• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* GLIB sliced memory - fast concurrent memory chunk allocator
2  * Copyright (C) 2005 Tim Janik
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16  */
17 /* MT safe */
18 
19 #include "config.h"
20 #include "glibconfig.h"
21 
22 #if defined(HAVE_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
23 #define _XOPEN_SOURCE 600       /* posix_memalign() */
24 #endif
25 #include <stdlib.h>             /* posix_memalign() */
26 #include <string.h>
27 #include <errno.h>
28 
29 #ifdef G_OS_UNIX
30 #include <unistd.h>             /* sysconf() */
31 #endif
32 #ifdef G_OS_WIN32
33 #include <windows.h>
34 #include <process.h>
35 #endif
36 
37 #include <stdio.h>              /* fputs */
38 
39 #include "gslice.h"
40 
41 #include "gmain.h"
42 #include "gmem.h"               /* gslice.h */
43 #include "gstrfuncs.h"
44 #include "gutils.h"
45 #include "gtrashstack.h"
46 #include "gtestutils.h"
47 #include "gthread.h"
48 #include "gthreadprivate.h"
49 #include "glib_trace.h"
50 #include "gprintf.h"
51 
52 #include "gvalgrind.h"
53 
54 /**
55  * SECTION:memory_slices
56  * @title: Memory Slices
57  * @short_description: efficient way to allocate groups of equal-sized
58  *     chunks of memory
59  *
60  * Memory slices provide a space-efficient and multi-processing scalable
61  * way to allocate equal-sized pieces of memory, just like the original
62  * #GMemChunks (from GLib 2.8), while avoiding their excessive
63  * memory-waste, scalability and performance problems.
64  *
65  * To achieve these goals, the slice allocator uses a sophisticated,
66  * layered design that has been inspired by Bonwick's slab allocator
67  * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
68  * Jeff Bonwick, The slab allocator: An object-caching kernel
69  * memory allocator. USENIX 1994, and
70  * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
71  * Bonwick and Jonathan Adams, Magazines and vmem: Extending the
72  * slab allocator to many cpu's and arbitrary resources. USENIX 2001)
73  *
74  * It uses posix_memalign() to optimize allocations of many equally-sized
75  * chunks, and has per-thread free lists (the so-called magazine layer)
76  * to quickly satisfy allocation requests of already known structure sizes.
77  * This is accompanied by extra caching logic to keep freed memory around
78  * for some time before returning it to the system. Memory that is unused
79  * due to alignment constraints is used for cache colorization (random
80  * distribution of chunk addresses) to improve CPU cache utilization. The
81  * caching layer of the slice allocator adapts itself to high lock contention
82  * to improve scalability.
83  *
84  * The slice allocator can allocate blocks as small as two pointers, and
85  * unlike malloc(), it does not reserve extra space per block. For large block
86  * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
87  * system malloc() implementation. For newly written code it is recommended
88  * to use the new `g_slice` API instead of g_malloc() and
89  * friends, as long as objects are not resized during their lifetime and the
90  * object size used at allocation time is still available when freeing.
91  *
92  * Here is an example for using the slice allocator:
93  * |[<!-- language="C" -->
94  * gchar *mem[10000];
95  * gint i;
96  *
97  * // Allocate 10000 blocks.
98  * for (i = 0; i < 10000; i++)
99  *   {
100  *     mem[i] = g_slice_alloc (50);
101  *
102  *     // Fill in the memory with some junk.
103  *     for (j = 0; j < 50; j++)
104  *       mem[i][j] = i * j;
105  *   }
106  *
107  * // Now free all of the blocks.
108  * for (i = 0; i < 10000; i++)
109  *   g_slice_free1 (50, mem[i]);
110  * ]|
111  *
112  * And here is an example for using the using the slice allocator
113  * with data structures:
114  * |[<!-- language="C" -->
115  * GRealArray *array;
116  *
117  * // Allocate one block, using the g_slice_new() macro.
118  * array = g_slice_new (GRealArray);
119  *
120  * // We can now use array just like a normal pointer to a structure.
121  * array->data            = NULL;
122  * array->len             = 0;
123  * array->alloc           = 0;
124  * array->zero_terminated = (zero_terminated ? 1 : 0);
125  * array->clear           = (clear ? 1 : 0);
126  * array->elt_size        = elt_size;
127  *
128  * // We can free the block, so it can be reused.
129  * g_slice_free (GRealArray, array);
130  * ]|
131  */
132 
133 /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
134  * allocator and magazine extensions as outlined in:
135  * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
136  *   memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
137  * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
138  *   slab allocator to many cpu's and arbitrary resources.
139  *   USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
140  * the layers are:
141  * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
142  *   of recently freed and soon to be allocated chunks is maintained per thread.
143  *   this way, most alloc/free requests can be quickly satisfied from per-thread
144  *   free lists which only require one g_private_get() call to retrieve the
145  *   thread handle.
146  * - the magazine cache. allocating and freeing chunks to/from threads only
147  *   occurs at magazine sizes from a global depot of magazines. the depot
148  *   maintaines a 15 second working set of allocated magazines, so full
149  *   magazines are not allocated and released too often.
150  *   the chunk size dependent magazine sizes automatically adapt (within limits,
151  *   see [3]) to lock contention to properly scale performance across a variety
152  *   of SMP systems.
153  * - the slab allocator. this allocator allocates slabs (blocks of memory) close
154  *   to the system page size or multiples thereof which have to be page aligned.
155  *   the blocks are divided into smaller chunks which are used to satisfy
156  *   allocations from the upper layers. the space provided by the reminder of
157  *   the chunk size division is used for cache colorization (random distribution
158  *   of chunk addresses) to improve processor cache utilization. multiple slabs
159  *   with the same chunk size are kept in a partially sorted ring to allow O(1)
160  *   freeing and allocation of chunks (as long as the allocation of an entirely
161  *   new slab can be avoided).
162  * - the page allocator. on most modern systems, posix_memalign(3) or
163  *   memalign(3) should be available, so this is used to allocate blocks with
164  *   system page size based alignments and sizes or multiples thereof.
165  *   if no memalign variant is provided, valloc() is used instead and
166  *   block sizes are limited to the system page size (no multiples thereof).
167  *   as a fallback, on system without even valloc(), a malloc(3)-based page
168  *   allocator with alloc-only behaviour is used.
169  *
170  * NOTES:
171  * [1] some systems memalign(3) implementations may rely on boundary tagging for
172  *     the handed out memory chunks. to avoid excessive page-wise fragmentation,
173  *     we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
174  *     specified in NATIVE_MALLOC_PADDING.
175  * [2] using the slab allocator alone already provides for a fast and efficient
176  *     allocator, it doesn't properly scale beyond single-threaded uses though.
177  *     also, the slab allocator implements eager free(3)-ing, i.e. does not
178  *     provide any form of caching or working set maintenance. so if used alone,
179  *     it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
180  *     at certain thresholds.
181  * [3] magazine sizes are bound by an implementation specific minimum size and
182  *     a chunk size specific maximum to limit magazine storage sizes to roughly
183  *     16KB.
184  * [4] allocating ca. 8 chunks per block/page keeps a good balance between
185  *     external and internal fragmentation (<= 12.5%). [Bonwick94]
186  */
187 
188 /* --- macros and constants --- */
189 #define LARGEALIGNMENT          (256)
190 #define P2ALIGNMENT             (2 * sizeof (gsize))                            /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
191 #define ALIGN(size, base)       ((base) * (gsize) (((size) + (base) - 1) / (base)))
192 #define NATIVE_MALLOC_PADDING   P2ALIGNMENT                                     /* per-page padding left for native malloc(3) see [1] */
193 #define SLAB_INFO_SIZE          P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
194 #define MAX_MAGAZINE_SIZE       (256)                                           /* see [3] and allocator_get_magazine_threshold() for this */
195 #define MIN_MAGAZINE_SIZE       (4)
196 #define MAX_STAMP_COUNTER       (7)                                             /* distributes the load of gettimeofday() */
197 #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8)    /* we want at last 8 chunks per page, see [4] */
198 #define MAX_SLAB_INDEX(al)      (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
199 #define SLAB_INDEX(al, asize)   ((asize) / P2ALIGNMENT - 1)                     /* asize must be P2ALIGNMENT aligned */
200 #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
201 #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
202 
203 /* optimized version of ALIGN (size, P2ALIGNMENT) */
204 #if     GLIB_SIZEOF_SIZE_T * 2 == 8  /* P2ALIGNMENT */
205 #define P2ALIGN(size)   (((size) + 0x7) & ~(gsize) 0x7)
206 #elif   GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
207 #define P2ALIGN(size)   (((size) + 0xf) & ~(gsize) 0xf)
208 #else
209 #define P2ALIGN(size)   ALIGN (size, P2ALIGNMENT)
210 #endif
211 
212 /* special helpers to avoid gmessage.c dependency */
213 static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
214 #define mem_assert(cond)    do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
215 
216 /* --- structures --- */
217 typedef struct _ChunkLink      ChunkLink;
218 typedef struct _SlabInfo       SlabInfo;
219 typedef struct _CachedMagazine CachedMagazine;
220 struct _ChunkLink {
221   ChunkLink *next;
222   ChunkLink *data;
223 };
224 struct _SlabInfo {
225   ChunkLink *chunks;
226   guint n_allocated;
227   SlabInfo *next, *prev;
228 };
229 typedef struct {
230   ChunkLink *chunks;
231   gsize      count;                     /* approximative chunks list length */
232 } Magazine;
233 typedef struct {
234   Magazine   *magazine1;                /* array of MAX_SLAB_INDEX (allocator) */
235   Magazine   *magazine2;                /* array of MAX_SLAB_INDEX (allocator) */
236 } ThreadMemory;
237 typedef struct {
238   gboolean always_malloc;
239   gboolean bypass_magazines;
240   gboolean debug_blocks;
241   gsize    working_set_msecs;
242   guint    color_increment;
243 } SliceConfig;
244 typedef struct {
245   /* const after initialization */
246   gsize         min_page_size, max_page_size;
247   SliceConfig   config;
248   gsize         max_slab_chunk_size_for_magazine_cache;
249   /* magazine cache */
250   GMutex        magazine_mutex;
251   ChunkLink   **magazines;                /* array of MAX_SLAB_INDEX (allocator) */
252   guint        *contention_counters;      /* array of MAX_SLAB_INDEX (allocator) */
253   gint          mutex_counter;
254   guint         stamp_counter;
255   guint         last_stamp;
256   /* slab allocator */
257   GMutex        slab_mutex;
258   SlabInfo    **slab_stack;                /* array of MAX_SLAB_INDEX (allocator) */
259   guint        color_accu;
260 } Allocator;
261 
262 /* --- g-slice prototypes --- */
263 static gpointer     slab_allocator_alloc_chunk       (gsize      chunk_size);
264 static void         slab_allocator_free_chunk        (gsize      chunk_size,
265                                                       gpointer   mem);
266 static void         private_thread_memory_cleanup    (gpointer   data);
267 static gpointer     allocator_memalign               (gsize      alignment,
268                                                       gsize      memsize);
269 static void         allocator_memfree                (gsize      memsize,
270                                                       gpointer   mem);
271 static inline void  magazine_cache_update_stamp      (void);
272 static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
273                                                       guint      ix);
274 
275 /* --- g-slice memory checker --- */
276 static void     smc_notify_alloc  (void   *pointer,
277                                    size_t  size);
278 static int      smc_notify_free   (void   *pointer,
279                                    size_t  size);
280 
281 /* --- variables --- */
282 static GPrivate    private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup);
283 static gsize       sys_page_size = 0;
284 static Allocator   allocator[1] = { { 0, }, };
285 static SliceConfig slice_config = {
286   FALSE,        /* always_malloc */
287   FALSE,        /* bypass_magazines */
288   FALSE,        /* debug_blocks */
289   15 * 1000,    /* working_set_msecs */
290   1,            /* color increment, alt: 0x7fffffff */
291 };
292 static GMutex      smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */
293 
294 /* --- auxiliary functions --- */
295 void
g_slice_set_config(GSliceConfig ckey,gint64 value)296 g_slice_set_config (GSliceConfig ckey,
297                     gint64       value)
298 {
299   g_return_if_fail (sys_page_size == 0);
300   switch (ckey)
301     {
302     case G_SLICE_CONFIG_ALWAYS_MALLOC:
303       slice_config.always_malloc = value != 0;
304       break;
305     case G_SLICE_CONFIG_BYPASS_MAGAZINES:
306       slice_config.bypass_magazines = value != 0;
307       break;
308     case G_SLICE_CONFIG_WORKING_SET_MSECS:
309       slice_config.working_set_msecs = value;
310       break;
311     case G_SLICE_CONFIG_COLOR_INCREMENT:
312       slice_config.color_increment = value;
313       break;
314     default: ;
315     }
316 }
317 
318 gint64
g_slice_get_config(GSliceConfig ckey)319 g_slice_get_config (GSliceConfig ckey)
320 {
321   switch (ckey)
322     {
323     case G_SLICE_CONFIG_ALWAYS_MALLOC:
324       return slice_config.always_malloc;
325     case G_SLICE_CONFIG_BYPASS_MAGAZINES:
326       return slice_config.bypass_magazines;
327     case G_SLICE_CONFIG_WORKING_SET_MSECS:
328       return slice_config.working_set_msecs;
329     case G_SLICE_CONFIG_CHUNK_SIZES:
330       return MAX_SLAB_INDEX (allocator);
331     case G_SLICE_CONFIG_COLOR_INCREMENT:
332       return slice_config.color_increment;
333     default:
334       return 0;
335     }
336 }
337 
338 gint64*
g_slice_get_config_state(GSliceConfig ckey,gint64 address,guint * n_values)339 g_slice_get_config_state (GSliceConfig ckey,
340                           gint64       address,
341                           guint       *n_values)
342 {
343   guint i = 0;
344   g_return_val_if_fail (n_values != NULL, NULL);
345   *n_values = 0;
346   switch (ckey)
347     {
348       gint64 array[64];
349     case G_SLICE_CONFIG_CONTENTION_COUNTER:
350       array[i++] = SLAB_CHUNK_SIZE (allocator, address);
351       array[i++] = allocator->contention_counters[address];
352       array[i++] = allocator_get_magazine_threshold (allocator, address);
353       *n_values = i;
354       return g_memdup2 (array, sizeof (array[0]) * *n_values);
355     default:
356       return NULL;
357     }
358 }
359 
360 static void
slice_config_init(SliceConfig * config)361 slice_config_init (SliceConfig *config)
362 {
363   const gchar *val;
364   gchar *val_allocated = NULL;
365 
366   *config = slice_config;
367 
368   /* Note that the empty string (`G_SLICE=""`) is treated differently from the
369    * envvar being unset. In the latter case, we also check whether running under
370    * valgrind. */
371 #ifndef G_OS_WIN32
372   val = g_getenv ("G_SLICE");
373 #else
374   /* The win32 implementation of g_getenv() has to do UTF-8 ↔ UTF-16 conversions
375    * which use the slice allocator, leading to deadlock. Use a simple in-place
376    * implementation here instead.
377    *
378    * Ignore references to other environment variables: only support values which
379    * are a combination of always-malloc and debug-blocks. */
380   {
381 
382   wchar_t wvalue[128];  /* at least big enough for `always-malloc,debug-blocks` */
383   int len;
384 
385   len = GetEnvironmentVariableW (L"G_SLICE", wvalue, G_N_ELEMENTS (wvalue));
386 
387   if (len == 0)
388     {
389       if (GetLastError () == ERROR_ENVVAR_NOT_FOUND)
390         val = NULL;
391       else
392         val = "";
393     }
394   else if (len >= G_N_ELEMENTS (wvalue))
395     {
396       /* @wvalue isn’t big enough. Give up. */
397       g_warning ("Unsupported G_SLICE value");
398       val = NULL;
399     }
400   else
401     {
402       /* it’s safe to use g_utf16_to_utf8() here as it only allocates using
403        * malloc() rather than GSlice */
404       val = val_allocated = g_utf16_to_utf8 (wvalue, -1, NULL, NULL, NULL);
405     }
406 
407   }
408 #endif  /* G_OS_WIN32 */
409 
410   if (val != NULL)
411     {
412       gint flags;
413       const GDebugKey keys[] = {
414         { "always-malloc", 1 << 0 },
415         { "debug-blocks",  1 << 1 },
416       };
417 
418       flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
419       if (flags & (1 << 0))
420         config->always_malloc = TRUE;
421       if (flags & (1 << 1))
422         config->debug_blocks = TRUE;
423     }
424   else
425     {
426       /* G_SLICE was not specified, so check if valgrind is running and
427        * disable ourselves if it is.
428        *
429        * This way it's possible to force gslice to be enabled under
430        * valgrind just by setting G_SLICE to the empty string.
431        */
432 #ifdef ENABLE_VALGRIND
433       if (RUNNING_ON_VALGRIND)
434         config->always_malloc = TRUE;
435 #endif
436     }
437 
438   g_free (val_allocated);
439 }
440 
441 static void
g_slice_init_nomessage(void)442 g_slice_init_nomessage (void)
443 {
444   /* we may not use g_error() or friends here */
445   mem_assert (sys_page_size == 0);
446   mem_assert (MIN_MAGAZINE_SIZE >= 4);
447 
448 #ifdef G_OS_WIN32
449   {
450     SYSTEM_INFO system_info;
451     GetSystemInfo (&system_info);
452     sys_page_size = system_info.dwPageSize;
453   }
454 #else
455   sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
456 #endif
457   mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
458   mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
459   slice_config_init (&allocator->config);
460   allocator->min_page_size = sys_page_size;
461 #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN
462   /* allow allocation of pages up to 8KB (with 8KB alignment).
463    * this is useful because many medium to large sized structures
464    * fit less than 8 times (see [4]) into 4KB pages.
465    * we allow very small page sizes here, to reduce wastage in
466    * threads if only small allocations are required (this does
467    * bear the risk of increasing allocation times and fragmentation
468    * though).
469    */
470   allocator->min_page_size = MAX (allocator->min_page_size, 4096);
471   allocator->max_page_size = MAX (allocator->min_page_size, 8192);
472   allocator->min_page_size = MIN (allocator->min_page_size, 128);
473 #else
474   /* we can only align to system page size */
475   allocator->max_page_size = sys_page_size;
476 #endif
477   if (allocator->config.always_malloc)
478     {
479       allocator->contention_counters = NULL;
480       allocator->magazines = NULL;
481       allocator->slab_stack = NULL;
482     }
483   else
484     {
485       allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
486       allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
487       allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
488     }
489 
490   allocator->mutex_counter = 0;
491   allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
492   allocator->last_stamp = 0;
493   allocator->color_accu = 0;
494   magazine_cache_update_stamp();
495   /* values cached for performance reasons */
496   allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
497   if (allocator->config.always_malloc || allocator->config.bypass_magazines)
498     allocator->max_slab_chunk_size_for_magazine_cache = 0;      /* non-optimized cases */
499 }
500 
501 static inline guint
allocator_categorize(gsize aligned_chunk_size)502 allocator_categorize (gsize aligned_chunk_size)
503 {
504   /* speed up the likely path */
505   if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
506     return 1;           /* use magazine cache */
507 
508   if (!allocator->config.always_malloc &&
509       aligned_chunk_size &&
510       aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
511     {
512       if (allocator->config.bypass_magazines)
513         return 2;       /* use slab allocator, see [2] */
514       return 1;         /* use magazine cache */
515     }
516   return 0;             /* use malloc() */
517 }
518 
519 static inline void
g_mutex_lock_a(GMutex * mutex,guint * contention_counter)520 g_mutex_lock_a (GMutex *mutex,
521                 guint  *contention_counter)
522 {
523   gboolean contention = FALSE;
524   if (!g_mutex_trylock (mutex))
525     {
526       g_mutex_lock (mutex);
527       contention = TRUE;
528     }
529   if (contention)
530     {
531       allocator->mutex_counter++;
532       if (allocator->mutex_counter >= 1)        /* quickly adapt to contention */
533         {
534           allocator->mutex_counter = 0;
535           *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
536         }
537     }
538   else /* !contention */
539     {
540       allocator->mutex_counter--;
541       if (allocator->mutex_counter < -11)       /* moderately recover magazine sizes */
542         {
543           allocator->mutex_counter = 0;
544           *contention_counter = MAX (*contention_counter, 1) - 1;
545         }
546     }
547 }
548 
549 static inline ThreadMemory*
thread_memory_from_self(void)550 thread_memory_from_self (void)
551 {
552   ThreadMemory *tmem = g_private_get (&private_thread_memory);
553   if (G_UNLIKELY (!tmem))
554     {
555       static GMutex init_mutex;
556       guint n_magazines;
557 
558       g_mutex_lock (&init_mutex);
559       if G_UNLIKELY (sys_page_size == 0)
560         g_slice_init_nomessage ();
561       g_mutex_unlock (&init_mutex);
562 
563       n_magazines = MAX_SLAB_INDEX (allocator);
564       tmem = g_private_set_alloc0 (&private_thread_memory, sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
565       tmem->magazine1 = (Magazine*) (tmem + 1);
566       tmem->magazine2 = &tmem->magazine1[n_magazines];
567     }
568   return tmem;
569 }
570 
571 static inline ChunkLink*
magazine_chain_pop_head(ChunkLink ** magazine_chunks)572 magazine_chain_pop_head (ChunkLink **magazine_chunks)
573 {
574   /* magazine chains are linked via ChunkLink->next.
575    * each ChunkLink->data of the toplevel chain may point to a subchain,
576    * linked via ChunkLink->next. ChunkLink->data of the subchains just
577    * contains uninitialized junk.
578    */
579   ChunkLink *chunk = (*magazine_chunks)->data;
580   if (G_UNLIKELY (chunk))
581     {
582       /* allocating from freed list */
583       (*magazine_chunks)->data = chunk->next;
584     }
585   else
586     {
587       chunk = *magazine_chunks;
588       *magazine_chunks = chunk->next;
589     }
590   return chunk;
591 }
592 
593 #if 0 /* useful for debugging */
594 static guint
595 magazine_count (ChunkLink *head)
596 {
597   guint count = 0;
598   if (!head)
599     return 0;
600   while (head)
601     {
602       ChunkLink *child = head->data;
603       count += 1;
604       for (child = head->data; child; child = child->next)
605         count += 1;
606       head = head->next;
607     }
608   return count;
609 }
610 #endif
611 
612 static inline gsize
allocator_get_magazine_threshold(Allocator * allocator,guint ix)613 allocator_get_magazine_threshold (Allocator *allocator,
614                                   guint      ix)
615 {
616   /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
617    * which is required by the implementation. also, for moderately sized chunks
618    * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
619    * of chunks available per page/2 to avoid excessive traffic in the magazine
620    * cache for small to medium sized structures.
621    * the upper bound of the magazine size is effectively provided by
622    * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
623    * the content of a single magazine doesn't exceed ca. 16KB.
624    */
625   gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
626   guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
627   guint contention_counter = allocator->contention_counters[ix];
628   if (G_UNLIKELY (contention_counter))  /* single CPU bias */
629     {
630       /* adapt contention counter thresholds to chunk sizes */
631       contention_counter = contention_counter * 64 / chunk_size;
632       threshold = MAX (threshold, contention_counter);
633     }
634   return threshold;
635 }
636 
637 /* --- magazine cache --- */
638 static inline void
magazine_cache_update_stamp(void)639 magazine_cache_update_stamp (void)
640 {
641   if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
642     {
643       gint64 now_us = g_get_real_time ();
644       allocator->last_stamp = now_us / 1000; /* milli seconds */
645       allocator->stamp_counter = 0;
646     }
647   else
648     allocator->stamp_counter++;
649 }
650 
651 static inline ChunkLink*
magazine_chain_prepare_fields(ChunkLink * magazine_chunks)652 magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
653 {
654   ChunkLink *chunk1;
655   ChunkLink *chunk2;
656   ChunkLink *chunk3;
657   ChunkLink *chunk4;
658   /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
659   /* ensure a magazine with at least 4 unused data pointers */
660   chunk1 = magazine_chain_pop_head (&magazine_chunks);
661   chunk2 = magazine_chain_pop_head (&magazine_chunks);
662   chunk3 = magazine_chain_pop_head (&magazine_chunks);
663   chunk4 = magazine_chain_pop_head (&magazine_chunks);
664   chunk4->next = magazine_chunks;
665   chunk3->next = chunk4;
666   chunk2->next = chunk3;
667   chunk1->next = chunk2;
668   return chunk1;
669 }
670 
671 /* access the first 3 fields of a specially prepared magazine chain */
672 #define magazine_chain_prev(mc)         ((mc)->data)
673 #define magazine_chain_stamp(mc)        ((mc)->next->data)
674 #define magazine_chain_uint_stamp(mc)   GPOINTER_TO_UINT ((mc)->next->data)
675 #define magazine_chain_next(mc)         ((mc)->next->next->data)
676 #define magazine_chain_count(mc)        ((mc)->next->next->next->data)
677 
678 static void
magazine_cache_trim(Allocator * allocator,guint ix,guint stamp)679 magazine_cache_trim (Allocator *allocator,
680                      guint      ix,
681                      guint      stamp)
682 {
683   /* g_mutex_lock (allocator->mutex); done by caller */
684   /* trim magazine cache from tail */
685   ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]);
686   ChunkLink *trash = NULL;
687   while (!G_APPROX_VALUE(stamp, magazine_chain_uint_stamp (current),
688                          allocator->config.working_set_msecs))
689     {
690       /* unlink */
691       ChunkLink *prev = magazine_chain_prev (current);
692       ChunkLink *next = magazine_chain_next (current);
693       magazine_chain_next (prev) = next;
694       magazine_chain_prev (next) = prev;
695       /* clear special fields, put on trash stack */
696       magazine_chain_next (current) = NULL;
697       magazine_chain_count (current) = NULL;
698       magazine_chain_stamp (current) = NULL;
699       magazine_chain_prev (current) = trash;
700       trash = current;
701       /* fixup list head if required */
702       if (current == allocator->magazines[ix])
703         {
704           allocator->magazines[ix] = NULL;
705           break;
706         }
707       current = prev;
708     }
709   g_mutex_unlock (&allocator->magazine_mutex);
710   /* free trash */
711   if (trash)
712     {
713       const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
714       g_mutex_lock (&allocator->slab_mutex);
715       while (trash)
716         {
717           current = trash;
718           trash = magazine_chain_prev (current);
719           magazine_chain_prev (current) = NULL; /* clear special field */
720           while (current)
721             {
722               ChunkLink *chunk = magazine_chain_pop_head (&current);
723               slab_allocator_free_chunk (chunk_size, chunk);
724             }
725         }
726       g_mutex_unlock (&allocator->slab_mutex);
727     }
728 }
729 
730 static void
magazine_cache_push_magazine(guint ix,ChunkLink * magazine_chunks,gsize count)731 magazine_cache_push_magazine (guint      ix,
732                               ChunkLink *magazine_chunks,
733                               gsize      count) /* must be >= MIN_MAGAZINE_SIZE */
734 {
735   ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
736   ChunkLink *next, *prev;
737   g_mutex_lock (&allocator->magazine_mutex);
738   /* add magazine at head */
739   next = allocator->magazines[ix];
740   if (next)
741     prev = magazine_chain_prev (next);
742   else
743     next = prev = current;
744   magazine_chain_next (prev) = current;
745   magazine_chain_prev (next) = current;
746   magazine_chain_prev (current) = prev;
747   magazine_chain_next (current) = next;
748   magazine_chain_count (current) = (gpointer) count;
749   /* stamp magazine */
750   magazine_cache_update_stamp();
751   magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
752   allocator->magazines[ix] = current;
753   /* free old magazines beyond a certain threshold */
754   magazine_cache_trim (allocator, ix, allocator->last_stamp);
755   /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
756 }
757 
758 static ChunkLink*
magazine_cache_pop_magazine(guint ix,gsize * countp)759 magazine_cache_pop_magazine (guint  ix,
760                              gsize *countp)
761 {
762   g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]);
763   if (!allocator->magazines[ix])
764     {
765       guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
766       gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
767       ChunkLink *chunk, *head;
768       g_mutex_unlock (&allocator->magazine_mutex);
769       g_mutex_lock (&allocator->slab_mutex);
770       head = slab_allocator_alloc_chunk (chunk_size);
771       head->data = NULL;
772       chunk = head;
773       for (i = 1; i < magazine_threshold; i++)
774         {
775           chunk->next = slab_allocator_alloc_chunk (chunk_size);
776           chunk = chunk->next;
777           chunk->data = NULL;
778         }
779       chunk->next = NULL;
780       g_mutex_unlock (&allocator->slab_mutex);
781       *countp = i;
782       return head;
783     }
784   else
785     {
786       ChunkLink *current = allocator->magazines[ix];
787       ChunkLink *prev = magazine_chain_prev (current);
788       ChunkLink *next = magazine_chain_next (current);
789       /* unlink */
790       magazine_chain_next (prev) = next;
791       magazine_chain_prev (next) = prev;
792       allocator->magazines[ix] = next == current ? NULL : next;
793       g_mutex_unlock (&allocator->magazine_mutex);
794       /* clear special fields and hand out */
795       *countp = (gsize) magazine_chain_count (current);
796       magazine_chain_prev (current) = NULL;
797       magazine_chain_next (current) = NULL;
798       magazine_chain_count (current) = NULL;
799       magazine_chain_stamp (current) = NULL;
800       return current;
801     }
802 }
803 
804 /* --- thread magazines --- */
805 static void
private_thread_memory_cleanup(gpointer data)806 private_thread_memory_cleanup (gpointer data)
807 {
808   ThreadMemory *tmem = data;
809   const guint n_magazines = MAX_SLAB_INDEX (allocator);
810   guint ix;
811   for (ix = 0; ix < n_magazines; ix++)
812     {
813       Magazine *mags[2];
814       guint j;
815       mags[0] = &tmem->magazine1[ix];
816       mags[1] = &tmem->magazine2[ix];
817       for (j = 0; j < 2; j++)
818         {
819           Magazine *mag = mags[j];
820           if (mag->count >= MIN_MAGAZINE_SIZE)
821             magazine_cache_push_magazine (ix, mag->chunks, mag->count);
822           else
823             {
824               const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
825               g_mutex_lock (&allocator->slab_mutex);
826               while (mag->chunks)
827                 {
828                   ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
829                   slab_allocator_free_chunk (chunk_size, chunk);
830                 }
831               g_mutex_unlock (&allocator->slab_mutex);
832             }
833         }
834     }
835   g_free (tmem);
836 }
837 
838 static void
thread_memory_magazine1_reload(ThreadMemory * tmem,guint ix)839 thread_memory_magazine1_reload (ThreadMemory *tmem,
840                                 guint         ix)
841 {
842   Magazine *mag = &tmem->magazine1[ix];
843   mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
844   mag->count = 0;
845   mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
846 }
847 
848 static void
thread_memory_magazine2_unload(ThreadMemory * tmem,guint ix)849 thread_memory_magazine2_unload (ThreadMemory *tmem,
850                                 guint         ix)
851 {
852   Magazine *mag = &tmem->magazine2[ix];
853   magazine_cache_push_magazine (ix, mag->chunks, mag->count);
854   mag->chunks = NULL;
855   mag->count = 0;
856 }
857 
858 static inline void
thread_memory_swap_magazines(ThreadMemory * tmem,guint ix)859 thread_memory_swap_magazines (ThreadMemory *tmem,
860                               guint         ix)
861 {
862   Magazine xmag = tmem->magazine1[ix];
863   tmem->magazine1[ix] = tmem->magazine2[ix];
864   tmem->magazine2[ix] = xmag;
865 }
866 
867 static inline gboolean
thread_memory_magazine1_is_empty(ThreadMemory * tmem,guint ix)868 thread_memory_magazine1_is_empty (ThreadMemory *tmem,
869                                   guint         ix)
870 {
871   return tmem->magazine1[ix].chunks == NULL;
872 }
873 
874 static inline gboolean
thread_memory_magazine2_is_full(ThreadMemory * tmem,guint ix)875 thread_memory_magazine2_is_full (ThreadMemory *tmem,
876                                  guint         ix)
877 {
878   return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
879 }
880 
881 static inline gpointer
thread_memory_magazine1_alloc(ThreadMemory * tmem,guint ix)882 thread_memory_magazine1_alloc (ThreadMemory *tmem,
883                                guint         ix)
884 {
885   Magazine *mag = &tmem->magazine1[ix];
886   ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
887   if (G_LIKELY (mag->count > 0))
888     mag->count--;
889   return chunk;
890 }
891 
892 static inline void
thread_memory_magazine2_free(ThreadMemory * tmem,guint ix,gpointer mem)893 thread_memory_magazine2_free (ThreadMemory *tmem,
894                               guint         ix,
895                               gpointer      mem)
896 {
897   Magazine *mag = &tmem->magazine2[ix];
898   ChunkLink *chunk = mem;
899   chunk->data = NULL;
900   chunk->next = mag->chunks;
901   mag->chunks = chunk;
902   mag->count++;
903 }
904 
905 /* --- API functions --- */
906 
907 /**
908  * g_slice_new:
909  * @type: the type to allocate, typically a structure name
910  *
911  * A convenience macro to allocate a block of memory from the
912  * slice allocator.
913  *
914  * It calls g_slice_alloc() with `sizeof (@type)` and casts the
915  * returned pointer to a pointer of the given type, avoiding a type
916  * cast in the source code. Note that the underlying slice allocation
917  * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
918  * environment variable.
919  *
920  * This can never return %NULL as the minimum allocation size from
921  * `sizeof (@type)` is 1 byte.
922  *
923  * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
924  *    to @type
925  *
926  * Since: 2.10
927  */
928 
929 /**
930  * g_slice_new0:
931  * @type: the type to allocate, typically a structure name
932  *
933  * A convenience macro to allocate a block of memory from the
934  * slice allocator and set the memory to 0.
935  *
936  * It calls g_slice_alloc0() with `sizeof (@type)`
937  * and casts the returned pointer to a pointer of the given type,
938  * avoiding a type cast in the source code.
939  * Note that the underlying slice allocation mechanism can
940  * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
941  * environment variable.
942  *
943  * This can never return %NULL as the minimum allocation size from
944  * `sizeof (@type)` is 1 byte.
945  *
946  * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
947  *    to @type
948  *
949  * Since: 2.10
950  */
951 
952 /**
953  * g_slice_dup:
954  * @type: the type to duplicate, typically a structure name
955  * @mem: (not nullable): the memory to copy into the allocated block
956  *
957  * A convenience macro to duplicate a block of memory using
958  * the slice allocator.
959  *
960  * It calls g_slice_copy() with `sizeof (@type)`
961  * and casts the returned pointer to a pointer of the given type,
962  * avoiding a type cast in the source code.
963  * Note that the underlying slice allocation mechanism can
964  * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
965  * environment variable.
966  *
967  * This can never return %NULL.
968  *
969  * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
970  *    to @type
971  *
972  * Since: 2.14
973  */
974 
975 /**
976  * g_slice_free:
977  * @type: the type of the block to free, typically a structure name
978  * @mem: a pointer to the block to free
979  *
980  * A convenience macro to free a block of memory that has
981  * been allocated from the slice allocator.
982  *
983  * It calls g_slice_free1() using `sizeof (type)`
984  * as the block size.
985  * Note that the exact release behaviour can be changed with the
986  * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
987  * [`G_SLICE`][G_SLICE] for related debugging options.
988  *
989  * If @mem is %NULL, this macro does nothing.
990  *
991  * Since: 2.10
992  */
993 
994 /**
995  * g_slice_free_chain:
996  * @type: the type of the @mem_chain blocks
997  * @mem_chain: a pointer to the first block of the chain
998  * @next: the field name of the next pointer in @type
999  *
1000  * Frees a linked list of memory blocks of structure type @type.
1001  * The memory blocks must be equal-sized, allocated via
1002  * g_slice_alloc() or g_slice_alloc0() and linked together by
1003  * a @next pointer (similar to #GSList). The name of the
1004  * @next field in @type is passed as third argument.
1005  * Note that the exact release behaviour can be changed with the
1006  * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1007  * [`G_SLICE`][G_SLICE] for related debugging options.
1008  *
1009  * If @mem_chain is %NULL, this function does nothing.
1010  *
1011  * Since: 2.10
1012  */
1013 
1014 /**
1015  * g_slice_alloc:
1016  * @block_size: the number of bytes to allocate
1017  *
1018  * Allocates a block of memory from the slice allocator.
1019  * The block address handed out can be expected to be aligned
1020  * to at least 1 * sizeof (void*),
1021  * though in general slices are 2 * sizeof (void*) bytes aligned,
1022  * if a malloc() fallback implementation is used instead,
1023  * the alignment may be reduced in a libc dependent fashion.
1024  * Note that the underlying slice allocation mechanism can
1025  * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1026  * environment variable.
1027  *
1028  * Returns: a pointer to the allocated memory block, which will be %NULL if and
1029  *    only if @mem_size is 0
1030  *
1031  * Since: 2.10
1032  */
1033 gpointer
g_slice_alloc(gsize mem_size)1034 g_slice_alloc (gsize mem_size)
1035 {
1036   ThreadMemory *tmem;
1037   gsize chunk_size;
1038   gpointer mem;
1039   guint acat;
1040 
1041   /* This gets the private structure for this thread.  If the private
1042    * structure does not yet exist, it is created.
1043    *
1044    * This has a side effect of causing GSlice to be initialised, so it
1045    * must come first.
1046    */
1047   tmem = thread_memory_from_self ();
1048 
1049   chunk_size = P2ALIGN (mem_size);
1050   acat = allocator_categorize (chunk_size);
1051   if (G_LIKELY (acat == 1))     /* allocate through magazine layer */
1052     {
1053       guint ix = SLAB_INDEX (allocator, chunk_size);
1054       if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
1055         {
1056           thread_memory_swap_magazines (tmem, ix);
1057           if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
1058             thread_memory_magazine1_reload (tmem, ix);
1059         }
1060       mem = thread_memory_magazine1_alloc (tmem, ix);
1061     }
1062   else if (acat == 2)           /* allocate through slab allocator */
1063     {
1064       g_mutex_lock (&allocator->slab_mutex);
1065       mem = slab_allocator_alloc_chunk (chunk_size);
1066       g_mutex_unlock (&allocator->slab_mutex);
1067     }
1068   else                          /* delegate to system malloc */
1069     mem = g_malloc (mem_size);
1070   if (G_UNLIKELY (allocator->config.debug_blocks))
1071     smc_notify_alloc (mem, mem_size);
1072 
1073   TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size));
1074 
1075   return mem;
1076 }
1077 
1078 /**
1079  * g_slice_alloc0:
1080  * @block_size: the number of bytes to allocate
1081  *
1082  * Allocates a block of memory via g_slice_alloc() and initializes
1083  * the returned memory to 0. Note that the underlying slice allocation
1084  * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1085  * environment variable.
1086  *
1087  * Returns: a pointer to the allocated block, which will be %NULL if and only
1088  *    if @mem_size is 0
1089  *
1090  * Since: 2.10
1091  */
1092 gpointer
g_slice_alloc0(gsize mem_size)1093 g_slice_alloc0 (gsize mem_size)
1094 {
1095   gpointer mem = g_slice_alloc (mem_size);
1096   if (mem)
1097     memset (mem, 0, mem_size);
1098   return mem;
1099 }
1100 
1101 /**
1102  * g_slice_copy:
1103  * @block_size: the number of bytes to allocate
1104  * @mem_block: the memory to copy
1105  *
1106  * Allocates a block of memory from the slice allocator
1107  * and copies @block_size bytes into it from @mem_block.
1108  *
1109  * @mem_block must be non-%NULL if @block_size is non-zero.
1110  *
1111  * Returns: a pointer to the allocated memory block, which will be %NULL if and
1112  *    only if @mem_size is 0
1113  *
1114  * Since: 2.14
1115  */
1116 gpointer
g_slice_copy(gsize mem_size,gconstpointer mem_block)1117 g_slice_copy (gsize         mem_size,
1118               gconstpointer mem_block)
1119 {
1120   gpointer mem = g_slice_alloc (mem_size);
1121   if (mem)
1122     memcpy (mem, mem_block, mem_size);
1123   return mem;
1124 }
1125 
1126 /**
1127  * g_slice_free1:
1128  * @block_size: the size of the block
1129  * @mem_block: a pointer to the block to free
1130  *
1131  * Frees a block of memory.
1132  *
1133  * The memory must have been allocated via g_slice_alloc() or
1134  * g_slice_alloc0() and the @block_size has to match the size
1135  * specified upon allocation. Note that the exact release behaviour
1136  * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
1137  * variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
1138  *
1139  * If @mem_block is %NULL, this function does nothing.
1140  *
1141  * Since: 2.10
1142  */
1143 void
g_slice_free1(gsize mem_size,gpointer mem_block)1144 g_slice_free1 (gsize    mem_size,
1145                gpointer mem_block)
1146 {
1147   gsize chunk_size = P2ALIGN (mem_size);
1148   guint acat = allocator_categorize (chunk_size);
1149   if (G_UNLIKELY (!mem_block))
1150     return;
1151   if (G_UNLIKELY (allocator->config.debug_blocks) &&
1152       !smc_notify_free (mem_block, mem_size))
1153     abort();
1154   if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
1155     {
1156       ThreadMemory *tmem = thread_memory_from_self();
1157       guint ix = SLAB_INDEX (allocator, chunk_size);
1158       if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1159         {
1160           thread_memory_swap_magazines (tmem, ix);
1161           if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1162             thread_memory_magazine2_unload (tmem, ix);
1163         }
1164       if (G_UNLIKELY (g_mem_gc_friendly))
1165         memset (mem_block, 0, chunk_size);
1166       thread_memory_magazine2_free (tmem, ix, mem_block);
1167     }
1168   else if (acat == 2)                   /* allocate through slab allocator */
1169     {
1170       if (G_UNLIKELY (g_mem_gc_friendly))
1171         memset (mem_block, 0, chunk_size);
1172       g_mutex_lock (&allocator->slab_mutex);
1173       slab_allocator_free_chunk (chunk_size, mem_block);
1174       g_mutex_unlock (&allocator->slab_mutex);
1175     }
1176   else                                  /* delegate to system malloc */
1177     {
1178       if (G_UNLIKELY (g_mem_gc_friendly))
1179         memset (mem_block, 0, mem_size);
1180       g_free (mem_block);
1181     }
1182   TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size));
1183 }
1184 
1185 /**
1186  * g_slice_free_chain_with_offset:
1187  * @block_size: the size of the blocks
1188  * @mem_chain:  a pointer to the first block of the chain
1189  * @next_offset: the offset of the @next field in the blocks
1190  *
1191  * Frees a linked list of memory blocks of structure type @type.
1192  *
1193  * The memory blocks must be equal-sized, allocated via
1194  * g_slice_alloc() or g_slice_alloc0() and linked together by a
1195  * @next pointer (similar to #GSList). The offset of the @next
1196  * field in each block is passed as third argument.
1197  * Note that the exact release behaviour can be changed with the
1198  * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1199  * [`G_SLICE`][G_SLICE] for related debugging options.
1200  *
1201  * If @mem_chain is %NULL, this function does nothing.
1202  *
1203  * Since: 2.10
1204  */
1205 void
g_slice_free_chain_with_offset(gsize mem_size,gpointer mem_chain,gsize next_offset)1206 g_slice_free_chain_with_offset (gsize    mem_size,
1207                                 gpointer mem_chain,
1208                                 gsize    next_offset)
1209 {
1210   gpointer slice = mem_chain;
1211   /* while the thread magazines and the magazine cache are implemented so that
1212    * they can easily be extended to allow for free lists containing more free
1213    * lists for the first level nodes, which would allow O(1) freeing in this
1214    * function, the benefit of such an extension is questionable, because:
1215    * - the magazine size counts will become mere lower bounds which confuses
1216    *   the code adapting to lock contention;
1217    * - freeing a single node to the thread magazines is very fast, so this
1218    *   O(list_length) operation is multiplied by a fairly small factor;
1219    * - memory usage histograms on larger applications seem to indicate that
1220    *   the amount of released multi node lists is negligible in comparison
1221    *   to single node releases.
1222    * - the major performance bottle neck, namely g_private_get() or
1223    *   g_mutex_lock()/g_mutex_unlock() has already been moved out of the
1224    *   inner loop for freeing chained slices.
1225    */
1226   gsize chunk_size = P2ALIGN (mem_size);
1227   guint acat = allocator_categorize (chunk_size);
1228   if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
1229     {
1230       ThreadMemory *tmem = thread_memory_from_self();
1231       guint ix = SLAB_INDEX (allocator, chunk_size);
1232       while (slice)
1233         {
1234           guint8 *current = slice;
1235           slice = *(gpointer*) (current + next_offset);
1236           if (G_UNLIKELY (allocator->config.debug_blocks) &&
1237               !smc_notify_free (current, mem_size))
1238             abort();
1239           if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1240             {
1241               thread_memory_swap_magazines (tmem, ix);
1242               if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1243                 thread_memory_magazine2_unload (tmem, ix);
1244             }
1245           if (G_UNLIKELY (g_mem_gc_friendly))
1246             memset (current, 0, chunk_size);
1247           thread_memory_magazine2_free (tmem, ix, current);
1248         }
1249     }
1250   else if (acat == 2)                   /* allocate through slab allocator */
1251     {
1252       g_mutex_lock (&allocator->slab_mutex);
1253       while (slice)
1254         {
1255           guint8 *current = slice;
1256           slice = *(gpointer*) (current + next_offset);
1257           if (G_UNLIKELY (allocator->config.debug_blocks) &&
1258               !smc_notify_free (current, mem_size))
1259             abort();
1260           if (G_UNLIKELY (g_mem_gc_friendly))
1261             memset (current, 0, chunk_size);
1262           slab_allocator_free_chunk (chunk_size, current);
1263         }
1264       g_mutex_unlock (&allocator->slab_mutex);
1265     }
1266   else                                  /* delegate to system malloc */
1267     while (slice)
1268       {
1269         guint8 *current = slice;
1270         slice = *(gpointer*) (current + next_offset);
1271         if (G_UNLIKELY (allocator->config.debug_blocks) &&
1272             !smc_notify_free (current, mem_size))
1273           abort();
1274         if (G_UNLIKELY (g_mem_gc_friendly))
1275           memset (current, 0, mem_size);
1276         g_free (current);
1277       }
1278 }
1279 
1280 /* --- single page allocator --- */
1281 static void
allocator_slab_stack_push(Allocator * allocator,guint ix,SlabInfo * sinfo)1282 allocator_slab_stack_push (Allocator *allocator,
1283                            guint      ix,
1284                            SlabInfo  *sinfo)
1285 {
1286   /* insert slab at slab ring head */
1287   if (!allocator->slab_stack[ix])
1288     {
1289       sinfo->next = sinfo;
1290       sinfo->prev = sinfo;
1291     }
1292   else
1293     {
1294       SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev;
1295       next->prev = sinfo;
1296       prev->next = sinfo;
1297       sinfo->next = next;
1298       sinfo->prev = prev;
1299     }
1300   allocator->slab_stack[ix] = sinfo;
1301 }
1302 
1303 static gsize
allocator_aligned_page_size(Allocator * allocator,gsize n_bytes)1304 allocator_aligned_page_size (Allocator *allocator,
1305                              gsize      n_bytes)
1306 {
1307   gsize val = 1 << g_bit_storage (n_bytes - 1);
1308   val = MAX (val, allocator->min_page_size);
1309   return val;
1310 }
1311 
1312 static void
allocator_add_slab(Allocator * allocator,guint ix,gsize chunk_size)1313 allocator_add_slab (Allocator *allocator,
1314                     guint      ix,
1315                     gsize      chunk_size)
1316 {
1317   ChunkLink *chunk;
1318   SlabInfo *sinfo;
1319   gsize addr, padding, n_chunks, color = 0;
1320   gsize page_size;
1321   int errsv;
1322   gpointer aligned_memory;
1323   guint8 *mem;
1324   guint i;
1325 
1326   page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
1327   /* allocate 1 page for the chunks and the slab */
1328   aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
1329   errsv = errno;
1330   mem = aligned_memory;
1331 
1332   if (!mem)
1333     {
1334       const gchar *syserr = strerror (errsv);
1335       mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
1336                  (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
1337     }
1338   /* mask page address */
1339   addr = ((gsize) mem / page_size) * page_size;
1340   /* assert alignment */
1341   mem_assert (aligned_memory == (gpointer) addr);
1342   /* basic slab info setup */
1343   sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
1344   sinfo->n_allocated = 0;
1345   sinfo->chunks = NULL;
1346   /* figure cache colorization */
1347   n_chunks = ((guint8*) sinfo - mem) / chunk_size;
1348   padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
1349   if (padding)
1350     {
1351       color = (allocator->color_accu * P2ALIGNMENT) % padding;
1352       allocator->color_accu += allocator->config.color_increment;
1353     }
1354   /* add chunks to free list */
1355   chunk = (ChunkLink*) (mem + color);
1356   sinfo->chunks = chunk;
1357   for (i = 0; i < n_chunks - 1; i++)
1358     {
1359       chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
1360       chunk = chunk->next;
1361     }
1362   chunk->next = NULL;   /* last chunk */
1363   /* add slab to slab ring */
1364   allocator_slab_stack_push (allocator, ix, sinfo);
1365 }
1366 
1367 static gpointer
slab_allocator_alloc_chunk(gsize chunk_size)1368 slab_allocator_alloc_chunk (gsize chunk_size)
1369 {
1370   ChunkLink *chunk;
1371   guint ix = SLAB_INDEX (allocator, chunk_size);
1372   /* ensure non-empty slab */
1373   if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
1374     allocator_add_slab (allocator, ix, chunk_size);
1375   /* allocate chunk */
1376   chunk = allocator->slab_stack[ix]->chunks;
1377   allocator->slab_stack[ix]->chunks = chunk->next;
1378   allocator->slab_stack[ix]->n_allocated++;
1379   /* rotate empty slabs */
1380   if (!allocator->slab_stack[ix]->chunks)
1381     allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
1382   return chunk;
1383 }
1384 
1385 static void
slab_allocator_free_chunk(gsize chunk_size,gpointer mem)1386 slab_allocator_free_chunk (gsize    chunk_size,
1387                            gpointer mem)
1388 {
1389   ChunkLink *chunk;
1390   gboolean was_empty;
1391   guint ix = SLAB_INDEX (allocator, chunk_size);
1392   gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
1393   gsize addr = ((gsize) mem / page_size) * page_size;
1394   /* mask page address */
1395   guint8 *page = (guint8*) addr;
1396   SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
1397   /* assert valid chunk count */
1398   mem_assert (sinfo->n_allocated > 0);
1399   /* add chunk to free list */
1400   was_empty = sinfo->chunks == NULL;
1401   chunk = (ChunkLink*) mem;
1402   chunk->next = sinfo->chunks;
1403   sinfo->chunks = chunk;
1404   sinfo->n_allocated--;
1405   /* keep slab ring partially sorted, empty slabs at end */
1406   if (was_empty)
1407     {
1408       /* unlink slab */
1409       SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1410       next->prev = prev;
1411       prev->next = next;
1412       if (allocator->slab_stack[ix] == sinfo)
1413         allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1414       /* insert slab at head */
1415       allocator_slab_stack_push (allocator, ix, sinfo);
1416     }
1417   /* eagerly free complete unused slabs */
1418   if (!sinfo->n_allocated)
1419     {
1420       /* unlink slab */
1421       SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1422       next->prev = prev;
1423       prev->next = next;
1424       if (allocator->slab_stack[ix] == sinfo)
1425         allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1426       /* free slab */
1427       allocator_memfree (page_size, page);
1428     }
1429 }
1430 
1431 /* --- memalign implementation --- */
1432 #ifdef HAVE_MALLOC_H
1433 #include <malloc.h>             /* memalign() */
1434 #endif
1435 
1436 /* from config.h:
1437  * define HAVE_POSIX_MEMALIGN           1 // if free(posix_memalign(3)) works, <stdlib.h>
1438  * define HAVE_MEMALIGN                 1 // if free(memalign(3)) works, <malloc.h>
1439  * define HAVE_VALLOC                   1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
1440  * if none is provided, we implement malloc(3)-based alloc-only page alignment
1441  */
1442 
1443 #if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
1444 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1445 static GTrashStack *compat_valloc_trash = NULL;
1446 G_GNUC_END_IGNORE_DEPRECATIONS
1447 #endif
1448 
1449 static gpointer
allocator_memalign(gsize alignment,gsize memsize)1450 allocator_memalign (gsize alignment,
1451                     gsize memsize)
1452 {
1453   gpointer aligned_memory = NULL;
1454   gint err = ENOMEM;
1455 #if     HAVE_POSIX_MEMALIGN
1456   err = posix_memalign (&aligned_memory, alignment, memsize);
1457 #elif   HAVE_MEMALIGN
1458   errno = 0;
1459   aligned_memory = memalign (alignment, memsize);
1460   err = errno;
1461 #elif   HAVE_VALLOC
1462   errno = 0;
1463   aligned_memory = valloc (memsize);
1464   err = errno;
1465 #else
1466   /* simplistic non-freeing page allocator */
1467   mem_assert (alignment == sys_page_size);
1468   mem_assert (memsize <= sys_page_size);
1469   if (!compat_valloc_trash)
1470     {
1471       const guint n_pages = 16;
1472       guint8 *mem = malloc (n_pages * sys_page_size);
1473       err = errno;
1474       if (mem)
1475         {
1476           gint i = n_pages;
1477           guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
1478           if (amem != mem)
1479             i--;        /* mem wasn't page aligned */
1480           G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1481           while (--i >= 0)
1482             g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
1483           G_GNUC_END_IGNORE_DEPRECATIONS
1484         }
1485     }
1486   G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1487   aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
1488   G_GNUC_END_IGNORE_DEPRECATIONS
1489 #endif
1490   if (!aligned_memory)
1491     errno = err;
1492   return aligned_memory;
1493 }
1494 
1495 static void
allocator_memfree(gsize memsize,gpointer mem)1496 allocator_memfree (gsize    memsize,
1497                    gpointer mem)
1498 {
1499 #if     HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
1500   free (mem);
1501 #else
1502   mem_assert (memsize <= sys_page_size);
1503   G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1504   g_trash_stack_push (&compat_valloc_trash, mem);
1505   G_GNUC_END_IGNORE_DEPRECATIONS
1506 #endif
1507 }
1508 
1509 static void
mem_error(const char * format,...)1510 mem_error (const char *format,
1511            ...)
1512 {
1513   const char *pname;
1514   va_list args;
1515   /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
1516   fputs ("\n***MEMORY-ERROR***: ", stderr);
1517   pname = g_get_prgname();
1518   g_fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
1519   va_start (args, format);
1520   g_vfprintf (stderr, format, args);
1521   va_end (args);
1522   fputs ("\n", stderr);
1523   abort();
1524   _exit (1);
1525 }
1526 
1527 /* --- g-slice memory checker tree --- */
1528 typedef size_t SmcKType;                /* key type */
1529 typedef size_t SmcVType;                /* value type */
1530 typedef struct {
1531   SmcKType key;
1532   SmcVType value;
1533 } SmcEntry;
1534 static void             smc_tree_insert      (SmcKType  key,
1535                                               SmcVType  value);
1536 static gboolean         smc_tree_lookup      (SmcKType  key,
1537                                               SmcVType *value_p);
1538 static gboolean         smc_tree_remove      (SmcKType  key);
1539 
1540 
1541 /* --- g-slice memory checker implementation --- */
1542 static void
smc_notify_alloc(void * pointer,size_t size)1543 smc_notify_alloc (void   *pointer,
1544                   size_t  size)
1545 {
1546   size_t address = (size_t) pointer;
1547   if (pointer)
1548     smc_tree_insert (address, size);
1549 }
1550 
1551 #if 0
1552 static void
1553 smc_notify_ignore (void *pointer)
1554 {
1555   size_t address = (size_t) pointer;
1556   if (pointer)
1557     smc_tree_remove (address);
1558 }
1559 #endif
1560 
1561 static int
smc_notify_free(void * pointer,size_t size)1562 smc_notify_free (void   *pointer,
1563                  size_t  size)
1564 {
1565   size_t address = (size_t) pointer;
1566   SmcVType real_size;
1567   gboolean found_one;
1568 
1569   if (!pointer)
1570     return 1; /* ignore */
1571   found_one = smc_tree_lookup (address, &real_size);
1572   if (!found_one)
1573     {
1574       g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1575       return 0;
1576     }
1577   if (real_size != size && (real_size || size))
1578     {
1579       g_fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
1580       return 0;
1581     }
1582   if (!smc_tree_remove (address))
1583     {
1584       g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1585       return 0;
1586     }
1587   return 1; /* all fine */
1588 }
1589 
1590 /* --- g-slice memory checker tree implementation --- */
1591 #define SMC_TRUNK_COUNT     (4093 /* 16381 */)          /* prime, to distribute trunk collisions (big, allocated just once) */
1592 #define SMC_BRANCH_COUNT    (511)                       /* prime, to distribute branch collisions */
1593 #define SMC_TRUNK_EXTENT    (SMC_BRANCH_COUNT * 2039)   /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
1594 #define SMC_TRUNK_HASH(k)   ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT)  /* generate new trunk hash per megabyte (roughly) */
1595 #define SMC_BRANCH_HASH(k)  (k % SMC_BRANCH_COUNT)
1596 
1597 typedef struct {
1598   SmcEntry    *entries;
1599   unsigned int n_entries;
1600 } SmcBranch;
1601 
1602 static SmcBranch     **smc_tree_root = NULL;
1603 
1604 static void
smc_tree_abort(int errval)1605 smc_tree_abort (int errval)
1606 {
1607   const char *syserr = strerror (errval);
1608   mem_error ("MemChecker: failure in debugging tree: %s", syserr);
1609 }
1610 
1611 static inline SmcEntry*
smc_tree_branch_grow_L(SmcBranch * branch,unsigned int index)1612 smc_tree_branch_grow_L (SmcBranch   *branch,
1613                         unsigned int index)
1614 {
1615   unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
1616   unsigned int new_size = old_size + sizeof (branch->entries[0]);
1617   SmcEntry *entry;
1618   mem_assert (index <= branch->n_entries);
1619   branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
1620   if (!branch->entries)
1621     smc_tree_abort (errno);
1622   entry = branch->entries + index;
1623   memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
1624   branch->n_entries += 1;
1625   return entry;
1626 }
1627 
1628 static inline SmcEntry*
smc_tree_branch_lookup_nearest_L(SmcBranch * branch,SmcKType key)1629 smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
1630                                   SmcKType   key)
1631 {
1632   unsigned int n_nodes = branch->n_entries, offs = 0;
1633   SmcEntry *check = branch->entries;
1634   int cmp = 0;
1635   while (offs < n_nodes)
1636     {
1637       unsigned int i = (offs + n_nodes) >> 1;
1638       check = branch->entries + i;
1639       cmp = key < check->key ? -1 : key != check->key;
1640       if (cmp == 0)
1641         return check;                   /* return exact match */
1642       else if (cmp < 0)
1643         n_nodes = i;
1644       else /* (cmp > 0) */
1645         offs = i + 1;
1646     }
1647   /* check points at last mismatch, cmp > 0 indicates greater key */
1648   return cmp > 0 ? check + 1 : check;   /* return insertion position for inexact match */
1649 }
1650 
1651 static void
smc_tree_insert(SmcKType key,SmcVType value)1652 smc_tree_insert (SmcKType key,
1653                  SmcVType value)
1654 {
1655   unsigned int ix0, ix1;
1656   SmcEntry *entry;
1657 
1658   g_mutex_lock (&smc_tree_mutex);
1659   ix0 = SMC_TRUNK_HASH (key);
1660   ix1 = SMC_BRANCH_HASH (key);
1661   if (!smc_tree_root)
1662     {
1663       smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
1664       if (!smc_tree_root)
1665         smc_tree_abort (errno);
1666     }
1667   if (!smc_tree_root[ix0])
1668     {
1669       smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
1670       if (!smc_tree_root[ix0])
1671         smc_tree_abort (errno);
1672     }
1673   entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1674   if (!entry ||                                                                         /* need create */
1675       entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries ||   /* need append */
1676       entry->key != key)                                                                /* need insert */
1677     entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
1678   entry->key = key;
1679   entry->value = value;
1680   g_mutex_unlock (&smc_tree_mutex);
1681 }
1682 
1683 static gboolean
smc_tree_lookup(SmcKType key,SmcVType * value_p)1684 smc_tree_lookup (SmcKType  key,
1685                  SmcVType *value_p)
1686 {
1687   SmcEntry *entry = NULL;
1688   unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1689   gboolean found_one = FALSE;
1690   *value_p = 0;
1691   g_mutex_lock (&smc_tree_mutex);
1692   if (smc_tree_root && smc_tree_root[ix0])
1693     {
1694       entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1695       if (entry &&
1696           entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1697           entry->key == key)
1698         {
1699           found_one = TRUE;
1700           *value_p = entry->value;
1701         }
1702     }
1703   g_mutex_unlock (&smc_tree_mutex);
1704   return found_one;
1705 }
1706 
1707 static gboolean
smc_tree_remove(SmcKType key)1708 smc_tree_remove (SmcKType key)
1709 {
1710   unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1711   gboolean found_one = FALSE;
1712   g_mutex_lock (&smc_tree_mutex);
1713   if (smc_tree_root && smc_tree_root[ix0])
1714     {
1715       SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1716       if (entry &&
1717           entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1718           entry->key == key)
1719         {
1720           unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
1721           smc_tree_root[ix0][ix1].n_entries -= 1;
1722           memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
1723           if (!smc_tree_root[ix0][ix1].n_entries)
1724             {
1725               /* avoid useless pressure on the memory system */
1726               free (smc_tree_root[ix0][ix1].entries);
1727               smc_tree_root[ix0][ix1].entries = NULL;
1728             }
1729           found_one = TRUE;
1730         }
1731     }
1732   g_mutex_unlock (&smc_tree_mutex);
1733   return found_one;
1734 }
1735 
1736 #ifdef G_ENABLE_DEBUG
1737 void
g_slice_debug_tree_statistics(void)1738 g_slice_debug_tree_statistics (void)
1739 {
1740   g_mutex_lock (&smc_tree_mutex);
1741   if (smc_tree_root)
1742     {
1743       unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
1744       double tf, bf;
1745       for (i = 0; i < SMC_TRUNK_COUNT; i++)
1746         if (smc_tree_root[i])
1747           {
1748             t++;
1749             for (j = 0; j < SMC_BRANCH_COUNT; j++)
1750               if (smc_tree_root[i][j].n_entries)
1751                 {
1752                   b++;
1753                   su += smc_tree_root[i][j].n_entries;
1754                   en = MIN (en, smc_tree_root[i][j].n_entries);
1755                   ex = MAX (ex, smc_tree_root[i][j].n_entries);
1756                 }
1757               else if (smc_tree_root[i][j].entries)
1758                 o++; /* formerly used, now empty */
1759           }
1760       en = b ? en : 0;
1761       tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
1762       bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
1763       g_fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
1764       g_fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
1765                b / tf,
1766                100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
1767       g_fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
1768                su / bf, en, ex);
1769     }
1770   else
1771     g_fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
1772   g_mutex_unlock (&smc_tree_mutex);
1773 
1774   /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
1775    *  PID %CPU %MEM   VSZ  RSS      COMMAND
1776    * 8887 30.3 45.8 456068 414856   beast-0.7.1 empty.bse
1777    * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
1778    * 114017 103714 2354 344 0 108676 0
1779    * $ cat /proc/8887/status
1780    * Name:   beast-0.7.1
1781    * VmSize:   456068 kB
1782    * VmLck:         0 kB
1783    * VmRSS:    414856 kB
1784    * VmData:   434620 kB
1785    * VmStk:        84 kB
1786    * VmExe:      1376 kB
1787    * VmLib:     13036 kB
1788    * VmPTE:       456 kB
1789    * Threads:        3
1790    * (gdb) print g_slice_debug_tree_statistics ()
1791    * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
1792    * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
1793    * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
1794    */
1795 }
1796 #endif /* G_ENABLE_DEBUG */
1797