• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  *  http://openexr.com/
32  *
33  * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
34  */
35 
36 #include <float.h>
37 #include <zlib.h>
38 
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/imgutils.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/avstring.h"
44 #include "libavutil/opt.h"
45 #include "libavutil/color_utils.h"
46 
47 #include "avcodec.h"
48 #include "bytestream.h"
49 
50 #if HAVE_BIGENDIAN
51 #include "bswapdsp.h"
52 #endif
53 
54 #include "exrdsp.h"
55 #include "get_bits.h"
56 #include "internal.h"
57 #include "mathops.h"
58 #include "thread.h"
59 
60 enum ExrCompr {
61     EXR_RAW,
62     EXR_RLE,
63     EXR_ZIP1,
64     EXR_ZIP16,
65     EXR_PIZ,
66     EXR_PXR24,
67     EXR_B44,
68     EXR_B44A,
69     EXR_DWA,
70     EXR_DWB,
71     EXR_UNKN,
72 };
73 
74 enum ExrPixelType {
75     EXR_UINT,
76     EXR_HALF,
77     EXR_FLOAT,
78     EXR_UNKNOWN,
79 };
80 
81 enum ExrTileLevelMode {
82     EXR_TILE_LEVEL_ONE,
83     EXR_TILE_LEVEL_MIPMAP,
84     EXR_TILE_LEVEL_RIPMAP,
85     EXR_TILE_LEVEL_UNKNOWN,
86 };
87 
88 enum ExrTileLevelRound {
89     EXR_TILE_ROUND_UP,
90     EXR_TILE_ROUND_DOWN,
91     EXR_TILE_ROUND_UNKNOWN,
92 };
93 
94 typedef struct EXRChannel {
95     int xsub, ysub;
96     enum ExrPixelType pixel_type;
97 } EXRChannel;
98 
99 typedef struct EXRTileAttribute {
100     int32_t xSize;
101     int32_t ySize;
102     enum ExrTileLevelMode level_mode;
103     enum ExrTileLevelRound level_round;
104 } EXRTileAttribute;
105 
106 typedef struct EXRThreadData {
107     uint8_t *uncompressed_data;
108     int uncompressed_size;
109 
110     uint8_t *tmp;
111     int tmp_size;
112 
113     uint8_t *bitmap;
114     uint16_t *lut;
115 
116     int ysize, xsize;
117 
118     int channel_line_size;
119 } EXRThreadData;
120 
121 typedef struct EXRContext {
122     AVClass *class;
123     AVFrame *picture;
124     AVCodecContext *avctx;
125     ExrDSPContext dsp;
126 
127 #if HAVE_BIGENDIAN
128     BswapDSPContext bbdsp;
129 #endif
130 
131     enum ExrCompr compression;
132     enum ExrPixelType pixel_type;
133     int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
134     const AVPixFmtDescriptor *desc;
135 
136     int w, h;
137     uint32_t xmax, xmin;
138     uint32_t ymax, ymin;
139     uint32_t xdelta, ydelta;
140 
141     int scan_lines_per_block;
142 
143     EXRTileAttribute tile_attr; /* header data attribute of tile */
144     int is_tile; /* 0 if scanline, 1 if tile */
145 
146     int is_luma;/* 1 if there is an Y plane */
147 
148     GetByteContext gb;
149     const uint8_t *buf;
150     int buf_size;
151 
152     EXRChannel *channels;
153     int nb_channels;
154     int current_channel_offset;
155 
156     EXRThreadData *thread_data;
157 
158     const char *layer;
159 
160     enum AVColorTransferCharacteristic apply_trc_type;
161     float gamma;
162     union av_intfloat32 gamma_table[65536];
163 } EXRContext;
164 
165 /* -15 stored using a single precision bias of 127 */
166 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
167 
168 /* max exponent value in single precision that will be converted
169  * to Inf or Nan when stored as a half-float */
170 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
171 
172 /* 255 is the max exponent biased value */
173 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
174 
175 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
176 
177 /**
178  * Convert a half float as a uint16_t into a full float.
179  *
180  * @param hf half float as uint16_t
181  *
182  * @return float value
183  */
exr_half2float(uint16_t hf)184 static union av_intfloat32 exr_half2float(uint16_t hf)
185 {
186     unsigned int sign = (unsigned int) (hf >> 15);
187     unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
188     unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
189     union av_intfloat32 f;
190 
191     if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
192         // we have a half-float NaN or Inf
193         // half-float NaNs will be converted to a single precision NaN
194         // half-float Infs will be converted to a single precision Inf
195         exp = FLOAT_MAX_BIASED_EXP;
196         if (mantissa)
197             mantissa = (1 << 23) - 1;    // set all bits to indicate a NaN
198     } else if (exp == 0x0) {
199         // convert half-float zero/denorm to single precision value
200         if (mantissa) {
201             mantissa <<= 1;
202             exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
203             // check for leading 1 in denorm mantissa
204             while ((mantissa & (1 << 10))) {
205                 // for every leading 0, decrement single precision exponent by 1
206                 // and shift half-float mantissa value to the left
207                 mantissa <<= 1;
208                 exp -= (1 << 23);
209             }
210             // clamp the mantissa to 10 bits
211             mantissa &= ((1 << 10) - 1);
212             // shift left to generate single-precision mantissa of 23 bits
213             mantissa <<= 13;
214         }
215     } else {
216         // shift left to generate single-precision mantissa of 23 bits
217         mantissa <<= 13;
218         // generate single precision biased exponent value
219         exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
220     }
221 
222     f.i = (sign << 31) | exp | mantissa;
223 
224     return f;
225 }
226 
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)227 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
228                           int uncompressed_size, EXRThreadData *td)
229 {
230     unsigned long dest_len = uncompressed_size;
231 
232     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
233         dest_len != uncompressed_size)
234         return AVERROR_INVALIDDATA;
235 
236     av_assert1(uncompressed_size % 2 == 0);
237 
238     s->dsp.predictor(td->tmp, uncompressed_size);
239     s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
240 
241     return 0;
242 }
243 
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)244 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
245                           int uncompressed_size, EXRThreadData *td)
246 {
247     uint8_t *d      = td->tmp;
248     const int8_t *s = src;
249     int ssize       = compressed_size;
250     int dsize       = uncompressed_size;
251     uint8_t *dend   = d + dsize;
252     int count;
253 
254     while (ssize > 0) {
255         count = *s++;
256 
257         if (count < 0) {
258             count = -count;
259 
260             if ((dsize -= count) < 0 ||
261                 (ssize -= count + 1) < 0)
262                 return AVERROR_INVALIDDATA;
263 
264             while (count--)
265                 *d++ = *s++;
266         } else {
267             count++;
268 
269             if ((dsize -= count) < 0 ||
270                 (ssize -= 2) < 0)
271                 return AVERROR_INVALIDDATA;
272 
273             while (count--)
274                 *d++ = *s;
275 
276             s++;
277         }
278     }
279 
280     if (dend != d)
281         return AVERROR_INVALIDDATA;
282 
283     av_assert1(uncompressed_size % 2 == 0);
284 
285     ctx->dsp.predictor(td->tmp, uncompressed_size);
286     ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
287 
288     return 0;
289 }
290 
291 #define USHORT_RANGE (1 << 16)
292 #define BITMAP_SIZE  (1 << 13)
293 
reverse_lut(const uint8_t * bitmap,uint16_t * lut)294 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
295 {
296     int i, k = 0;
297 
298     for (i = 0; i < USHORT_RANGE; i++)
299         if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
300             lut[k++] = i;
301 
302     i = k - 1;
303 
304     memset(lut + k, 0, (USHORT_RANGE - k) * 2);
305 
306     return i;
307 }
308 
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)309 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
310 {
311     int i;
312 
313     for (i = 0; i < dsize; ++i)
314         dst[i] = lut[dst[i]];
315 }
316 
317 #define HUF_ENCBITS 16  // literal (value) bit length
318 #define HUF_DECBITS 14  // decoding bit size (>= 8)
319 
320 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
321 #define HUF_DECSIZE (1 << HUF_DECBITS)        // decoding table size
322 #define HUF_DECMASK (HUF_DECSIZE - 1)
323 
324 typedef struct HufDec {
325     int len;
326     int lit;
327     int *p;
328 } HufDec;
329 
huf_canonical_code_table(uint64_t * hcode)330 static void huf_canonical_code_table(uint64_t *hcode)
331 {
332     uint64_t c, n[59] = { 0 };
333     int i;
334 
335     for (i = 0; i < HUF_ENCSIZE; ++i)
336         n[hcode[i]] += 1;
337 
338     c = 0;
339     for (i = 58; i > 0; --i) {
340         uint64_t nc = ((c + n[i]) >> 1);
341         n[i] = c;
342         c    = nc;
343     }
344 
345     for (i = 0; i < HUF_ENCSIZE; ++i) {
346         int l = hcode[i];
347 
348         if (l > 0)
349             hcode[i] = l | (n[l]++ << 6);
350     }
351 }
352 
353 #define SHORT_ZEROCODE_RUN  59
354 #define LONG_ZEROCODE_RUN   63
355 #define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
356 #define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
357 
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * hcode)358 static int huf_unpack_enc_table(GetByteContext *gb,
359                                 int32_t im, int32_t iM, uint64_t *hcode)
360 {
361     GetBitContext gbit;
362     int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
363     if (ret < 0)
364         return ret;
365 
366     for (; im <= iM; im++) {
367         uint64_t l = hcode[im] = get_bits(&gbit, 6);
368 
369         if (l == LONG_ZEROCODE_RUN) {
370             int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
371 
372             if (im + zerun > iM + 1)
373                 return AVERROR_INVALIDDATA;
374 
375             while (zerun--)
376                 hcode[im++] = 0;
377 
378             im--;
379         } else if (l >= SHORT_ZEROCODE_RUN) {
380             int zerun = l - SHORT_ZEROCODE_RUN + 2;
381 
382             if (im + zerun > iM + 1)
383                 return AVERROR_INVALIDDATA;
384 
385             while (zerun--)
386                 hcode[im++] = 0;
387 
388             im--;
389         }
390     }
391 
392     bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
393     huf_canonical_code_table(hcode);
394 
395     return 0;
396 }
397 
huf_build_dec_table(const uint64_t * hcode,int im,int iM,HufDec * hdecod)398 static int huf_build_dec_table(const uint64_t *hcode, int im,
399                                int iM, HufDec *hdecod)
400 {
401     for (; im <= iM; im++) {
402         uint64_t c = hcode[im] >> 6;
403         int i, l = hcode[im] & 63;
404 
405         if (c >> l)
406             return AVERROR_INVALIDDATA;
407 
408         if (l > HUF_DECBITS) {
409             HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
410             if (pl->len)
411                 return AVERROR_INVALIDDATA;
412 
413             pl->lit++;
414 
415             pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
416             if (!pl->p)
417                 return AVERROR(ENOMEM);
418 
419             pl->p[pl->lit - 1] = im;
420         } else if (l) {
421             HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
422 
423             for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
424                 if (pl->len || pl->p)
425                     return AVERROR_INVALIDDATA;
426                 pl->len = l;
427                 pl->lit = im;
428             }
429         }
430     }
431 
432     return 0;
433 }
434 
435 #define get_char(c, lc, gb)                                                   \
436 {                                                                             \
437         c   = (c << 8) | bytestream2_get_byte(gb);                            \
438         lc += 8;                                                              \
439 }
440 
441 #define get_code(po, rlc, c, lc, gb, out, oe, outb)                           \
442 {                                                                             \
443         if (po == rlc) {                                                      \
444             if (lc < 8)                                                       \
445                 get_char(c, lc, gb);                                          \
446             lc -= 8;                                                          \
447                                                                               \
448             cs = c >> lc;                                                     \
449                                                                               \
450             if (out + cs > oe || out == outb)                                 \
451                 return AVERROR_INVALIDDATA;                                   \
452                                                                               \
453             s = out[-1];                                                      \
454                                                                               \
455             while (cs-- > 0)                                                  \
456                 *out++ = s;                                                   \
457         } else if (out < oe) {                                                \
458             *out++ = po;                                                      \
459         } else {                                                              \
460             return AVERROR_INVALIDDATA;                                       \
461         }                                                                     \
462 }
463 
huf_decode(const uint64_t * hcode,const HufDec * hdecod,GetByteContext * gb,int nbits,int rlc,int no,uint16_t * out)464 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
465                       GetByteContext *gb, int nbits,
466                       int rlc, int no, uint16_t *out)
467 {
468     uint64_t c        = 0;
469     uint16_t *outb    = out;
470     uint16_t *oe      = out + no;
471     const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
472     uint8_t cs;
473     uint16_t s;
474     int i, lc = 0;
475 
476     while (gb->buffer < ie) {
477         get_char(c, lc, gb);
478 
479         while (lc >= HUF_DECBITS) {
480             const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
481 
482             if (pl.len) {
483                 lc -= pl.len;
484                 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
485             } else {
486                 int j;
487 
488                 if (!pl.p)
489                     return AVERROR_INVALIDDATA;
490 
491                 for (j = 0; j < pl.lit; j++) {
492                     int l = hcode[pl.p[j]] & 63;
493 
494                     while (lc < l && bytestream2_get_bytes_left(gb) > 0)
495                         get_char(c, lc, gb);
496 
497                     if (lc >= l) {
498                         if ((hcode[pl.p[j]] >> 6) ==
499                             ((c >> (lc - l)) & ((1LL << l) - 1))) {
500                             lc -= l;
501                             get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
502                             break;
503                         }
504                     }
505                 }
506 
507                 if (j == pl.lit)
508                     return AVERROR_INVALIDDATA;
509             }
510         }
511     }
512 
513     i   = (8 - nbits) & 7;
514     c >>= i;
515     lc -= i;
516 
517     while (lc > 0) {
518         const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
519 
520         if (pl.len && lc >= pl.len) {
521             lc -= pl.len;
522             get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
523         } else {
524             return AVERROR_INVALIDDATA;
525         }
526     }
527 
528     if (out - outb != no)
529         return AVERROR_INVALIDDATA;
530     return 0;
531 }
532 
huf_uncompress(GetByteContext * gb,uint16_t * dst,int dst_size)533 static int huf_uncompress(GetByteContext *gb,
534                           uint16_t *dst, int dst_size)
535 {
536     int32_t src_size, im, iM;
537     uint32_t nBits;
538     uint64_t *freq;
539     HufDec *hdec;
540     int ret, i;
541 
542     src_size = bytestream2_get_le32(gb);
543     im       = bytestream2_get_le32(gb);
544     iM       = bytestream2_get_le32(gb);
545     bytestream2_skip(gb, 4);
546     nBits = bytestream2_get_le32(gb);
547     if (im < 0 || im >= HUF_ENCSIZE ||
548         iM < 0 || iM >= HUF_ENCSIZE ||
549         src_size < 0)
550         return AVERROR_INVALIDDATA;
551 
552     bytestream2_skip(gb, 4);
553 
554     freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
555     hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
556     if (!freq || !hdec) {
557         ret = AVERROR(ENOMEM);
558         goto fail;
559     }
560 
561     if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
562         goto fail;
563 
564     if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
565         ret = AVERROR_INVALIDDATA;
566         goto fail;
567     }
568 
569     if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
570         goto fail;
571     ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
572 
573 fail:
574     for (i = 0; i < HUF_DECSIZE; i++)
575         if (hdec)
576             av_freep(&hdec[i].p);
577 
578     av_free(freq);
579     av_free(hdec);
580 
581     return ret;
582 }
583 
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)584 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
585 {
586     int16_t ls = l;
587     int16_t hs = h;
588     int hi     = hs;
589     int ai     = ls + (hi & 1) + (hi >> 1);
590     int16_t as = ai;
591     int16_t bs = ai - hi;
592 
593     *a = as;
594     *b = bs;
595 }
596 
597 #define NBITS      16
598 #define A_OFFSET  (1 << (NBITS - 1))
599 #define MOD_MASK  ((1 << NBITS) - 1)
600 
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)601 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
602 {
603     int m  = l;
604     int d  = h;
605     int bb = (m - (d >> 1)) & MOD_MASK;
606     int aa = (d + bb - A_OFFSET) & MOD_MASK;
607     *b = bb;
608     *a = aa;
609 }
610 
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)611 static void wav_decode(uint16_t *in, int nx, int ox,
612                        int ny, int oy, uint16_t mx)
613 {
614     int w14 = (mx < (1 << 14));
615     int n   = (nx > ny) ? ny : nx;
616     int p   = 1;
617     int p2;
618 
619     while (p <= n)
620         p <<= 1;
621 
622     p >>= 1;
623     p2  = p;
624     p >>= 1;
625 
626     while (p >= 1) {
627         uint16_t *py = in;
628         uint16_t *ey = in + oy * (ny - p2);
629         uint16_t i00, i01, i10, i11;
630         int oy1 = oy * p;
631         int oy2 = oy * p2;
632         int ox1 = ox * p;
633         int ox2 = ox * p2;
634 
635         for (; py <= ey; py += oy2) {
636             uint16_t *px = py;
637             uint16_t *ex = py + ox * (nx - p2);
638 
639             for (; px <= ex; px += ox2) {
640                 uint16_t *p01 = px + ox1;
641                 uint16_t *p10 = px + oy1;
642                 uint16_t *p11 = p10 + ox1;
643 
644                 if (w14) {
645                     wdec14(*px, *p10, &i00, &i10);
646                     wdec14(*p01, *p11, &i01, &i11);
647                     wdec14(i00, i01, px, p01);
648                     wdec14(i10, i11, p10, p11);
649                 } else {
650                     wdec16(*px, *p10, &i00, &i10);
651                     wdec16(*p01, *p11, &i01, &i11);
652                     wdec16(i00, i01, px, p01);
653                     wdec16(i10, i11, p10, p11);
654                 }
655             }
656 
657             if (nx & p) {
658                 uint16_t *p10 = px + oy1;
659 
660                 if (w14)
661                     wdec14(*px, *p10, &i00, p10);
662                 else
663                     wdec16(*px, *p10, &i00, p10);
664 
665                 *px = i00;
666             }
667         }
668 
669         if (ny & p) {
670             uint16_t *px = py;
671             uint16_t *ex = py + ox * (nx - p2);
672 
673             for (; px <= ex; px += ox2) {
674                 uint16_t *p01 = px + ox1;
675 
676                 if (w14)
677                     wdec14(*px, *p01, &i00, p01);
678                 else
679                     wdec16(*px, *p01, &i00, p01);
680 
681                 *px = i00;
682             }
683         }
684 
685         p2  = p;
686         p >>= 1;
687     }
688 }
689 
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)690 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
691                           int dsize, EXRThreadData *td)
692 {
693     GetByteContext gb;
694     uint16_t maxval, min_non_zero, max_non_zero;
695     uint16_t *ptr;
696     uint16_t *tmp = (uint16_t *)td->tmp;
697     uint16_t *out;
698     uint16_t *in;
699     int ret, i, j;
700     int pixel_half_size;/* 1 for half, 2 for float and uint32 */
701     EXRChannel *channel;
702     int tmp_offset;
703 
704     if (!td->bitmap)
705         td->bitmap = av_malloc(BITMAP_SIZE);
706     if (!td->lut)
707         td->lut = av_malloc(1 << 17);
708     if (!td->bitmap || !td->lut) {
709         av_freep(&td->bitmap);
710         av_freep(&td->lut);
711         return AVERROR(ENOMEM);
712     }
713 
714     bytestream2_init(&gb, src, ssize);
715     min_non_zero = bytestream2_get_le16(&gb);
716     max_non_zero = bytestream2_get_le16(&gb);
717 
718     if (max_non_zero >= BITMAP_SIZE)
719         return AVERROR_INVALIDDATA;
720 
721     memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
722     if (min_non_zero <= max_non_zero)
723         bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
724                                max_non_zero - min_non_zero + 1);
725     memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
726 
727     maxval = reverse_lut(td->bitmap, td->lut);
728 
729     ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
730     if (ret)
731         return ret;
732 
733     ptr = tmp;
734     for (i = 0; i < s->nb_channels; i++) {
735         channel = &s->channels[i];
736 
737         if (channel->pixel_type == EXR_HALF)
738             pixel_half_size = 1;
739         else
740             pixel_half_size = 2;
741 
742         for (j = 0; j < pixel_half_size; j++)
743             wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
744                        td->xsize * pixel_half_size, maxval);
745         ptr += td->xsize * td->ysize * pixel_half_size;
746     }
747 
748     apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
749 
750     out = (uint16_t *)td->uncompressed_data;
751     for (i = 0; i < td->ysize; i++) {
752         tmp_offset = 0;
753         for (j = 0; j < s->nb_channels; j++) {
754             channel = &s->channels[j];
755             if (channel->pixel_type == EXR_HALF)
756                 pixel_half_size = 1;
757             else
758                 pixel_half_size = 2;
759 
760             in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
761             tmp_offset += pixel_half_size;
762 
763 #if HAVE_BIGENDIAN
764             s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
765 #else
766             memcpy(out, in, td->xsize * 2 * pixel_half_size);
767 #endif
768             out += td->xsize * pixel_half_size;
769         }
770     }
771 
772     return 0;
773 }
774 
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)775 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
776                             int compressed_size, int uncompressed_size,
777                             EXRThreadData *td)
778 {
779     unsigned long dest_len, expected_len = 0;
780     const uint8_t *in = td->tmp;
781     uint8_t *out;
782     int c, i, j;
783 
784     for (i = 0; i < s->nb_channels; i++) {
785         if (s->channels[i].pixel_type == EXR_FLOAT) {
786             expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
787         } else if (s->channels[i].pixel_type == EXR_HALF) {
788             expected_len += (td->xsize * td->ysize * 2);
789         } else {//UINT 32
790             expected_len += (td->xsize * td->ysize * 4);
791         }
792     }
793 
794     dest_len = expected_len;
795 
796     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
797         return AVERROR_INVALIDDATA;
798     } else if (dest_len != expected_len) {
799         return AVERROR_INVALIDDATA;
800     }
801 
802     out = td->uncompressed_data;
803     for (i = 0; i < td->ysize; i++)
804         for (c = 0; c < s->nb_channels; c++) {
805             EXRChannel *channel = &s->channels[c];
806             const uint8_t *ptr[4];
807             uint32_t pixel = 0;
808 
809             switch (channel->pixel_type) {
810             case EXR_FLOAT:
811                 ptr[0] = in;
812                 ptr[1] = ptr[0] + td->xsize;
813                 ptr[2] = ptr[1] + td->xsize;
814                 in     = ptr[2] + td->xsize;
815 
816                 for (j = 0; j < td->xsize; ++j) {
817                     uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
818                                     (*(ptr[1]++) << 16) |
819                                     (*(ptr[2]++) << 8);
820                     pixel += diff;
821                     bytestream_put_le32(&out, pixel);
822                 }
823                 break;
824             case EXR_HALF:
825                 ptr[0] = in;
826                 ptr[1] = ptr[0] + td->xsize;
827                 in     = ptr[1] + td->xsize;
828                 for (j = 0; j < td->xsize; j++) {
829                     uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
830 
831                     pixel += diff;
832                     bytestream_put_le16(&out, pixel);
833                 }
834                 break;
835             case EXR_UINT:
836                 ptr[0] = in;
837                 ptr[1] = ptr[0] + s->xdelta;
838                 ptr[2] = ptr[1] + s->xdelta;
839                 ptr[3] = ptr[2] + s->xdelta;
840                 in     = ptr[3] + s->xdelta;
841 
842                 for (j = 0; j < s->xdelta; ++j) {
843                     uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
844                     (*(ptr[1]++) << 16) |
845                     (*(ptr[2]++) << 8 ) |
846                     (*(ptr[3]++));
847                     pixel += diff;
848                     bytestream_put_le32(&out, pixel);
849                 }
850                 break;
851             default:
852                 return AVERROR_INVALIDDATA;
853             }
854         }
855 
856     return 0;
857 }
858 
unpack_14(const uint8_t b[14],uint16_t s[16])859 static void unpack_14(const uint8_t b[14], uint16_t s[16])
860 {
861     unsigned short shift = (b[ 2] >> 2) & 15;
862     unsigned short bias = (0x20 << shift);
863     int i;
864 
865     s[ 0] = (b[0] << 8) | b[1];
866 
867     s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
868     s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
869     s[12] = s[ 8] +   ((b[ 4]                       & 0x3f) << shift) - bias;
870 
871     s[ 1] = s[ 0] +   ((b[ 5] >> 2)                         << shift) - bias;
872     s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
873     s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
874     s[13] = s[12] +   ((b[ 7]                       & 0x3f) << shift) - bias;
875 
876     s[ 2] = s[ 1] +   ((b[ 8] >> 2)                         << shift) - bias;
877     s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
878     s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
879     s[14] = s[13] +   ((b[10]                       & 0x3f) << shift) - bias;
880 
881     s[ 3] = s[ 2] +   ((b[11] >> 2)                         << shift) - bias;
882     s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
883     s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
884     s[15] = s[14] +   ((b[13]                       & 0x3f) << shift) - bias;
885 
886     for (i = 0; i < 16; ++i) {
887         if (s[i] & 0x8000)
888             s[i] &= 0x7fff;
889         else
890             s[i] = ~s[i];
891     }
892 }
893 
unpack_3(const uint8_t b[3],uint16_t s[16])894 static void unpack_3(const uint8_t b[3], uint16_t s[16])
895 {
896     int i;
897 
898     s[0] = (b[0] << 8) | b[1];
899 
900     if (s[0] & 0x8000)
901         s[0] &= 0x7fff;
902     else
903         s[0] = ~s[0];
904 
905     for (i = 1; i < 16; i++)
906         s[i] = s[0];
907 }
908 
909 
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)910 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
911                           int uncompressed_size, EXRThreadData *td) {
912     const int8_t *sr = src;
913     int stay_to_uncompress = compressed_size;
914     int nb_b44_block_w, nb_b44_block_h;
915     int index_tl_x, index_tl_y, index_out, index_tmp;
916     uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
917     int c, iY, iX, y, x;
918     int target_channel_offset = 0;
919 
920     /* calc B44 block count */
921     nb_b44_block_w = td->xsize / 4;
922     if ((td->xsize % 4) != 0)
923         nb_b44_block_w++;
924 
925     nb_b44_block_h = td->ysize / 4;
926     if ((td->ysize % 4) != 0)
927         nb_b44_block_h++;
928 
929     for (c = 0; c < s->nb_channels; c++) {
930         if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
931             for (iY = 0; iY < nb_b44_block_h; iY++) {
932                 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
933                     if (stay_to_uncompress < 3) {
934                         av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
935                         return AVERROR_INVALIDDATA;
936                     }
937 
938                     if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
939                         unpack_3(sr, tmp_buffer);
940                         sr += 3;
941                         stay_to_uncompress -= 3;
942                     }  else {/* B44 Block */
943                         if (stay_to_uncompress < 14) {
944                             av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
945                             return AVERROR_INVALIDDATA;
946                         }
947                         unpack_14(sr, tmp_buffer);
948                         sr += 14;
949                         stay_to_uncompress -= 14;
950                     }
951 
952                     /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
953                     index_tl_x = iX * 4;
954                     index_tl_y = iY * 4;
955 
956                     for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
957                         for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
958                             index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
959                             index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
960                             td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
961                             td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
962                         }
963                     }
964                 }
965             }
966             target_channel_offset += 2;
967         } else {/* Float or UINT 32 channel */
968             if (stay_to_uncompress < td->ysize * td->xsize * 4) {
969                 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
970                 return AVERROR_INVALIDDATA;
971             }
972 
973             for (y = 0; y < td->ysize; y++) {
974                 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
975                 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
976                 sr += td->xsize * 4;
977             }
978             target_channel_offset += 4;
979 
980             stay_to_uncompress -= td->ysize * td->xsize * 4;
981         }
982     }
983 
984     return 0;
985 }
986 
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)987 static int decode_block(AVCodecContext *avctx, void *tdata,
988                         int jobnr, int threadnr)
989 {
990     EXRContext *s = avctx->priv_data;
991     AVFrame *const p = s->picture;
992     EXRThreadData *td = &s->thread_data[threadnr];
993     const uint8_t *channel_buffer[4] = { 0 };
994     const uint8_t *buf = s->buf;
995     uint64_t line_offset, uncompressed_size;
996     uint8_t *ptr;
997     uint32_t data_size;
998     uint64_t line, col = 0;
999     uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1000     const uint8_t *src;
1001     int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1002     int axmax = (avctx->width - (s->xmax + 1)) * step; /* nb pixel to add at the right of the datawindow */
1003     int bxmin = s->xmin * step; /* nb pixel to add at the left of the datawindow */
1004     int i, x, buf_size = s->buf_size;
1005     int c, rgb_channel_count;
1006     float one_gamma = 1.0f / s->gamma;
1007     avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1008     int ret;
1009 
1010     line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1011 
1012     if (s->is_tile) {
1013         if (buf_size < 20 || line_offset > buf_size - 20)
1014             return AVERROR_INVALIDDATA;
1015 
1016         src  = buf + line_offset + 20;
1017 
1018         tile_x = AV_RL32(src - 20);
1019         tile_y = AV_RL32(src - 16);
1020         tile_level_x = AV_RL32(src - 12);
1021         tile_level_y = AV_RL32(src - 8);
1022 
1023         data_size = AV_RL32(src - 4);
1024         if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1025             return AVERROR_INVALIDDATA;
1026 
1027         if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1028             avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1029             return AVERROR_PATCHWELCOME;
1030         }
1031 
1032         if (s->xmin || s->ymin) {
1033             avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1034             return AVERROR_PATCHWELCOME;
1035         }
1036 
1037         line = s->tile_attr.ySize * tile_y;
1038         col = s->tile_attr.xSize * tile_x;
1039 
1040         if (line < s->ymin || line > s->ymax ||
1041             col  < s->xmin || col  > s->xmax)
1042             return AVERROR_INVALIDDATA;
1043 
1044         td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1045         td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1046 
1047         if (col) { /* not the first tile of the line */
1048             bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1049         }
1050 
1051         if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1052             axmax = 0; /* doesn't add pixel at the right of the datawindow */
1053 
1054         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1055             return AVERROR_INVALIDDATA;
1056 
1057         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1058         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1059     } else {
1060         if (buf_size < 8 || line_offset > buf_size - 8)
1061             return AVERROR_INVALIDDATA;
1062 
1063         src  = buf + line_offset + 8;
1064         line = AV_RL32(src - 8);
1065 
1066         if (line < s->ymin || line > s->ymax)
1067             return AVERROR_INVALIDDATA;
1068 
1069         data_size = AV_RL32(src - 4);
1070         if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1071             return AVERROR_INVALIDDATA;
1072 
1073         td->ysize          = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1074         td->xsize          = s->xdelta;
1075 
1076         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1077             return AVERROR_INVALIDDATA;
1078 
1079         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1080         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1081 
1082         if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1083                                            line_offset > buf_size - uncompressed_size)) ||
1084             (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1085                                            line_offset > buf_size - data_size))) {
1086             return AVERROR_INVALIDDATA;
1087         }
1088     }
1089 
1090     if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1091         av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1092         if (!td->tmp)
1093             return AVERROR(ENOMEM);
1094     }
1095 
1096     if (data_size < uncompressed_size) {
1097         av_fast_padded_malloc(&td->uncompressed_data,
1098                               &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1099 
1100         if (!td->uncompressed_data)
1101             return AVERROR(ENOMEM);
1102 
1103         ret = AVERROR_INVALIDDATA;
1104         switch (s->compression) {
1105         case EXR_ZIP1:
1106         case EXR_ZIP16:
1107             ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1108             break;
1109         case EXR_PIZ:
1110             ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1111             break;
1112         case EXR_PXR24:
1113             ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1114             break;
1115         case EXR_RLE:
1116             ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1117             break;
1118         case EXR_B44:
1119         case EXR_B44A:
1120             ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1121             break;
1122         }
1123         if (ret < 0) {
1124             av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1125             return ret;
1126         }
1127         src = td->uncompressed_data;
1128     }
1129 
1130     if (!s->is_luma) {
1131         channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1132         channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1133         channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1134         rgb_channel_count = 3;
1135     } else { /* put y data in the first channel_buffer */
1136         channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1137         rgb_channel_count = 1;
1138     }
1139     if (s->channel_offsets[3] >= 0)
1140         channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1141 
1142     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1143 
1144         /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1145         int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1146         if (s->is_luma) {
1147             channel_buffer[1] = channel_buffer[0];
1148             channel_buffer[2] = channel_buffer[0];
1149         }
1150 
1151         for (c = 0; c < channel_count; c++) {
1152             int plane = s->desc->comp[c].plane;
1153             ptr = p->data[plane] + line * p->linesize[plane] + (col * 4);
1154 
1155             for (i = 0; i < td->ysize; i++, ptr += p->linesize[plane]) {
1156                 const uint8_t *src;
1157                 union av_intfloat32 *ptr_x;
1158 
1159                 src = channel_buffer[c];
1160                 ptr_x = (union av_intfloat32 *)ptr;
1161 
1162                 // Zero out the start if xmin is not 0
1163                 memset(ptr_x, 0, bxmin);
1164                 ptr_x += s->xmin;
1165 
1166                 if (s->pixel_type == EXR_FLOAT) {
1167                     // 32-bit
1168                     union av_intfloat32 t;
1169                     if (trc_func && c < 3) {
1170                         for (x = 0; x < td->xsize; x++) {
1171                             t.i = bytestream_get_le32(&src);
1172                             t.f = trc_func(t.f);
1173                             *ptr_x++ = t;
1174                         }
1175                     } else {
1176                         for (x = 0; x < td->xsize; x++) {
1177                             t.i = bytestream_get_le32(&src);
1178                             if (t.f > 0.0f && c < 3)  /* avoid negative values */
1179                                 t.f = powf(t.f, one_gamma);
1180                             *ptr_x++ = t;
1181                         }
1182                     }
1183                 } else if (s->pixel_type == EXR_HALF) {
1184                     // 16-bit
1185                     if (c < 3) {
1186                         for (x = 0; x < td->xsize; x++) {
1187                             *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1188                         }
1189                     } else {
1190                         for (x = 0; x < td->xsize; x++) {
1191                             *ptr_x++ = exr_half2float(bytestream_get_le16(&src));;
1192                         }
1193                     }
1194                 }
1195 
1196                 // Zero out the end if xmax+1 is not w
1197                 memset(ptr_x, 0, axmax);
1198                 channel_buffer[c] += td->channel_line_size;
1199             }
1200         }
1201     } else {
1202 
1203         av_assert1(s->pixel_type == EXR_UINT);
1204         ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1205 
1206         for (i = 0; i < td->ysize; i++, ptr += p->linesize[0]) {
1207 
1208             const uint8_t * a;
1209             const uint8_t *rgb[3];
1210             uint16_t *ptr_x;
1211 
1212             for (c = 0; c < rgb_channel_count; c++) {
1213                 rgb[c] = channel_buffer[c];
1214             }
1215 
1216             if (channel_buffer[3])
1217                 a = channel_buffer[3];
1218 
1219             ptr_x = (uint16_t *) ptr;
1220 
1221             // Zero out the start if xmin is not 0
1222             memset(ptr_x, 0, bxmin);
1223             ptr_x += s->xmin * s->desc->nb_components;
1224 
1225             for (x = 0; x < td->xsize; x++) {
1226                 for (c = 0; c < rgb_channel_count; c++) {
1227                     *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1228                 }
1229 
1230                 if (channel_buffer[3])
1231                     *ptr_x++ = bytestream_get_le32(&a) >> 16;
1232             }
1233 
1234             // Zero out the end if xmax+1 is not w
1235             memset(ptr_x, 0, axmax);
1236 
1237             channel_buffer[0] += td->channel_line_size;
1238             channel_buffer[1] += td->channel_line_size;
1239             channel_buffer[2] += td->channel_line_size;
1240             if (channel_buffer[3])
1241                 channel_buffer[3] += td->channel_line_size;
1242         }
1243     }
1244 
1245     return 0;
1246 }
1247 
1248 /**
1249  * Check if the variable name corresponds to its data type.
1250  *
1251  * @param s              the EXRContext
1252  * @param value_name     name of the variable to check
1253  * @param value_type     type of the variable to check
1254  * @param minimum_length minimum length of the variable data
1255  *
1256  * @return bytes to read containing variable data
1257  *         -1 if variable is not found
1258  *         0 if buffer ended prematurely
1259  */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1260 static int check_header_variable(EXRContext *s,
1261                                  const char *value_name,
1262                                  const char *value_type,
1263                                  unsigned int minimum_length)
1264 {
1265     int var_size = -1;
1266 
1267     if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1268         !strcmp(s->gb.buffer, value_name)) {
1269         // found value_name, jump to value_type (null terminated strings)
1270         s->gb.buffer += strlen(value_name) + 1;
1271         if (!strcmp(s->gb.buffer, value_type)) {
1272             s->gb.buffer += strlen(value_type) + 1;
1273             var_size = bytestream2_get_le32(&s->gb);
1274             // don't go read past boundaries
1275             if (var_size > bytestream2_get_bytes_left(&s->gb))
1276                 var_size = 0;
1277         } else {
1278             // value_type not found, reset the buffer
1279             s->gb.buffer -= strlen(value_name) + 1;
1280             av_log(s->avctx, AV_LOG_WARNING,
1281                    "Unknown data type %s for header variable %s.\n",
1282                    value_type, value_name);
1283         }
1284     }
1285 
1286     return var_size;
1287 }
1288 
decode_header(EXRContext * s,AVFrame * frame)1289 static int decode_header(EXRContext *s, AVFrame *frame)
1290 {
1291     AVDictionary *metadata = NULL;
1292     int magic_number, version, i, flags, sar = 0;
1293     int layer_match = 0;
1294     int ret;
1295     int dup_channels = 0;
1296 
1297     s->current_channel_offset = 0;
1298     s->xmin               = ~0;
1299     s->xmax               = ~0;
1300     s->ymin               = ~0;
1301     s->ymax               = ~0;
1302     s->xdelta             = ~0;
1303     s->ydelta             = ~0;
1304     s->channel_offsets[0] = -1;
1305     s->channel_offsets[1] = -1;
1306     s->channel_offsets[2] = -1;
1307     s->channel_offsets[3] = -1;
1308     s->pixel_type         = EXR_UNKNOWN;
1309     s->compression        = EXR_UNKN;
1310     s->nb_channels        = 0;
1311     s->w                  = 0;
1312     s->h                  = 0;
1313     s->tile_attr.xSize    = -1;
1314     s->tile_attr.ySize    = -1;
1315     s->is_tile            = 0;
1316     s->is_luma            = 0;
1317 
1318     if (bytestream2_get_bytes_left(&s->gb) < 10) {
1319         av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1320         return AVERROR_INVALIDDATA;
1321     }
1322 
1323     magic_number = bytestream2_get_le32(&s->gb);
1324     if (magic_number != 20000630) {
1325         /* As per documentation of OpenEXR, it is supposed to be
1326          * int 20000630 little-endian */
1327         av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1328         return AVERROR_INVALIDDATA;
1329     }
1330 
1331     version = bytestream2_get_byte(&s->gb);
1332     if (version != 2) {
1333         avpriv_report_missing_feature(s->avctx, "Version %d", version);
1334         return AVERROR_PATCHWELCOME;
1335     }
1336 
1337     flags = bytestream2_get_le24(&s->gb);
1338 
1339     if (flags & 0x02)
1340         s->is_tile = 1;
1341     if (flags & 0x08) {
1342         avpriv_report_missing_feature(s->avctx, "deep data");
1343         return AVERROR_PATCHWELCOME;
1344     }
1345     if (flags & 0x10) {
1346         avpriv_report_missing_feature(s->avctx, "multipart");
1347         return AVERROR_PATCHWELCOME;
1348     }
1349 
1350     // Parse the header
1351     while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1352         int var_size;
1353         if ((var_size = check_header_variable(s, "channels",
1354                                               "chlist", 38)) >= 0) {
1355             GetByteContext ch_gb;
1356             if (!var_size) {
1357                 ret = AVERROR_INVALIDDATA;
1358                 goto fail;
1359             }
1360 
1361             bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1362 
1363             while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1364                 EXRChannel *channel;
1365                 enum ExrPixelType current_pixel_type;
1366                 int channel_index = -1;
1367                 int xsub, ysub;
1368 
1369                 if (strcmp(s->layer, "") != 0) {
1370                     if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1371                         layer_match = 1;
1372                         av_log(s->avctx, AV_LOG_INFO,
1373                                "Channel match layer : %s.\n", ch_gb.buffer);
1374                         ch_gb.buffer += strlen(s->layer);
1375                         if (*ch_gb.buffer == '.')
1376                             ch_gb.buffer++;         /* skip dot if not given */
1377                     } else {
1378                         layer_match = 0;
1379                         av_log(s->avctx, AV_LOG_INFO,
1380                                "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1381                     }
1382                 } else {
1383                     layer_match = 1;
1384                 }
1385 
1386                 if (layer_match) { /* only search channel if the layer match is valid */
1387                     if (!av_strcasecmp(ch_gb.buffer, "R") ||
1388                         !av_strcasecmp(ch_gb.buffer, "X") ||
1389                         !av_strcasecmp(ch_gb.buffer, "U")) {
1390                         channel_index = 0;
1391                         s->is_luma = 0;
1392                     } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1393                                !av_strcasecmp(ch_gb.buffer, "V")) {
1394                         channel_index = 1;
1395                         s->is_luma = 0;
1396                     } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1397                         channel_index = 1;
1398                         s->is_luma = 1;
1399                     } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1400                                !av_strcasecmp(ch_gb.buffer, "Z") ||
1401                                !av_strcasecmp(ch_gb.buffer, "W")) {
1402                         channel_index = 2;
1403                         s->is_luma = 0;
1404                     } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1405                         channel_index = 3;
1406                     } else {
1407                         av_log(s->avctx, AV_LOG_WARNING,
1408                                "Unsupported channel %.256s.\n", ch_gb.buffer);
1409                     }
1410                 }
1411 
1412                 /* skip until you get a 0 */
1413                 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1414                        bytestream2_get_byte(&ch_gb))
1415                     continue;
1416 
1417                 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1418                     av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1419                     ret = AVERROR_INVALIDDATA;
1420                     goto fail;
1421                 }
1422 
1423                 current_pixel_type = bytestream2_get_le32(&ch_gb);
1424                 if (current_pixel_type >= EXR_UNKNOWN) {
1425                     avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1426                                                   current_pixel_type);
1427                     ret = AVERROR_PATCHWELCOME;
1428                     goto fail;
1429                 }
1430 
1431                 bytestream2_skip(&ch_gb, 4);
1432                 xsub = bytestream2_get_le32(&ch_gb);
1433                 ysub = bytestream2_get_le32(&ch_gb);
1434 
1435                 if (xsub != 1 || ysub != 1) {
1436                     avpriv_report_missing_feature(s->avctx,
1437                                                   "Subsampling %dx%d",
1438                                                   xsub, ysub);
1439                     ret = AVERROR_PATCHWELCOME;
1440                     goto fail;
1441                 }
1442 
1443                 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1444                     if (s->pixel_type != EXR_UNKNOWN &&
1445                         s->pixel_type != current_pixel_type) {
1446                         av_log(s->avctx, AV_LOG_ERROR,
1447                                "RGB channels not of the same depth.\n");
1448                         ret = AVERROR_INVALIDDATA;
1449                         goto fail;
1450                     }
1451                     s->pixel_type                     = current_pixel_type;
1452                     s->channel_offsets[channel_index] = s->current_channel_offset;
1453                 } else if (channel_index >= 0) {
1454                     av_log(s->avctx, AV_LOG_WARNING,
1455                             "Multiple channels with index %d.\n", channel_index);
1456                     if (++dup_channels > 10) {
1457                         ret = AVERROR_INVALIDDATA;
1458                         goto fail;
1459                     }
1460                 }
1461 
1462                 s->channels = av_realloc(s->channels,
1463                                          ++s->nb_channels * sizeof(EXRChannel));
1464                 if (!s->channels) {
1465                     ret = AVERROR(ENOMEM);
1466                     goto fail;
1467                 }
1468                 channel             = &s->channels[s->nb_channels - 1];
1469                 channel->pixel_type = current_pixel_type;
1470                 channel->xsub       = xsub;
1471                 channel->ysub       = ysub;
1472 
1473                 if (current_pixel_type == EXR_HALF) {
1474                     s->current_channel_offset += 2;
1475                 } else {/* Float or UINT32 */
1476                     s->current_channel_offset += 4;
1477                 }
1478             }
1479 
1480             /* Check if all channels are set with an offset or if the channels
1481              * are causing an overflow  */
1482             if (!s->is_luma) {/* if we expected to have at least 3 channels */
1483                 if (FFMIN3(s->channel_offsets[0],
1484                            s->channel_offsets[1],
1485                            s->channel_offsets[2]) < 0) {
1486                     if (s->channel_offsets[0] < 0)
1487                         av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1488                     if (s->channel_offsets[1] < 0)
1489                         av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1490                     if (s->channel_offsets[2] < 0)
1491                         av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1492                     ret = AVERROR_INVALIDDATA;
1493                     goto fail;
1494                 }
1495             }
1496 
1497             // skip one last byte and update main gb
1498             s->gb.buffer = ch_gb.buffer + 1;
1499             continue;
1500         } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1501                                                      31)) >= 0) {
1502             int xmin, ymin, xmax, ymax;
1503             if (!var_size) {
1504                 ret = AVERROR_INVALIDDATA;
1505                 goto fail;
1506             }
1507 
1508             xmin   = bytestream2_get_le32(&s->gb);
1509             ymin   = bytestream2_get_le32(&s->gb);
1510             xmax   = bytestream2_get_le32(&s->gb);
1511             ymax   = bytestream2_get_le32(&s->gb);
1512 
1513             if (xmin > xmax || ymin > ymax ||
1514                 (unsigned)xmax - xmin >= INT_MAX ||
1515                 (unsigned)ymax - ymin >= INT_MAX) {
1516                 ret = AVERROR_INVALIDDATA;
1517                 goto fail;
1518             }
1519             s->xmin = xmin;
1520             s->xmax = xmax;
1521             s->ymin = ymin;
1522             s->ymax = ymax;
1523             s->xdelta = (s->xmax - s->xmin) + 1;
1524             s->ydelta = (s->ymax - s->ymin) + 1;
1525 
1526             continue;
1527         } else if ((var_size = check_header_variable(s, "displayWindow",
1528                                                      "box2i", 34)) >= 0) {
1529             if (!var_size) {
1530                 ret = AVERROR_INVALIDDATA;
1531                 goto fail;
1532             }
1533 
1534             bytestream2_skip(&s->gb, 8);
1535             s->w = bytestream2_get_le32(&s->gb) + 1;
1536             s->h = bytestream2_get_le32(&s->gb) + 1;
1537 
1538             continue;
1539         } else if ((var_size = check_header_variable(s, "lineOrder",
1540                                                      "lineOrder", 25)) >= 0) {
1541             int line_order;
1542             if (!var_size) {
1543                 ret = AVERROR_INVALIDDATA;
1544                 goto fail;
1545             }
1546 
1547             line_order = bytestream2_get_byte(&s->gb);
1548             av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1549             if (line_order > 2) {
1550                 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1551                 ret = AVERROR_INVALIDDATA;
1552                 goto fail;
1553             }
1554 
1555             continue;
1556         } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1557                                                      "float", 31)) >= 0) {
1558             if (!var_size) {
1559                 ret = AVERROR_INVALIDDATA;
1560                 goto fail;
1561             }
1562 
1563             sar = bytestream2_get_le32(&s->gb);
1564 
1565             continue;
1566         } else if ((var_size = check_header_variable(s, "compression",
1567                                                      "compression", 29)) >= 0) {
1568             if (!var_size) {
1569                 ret = AVERROR_INVALIDDATA;
1570                 goto fail;
1571             }
1572 
1573             if (s->compression == EXR_UNKN)
1574                 s->compression = bytestream2_get_byte(&s->gb);
1575             else
1576                 av_log(s->avctx, AV_LOG_WARNING,
1577                        "Found more than one compression attribute.\n");
1578 
1579             continue;
1580         } else if ((var_size = check_header_variable(s, "tiles",
1581                                                      "tiledesc", 22)) >= 0) {
1582             char tileLevel;
1583 
1584             if (!s->is_tile)
1585                 av_log(s->avctx, AV_LOG_WARNING,
1586                        "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1587 
1588             s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1589             s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1590 
1591             tileLevel = bytestream2_get_byte(&s->gb);
1592             s->tile_attr.level_mode = tileLevel & 0x0f;
1593             s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1594 
1595             if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1596                 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1597                                               s->tile_attr.level_mode);
1598                 ret = AVERROR_PATCHWELCOME;
1599                 goto fail;
1600             }
1601 
1602             if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1603                 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1604                                               s->tile_attr.level_round);
1605                 ret = AVERROR_PATCHWELCOME;
1606                 goto fail;
1607             }
1608 
1609             continue;
1610         } else if ((var_size = check_header_variable(s, "writer",
1611                                                      "string", 1)) >= 0) {
1612             uint8_t key[256] = { 0 };
1613 
1614             bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1615             av_dict_set(&metadata, "writer", key, 0);
1616 
1617             continue;
1618         }
1619 
1620         // Check if there are enough bytes for a header
1621         if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1622             av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1623             ret = AVERROR_INVALIDDATA;
1624             goto fail;
1625         }
1626 
1627         // Process unknown variables
1628         for (i = 0; i < 2; i++) // value_name and value_type
1629             while (bytestream2_get_byte(&s->gb) != 0);
1630 
1631         // Skip variable length
1632         bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1633     }
1634 
1635     ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1636 
1637     if (s->compression == EXR_UNKN) {
1638         av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1639         ret = AVERROR_INVALIDDATA;
1640         goto fail;
1641     }
1642 
1643     if (s->is_tile) {
1644         if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1645             av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1646             ret = AVERROR_INVALIDDATA;
1647             goto fail;
1648         }
1649     }
1650 
1651     if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1652         av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1653         ret = AVERROR_INVALIDDATA;
1654         goto fail;
1655     }
1656 
1657     frame->metadata = metadata;
1658 
1659     // aaand we are done
1660     bytestream2_skip(&s->gb, 1);
1661     return 0;
1662 fail:
1663     av_dict_free(&metadata);
1664     return ret;
1665 }
1666 
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)1667 static int decode_frame(AVCodecContext *avctx, void *data,
1668                         int *got_frame, AVPacket *avpkt)
1669 {
1670     EXRContext *s = avctx->priv_data;
1671     ThreadFrame frame = { .f = data };
1672     AVFrame *picture = data;
1673     uint8_t *ptr;
1674 
1675     int i, y, ret;
1676     int planes;
1677     int out_line_size;
1678     int nb_blocks;   /* nb scanline or nb tile */
1679     uint64_t start_offset_table;
1680     uint64_t start_next_scanline;
1681     PutByteContext offset_table_writer;
1682 
1683     bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1684 
1685     if ((ret = decode_header(s, picture)) < 0)
1686         return ret;
1687 
1688     switch (s->pixel_type) {
1689     case EXR_FLOAT:
1690     case EXR_HALF:
1691         if (s->channel_offsets[3] >= 0) {
1692             if (!s->is_luma) {
1693                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1694             } else {
1695                 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1696                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1697             }
1698         } else {
1699             if (!s->is_luma) {
1700                 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
1701             } else {
1702                 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
1703             }
1704         }
1705         break;
1706     case EXR_UINT:
1707         if (s->channel_offsets[3] >= 0) {
1708             if (!s->is_luma) {
1709                 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1710             } else {
1711                 avctx->pix_fmt = AV_PIX_FMT_YA16;
1712             }
1713         } else {
1714             if (!s->is_luma) {
1715                 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1716             } else {
1717                 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1718             }
1719         }
1720         break;
1721     default:
1722         av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1723         return AVERROR_INVALIDDATA;
1724     }
1725 
1726     if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
1727         avctx->color_trc = s->apply_trc_type;
1728 
1729     switch (s->compression) {
1730     case EXR_RAW:
1731     case EXR_RLE:
1732     case EXR_ZIP1:
1733         s->scan_lines_per_block = 1;
1734         break;
1735     case EXR_PXR24:
1736     case EXR_ZIP16:
1737         s->scan_lines_per_block = 16;
1738         break;
1739     case EXR_PIZ:
1740     case EXR_B44:
1741     case EXR_B44A:
1742         s->scan_lines_per_block = 32;
1743         break;
1744     default:
1745         avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1746         return AVERROR_PATCHWELCOME;
1747     }
1748 
1749     /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1750      * the actual image size. */
1751     if (s->xmin > s->xmax                  ||
1752         s->ymin > s->ymax                  ||
1753         s->xdelta != s->xmax - s->xmin + 1 ||
1754         s->xmax >= s->w                    ||
1755         s->ymax >= s->h                    ||
1756         s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF
1757     ) {
1758         av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1759         return AVERROR_INVALIDDATA;
1760     }
1761 
1762     if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1763         return ret;
1764 
1765     s->desc          = av_pix_fmt_desc_get(avctx->pix_fmt);
1766     if (!s->desc)
1767         return AVERROR_INVALIDDATA;
1768 
1769     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1770         planes           = s->desc->nb_components;
1771         out_line_size    = avctx->width * 4;
1772     } else {
1773         planes           = 1;
1774         out_line_size    = avctx->width * 2 * s->desc->nb_components;
1775     }
1776 
1777     if (s->is_tile) {
1778         nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1779         ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1780     } else { /* scanline */
1781         nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1782         s->scan_lines_per_block;
1783     }
1784 
1785     if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1786         return ret;
1787 
1788     if (bytestream2_get_bytes_left(&s->gb)/8 < nb_blocks)
1789         return AVERROR_INVALIDDATA;
1790 
1791     // check offset table and recreate it if need
1792     if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1793         av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1794 
1795         start_offset_table = bytestream2_tell(&s->gb);
1796         start_next_scanline = start_offset_table + nb_blocks * 8;
1797         bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1798 
1799         for (y = 0; y < nb_blocks; y++) {
1800             /* write offset of prev scanline in offset table */
1801             bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1802 
1803             /* get len of next scanline */
1804             bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1805             start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1806         }
1807         bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1808     }
1809 
1810     // save pointer we are going to use in decode_block
1811     s->buf      = avpkt->data;
1812     s->buf_size = avpkt->size;
1813 
1814     // Zero out the start if ymin is not 0
1815     for (i = 0; i < planes; i++) {
1816         ptr = picture->data[i];
1817         for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
1818             memset(ptr, 0, out_line_size);
1819             ptr += picture->linesize[i];
1820         }
1821     }
1822 
1823     s->picture = picture;
1824 
1825     avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1826 
1827     // Zero out the end if ymax+1 is not h
1828     for (i = 0; i < planes; i++) {
1829         ptr = picture->data[i] + ((s->ymax+1) * picture->linesize[i]);
1830         for (y = s->ymax + 1; y < avctx->height; y++) {
1831             memset(ptr, 0, out_line_size);
1832             ptr += picture->linesize[i];
1833         }
1834     }
1835 
1836     picture->pict_type = AV_PICTURE_TYPE_I;
1837     *got_frame = 1;
1838 
1839     return avpkt->size;
1840 }
1841 
decode_init(AVCodecContext * avctx)1842 static av_cold int decode_init(AVCodecContext *avctx)
1843 {
1844     EXRContext *s = avctx->priv_data;
1845     uint32_t i;
1846     union av_intfloat32 t;
1847     float one_gamma = 1.0f / s->gamma;
1848     avpriv_trc_function trc_func = NULL;
1849 
1850     s->avctx              = avctx;
1851 
1852     ff_exrdsp_init(&s->dsp);
1853 
1854 #if HAVE_BIGENDIAN
1855     ff_bswapdsp_init(&s->bbdsp);
1856 #endif
1857 
1858     trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1859     if (trc_func) {
1860         for (i = 0; i < 65536; ++i) {
1861             t = exr_half2float(i);
1862             t.f = trc_func(t.f);
1863             s->gamma_table[i] = t;
1864         }
1865     } else {
1866         if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1867             for (i = 0; i < 65536; ++i) {
1868                 s->gamma_table[i] = exr_half2float(i);
1869             }
1870         } else {
1871             for (i = 0; i < 65536; ++i) {
1872                 t = exr_half2float(i);
1873                 /* If negative value we reuse half value */
1874                 if (t.f <= 0.0f) {
1875                     s->gamma_table[i] = t;
1876                 } else {
1877                     t.f = powf(t.f, one_gamma);
1878                     s->gamma_table[i] = t;
1879                 }
1880             }
1881         }
1882     }
1883 
1884     // allocate thread data, used for non EXR_RAW compression types
1885     s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1886     if (!s->thread_data)
1887         return AVERROR_INVALIDDATA;
1888 
1889     return 0;
1890 }
1891 
decode_end(AVCodecContext * avctx)1892 static av_cold int decode_end(AVCodecContext *avctx)
1893 {
1894     EXRContext *s = avctx->priv_data;
1895     int i;
1896     for (i = 0; i < avctx->thread_count; i++) {
1897         EXRThreadData *td = &s->thread_data[i];
1898         av_freep(&td->uncompressed_data);
1899         av_freep(&td->tmp);
1900         av_freep(&td->bitmap);
1901         av_freep(&td->lut);
1902     }
1903 
1904     av_freep(&s->thread_data);
1905     av_freep(&s->channels);
1906 
1907     return 0;
1908 }
1909 
1910 #define OFFSET(x) offsetof(EXRContext, x)
1911 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1912 static const AVOption options[] = {
1913     { "layer", "Set the decoding layer", OFFSET(layer),
1914         AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1915     { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1916         AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1917 
1918     // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1919     { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1920         AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1921     { "bt709",        "BT.709",           0,
1922         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 },        INT_MIN, INT_MAX, VD, "apply_trc_type"},
1923     { "gamma",        "gamma",            0,
1924         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
1925     { "gamma22",      "BT.470 M",         0,
1926         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
1927     { "gamma28",      "BT.470 BG",        0,
1928         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
1929     { "smpte170m",    "SMPTE 170 M",      0,
1930         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1931     { "smpte240m",    "SMPTE 240 M",      0,
1932         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1933     { "linear",       "Linear",           0,
1934         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR },       INT_MIN, INT_MAX, VD, "apply_trc_type"},
1935     { "log",          "Log",              0,
1936         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG },          INT_MIN, INT_MAX, VD, "apply_trc_type"},
1937     { "log_sqrt",     "Log square root",  0,
1938         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT },     INT_MIN, INT_MAX, VD, "apply_trc_type"},
1939     { "iec61966_2_4", "IEC 61966-2-4",    0,
1940         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1941     { "bt1361",       "BT.1361",          0,
1942         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG },   INT_MIN, INT_MAX, VD, "apply_trc_type"},
1943     { "iec61966_2_1", "IEC 61966-2-1",    0,
1944         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1945     { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1946         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1947     { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1948         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1949     { "smpte2084",    "SMPTE ST 2084",    0,
1950         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
1951     { "smpte428_1",   "SMPTE ST 428-1",   0,
1952         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1953 
1954     { NULL },
1955 };
1956 
1957 static const AVClass exr_class = {
1958     .class_name = "EXR",
1959     .item_name  = av_default_item_name,
1960     .option     = options,
1961     .version    = LIBAVUTIL_VERSION_INT,
1962 };
1963 
1964 AVCodec ff_exr_decoder = {
1965     .name             = "exr",
1966     .long_name        = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1967     .type             = AVMEDIA_TYPE_VIDEO,
1968     .id               = AV_CODEC_ID_EXR,
1969     .priv_data_size   = sizeof(EXRContext),
1970     .init             = decode_init,
1971     .close            = decode_end,
1972     .decode           = decode_frame,
1973     .capabilities     = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1974                         AV_CODEC_CAP_SLICE_THREADS,
1975     .priv_class       = &exr_class,
1976 };
1977