4252 		goto failed_mount3;
4253 
4254 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4255 	sbi->s_extent_max_zeroout_kb = 32;
4256 
4257 	/*
4258 	 * set up enough so that it can read an inode
4259 	 */
4260 	sb->s_op = &ext4_sops;
4261 	sb->s_export_op = &ext4_export_ops;
4262 	sb->s_xattr = ext4_xattr_handlers;
4263 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4264 	sb->s_cop = &ext4_cryptops;
4265 #endif
4266 #ifdef CONFIG_QUOTA
4267 	sb->dq_op = &ext4_quota_operations;
4268 	if (ext4_has_feature_quota(sb))
4269 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4270 	else
4271 		sb->s_qcop = &ext4_qctl_operations;
4272 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4273 #endif
4274 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4275 
4276 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4277 	mutex_init(&sbi->s_orphan_lock);
4278 
4279 	sb->s_root = NULL;
4280 
4281 	needs_recovery = (es->s_last_orphan != 0 ||
4282 			  ext4_has_feature_journal_needs_recovery(sb));
4283 
4284 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4285 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4286 			goto failed_mount3a;
4287 
4288 	/*
4289 	 * The first inode we look at is the journal inode.  Don't try
4290 	 * root first: it may be modified in the journal!
4291 	 */
4292 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4293 		err = ext4_load_journal(sb, es, journal_devnum);
4294 		if (err)
4295 			goto failed_mount3a;
4296 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4297 		   ext4_has_feature_journal_needs_recovery(sb)) {
4298 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4299 		       "suppressed and not mounted read-only");
4300 		goto failed_mount_wq;
4301 	} else {
4302 		/* Nojournal mode, all journal mount options are illegal */
4303 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4304 			ext4_msg(sb, KERN_ERR, "can't mount with "
4305 				 "journal_checksum, fs mounted w/o journal");
4306 			goto failed_mount_wq;
4307 		}
4308 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4309 			ext4_msg(sb, KERN_ERR, "can't mount with "
4310 				 "journal_async_commit, fs mounted w/o journal");
4311 			goto failed_mount_wq;
4312 		}
4313 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4314 			ext4_msg(sb, KERN_ERR, "can't mount with "
4315 				 "commit=%lu, fs mounted w/o journal",
4316 				 sbi->s_commit_interval / HZ);
4317 			goto failed_mount_wq;
4318 		}
4319 		if (EXT4_MOUNT_DATA_FLAGS &
4320 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4321 			ext4_msg(sb, KERN_ERR, "can't mount with "
4322 				 "data=, fs mounted w/o journal");
4323 			goto failed_mount_wq;
4324 		}
4325 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4326 		clear_opt(sb, JOURNAL_CHECKSUM);
4327 		clear_opt(sb, DATA_FLAGS);
4328 		sbi->s_journal = NULL;
4329 		needs_recovery = 0;
4330 		goto no_journal;
4331 	}
4332 
4333 	if (ext4_has_feature_64bit(sb) &&
4334 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4335 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4336 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4337 		goto failed_mount_wq;
4338 	}
4339 
4340 	if (!set_journal_csum_feature_set(sb)) {
4341 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4342 			 "feature set");
4343 		goto failed_mount_wq;
4344 	}
4345 
4346 	/* We have now updated the journal if required, so we can
4347 	 * validate the data journaling mode. */
4348 	switch (test_opt(sb, DATA_FLAGS)) {
4349 	case 0:
4350 		/* No mode set, assume a default based on the journal
4351 		 * capabilities: ORDERED_DATA if the journal can
4352 		 * cope, else JOURNAL_DATA
4353 		 */
4354 		if (jbd2_journal_check_available_features
4355 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4356 			set_opt(sb, ORDERED_DATA);
4357 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4358 		} else {
4359 			set_opt(sb, JOURNAL_DATA);
4360 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4361 		}
4362 		break;
4363 
4364 	case EXT4_MOUNT_ORDERED_DATA:
4365 	case EXT4_MOUNT_WRITEBACK_DATA:
4366 		if (!jbd2_journal_check_available_features
4367 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4368 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4369 			       "requested data journaling mode");
4370 			goto failed_mount_wq;
4371 		}
4372 	default:
4373 		break;
4374 	}
4375 
4376 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4377 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4378 		ext4_msg(sb, KERN_ERR, "can't mount with "
4379 			"journal_async_commit in data=ordered mode");
4380 		goto failed_mount_wq;
4381 	}
4382 
4383 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4384 
4385 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4386 
4387 no_journal:
4388 	if (!test_opt(sb, NO_MBCACHE)) {
4389 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4390 		if (!sbi->s_ea_block_cache) {
4391 			ext4_msg(sb, KERN_ERR,
4392 				 "Failed to create ea_block_cache");
4393 			goto failed_mount_wq;
4394 		}
4395 
4396 		if (ext4_has_feature_ea_inode(sb)) {
4397 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4398 			if (!sbi->s_ea_inode_cache) {
4399 				ext4_msg(sb, KERN_ERR,
4400 					 "Failed to create ea_inode_cache");
4401 				goto failed_mount_wq;
4402 			}
4403 		}
4404 	}
4405 
4406 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4407 	    (blocksize != PAGE_SIZE)) {
4408 		ext4_msg(sb, KERN_ERR,
4409 			 "Unsupported blocksize for fs encryption");
4410 		goto failed_mount_wq;
4411 	}
4412 
4413 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4414 	    !ext4_has_feature_encrypt(sb)) {
4415 		ext4_set_feature_encrypt(sb);
4416 		ext4_commit_super(sb, 1);
4417 	}
4418 
4419 	/*
4420 	 * Get the # of file system overhead blocks from the
4421 	 * superblock if present.
4422 	 */
4423 	if (es->s_overhead_clusters)
4424 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4425 	else {
4426 		err = ext4_calculate_overhead(sb);
4427 		if (err)
4428 			goto failed_mount_wq;
4429 	}
4430 
4431 	/*
4432 	 * The maximum number of concurrent works can be high and
4433 	 * concurrency isn't really necessary.  Limit it to 1.
4434 	 */
4435 	EXT4_SB(sb)->rsv_conversion_wq =
4436 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4437 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4438 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4439 		ret = -ENOMEM;
4440 		goto failed_mount4;
4441 	}
4442 
4443 	/*
4444 	 * The jbd2_journal_load will have done any necessary log recovery,
4445 	 * so we can safely mount the rest of the filesystem now.
4446 	 */
4447 
4448 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4449 	if (IS_ERR(root)) {
4450 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4451 		ret = PTR_ERR(root);
4452 		root = NULL;
4453 		goto failed_mount4;
4454 	}
4455 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4456 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4457 		iput(root);
4458 		goto failed_mount4;
4459 	}
4460 	sb->s_root = d_make_root(root);
4461 	if (!sb->s_root) {
4462 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4463 		ret = -ENOMEM;
4464 		goto failed_mount4;
4465 	}
4466 
4467 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4468 	if (ret == -EROFS) {
4469 		sb->s_flags |= SB_RDONLY;
4470 		ret = 0;
4471 	} else if (ret)
4472 		goto failed_mount4a;
4473 
4474 	ext4_set_resv_clusters(sb);
4475 
4476 	if (test_opt(sb, BLOCK_VALIDITY)) {
4477 		err = ext4_setup_system_zone(sb);
4478 		if (err) {
4479 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4480 				 "zone (%d)", err);
4481 			goto failed_mount4a;
4482 		}
4483 	}
4484 
4485 	ext4_ext_init(sb);
4486 	err = ext4_mb_init(sb);
4487 	if (err) {
4488 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4489 			 err);
4490 		goto failed_mount5;
4491 	}
4492 
4493 	block = ext4_count_free_clusters(sb);
4494 	ext4_free_blocks_count_set(sbi->s_es,
4495 				   EXT4_C2B(sbi, block));
4496 	ext4_superblock_csum_set(sb);
4497 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4498 				  GFP_KERNEL);
4499 	if (!err) {
4500 		unsigned long freei = ext4_count_free_inodes(sb);
4501 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4502 		ext4_superblock_csum_set(sb);
4503 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4504 					  GFP_KERNEL);
4505 	}
4506 	if (!err)
4507 		err = percpu_counter_init(&sbi->s_dirs_counter,
4508 					  ext4_count_dirs(sb), GFP_KERNEL);
4509 	if (!err)
4510 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4511 					  GFP_KERNEL);
4512 	if (!err)
4513 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4514 
4515 	if (err) {
4516 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4517 		goto failed_mount6;
4518 	}
4519 
4520 	if (ext4_has_feature_flex_bg(sb))
4521 		if (!ext4_fill_flex_info(sb)) {
4522 			ext4_msg(sb, KERN_ERR,
4523 			       "unable to initialize "
4524 			       "flex_bg meta info!");
4525 			goto failed_mount6;
4526 		}
4527 
4528 	err = ext4_register_li_request(sb, first_not_zeroed);
4529 	if (err)
4530 		goto failed_mount6;
4531 
4532 	err = ext4_register_sysfs(sb);
4533 	if (err)
4534 		goto failed_mount7;
4535 
4536 #ifdef CONFIG_QUOTA
4537 	/* Enable quota usage during mount. */
4538 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4539 		err = ext4_enable_quotas(sb);
4540 		if (err)
4541 			goto failed_mount8;
4542 	}
4543 #endif  /* CONFIG_QUOTA */
4544 
4545 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4546 	ext4_orphan_cleanup(sb, es);
4547 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4548 	if (needs_recovery) {
4549 		ext4_msg(sb, KERN_INFO, "recovery complete");
4550 		err = ext4_mark_recovery_complete(sb, es);
4551 		if (err)
4552 			goto failed_mount8;
4553 	}
4554 	if (EXT4_SB(sb)->s_journal) {
4555 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4556 			descr = " journalled data mode";
4557 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4558 			descr = " ordered data mode";
4559 		else
4560 			descr = " writeback data mode";
4561 	} else
4562 		descr = "out journal";
4563 
4564 	if (test_opt(sb, DISCARD)) {
4565 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4566 		if (!blk_queue_discard(q))
4567 			ext4_msg(sb, KERN_WARNING,
4568 				 "mounting with \"discard\" option, but "
4569 				 "the device does not support discard");
4570 	}
4571 
4572 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4573 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4574 			 "Opts: %.*s%s%s", descr,
4575 			 (int) sizeof(sbi->s_es->s_mount_opts),
4576 			 sbi->s_es->s_mount_opts,
4577 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4578 
4579 	if (es->s_error_count)
4580 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4581 
4582 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4583 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4584 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4585 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4586 
4587 	kfree(orig_data);
4588 	return 0;
4589 
4590 cantfind_ext4:
4591 	if (!silent)
4592 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4593 	goto failed_mount;
4594 
4595 failed_mount8:
4596 	ext4_unregister_sysfs(sb);
4597 	kobject_put(&sbi->s_kobj);
4598 failed_mount7:
4599 	ext4_unregister_li_request(sb);
4600 failed_mount6:
4601 	ext4_mb_release(sb);
4602 	rcu_read_lock();
4603 	flex_groups = rcu_dereference(sbi->s_flex_groups);
4604 	if (flex_groups) {
4605 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4606 			kvfree(flex_groups[i]);
4607 		kvfree(flex_groups);
4608 	}
4609 	rcu_read_unlock();
4610 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4611 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4612 	percpu_counter_destroy(&sbi->s_dirs_counter);
4613 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4614 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
4615 failed_mount5:
4616 	ext4_ext_release(sb);
4617 	ext4_release_system_zone(sb);
4618 failed_mount4a:
4619 	dput(sb->s_root);
4620 	sb->s_root = NULL;
4621 failed_mount4:
4622 	ext4_msg(sb, KERN_ERR, "mount failed");
4623 	if (EXT4_SB(sb)->rsv_conversion_wq)
4624 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4625 failed_mount_wq:
4626 	if (sbi->s_ea_inode_cache) {
4627 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4628 		sbi->s_ea_inode_cache = NULL;
4629 	}
4630 	if (sbi->s_ea_block_cache) {
4631 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4632 		sbi->s_ea_block_cache = NULL;
4633 	}
4634 	if (sbi->s_journal) {
4635 		jbd2_journal_destroy(sbi->s_journal);
4636 		sbi->s_journal = NULL;
4637 	}
4638 failed_mount3a:
4639 	ext4_es_unregister_shrinker(sbi);
4640 failed_mount3:
4641 	del_timer_sync(&sbi->s_err_report);
4642 	if (sbi->s_mmp_tsk)
4643 		kthread_stop(sbi->s_mmp_tsk);
4644 failed_mount2:
4645 	rcu_read_lock();
4646 	group_desc = rcu_dereference(sbi->s_group_desc);
4647 	for (i = 0; i < db_count; i++)
4648 		brelse(group_desc[i]);
4649 	kvfree(group_desc);
4650 	rcu_read_unlock();
4651 failed_mount:
4652 	if (sbi->s_chksum_driver)
4653 		crypto_free_shash(sbi->s_chksum_driver);
4654 #ifdef CONFIG_QUOTA
4655 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4656 		kfree(sbi->s_qf_names[i]);
4657 #endif
4658 	ext4_blkdev_remove(sbi);
4659 	brelse(bh);
4660 out_fail:
4661 	sb->s_fs_info = NULL;
4662 	kfree(sbi->s_blockgroup_lock);
4663 out_free_base:
4664 	kfree(sbi);
4665 	kfree(orig_data);
4666 	fs_put_dax(dax_dev);
4667 	return err ? err : ret;
4668 }
4669 
4670 /*
4671  * Setup any per-fs journal parameters now.  We'll do this both on
4672  * initial mount, once the journal has been initialised but before we've
4673  * done any recovery; and again on any subsequent remount.
4674  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4675 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4676 {
4677 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4678 
4679 	journal->j_commit_interval = sbi->s_commit_interval;
4680 	journal->j_min_batch_time = sbi->s_min_batch_time;
4681 	journal->j_max_batch_time = sbi->s_max_batch_time;
4682 
4683 	write_lock(&journal->j_state_lock);
4684 	if (test_opt(sb, BARRIER))
4685 		journal->j_flags |= JBD2_BARRIER;
4686 	else
4687 		journal->j_flags &= ~JBD2_BARRIER;
4688 	if (test_opt(sb, DATA_ERR_ABORT))
4689 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4690 	else
4691 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4692 	write_unlock(&journal->j_state_lock);
4693 }
4694 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4695 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4696 					     unsigned int journal_inum)
4697 {
4698 	struct inode *journal_inode;
4699 
4700 	/*
4701 	 * Test for the existence of a valid inode on disk.  Bad things
4702 	 * happen if we iget() an unused inode, as the subsequent iput()
4703 	 * will try to delete it.
4704 	 */
4705 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4706 	if (IS_ERR(journal_inode)) {
4707 		ext4_msg(sb, KERN_ERR, "no journal found");
4708 		return NULL;
4709 	}
4710 	if (!journal_inode->i_nlink) {
4711 		make_bad_inode(journal_inode);
4712 		iput(journal_inode);
4713 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4714 		return NULL;
4715 	}
4716 
4717 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4718 		  journal_inode, journal_inode->i_size);
4719 	if (!S_ISREG(journal_inode->i_mode)) {
4720 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4721 		iput(journal_inode);
4722 		return NULL;
4723 	}
4724 	return journal_inode;
4725 }
4726 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4727 static journal_t *ext4_get_journal(struct super_block *sb,
4728 				   unsigned int journal_inum)
4729 {
4730 	struct inode *journal_inode;
4731 	journal_t *journal;
4732 
4733 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4734 		return NULL;
4735 
4736 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4737 	if (!journal_inode)
4738 		return NULL;
4739 
4740 	journal = jbd2_journal_init_inode(journal_inode);
4741 	if (!journal) {
4742 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4743 		iput(journal_inode);
4744 		return NULL;
4745 	}
4746 	journal->j_private = sb;
4747 	ext4_init_journal_params(sb, journal);
4748 	return journal;
4749 }
4750 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4751 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4752 				       dev_t j_dev)
4753 {
4754 	struct buffer_head *bh;
4755 	journal_t *journal;
4756 	ext4_fsblk_t start;
4757 	ext4_fsblk_t len;
4758 	int hblock, blocksize;
4759 	ext4_fsblk_t sb_block;
4760 	unsigned long offset;
4761 	struct ext4_super_block *es;
4762 	struct block_device *bdev;
4763 
4764 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4765 		return NULL;
4766 
4767 	bdev = ext4_blkdev_get(j_dev, sb);
4768 	if (bdev == NULL)
4769 		return NULL;
4770 
4771 	blocksize = sb->s_blocksize;
4772 	hblock = bdev_logical_block_size(bdev);
4773 	if (blocksize < hblock) {
4774 		ext4_msg(sb, KERN_ERR,
4775 			"blocksize too small for journal device");
4776 		goto out_bdev;
4777 	}
4778 
4779 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4780 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4781 	set_blocksize(bdev, blocksize);
4782 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4783 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4784 		       "external journal");
4785 		goto out_bdev;
4786 	}
4787 
4788 	es = (struct ext4_super_block *) (bh->b_data + offset);
4789 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4790 	    !(le32_to_cpu(es->s_feature_incompat) &
4791 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4792 		ext4_msg(sb, KERN_ERR, "external journal has "
4793 					"bad superblock");
4794 		brelse(bh);
4795 		goto out_bdev;
4796 	}
4797 
4798 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4799 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4800 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4801 		ext4_msg(sb, KERN_ERR, "external journal has "
4802 				       "corrupt superblock");
4803 		brelse(bh);
4804 		goto out_bdev;
4805 	}
4806 
4807 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4808 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4809 		brelse(bh);
4810 		goto out_bdev;
4811 	}
4812 
4813 	len = ext4_blocks_count(es);
4814 	start = sb_block + 1;
4815 	brelse(bh);	/* we're done with the superblock */
4816 
4817 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4818 					start, len, blocksize);
4819 	if (!journal) {
4820 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4821 		goto out_bdev;
4822 	}
4823 	journal->j_private = sb;
4824 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4825 	wait_on_buffer(journal->j_sb_buffer);
4826 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4827 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4828 		goto out_journal;
4829 	}
4830 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4831 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4832 					"user (unsupported) - %d",
4833 			be32_to_cpu(journal->j_superblock->s_nr_users));
4834 		goto out_journal;
4835 	}
4836 	EXT4_SB(sb)->journal_bdev = bdev;
4837 	ext4_init_journal_params(sb, journal);
4838 	return journal;
4839 
4840 out_journal:
4841 	jbd2_journal_destroy(journal);
4842 out_bdev:
4843 	ext4_blkdev_put(bdev);
4844 	return NULL;
4845 }
4846 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4847 static int ext4_load_journal(struct super_block *sb,
4848 			     struct ext4_super_block *es,
4849 			     unsigned long journal_devnum)
4850 {
4851 	journal_t *journal;
4852 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4853 	dev_t journal_dev;
4854 	int err = 0;
4855 	int really_read_only;
4856 	int journal_dev_ro;
4857 
4858 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4859 		return -EFSCORRUPTED;
4860 
4861 	if (journal_devnum &&
4862 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4863 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4864 			"numbers have changed");
4865 		journal_dev = new_decode_dev(journal_devnum);
4866 	} else
4867 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4868 
4869 	if (journal_inum && journal_dev) {
4870 		ext4_msg(sb, KERN_ERR,
4871 			 "filesystem has both journal inode and journal device!");
4872 		return -EINVAL;
4873 	}
4874 
4875 	if (journal_inum) {
4876 		journal = ext4_get_journal(sb, journal_inum);
4877 		if (!journal)
4878 			return -EINVAL;
4879 	} else {
4880 		journal = ext4_get_dev_journal(sb, journal_dev);
4881 		if (!journal)
4882 			return -EINVAL;
4883 	}
4884 
4885 	journal_dev_ro = bdev_read_only(journal->j_dev);
4886 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
4887 
4888 	if (journal_dev_ro && !sb_rdonly(sb)) {
4889 		ext4_msg(sb, KERN_ERR,
4890 			 "journal device read-only, try mounting with '-o ro'");
4891 		err = -EROFS;
4892 		goto err_out;
4893 	}
4894 
4895 	/*
4896 	 * Are we loading a blank journal or performing recovery after a
4897 	 * crash?  For recovery, we need to check in advance whether we
4898 	 * can get read-write access to the device.
4899 	 */
4900 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4901 		if (sb_rdonly(sb)) {
4902 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4903 					"required on readonly filesystem");
4904 			if (really_read_only) {
4905 				ext4_msg(sb, KERN_ERR, "write access "
4906 					"unavailable, cannot proceed "
4907 					"(try mounting with noload)");
4908 				err = -EROFS;
4909 				goto err_out;
4910 			}
4911 			ext4_msg(sb, KERN_INFO, "write access will "
4912 			       "be enabled during recovery");
4913 		}
4914 	}
4915 
4916 	if (!(journal->j_flags & JBD2_BARRIER))
4917 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4918 
4919 	if (!ext4_has_feature_journal_needs_recovery(sb))
4920 		err = jbd2_journal_wipe(journal, !really_read_only);
4921 	if (!err) {
4922 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4923 		if (save)
4924 			memcpy(save, ((char *) es) +
4925 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4926 		err = jbd2_journal_load(journal);
4927 		if (save)
4928 			memcpy(((char *) es) + EXT4_S_ERR_START,
4929 			       save, EXT4_S_ERR_LEN);
4930 		kfree(save);
4931 	}
4932 
4933 	if (err) {
4934 		ext4_msg(sb, KERN_ERR, "error loading journal");
4935 		goto err_out;
4936 	}
4937 
4938 	EXT4_SB(sb)->s_journal = journal;
4939 	err = ext4_clear_journal_err(sb, es);
4940 	if (err) {
4941 		EXT4_SB(sb)->s_journal = NULL;
4942 		jbd2_journal_destroy(journal);
4943 		return err;
4944 	}
4945 
4946 	if (!really_read_only && journal_devnum &&
4947 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4948 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4949 
4950 		/* Make sure we flush the recovery flag to disk. */
4951 		ext4_commit_super(sb, 1);
4952 	}
4953 
4954 	return 0;
4955 
4956 err_out:
4957 	jbd2_journal_destroy(journal);
4958 	return err;
4959 }
4960 
ext4_commit_super(struct super_block * sb,int sync)4961 static int ext4_commit_super(struct super_block *sb, int sync)
4962 {
4963 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4964 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4965 	int error = 0;
4966 
4967 	if (!sbh || block_device_ejected(sb))
4968 		return error;
4969 
4970 	/*
4971 	 * If the file system is mounted read-only, don't update the
4972 	 * superblock write time.  This avoids updating the superblock
4973 	 * write time when we are mounting the root file system
4974 	 * read/only but we need to replay the journal; at that point,
4975 	 * for people who are east of GMT and who make their clock
4976 	 * tick in localtime for Windows bug-for-bug compatibility,
4977 	 * the clock is set in the future, and this will cause e2fsck
4978 	 * to complain and force a full file system check.
4979 	 */
4980 	if (!(sb->s_flags & SB_RDONLY))
4981 		ext4_update_tstamp(es, s_wtime);
4982 	if (sb->s_bdev->bd_part)
4983 		es->s_kbytes_written =
4984 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4985 			    ((part_stat_read(sb->s_bdev->bd_part,
4986 					     sectors[STAT_WRITE]) -
4987 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4988 	else
4989 		es->s_kbytes_written =
4990 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4991 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4992 		ext4_free_blocks_count_set(es,
4993 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4994 				&EXT4_SB(sb)->s_freeclusters_counter)));
4995 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4996 		es->s_free_inodes_count =
4997 			cpu_to_le32(percpu_counter_sum_positive(
4998 				&EXT4_SB(sb)->s_freeinodes_counter));
4999 	BUFFER_TRACE(sbh, "marking dirty");
5000 	ext4_superblock_csum_set(sb);
5001 	if (sync)
5002 		lock_buffer(sbh);
5003 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5004 		/*
5005 		 * Oh, dear.  A previous attempt to write the
5006 		 * superblock failed.  This could happen because the
5007 		 * USB device was yanked out.  Or it could happen to
5008 		 * be a transient write error and maybe the block will
5009 		 * be remapped.  Nothing we can do but to retry the
5010 		 * write and hope for the best.
5011 		 */
5012 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5013 		       "superblock detected");
5014 		clear_buffer_write_io_error(sbh);
5015 		set_buffer_uptodate(sbh);
5016 	}
5017 	mark_buffer_dirty(sbh);
5018 	if (sync) {
5019 		unlock_buffer(sbh);
5020 		error = __sync_dirty_buffer(sbh,
5021 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5022 		if (buffer_write_io_error(sbh)) {
5023 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5024 			       "superblock");
5025 			clear_buffer_write_io_error(sbh);
5026 			set_buffer_uptodate(sbh);
5027 		}
5028 	}
5029 	return error;
5030 }
5031 
5032 /*
5033  * Have we just finished recovery?  If so, and if we are mounting (or
5034  * remounting) the filesystem readonly, then we will end up with a
5035  * consistent fs on disk.  Record that fact.
5036  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5037 static int ext4_mark_recovery_complete(struct super_block *sb,
5038 				       struct ext4_super_block *es)
5039 {
5040 	int err;
5041 	journal_t *journal = EXT4_SB(sb)->s_journal;
5042 
5043 	if (!ext4_has_feature_journal(sb)) {
5044 		if (journal != NULL) {
5045 			ext4_error(sb, "Journal got removed while the fs was "
5046 				   "mounted!");
5047 			return -EFSCORRUPTED;
5048 		}
5049 		return 0;
5050 	}
5051 	jbd2_journal_lock_updates(journal);
5052 	err = jbd2_journal_flush(journal);
5053 	if (err < 0)
5054 		goto out;
5055 
5056 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5057 		ext4_clear_feature_journal_needs_recovery(sb);
5058 		ext4_commit_super(sb, 1);
5059 	}
5060 out:
5061 	jbd2_journal_unlock_updates(journal);
5062 	return err;
5063 }
5064 
5065 /*
5066  * If we are mounting (or read-write remounting) a filesystem whose journal
5067  * has recorded an error from a previous lifetime, move that error to the
5068  * main filesystem now.
5069  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5070 static int ext4_clear_journal_err(struct super_block *sb,
5071 				   struct ext4_super_block *es)
5072 {
5073 	journal_t *journal;
5074 	int j_errno;
5075 	const char *errstr;
5076 
5077 	if (!ext4_has_feature_journal(sb)) {
5078 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5079 		return -EFSCORRUPTED;
5080 	}
5081 
5082 	journal = EXT4_SB(sb)->s_journal;
5083 
5084 	/*
5085 	 * Now check for any error status which may have been recorded in the
5086 	 * journal by a prior ext4_error() or ext4_abort()
5087 	 */
5088 
5089 	j_errno = jbd2_journal_errno(journal);
5090 	if (j_errno) {
5091 		char nbuf[16];
5092 
5093 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5094 		ext4_warning(sb, "Filesystem error recorded "
5095 			     "from previous mount: %s", errstr);
5096 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5097 
5098 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5099 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5100 		ext4_commit_super(sb, 1);
5101 
5102 		jbd2_journal_clear_err(journal);
5103 		jbd2_journal_update_sb_errno(journal);
5104 	}
5105 	return 0;
5106 }
5107 
5108 /*
5109  * Force the running and committing transactions to commit,
5110  * and wait on the commit.
5111  */
ext4_force_commit(struct super_block * sb)5112 int ext4_force_commit(struct super_block *sb)
5113 {
5114 	journal_t *journal;
5115 
5116 	if (sb_rdonly(sb))
5117 		return 0;
5118 
5119 	journal = EXT4_SB(sb)->s_journal;
5120 	return ext4_journal_force_commit(journal);
5121 }
5122 
ext4_sync_fs(struct super_block * sb,int wait)5123 static int ext4_sync_fs(struct super_block *sb, int wait)
5124 {
5125 	int ret = 0;
5126 	tid_t target;
5127 	bool needs_barrier = false;
5128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5129 
5130 	if (unlikely(ext4_forced_shutdown(sbi)))
5131 		return 0;
5132 
5133 	trace_ext4_sync_fs(sb, wait);
5134 	flush_workqueue(sbi->rsv_conversion_wq);
5135 	/*
5136 	 * Writeback quota in non-journalled quota case - journalled quota has
5137 	 * no dirty dquots
5138 	 */
5139 	dquot_writeback_dquots(sb, -1);
5140 	/*
5141 	 * Data writeback is possible w/o journal transaction, so barrier must
5142 	 * being sent at the end of the function. But we can skip it if
5143 	 * transaction_commit will do it for us.
5144 	 */
5145 	if (sbi->s_journal) {
5146 		target = jbd2_get_latest_transaction(sbi->s_journal);
5147 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5148 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5149 			needs_barrier = true;
5150 
5151 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5152 			if (wait)
5153 				ret = jbd2_log_wait_commit(sbi->s_journal,
5154 							   target);
5155 		}
5156 	} else if (wait && test_opt(sb, BARRIER))
5157 		needs_barrier = true;
5158 	if (needs_barrier) {
5159 		int err;
5160 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5161 		if (!ret)
5162 			ret = err;
5163 	}
5164 
5165 	return ret;
5166 }
5167 
5168 /*
5169  * LVM calls this function before a (read-only) snapshot is created.  This
5170  * gives us a chance to flush the journal completely and mark the fs clean.
5171  *
5172  * Note that only this function cannot bring a filesystem to be in a clean
5173  * state independently. It relies on upper layer to stop all data & metadata
5174  * modifications.
5175  */
ext4_freeze(struct super_block * sb)5176 static int ext4_freeze(struct super_block *sb)
5177 {
5178 	int error = 0;
5179 	journal_t *journal;
5180 
5181 	if (sb_rdonly(sb))
5182 		return 0;
5183 
5184 	journal = EXT4_SB(sb)->s_journal;
5185 
5186 	if (journal) {
5187 		/* Now we set up the journal barrier. */
5188 		jbd2_journal_lock_updates(journal);
5189 
5190 		/*
5191 		 * Don't clear the needs_recovery flag if we failed to
5192 		 * flush the journal.
5193 		 */
5194 		error = jbd2_journal_flush(journal);
5195 		if (error < 0)
5196 			goto out;
5197 
5198 		/* Journal blocked and flushed, clear needs_recovery flag. */
5199 		ext4_clear_feature_journal_needs_recovery(sb);
5200 	}
5201 
5202 	error = ext4_commit_super(sb, 1);
5203 out:
5204 	if (journal)
5205 		/* we rely on upper layer to stop further updates */
5206 		jbd2_journal_unlock_updates(journal);
5207 	return error;
5208 }
5209 
5210 /*
5211  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5212  * flag here, even though the filesystem is not technically dirty yet.
5213  */
ext4_unfreeze(struct super_block * sb)5214 static int ext4_unfreeze(struct super_block *sb)
5215 {
5216 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5217 		return 0;
5218 
5219 	if (EXT4_SB(sb)->s_journal) {
5220 		/* Reset the needs_recovery flag before the fs is unlocked. */
5221 		ext4_set_feature_journal_needs_recovery(sb);
5222 	}
5223 
5224 	ext4_commit_super(sb, 1);
5225 	return 0;
5226 }
5227 
5228 /*
5229  * Structure to save mount options for ext4_remount's benefit
5230  */
5231 struct ext4_mount_options {
5232 	unsigned long s_mount_opt;
5233 	unsigned long s_mount_opt2;
5234 	kuid_t s_resuid;
5235 	kgid_t s_resgid;
5236 	unsigned long s_commit_interval;
5237 	u32 s_min_batch_time, s_max_batch_time;
5238 #ifdef CONFIG_QUOTA
5239 	int s_jquota_fmt;
5240 	char *s_qf_names[EXT4_MAXQUOTAS];
5241 #endif
5242 };
5243 
ext4_remount(struct super_block * sb,int * flags,char * data)5244 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5245 {
5246 	struct ext4_super_block *es;
5247 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5248 	unsigned long old_sb_flags, vfs_flags;
5249 	struct ext4_mount_options old_opts;
5250 	int enable_quota = 0;
5251 	ext4_group_t g;
5252 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5253 	int err = 0;
5254 #ifdef CONFIG_QUOTA
5255 	int i, j;
5256 	char *to_free[EXT4_MAXQUOTAS];
5257 #endif
5258 	char *orig_data = kstrdup(data, GFP_KERNEL);
5259 
5260 	if (data && !orig_data)
5261 		return -ENOMEM;
5262 
5263 	/* Store the original options */
5264 	old_sb_flags = sb->s_flags;
5265 	old_opts.s_mount_opt = sbi->s_mount_opt;
5266 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5267 	old_opts.s_resuid = sbi->s_resuid;
5268 	old_opts.s_resgid = sbi->s_resgid;
5269 	old_opts.s_commit_interval = sbi->s_commit_interval;
5270 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5271 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5272 #ifdef CONFIG_QUOTA
5273 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5274 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5275 		if (sbi->s_qf_names[i]) {
5276 			char *qf_name = get_qf_name(sb, sbi, i);
5277 
5278 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5279 			if (!old_opts.s_qf_names[i]) {
5280 				for (j = 0; j < i; j++)
5281 					kfree(old_opts.s_qf_names[j]);
5282 				kfree(orig_data);
5283 				return -ENOMEM;
5284 			}
5285 		} else
5286 			old_opts.s_qf_names[i] = NULL;
5287 #endif
5288 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5289 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5290 
5291 	/*
5292 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5293 	 * either way we need to make sure it matches in both *flags and
5294 	 * s_flags. Copy those selected flags from *flags to s_flags
5295 	 */
5296 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5297 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5298 
5299 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5300 		err = -EINVAL;
5301 		goto restore_opts;
5302 	}
5303 
5304 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5305 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5306 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5307 			 "during remount not supported; ignoring");
5308 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5309 	}
5310 
5311 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5312 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5313 			ext4_msg(sb, KERN_ERR, "can't mount with "
5314 				 "both data=journal and delalloc");
5315 			err = -EINVAL;
5316 			goto restore_opts;
5317 		}
5318 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5319 			ext4_msg(sb, KERN_ERR, "can't mount with "
5320 				 "both data=journal and dioread_nolock");
5321 			err = -EINVAL;
5322 			goto restore_opts;
5323 		}
5324 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5325 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5326 			ext4_msg(sb, KERN_ERR, "can't mount with "
5327 				"journal_async_commit in data=ordered mode");
5328 			err = -EINVAL;
5329 			goto restore_opts;
5330 		}
5331 	}
5332 
5333 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5334 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5335 		err = -EINVAL;
5336 		goto restore_opts;
5337 	}
5338 
5339 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5340 		ext4_abort(sb, "Abort forced by user");
5341 
5342 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5343 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5344 
5345 	es = sbi->s_es;
5346 
5347 	if (sbi->s_journal) {
5348 		ext4_init_journal_params(sb, sbi->s_journal);
5349 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5350 	}
5351 
5352 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5353 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5354 			err = -EROFS;
5355 			goto restore_opts;
5356 		}
5357 
5358 		if (*flags & SB_RDONLY) {
5359 			err = sync_filesystem(sb);
5360 			if (err < 0)
5361 				goto restore_opts;
5362 			err = dquot_suspend(sb, -1);
5363 			if (err < 0)
5364 				goto restore_opts;
5365 
5366 			/*
5367 			 * First of all, the unconditional stuff we have to do
5368 			 * to disable replay of the journal when we next remount
5369 			 */
5370 			sb->s_flags |= SB_RDONLY;
5371 
5372 			/*
5373 			 * OK, test if we are remounting a valid rw partition
5374 			 * readonly, and if so set the rdonly flag and then
5375 			 * mark the partition as valid again.
5376 			 */
5377 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5378 			    (sbi->s_mount_state & EXT4_VALID_FS))
5379 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5380 
5381 			if (sbi->s_journal) {
5382 				/*
5383 				 * We let remount-ro finish even if marking fs
5384 				 * as clean failed...
5385 				 */
5386 				ext4_mark_recovery_complete(sb, es);
5387 			}
5388 			if (sbi->s_mmp_tsk)
5389 				kthread_stop(sbi->s_mmp_tsk);
5390 		} else {
5391 			/* Make sure we can mount this feature set readwrite */
5392 			if (ext4_has_feature_readonly(sb) ||
5393 			    !ext4_feature_set_ok(sb, 0)) {
5394 				err = -EROFS;
5395 				goto restore_opts;
5396 			}
5397 			/*
5398 			 * Make sure the group descriptor checksums
5399 			 * are sane.  If they aren't, refuse to remount r/w.
5400 			 */
5401 			for (g = 0; g < sbi->s_groups_count; g++) {
5402 				struct ext4_group_desc *gdp =
5403 					ext4_get_group_desc(sb, g, NULL);
5404 
5405 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5406 					ext4_msg(sb, KERN_ERR,
5407 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5408 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5409 					       le16_to_cpu(gdp->bg_checksum));
5410 					err = -EFSBADCRC;
5411 					goto restore_opts;
5412 				}
5413 			}
5414 
5415 			/*
5416 			 * If we have an unprocessed orphan list hanging
5417 			 * around from a previously readonly bdev mount,
5418 			 * require a full umount/remount for now.
5419 			 */
5420 			if (es->s_last_orphan) {
5421 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5422 				       "remount RDWR because of unprocessed "
5423 				       "orphan inode list.  Please "
5424 				       "umount/remount instead");
5425 				err = -EINVAL;
5426 				goto restore_opts;
5427 			}
5428 
5429 			/*
5430 			 * Mounting a RDONLY partition read-write, so reread
5431 			 * and store the current valid flag.  (It may have
5432 			 * been changed by e2fsck since we originally mounted
5433 			 * the partition.)
5434 			 */
5435 			if (sbi->s_journal) {
5436 				err = ext4_clear_journal_err(sb, es);
5437 				if (err)
5438 					goto restore_opts;
5439 			}
5440 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5441 
5442 			err = ext4_setup_super(sb, es, 0);
5443 			if (err)
5444 				goto restore_opts;
5445 
5446 			sb->s_flags &= ~SB_RDONLY;
5447 			if (ext4_has_feature_mmp(sb))
5448 				if (ext4_multi_mount_protect(sb,
5449 						le64_to_cpu(es->s_mmp_block))) {
5450 					err = -EROFS;
5451 					goto restore_opts;
5452 				}
5453 			enable_quota = 1;
5454 		}
5455 	}
5456 
5457 	/*
5458 	 * Reinitialize lazy itable initialization thread based on
5459 	 * current settings
5460 	 */
5461 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5462 		ext4_unregister_li_request(sb);
5463 	else {
5464 		ext4_group_t first_not_zeroed;
5465 		first_not_zeroed = ext4_has_uninit_itable(sb);
5466 		ext4_register_li_request(sb, first_not_zeroed);
5467 	}
5468 
5469 	/*
5470 	 * Handle creation of system zone data early because it can fail.
5471 	 * Releasing of existing data is done when we are sure remount will
5472 	 * succeed.
5473 	 */
5474 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5475 		err = ext4_setup_system_zone(sb);
5476 		if (err)
5477 			goto restore_opts;
5478 	}
5479 
5480 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5481 		err = ext4_commit_super(sb, 1);
5482 		if (err)
5483 			goto restore_opts;
5484 	}
5485 
5486 #ifdef CONFIG_QUOTA
5487 	/* Release old quota file names */
5488 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5489 		kfree(old_opts.s_qf_names[i]);
5490 	if (enable_quota) {
5491 		if (sb_any_quota_suspended(sb))
5492 			dquot_resume(sb, -1);
5493 		else if (ext4_has_feature_quota(sb)) {
5494 			err = ext4_enable_quotas(sb);
5495 			if (err)
5496 				goto restore_opts;
5497 		}
5498 	}
5499 #endif
5500 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5501 		ext4_release_system_zone(sb);
5502 
5503 	/*
5504 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5505 	 * either way we need to make sure it matches in both *flags and
5506 	 * s_flags. Copy those selected flags from s_flags to *flags
5507 	 */
5508 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5509 
5510 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5511 	kfree(orig_data);
5512 	return 0;
5513 
5514 restore_opts:
5515 	sb->s_flags = old_sb_flags;
5516 	sbi->s_mount_opt = old_opts.s_mount_opt;
5517 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5518 	sbi->s_resuid = old_opts.s_resuid;
5519 	sbi->s_resgid = old_opts.s_resgid;
5520 	sbi->s_commit_interval = old_opts.s_commit_interval;
5521 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5522 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5523 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5524 		ext4_release_system_zone(sb);
5525 #ifdef CONFIG_QUOTA
5526 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5527 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5528 		to_free[i] = get_qf_name(sb, sbi, i);
5529 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5530 	}
5531 	synchronize_rcu();
5532 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5533 		kfree(to_free[i]);
5534 #endif
5535 	kfree(orig_data);
5536 	return err;
5537 }
5538 
5539 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5540 static int ext4_statfs_project(struct super_block *sb,
5541 			       kprojid_t projid, struct kstatfs *buf)
5542 {
5543 	struct kqid qid;
5544 	struct dquot *dquot;
5545 	u64 limit;
5546 	u64 curblock;
5547 
5548 	qid = make_kqid_projid(projid);
5549 	dquot = dqget(sb, qid);
5550 	if (IS_ERR(dquot))
5551 		return PTR_ERR(dquot);
5552 	spin_lock(&dquot->dq_dqb_lock);
5553 
5554 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5555 		 dquot->dq_dqb.dqb_bsoftlimit :
5556 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5557 	if (limit && buf->f_blocks > limit) {
5558 		curblock = (dquot->dq_dqb.dqb_curspace +
5559 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5560 		buf->f_blocks = limit;
5561 		buf->f_bfree = buf->f_bavail =
5562 			(buf->f_blocks > curblock) ?
5563 			 (buf->f_blocks - curblock) : 0;
5564 	}
5565 
5566 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5567 		dquot->dq_dqb.dqb_isoftlimit :
5568 		dquot->dq_dqb.dqb_ihardlimit;
5569 	if (limit && buf->f_files > limit) {
5570 		buf->f_files = limit;
5571 		buf->f_ffree =
5572 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5573 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5574 	}
5575 
5576 	spin_unlock(&dquot->dq_dqb_lock);
5577 	dqput(dquot);
5578 	return 0;
5579 }
5580 #endif
5581 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5582 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5583 {
5584 	struct super_block *sb = dentry->d_sb;
5585 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5586 	struct ext4_super_block *es = sbi->s_es;
5587 	ext4_fsblk_t overhead = 0, resv_blocks;
5588 	u64 fsid;
5589 	s64 bfree;
5590 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5591 
5592 	if (!test_opt(sb, MINIX_DF))
5593 		overhead = sbi->s_overhead;
5594 
5595 	buf->f_type = EXT4_SUPER_MAGIC;
5596 	buf->f_bsize = sb->s_blocksize;
5597 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5598 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5599 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5600 	/* prevent underflow in case that few free space is available */
5601 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5602 	buf->f_bavail = buf->f_bfree -
5603 			(ext4_r_blocks_count(es) + resv_blocks);
5604 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5605 		buf->f_bavail = 0;
5606 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5607 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5608 	buf->f_namelen = EXT4_NAME_LEN;
5609 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5610 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5611 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5612 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5613 
5614 #ifdef CONFIG_QUOTA
5615 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5616 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5617 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5618 #endif
5619 	return 0;
5620 }
5621 
5622 
5623 #ifdef CONFIG_QUOTA
5624 
5625 /*
5626  * Helper functions so that transaction is started before we acquire dqio_sem
5627  * to keep correct lock ordering of transaction > dqio_sem
5628  */
dquot_to_inode(struct dquot * dquot)5629 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5630 {
5631 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5632 }
5633 
ext4_write_dquot(struct dquot * dquot)5634 static int ext4_write_dquot(struct dquot *dquot)
5635 {
5636 	int ret, err;
5637 	handle_t *handle;
5638 	struct inode *inode;
5639 
5640 	inode = dquot_to_inode(dquot);
5641 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5642 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5643 	if (IS_ERR(handle))
5644 		return PTR_ERR(handle);
5645 	ret = dquot_commit(dquot);
5646 	err = ext4_journal_stop(handle);
5647 	if (!ret)
5648 		ret = err;
5649 	return ret;
5650 }
5651 
ext4_acquire_dquot(struct dquot * dquot)5652 static int ext4_acquire_dquot(struct dquot *dquot)
5653 {
5654 	int ret, err;
5655 	handle_t *handle;
5656 
5657 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5658 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5659 	if (IS_ERR(handle))
5660 		return PTR_ERR(handle);
5661 	ret = dquot_acquire(dquot);
5662 	err = ext4_journal_stop(handle);
5663 	if (!ret)
5664 		ret = err;
5665 	return ret;
5666 }
5667 
ext4_release_dquot(struct dquot * dquot)5668 static int ext4_release_dquot(struct dquot *dquot)
5669 {
5670 	int ret, err;
5671 	handle_t *handle;
5672 
5673 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5674 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5675 	if (IS_ERR(handle)) {
5676 		/* Release dquot anyway to avoid endless cycle in dqput() */
5677 		dquot_release(dquot);
5678 		return PTR_ERR(handle);
5679 	}
5680 	ret = dquot_release(dquot);
5681 	err = ext4_journal_stop(handle);
5682 	if (!ret)
5683 		ret = err;
5684 	return ret;
5685 }
5686 
ext4_mark_dquot_dirty(struct dquot * dquot)5687 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5688 {
5689 	struct super_block *sb = dquot->dq_sb;
5690 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5691 
5692 	/* Are we journaling quotas? */
5693 	if (ext4_has_feature_quota(sb) ||
5694 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5695 		dquot_mark_dquot_dirty(dquot);
5696 		return ext4_write_dquot(dquot);
5697 	} else {
5698 		return dquot_mark_dquot_dirty(dquot);
5699 	}
5700 }
5701 
ext4_write_info(struct super_block * sb,int type)5702 static int ext4_write_info(struct super_block *sb, int type)
5703 {
5704 	int ret, err;
5705 	handle_t *handle;
5706 
5707 	/* Data block + inode block */
5708 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5709 	if (IS_ERR(handle))
5710 		return PTR_ERR(handle);
5711 	ret = dquot_commit_info(sb, type);
5712 	err = ext4_journal_stop(handle);
5713 	if (!ret)
5714 		ret = err;
5715 	return ret;
5716 }
5717 
5718 /*
5719  * Turn on quotas during mount time - we need to find
5720  * the quota file and such...
5721  */
ext4_quota_on_mount(struct super_block * sb,int type)5722 static int ext4_quota_on_mount(struct super_block *sb, int type)
5723 {
5724 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5725 					EXT4_SB(sb)->s_jquota_fmt, type);
5726 }
5727 
lockdep_set_quota_inode(struct inode * inode,int subclass)5728 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5729 {
5730 	struct ext4_inode_info *ei = EXT4_I(inode);
5731 
5732 	/* The first argument of lockdep_set_subclass has to be
5733 	 * *exactly* the same as the argument to init_rwsem() --- in
5734 	 * this case, in init_once() --- or lockdep gets unhappy
5735 	 * because the name of the lock is set using the
5736 	 * stringification of the argument to init_rwsem().
5737 	 */
5738 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5739 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5740 }
5741 
5742 /*
5743  * Standard function to be called on quota_on
5744  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)5745 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5746 			 const struct path *path)
5747 {
5748 	int err;
5749 
5750 	if (!test_opt(sb, QUOTA))
5751 		return -EINVAL;
5752 
5753 	/* Quotafile not on the same filesystem? */
5754 	if (path->dentry->d_sb != sb)
5755 		return -EXDEV;
5756 
5757 	/* Quota already enabled for this file? */
5758 	if (IS_NOQUOTA(d_inode(path->dentry)))
5759 		return -EBUSY;
5760 
5761 	/* Journaling quota? */
5762 	if (EXT4_SB(sb)->s_qf_names[type]) {
5763 		/* Quotafile not in fs root? */
5764 		if (path->dentry->d_parent != sb->s_root)
5765 			ext4_msg(sb, KERN_WARNING,
5766 				"Quota file not on filesystem root. "
5767 				"Journaled quota will not work");
5768 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5769 	} else {
5770 		/*
5771 		 * Clear the flag just in case mount options changed since
5772 		 * last time.
5773 		 */
5774 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5775 	}
5776 
5777 	/*
5778 	 * When we journal data on quota file, we have to flush journal to see
5779 	 * all updates to the file when we bypass pagecache...
5780 	 */
5781 	if (EXT4_SB(sb)->s_journal &&
5782 	    ext4_should_journal_data(d_inode(path->dentry))) {
5783 		/*
5784 		 * We don't need to lock updates but journal_flush() could
5785 		 * otherwise be livelocked...
5786 		 */
5787 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5788 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5789 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5790 		if (err)
5791 			return err;
5792 	}
5793 
5794 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5795 	err = dquot_quota_on(sb, type, format_id, path);
5796 	if (err) {
5797 		lockdep_set_quota_inode(path->dentry->d_inode,
5798 					     I_DATA_SEM_NORMAL);
5799 	} else {
5800 		struct inode *inode = d_inode(path->dentry);
5801 		handle_t *handle;
5802 
5803 		/*
5804 		 * Set inode flags to prevent userspace from messing with quota
5805 		 * files. If this fails, we return success anyway since quotas
5806 		 * are already enabled and this is not a hard failure.
5807 		 */
5808 		inode_lock(inode);
5809 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5810 		if (IS_ERR(handle))
5811 			goto unlock_inode;
5812 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5813 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5814 				S_NOATIME | S_IMMUTABLE);
5815 		ext4_mark_inode_dirty(handle, inode);
5816 		ext4_journal_stop(handle);
5817 	unlock_inode:
5818 		inode_unlock(inode);
5819 	}
5820 	return err;
5821 }
5822 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5823 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5824 			     unsigned int flags)
5825 {
5826 	int err;
5827 	struct inode *qf_inode;
5828 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5829 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5830 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5831 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5832 	};
5833 
5834 	BUG_ON(!ext4_has_feature_quota(sb));
5835 
5836 	if (!qf_inums[type])
5837 		return -EPERM;
5838 
5839 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5840 	if (IS_ERR(qf_inode)) {
5841 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5842 		return PTR_ERR(qf_inode);
5843 	}
5844 
5845 	/* Don't account quota for quota files to avoid recursion */
5846 	qf_inode->i_flags |= S_NOQUOTA;
5847 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5848 	err = dquot_enable(qf_inode, type, format_id, flags);
5849 	if (err)
5850 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5851 	iput(qf_inode);
5852 
5853 	return err;
5854 }
5855 
5856 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5857 static int ext4_enable_quotas(struct super_block *sb)
5858 {
5859 	int type, err = 0;
5860 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5861 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5862 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5863 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5864 	};
5865 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5866 		test_opt(sb, USRQUOTA),
5867 		test_opt(sb, GRPQUOTA),
5868 		test_opt(sb, PRJQUOTA),
5869 	};
5870 
5871 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5872 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5873 		if (qf_inums[type]) {
5874 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5875 				DQUOT_USAGE_ENABLED |
5876 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5877 			if (err) {
5878 				ext4_warning(sb,
5879 					"Failed to enable quota tracking "
5880 					"(type=%d, err=%d). Please run "
5881 					"e2fsck to fix.", type, err);
5882 				for (type--; type >= 0; type--)
5883 					dquot_quota_off(sb, type);
5884 
5885 				return err;
5886 			}
5887 		}
5888 	}
5889 	return 0;
5890 }
5891 
ext4_quota_off(struct super_block * sb,int type)5892 static int ext4_quota_off(struct super_block *sb, int type)
5893 {
5894 	struct inode *inode = sb_dqopt(sb)->files[type];
5895 	handle_t *handle;
5896 	int err;
5897 
5898 	/* Force all delayed allocation blocks to be allocated.
5899 	 * Caller already holds s_umount sem */
5900 	if (test_opt(sb, DELALLOC))
5901 		sync_filesystem(sb);
5902 
5903 	if (!inode || !igrab(inode))
5904 		goto out;
5905 
5906 	err = dquot_quota_off(sb, type);
5907 	if (err || ext4_has_feature_quota(sb))
5908 		goto out_put;
5909 
5910 	inode_lock(inode);
5911 	/*
5912 	 * Update modification times of quota files when userspace can
5913 	 * start looking at them. If we fail, we return success anyway since
5914 	 * this is not a hard failure and quotas are already disabled.
5915 	 */
5916 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5917 	if (IS_ERR(handle))
5918 		goto out_unlock;
5919 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5920 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5921 	inode->i_mtime = inode->i_ctime = current_time(inode);
5922 	ext4_mark_inode_dirty(handle, inode);
5923 	ext4_journal_stop(handle);
5924 out_unlock:
5925 	inode_unlock(inode);
5926 out_put:
5927 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5928 	iput(inode);
5929 	return err;
5930 out:
5931 	return dquot_quota_off(sb, type);
5932 }
5933 
5934 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5935  * acquiring the locks... As quota files are never truncated and quota code
5936  * itself serializes the operations (and no one else should touch the files)
5937  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5938 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5939 			       size_t len, loff_t off)
5940 {
5941 	struct inode *inode = sb_dqopt(sb)->files[type];
5942 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5943 	int offset = off & (sb->s_blocksize - 1);
5944 	int tocopy;
5945 	size_t toread;
5946 	struct buffer_head *bh;
5947 	loff_t i_size = i_size_read(inode);
5948 
5949 	if (off > i_size)
5950 		return 0;
5951 	if (off+len > i_size)
5952 		len = i_size-off;
5953 	toread = len;
5954 	while (toread > 0) {
5955 		tocopy = sb->s_blocksize - offset < toread ?
5956 				sb->s_blocksize - offset : toread;
5957 		bh = ext4_bread(NULL, inode, blk, 0);
5958 		if (IS_ERR(bh))
5959 			return PTR_ERR(bh);
5960 		if (!bh)	/* A hole? */
5961 			memset(data, 0, tocopy);
5962 		else
5963 			memcpy(data, bh->b_data+offset, tocopy);
5964 		brelse(bh);
5965 		offset = 0;
5966 		toread -= tocopy;
5967 		data += tocopy;
5968 		blk++;
5969 	}
5970 	return len;
5971 }
5972 
5973 /* Write to quotafile (we know the transaction is already started and has
5974  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5975 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5976 				const char *data, size_t len, loff_t off)
5977 {
5978 	struct inode *inode = sb_dqopt(sb)->files[type];
5979 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5980 	int err, offset = off & (sb->s_blocksize - 1);
5981 	int retries = 0;
5982 	struct buffer_head *bh;
5983 	handle_t *handle = journal_current_handle();
5984 
5985 	if (EXT4_SB(sb)->s_journal && !handle) {
5986 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5987 			" cancelled because transaction is not started",
5988 			(unsigned long long)off, (unsigned long long)len);
5989 		return -EIO;
5990 	}
5991 	/*
5992 	 * Since we account only one data block in transaction credits,
5993 	 * then it is impossible to cross a block boundary.
5994 	 */
5995 	if (sb->s_blocksize - offset < len) {
5996 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5997 			" cancelled because not block aligned",
5998 			(unsigned long long)off, (unsigned long long)len);
5999 		return -EIO;
6000 	}
6001 
6002 	do {
6003 		bh = ext4_bread(handle, inode, blk,
6004 				EXT4_GET_BLOCKS_CREATE |
6005 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6006 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
6007 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6008 	if (IS_ERR(bh))
6009 		return PTR_ERR(bh);
6010 	if (!bh)
6011 		goto out;
6012 	BUFFER_TRACE(bh, "get write access");
6013 	err = ext4_journal_get_write_access(handle, bh);
6014 	if (err) {
6015 		brelse(bh);
6016 		return err;
6017 	}
6018 	lock_buffer(bh);
6019 	memcpy(bh->b_data+offset, data, len);
6020 	flush_dcache_page(bh->b_page);
6021 	unlock_buffer(bh);
6022 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6023 	brelse(bh);
6024 out:
6025 	if (inode->i_size < off + len) {
6026 		i_size_write(inode, off + len);
6027 		EXT4_I(inode)->i_disksize = inode->i_size;
6028 		ext4_mark_inode_dirty(handle, inode);
6029 	}
6030 	return len;
6031 }
6032 
ext4_get_next_id(struct super_block * sb,struct kqid * qid)6033 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6034 {
6035 	const struct quota_format_ops	*ops;
6036 
6037 	if (!sb_has_quota_loaded(sb, qid->type))
6038 		return -ESRCH;
6039 	ops = sb_dqopt(sb)->ops[qid->type];
6040 	if (!ops || !ops->get_next_id)
6041 		return -ENOSYS;
6042 	return dquot_get_next_id(sb, qid);
6043 }
6044 #endif
6045 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6046 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6047 		       const char *dev_name, void *data)
6048 {
6049 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6050 }
6051 
6052 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6053 static inline void register_as_ext2(void)
6054 {
6055 	int err = register_filesystem(&ext2_fs_type);
6056 	if (err)
6057 		printk(KERN_WARNING
6058 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6059 }
6060 
unregister_as_ext2(void)6061 static inline void unregister_as_ext2(void)
6062 {
6063 	unregister_filesystem(&ext2_fs_type);
6064 }
6065 
ext2_feature_set_ok(struct super_block * sb)6066 static inline int ext2_feature_set_ok(struct super_block *sb)
6067 {
6068 	if (ext4_has_unknown_ext2_incompat_features(sb))
6069 		return 0;
6070 	if (sb_rdonly(sb))
6071 		return 1;
6072 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6073 		return 0;
6074 	return 1;
6075 }
6076 #else
register_as_ext2(void)6077 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6078 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6079 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6080 #endif
6081 
register_as_ext3(void)6082 static inline void register_as_ext3(void)
6083 {
6084 	int err = register_filesystem(&ext3_fs_type);
6085 	if (err)
6086 		printk(KERN_WARNING
6087 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6088 }
6089 
unregister_as_ext3(void)6090 static inline void unregister_as_ext3(void)
6091 {
6092 	unregister_filesystem(&ext3_fs_type);
6093 }
6094 
ext3_feature_set_ok(struct super_block * sb)6095 static inline int ext3_feature_set_ok(struct super_block *sb)
6096 {
6097 	if (ext4_has_unknown_ext3_incompat_features(sb))
6098 		return 0;
6099 	if (!ext4_has_feature_journal(sb))
6100 		return 0;
6101 	if (sb_rdonly(sb))
6102 		return 1;
6103 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6104 		return 0;
6105 	return 1;
6106 }
6107 
6108 static struct file_system_type ext4_fs_type = {
6109 	.owner		= THIS_MODULE,
6110 	.name		= "ext4",
6111 	.mount		= ext4_mount,
6112 	.kill_sb	= kill_block_super,
6113 	.fs_flags	= FS_REQUIRES_DEV,
6114 };
6115 MODULE_ALIAS_FS("ext4");
6116 
6117 /* Shared across all ext4 file systems */
6118 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6119 
ext4_init_fs(void)6120 static int __init ext4_init_fs(void)
6121 {
6122 	int i, err;
6123 
6124 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6125 	ext4_li_info = NULL;
6126 	mutex_init(&ext4_li_mtx);
6127 
6128 	/* Build-time check for flags consistency */
6129 	ext4_check_flag_values();
6130 
6131 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6132 		init_waitqueue_head(&ext4__ioend_wq[i]);
6133 
6134 	err = ext4_init_es();
6135 	if (err)
6136 		return err;
6137 
6138 	err = ext4_init_pageio();
6139 	if (err)
6140 		goto out5;
6141 
6142 	err = ext4_init_system_zone();
6143 	if (err)
6144 		goto out4;
6145 
6146 	err = ext4_init_sysfs();
6147 	if (err)
6148 		goto out3;
6149 
6150 	err = ext4_init_mballoc();
6151 	if (err)
6152 		goto out2;
6153 	err = init_inodecache();
6154 	if (err)
6155 		goto out1;
6156 	register_as_ext3();
6157 	register_as_ext2();
6158 	err = register_filesystem(&ext4_fs_type);
6159 	if (err)
6160 		goto out;
6161 
6162 	return 0;
6163 out:
6164 	unregister_as_ext2();
6165 	unregister_as_ext3();
6166 	destroy_inodecache();
6167 out1:
6168 	ext4_exit_mballoc();
6169 out2:
6170 	ext4_exit_sysfs();
6171 out3:
6172 	ext4_exit_system_zone();
6173 out4:
6174 	ext4_exit_pageio();
6175 out5:
6176 	ext4_exit_es();
6177 
6178 	return err;
6179 }
6180 
ext4_exit_fs(void)6181 static void __exit ext4_exit_fs(void)
6182 {
6183 	ext4_destroy_lazyinit_thread();
6184 	unregister_as_ext2();
6185 	unregister_as_ext3();
6186 	unregister_filesystem(&ext4_fs_type);
6187 	destroy_inodecache();
6188 	ext4_exit_mballoc();
6189 	ext4_exit_sysfs();
6190 	ext4_exit_system_zone();
6191 	ext4_exit_pageio();
6192 	ext4_exit_es();
6193 }
6194 
6195 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6196 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6197 MODULE_LICENSE("GPL");
6198 MODULE_SOFTDEP("pre: crc32c");
6199 module_init(ext4_init_fs)
6200 module_exit(ext4_exit_fs)
6201