1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147 /*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
ext4_inode_is_fast_symlink(struct inode * inode)151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173 {
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190 }
191
192 /*
193 * Called at the last iput() if i_nlink is zero.
194 */
ext4_evict_inode(struct inode * inode)195 void ext4_evict_inode(struct inode *inode)
196 {
197 handle_t *handle;
198 int err;
199 /*
200 * Credits for final inode cleanup and freeing:
201 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202 * (xattr block freeing), bitmap, group descriptor (inode freeing)
203 */
204 int extra_credits = 6;
205 struct ext4_xattr_inode_array *ea_inode_array = NULL;
206
207 trace_ext4_evict_inode(inode);
208
209 if (inode->i_nlink) {
210 /*
211 * When journalling data dirty buffers are tracked only in the
212 * journal. So although mm thinks everything is clean and
213 * ready for reaping the inode might still have some pages to
214 * write in the running transaction or waiting to be
215 * checkpointed. Thus calling jbd2_journal_invalidatepage()
216 * (via truncate_inode_pages()) to discard these buffers can
217 * cause data loss. Also even if we did not discard these
218 * buffers, we would have no way to find them after the inode
219 * is reaped and thus user could see stale data if he tries to
220 * read them before the transaction is checkpointed. So be
221 * careful and force everything to disk here... We use
222 * ei->i_datasync_tid to store the newest transaction
223 * containing inode's data.
224 *
225 * Note that directories do not have this problem because they
226 * don't use page cache.
227 */
228 if (inode->i_ino != EXT4_JOURNAL_INO &&
229 ext4_should_journal_data(inode) &&
230 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
231 inode->i_data.nrpages) {
232 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
233 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
234
235 jbd2_complete_transaction(journal, commit_tid);
236 filemap_write_and_wait(&inode->i_data);
237 }
238 truncate_inode_pages_final(&inode->i_data);
239
240 goto no_delete;
241 }
242
243 if (is_bad_inode(inode))
244 goto no_delete;
245 dquot_initialize(inode);
246
247 if (ext4_should_order_data(inode))
248 ext4_begin_ordered_truncate(inode, 0);
249 truncate_inode_pages_final(&inode->i_data);
250
251 /*
252 * Protect us against freezing - iput() caller didn't have to have any
253 * protection against it
254 */
255 sb_start_intwrite(inode->i_sb);
256
257 if (!IS_NOQUOTA(inode))
258 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
259
260 /*
261 * Block bitmap, group descriptor, and inode are accounted in both
262 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
263 */
264 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
265 ext4_blocks_for_truncate(inode) + extra_credits - 3);
266 if (IS_ERR(handle)) {
267 ext4_std_error(inode->i_sb, PTR_ERR(handle));
268 /*
269 * If we're going to skip the normal cleanup, we still need to
270 * make sure that the in-core orphan linked list is properly
271 * cleaned up.
272 */
273 ext4_orphan_del(NULL, inode);
274 sb_end_intwrite(inode->i_sb);
275 goto no_delete;
276 }
277
278 if (IS_SYNC(inode))
279 ext4_handle_sync(handle);
280
281 /*
282 * Set inode->i_size to 0 before calling ext4_truncate(). We need
283 * special handling of symlinks here because i_size is used to
284 * determine whether ext4_inode_info->i_data contains symlink data or
285 * block mappings. Setting i_size to 0 will remove its fast symlink
286 * status. Erase i_data so that it becomes a valid empty block map.
287 */
288 if (ext4_inode_is_fast_symlink(inode))
289 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
290 inode->i_size = 0;
291 err = ext4_mark_inode_dirty(handle, inode);
292 if (err) {
293 ext4_warning(inode->i_sb,
294 "couldn't mark inode dirty (err %d)", err);
295 goto stop_handle;
296 }
297 if (inode->i_blocks) {
298 err = ext4_truncate(inode);
299 if (err) {
300 ext4_error(inode->i_sb,
301 "couldn't truncate inode %lu (err %d)",
302 inode->i_ino, err);
303 goto stop_handle;
304 }
305 }
306
307 /* Remove xattr references. */
308 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
309 extra_credits);
310 if (err) {
311 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
312 stop_handle:
313 ext4_journal_stop(handle);
314 ext4_orphan_del(NULL, inode);
315 sb_end_intwrite(inode->i_sb);
316 ext4_xattr_inode_array_free(ea_inode_array);
317 goto no_delete;
318 }
319
320 /*
321 * Kill off the orphan record which ext4_truncate created.
322 * AKPM: I think this can be inside the above `if'.
323 * Note that ext4_orphan_del() has to be able to cope with the
324 * deletion of a non-existent orphan - this is because we don't
325 * know if ext4_truncate() actually created an orphan record.
326 * (Well, we could do this if we need to, but heck - it works)
327 */
328 ext4_orphan_del(handle, inode);
329 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
330
331 /*
332 * One subtle ordering requirement: if anything has gone wrong
333 * (transaction abort, IO errors, whatever), then we can still
334 * do these next steps (the fs will already have been marked as
335 * having errors), but we can't free the inode if the mark_dirty
336 * fails.
337 */
338 if (ext4_mark_inode_dirty(handle, inode))
339 /* If that failed, just do the required in-core inode clear. */
340 ext4_clear_inode(inode);
341 else
342 ext4_free_inode(handle, inode);
343 ext4_journal_stop(handle);
344 sb_end_intwrite(inode->i_sb);
345 ext4_xattr_inode_array_free(ea_inode_array);
346 return;
347 no_delete:
348 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
349 }
350
351 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)352 qsize_t *ext4_get_reserved_space(struct inode *inode)
353 {
354 return &EXT4_I(inode)->i_reserved_quota;
355 }
356 #endif
357
358 /*
359 * Called with i_data_sem down, which is important since we can call
360 * ext4_discard_preallocations() from here.
361 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)362 void ext4_da_update_reserve_space(struct inode *inode,
363 int used, int quota_claim)
364 {
365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
366 struct ext4_inode_info *ei = EXT4_I(inode);
367
368 spin_lock(&ei->i_block_reservation_lock);
369 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
370 if (unlikely(used > ei->i_reserved_data_blocks)) {
371 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
372 "with only %d reserved data blocks",
373 __func__, inode->i_ino, used,
374 ei->i_reserved_data_blocks);
375 WARN_ON(1);
376 used = ei->i_reserved_data_blocks;
377 }
378
379 /* Update per-inode reservations */
380 ei->i_reserved_data_blocks -= used;
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
382
383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 else {
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
392 * not re-claim the quota for fallocated blocks.
393 */
394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395 }
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
404 ext4_discard_preallocations(inode);
405 }
406
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)407 static int __check_block_validity(struct inode *inode, const char *func,
408 unsigned int line,
409 struct ext4_map_blocks *map)
410 {
411 if (ext4_has_feature_journal(inode->i_sb) &&
412 (inode->i_ino ==
413 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
414 return 0;
415 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
416 map->m_len)) {
417 ext4_error_inode(inode, func, line, map->m_pblk,
418 "lblock %lu mapped to illegal pblock %llu "
419 "(length %d)", (unsigned long) map->m_lblk,
420 map->m_pblk, map->m_len);
421 return -EFSCORRUPTED;
422 }
423 return 0;
424 }
425
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 ext4_lblk_t len)
428 {
429 int ret;
430
431 if (ext4_encrypted_inode(inode))
432 return fscrypt_zeroout_range(inode, lblk, pblk, len);
433
434 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 if (ret > 0)
436 ret = 0;
437
438 return ret;
439 }
440
441 #define check_block_validity(inode, map) \
442 __check_block_validity((inode), __func__, __LINE__, (map))
443
444 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446 struct inode *inode,
447 struct ext4_map_blocks *es_map,
448 struct ext4_map_blocks *map,
449 int flags)
450 {
451 int retval;
452
453 map->m_flags = 0;
454 /*
455 * There is a race window that the result is not the same.
456 * e.g. xfstests #223 when dioread_nolock enables. The reason
457 * is that we lookup a block mapping in extent status tree with
458 * out taking i_data_sem. So at the time the unwritten extent
459 * could be converted.
460 */
461 down_read(&EXT4_I(inode)->i_data_sem);
462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 retval = ext4_ext_map_blocks(handle, inode, map, flags &
464 EXT4_GET_BLOCKS_KEEP_SIZE);
465 } else {
466 retval = ext4_ind_map_blocks(handle, inode, map, flags &
467 EXT4_GET_BLOCKS_KEEP_SIZE);
468 }
469 up_read((&EXT4_I(inode)->i_data_sem));
470
471 /*
472 * We don't check m_len because extent will be collpased in status
473 * tree. So the m_len might not equal.
474 */
475 if (es_map->m_lblk != map->m_lblk ||
476 es_map->m_flags != map->m_flags ||
477 es_map->m_pblk != map->m_pblk) {
478 printk("ES cache assertion failed for inode: %lu "
479 "es_cached ex [%d/%d/%llu/%x] != "
480 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
481 inode->i_ino, es_map->m_lblk, es_map->m_len,
482 es_map->m_pblk, es_map->m_flags, map->m_lblk,
483 map->m_len, map->m_pblk, map->m_flags,
484 retval, flags);
485 }
486 }
487 #endif /* ES_AGGRESSIVE_TEST */
488
489 /*
490 * The ext4_map_blocks() function tries to look up the requested blocks,
491 * and returns if the blocks are already mapped.
492 *
493 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
494 * and store the allocated blocks in the result buffer head and mark it
495 * mapped.
496 *
497 * If file type is extents based, it will call ext4_ext_map_blocks(),
498 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
499 * based files
500 *
501 * On success, it returns the number of blocks being mapped or allocated. if
502 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
503 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
504 *
505 * It returns 0 if plain look up failed (blocks have not been allocated), in
506 * that case, @map is returned as unmapped but we still do fill map->m_len to
507 * indicate the length of a hole starting at map->m_lblk.
508 *
509 * It returns the error in case of allocation failure.
510 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)511 int ext4_map_blocks(handle_t *handle, struct inode *inode,
512 struct ext4_map_blocks *map, int flags)
513 {
514 struct extent_status es;
515 int retval;
516 int ret = 0;
517 #ifdef ES_AGGRESSIVE_TEST
518 struct ext4_map_blocks orig_map;
519
520 memcpy(&orig_map, map, sizeof(*map));
521 #endif
522
523 map->m_flags = 0;
524 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
525 "logical block %lu\n", inode->i_ino, flags, map->m_len,
526 (unsigned long) map->m_lblk);
527
528 /*
529 * ext4_map_blocks returns an int, and m_len is an unsigned int
530 */
531 if (unlikely(map->m_len > INT_MAX))
532 map->m_len = INT_MAX;
533
534 /* We can handle the block number less than EXT_MAX_BLOCKS */
535 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
536 return -EFSCORRUPTED;
537
538 /* Lookup extent status tree firstly */
539 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
540 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
541 map->m_pblk = ext4_es_pblock(&es) +
542 map->m_lblk - es.es_lblk;
543 map->m_flags |= ext4_es_is_written(&es) ?
544 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
545 retval = es.es_len - (map->m_lblk - es.es_lblk);
546 if (retval > map->m_len)
547 retval = map->m_len;
548 map->m_len = retval;
549 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
550 map->m_pblk = 0;
551 retval = es.es_len - (map->m_lblk - es.es_lblk);
552 if (retval > map->m_len)
553 retval = map->m_len;
554 map->m_len = retval;
555 retval = 0;
556 } else {
557 BUG_ON(1);
558 }
559 #ifdef ES_AGGRESSIVE_TEST
560 ext4_map_blocks_es_recheck(handle, inode, map,
561 &orig_map, flags);
562 #endif
563 goto found;
564 }
565
566 /*
567 * Try to see if we can get the block without requesting a new
568 * file system block.
569 */
570 down_read(&EXT4_I(inode)->i_data_sem);
571 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
572 retval = ext4_ext_map_blocks(handle, inode, map, flags &
573 EXT4_GET_BLOCKS_KEEP_SIZE);
574 } else {
575 retval = ext4_ind_map_blocks(handle, inode, map, flags &
576 EXT4_GET_BLOCKS_KEEP_SIZE);
577 }
578 if (retval > 0) {
579 unsigned int status;
580
581 if (unlikely(retval != map->m_len)) {
582 ext4_warning(inode->i_sb,
583 "ES len assertion failed for inode "
584 "%lu: retval %d != map->m_len %d",
585 inode->i_ino, retval, map->m_len);
586 WARN_ON(1);
587 }
588
589 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
590 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
591 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
592 !(status & EXTENT_STATUS_WRITTEN) &&
593 ext4_find_delalloc_range(inode, map->m_lblk,
594 map->m_lblk + map->m_len - 1))
595 status |= EXTENT_STATUS_DELAYED;
596 ret = ext4_es_insert_extent(inode, map->m_lblk,
597 map->m_len, map->m_pblk, status);
598 if (ret < 0)
599 retval = ret;
600 }
601 up_read((&EXT4_I(inode)->i_data_sem));
602
603 found:
604 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
605 ret = check_block_validity(inode, map);
606 if (ret != 0)
607 return ret;
608 }
609
610 /* If it is only a block(s) look up */
611 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
612 return retval;
613
614 /*
615 * Returns if the blocks have already allocated
616 *
617 * Note that if blocks have been preallocated
618 * ext4_ext_get_block() returns the create = 0
619 * with buffer head unmapped.
620 */
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
622 /*
623 * If we need to convert extent to unwritten
624 * we continue and do the actual work in
625 * ext4_ext_map_blocks()
626 */
627 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
628 return retval;
629
630 /*
631 * Here we clear m_flags because after allocating an new extent,
632 * it will be set again.
633 */
634 map->m_flags &= ~EXT4_MAP_FLAGS;
635
636 /*
637 * New blocks allocate and/or writing to unwritten extent
638 * will possibly result in updating i_data, so we take
639 * the write lock of i_data_sem, and call get_block()
640 * with create == 1 flag.
641 */
642 down_write(&EXT4_I(inode)->i_data_sem);
643
644 /*
645 * We need to check for EXT4 here because migrate
646 * could have changed the inode type in between
647 */
648 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
649 retval = ext4_ext_map_blocks(handle, inode, map, flags);
650 } else {
651 retval = ext4_ind_map_blocks(handle, inode, map, flags);
652
653 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
654 /*
655 * We allocated new blocks which will result in
656 * i_data's format changing. Force the migrate
657 * to fail by clearing migrate flags
658 */
659 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
660 }
661
662 /*
663 * Update reserved blocks/metadata blocks after successful
664 * block allocation which had been deferred till now. We don't
665 * support fallocate for non extent files. So we can update
666 * reserve space here.
667 */
668 if ((retval > 0) &&
669 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
670 ext4_da_update_reserve_space(inode, retval, 1);
671 }
672
673 if (retval > 0) {
674 unsigned int status;
675
676 if (unlikely(retval != map->m_len)) {
677 ext4_warning(inode->i_sb,
678 "ES len assertion failed for inode "
679 "%lu: retval %d != map->m_len %d",
680 inode->i_ino, retval, map->m_len);
681 WARN_ON(1);
682 }
683
684 /*
685 * We have to zeroout blocks before inserting them into extent
686 * status tree. Otherwise someone could look them up there and
687 * use them before they are really zeroed. We also have to
688 * unmap metadata before zeroing as otherwise writeback can
689 * overwrite zeros with stale data from block device.
690 */
691 if (flags & EXT4_GET_BLOCKS_ZERO &&
692 map->m_flags & EXT4_MAP_MAPPED &&
693 map->m_flags & EXT4_MAP_NEW) {
694 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
695 map->m_len);
696 ret = ext4_issue_zeroout(inode, map->m_lblk,
697 map->m_pblk, map->m_len);
698 if (ret) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 /*
705 * If the extent has been zeroed out, we don't need to update
706 * extent status tree.
707 */
708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
710 if (ext4_es_is_written(&es))
711 goto out_sem;
712 }
713 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 !(status & EXTENT_STATUS_WRITTEN) &&
717 ext4_find_delalloc_range(inode, map->m_lblk,
718 map->m_lblk + map->m_len - 1))
719 status |= EXTENT_STATUS_DELAYED;
720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 map->m_pblk, status);
722 if (ret < 0) {
723 retval = ret;
724 goto out_sem;
725 }
726 }
727
728 out_sem:
729 up_write((&EXT4_I(inode)->i_data_sem));
730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 ret = check_block_validity(inode, map);
732 if (ret != 0)
733 return ret;
734
735 /*
736 * Inodes with freshly allocated blocks where contents will be
737 * visible after transaction commit must be on transaction's
738 * ordered data list.
739 */
740 if (map->m_flags & EXT4_MAP_NEW &&
741 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 !ext4_is_quota_file(inode) &&
744 ext4_should_order_data(inode)) {
745 loff_t start_byte =
746 (loff_t)map->m_lblk << inode->i_blkbits;
747 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 ret = ext4_jbd2_inode_add_wait(handle, inode,
751 start_byte, length);
752 else
753 ret = ext4_jbd2_inode_add_write(handle, inode,
754 start_byte, length);
755 if (ret)
756 return ret;
757 }
758 }
759 return retval;
760 }
761
762 /*
763 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764 * we have to be careful as someone else may be manipulating b_state as well.
765 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768 unsigned long old_state;
769 unsigned long new_state;
770
771 flags &= EXT4_MAP_FLAGS;
772
773 /* Dummy buffer_head? Set non-atomically. */
774 if (!bh->b_page) {
775 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776 return;
777 }
778 /*
779 * Someone else may be modifying b_state. Be careful! This is ugly but
780 * once we get rid of using bh as a container for mapping information
781 * to pass to / from get_block functions, this can go away.
782 */
783 do {
784 old_state = READ_ONCE(bh->b_state);
785 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786 } while (unlikely(
787 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791 struct buffer_head *bh, int flags)
792 {
793 struct ext4_map_blocks map;
794 int ret = 0;
795
796 if (ext4_has_inline_data(inode))
797 return -ERANGE;
798
799 map.m_lblk = iblock;
800 map.m_len = bh->b_size >> inode->i_blkbits;
801
802 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 flags);
804 if (ret > 0) {
805 map_bh(bh, inode->i_sb, map.m_pblk);
806 ext4_update_bh_state(bh, map.m_flags);
807 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 ret = 0;
809 } else if (ret == 0) {
810 /* hole case, need to fill in bh->b_size */
811 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 }
813 return ret;
814 }
815
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)816 int ext4_get_block(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh, int create)
818 {
819 return _ext4_get_block(inode, iblock, bh,
820 create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822
823 /*
824 * Get block function used when preparing for buffered write if we require
825 * creating an unwritten extent if blocks haven't been allocated. The extent
826 * will be converted to written after the IO is complete.
827 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829 struct buffer_head *bh_result, int create)
830 {
831 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832 inode->i_ino, create);
833 return _ext4_get_block(inode, iblock, bh_result,
834 EXT4_GET_BLOCKS_IO_CREATE_EXT);
835 }
836
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839
840 /*
841 * Get blocks function for the cases that need to start a transaction -
842 * generally difference cases of direct IO and DAX IO. It also handles retries
843 * in case of ENOSPC.
844 */
ext4_get_block_trans(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int flags)845 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
846 struct buffer_head *bh_result, int flags)
847 {
848 int dio_credits;
849 handle_t *handle;
850 int retries = 0;
851 int ret;
852
853 /* Trim mapping request to maximum we can map at once for DIO */
854 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
855 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
856 dio_credits = ext4_chunk_trans_blocks(inode,
857 bh_result->b_size >> inode->i_blkbits);
858 retry:
859 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
860 if (IS_ERR(handle))
861 return PTR_ERR(handle);
862
863 ret = _ext4_get_block(inode, iblock, bh_result, flags);
864 ext4_journal_stop(handle);
865
866 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
867 goto retry;
868 return ret;
869 }
870
871 /* Get block function for DIO reads and writes to inodes without extents */
ext4_dio_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)872 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
873 struct buffer_head *bh, int create)
874 {
875 /* We don't expect handle for direct IO */
876 WARN_ON_ONCE(ext4_journal_current_handle());
877
878 if (!create)
879 return _ext4_get_block(inode, iblock, bh, 0);
880 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
881 }
882
883 /*
884 * Get block function for AIO DIO writes when we create unwritten extent if
885 * blocks are not allocated yet. The extent will be converted to written
886 * after IO is complete.
887 */
ext4_dio_get_block_unwritten_async(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)888 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
889 sector_t iblock, struct buffer_head *bh_result, int create)
890 {
891 int ret;
892
893 /* We don't expect handle for direct IO */
894 WARN_ON_ONCE(ext4_journal_current_handle());
895
896 ret = ext4_get_block_trans(inode, iblock, bh_result,
897 EXT4_GET_BLOCKS_IO_CREATE_EXT);
898
899 /*
900 * When doing DIO using unwritten extents, we need io_end to convert
901 * unwritten extents to written on IO completion. We allocate io_end
902 * once we spot unwritten extent and store it in b_private. Generic
903 * DIO code keeps b_private set and furthermore passes the value to
904 * our completion callback in 'private' argument.
905 */
906 if (!ret && buffer_unwritten(bh_result)) {
907 if (!bh_result->b_private) {
908 ext4_io_end_t *io_end;
909
910 io_end = ext4_init_io_end(inode, GFP_KERNEL);
911 if (!io_end)
912 return -ENOMEM;
913 bh_result->b_private = io_end;
914 ext4_set_io_unwritten_flag(inode, io_end);
915 }
916 set_buffer_defer_completion(bh_result);
917 }
918
919 return ret;
920 }
921
922 /*
923 * Get block function for non-AIO DIO writes when we create unwritten extent if
924 * blocks are not allocated yet. The extent will be converted to written
925 * after IO is complete by ext4_direct_IO_write().
926 */
ext4_dio_get_block_unwritten_sync(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)927 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
928 sector_t iblock, struct buffer_head *bh_result, int create)
929 {
930 int ret;
931
932 /* We don't expect handle for direct IO */
933 WARN_ON_ONCE(ext4_journal_current_handle());
934
935 ret = ext4_get_block_trans(inode, iblock, bh_result,
936 EXT4_GET_BLOCKS_IO_CREATE_EXT);
937
938 /*
939 * Mark inode as having pending DIO writes to unwritten extents.
940 * ext4_direct_IO_write() checks this flag and converts extents to
941 * written.
942 */
943 if (!ret && buffer_unwritten(bh_result))
944 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
945
946 return ret;
947 }
948
ext4_dio_get_block_overwrite(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)949 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
950 struct buffer_head *bh_result, int create)
951 {
952 int ret;
953
954 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
955 inode->i_ino, create);
956 /* We don't expect handle for direct IO */
957 WARN_ON_ONCE(ext4_journal_current_handle());
958
959 ret = _ext4_get_block(inode, iblock, bh_result, 0);
960 /*
961 * Blocks should have been preallocated! ext4_file_write_iter() checks
962 * that.
963 */
964 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
965
966 return ret;
967 }
968
969
970 /*
971 * `handle' can be NULL if create is zero
972 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)973 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
974 ext4_lblk_t block, int map_flags)
975 {
976 struct ext4_map_blocks map;
977 struct buffer_head *bh;
978 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
979 int err;
980
981 J_ASSERT(handle != NULL || create == 0);
982
983 map.m_lblk = block;
984 map.m_len = 1;
985 err = ext4_map_blocks(handle, inode, &map, map_flags);
986
987 if (err == 0)
988 return create ? ERR_PTR(-ENOSPC) : NULL;
989 if (err < 0)
990 return ERR_PTR(err);
991
992 bh = sb_getblk(inode->i_sb, map.m_pblk);
993 if (unlikely(!bh))
994 return ERR_PTR(-ENOMEM);
995 if (map.m_flags & EXT4_MAP_NEW) {
996 J_ASSERT(create != 0);
997 J_ASSERT(handle != NULL);
998
999 /*
1000 * Now that we do not always journal data, we should
1001 * keep in mind whether this should always journal the
1002 * new buffer as metadata. For now, regular file
1003 * writes use ext4_get_block instead, so it's not a
1004 * problem.
1005 */
1006 lock_buffer(bh);
1007 BUFFER_TRACE(bh, "call get_create_access");
1008 err = ext4_journal_get_create_access(handle, bh);
1009 if (unlikely(err)) {
1010 unlock_buffer(bh);
1011 goto errout;
1012 }
1013 if (!buffer_uptodate(bh)) {
1014 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1015 set_buffer_uptodate(bh);
1016 }
1017 unlock_buffer(bh);
1018 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1019 err = ext4_handle_dirty_metadata(handle, inode, bh);
1020 if (unlikely(err))
1021 goto errout;
1022 } else
1023 BUFFER_TRACE(bh, "not a new buffer");
1024 return bh;
1025 errout:
1026 brelse(bh);
1027 return ERR_PTR(err);
1028 }
1029
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1030 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1031 ext4_lblk_t block, int map_flags)
1032 {
1033 struct buffer_head *bh;
1034
1035 bh = ext4_getblk(handle, inode, block, map_flags);
1036 if (IS_ERR(bh))
1037 return bh;
1038 if (!bh || buffer_uptodate(bh))
1039 return bh;
1040 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1041 wait_on_buffer(bh);
1042 if (buffer_uptodate(bh))
1043 return bh;
1044 put_bh(bh);
1045 return ERR_PTR(-EIO);
1046 }
1047
1048 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1049 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1050 bool wait, struct buffer_head **bhs)
1051 {
1052 int i, err;
1053
1054 for (i = 0; i < bh_count; i++) {
1055 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1056 if (IS_ERR(bhs[i])) {
1057 err = PTR_ERR(bhs[i]);
1058 bh_count = i;
1059 goto out_brelse;
1060 }
1061 }
1062
1063 for (i = 0; i < bh_count; i++)
1064 /* Note that NULL bhs[i] is valid because of holes. */
1065 if (bhs[i] && !buffer_uptodate(bhs[i]))
1066 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1067 &bhs[i]);
1068
1069 if (!wait)
1070 return 0;
1071
1072 for (i = 0; i < bh_count; i++)
1073 if (bhs[i])
1074 wait_on_buffer(bhs[i]);
1075
1076 for (i = 0; i < bh_count; i++) {
1077 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1078 err = -EIO;
1079 goto out_brelse;
1080 }
1081 }
1082 return 0;
1083
1084 out_brelse:
1085 for (i = 0; i < bh_count; i++) {
1086 brelse(bhs[i]);
1087 bhs[i] = NULL;
1088 }
1089 return err;
1090 }
1091
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1092 int ext4_walk_page_buffers(handle_t *handle,
1093 struct buffer_head *head,
1094 unsigned from,
1095 unsigned to,
1096 int *partial,
1097 int (*fn)(handle_t *handle,
1098 struct buffer_head *bh))
1099 {
1100 struct buffer_head *bh;
1101 unsigned block_start, block_end;
1102 unsigned blocksize = head->b_size;
1103 int err, ret = 0;
1104 struct buffer_head *next;
1105
1106 for (bh = head, block_start = 0;
1107 ret == 0 && (bh != head || !block_start);
1108 block_start = block_end, bh = next) {
1109 next = bh->b_this_page;
1110 block_end = block_start + blocksize;
1111 if (block_end <= from || block_start >= to) {
1112 if (partial && !buffer_uptodate(bh))
1113 *partial = 1;
1114 continue;
1115 }
1116 err = (*fn)(handle, bh);
1117 if (!ret)
1118 ret = err;
1119 }
1120 return ret;
1121 }
1122
1123 /*
1124 * To preserve ordering, it is essential that the hole instantiation and
1125 * the data write be encapsulated in a single transaction. We cannot
1126 * close off a transaction and start a new one between the ext4_get_block()
1127 * and the commit_write(). So doing the jbd2_journal_start at the start of
1128 * prepare_write() is the right place.
1129 *
1130 * Also, this function can nest inside ext4_writepage(). In that case, we
1131 * *know* that ext4_writepage() has generated enough buffer credits to do the
1132 * whole page. So we won't block on the journal in that case, which is good,
1133 * because the caller may be PF_MEMALLOC.
1134 *
1135 * By accident, ext4 can be reentered when a transaction is open via
1136 * quota file writes. If we were to commit the transaction while thus
1137 * reentered, there can be a deadlock - we would be holding a quota
1138 * lock, and the commit would never complete if another thread had a
1139 * transaction open and was blocking on the quota lock - a ranking
1140 * violation.
1141 *
1142 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1143 * will _not_ run commit under these circumstances because handle->h_ref
1144 * is elevated. We'll still have enough credits for the tiny quotafile
1145 * write.
1146 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1147 int do_journal_get_write_access(handle_t *handle,
1148 struct buffer_head *bh)
1149 {
1150 int dirty = buffer_dirty(bh);
1151 int ret;
1152
1153 if (!buffer_mapped(bh) || buffer_freed(bh))
1154 return 0;
1155 /*
1156 * __block_write_begin() could have dirtied some buffers. Clean
1157 * the dirty bit as jbd2_journal_get_write_access() could complain
1158 * otherwise about fs integrity issues. Setting of the dirty bit
1159 * by __block_write_begin() isn't a real problem here as we clear
1160 * the bit before releasing a page lock and thus writeback cannot
1161 * ever write the buffer.
1162 */
1163 if (dirty)
1164 clear_buffer_dirty(bh);
1165 BUFFER_TRACE(bh, "get write access");
1166 ret = ext4_journal_get_write_access(handle, bh);
1167 if (!ret && dirty)
1168 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1169 return ret;
1170 }
1171
1172 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1173 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1174 get_block_t *get_block)
1175 {
1176 unsigned from = pos & (PAGE_SIZE - 1);
1177 unsigned to = from + len;
1178 struct inode *inode = page->mapping->host;
1179 unsigned block_start, block_end;
1180 sector_t block;
1181 int err = 0;
1182 unsigned blocksize = inode->i_sb->s_blocksize;
1183 unsigned bbits;
1184 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1185 bool decrypt = false;
1186
1187 BUG_ON(!PageLocked(page));
1188 BUG_ON(from > PAGE_SIZE);
1189 BUG_ON(to > PAGE_SIZE);
1190 BUG_ON(from > to);
1191
1192 if (!page_has_buffers(page))
1193 create_empty_buffers(page, blocksize, 0);
1194 head = page_buffers(page);
1195 bbits = ilog2(blocksize);
1196 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1197
1198 for (bh = head, block_start = 0; bh != head || !block_start;
1199 block++, block_start = block_end, bh = bh->b_this_page) {
1200 block_end = block_start + blocksize;
1201 if (block_end <= from || block_start >= to) {
1202 if (PageUptodate(page)) {
1203 if (!buffer_uptodate(bh))
1204 set_buffer_uptodate(bh);
1205 }
1206 continue;
1207 }
1208 if (buffer_new(bh))
1209 clear_buffer_new(bh);
1210 if (!buffer_mapped(bh)) {
1211 WARN_ON(bh->b_size != blocksize);
1212 err = get_block(inode, block, bh, 1);
1213 if (err)
1214 break;
1215 if (buffer_new(bh)) {
1216 clean_bdev_bh_alias(bh);
1217 if (PageUptodate(page)) {
1218 clear_buffer_new(bh);
1219 set_buffer_uptodate(bh);
1220 mark_buffer_dirty(bh);
1221 continue;
1222 }
1223 if (block_end > to || block_start < from)
1224 zero_user_segments(page, to, block_end,
1225 block_start, from);
1226 continue;
1227 }
1228 }
1229 if (PageUptodate(page)) {
1230 if (!buffer_uptodate(bh))
1231 set_buffer_uptodate(bh);
1232 continue;
1233 }
1234 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1235 !buffer_unwritten(bh) &&
1236 (block_start < from || block_end > to)) {
1237 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1238 *wait_bh++ = bh;
1239 decrypt = ext4_encrypted_inode(inode) &&
1240 S_ISREG(inode->i_mode);
1241 }
1242 }
1243 /*
1244 * If we issued read requests, let them complete.
1245 */
1246 while (wait_bh > wait) {
1247 wait_on_buffer(*--wait_bh);
1248 if (!buffer_uptodate(*wait_bh))
1249 err = -EIO;
1250 }
1251 if (unlikely(err))
1252 page_zero_new_buffers(page, from, to);
1253 else if (decrypt)
1254 err = fscrypt_decrypt_page(page->mapping->host, page,
1255 PAGE_SIZE, 0, page->index);
1256 return err;
1257 }
1258 #endif
1259
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1260 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1261 loff_t pos, unsigned len, unsigned flags,
1262 struct page **pagep, void **fsdata)
1263 {
1264 struct inode *inode = mapping->host;
1265 int ret, needed_blocks;
1266 handle_t *handle;
1267 int retries = 0;
1268 struct page *page;
1269 pgoff_t index;
1270 unsigned from, to;
1271
1272 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1273 return -EIO;
1274
1275 trace_ext4_write_begin(inode, pos, len, flags);
1276 /*
1277 * Reserve one block more for addition to orphan list in case
1278 * we allocate blocks but write fails for some reason
1279 */
1280 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1281 index = pos >> PAGE_SHIFT;
1282 from = pos & (PAGE_SIZE - 1);
1283 to = from + len;
1284
1285 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1286 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1287 flags, pagep);
1288 if (ret < 0)
1289 return ret;
1290 if (ret == 1)
1291 return 0;
1292 }
1293
1294 /*
1295 * grab_cache_page_write_begin() can take a long time if the
1296 * system is thrashing due to memory pressure, or if the page
1297 * is being written back. So grab it first before we start
1298 * the transaction handle. This also allows us to allocate
1299 * the page (if needed) without using GFP_NOFS.
1300 */
1301 retry_grab:
1302 page = grab_cache_page_write_begin(mapping, index, flags);
1303 if (!page)
1304 return -ENOMEM;
1305 unlock_page(page);
1306
1307 retry_journal:
1308 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1309 if (IS_ERR(handle)) {
1310 put_page(page);
1311 return PTR_ERR(handle);
1312 }
1313
1314 lock_page(page);
1315 if (page->mapping != mapping) {
1316 /* The page got truncated from under us */
1317 unlock_page(page);
1318 put_page(page);
1319 ext4_journal_stop(handle);
1320 goto retry_grab;
1321 }
1322 /* In case writeback began while the page was unlocked */
1323 wait_for_stable_page(page);
1324
1325 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1326 if (ext4_should_dioread_nolock(inode))
1327 ret = ext4_block_write_begin(page, pos, len,
1328 ext4_get_block_unwritten);
1329 else
1330 ret = ext4_block_write_begin(page, pos, len,
1331 ext4_get_block);
1332 #else
1333 if (ext4_should_dioread_nolock(inode))
1334 ret = __block_write_begin(page, pos, len,
1335 ext4_get_block_unwritten);
1336 else
1337 ret = __block_write_begin(page, pos, len, ext4_get_block);
1338 #endif
1339 if (!ret && ext4_should_journal_data(inode)) {
1340 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1341 from, to, NULL,
1342 do_journal_get_write_access);
1343 }
1344
1345 if (ret) {
1346 unlock_page(page);
1347 /*
1348 * __block_write_begin may have instantiated a few blocks
1349 * outside i_size. Trim these off again. Don't need
1350 * i_size_read because we hold i_mutex.
1351 *
1352 * Add inode to orphan list in case we crash before
1353 * truncate finishes
1354 */
1355 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1356 ext4_orphan_add(handle, inode);
1357
1358 ext4_journal_stop(handle);
1359 if (pos + len > inode->i_size) {
1360 ext4_truncate_failed_write(inode);
1361 /*
1362 * If truncate failed early the inode might
1363 * still be on the orphan list; we need to
1364 * make sure the inode is removed from the
1365 * orphan list in that case.
1366 */
1367 if (inode->i_nlink)
1368 ext4_orphan_del(NULL, inode);
1369 }
1370
1371 if (ret == -ENOSPC &&
1372 ext4_should_retry_alloc(inode->i_sb, &retries))
1373 goto retry_journal;
1374 put_page(page);
1375 return ret;
1376 }
1377 *pagep = page;
1378 return ret;
1379 }
1380
1381 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384 int ret;
1385 if (!buffer_mapped(bh) || buffer_freed(bh))
1386 return 0;
1387 set_buffer_uptodate(bh);
1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 clear_buffer_meta(bh);
1390 clear_buffer_prio(bh);
1391 return ret;
1392 }
1393
1394 /*
1395 * We need to pick up the new inode size which generic_commit_write gave us
1396 * `file' can be NULL - eg, when called from page_symlink().
1397 *
1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1399 * buffers are managed internally.
1400 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1401 static int ext4_write_end(struct file *file,
1402 struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1405 {
1406 handle_t *handle = ext4_journal_current_handle();
1407 struct inode *inode = mapping->host;
1408 loff_t old_size = inode->i_size;
1409 int ret = 0, ret2;
1410 int i_size_changed = 0;
1411 int inline_data = ext4_has_inline_data(inode);
1412
1413 trace_ext4_write_end(inode, pos, len, copied);
1414 if (inline_data) {
1415 ret = ext4_write_inline_data_end(inode, pos, len,
1416 copied, page);
1417 if (ret < 0) {
1418 unlock_page(page);
1419 put_page(page);
1420 goto errout;
1421 }
1422 copied = ret;
1423 } else
1424 copied = block_write_end(file, mapping, pos,
1425 len, copied, page, fsdata);
1426 /*
1427 * it's important to update i_size while still holding page lock:
1428 * page writeout could otherwise come in and zero beyond i_size.
1429 */
1430 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1431 unlock_page(page);
1432 put_page(page);
1433
1434 if (old_size < pos)
1435 pagecache_isize_extended(inode, old_size, pos);
1436 /*
1437 * Don't mark the inode dirty under page lock. First, it unnecessarily
1438 * makes the holding time of page lock longer. Second, it forces lock
1439 * ordering of page lock and transaction start for journaling
1440 * filesystems.
1441 */
1442 if (i_size_changed || inline_data)
1443 ext4_mark_inode_dirty(handle, inode);
1444
1445 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1446 /* if we have allocated more blocks and copied
1447 * less. We will have blocks allocated outside
1448 * inode->i_size. So truncate them
1449 */
1450 ext4_orphan_add(handle, inode);
1451 errout:
1452 ret2 = ext4_journal_stop(handle);
1453 if (!ret)
1454 ret = ret2;
1455
1456 if (pos + len > inode->i_size) {
1457 ext4_truncate_failed_write(inode);
1458 /*
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
1466
1467 return ret ? ret : copied;
1468 }
1469
1470 /*
1471 * This is a private version of page_zero_new_buffers() which doesn't
1472 * set the buffer to be dirty, since in data=journalled mode we need
1473 * to call ext4_handle_dirty_metadata() instead.
1474 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1475 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1476 struct page *page,
1477 unsigned from, unsigned to)
1478 {
1479 unsigned int block_start = 0, block_end;
1480 struct buffer_head *head, *bh;
1481
1482 bh = head = page_buffers(page);
1483 do {
1484 block_end = block_start + bh->b_size;
1485 if (buffer_new(bh)) {
1486 if (block_end > from && block_start < to) {
1487 if (!PageUptodate(page)) {
1488 unsigned start, size;
1489
1490 start = max(from, block_start);
1491 size = min(to, block_end) - start;
1492
1493 zero_user(page, start, size);
1494 write_end_fn(handle, bh);
1495 }
1496 clear_buffer_new(bh);
1497 }
1498 }
1499 block_start = block_end;
1500 bh = bh->b_this_page;
1501 } while (bh != head);
1502 }
1503
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1504 static int ext4_journalled_write_end(struct file *file,
1505 struct address_space *mapping,
1506 loff_t pos, unsigned len, unsigned copied,
1507 struct page *page, void *fsdata)
1508 {
1509 handle_t *handle = ext4_journal_current_handle();
1510 struct inode *inode = mapping->host;
1511 loff_t old_size = inode->i_size;
1512 int ret = 0, ret2;
1513 int partial = 0;
1514 unsigned from, to;
1515 int size_changed = 0;
1516 int inline_data = ext4_has_inline_data(inode);
1517
1518 trace_ext4_journalled_write_end(inode, pos, len, copied);
1519 from = pos & (PAGE_SIZE - 1);
1520 to = from + len;
1521
1522 BUG_ON(!ext4_handle_valid(handle));
1523
1524 if (inline_data) {
1525 ret = ext4_write_inline_data_end(inode, pos, len,
1526 copied, page);
1527 if (ret < 0) {
1528 unlock_page(page);
1529 put_page(page);
1530 goto errout;
1531 }
1532 copied = ret;
1533 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1534 copied = 0;
1535 ext4_journalled_zero_new_buffers(handle, page, from, to);
1536 } else {
1537 if (unlikely(copied < len))
1538 ext4_journalled_zero_new_buffers(handle, page,
1539 from + copied, to);
1540 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1541 from + copied, &partial,
1542 write_end_fn);
1543 if (!partial)
1544 SetPageUptodate(page);
1545 }
1546 size_changed = ext4_update_inode_size(inode, pos + copied);
1547 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1548 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1549 unlock_page(page);
1550 put_page(page);
1551
1552 if (old_size < pos)
1553 pagecache_isize_extended(inode, old_size, pos);
1554
1555 if (size_changed || inline_data) {
1556 ret2 = ext4_mark_inode_dirty(handle, inode);
1557 if (!ret)
1558 ret = ret2;
1559 }
1560
1561 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1562 /* if we have allocated more blocks and copied
1563 * less. We will have blocks allocated outside
1564 * inode->i_size. So truncate them
1565 */
1566 ext4_orphan_add(handle, inode);
1567
1568 errout:
1569 ret2 = ext4_journal_stop(handle);
1570 if (!ret)
1571 ret = ret2;
1572 if (pos + len > inode->i_size) {
1573 ext4_truncate_failed_write(inode);
1574 /*
1575 * If truncate failed early the inode might still be
1576 * on the orphan list; we need to make sure the inode
1577 * is removed from the orphan list in that case.
1578 */
1579 if (inode->i_nlink)
1580 ext4_orphan_del(NULL, inode);
1581 }
1582
1583 return ret ? ret : copied;
1584 }
1585
1586 /*
1587 * Reserve space for a single cluster
1588 */
ext4_da_reserve_space(struct inode * inode)1589 static int ext4_da_reserve_space(struct inode *inode)
1590 {
1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 struct ext4_inode_info *ei = EXT4_I(inode);
1593 int ret;
1594
1595 /*
1596 * We will charge metadata quota at writeout time; this saves
1597 * us from metadata over-estimation, though we may go over by
1598 * a small amount in the end. Here we just reserve for data.
1599 */
1600 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1601 if (ret)
1602 return ret;
1603
1604 spin_lock(&ei->i_block_reservation_lock);
1605 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1606 spin_unlock(&ei->i_block_reservation_lock);
1607 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1608 return -ENOSPC;
1609 }
1610 ei->i_reserved_data_blocks++;
1611 trace_ext4_da_reserve_space(inode);
1612 spin_unlock(&ei->i_block_reservation_lock);
1613
1614 return 0; /* success */
1615 }
1616
ext4_da_release_space(struct inode * inode,int to_free)1617 static void ext4_da_release_space(struct inode *inode, int to_free)
1618 {
1619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1620 struct ext4_inode_info *ei = EXT4_I(inode);
1621
1622 if (!to_free)
1623 return; /* Nothing to release, exit */
1624
1625 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1626
1627 trace_ext4_da_release_space(inode, to_free);
1628 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1629 /*
1630 * if there aren't enough reserved blocks, then the
1631 * counter is messed up somewhere. Since this
1632 * function is called from invalidate page, it's
1633 * harmless to return without any action.
1634 */
1635 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1636 "ino %lu, to_free %d with only %d reserved "
1637 "data blocks", inode->i_ino, to_free,
1638 ei->i_reserved_data_blocks);
1639 WARN_ON(1);
1640 to_free = ei->i_reserved_data_blocks;
1641 }
1642 ei->i_reserved_data_blocks -= to_free;
1643
1644 /* update fs dirty data blocks counter */
1645 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1646
1647 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1648
1649 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1650 }
1651
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1652 static void ext4_da_page_release_reservation(struct page *page,
1653 unsigned int offset,
1654 unsigned int length)
1655 {
1656 int to_release = 0, contiguous_blks = 0;
1657 struct buffer_head *head, *bh;
1658 unsigned int curr_off = 0;
1659 struct inode *inode = page->mapping->host;
1660 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1661 unsigned int stop = offset + length;
1662 int num_clusters;
1663 ext4_fsblk_t lblk;
1664
1665 BUG_ON(stop > PAGE_SIZE || stop < length);
1666
1667 head = page_buffers(page);
1668 bh = head;
1669 do {
1670 unsigned int next_off = curr_off + bh->b_size;
1671
1672 if (next_off > stop)
1673 break;
1674
1675 if ((offset <= curr_off) && (buffer_delay(bh))) {
1676 to_release++;
1677 contiguous_blks++;
1678 clear_buffer_delay(bh);
1679 } else if (contiguous_blks) {
1680 lblk = page->index <<
1681 (PAGE_SHIFT - inode->i_blkbits);
1682 lblk += (curr_off >> inode->i_blkbits) -
1683 contiguous_blks;
1684 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1685 contiguous_blks = 0;
1686 }
1687 curr_off = next_off;
1688 } while ((bh = bh->b_this_page) != head);
1689
1690 if (contiguous_blks) {
1691 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1692 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1693 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1694 }
1695
1696 /* If we have released all the blocks belonging to a cluster, then we
1697 * need to release the reserved space for that cluster. */
1698 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1699 while (num_clusters > 0) {
1700 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1701 ((num_clusters - 1) << sbi->s_cluster_bits);
1702 if (sbi->s_cluster_ratio == 1 ||
1703 !ext4_find_delalloc_cluster(inode, lblk))
1704 ext4_da_release_space(inode, 1);
1705
1706 num_clusters--;
1707 }
1708 }
1709
1710 /*
1711 * Delayed allocation stuff
1712 */
1713
1714 struct mpage_da_data {
1715 struct inode *inode;
1716 struct writeback_control *wbc;
1717
1718 pgoff_t first_page; /* The first page to write */
1719 pgoff_t next_page; /* Current page to examine */
1720 pgoff_t last_page; /* Last page to examine */
1721 /*
1722 * Extent to map - this can be after first_page because that can be
1723 * fully mapped. We somewhat abuse m_flags to store whether the extent
1724 * is delalloc or unwritten.
1725 */
1726 struct ext4_map_blocks map;
1727 struct ext4_io_submit io_submit; /* IO submission data */
1728 unsigned int do_map:1;
1729 };
1730
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1731 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1732 bool invalidate)
1733 {
1734 int nr_pages, i;
1735 pgoff_t index, end;
1736 struct pagevec pvec;
1737 struct inode *inode = mpd->inode;
1738 struct address_space *mapping = inode->i_mapping;
1739
1740 /* This is necessary when next_page == 0. */
1741 if (mpd->first_page >= mpd->next_page)
1742 return;
1743
1744 index = mpd->first_page;
1745 end = mpd->next_page - 1;
1746 if (invalidate) {
1747 ext4_lblk_t start, last;
1748 start = index << (PAGE_SHIFT - inode->i_blkbits);
1749 last = end << (PAGE_SHIFT - inode->i_blkbits);
1750 ext4_es_remove_extent(inode, start, last - start + 1);
1751 }
1752
1753 pagevec_init(&pvec);
1754 while (index <= end) {
1755 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1756 if (nr_pages == 0)
1757 break;
1758 for (i = 0; i < nr_pages; i++) {
1759 struct page *page = pvec.pages[i];
1760
1761 BUG_ON(!PageLocked(page));
1762 BUG_ON(PageWriteback(page));
1763 if (invalidate) {
1764 if (page_mapped(page))
1765 clear_page_dirty_for_io(page);
1766 block_invalidatepage(page, 0, PAGE_SIZE);
1767 ClearPageUptodate(page);
1768 }
1769 unlock_page(page);
1770 }
1771 pagevec_release(&pvec);
1772 }
1773 }
1774
ext4_print_free_blocks(struct inode * inode)1775 static void ext4_print_free_blocks(struct inode *inode)
1776 {
1777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1778 struct super_block *sb = inode->i_sb;
1779 struct ext4_inode_info *ei = EXT4_I(inode);
1780
1781 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1782 EXT4_C2B(EXT4_SB(inode->i_sb),
1783 ext4_count_free_clusters(sb)));
1784 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1785 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1786 (long long) EXT4_C2B(EXT4_SB(sb),
1787 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1788 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1789 (long long) EXT4_C2B(EXT4_SB(sb),
1790 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1791 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1792 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1793 ei->i_reserved_data_blocks);
1794 return;
1795 }
1796
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1797 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1798 {
1799 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1800 }
1801
1802 /*
1803 * This function is grabs code from the very beginning of
1804 * ext4_map_blocks, but assumes that the caller is from delayed write
1805 * time. This function looks up the requested blocks and sets the
1806 * buffer delay bit under the protection of i_data_sem.
1807 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1808 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1809 struct ext4_map_blocks *map,
1810 struct buffer_head *bh)
1811 {
1812 struct extent_status es;
1813 int retval;
1814 sector_t invalid_block = ~((sector_t) 0xffff);
1815 #ifdef ES_AGGRESSIVE_TEST
1816 struct ext4_map_blocks orig_map;
1817
1818 memcpy(&orig_map, map, sizeof(*map));
1819 #endif
1820
1821 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1822 invalid_block = ~0;
1823
1824 map->m_flags = 0;
1825 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1826 "logical block %lu\n", inode->i_ino, map->m_len,
1827 (unsigned long) map->m_lblk);
1828
1829 /* Lookup extent status tree firstly */
1830 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1831 if (ext4_es_is_hole(&es)) {
1832 retval = 0;
1833 down_read(&EXT4_I(inode)->i_data_sem);
1834 goto add_delayed;
1835 }
1836
1837 /*
1838 * Delayed extent could be allocated by fallocate.
1839 * So we need to check it.
1840 */
1841 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1842 map_bh(bh, inode->i_sb, invalid_block);
1843 set_buffer_new(bh);
1844 set_buffer_delay(bh);
1845 return 0;
1846 }
1847
1848 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1849 retval = es.es_len - (iblock - es.es_lblk);
1850 if (retval > map->m_len)
1851 retval = map->m_len;
1852 map->m_len = retval;
1853 if (ext4_es_is_written(&es))
1854 map->m_flags |= EXT4_MAP_MAPPED;
1855 else if (ext4_es_is_unwritten(&es))
1856 map->m_flags |= EXT4_MAP_UNWRITTEN;
1857 else
1858 BUG_ON(1);
1859
1860 #ifdef ES_AGGRESSIVE_TEST
1861 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1862 #endif
1863 return retval;
1864 }
1865
1866 /*
1867 * Try to see if we can get the block without requesting a new
1868 * file system block.
1869 */
1870 down_read(&EXT4_I(inode)->i_data_sem);
1871 if (ext4_has_inline_data(inode))
1872 retval = 0;
1873 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1874 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1875 else
1876 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1877
1878 add_delayed:
1879 if (retval == 0) {
1880 int ret;
1881 /*
1882 * XXX: __block_prepare_write() unmaps passed block,
1883 * is it OK?
1884 */
1885 /*
1886 * If the block was allocated from previously allocated cluster,
1887 * then we don't need to reserve it again. However we still need
1888 * to reserve metadata for every block we're going to write.
1889 */
1890 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1891 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1892 ret = ext4_da_reserve_space(inode);
1893 if (ret) {
1894 /* not enough space to reserve */
1895 retval = ret;
1896 goto out_unlock;
1897 }
1898 }
1899
1900 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1901 ~0, EXTENT_STATUS_DELAYED);
1902 if (ret) {
1903 retval = ret;
1904 goto out_unlock;
1905 }
1906
1907 map_bh(bh, inode->i_sb, invalid_block);
1908 set_buffer_new(bh);
1909 set_buffer_delay(bh);
1910 } else if (retval > 0) {
1911 int ret;
1912 unsigned int status;
1913
1914 if (unlikely(retval != map->m_len)) {
1915 ext4_warning(inode->i_sb,
1916 "ES len assertion failed for inode "
1917 "%lu: retval %d != map->m_len %d",
1918 inode->i_ino, retval, map->m_len);
1919 WARN_ON(1);
1920 }
1921
1922 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1923 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1924 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1925 map->m_pblk, status);
1926 if (ret != 0)
1927 retval = ret;
1928 }
1929
1930 out_unlock:
1931 up_read((&EXT4_I(inode)->i_data_sem));
1932
1933 return retval;
1934 }
1935
1936 /*
1937 * This is a special get_block_t callback which is used by
1938 * ext4_da_write_begin(). It will either return mapped block or
1939 * reserve space for a single block.
1940 *
1941 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1942 * We also have b_blocknr = -1 and b_bdev initialized properly
1943 *
1944 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1945 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1946 * initialized properly.
1947 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1948 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1949 struct buffer_head *bh, int create)
1950 {
1951 struct ext4_map_blocks map;
1952 int ret = 0;
1953
1954 BUG_ON(create == 0);
1955 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1956
1957 map.m_lblk = iblock;
1958 map.m_len = 1;
1959
1960 /*
1961 * first, we need to know whether the block is allocated already
1962 * preallocated blocks are unmapped but should treated
1963 * the same as allocated blocks.
1964 */
1965 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1966 if (ret <= 0)
1967 return ret;
1968
1969 map_bh(bh, inode->i_sb, map.m_pblk);
1970 ext4_update_bh_state(bh, map.m_flags);
1971
1972 if (buffer_unwritten(bh)) {
1973 /* A delayed write to unwritten bh should be marked
1974 * new and mapped. Mapped ensures that we don't do
1975 * get_block multiple times when we write to the same
1976 * offset and new ensures that we do proper zero out
1977 * for partial write.
1978 */
1979 set_buffer_new(bh);
1980 set_buffer_mapped(bh);
1981 }
1982 return 0;
1983 }
1984
bget_one(handle_t * handle,struct buffer_head * bh)1985 static int bget_one(handle_t *handle, struct buffer_head *bh)
1986 {
1987 get_bh(bh);
1988 return 0;
1989 }
1990
bput_one(handle_t * handle,struct buffer_head * bh)1991 static int bput_one(handle_t *handle, struct buffer_head *bh)
1992 {
1993 put_bh(bh);
1994 return 0;
1995 }
1996
__ext4_journalled_writepage(struct page * page,unsigned int len)1997 static int __ext4_journalled_writepage(struct page *page,
1998 unsigned int len)
1999 {
2000 struct address_space *mapping = page->mapping;
2001 struct inode *inode = mapping->host;
2002 struct buffer_head *page_bufs = NULL;
2003 handle_t *handle = NULL;
2004 int ret = 0, err = 0;
2005 int inline_data = ext4_has_inline_data(inode);
2006 struct buffer_head *inode_bh = NULL;
2007
2008 ClearPageChecked(page);
2009
2010 if (inline_data) {
2011 BUG_ON(page->index != 0);
2012 BUG_ON(len > ext4_get_max_inline_size(inode));
2013 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2014 if (inode_bh == NULL)
2015 goto out;
2016 } else {
2017 page_bufs = page_buffers(page);
2018 if (!page_bufs) {
2019 BUG();
2020 goto out;
2021 }
2022 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2023 NULL, bget_one);
2024 }
2025 /*
2026 * We need to release the page lock before we start the
2027 * journal, so grab a reference so the page won't disappear
2028 * out from under us.
2029 */
2030 get_page(page);
2031 unlock_page(page);
2032
2033 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2034 ext4_writepage_trans_blocks(inode));
2035 if (IS_ERR(handle)) {
2036 ret = PTR_ERR(handle);
2037 put_page(page);
2038 goto out_no_pagelock;
2039 }
2040 BUG_ON(!ext4_handle_valid(handle));
2041
2042 lock_page(page);
2043 put_page(page);
2044 if (page->mapping != mapping) {
2045 /* The page got truncated from under us */
2046 ext4_journal_stop(handle);
2047 ret = 0;
2048 goto out;
2049 }
2050
2051 if (inline_data) {
2052 ret = ext4_mark_inode_dirty(handle, inode);
2053 } else {
2054 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2055 do_journal_get_write_access);
2056
2057 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2058 write_end_fn);
2059 }
2060 if (ret == 0)
2061 ret = err;
2062 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2063 err = ext4_journal_stop(handle);
2064 if (!ret)
2065 ret = err;
2066
2067 if (!ext4_has_inline_data(inode))
2068 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2069 NULL, bput_one);
2070 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2071 out:
2072 unlock_page(page);
2073 out_no_pagelock:
2074 brelse(inode_bh);
2075 return ret;
2076 }
2077
2078 /*
2079 * Note that we don't need to start a transaction unless we're journaling data
2080 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2081 * need to file the inode to the transaction's list in ordered mode because if
2082 * we are writing back data added by write(), the inode is already there and if
2083 * we are writing back data modified via mmap(), no one guarantees in which
2084 * transaction the data will hit the disk. In case we are journaling data, we
2085 * cannot start transaction directly because transaction start ranks above page
2086 * lock so we have to do some magic.
2087 *
2088 * This function can get called via...
2089 * - ext4_writepages after taking page lock (have journal handle)
2090 * - journal_submit_inode_data_buffers (no journal handle)
2091 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2092 * - grab_page_cache when doing write_begin (have journal handle)
2093 *
2094 * We don't do any block allocation in this function. If we have page with
2095 * multiple blocks we need to write those buffer_heads that are mapped. This
2096 * is important for mmaped based write. So if we do with blocksize 1K
2097 * truncate(f, 1024);
2098 * a = mmap(f, 0, 4096);
2099 * a[0] = 'a';
2100 * truncate(f, 4096);
2101 * we have in the page first buffer_head mapped via page_mkwrite call back
2102 * but other buffer_heads would be unmapped but dirty (dirty done via the
2103 * do_wp_page). So writepage should write the first block. If we modify
2104 * the mmap area beyond 1024 we will again get a page_fault and the
2105 * page_mkwrite callback will do the block allocation and mark the
2106 * buffer_heads mapped.
2107 *
2108 * We redirty the page if we have any buffer_heads that is either delay or
2109 * unwritten in the page.
2110 *
2111 * We can get recursively called as show below.
2112 *
2113 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2114 * ext4_writepage()
2115 *
2116 * But since we don't do any block allocation we should not deadlock.
2117 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2118 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2119 static int ext4_writepage(struct page *page,
2120 struct writeback_control *wbc)
2121 {
2122 int ret = 0;
2123 loff_t size;
2124 unsigned int len;
2125 struct buffer_head *page_bufs = NULL;
2126 struct inode *inode = page->mapping->host;
2127 struct ext4_io_submit io_submit;
2128 bool keep_towrite = false;
2129
2130 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2131 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2132 unlock_page(page);
2133 return -EIO;
2134 }
2135
2136 trace_ext4_writepage(page);
2137 size = i_size_read(inode);
2138 if (page->index == size >> PAGE_SHIFT)
2139 len = size & ~PAGE_MASK;
2140 else
2141 len = PAGE_SIZE;
2142
2143 page_bufs = page_buffers(page);
2144 /*
2145 * We cannot do block allocation or other extent handling in this
2146 * function. If there are buffers needing that, we have to redirty
2147 * the page. But we may reach here when we do a journal commit via
2148 * journal_submit_inode_data_buffers() and in that case we must write
2149 * allocated buffers to achieve data=ordered mode guarantees.
2150 *
2151 * Also, if there is only one buffer per page (the fs block
2152 * size == the page size), if one buffer needs block
2153 * allocation or needs to modify the extent tree to clear the
2154 * unwritten flag, we know that the page can't be written at
2155 * all, so we might as well refuse the write immediately.
2156 * Unfortunately if the block size != page size, we can't as
2157 * easily detect this case using ext4_walk_page_buffers(), but
2158 * for the extremely common case, this is an optimization that
2159 * skips a useless round trip through ext4_bio_write_page().
2160 */
2161 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2162 ext4_bh_delay_or_unwritten)) {
2163 redirty_page_for_writepage(wbc, page);
2164 if ((current->flags & PF_MEMALLOC) ||
2165 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2166 /*
2167 * For memory cleaning there's no point in writing only
2168 * some buffers. So just bail out. Warn if we came here
2169 * from direct reclaim.
2170 */
2171 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2172 == PF_MEMALLOC);
2173 unlock_page(page);
2174 return 0;
2175 }
2176 keep_towrite = true;
2177 }
2178
2179 if (PageChecked(page) && ext4_should_journal_data(inode))
2180 /*
2181 * It's mmapped pagecache. Add buffers and journal it. There
2182 * doesn't seem much point in redirtying the page here.
2183 */
2184 return __ext4_journalled_writepage(page, len);
2185
2186 ext4_io_submit_init(&io_submit, wbc);
2187 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2188 if (!io_submit.io_end) {
2189 redirty_page_for_writepage(wbc, page);
2190 unlock_page(page);
2191 return -ENOMEM;
2192 }
2193 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2194 ext4_io_submit(&io_submit);
2195 /* Drop io_end reference we got from init */
2196 ext4_put_io_end_defer(io_submit.io_end);
2197 return ret;
2198 }
2199
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2200 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2201 {
2202 int len;
2203 loff_t size;
2204 int err;
2205
2206 BUG_ON(page->index != mpd->first_page);
2207 clear_page_dirty_for_io(page);
2208 /*
2209 * We have to be very careful here! Nothing protects writeback path
2210 * against i_size changes and the page can be writeably mapped into
2211 * page tables. So an application can be growing i_size and writing
2212 * data through mmap while writeback runs. clear_page_dirty_for_io()
2213 * write-protects our page in page tables and the page cannot get
2214 * written to again until we release page lock. So only after
2215 * clear_page_dirty_for_io() we are safe to sample i_size for
2216 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2217 * on the barrier provided by TestClearPageDirty in
2218 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2219 * after page tables are updated.
2220 */
2221 size = i_size_read(mpd->inode);
2222 if (page->index == size >> PAGE_SHIFT)
2223 len = size & ~PAGE_MASK;
2224 else
2225 len = PAGE_SIZE;
2226 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2227 if (!err)
2228 mpd->wbc->nr_to_write--;
2229 mpd->first_page++;
2230
2231 return err;
2232 }
2233
2234 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2235
2236 /*
2237 * mballoc gives us at most this number of blocks...
2238 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2239 * The rest of mballoc seems to handle chunks up to full group size.
2240 */
2241 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2242
2243 /*
2244 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2245 *
2246 * @mpd - extent of blocks
2247 * @lblk - logical number of the block in the file
2248 * @bh - buffer head we want to add to the extent
2249 *
2250 * The function is used to collect contig. blocks in the same state. If the
2251 * buffer doesn't require mapping for writeback and we haven't started the
2252 * extent of buffers to map yet, the function returns 'true' immediately - the
2253 * caller can write the buffer right away. Otherwise the function returns true
2254 * if the block has been added to the extent, false if the block couldn't be
2255 * added.
2256 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2257 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2258 struct buffer_head *bh)
2259 {
2260 struct ext4_map_blocks *map = &mpd->map;
2261
2262 /* Buffer that doesn't need mapping for writeback? */
2263 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2264 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2265 /* So far no extent to map => we write the buffer right away */
2266 if (map->m_len == 0)
2267 return true;
2268 return false;
2269 }
2270
2271 /* First block in the extent? */
2272 if (map->m_len == 0) {
2273 /* We cannot map unless handle is started... */
2274 if (!mpd->do_map)
2275 return false;
2276 map->m_lblk = lblk;
2277 map->m_len = 1;
2278 map->m_flags = bh->b_state & BH_FLAGS;
2279 return true;
2280 }
2281
2282 /* Don't go larger than mballoc is willing to allocate */
2283 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2284 return false;
2285
2286 /* Can we merge the block to our big extent? */
2287 if (lblk == map->m_lblk + map->m_len &&
2288 (bh->b_state & BH_FLAGS) == map->m_flags) {
2289 map->m_len++;
2290 return true;
2291 }
2292 return false;
2293 }
2294
2295 /*
2296 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2297 *
2298 * @mpd - extent of blocks for mapping
2299 * @head - the first buffer in the page
2300 * @bh - buffer we should start processing from
2301 * @lblk - logical number of the block in the file corresponding to @bh
2302 *
2303 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2304 * the page for IO if all buffers in this page were mapped and there's no
2305 * accumulated extent of buffers to map or add buffers in the page to the
2306 * extent of buffers to map. The function returns 1 if the caller can continue
2307 * by processing the next page, 0 if it should stop adding buffers to the
2308 * extent to map because we cannot extend it anymore. It can also return value
2309 * < 0 in case of error during IO submission.
2310 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2311 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2312 struct buffer_head *head,
2313 struct buffer_head *bh,
2314 ext4_lblk_t lblk)
2315 {
2316 struct inode *inode = mpd->inode;
2317 int err;
2318 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2319 >> inode->i_blkbits;
2320
2321 do {
2322 BUG_ON(buffer_locked(bh));
2323
2324 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2325 /* Found extent to map? */
2326 if (mpd->map.m_len)
2327 return 0;
2328 /* Buffer needs mapping and handle is not started? */
2329 if (!mpd->do_map)
2330 return 0;
2331 /* Everything mapped so far and we hit EOF */
2332 break;
2333 }
2334 } while (lblk++, (bh = bh->b_this_page) != head);
2335 /* So far everything mapped? Submit the page for IO. */
2336 if (mpd->map.m_len == 0) {
2337 err = mpage_submit_page(mpd, head->b_page);
2338 if (err < 0)
2339 return err;
2340 }
2341 return lblk < blocks;
2342 }
2343
2344 /*
2345 * mpage_map_buffers - update buffers corresponding to changed extent and
2346 * submit fully mapped pages for IO
2347 *
2348 * @mpd - description of extent to map, on return next extent to map
2349 *
2350 * Scan buffers corresponding to changed extent (we expect corresponding pages
2351 * to be already locked) and update buffer state according to new extent state.
2352 * We map delalloc buffers to their physical location, clear unwritten bits,
2353 * and mark buffers as uninit when we perform writes to unwritten extents
2354 * and do extent conversion after IO is finished. If the last page is not fully
2355 * mapped, we update @map to the next extent in the last page that needs
2356 * mapping. Otherwise we submit the page for IO.
2357 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2358 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2359 {
2360 struct pagevec pvec;
2361 int nr_pages, i;
2362 struct inode *inode = mpd->inode;
2363 struct buffer_head *head, *bh;
2364 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2365 pgoff_t start, end;
2366 ext4_lblk_t lblk;
2367 sector_t pblock;
2368 int err;
2369
2370 start = mpd->map.m_lblk >> bpp_bits;
2371 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2372 lblk = start << bpp_bits;
2373 pblock = mpd->map.m_pblk;
2374
2375 pagevec_init(&pvec);
2376 while (start <= end) {
2377 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2378 &start, end);
2379 if (nr_pages == 0)
2380 break;
2381 for (i = 0; i < nr_pages; i++) {
2382 struct page *page = pvec.pages[i];
2383
2384 bh = head = page_buffers(page);
2385 do {
2386 if (lblk < mpd->map.m_lblk)
2387 continue;
2388 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2389 /*
2390 * Buffer after end of mapped extent.
2391 * Find next buffer in the page to map.
2392 */
2393 mpd->map.m_len = 0;
2394 mpd->map.m_flags = 0;
2395 /*
2396 * FIXME: If dioread_nolock supports
2397 * blocksize < pagesize, we need to make
2398 * sure we add size mapped so far to
2399 * io_end->size as the following call
2400 * can submit the page for IO.
2401 */
2402 err = mpage_process_page_bufs(mpd, head,
2403 bh, lblk);
2404 pagevec_release(&pvec);
2405 if (err > 0)
2406 err = 0;
2407 return err;
2408 }
2409 if (buffer_delay(bh)) {
2410 clear_buffer_delay(bh);
2411 bh->b_blocknr = pblock++;
2412 }
2413 clear_buffer_unwritten(bh);
2414 } while (lblk++, (bh = bh->b_this_page) != head);
2415
2416 /*
2417 * FIXME: This is going to break if dioread_nolock
2418 * supports blocksize < pagesize as we will try to
2419 * convert potentially unmapped parts of inode.
2420 */
2421 mpd->io_submit.io_end->size += PAGE_SIZE;
2422 /* Page fully mapped - let IO run! */
2423 err = mpage_submit_page(mpd, page);
2424 if (err < 0) {
2425 pagevec_release(&pvec);
2426 return err;
2427 }
2428 }
2429 pagevec_release(&pvec);
2430 }
2431 /* Extent fully mapped and matches with page boundary. We are done. */
2432 mpd->map.m_len = 0;
2433 mpd->map.m_flags = 0;
2434 return 0;
2435 }
2436
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2437 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2438 {
2439 struct inode *inode = mpd->inode;
2440 struct ext4_map_blocks *map = &mpd->map;
2441 int get_blocks_flags;
2442 int err, dioread_nolock;
2443
2444 trace_ext4_da_write_pages_extent(inode, map);
2445 /*
2446 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2447 * to convert an unwritten extent to be initialized (in the case
2448 * where we have written into one or more preallocated blocks). It is
2449 * possible that we're going to need more metadata blocks than
2450 * previously reserved. However we must not fail because we're in
2451 * writeback and there is nothing we can do about it so it might result
2452 * in data loss. So use reserved blocks to allocate metadata if
2453 * possible.
2454 *
2455 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2456 * the blocks in question are delalloc blocks. This indicates
2457 * that the blocks and quotas has already been checked when
2458 * the data was copied into the page cache.
2459 */
2460 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2461 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2462 EXT4_GET_BLOCKS_IO_SUBMIT;
2463 dioread_nolock = ext4_should_dioread_nolock(inode);
2464 if (dioread_nolock)
2465 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2466 if (map->m_flags & (1 << BH_Delay))
2467 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2468
2469 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2470 if (err < 0)
2471 return err;
2472 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2473 if (!mpd->io_submit.io_end->handle &&
2474 ext4_handle_valid(handle)) {
2475 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2476 handle->h_rsv_handle = NULL;
2477 }
2478 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2479 }
2480
2481 BUG_ON(map->m_len == 0);
2482 if (map->m_flags & EXT4_MAP_NEW) {
2483 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2484 map->m_len);
2485 }
2486 return 0;
2487 }
2488
2489 /*
2490 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2491 * mpd->len and submit pages underlying it for IO
2492 *
2493 * @handle - handle for journal operations
2494 * @mpd - extent to map
2495 * @give_up_on_write - we set this to true iff there is a fatal error and there
2496 * is no hope of writing the data. The caller should discard
2497 * dirty pages to avoid infinite loops.
2498 *
2499 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2500 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2501 * them to initialized or split the described range from larger unwritten
2502 * extent. Note that we need not map all the described range since allocation
2503 * can return less blocks or the range is covered by more unwritten extents. We
2504 * cannot map more because we are limited by reserved transaction credits. On
2505 * the other hand we always make sure that the last touched page is fully
2506 * mapped so that it can be written out (and thus forward progress is
2507 * guaranteed). After mapping we submit all mapped pages for IO.
2508 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2509 static int mpage_map_and_submit_extent(handle_t *handle,
2510 struct mpage_da_data *mpd,
2511 bool *give_up_on_write)
2512 {
2513 struct inode *inode = mpd->inode;
2514 struct ext4_map_blocks *map = &mpd->map;
2515 int err;
2516 loff_t disksize;
2517 int progress = 0;
2518
2519 mpd->io_submit.io_end->offset =
2520 ((loff_t)map->m_lblk) << inode->i_blkbits;
2521 do {
2522 err = mpage_map_one_extent(handle, mpd);
2523 if (err < 0) {
2524 struct super_block *sb = inode->i_sb;
2525
2526 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2527 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2528 goto invalidate_dirty_pages;
2529 /*
2530 * Let the uper layers retry transient errors.
2531 * In the case of ENOSPC, if ext4_count_free_blocks()
2532 * is non-zero, a commit should free up blocks.
2533 */
2534 if ((err == -ENOMEM) ||
2535 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2536 if (progress)
2537 goto update_disksize;
2538 return err;
2539 }
2540 ext4_msg(sb, KERN_CRIT,
2541 "Delayed block allocation failed for "
2542 "inode %lu at logical offset %llu with"
2543 " max blocks %u with error %d",
2544 inode->i_ino,
2545 (unsigned long long)map->m_lblk,
2546 (unsigned)map->m_len, -err);
2547 ext4_msg(sb, KERN_CRIT,
2548 "This should not happen!! Data will "
2549 "be lost\n");
2550 if (err == -ENOSPC)
2551 ext4_print_free_blocks(inode);
2552 invalidate_dirty_pages:
2553 *give_up_on_write = true;
2554 return err;
2555 }
2556 progress = 1;
2557 /*
2558 * Update buffer state, submit mapped pages, and get us new
2559 * extent to map
2560 */
2561 err = mpage_map_and_submit_buffers(mpd);
2562 if (err < 0)
2563 goto update_disksize;
2564 } while (map->m_len);
2565
2566 update_disksize:
2567 /*
2568 * Update on-disk size after IO is submitted. Races with
2569 * truncate are avoided by checking i_size under i_data_sem.
2570 */
2571 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2572 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2573 int err2;
2574 loff_t i_size;
2575
2576 down_write(&EXT4_I(inode)->i_data_sem);
2577 i_size = i_size_read(inode);
2578 if (disksize > i_size)
2579 disksize = i_size;
2580 if (disksize > EXT4_I(inode)->i_disksize)
2581 EXT4_I(inode)->i_disksize = disksize;
2582 up_write(&EXT4_I(inode)->i_data_sem);
2583 err2 = ext4_mark_inode_dirty(handle, inode);
2584 if (err2)
2585 ext4_error(inode->i_sb,
2586 "Failed to mark inode %lu dirty",
2587 inode->i_ino);
2588 if (!err)
2589 err = err2;
2590 }
2591 return err;
2592 }
2593
2594 /*
2595 * Calculate the total number of credits to reserve for one writepages
2596 * iteration. This is called from ext4_writepages(). We map an extent of
2597 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2598 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2599 * bpp - 1 blocks in bpp different extents.
2600 */
ext4_da_writepages_trans_blocks(struct inode * inode)2601 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2602 {
2603 int bpp = ext4_journal_blocks_per_page(inode);
2604
2605 return ext4_meta_trans_blocks(inode,
2606 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2607 }
2608
2609 /*
2610 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2611 * and underlying extent to map
2612 *
2613 * @mpd - where to look for pages
2614 *
2615 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2616 * IO immediately. When we find a page which isn't mapped we start accumulating
2617 * extent of buffers underlying these pages that needs mapping (formed by
2618 * either delayed or unwritten buffers). We also lock the pages containing
2619 * these buffers. The extent found is returned in @mpd structure (starting at
2620 * mpd->lblk with length mpd->len blocks).
2621 *
2622 * Note that this function can attach bios to one io_end structure which are
2623 * neither logically nor physically contiguous. Although it may seem as an
2624 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2625 * case as we need to track IO to all buffers underlying a page in one io_end.
2626 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2627 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2628 {
2629 struct address_space *mapping = mpd->inode->i_mapping;
2630 struct pagevec pvec;
2631 unsigned int nr_pages;
2632 long left = mpd->wbc->nr_to_write;
2633 pgoff_t index = mpd->first_page;
2634 pgoff_t end = mpd->last_page;
2635 int tag;
2636 int i, err = 0;
2637 int blkbits = mpd->inode->i_blkbits;
2638 ext4_lblk_t lblk;
2639 struct buffer_head *head;
2640
2641 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2642 tag = PAGECACHE_TAG_TOWRITE;
2643 else
2644 tag = PAGECACHE_TAG_DIRTY;
2645
2646 pagevec_init(&pvec);
2647 mpd->map.m_len = 0;
2648 mpd->next_page = index;
2649 while (index <= end) {
2650 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2651 tag);
2652 if (nr_pages == 0)
2653 goto out;
2654
2655 for (i = 0; i < nr_pages; i++) {
2656 struct page *page = pvec.pages[i];
2657
2658 /*
2659 * Accumulated enough dirty pages? This doesn't apply
2660 * to WB_SYNC_ALL mode. For integrity sync we have to
2661 * keep going because someone may be concurrently
2662 * dirtying pages, and we might have synced a lot of
2663 * newly appeared dirty pages, but have not synced all
2664 * of the old dirty pages.
2665 */
2666 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2667 goto out;
2668
2669 /* If we can't merge this page, we are done. */
2670 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2671 goto out;
2672
2673 lock_page(page);
2674 /*
2675 * If the page is no longer dirty, or its mapping no
2676 * longer corresponds to inode we are writing (which
2677 * means it has been truncated or invalidated), or the
2678 * page is already under writeback and we are not doing
2679 * a data integrity writeback, skip the page
2680 */
2681 if (!PageDirty(page) ||
2682 (PageWriteback(page) &&
2683 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2684 unlikely(page->mapping != mapping)) {
2685 unlock_page(page);
2686 continue;
2687 }
2688
2689 wait_on_page_writeback(page);
2690 BUG_ON(PageWriteback(page));
2691
2692 if (mpd->map.m_len == 0)
2693 mpd->first_page = page->index;
2694 mpd->next_page = page->index + 1;
2695 /* Add all dirty buffers to mpd */
2696 lblk = ((ext4_lblk_t)page->index) <<
2697 (PAGE_SHIFT - blkbits);
2698 head = page_buffers(page);
2699 err = mpage_process_page_bufs(mpd, head, head, lblk);
2700 if (err <= 0)
2701 goto out;
2702 err = 0;
2703 left--;
2704 }
2705 pagevec_release(&pvec);
2706 cond_resched();
2707 }
2708 return 0;
2709 out:
2710 pagevec_release(&pvec);
2711 return err;
2712 }
2713
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2714 static int ext4_writepages(struct address_space *mapping,
2715 struct writeback_control *wbc)
2716 {
2717 pgoff_t writeback_index = 0;
2718 long nr_to_write = wbc->nr_to_write;
2719 int range_whole = 0;
2720 int cycled = 1;
2721 handle_t *handle = NULL;
2722 struct mpage_da_data mpd;
2723 struct inode *inode = mapping->host;
2724 int needed_blocks, rsv_blocks = 0, ret = 0;
2725 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2726 bool done;
2727 struct blk_plug plug;
2728 bool give_up_on_write = false;
2729
2730 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2731 return -EIO;
2732
2733 percpu_down_read(&sbi->s_writepages_rwsem);
2734 trace_ext4_writepages(inode, wbc);
2735
2736 /*
2737 * No pages to write? This is mainly a kludge to avoid starting
2738 * a transaction for special inodes like journal inode on last iput()
2739 * because that could violate lock ordering on umount
2740 */
2741 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2742 goto out_writepages;
2743
2744 if (ext4_should_journal_data(inode)) {
2745 ret = generic_writepages(mapping, wbc);
2746 goto out_writepages;
2747 }
2748
2749 /*
2750 * If the filesystem has aborted, it is read-only, so return
2751 * right away instead of dumping stack traces later on that
2752 * will obscure the real source of the problem. We test
2753 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2754 * the latter could be true if the filesystem is mounted
2755 * read-only, and in that case, ext4_writepages should
2756 * *never* be called, so if that ever happens, we would want
2757 * the stack trace.
2758 */
2759 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2760 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2761 ret = -EROFS;
2762 goto out_writepages;
2763 }
2764
2765 if (ext4_should_dioread_nolock(inode)) {
2766 /*
2767 * We may need to convert up to one extent per block in
2768 * the page and we may dirty the inode.
2769 */
2770 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2771 PAGE_SIZE >> inode->i_blkbits);
2772 }
2773
2774 /*
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2778 */
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2785 }
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2790 }
2791
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 range_whole = 1;
2794
2795 if (wbc->range_cyclic) {
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2798 cycled = 0;
2799 mpd.first_page = writeback_index;
2800 mpd.last_page = -1;
2801 } else {
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804 }
2805
2806 mpd.inode = inode;
2807 mpd.wbc = wbc;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 done = false;
2813 blk_start_plug(&plug);
2814
2815 /*
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2819 * started.
2820 */
2821 mpd.do_map = 0;
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2824 ret = -ENOMEM;
2825 goto unplug;
2826 }
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2834 if (ret < 0)
2835 goto unplug;
2836
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 break;
2843 }
2844
2845 /*
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
2851 */
2852 BUG_ON(ext4_should_journal_data(inode));
2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854
2855 /* start a new transaction */
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 "%ld pages, ino %lu; err %d", __func__,
2862 wbc->nr_to_write, inode->i_ino, ret);
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
2865 mpd.io_submit.io_end = NULL;
2866 break;
2867 }
2868 mpd.do_map = 1;
2869
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2872 if (!ret) {
2873 if (mpd.map.m_len)
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2875 &give_up_on_write);
2876 else {
2877 /*
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2881 * done.
2882 */
2883 done = true;
2884 }
2885 }
2886 /*
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2895 */
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2898 handle = NULL;
2899 mpd.do_map = 0;
2900 }
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
2904 mpage_release_unused_pages(&mpd, give_up_on_write);
2905 /*
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2911 */
2912 if (handle) {
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2915 } else
2916 ext4_put_io_end(mpd.io_submit.io_end);
2917 mpd.io_submit.io_end = NULL;
2918
2919 if (ret == -ENOSPC && sbi->s_journal) {
2920 /*
2921 * Commit the transaction which would
2922 * free blocks released in the transaction
2923 * and try again
2924 */
2925 jbd2_journal_force_commit_nested(sbi->s_journal);
2926 ret = 0;
2927 continue;
2928 }
2929 /* Fatal error - ENOMEM, EIO... */
2930 if (ret)
2931 break;
2932 }
2933 unplug:
2934 blk_finish_plug(&plug);
2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2936 cycled = 1;
2937 mpd.last_page = writeback_index - 1;
2938 mpd.first_page = 0;
2939 goto retry;
2940 }
2941
2942 /* Update index */
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 /*
2945 * Set the writeback_index so that range_cyclic
2946 * mode will write it back later
2947 */
2948 mapping->writeback_index = mpd.first_page;
2949
2950 out_writepages:
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
2953 percpu_up_read(&sbi->s_writepages_rwsem);
2954 return ret;
2955 }
2956
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2957 static int ext4_dax_writepages(struct address_space *mapping,
2958 struct writeback_control *wbc)
2959 {
2960 int ret;
2961 long nr_to_write = wbc->nr_to_write;
2962 struct inode *inode = mapping->host;
2963 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2964
2965 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2966 return -EIO;
2967
2968 percpu_down_read(&sbi->s_writepages_rwsem);
2969 trace_ext4_writepages(inode, wbc);
2970
2971 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2972 trace_ext4_writepages_result(inode, wbc, ret,
2973 nr_to_write - wbc->nr_to_write);
2974 percpu_up_read(&sbi->s_writepages_rwsem);
2975 return ret;
2976 }
2977
ext4_nonda_switch(struct super_block * sb)2978 static int ext4_nonda_switch(struct super_block *sb)
2979 {
2980 s64 free_clusters, dirty_clusters;
2981 struct ext4_sb_info *sbi = EXT4_SB(sb);
2982
2983 /*
2984 * switch to non delalloc mode if we are running low
2985 * on free block. The free block accounting via percpu
2986 * counters can get slightly wrong with percpu_counter_batch getting
2987 * accumulated on each CPU without updating global counters
2988 * Delalloc need an accurate free block accounting. So switch
2989 * to non delalloc when we are near to error range.
2990 */
2991 free_clusters =
2992 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2993 dirty_clusters =
2994 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2995 /*
2996 * Start pushing delalloc when 1/2 of free blocks are dirty.
2997 */
2998 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2999 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3000
3001 if (2 * free_clusters < 3 * dirty_clusters ||
3002 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3003 /*
3004 * free block count is less than 150% of dirty blocks
3005 * or free blocks is less than watermark
3006 */
3007 return 1;
3008 }
3009 return 0;
3010 }
3011
3012 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)3013 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3014 {
3015 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3016 return 1;
3017
3018 if (pos + len <= 0x7fffffffULL)
3019 return 1;
3020
3021 /* We might need to update the superblock to set LARGE_FILE */
3022 return 2;
3023 }
3024
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3025 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3026 loff_t pos, unsigned len, unsigned flags,
3027 struct page **pagep, void **fsdata)
3028 {
3029 int ret, retries = 0;
3030 struct page *page;
3031 pgoff_t index;
3032 struct inode *inode = mapping->host;
3033 handle_t *handle;
3034
3035 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3036 return -EIO;
3037
3038 index = pos >> PAGE_SHIFT;
3039
3040 if (ext4_nonda_switch(inode->i_sb) ||
3041 S_ISLNK(inode->i_mode)) {
3042 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3043 return ext4_write_begin(file, mapping, pos,
3044 len, flags, pagep, fsdata);
3045 }
3046 *fsdata = (void *)0;
3047 trace_ext4_da_write_begin(inode, pos, len, flags);
3048
3049 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3050 ret = ext4_da_write_inline_data_begin(mapping, inode,
3051 pos, len, flags,
3052 pagep, fsdata);
3053 if (ret < 0)
3054 return ret;
3055 if (ret == 1)
3056 return 0;
3057 }
3058
3059 /*
3060 * grab_cache_page_write_begin() can take a long time if the
3061 * system is thrashing due to memory pressure, or if the page
3062 * is being written back. So grab it first before we start
3063 * the transaction handle. This also allows us to allocate
3064 * the page (if needed) without using GFP_NOFS.
3065 */
3066 retry_grab:
3067 page = grab_cache_page_write_begin(mapping, index, flags);
3068 if (!page)
3069 return -ENOMEM;
3070 unlock_page(page);
3071
3072 /*
3073 * With delayed allocation, we don't log the i_disksize update
3074 * if there is delayed block allocation. But we still need
3075 * to journalling the i_disksize update if writes to the end
3076 * of file which has an already mapped buffer.
3077 */
3078 retry_journal:
3079 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3080 ext4_da_write_credits(inode, pos, len));
3081 if (IS_ERR(handle)) {
3082 put_page(page);
3083 return PTR_ERR(handle);
3084 }
3085
3086 lock_page(page);
3087 if (page->mapping != mapping) {
3088 /* The page got truncated from under us */
3089 unlock_page(page);
3090 put_page(page);
3091 ext4_journal_stop(handle);
3092 goto retry_grab;
3093 }
3094 /* In case writeback began while the page was unlocked */
3095 wait_for_stable_page(page);
3096
3097 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3098 ret = ext4_block_write_begin(page, pos, len,
3099 ext4_da_get_block_prep);
3100 #else
3101 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3102 #endif
3103 if (ret < 0) {
3104 unlock_page(page);
3105 ext4_journal_stop(handle);
3106 /*
3107 * block_write_begin may have instantiated a few blocks
3108 * outside i_size. Trim these off again. Don't need
3109 * i_size_read because we hold i_mutex.
3110 */
3111 if (pos + len > inode->i_size)
3112 ext4_truncate_failed_write(inode);
3113
3114 if (ret == -ENOSPC &&
3115 ext4_should_retry_alloc(inode->i_sb, &retries))
3116 goto retry_journal;
3117
3118 put_page(page);
3119 return ret;
3120 }
3121
3122 *pagep = page;
3123 return ret;
3124 }
3125
3126 /*
3127 * Check if we should update i_disksize
3128 * when write to the end of file but not require block allocation
3129 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3130 static int ext4_da_should_update_i_disksize(struct page *page,
3131 unsigned long offset)
3132 {
3133 struct buffer_head *bh;
3134 struct inode *inode = page->mapping->host;
3135 unsigned int idx;
3136 int i;
3137
3138 bh = page_buffers(page);
3139 idx = offset >> inode->i_blkbits;
3140
3141 for (i = 0; i < idx; i++)
3142 bh = bh->b_this_page;
3143
3144 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3145 return 0;
3146 return 1;
3147 }
3148
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3149 static int ext4_da_write_end(struct file *file,
3150 struct address_space *mapping,
3151 loff_t pos, unsigned len, unsigned copied,
3152 struct page *page, void *fsdata)
3153 {
3154 struct inode *inode = mapping->host;
3155 int ret = 0, ret2;
3156 handle_t *handle = ext4_journal_current_handle();
3157 loff_t new_i_size;
3158 unsigned long start, end;
3159 int write_mode = (int)(unsigned long)fsdata;
3160
3161 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3162 return ext4_write_end(file, mapping, pos,
3163 len, copied, page, fsdata);
3164
3165 trace_ext4_da_write_end(inode, pos, len, copied);
3166 start = pos & (PAGE_SIZE - 1);
3167 end = start + copied - 1;
3168
3169 /*
3170 * generic_write_end() will run mark_inode_dirty() if i_size
3171 * changes. So let's piggyback the i_disksize mark_inode_dirty
3172 * into that.
3173 */
3174 new_i_size = pos + copied;
3175 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3176 if (ext4_has_inline_data(inode) ||
3177 ext4_da_should_update_i_disksize(page, end)) {
3178 ext4_update_i_disksize(inode, new_i_size);
3179 /* We need to mark inode dirty even if
3180 * new_i_size is less that inode->i_size
3181 * bu greater than i_disksize.(hint delalloc)
3182 */
3183 ext4_mark_inode_dirty(handle, inode);
3184 }
3185 }
3186
3187 if (write_mode != CONVERT_INLINE_DATA &&
3188 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3189 ext4_has_inline_data(inode))
3190 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3191 page);
3192 else
3193 ret2 = generic_write_end(file, mapping, pos, len, copied,
3194 page, fsdata);
3195
3196 copied = ret2;
3197 if (ret2 < 0)
3198 ret = ret2;
3199 ret2 = ext4_journal_stop(handle);
3200 if (!ret)
3201 ret = ret2;
3202
3203 return ret ? ret : copied;
3204 }
3205
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3206 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3207 unsigned int length)
3208 {
3209 /*
3210 * Drop reserved blocks
3211 */
3212 BUG_ON(!PageLocked(page));
3213 if (!page_has_buffers(page))
3214 goto out;
3215
3216 ext4_da_page_release_reservation(page, offset, length);
3217
3218 out:
3219 ext4_invalidatepage(page, offset, length);
3220
3221 return;
3222 }
3223
3224 /*
3225 * Force all delayed allocation blocks to be allocated for a given inode.
3226 */
ext4_alloc_da_blocks(struct inode * inode)3227 int ext4_alloc_da_blocks(struct inode *inode)
3228 {
3229 trace_ext4_alloc_da_blocks(inode);
3230
3231 if (!EXT4_I(inode)->i_reserved_data_blocks)
3232 return 0;
3233
3234 /*
3235 * We do something simple for now. The filemap_flush() will
3236 * also start triggering a write of the data blocks, which is
3237 * not strictly speaking necessary (and for users of
3238 * laptop_mode, not even desirable). However, to do otherwise
3239 * would require replicating code paths in:
3240 *
3241 * ext4_writepages() ->
3242 * write_cache_pages() ---> (via passed in callback function)
3243 * __mpage_da_writepage() -->
3244 * mpage_add_bh_to_extent()
3245 * mpage_da_map_blocks()
3246 *
3247 * The problem is that write_cache_pages(), located in
3248 * mm/page-writeback.c, marks pages clean in preparation for
3249 * doing I/O, which is not desirable if we're not planning on
3250 * doing I/O at all.
3251 *
3252 * We could call write_cache_pages(), and then redirty all of
3253 * the pages by calling redirty_page_for_writepage() but that
3254 * would be ugly in the extreme. So instead we would need to
3255 * replicate parts of the code in the above functions,
3256 * simplifying them because we wouldn't actually intend to
3257 * write out the pages, but rather only collect contiguous
3258 * logical block extents, call the multi-block allocator, and
3259 * then update the buffer heads with the block allocations.
3260 *
3261 * For now, though, we'll cheat by calling filemap_flush(),
3262 * which will map the blocks, and start the I/O, but not
3263 * actually wait for the I/O to complete.
3264 */
3265 return filemap_flush(inode->i_mapping);
3266 }
3267
3268 /*
3269 * bmap() is special. It gets used by applications such as lilo and by
3270 * the swapper to find the on-disk block of a specific piece of data.
3271 *
3272 * Naturally, this is dangerous if the block concerned is still in the
3273 * journal. If somebody makes a swapfile on an ext4 data-journaling
3274 * filesystem and enables swap, then they may get a nasty shock when the
3275 * data getting swapped to that swapfile suddenly gets overwritten by
3276 * the original zero's written out previously to the journal and
3277 * awaiting writeback in the kernel's buffer cache.
3278 *
3279 * So, if we see any bmap calls here on a modified, data-journaled file,
3280 * take extra steps to flush any blocks which might be in the cache.
3281 */
ext4_bmap(struct address_space * mapping,sector_t block)3282 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3283 {
3284 struct inode *inode = mapping->host;
3285 journal_t *journal;
3286 int err;
3287
3288 /*
3289 * We can get here for an inline file via the FIBMAP ioctl
3290 */
3291 if (ext4_has_inline_data(inode))
3292 return 0;
3293
3294 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3295 test_opt(inode->i_sb, DELALLOC)) {
3296 /*
3297 * With delalloc we want to sync the file
3298 * so that we can make sure we allocate
3299 * blocks for file
3300 */
3301 filemap_write_and_wait(mapping);
3302 }
3303
3304 if (EXT4_JOURNAL(inode) &&
3305 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3306 /*
3307 * This is a REALLY heavyweight approach, but the use of
3308 * bmap on dirty files is expected to be extremely rare:
3309 * only if we run lilo or swapon on a freshly made file
3310 * do we expect this to happen.
3311 *
3312 * (bmap requires CAP_SYS_RAWIO so this does not
3313 * represent an unprivileged user DOS attack --- we'd be
3314 * in trouble if mortal users could trigger this path at
3315 * will.)
3316 *
3317 * NB. EXT4_STATE_JDATA is not set on files other than
3318 * regular files. If somebody wants to bmap a directory
3319 * or symlink and gets confused because the buffer
3320 * hasn't yet been flushed to disk, they deserve
3321 * everything they get.
3322 */
3323
3324 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3325 journal = EXT4_JOURNAL(inode);
3326 jbd2_journal_lock_updates(journal);
3327 err = jbd2_journal_flush(journal);
3328 jbd2_journal_unlock_updates(journal);
3329
3330 if (err)
3331 return 0;
3332 }
3333
3334 return generic_block_bmap(mapping, block, ext4_get_block);
3335 }
3336
ext4_readpage(struct file * file,struct page * page)3337 static int ext4_readpage(struct file *file, struct page *page)
3338 {
3339 int ret = -EAGAIN;
3340 struct inode *inode = page->mapping->host;
3341
3342 trace_ext4_readpage(page);
3343
3344 if (ext4_has_inline_data(inode))
3345 ret = ext4_readpage_inline(inode, page);
3346
3347 if (ret == -EAGAIN)
3348 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3349 false);
3350
3351 return ret;
3352 }
3353
3354 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3355 ext4_readpages(struct file *file, struct address_space *mapping,
3356 struct list_head *pages, unsigned nr_pages)
3357 {
3358 struct inode *inode = mapping->host;
3359
3360 /* If the file has inline data, no need to do readpages. */
3361 if (ext4_has_inline_data(inode))
3362 return 0;
3363
3364 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3365 }
3366
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3367 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3368 unsigned int length)
3369 {
3370 trace_ext4_invalidatepage(page, offset, length);
3371
3372 /* No journalling happens on data buffers when this function is used */
3373 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3374
3375 block_invalidatepage(page, offset, length);
3376 }
3377
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3378 static int __ext4_journalled_invalidatepage(struct page *page,
3379 unsigned int offset,
3380 unsigned int length)
3381 {
3382 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3383
3384 trace_ext4_journalled_invalidatepage(page, offset, length);
3385
3386 /*
3387 * If it's a full truncate we just forget about the pending dirtying
3388 */
3389 if (offset == 0 && length == PAGE_SIZE)
3390 ClearPageChecked(page);
3391
3392 return jbd2_journal_invalidatepage(journal, page, offset, length);
3393 }
3394
3395 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3396 static void ext4_journalled_invalidatepage(struct page *page,
3397 unsigned int offset,
3398 unsigned int length)
3399 {
3400 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3401 }
3402
ext4_releasepage(struct page * page,gfp_t wait)3403 static int ext4_releasepage(struct page *page, gfp_t wait)
3404 {
3405 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3406
3407 trace_ext4_releasepage(page);
3408
3409 /* Page has dirty journalled data -> cannot release */
3410 if (PageChecked(page))
3411 return 0;
3412 if (journal)
3413 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3414 else
3415 return try_to_free_buffers(page);
3416 }
3417
ext4_inode_datasync_dirty(struct inode * inode)3418 static bool ext4_inode_datasync_dirty(struct inode *inode)
3419 {
3420 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3421
3422 if (journal)
3423 return !jbd2_transaction_committed(journal,
3424 EXT4_I(inode)->i_datasync_tid);
3425 /* Any metadata buffers to write? */
3426 if (!list_empty(&inode->i_mapping->private_list))
3427 return true;
3428 return inode->i_state & I_DIRTY_DATASYNC;
3429 }
3430
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)3431 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3432 unsigned flags, struct iomap *iomap)
3433 {
3434 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3435 unsigned int blkbits = inode->i_blkbits;
3436 unsigned long first_block, last_block;
3437 struct ext4_map_blocks map;
3438 bool delalloc = false;
3439 int ret;
3440
3441 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3442 return -EINVAL;
3443 first_block = offset >> blkbits;
3444 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3445 EXT4_MAX_LOGICAL_BLOCK);
3446
3447 if (flags & IOMAP_REPORT) {
3448 if (ext4_has_inline_data(inode)) {
3449 ret = ext4_inline_data_iomap(inode, iomap);
3450 if (ret != -EAGAIN) {
3451 if (ret == 0 && offset >= iomap->length)
3452 ret = -ENOENT;
3453 return ret;
3454 }
3455 }
3456 } else {
3457 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3458 return -ERANGE;
3459 }
3460
3461 map.m_lblk = first_block;
3462 map.m_len = last_block - first_block + 1;
3463
3464 if (flags & IOMAP_REPORT) {
3465 ret = ext4_map_blocks(NULL, inode, &map, 0);
3466 if (ret < 0)
3467 return ret;
3468
3469 if (ret == 0) {
3470 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3471 struct extent_status es;
3472
3473 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3474
3475 if (!es.es_len || es.es_lblk > end) {
3476 /* entire range is a hole */
3477 } else if (es.es_lblk > map.m_lblk) {
3478 /* range starts with a hole */
3479 map.m_len = es.es_lblk - map.m_lblk;
3480 } else {
3481 ext4_lblk_t offs = 0;
3482
3483 if (es.es_lblk < map.m_lblk)
3484 offs = map.m_lblk - es.es_lblk;
3485 map.m_lblk = es.es_lblk + offs;
3486 map.m_len = es.es_len - offs;
3487 delalloc = true;
3488 }
3489 }
3490 } else if (flags & IOMAP_WRITE) {
3491 int dio_credits;
3492 handle_t *handle;
3493 int retries = 0;
3494
3495 /* Trim mapping request to maximum we can map at once for DIO */
3496 if (map.m_len > DIO_MAX_BLOCKS)
3497 map.m_len = DIO_MAX_BLOCKS;
3498 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3499 retry:
3500 /*
3501 * Either we allocate blocks and then we don't get unwritten
3502 * extent so we have reserved enough credits, or the blocks
3503 * are already allocated and unwritten and in that case
3504 * extent conversion fits in the credits as well.
3505 */
3506 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3507 dio_credits);
3508 if (IS_ERR(handle))
3509 return PTR_ERR(handle);
3510
3511 ret = ext4_map_blocks(handle, inode, &map,
3512 EXT4_GET_BLOCKS_CREATE_ZERO);
3513 if (ret < 0) {
3514 ext4_journal_stop(handle);
3515 if (ret == -ENOSPC &&
3516 ext4_should_retry_alloc(inode->i_sb, &retries))
3517 goto retry;
3518 return ret;
3519 }
3520
3521 /*
3522 * If we added blocks beyond i_size, we need to make sure they
3523 * will get truncated if we crash before updating i_size in
3524 * ext4_iomap_end(). For faults we don't need to do that (and
3525 * even cannot because for orphan list operations inode_lock is
3526 * required) - if we happen to instantiate block beyond i_size,
3527 * it is because we race with truncate which has already added
3528 * the inode to the orphan list.
3529 */
3530 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3531 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3532 int err;
3533
3534 err = ext4_orphan_add(handle, inode);
3535 if (err < 0) {
3536 ext4_journal_stop(handle);
3537 return err;
3538 }
3539 }
3540 ext4_journal_stop(handle);
3541 } else {
3542 ret = ext4_map_blocks(NULL, inode, &map, 0);
3543 if (ret < 0)
3544 return ret;
3545 }
3546
3547 /*
3548 * Writes that span EOF might trigger an I/O size update on completion,
3549 * so consider them to be dirty for the purposes of O_DSYNC, even if
3550 * there is no other metadata changes being made or are pending here.
3551 */
3552 iomap->flags = 0;
3553 if (ext4_inode_datasync_dirty(inode) ||
3554 offset + length > i_size_read(inode))
3555 iomap->flags |= IOMAP_F_DIRTY;
3556 iomap->bdev = inode->i_sb->s_bdev;
3557 iomap->dax_dev = sbi->s_daxdev;
3558 iomap->offset = (u64)first_block << blkbits;
3559 iomap->length = (u64)map.m_len << blkbits;
3560
3561 if (ret == 0) {
3562 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3563 iomap->addr = IOMAP_NULL_ADDR;
3564 } else {
3565 if (map.m_flags & EXT4_MAP_MAPPED) {
3566 iomap->type = IOMAP_MAPPED;
3567 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3568 iomap->type = IOMAP_UNWRITTEN;
3569 } else {
3570 WARN_ON_ONCE(1);
3571 return -EIO;
3572 }
3573 iomap->addr = (u64)map.m_pblk << blkbits;
3574 }
3575
3576 if (map.m_flags & EXT4_MAP_NEW)
3577 iomap->flags |= IOMAP_F_NEW;
3578
3579 return 0;
3580 }
3581
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3582 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3583 ssize_t written, unsigned flags, struct iomap *iomap)
3584 {
3585 int ret = 0;
3586 handle_t *handle;
3587 int blkbits = inode->i_blkbits;
3588 bool truncate = false;
3589
3590 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3591 return 0;
3592
3593 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3594 if (IS_ERR(handle)) {
3595 ret = PTR_ERR(handle);
3596 goto orphan_del;
3597 }
3598 if (ext4_update_inode_size(inode, offset + written))
3599 ext4_mark_inode_dirty(handle, inode);
3600 /*
3601 * We may need to truncate allocated but not written blocks beyond EOF.
3602 */
3603 if (iomap->offset + iomap->length >
3604 ALIGN(inode->i_size, 1 << blkbits)) {
3605 ext4_lblk_t written_blk, end_blk;
3606
3607 written_blk = (offset + written) >> blkbits;
3608 end_blk = (offset + length) >> blkbits;
3609 if (written_blk < end_blk && ext4_can_truncate(inode))
3610 truncate = true;
3611 }
3612 /*
3613 * Remove inode from orphan list if we were extending a inode and
3614 * everything went fine.
3615 */
3616 if (!truncate && inode->i_nlink &&
3617 !list_empty(&EXT4_I(inode)->i_orphan))
3618 ext4_orphan_del(handle, inode);
3619 ext4_journal_stop(handle);
3620 if (truncate) {
3621 ext4_truncate_failed_write(inode);
3622 orphan_del:
3623 /*
3624 * If truncate failed early the inode might still be on the
3625 * orphan list; we need to make sure the inode is removed from
3626 * the orphan list in that case.
3627 */
3628 if (inode->i_nlink)
3629 ext4_orphan_del(NULL, inode);
3630 }
3631 return ret;
3632 }
3633
3634 const struct iomap_ops ext4_iomap_ops = {
3635 .iomap_begin = ext4_iomap_begin,
3636 .iomap_end = ext4_iomap_end,
3637 };
3638
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3639 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3640 ssize_t size, void *private)
3641 {
3642 ext4_io_end_t *io_end = private;
3643
3644 /* if not async direct IO just return */
3645 if (!io_end)
3646 return 0;
3647
3648 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3649 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3650 io_end, io_end->inode->i_ino, iocb, offset, size);
3651
3652 /*
3653 * Error during AIO DIO. We cannot convert unwritten extents as the
3654 * data was not written. Just clear the unwritten flag and drop io_end.
3655 */
3656 if (size <= 0) {
3657 ext4_clear_io_unwritten_flag(io_end);
3658 size = 0;
3659 }
3660 io_end->offset = offset;
3661 io_end->size = size;
3662 ext4_put_io_end(io_end);
3663
3664 return 0;
3665 }
3666
3667 /*
3668 * Handling of direct IO writes.
3669 *
3670 * For ext4 extent files, ext4 will do direct-io write even to holes,
3671 * preallocated extents, and those write extend the file, no need to
3672 * fall back to buffered IO.
3673 *
3674 * For holes, we fallocate those blocks, mark them as unwritten
3675 * If those blocks were preallocated, we mark sure they are split, but
3676 * still keep the range to write as unwritten.
3677 *
3678 * The unwritten extents will be converted to written when DIO is completed.
3679 * For async direct IO, since the IO may still pending when return, we
3680 * set up an end_io call back function, which will do the conversion
3681 * when async direct IO completed.
3682 *
3683 * If the O_DIRECT write will extend the file then add this inode to the
3684 * orphan list. So recovery will truncate it back to the original size
3685 * if the machine crashes during the write.
3686 *
3687 */
ext4_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter)3688 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3689 {
3690 struct file *file = iocb->ki_filp;
3691 struct inode *inode = file->f_mapping->host;
3692 struct ext4_inode_info *ei = EXT4_I(inode);
3693 ssize_t ret;
3694 loff_t offset = iocb->ki_pos;
3695 size_t count = iov_iter_count(iter);
3696 int overwrite = 0;
3697 get_block_t *get_block_func = NULL;
3698 int dio_flags = 0;
3699 loff_t final_size = offset + count;
3700 int orphan = 0;
3701 handle_t *handle;
3702
3703 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3704 /* Credits for sb + inode write */
3705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3706 if (IS_ERR(handle)) {
3707 ret = PTR_ERR(handle);
3708 goto out;
3709 }
3710 ret = ext4_orphan_add(handle, inode);
3711 if (ret) {
3712 ext4_journal_stop(handle);
3713 goto out;
3714 }
3715 orphan = 1;
3716 ext4_update_i_disksize(inode, inode->i_size);
3717 ext4_journal_stop(handle);
3718 }
3719
3720 BUG_ON(iocb->private == NULL);
3721
3722 /*
3723 * Make all waiters for direct IO properly wait also for extent
3724 * conversion. This also disallows race between truncate() and
3725 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3726 */
3727 inode_dio_begin(inode);
3728
3729 /* If we do a overwrite dio, i_mutex locking can be released */
3730 overwrite = *((int *)iocb->private);
3731
3732 if (overwrite)
3733 inode_unlock(inode);
3734
3735 /*
3736 * For extent mapped files we could direct write to holes and fallocate.
3737 *
3738 * Allocated blocks to fill the hole are marked as unwritten to prevent
3739 * parallel buffered read to expose the stale data before DIO complete
3740 * the data IO.
3741 *
3742 * As to previously fallocated extents, ext4 get_block will just simply
3743 * mark the buffer mapped but still keep the extents unwritten.
3744 *
3745 * For non AIO case, we will convert those unwritten extents to written
3746 * after return back from blockdev_direct_IO. That way we save us from
3747 * allocating io_end structure and also the overhead of offloading
3748 * the extent convertion to a workqueue.
3749 *
3750 * For async DIO, the conversion needs to be deferred when the
3751 * IO is completed. The ext4 end_io callback function will be
3752 * called to take care of the conversion work. Here for async
3753 * case, we allocate an io_end structure to hook to the iocb.
3754 */
3755 iocb->private = NULL;
3756 if (overwrite)
3757 get_block_func = ext4_dio_get_block_overwrite;
3758 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3759 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3760 get_block_func = ext4_dio_get_block;
3761 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3762 } else if (is_sync_kiocb(iocb)) {
3763 get_block_func = ext4_dio_get_block_unwritten_sync;
3764 dio_flags = DIO_LOCKING;
3765 } else {
3766 get_block_func = ext4_dio_get_block_unwritten_async;
3767 dio_flags = DIO_LOCKING;
3768 }
3769 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3770 get_block_func, ext4_end_io_dio, NULL,
3771 dio_flags);
3772
3773 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3774 EXT4_STATE_DIO_UNWRITTEN)) {
3775 int err;
3776 /*
3777 * for non AIO case, since the IO is already
3778 * completed, we could do the conversion right here
3779 */
3780 err = ext4_convert_unwritten_extents(NULL, inode,
3781 offset, ret);
3782 if (err < 0)
3783 ret = err;
3784 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3785 }
3786
3787 inode_dio_end(inode);
3788 /* take i_mutex locking again if we do a ovewrite dio */
3789 if (overwrite)
3790 inode_lock(inode);
3791
3792 if (ret < 0 && final_size > inode->i_size)
3793 ext4_truncate_failed_write(inode);
3794
3795 /* Handle extending of i_size after direct IO write */
3796 if (orphan) {
3797 int err;
3798
3799 /* Credits for sb + inode write */
3800 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3801 if (IS_ERR(handle)) {
3802 /*
3803 * We wrote the data but cannot extend
3804 * i_size. Bail out. In async io case, we do
3805 * not return error here because we have
3806 * already submmitted the corresponding
3807 * bio. Returning error here makes the caller
3808 * think that this IO is done and failed
3809 * resulting in race with bio's completion
3810 * handler.
3811 */
3812 if (!ret)
3813 ret = PTR_ERR(handle);
3814 if (inode->i_nlink)
3815 ext4_orphan_del(NULL, inode);
3816
3817 goto out;
3818 }
3819 if (inode->i_nlink)
3820 ext4_orphan_del(handle, inode);
3821 if (ret > 0) {
3822 loff_t end = offset + ret;
3823 if (end > inode->i_size || end > ei->i_disksize) {
3824 ext4_update_i_disksize(inode, end);
3825 if (end > inode->i_size)
3826 i_size_write(inode, end);
3827 /*
3828 * We're going to return a positive `ret'
3829 * here due to non-zero-length I/O, so there's
3830 * no way of reporting error returns from
3831 * ext4_mark_inode_dirty() to userspace. So
3832 * ignore it.
3833 */
3834 ext4_mark_inode_dirty(handle, inode);
3835 }
3836 }
3837 err = ext4_journal_stop(handle);
3838 if (ret == 0)
3839 ret = err;
3840 }
3841 out:
3842 return ret;
3843 }
3844
ext4_direct_IO_read(struct kiocb * iocb,struct iov_iter * iter)3845 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3846 {
3847 struct address_space *mapping = iocb->ki_filp->f_mapping;
3848 struct inode *inode = mapping->host;
3849 size_t count = iov_iter_count(iter);
3850 ssize_t ret;
3851 loff_t offset = iocb->ki_pos;
3852 loff_t size = i_size_read(inode);
3853
3854 if (offset >= size)
3855 return 0;
3856
3857 /*
3858 * Shared inode_lock is enough for us - it protects against concurrent
3859 * writes & truncates and since we take care of writing back page cache,
3860 * we are protected against page writeback as well.
3861 */
3862 if (iocb->ki_flags & IOCB_NOWAIT) {
3863 if (!inode_trylock_shared(inode))
3864 return -EAGAIN;
3865 } else {
3866 inode_lock_shared(inode);
3867 }
3868
3869 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3870 iocb->ki_pos + count - 1);
3871 if (ret)
3872 goto out_unlock;
3873 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3874 iter, ext4_dio_get_block, NULL, NULL, 0);
3875 out_unlock:
3876 inode_unlock_shared(inode);
3877 return ret;
3878 }
3879
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3880 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3881 {
3882 struct file *file = iocb->ki_filp;
3883 struct inode *inode = file->f_mapping->host;
3884 size_t count = iov_iter_count(iter);
3885 loff_t offset = iocb->ki_pos;
3886 ssize_t ret;
3887
3888 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3889 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3890 return 0;
3891 #endif
3892
3893 /*
3894 * If we are doing data journalling we don't support O_DIRECT
3895 */
3896 if (ext4_should_journal_data(inode))
3897 return 0;
3898
3899 /* Let buffer I/O handle the inline data case. */
3900 if (ext4_has_inline_data(inode))
3901 return 0;
3902
3903 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3904 if (iov_iter_rw(iter) == READ)
3905 ret = ext4_direct_IO_read(iocb, iter);
3906 else
3907 ret = ext4_direct_IO_write(iocb, iter);
3908 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3909 return ret;
3910 }
3911
3912 /*
3913 * Pages can be marked dirty completely asynchronously from ext4's journalling
3914 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3915 * much here because ->set_page_dirty is called under VFS locks. The page is
3916 * not necessarily locked.
3917 *
3918 * We cannot just dirty the page and leave attached buffers clean, because the
3919 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3920 * or jbddirty because all the journalling code will explode.
3921 *
3922 * So what we do is to mark the page "pending dirty" and next time writepage
3923 * is called, propagate that into the buffers appropriately.
3924 */
ext4_journalled_set_page_dirty(struct page * page)3925 static int ext4_journalled_set_page_dirty(struct page *page)
3926 {
3927 SetPageChecked(page);
3928 return __set_page_dirty_nobuffers(page);
3929 }
3930
ext4_set_page_dirty(struct page * page)3931 static int ext4_set_page_dirty(struct page *page)
3932 {
3933 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3934 WARN_ON_ONCE(!page_has_buffers(page));
3935 return __set_page_dirty_buffers(page);
3936 }
3937
3938 static const struct address_space_operations ext4_aops = {
3939 .readpage = ext4_readpage,
3940 .readpages = ext4_readpages,
3941 .writepage = ext4_writepage,
3942 .writepages = ext4_writepages,
3943 .write_begin = ext4_write_begin,
3944 .write_end = ext4_write_end,
3945 .set_page_dirty = ext4_set_page_dirty,
3946 .bmap = ext4_bmap,
3947 .invalidatepage = ext4_invalidatepage,
3948 .releasepage = ext4_releasepage,
3949 .direct_IO = ext4_direct_IO,
3950 .migratepage = buffer_migrate_page,
3951 .is_partially_uptodate = block_is_partially_uptodate,
3952 .error_remove_page = generic_error_remove_page,
3953 };
3954
3955 static const struct address_space_operations ext4_journalled_aops = {
3956 .readpage = ext4_readpage,
3957 .readpages = ext4_readpages,
3958 .writepage = ext4_writepage,
3959 .writepages = ext4_writepages,
3960 .write_begin = ext4_write_begin,
3961 .write_end = ext4_journalled_write_end,
3962 .set_page_dirty = ext4_journalled_set_page_dirty,
3963 .bmap = ext4_bmap,
3964 .invalidatepage = ext4_journalled_invalidatepage,
3965 .releasepage = ext4_releasepage,
3966 .direct_IO = ext4_direct_IO,
3967 .is_partially_uptodate = block_is_partially_uptodate,
3968 .error_remove_page = generic_error_remove_page,
3969 };
3970
3971 static const struct address_space_operations ext4_da_aops = {
3972 .readpage = ext4_readpage,
3973 .readpages = ext4_readpages,
3974 .writepage = ext4_writepage,
3975 .writepages = ext4_writepages,
3976 .write_begin = ext4_da_write_begin,
3977 .write_end = ext4_da_write_end,
3978 .set_page_dirty = ext4_set_page_dirty,
3979 .bmap = ext4_bmap,
3980 .invalidatepage = ext4_da_invalidatepage,
3981 .releasepage = ext4_releasepage,
3982 .direct_IO = ext4_direct_IO,
3983 .migratepage = buffer_migrate_page,
3984 .is_partially_uptodate = block_is_partially_uptodate,
3985 .error_remove_page = generic_error_remove_page,
3986 };
3987
3988 static const struct address_space_operations ext4_dax_aops = {
3989 .writepages = ext4_dax_writepages,
3990 .direct_IO = noop_direct_IO,
3991 .set_page_dirty = noop_set_page_dirty,
3992 .bmap = ext4_bmap,
3993 .invalidatepage = noop_invalidatepage,
3994 };
3995
ext4_set_aops(struct inode * inode)3996 void ext4_set_aops(struct inode *inode)
3997 {
3998 switch (ext4_inode_journal_mode(inode)) {
3999 case EXT4_INODE_ORDERED_DATA_MODE:
4000 case EXT4_INODE_WRITEBACK_DATA_MODE:
4001 break;
4002 case EXT4_INODE_JOURNAL_DATA_MODE:
4003 inode->i_mapping->a_ops = &ext4_journalled_aops;
4004 return;
4005 default:
4006 BUG();
4007 }
4008 if (IS_DAX(inode))
4009 inode->i_mapping->a_ops = &ext4_dax_aops;
4010 else if (test_opt(inode->i_sb, DELALLOC))
4011 inode->i_mapping->a_ops = &ext4_da_aops;
4012 else
4013 inode->i_mapping->a_ops = &ext4_aops;
4014 }
4015
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4016 static int __ext4_block_zero_page_range(handle_t *handle,
4017 struct address_space *mapping, loff_t from, loff_t length)
4018 {
4019 ext4_fsblk_t index = from >> PAGE_SHIFT;
4020 unsigned offset = from & (PAGE_SIZE-1);
4021 unsigned blocksize, pos;
4022 ext4_lblk_t iblock;
4023 struct inode *inode = mapping->host;
4024 struct buffer_head *bh;
4025 struct page *page;
4026 int err = 0;
4027
4028 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4029 mapping_gfp_constraint(mapping, ~__GFP_FS));
4030 if (!page)
4031 return -ENOMEM;
4032
4033 blocksize = inode->i_sb->s_blocksize;
4034
4035 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4036
4037 if (!page_has_buffers(page))
4038 create_empty_buffers(page, blocksize, 0);
4039
4040 /* Find the buffer that contains "offset" */
4041 bh = page_buffers(page);
4042 pos = blocksize;
4043 while (offset >= pos) {
4044 bh = bh->b_this_page;
4045 iblock++;
4046 pos += blocksize;
4047 }
4048 if (buffer_freed(bh)) {
4049 BUFFER_TRACE(bh, "freed: skip");
4050 goto unlock;
4051 }
4052 if (!buffer_mapped(bh)) {
4053 BUFFER_TRACE(bh, "unmapped");
4054 ext4_get_block(inode, iblock, bh, 0);
4055 /* unmapped? It's a hole - nothing to do */
4056 if (!buffer_mapped(bh)) {
4057 BUFFER_TRACE(bh, "still unmapped");
4058 goto unlock;
4059 }
4060 }
4061
4062 /* Ok, it's mapped. Make sure it's up-to-date */
4063 if (PageUptodate(page))
4064 set_buffer_uptodate(bh);
4065
4066 if (!buffer_uptodate(bh)) {
4067 err = -EIO;
4068 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4069 wait_on_buffer(bh);
4070 /* Uhhuh. Read error. Complain and punt. */
4071 if (!buffer_uptodate(bh))
4072 goto unlock;
4073 if (S_ISREG(inode->i_mode) &&
4074 ext4_encrypted_inode(inode)) {
4075 /* We expect the key to be set. */
4076 BUG_ON(!fscrypt_has_encryption_key(inode));
4077 BUG_ON(blocksize != PAGE_SIZE);
4078 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4079 page, PAGE_SIZE, 0, page->index));
4080 }
4081 }
4082 if (ext4_should_journal_data(inode)) {
4083 BUFFER_TRACE(bh, "get write access");
4084 err = ext4_journal_get_write_access(handle, bh);
4085 if (err)
4086 goto unlock;
4087 }
4088 zero_user(page, offset, length);
4089 BUFFER_TRACE(bh, "zeroed end of block");
4090
4091 if (ext4_should_journal_data(inode)) {
4092 err = ext4_handle_dirty_metadata(handle, inode, bh);
4093 } else {
4094 err = 0;
4095 mark_buffer_dirty(bh);
4096 if (ext4_should_order_data(inode))
4097 err = ext4_jbd2_inode_add_write(handle, inode, from,
4098 length);
4099 }
4100
4101 unlock:
4102 unlock_page(page);
4103 put_page(page);
4104 return err;
4105 }
4106
4107 /*
4108 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4109 * starting from file offset 'from'. The range to be zero'd must
4110 * be contained with in one block. If the specified range exceeds
4111 * the end of the block it will be shortened to end of the block
4112 * that cooresponds to 'from'
4113 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4114 static int ext4_block_zero_page_range(handle_t *handle,
4115 struct address_space *mapping, loff_t from, loff_t length)
4116 {
4117 struct inode *inode = mapping->host;
4118 unsigned offset = from & (PAGE_SIZE-1);
4119 unsigned blocksize = inode->i_sb->s_blocksize;
4120 unsigned max = blocksize - (offset & (blocksize - 1));
4121
4122 /*
4123 * correct length if it does not fall between
4124 * 'from' and the end of the block
4125 */
4126 if (length > max || length < 0)
4127 length = max;
4128
4129 if (IS_DAX(inode)) {
4130 return iomap_zero_range(inode, from, length, NULL,
4131 &ext4_iomap_ops);
4132 }
4133 return __ext4_block_zero_page_range(handle, mapping, from, length);
4134 }
4135
4136 /*
4137 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4138 * up to the end of the block which corresponds to `from'.
4139 * This required during truncate. We need to physically zero the tail end
4140 * of that block so it doesn't yield old data if the file is later grown.
4141 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4142 static int ext4_block_truncate_page(handle_t *handle,
4143 struct address_space *mapping, loff_t from)
4144 {
4145 unsigned offset = from & (PAGE_SIZE-1);
4146 unsigned length;
4147 unsigned blocksize;
4148 struct inode *inode = mapping->host;
4149
4150 /* If we are processing an encrypted inode during orphan list handling */
4151 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4152 return 0;
4153
4154 blocksize = inode->i_sb->s_blocksize;
4155 length = blocksize - (offset & (blocksize - 1));
4156
4157 return ext4_block_zero_page_range(handle, mapping, from, length);
4158 }
4159
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4160 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4161 loff_t lstart, loff_t length)
4162 {
4163 struct super_block *sb = inode->i_sb;
4164 struct address_space *mapping = inode->i_mapping;
4165 unsigned partial_start, partial_end;
4166 ext4_fsblk_t start, end;
4167 loff_t byte_end = (lstart + length - 1);
4168 int err = 0;
4169
4170 partial_start = lstart & (sb->s_blocksize - 1);
4171 partial_end = byte_end & (sb->s_blocksize - 1);
4172
4173 start = lstart >> sb->s_blocksize_bits;
4174 end = byte_end >> sb->s_blocksize_bits;
4175
4176 /* Handle partial zero within the single block */
4177 if (start == end &&
4178 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4179 err = ext4_block_zero_page_range(handle, mapping,
4180 lstart, length);
4181 return err;
4182 }
4183 /* Handle partial zero out on the start of the range */
4184 if (partial_start) {
4185 err = ext4_block_zero_page_range(handle, mapping,
4186 lstart, sb->s_blocksize);
4187 if (err)
4188 return err;
4189 }
4190 /* Handle partial zero out on the end of the range */
4191 if (partial_end != sb->s_blocksize - 1)
4192 err = ext4_block_zero_page_range(handle, mapping,
4193 byte_end - partial_end,
4194 partial_end + 1);
4195 return err;
4196 }
4197
ext4_can_truncate(struct inode * inode)4198 int ext4_can_truncate(struct inode *inode)
4199 {
4200 if (S_ISREG(inode->i_mode))
4201 return 1;
4202 if (S_ISDIR(inode->i_mode))
4203 return 1;
4204 if (S_ISLNK(inode->i_mode))
4205 return !ext4_inode_is_fast_symlink(inode);
4206 return 0;
4207 }
4208
4209 /*
4210 * We have to make sure i_disksize gets properly updated before we truncate
4211 * page cache due to hole punching or zero range. Otherwise i_disksize update
4212 * can get lost as it may have been postponed to submission of writeback but
4213 * that will never happen after we truncate page cache.
4214 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4215 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4216 loff_t len)
4217 {
4218 handle_t *handle;
4219 loff_t size = i_size_read(inode);
4220
4221 WARN_ON(!inode_is_locked(inode));
4222 if (offset > size || offset + len < size)
4223 return 0;
4224
4225 if (EXT4_I(inode)->i_disksize >= size)
4226 return 0;
4227
4228 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4229 if (IS_ERR(handle))
4230 return PTR_ERR(handle);
4231 ext4_update_i_disksize(inode, size);
4232 ext4_mark_inode_dirty(handle, inode);
4233 ext4_journal_stop(handle);
4234
4235 return 0;
4236 }
4237
ext4_wait_dax_page(struct ext4_inode_info * ei)4238 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4239 {
4240 up_write(&ei->i_mmap_sem);
4241 schedule();
4242 down_write(&ei->i_mmap_sem);
4243 }
4244
ext4_break_layouts(struct inode * inode)4245 int ext4_break_layouts(struct inode *inode)
4246 {
4247 struct ext4_inode_info *ei = EXT4_I(inode);
4248 struct page *page;
4249 int error;
4250
4251 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4252 return -EINVAL;
4253
4254 do {
4255 page = dax_layout_busy_page(inode->i_mapping);
4256 if (!page)
4257 return 0;
4258
4259 error = ___wait_var_event(&page->_refcount,
4260 atomic_read(&page->_refcount) == 1,
4261 TASK_INTERRUPTIBLE, 0, 0,
4262 ext4_wait_dax_page(ei));
4263 } while (error == 0);
4264
4265 return error;
4266 }
4267
4268 /*
4269 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4270 * associated with the given offset and length
4271 *
4272 * @inode: File inode
4273 * @offset: The offset where the hole will begin
4274 * @len: The length of the hole
4275 *
4276 * Returns: 0 on success or negative on failure
4277 */
4278
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)4279 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4280 {
4281 struct super_block *sb = inode->i_sb;
4282 ext4_lblk_t first_block, stop_block;
4283 struct address_space *mapping = inode->i_mapping;
4284 loff_t first_block_offset, last_block_offset;
4285 handle_t *handle;
4286 unsigned int credits;
4287 int ret = 0;
4288
4289 if (!S_ISREG(inode->i_mode))
4290 return -EOPNOTSUPP;
4291
4292 trace_ext4_punch_hole(inode, offset, length, 0);
4293
4294 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4295 if (ext4_has_inline_data(inode)) {
4296 down_write(&EXT4_I(inode)->i_mmap_sem);
4297 ret = ext4_convert_inline_data(inode);
4298 up_write(&EXT4_I(inode)->i_mmap_sem);
4299 if (ret)
4300 return ret;
4301 }
4302
4303 /*
4304 * Write out all dirty pages to avoid race conditions
4305 * Then release them.
4306 */
4307 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4308 ret = filemap_write_and_wait_range(mapping, offset,
4309 offset + length - 1);
4310 if (ret)
4311 return ret;
4312 }
4313
4314 inode_lock(inode);
4315
4316 /* No need to punch hole beyond i_size */
4317 if (offset >= inode->i_size)
4318 goto out_mutex;
4319
4320 /*
4321 * If the hole extends beyond i_size, set the hole
4322 * to end after the page that contains i_size
4323 */
4324 if (offset + length > inode->i_size) {
4325 length = inode->i_size +
4326 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4327 offset;
4328 }
4329
4330 if (offset & (sb->s_blocksize - 1) ||
4331 (offset + length) & (sb->s_blocksize - 1)) {
4332 /*
4333 * Attach jinode to inode for jbd2 if we do any zeroing of
4334 * partial block
4335 */
4336 ret = ext4_inode_attach_jinode(inode);
4337 if (ret < 0)
4338 goto out_mutex;
4339
4340 }
4341
4342 /* Wait all existing dio workers, newcomers will block on i_mutex */
4343 inode_dio_wait(inode);
4344
4345 /*
4346 * Prevent page faults from reinstantiating pages we have released from
4347 * page cache.
4348 */
4349 down_write(&EXT4_I(inode)->i_mmap_sem);
4350
4351 ret = ext4_break_layouts(inode);
4352 if (ret)
4353 goto out_dio;
4354
4355 first_block_offset = round_up(offset, sb->s_blocksize);
4356 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4357
4358 /* Now release the pages and zero block aligned part of pages*/
4359 if (last_block_offset > first_block_offset) {
4360 ret = ext4_update_disksize_before_punch(inode, offset, length);
4361 if (ret)
4362 goto out_dio;
4363 truncate_pagecache_range(inode, first_block_offset,
4364 last_block_offset);
4365 }
4366
4367 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4368 credits = ext4_writepage_trans_blocks(inode);
4369 else
4370 credits = ext4_blocks_for_truncate(inode);
4371 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4372 if (IS_ERR(handle)) {
4373 ret = PTR_ERR(handle);
4374 ext4_std_error(sb, ret);
4375 goto out_dio;
4376 }
4377
4378 ret = ext4_zero_partial_blocks(handle, inode, offset,
4379 length);
4380 if (ret)
4381 goto out_stop;
4382
4383 first_block = (offset + sb->s_blocksize - 1) >>
4384 EXT4_BLOCK_SIZE_BITS(sb);
4385 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4386
4387 /* If there are blocks to remove, do it */
4388 if (stop_block > first_block) {
4389
4390 down_write(&EXT4_I(inode)->i_data_sem);
4391 ext4_discard_preallocations(inode);
4392
4393 ret = ext4_es_remove_extent(inode, first_block,
4394 stop_block - first_block);
4395 if (ret) {
4396 up_write(&EXT4_I(inode)->i_data_sem);
4397 goto out_stop;
4398 }
4399
4400 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4401 ret = ext4_ext_remove_space(inode, first_block,
4402 stop_block - 1);
4403 else
4404 ret = ext4_ind_remove_space(handle, inode, first_block,
4405 stop_block);
4406
4407 up_write(&EXT4_I(inode)->i_data_sem);
4408 }
4409 if (IS_SYNC(inode))
4410 ext4_handle_sync(handle);
4411
4412 inode->i_mtime = inode->i_ctime = current_time(inode);
4413 ext4_mark_inode_dirty(handle, inode);
4414 if (ret >= 0)
4415 ext4_update_inode_fsync_trans(handle, inode, 1);
4416 out_stop:
4417 ext4_journal_stop(handle);
4418 out_dio:
4419 up_write(&EXT4_I(inode)->i_mmap_sem);
4420 out_mutex:
4421 inode_unlock(inode);
4422 return ret;
4423 }
4424
ext4_inode_attach_jinode(struct inode * inode)4425 int ext4_inode_attach_jinode(struct inode *inode)
4426 {
4427 struct ext4_inode_info *ei = EXT4_I(inode);
4428 struct jbd2_inode *jinode;
4429
4430 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4431 return 0;
4432
4433 jinode = jbd2_alloc_inode(GFP_KERNEL);
4434 spin_lock(&inode->i_lock);
4435 if (!ei->jinode) {
4436 if (!jinode) {
4437 spin_unlock(&inode->i_lock);
4438 return -ENOMEM;
4439 }
4440 ei->jinode = jinode;
4441 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4442 jinode = NULL;
4443 }
4444 spin_unlock(&inode->i_lock);
4445 if (unlikely(jinode != NULL))
4446 jbd2_free_inode(jinode);
4447 return 0;
4448 }
4449
4450 /*
4451 * ext4_truncate()
4452 *
4453 * We block out ext4_get_block() block instantiations across the entire
4454 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4455 * simultaneously on behalf of the same inode.
4456 *
4457 * As we work through the truncate and commit bits of it to the journal there
4458 * is one core, guiding principle: the file's tree must always be consistent on
4459 * disk. We must be able to restart the truncate after a crash.
4460 *
4461 * The file's tree may be transiently inconsistent in memory (although it
4462 * probably isn't), but whenever we close off and commit a journal transaction,
4463 * the contents of (the filesystem + the journal) must be consistent and
4464 * restartable. It's pretty simple, really: bottom up, right to left (although
4465 * left-to-right works OK too).
4466 *
4467 * Note that at recovery time, journal replay occurs *before* the restart of
4468 * truncate against the orphan inode list.
4469 *
4470 * The committed inode has the new, desired i_size (which is the same as
4471 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4472 * that this inode's truncate did not complete and it will again call
4473 * ext4_truncate() to have another go. So there will be instantiated blocks
4474 * to the right of the truncation point in a crashed ext4 filesystem. But
4475 * that's fine - as long as they are linked from the inode, the post-crash
4476 * ext4_truncate() run will find them and release them.
4477 */
ext4_truncate(struct inode * inode)4478 int ext4_truncate(struct inode *inode)
4479 {
4480 struct ext4_inode_info *ei = EXT4_I(inode);
4481 unsigned int credits;
4482 int err = 0;
4483 handle_t *handle;
4484 struct address_space *mapping = inode->i_mapping;
4485
4486 /*
4487 * There is a possibility that we're either freeing the inode
4488 * or it's a completely new inode. In those cases we might not
4489 * have i_mutex locked because it's not necessary.
4490 */
4491 if (!(inode->i_state & (I_NEW|I_FREEING)))
4492 WARN_ON(!inode_is_locked(inode));
4493 trace_ext4_truncate_enter(inode);
4494
4495 if (!ext4_can_truncate(inode))
4496 return 0;
4497
4498 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4499
4500 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4501 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4502
4503 if (ext4_has_inline_data(inode)) {
4504 int has_inline = 1;
4505
4506 err = ext4_inline_data_truncate(inode, &has_inline);
4507 if (err)
4508 return err;
4509 if (has_inline)
4510 return 0;
4511 }
4512
4513 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4514 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4515 if (ext4_inode_attach_jinode(inode) < 0)
4516 return 0;
4517 }
4518
4519 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4520 credits = ext4_writepage_trans_blocks(inode);
4521 else
4522 credits = ext4_blocks_for_truncate(inode);
4523
4524 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4525 if (IS_ERR(handle))
4526 return PTR_ERR(handle);
4527
4528 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4529 ext4_block_truncate_page(handle, mapping, inode->i_size);
4530
4531 /*
4532 * We add the inode to the orphan list, so that if this
4533 * truncate spans multiple transactions, and we crash, we will
4534 * resume the truncate when the filesystem recovers. It also
4535 * marks the inode dirty, to catch the new size.
4536 *
4537 * Implication: the file must always be in a sane, consistent
4538 * truncatable state while each transaction commits.
4539 */
4540 err = ext4_orphan_add(handle, inode);
4541 if (err)
4542 goto out_stop;
4543
4544 down_write(&EXT4_I(inode)->i_data_sem);
4545
4546 ext4_discard_preallocations(inode);
4547
4548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4549 err = ext4_ext_truncate(handle, inode);
4550 else
4551 ext4_ind_truncate(handle, inode);
4552
4553 up_write(&ei->i_data_sem);
4554 if (err)
4555 goto out_stop;
4556
4557 if (IS_SYNC(inode))
4558 ext4_handle_sync(handle);
4559
4560 out_stop:
4561 /*
4562 * If this was a simple ftruncate() and the file will remain alive,
4563 * then we need to clear up the orphan record which we created above.
4564 * However, if this was a real unlink then we were called by
4565 * ext4_evict_inode(), and we allow that function to clean up the
4566 * orphan info for us.
4567 */
4568 if (inode->i_nlink)
4569 ext4_orphan_del(handle, inode);
4570
4571 inode->i_mtime = inode->i_ctime = current_time(inode);
4572 ext4_mark_inode_dirty(handle, inode);
4573 ext4_journal_stop(handle);
4574
4575 trace_ext4_truncate_exit(inode);
4576 return err;
4577 }
4578
4579 /*
4580 * ext4_get_inode_loc returns with an extra refcount against the inode's
4581 * underlying buffer_head on success. If 'in_mem' is true, we have all
4582 * data in memory that is needed to recreate the on-disk version of this
4583 * inode.
4584 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4585 static int __ext4_get_inode_loc(struct inode *inode,
4586 struct ext4_iloc *iloc, int in_mem)
4587 {
4588 struct ext4_group_desc *gdp;
4589 struct buffer_head *bh;
4590 struct super_block *sb = inode->i_sb;
4591 ext4_fsblk_t block;
4592 int inodes_per_block, inode_offset;
4593
4594 iloc->bh = NULL;
4595 if (inode->i_ino < EXT4_ROOT_INO ||
4596 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4597 return -EFSCORRUPTED;
4598
4599 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4600 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4601 if (!gdp)
4602 return -EIO;
4603
4604 /*
4605 * Figure out the offset within the block group inode table
4606 */
4607 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4608 inode_offset = ((inode->i_ino - 1) %
4609 EXT4_INODES_PER_GROUP(sb));
4610 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4611 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4612
4613 bh = sb_getblk(sb, block);
4614 if (unlikely(!bh))
4615 return -ENOMEM;
4616 if (!buffer_uptodate(bh)) {
4617 lock_buffer(bh);
4618
4619 /*
4620 * If the buffer has the write error flag, we have failed
4621 * to write out another inode in the same block. In this
4622 * case, we don't have to read the block because we may
4623 * read the old inode data successfully.
4624 */
4625 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4626 set_buffer_uptodate(bh);
4627
4628 if (buffer_uptodate(bh)) {
4629 /* someone brought it uptodate while we waited */
4630 unlock_buffer(bh);
4631 goto has_buffer;
4632 }
4633
4634 /*
4635 * If we have all information of the inode in memory and this
4636 * is the only valid inode in the block, we need not read the
4637 * block.
4638 */
4639 if (in_mem) {
4640 struct buffer_head *bitmap_bh;
4641 int i, start;
4642
4643 start = inode_offset & ~(inodes_per_block - 1);
4644
4645 /* Is the inode bitmap in cache? */
4646 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4647 if (unlikely(!bitmap_bh))
4648 goto make_io;
4649
4650 /*
4651 * If the inode bitmap isn't in cache then the
4652 * optimisation may end up performing two reads instead
4653 * of one, so skip it.
4654 */
4655 if (!buffer_uptodate(bitmap_bh)) {
4656 brelse(bitmap_bh);
4657 goto make_io;
4658 }
4659 for (i = start; i < start + inodes_per_block; i++) {
4660 if (i == inode_offset)
4661 continue;
4662 if (ext4_test_bit(i, bitmap_bh->b_data))
4663 break;
4664 }
4665 brelse(bitmap_bh);
4666 if (i == start + inodes_per_block) {
4667 /* all other inodes are free, so skip I/O */
4668 memset(bh->b_data, 0, bh->b_size);
4669 set_buffer_uptodate(bh);
4670 unlock_buffer(bh);
4671 goto has_buffer;
4672 }
4673 }
4674
4675 make_io:
4676 /*
4677 * If we need to do any I/O, try to pre-readahead extra
4678 * blocks from the inode table.
4679 */
4680 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4681 ext4_fsblk_t b, end, table;
4682 unsigned num;
4683 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4684
4685 table = ext4_inode_table(sb, gdp);
4686 /* s_inode_readahead_blks is always a power of 2 */
4687 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4688 if (table > b)
4689 b = table;
4690 end = b + ra_blks;
4691 num = EXT4_INODES_PER_GROUP(sb);
4692 if (ext4_has_group_desc_csum(sb))
4693 num -= ext4_itable_unused_count(sb, gdp);
4694 table += num / inodes_per_block;
4695 if (end > table)
4696 end = table;
4697 while (b <= end)
4698 sb_breadahead_unmovable(sb, b++);
4699 }
4700
4701 /*
4702 * There are other valid inodes in the buffer, this inode
4703 * has in-inode xattrs, or we don't have this inode in memory.
4704 * Read the block from disk.
4705 */
4706 trace_ext4_load_inode(inode);
4707 get_bh(bh);
4708 bh->b_end_io = end_buffer_read_sync;
4709 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4710 wait_on_buffer(bh);
4711 if (!buffer_uptodate(bh)) {
4712 EXT4_ERROR_INODE_BLOCK(inode, block,
4713 "unable to read itable block");
4714 brelse(bh);
4715 return -EIO;
4716 }
4717 }
4718 has_buffer:
4719 iloc->bh = bh;
4720 return 0;
4721 }
4722
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4723 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4724 {
4725 /* We have all inode data except xattrs in memory here. */
4726 return __ext4_get_inode_loc(inode, iloc,
4727 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4728 }
4729
ext4_should_use_dax(struct inode * inode)4730 static bool ext4_should_use_dax(struct inode *inode)
4731 {
4732 if (!test_opt(inode->i_sb, DAX))
4733 return false;
4734 if (!S_ISREG(inode->i_mode))
4735 return false;
4736 if (ext4_should_journal_data(inode))
4737 return false;
4738 if (ext4_has_inline_data(inode))
4739 return false;
4740 if (ext4_encrypted_inode(inode))
4741 return false;
4742 return true;
4743 }
4744
ext4_set_inode_flags(struct inode * inode)4745 void ext4_set_inode_flags(struct inode *inode)
4746 {
4747 unsigned int flags = EXT4_I(inode)->i_flags;
4748 unsigned int new_fl = 0;
4749
4750 if (flags & EXT4_SYNC_FL)
4751 new_fl |= S_SYNC;
4752 if (flags & EXT4_APPEND_FL)
4753 new_fl |= S_APPEND;
4754 if (flags & EXT4_IMMUTABLE_FL)
4755 new_fl |= S_IMMUTABLE;
4756 if (flags & EXT4_NOATIME_FL)
4757 new_fl |= S_NOATIME;
4758 if (flags & EXT4_DIRSYNC_FL)
4759 new_fl |= S_DIRSYNC;
4760 if (ext4_should_use_dax(inode))
4761 new_fl |= S_DAX;
4762 if (flags & EXT4_ENCRYPT_FL)
4763 new_fl |= S_ENCRYPTED;
4764 inode_set_flags(inode, new_fl,
4765 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766 S_ENCRYPTED);
4767 }
4768
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4769 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770 struct ext4_inode_info *ei)
4771 {
4772 blkcnt_t i_blocks ;
4773 struct inode *inode = &(ei->vfs_inode);
4774 struct super_block *sb = inode->i_sb;
4775
4776 if (ext4_has_feature_huge_file(sb)) {
4777 /* we are using combined 48 bit field */
4778 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779 le32_to_cpu(raw_inode->i_blocks_lo);
4780 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781 /* i_blocks represent file system block size */
4782 return i_blocks << (inode->i_blkbits - 9);
4783 } else {
4784 return i_blocks;
4785 }
4786 } else {
4787 return le32_to_cpu(raw_inode->i_blocks_lo);
4788 }
4789 }
4790
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4791 static inline int ext4_iget_extra_inode(struct inode *inode,
4792 struct ext4_inode *raw_inode,
4793 struct ext4_inode_info *ei)
4794 {
4795 __le32 *magic = (void *)raw_inode +
4796 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797
4798 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4799 EXT4_INODE_SIZE(inode->i_sb) &&
4800 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4801 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4802 return ext4_find_inline_data_nolock(inode);
4803 } else
4804 EXT4_I(inode)->i_inline_off = 0;
4805 return 0;
4806 }
4807
ext4_get_projid(struct inode * inode,kprojid_t * projid)4808 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4809 {
4810 if (!ext4_has_feature_project(inode->i_sb))
4811 return -EOPNOTSUPP;
4812 *projid = EXT4_I(inode)->i_projid;
4813 return 0;
4814 }
4815
4816 /*
4817 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4818 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4819 * set.
4820 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4821 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4822 {
4823 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4824 inode_set_iversion_raw(inode, val);
4825 else
4826 inode_set_iversion_queried(inode, val);
4827 }
ext4_inode_peek_iversion(const struct inode * inode)4828 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4829 {
4830 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4831 return inode_peek_iversion_raw(inode);
4832 else
4833 return inode_peek_iversion(inode);
4834 }
4835
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4836 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4837 ext4_iget_flags flags, const char *function,
4838 unsigned int line)
4839 {
4840 struct ext4_iloc iloc;
4841 struct ext4_inode *raw_inode;
4842 struct ext4_inode_info *ei;
4843 struct inode *inode;
4844 journal_t *journal = EXT4_SB(sb)->s_journal;
4845 long ret;
4846 loff_t size;
4847 int block;
4848 uid_t i_uid;
4849 gid_t i_gid;
4850 projid_t i_projid;
4851
4852 if ((!(flags & EXT4_IGET_SPECIAL) &&
4853 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4854 (ino < EXT4_ROOT_INO) ||
4855 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4856 if (flags & EXT4_IGET_HANDLE)
4857 return ERR_PTR(-ESTALE);
4858 __ext4_error(sb, function, line,
4859 "inode #%lu: comm %s: iget: illegal inode #",
4860 ino, current->comm);
4861 return ERR_PTR(-EFSCORRUPTED);
4862 }
4863
4864 inode = iget_locked(sb, ino);
4865 if (!inode)
4866 return ERR_PTR(-ENOMEM);
4867 if (!(inode->i_state & I_NEW))
4868 return inode;
4869
4870 ei = EXT4_I(inode);
4871 iloc.bh = NULL;
4872
4873 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4874 if (ret < 0)
4875 goto bad_inode;
4876 raw_inode = ext4_raw_inode(&iloc);
4877
4878 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4879 ext4_error_inode(inode, function, line, 0,
4880 "iget: root inode unallocated");
4881 ret = -EFSCORRUPTED;
4882 goto bad_inode;
4883 }
4884
4885 if ((flags & EXT4_IGET_HANDLE) &&
4886 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4887 ret = -ESTALE;
4888 goto bad_inode;
4889 }
4890
4891 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4892 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4893 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4894 EXT4_INODE_SIZE(inode->i_sb) ||
4895 (ei->i_extra_isize & 3)) {
4896 ext4_error_inode(inode, function, line, 0,
4897 "iget: bad extra_isize %u "
4898 "(inode size %u)",
4899 ei->i_extra_isize,
4900 EXT4_INODE_SIZE(inode->i_sb));
4901 ret = -EFSCORRUPTED;
4902 goto bad_inode;
4903 }
4904 } else
4905 ei->i_extra_isize = 0;
4906
4907 /* Precompute checksum seed for inode metadata */
4908 if (ext4_has_metadata_csum(sb)) {
4909 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4910 __u32 csum;
4911 __le32 inum = cpu_to_le32(inode->i_ino);
4912 __le32 gen = raw_inode->i_generation;
4913 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4914 sizeof(inum));
4915 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4916 sizeof(gen));
4917 }
4918
4919 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4920 ext4_error_inode(inode, function, line, 0,
4921 "iget: checksum invalid");
4922 ret = -EFSBADCRC;
4923 goto bad_inode;
4924 }
4925
4926 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4927 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4928 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4929 if (ext4_has_feature_project(sb) &&
4930 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4931 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4932 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4933 else
4934 i_projid = EXT4_DEF_PROJID;
4935
4936 if (!(test_opt(inode->i_sb, NO_UID32))) {
4937 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4938 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4939 }
4940 i_uid_write(inode, i_uid);
4941 i_gid_write(inode, i_gid);
4942 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4943 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4944
4945 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4946 ei->i_inline_off = 0;
4947 ei->i_dir_start_lookup = 0;
4948 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4949 /* We now have enough fields to check if the inode was active or not.
4950 * This is needed because nfsd might try to access dead inodes
4951 * the test is that same one that e2fsck uses
4952 * NeilBrown 1999oct15
4953 */
4954 if (inode->i_nlink == 0) {
4955 if ((inode->i_mode == 0 ||
4956 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4957 ino != EXT4_BOOT_LOADER_INO) {
4958 /* this inode is deleted */
4959 ret = -ESTALE;
4960 goto bad_inode;
4961 }
4962 /* The only unlinked inodes we let through here have
4963 * valid i_mode and are being read by the orphan
4964 * recovery code: that's fine, we're about to complete
4965 * the process of deleting those.
4966 * OR it is the EXT4_BOOT_LOADER_INO which is
4967 * not initialized on a new filesystem. */
4968 }
4969 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4970 ext4_set_inode_flags(inode);
4971 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4972 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4973 if (ext4_has_feature_64bit(sb))
4974 ei->i_file_acl |=
4975 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4976 inode->i_size = ext4_isize(sb, raw_inode);
4977 if ((size = i_size_read(inode)) < 0) {
4978 ext4_error_inode(inode, function, line, 0,
4979 "iget: bad i_size value: %lld", size);
4980 ret = -EFSCORRUPTED;
4981 goto bad_inode;
4982 }
4983 /*
4984 * If dir_index is not enabled but there's dir with INDEX flag set,
4985 * we'd normally treat htree data as empty space. But with metadata
4986 * checksumming that corrupts checksums so forbid that.
4987 */
4988 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4989 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4990 ext4_error_inode(inode, function, line, 0,
4991 "iget: Dir with htree data on filesystem without dir_index feature.");
4992 ret = -EFSCORRUPTED;
4993 goto bad_inode;
4994 }
4995 ei->i_disksize = inode->i_size;
4996 #ifdef CONFIG_QUOTA
4997 ei->i_reserved_quota = 0;
4998 #endif
4999 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5000 ei->i_block_group = iloc.block_group;
5001 ei->i_last_alloc_group = ~0;
5002 /*
5003 * NOTE! The in-memory inode i_data array is in little-endian order
5004 * even on big-endian machines: we do NOT byteswap the block numbers!
5005 */
5006 for (block = 0; block < EXT4_N_BLOCKS; block++)
5007 ei->i_data[block] = raw_inode->i_block[block];
5008 INIT_LIST_HEAD(&ei->i_orphan);
5009
5010 /*
5011 * Set transaction id's of transactions that have to be committed
5012 * to finish f[data]sync. We set them to currently running transaction
5013 * as we cannot be sure that the inode or some of its metadata isn't
5014 * part of the transaction - the inode could have been reclaimed and
5015 * now it is reread from disk.
5016 */
5017 if (journal) {
5018 transaction_t *transaction;
5019 tid_t tid;
5020
5021 read_lock(&journal->j_state_lock);
5022 if (journal->j_running_transaction)
5023 transaction = journal->j_running_transaction;
5024 else
5025 transaction = journal->j_committing_transaction;
5026 if (transaction)
5027 tid = transaction->t_tid;
5028 else
5029 tid = journal->j_commit_sequence;
5030 read_unlock(&journal->j_state_lock);
5031 ei->i_sync_tid = tid;
5032 ei->i_datasync_tid = tid;
5033 }
5034
5035 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5036 if (ei->i_extra_isize == 0) {
5037 /* The extra space is currently unused. Use it. */
5038 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5039 ei->i_extra_isize = sizeof(struct ext4_inode) -
5040 EXT4_GOOD_OLD_INODE_SIZE;
5041 } else {
5042 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5043 if (ret)
5044 goto bad_inode;
5045 }
5046 }
5047
5048 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5049 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5050 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5051 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5052
5053 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5054 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5055
5056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058 ivers |=
5059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5060 }
5061 ext4_inode_set_iversion_queried(inode, ivers);
5062 }
5063
5064 ret = 0;
5065 if (ei->i_file_acl &&
5066 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5067 ext4_error_inode(inode, function, line, 0,
5068 "iget: bad extended attribute block %llu",
5069 ei->i_file_acl);
5070 ret = -EFSCORRUPTED;
5071 goto bad_inode;
5072 } else if (!ext4_has_inline_data(inode)) {
5073 /* validate the block references in the inode */
5074 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5075 (S_ISLNK(inode->i_mode) &&
5076 !ext4_inode_is_fast_symlink(inode))) {
5077 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5078 ret = ext4_ext_check_inode(inode);
5079 else
5080 ret = ext4_ind_check_inode(inode);
5081 }
5082 }
5083 if (ret)
5084 goto bad_inode;
5085
5086 if (S_ISREG(inode->i_mode)) {
5087 inode->i_op = &ext4_file_inode_operations;
5088 inode->i_fop = &ext4_file_operations;
5089 ext4_set_aops(inode);
5090 } else if (S_ISDIR(inode->i_mode)) {
5091 inode->i_op = &ext4_dir_inode_operations;
5092 inode->i_fop = &ext4_dir_operations;
5093 } else if (S_ISLNK(inode->i_mode)) {
5094 /* VFS does not allow setting these so must be corruption */
5095 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5096 ext4_error_inode(inode, function, line, 0,
5097 "iget: immutable or append flags "
5098 "not allowed on symlinks");
5099 ret = -EFSCORRUPTED;
5100 goto bad_inode;
5101 }
5102 if (ext4_encrypted_inode(inode)) {
5103 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5104 ext4_set_aops(inode);
5105 } else if (ext4_inode_is_fast_symlink(inode)) {
5106 inode->i_link = (char *)ei->i_data;
5107 inode->i_op = &ext4_fast_symlink_inode_operations;
5108 nd_terminate_link(ei->i_data, inode->i_size,
5109 sizeof(ei->i_data) - 1);
5110 } else {
5111 inode->i_op = &ext4_symlink_inode_operations;
5112 ext4_set_aops(inode);
5113 }
5114 inode_nohighmem(inode);
5115 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5116 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5117 inode->i_op = &ext4_special_inode_operations;
5118 if (raw_inode->i_block[0])
5119 init_special_inode(inode, inode->i_mode,
5120 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5121 else
5122 init_special_inode(inode, inode->i_mode,
5123 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5124 } else if (ino == EXT4_BOOT_LOADER_INO) {
5125 make_bad_inode(inode);
5126 } else {
5127 ret = -EFSCORRUPTED;
5128 ext4_error_inode(inode, function, line, 0,
5129 "iget: bogus i_mode (%o)", inode->i_mode);
5130 goto bad_inode;
5131 }
5132 brelse(iloc.bh);
5133
5134 unlock_new_inode(inode);
5135 return inode;
5136
5137 bad_inode:
5138 brelse(iloc.bh);
5139 iget_failed(inode);
5140 return ERR_PTR(ret);
5141 }
5142
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5143 static int ext4_inode_blocks_set(handle_t *handle,
5144 struct ext4_inode *raw_inode,
5145 struct ext4_inode_info *ei)
5146 {
5147 struct inode *inode = &(ei->vfs_inode);
5148 u64 i_blocks = READ_ONCE(inode->i_blocks);
5149 struct super_block *sb = inode->i_sb;
5150
5151 if (i_blocks <= ~0U) {
5152 /*
5153 * i_blocks can be represented in a 32 bit variable
5154 * as multiple of 512 bytes
5155 */
5156 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5157 raw_inode->i_blocks_high = 0;
5158 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5159 return 0;
5160 }
5161 if (!ext4_has_feature_huge_file(sb))
5162 return -EFBIG;
5163
5164 if (i_blocks <= 0xffffffffffffULL) {
5165 /*
5166 * i_blocks can be represented in a 48 bit variable
5167 * as multiple of 512 bytes
5168 */
5169 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5170 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5171 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5172 } else {
5173 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5174 /* i_block is stored in file system block size */
5175 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5176 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5177 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5178 }
5179 return 0;
5180 }
5181
5182 struct other_inode {
5183 unsigned long orig_ino;
5184 struct ext4_inode *raw_inode;
5185 };
5186
other_inode_match(struct inode * inode,unsigned long ino,void * data)5187 static int other_inode_match(struct inode * inode, unsigned long ino,
5188 void *data)
5189 {
5190 struct other_inode *oi = (struct other_inode *) data;
5191
5192 if ((inode->i_ino != ino) ||
5193 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5194 I_DIRTY_INODE)) ||
5195 ((inode->i_state & I_DIRTY_TIME) == 0))
5196 return 0;
5197 spin_lock(&inode->i_lock);
5198 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5199 I_DIRTY_INODE)) == 0) &&
5200 (inode->i_state & I_DIRTY_TIME)) {
5201 struct ext4_inode_info *ei = EXT4_I(inode);
5202
5203 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5204 spin_unlock(&inode->i_lock);
5205
5206 spin_lock(&ei->i_raw_lock);
5207 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5208 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5209 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5210 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5211 spin_unlock(&ei->i_raw_lock);
5212 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5213 return -1;
5214 }
5215 spin_unlock(&inode->i_lock);
5216 return -1;
5217 }
5218
5219 /*
5220 * Opportunistically update the other time fields for other inodes in
5221 * the same inode table block.
5222 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5223 static void ext4_update_other_inodes_time(struct super_block *sb,
5224 unsigned long orig_ino, char *buf)
5225 {
5226 struct other_inode oi;
5227 unsigned long ino;
5228 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5229 int inode_size = EXT4_INODE_SIZE(sb);
5230
5231 oi.orig_ino = orig_ino;
5232 /*
5233 * Calculate the first inode in the inode table block. Inode
5234 * numbers are one-based. That is, the first inode in a block
5235 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5236 */
5237 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5238 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5239 if (ino == orig_ino)
5240 continue;
5241 oi.raw_inode = (struct ext4_inode *) buf;
5242 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5243 }
5244 }
5245
5246 /*
5247 * Post the struct inode info into an on-disk inode location in the
5248 * buffer-cache. This gobbles the caller's reference to the
5249 * buffer_head in the inode location struct.
5250 *
5251 * The caller must have write access to iloc->bh.
5252 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5253 static int ext4_do_update_inode(handle_t *handle,
5254 struct inode *inode,
5255 struct ext4_iloc *iloc)
5256 {
5257 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5258 struct ext4_inode_info *ei = EXT4_I(inode);
5259 struct buffer_head *bh = iloc->bh;
5260 struct super_block *sb = inode->i_sb;
5261 int err = 0, rc, block;
5262 int need_datasync = 0, set_large_file = 0;
5263 uid_t i_uid;
5264 gid_t i_gid;
5265 projid_t i_projid;
5266
5267 spin_lock(&ei->i_raw_lock);
5268
5269 /* For fields not tracked in the in-memory inode,
5270 * initialise them to zero for new inodes. */
5271 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5272 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5273
5274 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5275 if (err) {
5276 spin_unlock(&ei->i_raw_lock);
5277 goto out_brelse;
5278 }
5279
5280 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5281 i_uid = i_uid_read(inode);
5282 i_gid = i_gid_read(inode);
5283 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5284 if (!(test_opt(inode->i_sb, NO_UID32))) {
5285 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5286 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5287 /*
5288 * Fix up interoperability with old kernels. Otherwise, old inodes get
5289 * re-used with the upper 16 bits of the uid/gid intact
5290 */
5291 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5292 raw_inode->i_uid_high = 0;
5293 raw_inode->i_gid_high = 0;
5294 } else {
5295 raw_inode->i_uid_high =
5296 cpu_to_le16(high_16_bits(i_uid));
5297 raw_inode->i_gid_high =
5298 cpu_to_le16(high_16_bits(i_gid));
5299 }
5300 } else {
5301 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5302 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5303 raw_inode->i_uid_high = 0;
5304 raw_inode->i_gid_high = 0;
5305 }
5306 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5307
5308 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5309 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5310 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5311 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5312
5313 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5314 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5315 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5316 raw_inode->i_file_acl_high =
5317 cpu_to_le16(ei->i_file_acl >> 32);
5318 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5319 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5320 ext4_isize_set(raw_inode, ei->i_disksize);
5321 need_datasync = 1;
5322 }
5323 if (ei->i_disksize > 0x7fffffffULL) {
5324 if (!ext4_has_feature_large_file(sb) ||
5325 EXT4_SB(sb)->s_es->s_rev_level ==
5326 cpu_to_le32(EXT4_GOOD_OLD_REV))
5327 set_large_file = 1;
5328 }
5329 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5331 if (old_valid_dev(inode->i_rdev)) {
5332 raw_inode->i_block[0] =
5333 cpu_to_le32(old_encode_dev(inode->i_rdev));
5334 raw_inode->i_block[1] = 0;
5335 } else {
5336 raw_inode->i_block[0] = 0;
5337 raw_inode->i_block[1] =
5338 cpu_to_le32(new_encode_dev(inode->i_rdev));
5339 raw_inode->i_block[2] = 0;
5340 }
5341 } else if (!ext4_has_inline_data(inode)) {
5342 for (block = 0; block < EXT4_N_BLOCKS; block++)
5343 raw_inode->i_block[block] = ei->i_data[block];
5344 }
5345
5346 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5347 u64 ivers = ext4_inode_peek_iversion(inode);
5348
5349 raw_inode->i_disk_version = cpu_to_le32(ivers);
5350 if (ei->i_extra_isize) {
5351 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5352 raw_inode->i_version_hi =
5353 cpu_to_le32(ivers >> 32);
5354 raw_inode->i_extra_isize =
5355 cpu_to_le16(ei->i_extra_isize);
5356 }
5357 }
5358
5359 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5360 i_projid != EXT4_DEF_PROJID);
5361
5362 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5363 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5364 raw_inode->i_projid = cpu_to_le32(i_projid);
5365
5366 ext4_inode_csum_set(inode, raw_inode, ei);
5367 spin_unlock(&ei->i_raw_lock);
5368 if (inode->i_sb->s_flags & SB_LAZYTIME)
5369 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5370 bh->b_data);
5371
5372 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5373 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5374 if (!err)
5375 err = rc;
5376 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5377 if (set_large_file) {
5378 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5379 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5380 if (err)
5381 goto out_brelse;
5382 ext4_set_feature_large_file(sb);
5383 ext4_handle_sync(handle);
5384 err = ext4_handle_dirty_super(handle, sb);
5385 }
5386 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5387 out_brelse:
5388 brelse(bh);
5389 ext4_std_error(inode->i_sb, err);
5390 return err;
5391 }
5392
5393 /*
5394 * ext4_write_inode()
5395 *
5396 * We are called from a few places:
5397 *
5398 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5399 * Here, there will be no transaction running. We wait for any running
5400 * transaction to commit.
5401 *
5402 * - Within flush work (sys_sync(), kupdate and such).
5403 * We wait on commit, if told to.
5404 *
5405 * - Within iput_final() -> write_inode_now()
5406 * We wait on commit, if told to.
5407 *
5408 * In all cases it is actually safe for us to return without doing anything,
5409 * because the inode has been copied into a raw inode buffer in
5410 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5411 * writeback.
5412 *
5413 * Note that we are absolutely dependent upon all inode dirtiers doing the
5414 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5415 * which we are interested.
5416 *
5417 * It would be a bug for them to not do this. The code:
5418 *
5419 * mark_inode_dirty(inode)
5420 * stuff();
5421 * inode->i_size = expr;
5422 *
5423 * is in error because write_inode() could occur while `stuff()' is running,
5424 * and the new i_size will be lost. Plus the inode will no longer be on the
5425 * superblock's dirty inode list.
5426 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5427 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5428 {
5429 int err;
5430
5431 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5432 sb_rdonly(inode->i_sb))
5433 return 0;
5434
5435 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5436 return -EIO;
5437
5438 if (EXT4_SB(inode->i_sb)->s_journal) {
5439 if (ext4_journal_current_handle()) {
5440 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5441 dump_stack();
5442 return -EIO;
5443 }
5444
5445 /*
5446 * No need to force transaction in WB_SYNC_NONE mode. Also
5447 * ext4_sync_fs() will force the commit after everything is
5448 * written.
5449 */
5450 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5451 return 0;
5452
5453 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5454 EXT4_I(inode)->i_sync_tid);
5455 } else {
5456 struct ext4_iloc iloc;
5457
5458 err = __ext4_get_inode_loc(inode, &iloc, 0);
5459 if (err)
5460 return err;
5461 /*
5462 * sync(2) will flush the whole buffer cache. No need to do
5463 * it here separately for each inode.
5464 */
5465 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5466 sync_dirty_buffer(iloc.bh);
5467 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5468 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5469 "IO error syncing inode");
5470 err = -EIO;
5471 }
5472 brelse(iloc.bh);
5473 }
5474 return err;
5475 }
5476
5477 /*
5478 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5479 * buffers that are attached to a page stradding i_size and are undergoing
5480 * commit. In that case we have to wait for commit to finish and try again.
5481 */
ext4_wait_for_tail_page_commit(struct inode * inode)5482 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5483 {
5484 struct page *page;
5485 unsigned offset;
5486 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5487 tid_t commit_tid = 0;
5488 int ret;
5489
5490 offset = inode->i_size & (PAGE_SIZE - 1);
5491 /*
5492 * If the page is fully truncated, we don't need to wait for any commit
5493 * (and we even should not as __ext4_journalled_invalidatepage() may
5494 * strip all buffers from the page but keep the page dirty which can then
5495 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5496 * buffers). Also we don't need to wait for any commit if all buffers in
5497 * the page remain valid. This is most beneficial for the common case of
5498 * blocksize == PAGESIZE.
5499 */
5500 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5501 return;
5502 while (1) {
5503 page = find_lock_page(inode->i_mapping,
5504 inode->i_size >> PAGE_SHIFT);
5505 if (!page)
5506 return;
5507 ret = __ext4_journalled_invalidatepage(page, offset,
5508 PAGE_SIZE - offset);
5509 unlock_page(page);
5510 put_page(page);
5511 if (ret != -EBUSY)
5512 return;
5513 commit_tid = 0;
5514 read_lock(&journal->j_state_lock);
5515 if (journal->j_committing_transaction)
5516 commit_tid = journal->j_committing_transaction->t_tid;
5517 read_unlock(&journal->j_state_lock);
5518 if (commit_tid)
5519 jbd2_log_wait_commit(journal, commit_tid);
5520 }
5521 }
5522
5523 /*
5524 * ext4_setattr()
5525 *
5526 * Called from notify_change.
5527 *
5528 * We want to trap VFS attempts to truncate the file as soon as
5529 * possible. In particular, we want to make sure that when the VFS
5530 * shrinks i_size, we put the inode on the orphan list and modify
5531 * i_disksize immediately, so that during the subsequent flushing of
5532 * dirty pages and freeing of disk blocks, we can guarantee that any
5533 * commit will leave the blocks being flushed in an unused state on
5534 * disk. (On recovery, the inode will get truncated and the blocks will
5535 * be freed, so we have a strong guarantee that no future commit will
5536 * leave these blocks visible to the user.)
5537 *
5538 * Another thing we have to assure is that if we are in ordered mode
5539 * and inode is still attached to the committing transaction, we must
5540 * we start writeout of all the dirty pages which are being truncated.
5541 * This way we are sure that all the data written in the previous
5542 * transaction are already on disk (truncate waits for pages under
5543 * writeback).
5544 *
5545 * Called with inode->i_mutex down.
5546 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5547 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5548 {
5549 struct inode *inode = d_inode(dentry);
5550 int error, rc = 0;
5551 int orphan = 0;
5552 const unsigned int ia_valid = attr->ia_valid;
5553
5554 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5555 return -EIO;
5556
5557 if (unlikely(IS_IMMUTABLE(inode)))
5558 return -EPERM;
5559
5560 if (unlikely(IS_APPEND(inode) &&
5561 (ia_valid & (ATTR_MODE | ATTR_UID |
5562 ATTR_GID | ATTR_TIMES_SET))))
5563 return -EPERM;
5564
5565 error = setattr_prepare(dentry, attr);
5566 if (error)
5567 return error;
5568
5569 error = fscrypt_prepare_setattr(dentry, attr);
5570 if (error)
5571 return error;
5572
5573 if (is_quota_modification(inode, attr)) {
5574 error = dquot_initialize(inode);
5575 if (error)
5576 return error;
5577 }
5578 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5579 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5580 handle_t *handle;
5581
5582 /* (user+group)*(old+new) structure, inode write (sb,
5583 * inode block, ? - but truncate inode update has it) */
5584 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5585 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5586 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5587 if (IS_ERR(handle)) {
5588 error = PTR_ERR(handle);
5589 goto err_out;
5590 }
5591
5592 /* dquot_transfer() calls back ext4_get_inode_usage() which
5593 * counts xattr inode references.
5594 */
5595 down_read(&EXT4_I(inode)->xattr_sem);
5596 error = dquot_transfer(inode, attr);
5597 up_read(&EXT4_I(inode)->xattr_sem);
5598
5599 if (error) {
5600 ext4_journal_stop(handle);
5601 return error;
5602 }
5603 /* Update corresponding info in inode so that everything is in
5604 * one transaction */
5605 if (attr->ia_valid & ATTR_UID)
5606 inode->i_uid = attr->ia_uid;
5607 if (attr->ia_valid & ATTR_GID)
5608 inode->i_gid = attr->ia_gid;
5609 error = ext4_mark_inode_dirty(handle, inode);
5610 ext4_journal_stop(handle);
5611 }
5612
5613 if (attr->ia_valid & ATTR_SIZE) {
5614 handle_t *handle;
5615 loff_t oldsize = inode->i_size;
5616 int shrink = (attr->ia_size <= inode->i_size);
5617
5618 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5620
5621 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5622 return -EFBIG;
5623 }
5624 if (!S_ISREG(inode->i_mode))
5625 return -EINVAL;
5626
5627 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5628 inode_inc_iversion(inode);
5629
5630 if (ext4_should_order_data(inode) &&
5631 (attr->ia_size < inode->i_size)) {
5632 error = ext4_begin_ordered_truncate(inode,
5633 attr->ia_size);
5634 if (error)
5635 goto err_out;
5636 }
5637 if (attr->ia_size != inode->i_size) {
5638 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5639 if (IS_ERR(handle)) {
5640 error = PTR_ERR(handle);
5641 goto err_out;
5642 }
5643 if (ext4_handle_valid(handle) && shrink) {
5644 error = ext4_orphan_add(handle, inode);
5645 orphan = 1;
5646 }
5647 /*
5648 * Update c/mtime on truncate up, ext4_truncate() will
5649 * update c/mtime in shrink case below
5650 */
5651 if (!shrink) {
5652 inode->i_mtime = current_time(inode);
5653 inode->i_ctime = inode->i_mtime;
5654 }
5655 down_write(&EXT4_I(inode)->i_data_sem);
5656 EXT4_I(inode)->i_disksize = attr->ia_size;
5657 rc = ext4_mark_inode_dirty(handle, inode);
5658 if (!error)
5659 error = rc;
5660 /*
5661 * We have to update i_size under i_data_sem together
5662 * with i_disksize to avoid races with writeback code
5663 * running ext4_wb_update_i_disksize().
5664 */
5665 if (!error)
5666 i_size_write(inode, attr->ia_size);
5667 up_write(&EXT4_I(inode)->i_data_sem);
5668 ext4_journal_stop(handle);
5669 if (error) {
5670 if (orphan && inode->i_nlink)
5671 ext4_orphan_del(NULL, inode);
5672 goto err_out;
5673 }
5674 }
5675 if (!shrink) {
5676 pagecache_isize_extended(inode, oldsize, inode->i_size);
5677 } else {
5678 /*
5679 * Blocks are going to be removed from the inode. Wait
5680 * for dio in flight.
5681 */
5682 inode_dio_wait(inode);
5683 }
5684 if (orphan && ext4_should_journal_data(inode))
5685 ext4_wait_for_tail_page_commit(inode);
5686 down_write(&EXT4_I(inode)->i_mmap_sem);
5687
5688 rc = ext4_break_layouts(inode);
5689 if (rc) {
5690 up_write(&EXT4_I(inode)->i_mmap_sem);
5691 error = rc;
5692 goto err_out;
5693 }
5694
5695 /*
5696 * Truncate pagecache after we've waited for commit
5697 * in data=journal mode to make pages freeable.
5698 */
5699 truncate_pagecache(inode, inode->i_size);
5700 if (shrink) {
5701 rc = ext4_truncate(inode);
5702 if (rc)
5703 error = rc;
5704 }
5705 up_write(&EXT4_I(inode)->i_mmap_sem);
5706 }
5707
5708 if (!error) {
5709 setattr_copy(inode, attr);
5710 mark_inode_dirty(inode);
5711 }
5712
5713 /*
5714 * If the call to ext4_truncate failed to get a transaction handle at
5715 * all, we need to clean up the in-core orphan list manually.
5716 */
5717 if (orphan && inode->i_nlink)
5718 ext4_orphan_del(NULL, inode);
5719
5720 if (!error && (ia_valid & ATTR_MODE))
5721 rc = posix_acl_chmod(inode, inode->i_mode);
5722
5723 err_out:
5724 ext4_std_error(inode->i_sb, error);
5725 if (!error)
5726 error = rc;
5727 return error;
5728 }
5729
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5730 int ext4_getattr(const struct path *path, struct kstat *stat,
5731 u32 request_mask, unsigned int query_flags)
5732 {
5733 struct inode *inode = d_inode(path->dentry);
5734 struct ext4_inode *raw_inode;
5735 struct ext4_inode_info *ei = EXT4_I(inode);
5736 unsigned int flags;
5737
5738 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5739 stat->result_mask |= STATX_BTIME;
5740 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5741 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5742 }
5743
5744 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5745 if (flags & EXT4_APPEND_FL)
5746 stat->attributes |= STATX_ATTR_APPEND;
5747 if (flags & EXT4_COMPR_FL)
5748 stat->attributes |= STATX_ATTR_COMPRESSED;
5749 if (flags & EXT4_ENCRYPT_FL)
5750 stat->attributes |= STATX_ATTR_ENCRYPTED;
5751 if (flags & EXT4_IMMUTABLE_FL)
5752 stat->attributes |= STATX_ATTR_IMMUTABLE;
5753 if (flags & EXT4_NODUMP_FL)
5754 stat->attributes |= STATX_ATTR_NODUMP;
5755
5756 stat->attributes_mask |= (STATX_ATTR_APPEND |
5757 STATX_ATTR_COMPRESSED |
5758 STATX_ATTR_ENCRYPTED |
5759 STATX_ATTR_IMMUTABLE |
5760 STATX_ATTR_NODUMP);
5761
5762 generic_fillattr(inode, stat);
5763 return 0;
5764 }
5765
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5766 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5767 u32 request_mask, unsigned int query_flags)
5768 {
5769 struct inode *inode = d_inode(path->dentry);
5770 u64 delalloc_blocks;
5771
5772 ext4_getattr(path, stat, request_mask, query_flags);
5773
5774 /*
5775 * If there is inline data in the inode, the inode will normally not
5776 * have data blocks allocated (it may have an external xattr block).
5777 * Report at least one sector for such files, so tools like tar, rsync,
5778 * others don't incorrectly think the file is completely sparse.
5779 */
5780 if (unlikely(ext4_has_inline_data(inode)))
5781 stat->blocks += (stat->size + 511) >> 9;
5782
5783 /*
5784 * We can't update i_blocks if the block allocation is delayed
5785 * otherwise in the case of system crash before the real block
5786 * allocation is done, we will have i_blocks inconsistent with
5787 * on-disk file blocks.
5788 * We always keep i_blocks updated together with real
5789 * allocation. But to not confuse with user, stat
5790 * will return the blocks that include the delayed allocation
5791 * blocks for this file.
5792 */
5793 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5794 EXT4_I(inode)->i_reserved_data_blocks);
5795 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5796 return 0;
5797 }
5798
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5799 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5800 int pextents)
5801 {
5802 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5803 return ext4_ind_trans_blocks(inode, lblocks);
5804 return ext4_ext_index_trans_blocks(inode, pextents);
5805 }
5806
5807 /*
5808 * Account for index blocks, block groups bitmaps and block group
5809 * descriptor blocks if modify datablocks and index blocks
5810 * worse case, the indexs blocks spread over different block groups
5811 *
5812 * If datablocks are discontiguous, they are possible to spread over
5813 * different block groups too. If they are contiguous, with flexbg,
5814 * they could still across block group boundary.
5815 *
5816 * Also account for superblock, inode, quota and xattr blocks
5817 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5818 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5819 int pextents)
5820 {
5821 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5822 int gdpblocks;
5823 int idxblocks;
5824 int ret = 0;
5825
5826 /*
5827 * How many index blocks need to touch to map @lblocks logical blocks
5828 * to @pextents physical extents?
5829 */
5830 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5831
5832 ret = idxblocks;
5833
5834 /*
5835 * Now let's see how many group bitmaps and group descriptors need
5836 * to account
5837 */
5838 groups = idxblocks + pextents;
5839 gdpblocks = groups;
5840 if (groups > ngroups)
5841 groups = ngroups;
5842 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5843 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5844
5845 /* bitmaps and block group descriptor blocks */
5846 ret += groups + gdpblocks;
5847
5848 /* Blocks for super block, inode, quota and xattr blocks */
5849 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5850
5851 return ret;
5852 }
5853
5854 /*
5855 * Calculate the total number of credits to reserve to fit
5856 * the modification of a single pages into a single transaction,
5857 * which may include multiple chunks of block allocations.
5858 *
5859 * This could be called via ext4_write_begin()
5860 *
5861 * We need to consider the worse case, when
5862 * one new block per extent.
5863 */
ext4_writepage_trans_blocks(struct inode * inode)5864 int ext4_writepage_trans_blocks(struct inode *inode)
5865 {
5866 int bpp = ext4_journal_blocks_per_page(inode);
5867 int ret;
5868
5869 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5870
5871 /* Account for data blocks for journalled mode */
5872 if (ext4_should_journal_data(inode))
5873 ret += bpp;
5874 return ret;
5875 }
5876
5877 /*
5878 * Calculate the journal credits for a chunk of data modification.
5879 *
5880 * This is called from DIO, fallocate or whoever calling
5881 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5882 *
5883 * journal buffers for data blocks are not included here, as DIO
5884 * and fallocate do no need to journal data buffers.
5885 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5886 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5887 {
5888 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5889 }
5890
5891 /*
5892 * The caller must have previously called ext4_reserve_inode_write().
5893 * Give this, we know that the caller already has write access to iloc->bh.
5894 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5895 int ext4_mark_iloc_dirty(handle_t *handle,
5896 struct inode *inode, struct ext4_iloc *iloc)
5897 {
5898 int err = 0;
5899
5900 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5901 put_bh(iloc->bh);
5902 return -EIO;
5903 }
5904 if (IS_I_VERSION(inode))
5905 inode_inc_iversion(inode);
5906
5907 /* the do_update_inode consumes one bh->b_count */
5908 get_bh(iloc->bh);
5909
5910 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5911 err = ext4_do_update_inode(handle, inode, iloc);
5912 put_bh(iloc->bh);
5913 return err;
5914 }
5915
5916 /*
5917 * On success, We end up with an outstanding reference count against
5918 * iloc->bh. This _must_ be cleaned up later.
5919 */
5920
5921 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5922 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5923 struct ext4_iloc *iloc)
5924 {
5925 int err;
5926
5927 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5928 return -EIO;
5929
5930 err = ext4_get_inode_loc(inode, iloc);
5931 if (!err) {
5932 BUFFER_TRACE(iloc->bh, "get_write_access");
5933 err = ext4_journal_get_write_access(handle, iloc->bh);
5934 if (err) {
5935 brelse(iloc->bh);
5936 iloc->bh = NULL;
5937 }
5938 }
5939 ext4_std_error(inode->i_sb, err);
5940 return err;
5941 }
5942
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5943 static int __ext4_expand_extra_isize(struct inode *inode,
5944 unsigned int new_extra_isize,
5945 struct ext4_iloc *iloc,
5946 handle_t *handle, int *no_expand)
5947 {
5948 struct ext4_inode *raw_inode;
5949 struct ext4_xattr_ibody_header *header;
5950 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5951 struct ext4_inode_info *ei = EXT4_I(inode);
5952 int error;
5953
5954 /* this was checked at iget time, but double check for good measure */
5955 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5956 (ei->i_extra_isize & 3)) {
5957 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5958 ei->i_extra_isize,
5959 EXT4_INODE_SIZE(inode->i_sb));
5960 return -EFSCORRUPTED;
5961 }
5962 if ((new_extra_isize < ei->i_extra_isize) ||
5963 (new_extra_isize < 4) ||
5964 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5965 return -EINVAL; /* Should never happen */
5966
5967 raw_inode = ext4_raw_inode(iloc);
5968
5969 header = IHDR(inode, raw_inode);
5970
5971 /* No extended attributes present */
5972 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5973 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5974 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5975 EXT4_I(inode)->i_extra_isize, 0,
5976 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5977 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5978 return 0;
5979 }
5980
5981 /* try to expand with EAs present */
5982 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5983 raw_inode, handle);
5984 if (error) {
5985 /*
5986 * Inode size expansion failed; don't try again
5987 */
5988 *no_expand = 1;
5989 }
5990
5991 return error;
5992 }
5993
5994 /*
5995 * Expand an inode by new_extra_isize bytes.
5996 * Returns 0 on success or negative error number on failure.
5997 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5998 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5999 unsigned int new_extra_isize,
6000 struct ext4_iloc iloc,
6001 handle_t *handle)
6002 {
6003 int no_expand;
6004 int error;
6005
6006 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6007 return -EOVERFLOW;
6008
6009 /*
6010 * In nojournal mode, we can immediately attempt to expand
6011 * the inode. When journaled, we first need to obtain extra
6012 * buffer credits since we may write into the EA block
6013 * with this same handle. If journal_extend fails, then it will
6014 * only result in a minor loss of functionality for that inode.
6015 * If this is felt to be critical, then e2fsck should be run to
6016 * force a large enough s_min_extra_isize.
6017 */
6018 if (ext4_handle_valid(handle) &&
6019 jbd2_journal_extend(handle,
6020 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6021 return -ENOSPC;
6022
6023 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6024 return -EBUSY;
6025
6026 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6027 handle, &no_expand);
6028 ext4_write_unlock_xattr(inode, &no_expand);
6029
6030 return error;
6031 }
6032
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6033 int ext4_expand_extra_isize(struct inode *inode,
6034 unsigned int new_extra_isize,
6035 struct ext4_iloc *iloc)
6036 {
6037 handle_t *handle;
6038 int no_expand;
6039 int error, rc;
6040
6041 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6042 brelse(iloc->bh);
6043 return -EOVERFLOW;
6044 }
6045
6046 handle = ext4_journal_start(inode, EXT4_HT_INODE,
6047 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6048 if (IS_ERR(handle)) {
6049 error = PTR_ERR(handle);
6050 brelse(iloc->bh);
6051 return error;
6052 }
6053
6054 ext4_write_lock_xattr(inode, &no_expand);
6055
6056 BUFFER_TRACE(iloc->bh, "get_write_access");
6057 error = ext4_journal_get_write_access(handle, iloc->bh);
6058 if (error) {
6059 brelse(iloc->bh);
6060 goto out_unlock;
6061 }
6062
6063 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6064 handle, &no_expand);
6065
6066 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6067 if (!error)
6068 error = rc;
6069
6070 out_unlock:
6071 ext4_write_unlock_xattr(inode, &no_expand);
6072 ext4_journal_stop(handle);
6073 return error;
6074 }
6075
6076 /*
6077 * What we do here is to mark the in-core inode as clean with respect to inode
6078 * dirtiness (it may still be data-dirty).
6079 * This means that the in-core inode may be reaped by prune_icache
6080 * without having to perform any I/O. This is a very good thing,
6081 * because *any* task may call prune_icache - even ones which
6082 * have a transaction open against a different journal.
6083 *
6084 * Is this cheating? Not really. Sure, we haven't written the
6085 * inode out, but prune_icache isn't a user-visible syncing function.
6086 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6087 * we start and wait on commits.
6088 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)6089 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6090 {
6091 struct ext4_iloc iloc;
6092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6093 int err;
6094
6095 might_sleep();
6096 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6097 err = ext4_reserve_inode_write(handle, inode, &iloc);
6098 if (err)
6099 return err;
6100
6101 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6102 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6103 iloc, handle);
6104
6105 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6106 }
6107
6108 /*
6109 * ext4_dirty_inode() is called from __mark_inode_dirty()
6110 *
6111 * We're really interested in the case where a file is being extended.
6112 * i_size has been changed by generic_commit_write() and we thus need
6113 * to include the updated inode in the current transaction.
6114 *
6115 * Also, dquot_alloc_block() will always dirty the inode when blocks
6116 * are allocated to the file.
6117 *
6118 * If the inode is marked synchronous, we don't honour that here - doing
6119 * so would cause a commit on atime updates, which we don't bother doing.
6120 * We handle synchronous inodes at the highest possible level.
6121 *
6122 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6123 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6124 * to copy into the on-disk inode structure are the timestamp files.
6125 */
ext4_dirty_inode(struct inode * inode,int flags)6126 void ext4_dirty_inode(struct inode *inode, int flags)
6127 {
6128 handle_t *handle;
6129
6130 if (flags == I_DIRTY_TIME)
6131 return;
6132 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6133 if (IS_ERR(handle))
6134 goto out;
6135
6136 ext4_mark_inode_dirty(handle, inode);
6137
6138 ext4_journal_stop(handle);
6139 out:
6140 return;
6141 }
6142
6143 #if 0
6144 /*
6145 * Bind an inode's backing buffer_head into this transaction, to prevent
6146 * it from being flushed to disk early. Unlike
6147 * ext4_reserve_inode_write, this leaves behind no bh reference and
6148 * returns no iloc structure, so the caller needs to repeat the iloc
6149 * lookup to mark the inode dirty later.
6150 */
6151 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6152 {
6153 struct ext4_iloc iloc;
6154
6155 int err = 0;
6156 if (handle) {
6157 err = ext4_get_inode_loc(inode, &iloc);
6158 if (!err) {
6159 BUFFER_TRACE(iloc.bh, "get_write_access");
6160 err = jbd2_journal_get_write_access(handle, iloc.bh);
6161 if (!err)
6162 err = ext4_handle_dirty_metadata(handle,
6163 NULL,
6164 iloc.bh);
6165 brelse(iloc.bh);
6166 }
6167 }
6168 ext4_std_error(inode->i_sb, err);
6169 return err;
6170 }
6171 #endif
6172
ext4_change_inode_journal_flag(struct inode * inode,int val)6173 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6174 {
6175 journal_t *journal;
6176 handle_t *handle;
6177 int err;
6178 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6179
6180 /*
6181 * We have to be very careful here: changing a data block's
6182 * journaling status dynamically is dangerous. If we write a
6183 * data block to the journal, change the status and then delete
6184 * that block, we risk forgetting to revoke the old log record
6185 * from the journal and so a subsequent replay can corrupt data.
6186 * So, first we make sure that the journal is empty and that
6187 * nobody is changing anything.
6188 */
6189
6190 journal = EXT4_JOURNAL(inode);
6191 if (!journal)
6192 return 0;
6193 if (is_journal_aborted(journal))
6194 return -EROFS;
6195
6196 /* Wait for all existing dio workers */
6197 inode_dio_wait(inode);
6198
6199 /*
6200 * Before flushing the journal and switching inode's aops, we have
6201 * to flush all dirty data the inode has. There can be outstanding
6202 * delayed allocations, there can be unwritten extents created by
6203 * fallocate or buffered writes in dioread_nolock mode covered by
6204 * dirty data which can be converted only after flushing the dirty
6205 * data (and journalled aops don't know how to handle these cases).
6206 */
6207 if (val) {
6208 down_write(&EXT4_I(inode)->i_mmap_sem);
6209 err = filemap_write_and_wait(inode->i_mapping);
6210 if (err < 0) {
6211 up_write(&EXT4_I(inode)->i_mmap_sem);
6212 return err;
6213 }
6214 }
6215
6216 percpu_down_write(&sbi->s_writepages_rwsem);
6217 jbd2_journal_lock_updates(journal);
6218
6219 /*
6220 * OK, there are no updates running now, and all cached data is
6221 * synced to disk. We are now in a completely consistent state
6222 * which doesn't have anything in the journal, and we know that
6223 * no filesystem updates are running, so it is safe to modify
6224 * the inode's in-core data-journaling state flag now.
6225 */
6226
6227 if (val)
6228 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6229 else {
6230 err = jbd2_journal_flush(journal);
6231 if (err < 0) {
6232 jbd2_journal_unlock_updates(journal);
6233 percpu_up_write(&sbi->s_writepages_rwsem);
6234 return err;
6235 }
6236 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6237 }
6238 ext4_set_aops(inode);
6239
6240 jbd2_journal_unlock_updates(journal);
6241 percpu_up_write(&sbi->s_writepages_rwsem);
6242
6243 if (val)
6244 up_write(&EXT4_I(inode)->i_mmap_sem);
6245
6246 /* Finally we can mark the inode as dirty. */
6247
6248 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6249 if (IS_ERR(handle))
6250 return PTR_ERR(handle);
6251
6252 err = ext4_mark_inode_dirty(handle, inode);
6253 ext4_handle_sync(handle);
6254 ext4_journal_stop(handle);
6255 ext4_std_error(inode->i_sb, err);
6256
6257 return err;
6258 }
6259
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6260 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6261 {
6262 return !buffer_mapped(bh);
6263 }
6264
ext4_page_mkwrite(struct vm_fault * vmf)6265 int ext4_page_mkwrite(struct vm_fault *vmf)
6266 {
6267 struct vm_area_struct *vma = vmf->vma;
6268 struct page *page = vmf->page;
6269 loff_t size;
6270 unsigned long len;
6271 int ret;
6272 struct file *file = vma->vm_file;
6273 struct inode *inode = file_inode(file);
6274 struct address_space *mapping = inode->i_mapping;
6275 handle_t *handle;
6276 get_block_t *get_block;
6277 int retries = 0;
6278
6279 if (unlikely(IS_IMMUTABLE(inode)))
6280 return VM_FAULT_SIGBUS;
6281
6282 sb_start_pagefault(inode->i_sb);
6283 file_update_time(vma->vm_file);
6284
6285 down_read(&EXT4_I(inode)->i_mmap_sem);
6286
6287 ret = ext4_convert_inline_data(inode);
6288 if (ret)
6289 goto out_ret;
6290
6291 /* Delalloc case is easy... */
6292 if (test_opt(inode->i_sb, DELALLOC) &&
6293 !ext4_should_journal_data(inode) &&
6294 !ext4_nonda_switch(inode->i_sb)) {
6295 do {
6296 ret = block_page_mkwrite(vma, vmf,
6297 ext4_da_get_block_prep);
6298 } while (ret == -ENOSPC &&
6299 ext4_should_retry_alloc(inode->i_sb, &retries));
6300 goto out_ret;
6301 }
6302
6303 lock_page(page);
6304 size = i_size_read(inode);
6305 /* Page got truncated from under us? */
6306 if (page->mapping != mapping || page_offset(page) > size) {
6307 unlock_page(page);
6308 ret = VM_FAULT_NOPAGE;
6309 goto out;
6310 }
6311
6312 if (page->index == size >> PAGE_SHIFT)
6313 len = size & ~PAGE_MASK;
6314 else
6315 len = PAGE_SIZE;
6316 /*
6317 * Return if we have all the buffers mapped. This avoids the need to do
6318 * journal_start/journal_stop which can block and take a long time
6319 */
6320 if (page_has_buffers(page)) {
6321 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6322 0, len, NULL,
6323 ext4_bh_unmapped)) {
6324 /* Wait so that we don't change page under IO */
6325 wait_for_stable_page(page);
6326 ret = VM_FAULT_LOCKED;
6327 goto out;
6328 }
6329 }
6330 unlock_page(page);
6331 /* OK, we need to fill the hole... */
6332 if (ext4_should_dioread_nolock(inode))
6333 get_block = ext4_get_block_unwritten;
6334 else
6335 get_block = ext4_get_block;
6336 retry_alloc:
6337 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6338 ext4_writepage_trans_blocks(inode));
6339 if (IS_ERR(handle)) {
6340 ret = VM_FAULT_SIGBUS;
6341 goto out;
6342 }
6343 ret = block_page_mkwrite(vma, vmf, get_block);
6344 if (!ret && ext4_should_journal_data(inode)) {
6345 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6346 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6347 unlock_page(page);
6348 ret = VM_FAULT_SIGBUS;
6349 ext4_journal_stop(handle);
6350 goto out;
6351 }
6352 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6353 }
6354 ext4_journal_stop(handle);
6355 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6356 goto retry_alloc;
6357 out_ret:
6358 ret = block_page_mkwrite_return(ret);
6359 out:
6360 up_read(&EXT4_I(inode)->i_mmap_sem);
6361 sb_end_pagefault(inode->i_sb);
6362 return ret;
6363 }
6364
ext4_filemap_fault(struct vm_fault * vmf)6365 int ext4_filemap_fault(struct vm_fault *vmf)
6366 {
6367 struct inode *inode = file_inode(vmf->vma->vm_file);
6368 int err;
6369
6370 down_read(&EXT4_I(inode)->i_mmap_sem);
6371 err = filemap_fault(vmf);
6372 up_read(&EXT4_I(inode)->i_mmap_sem);
6373
6374 return err;
6375 }
6376