1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2008 Semihalf
4 *
5 * (C) Copyright 2000-2006
6 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
7 */
8
9 #ifndef USE_HOSTCC
10 #include <common.h>
11 #include <cpu_func.h>
12 #include <env.h>
13 #include <u-boot/crc.h>
14 #include <watchdog.h>
15
16 #ifdef CONFIG_SHOW_BOOT_PROGRESS
17 #include <status_led.h>
18 #endif
19
20 #include <rtc.h>
21
22 #include <gzip.h>
23 #include <image.h>
24 #include <lz4.h>
25 #include <mapmem.h>
26
27 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
28 #include <linux/libfdt.h>
29 #include <fdt_support.h>
30 #include <fpga.h>
31 #include <xilinx.h>
32 #endif
33
34 #include <u-boot/md5.h>
35 #include <u-boot/sha1.h>
36 #include <linux/errno.h>
37 #include <asm/io.h>
38
39 #include <bzlib.h>
40 #include <linux/lzo.h>
41 #include <lzma/LzmaTypes.h>
42 #include <lzma/LzmaDec.h>
43 #include <lzma/LzmaTools.h>
44
45 #ifdef CONFIG_CMD_BDI
46 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
47 #endif
48
49 DECLARE_GLOBAL_DATA_PTR;
50
51 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
52 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
53 int verify);
54 #endif
55 #else
56 #include "mkimage.h"
57 #include <u-boot/md5.h>
58 #include <time.h>
59 #include <image.h>
60
61 #ifndef __maybe_unused
62 # define __maybe_unused /* unimplemented */
63 #endif
64 #endif /* !USE_HOSTCC*/
65
66 #include <u-boot/crc.h>
67 #include <imximage.h>
68
69 #ifndef CONFIG_SYS_BARGSIZE
70 #define CONFIG_SYS_BARGSIZE 512
71 #endif
72
73 static const table_entry_t uimage_arch[] = {
74 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", },
75 { IH_ARCH_ALPHA, "alpha", "Alpha", },
76 { IH_ARCH_ARM, "arm", "ARM", },
77 { IH_ARCH_I386, "x86", "Intel x86", },
78 { IH_ARCH_IA64, "ia64", "IA64", },
79 { IH_ARCH_M68K, "m68k", "M68K", },
80 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
81 { IH_ARCH_MIPS, "mips", "MIPS", },
82 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
83 { IH_ARCH_NIOS2, "nios2", "NIOS II", },
84 { IH_ARCH_PPC, "powerpc", "PowerPC", },
85 { IH_ARCH_PPC, "ppc", "PowerPC", },
86 { IH_ARCH_S390, "s390", "IBM S390", },
87 { IH_ARCH_SH, "sh", "SuperH", },
88 { IH_ARCH_SPARC, "sparc", "SPARC", },
89 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
90 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
91 { IH_ARCH_AVR32, "avr32", "AVR32", },
92 { IH_ARCH_NDS32, "nds32", "NDS32", },
93 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
94 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", },
95 { IH_ARCH_ARM64, "arm64", "AArch64", },
96 { IH_ARCH_ARC, "arc", "ARC", },
97 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", },
98 { IH_ARCH_XTENSA, "xtensa", "Xtensa", },
99 { IH_ARCH_RISCV, "riscv", "RISC-V", },
100 { -1, "", "", },
101 };
102
103 static const table_entry_t uimage_os[] = {
104 { IH_OS_INVALID, "invalid", "Invalid OS", },
105 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" },
106 { IH_OS_LINUX, "linux", "Linux", },
107 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
108 { IH_OS_LYNXOS, "lynxos", "LynxOS", },
109 #endif
110 { IH_OS_NETBSD, "netbsd", "NetBSD", },
111 { IH_OS_OSE, "ose", "Enea OSE", },
112 { IH_OS_PLAN9, "plan9", "Plan 9", },
113 { IH_OS_RTEMS, "rtems", "RTEMS", },
114 { IH_OS_TEE, "tee", "Trusted Execution Environment" },
115 { IH_OS_U_BOOT, "u-boot", "U-Boot", },
116 { IH_OS_VXWORKS, "vxworks", "VxWorks", },
117 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
118 { IH_OS_QNX, "qnx", "QNX", },
119 #endif
120 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
121 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
122 #endif
123 #ifdef USE_HOSTCC
124 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
125 { IH_OS_DELL, "dell", "Dell", },
126 { IH_OS_ESIX, "esix", "Esix", },
127 { IH_OS_FREEBSD, "freebsd", "FreeBSD", },
128 { IH_OS_IRIX, "irix", "Irix", },
129 { IH_OS_NCR, "ncr", "NCR", },
130 { IH_OS_OPENBSD, "openbsd", "OpenBSD", },
131 { IH_OS_PSOS, "psos", "pSOS", },
132 { IH_OS_SCO, "sco", "SCO", },
133 { IH_OS_SOLARIS, "solaris", "Solaris", },
134 { IH_OS_SVR4, "svr4", "SVR4", },
135 #endif
136 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC)
137 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", },
138 #endif
139 { IH_OS_OPENSBI, "opensbi", "RISC-V OpenSBI", },
140
141 { -1, "", "", },
142 };
143
144 static const table_entry_t uimage_type[] = {
145 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
146 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
147 { IH_TYPE_FIRMWARE, "firmware", "Firmware", },
148 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
149 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",},
150 { IH_TYPE_KERNEL, "kernel", "Kernel Image", },
151 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
152 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
153 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
154 { IH_TYPE_IMX8IMAGE, "imx8image", "NXP i.MX8 Boot Image",},
155 { IH_TYPE_IMX8MIMAGE, "imx8mimage", "NXP i.MX8M Boot Image",},
156 { IH_TYPE_INVALID, "invalid", "Invalid Image", },
157 { IH_TYPE_MULTI, "multi", "Multi-File Image", },
158 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
159 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",},
160 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
161 { IH_TYPE_SCRIPT, "script", "Script", },
162 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SoCFPGA CV/AV preloader",},
163 { IH_TYPE_SOCFPGAIMAGE_V1, "socfpgaimage_v1", "Altera SoCFPGA A10 preloader",},
164 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
165 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
166 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",},
167 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",},
168 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", },
169 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", },
170 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" },
171 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" },
172 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" },
173 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", },
174 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" },
175 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" },
176 { IH_TYPE_ZYNQMPBIF, "zynqmpbif", "Xilinx ZynqMP Boot Image (bif)" },
177 { IH_TYPE_FPGA, "fpga", "FPGA Image" },
178 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",},
179 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" },
180 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",},
181 { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" },
182 { IH_TYPE_MTKIMAGE, "mtk_image", "MediaTek BootROM loadable Image" },
183 { IH_TYPE_COPRO, "copro", "Coprocessor Image"},
184 { -1, "", "", },
185 };
186
187 static const table_entry_t uimage_comp[] = {
188 { IH_COMP_NONE, "none", "uncompressed", },
189 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
190 { IH_COMP_GZIP, "gzip", "gzip compressed", },
191 { IH_COMP_LZMA, "lzma", "lzma compressed", },
192 { IH_COMP_LZO, "lzo", "lzo compressed", },
193 { IH_COMP_LZ4, "lz4", "lz4 compressed", },
194 { -1, "", "", },
195 };
196
197 struct table_info {
198 const char *desc;
199 int count;
200 const table_entry_t *table;
201 };
202
203 static const struct table_info table_info[IH_COUNT] = {
204 { "architecture", IH_ARCH_COUNT, uimage_arch },
205 { "compression", IH_COMP_COUNT, uimage_comp },
206 { "operating system", IH_OS_COUNT, uimage_os },
207 { "image type", IH_TYPE_COUNT, uimage_type },
208 };
209
210 /*****************************************************************************/
211 /* Legacy format routines */
212 /*****************************************************************************/
image_check_hcrc(const image_header_t * hdr)213 int image_check_hcrc(const image_header_t *hdr)
214 {
215 ulong hcrc;
216 ulong len = image_get_header_size();
217 image_header_t header;
218
219 /* Copy header so we can blank CRC field for re-calculation */
220 memmove(&header, (char *)hdr, image_get_header_size());
221 image_set_hcrc(&header, 0);
222
223 hcrc = crc32(0, (unsigned char *)&header, len);
224
225 return (hcrc == image_get_hcrc(hdr));
226 }
227
image_check_dcrc(const image_header_t * hdr)228 int image_check_dcrc(const image_header_t *hdr)
229 {
230 ulong data = image_get_data(hdr);
231 ulong len = image_get_data_size(hdr);
232 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
233
234 return (dcrc == image_get_dcrc(hdr));
235 }
236
237 /**
238 * image_multi_count - get component (sub-image) count
239 * @hdr: pointer to the header of the multi component image
240 *
241 * image_multi_count() returns number of components in a multi
242 * component image.
243 *
244 * Note: no checking of the image type is done, caller must pass
245 * a valid multi component image.
246 *
247 * returns:
248 * number of components
249 */
image_multi_count(const image_header_t * hdr)250 ulong image_multi_count(const image_header_t *hdr)
251 {
252 ulong i, count = 0;
253 uint32_t *size;
254
255 /* get start of the image payload, which in case of multi
256 * component images that points to a table of component sizes */
257 size = (uint32_t *)image_get_data(hdr);
258
259 /* count non empty slots */
260 for (i = 0; size[i]; ++i)
261 count++;
262
263 return count;
264 }
265
266 /**
267 * image_multi_getimg - get component data address and size
268 * @hdr: pointer to the header of the multi component image
269 * @idx: index of the requested component
270 * @data: pointer to a ulong variable, will hold component data address
271 * @len: pointer to a ulong variable, will hold component size
272 *
273 * image_multi_getimg() returns size and data address for the requested
274 * component in a multi component image.
275 *
276 * Note: no checking of the image type is done, caller must pass
277 * a valid multi component image.
278 *
279 * returns:
280 * data address and size of the component, if idx is valid
281 * 0 in data and len, if idx is out of range
282 */
image_multi_getimg(const image_header_t * hdr,ulong idx,ulong * data,ulong * len)283 void image_multi_getimg(const image_header_t *hdr, ulong idx,
284 ulong *data, ulong *len)
285 {
286 int i;
287 uint32_t *size;
288 ulong offset, count, img_data;
289
290 /* get number of component */
291 count = image_multi_count(hdr);
292
293 /* get start of the image payload, which in case of multi
294 * component images that points to a table of component sizes */
295 size = (uint32_t *)image_get_data(hdr);
296
297 /* get address of the proper component data start, which means
298 * skipping sizes table (add 1 for last, null entry) */
299 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
300
301 if (idx < count) {
302 *len = uimage_to_cpu(size[idx]);
303 offset = 0;
304
305 /* go over all indices preceding requested component idx */
306 for (i = 0; i < idx; i++) {
307 /* add up i-th component size, rounding up to 4 bytes */
308 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
309 }
310
311 /* calculate idx-th component data address */
312 *data = img_data + offset;
313 } else {
314 *len = 0;
315 *data = 0;
316 }
317 }
318
image_print_type(const image_header_t * hdr)319 static void image_print_type(const image_header_t *hdr)
320 {
321 const char __maybe_unused *os, *arch, *type, *comp;
322
323 os = genimg_get_os_name(image_get_os(hdr));
324 arch = genimg_get_arch_name(image_get_arch(hdr));
325 type = genimg_get_type_name(image_get_type(hdr));
326 comp = genimg_get_comp_name(image_get_comp(hdr));
327
328 printf("%s %s %s (%s)\n", arch, os, type, comp);
329 }
330
331 /**
332 * image_print_contents - prints out the contents of the legacy format image
333 * @ptr: pointer to the legacy format image header
334 * @p: pointer to prefix string
335 *
336 * image_print_contents() formats a multi line legacy image contents description.
337 * The routine prints out all header fields followed by the size/offset data
338 * for MULTI/SCRIPT images.
339 *
340 * returns:
341 * no returned results
342 */
image_print_contents(const void * ptr)343 void image_print_contents(const void *ptr)
344 {
345 const image_header_t *hdr = (const image_header_t *)ptr;
346 const char __maybe_unused *p;
347
348 p = IMAGE_INDENT_STRING;
349 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
350 if (IMAGE_ENABLE_TIMESTAMP) {
351 printf("%sCreated: ", p);
352 genimg_print_time((time_t)image_get_time(hdr));
353 }
354 printf("%sImage Type: ", p);
355 image_print_type(hdr);
356 printf("%sData Size: ", p);
357 genimg_print_size(image_get_data_size(hdr));
358 printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
359 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
360
361 if (image_check_type(hdr, IH_TYPE_MULTI) ||
362 image_check_type(hdr, IH_TYPE_SCRIPT)) {
363 int i;
364 ulong data, len;
365 ulong count = image_multi_count(hdr);
366
367 printf("%sContents:\n", p);
368 for (i = 0; i < count; i++) {
369 image_multi_getimg(hdr, i, &data, &len);
370
371 printf("%s Image %d: ", p, i);
372 genimg_print_size(len);
373
374 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
375 /*
376 * the user may need to know offsets
377 * if planning to do something with
378 * multiple files
379 */
380 printf("%s Offset = 0x%08lx\n", p, data);
381 }
382 }
383 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) {
384 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n",
385 image_get_load(hdr) - image_get_header_size(),
386 (int)(image_get_size(hdr) + image_get_header_size()
387 + sizeof(flash_header_v2_t) - 0x2060));
388 }
389 }
390
391 /**
392 * print_decomp_msg() - Print a suitable decompression/loading message
393 *
394 * @type: OS type (IH_OS_...)
395 * @comp_type: Compression type being used (IH_COMP_...)
396 * @is_xip: true if the load address matches the image start
397 */
print_decomp_msg(int comp_type,int type,bool is_xip)398 static void print_decomp_msg(int comp_type, int type, bool is_xip)
399 {
400 const char *name = genimg_get_type_name(type);
401
402 if (comp_type == IH_COMP_NONE)
403 printf(" %s %s\n", is_xip ? "XIP" : "Loading", name);
404 else
405 printf(" Uncompressing %s\n", name);
406 }
407
image_decomp(int comp,ulong load,ulong image_start,int type,void * load_buf,void * image_buf,ulong image_len,uint unc_len,ulong * load_end)408 int image_decomp(int comp, ulong load, ulong image_start, int type,
409 void *load_buf, void *image_buf, ulong image_len,
410 uint unc_len, ulong *load_end)
411 {
412 int ret = 0;
413
414 *load_end = load;
415 print_decomp_msg(comp, type, load == image_start);
416
417 /*
418 * Load the image to the right place, decompressing if needed. After
419 * this, image_len will be set to the number of uncompressed bytes
420 * loaded, ret will be non-zero on error.
421 */
422 switch (comp) {
423 case IH_COMP_NONE:
424 if (load == image_start)
425 break;
426 if (image_len <= unc_len)
427 memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
428 else
429 ret = -ENOSPC;
430 break;
431 #ifdef CONFIG_GZIP
432 case IH_COMP_GZIP: {
433 ret = gunzip(load_buf, unc_len, image_buf, &image_len);
434 break;
435 }
436 #endif /* CONFIG_GZIP */
437 #ifdef CONFIG_BZIP2
438 case IH_COMP_BZIP2: {
439 uint size = unc_len;
440
441 /*
442 * If we've got less than 4 MB of malloc() space,
443 * use slower decompression algorithm which requires
444 * at most 2300 KB of memory.
445 */
446 ret = BZ2_bzBuffToBuffDecompress(load_buf, &size,
447 image_buf, image_len,
448 CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
449 image_len = size;
450 break;
451 }
452 #endif /* CONFIG_BZIP2 */
453 #ifdef CONFIG_LZMA
454 case IH_COMP_LZMA: {
455 SizeT lzma_len = unc_len;
456
457 ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
458 image_buf, image_len);
459 image_len = lzma_len;
460 break;
461 }
462 #endif /* CONFIG_LZMA */
463 #ifdef CONFIG_LZO
464 case IH_COMP_LZO: {
465 size_t size = unc_len;
466
467 ret = lzop_decompress(image_buf, image_len, load_buf, &size);
468 image_len = size;
469 break;
470 }
471 #endif /* CONFIG_LZO */
472 #ifdef CONFIG_LZ4
473 case IH_COMP_LZ4: {
474 size_t size = unc_len;
475
476 ret = ulz4fn(image_buf, image_len, load_buf, &size);
477 image_len = size;
478 break;
479 }
480 #endif /* CONFIG_LZ4 */
481 default:
482 printf("Unimplemented compression type %d\n", comp);
483 return -ENOSYS;
484 }
485
486 *load_end = load + image_len;
487
488 return ret;
489 }
490
491
492 #ifndef USE_HOSTCC
493 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
494 /**
495 * image_get_ramdisk - get and verify ramdisk image
496 * @rd_addr: ramdisk image start address
497 * @arch: expected ramdisk architecture
498 * @verify: checksum verification flag
499 *
500 * image_get_ramdisk() returns a pointer to the verified ramdisk image
501 * header. Routine receives image start address and expected architecture
502 * flag. Verification done covers data and header integrity and os/type/arch
503 * fields checking.
504 *
505 * returns:
506 * pointer to a ramdisk image header, if image was found and valid
507 * otherwise, return NULL
508 */
image_get_ramdisk(ulong rd_addr,uint8_t arch,int verify)509 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
510 int verify)
511 {
512 const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
513
514 if (!image_check_magic(rd_hdr)) {
515 puts("Bad Magic Number\n");
516 bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
517 return NULL;
518 }
519
520 if (!image_check_hcrc(rd_hdr)) {
521 puts("Bad Header Checksum\n");
522 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
523 return NULL;
524 }
525
526 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
527 image_print_contents(rd_hdr);
528
529 if (verify) {
530 puts(" Verifying Checksum ... ");
531 if (!image_check_dcrc(rd_hdr)) {
532 puts("Bad Data CRC\n");
533 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
534 return NULL;
535 }
536 puts("OK\n");
537 }
538
539 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
540
541 if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
542 !image_check_arch(rd_hdr, arch) ||
543 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
544 printf("No Linux %s Ramdisk Image\n",
545 genimg_get_arch_name(arch));
546 bootstage_error(BOOTSTAGE_ID_RAMDISK);
547 return NULL;
548 }
549
550 return rd_hdr;
551 }
552 #endif
553 #endif /* !USE_HOSTCC */
554
555 /*****************************************************************************/
556 /* Shared dual-format routines */
557 /*****************************************************************************/
558 #ifndef USE_HOSTCC
559 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */
560 ulong save_addr; /* Default Save Address */
561 ulong save_size; /* Default Save Size (in bytes) */
562
on_loadaddr(const char * name,const char * value,enum env_op op,int flags)563 static int on_loadaddr(const char *name, const char *value, enum env_op op,
564 int flags)
565 {
566 switch (op) {
567 case env_op_create:
568 case env_op_overwrite:
569 load_addr = simple_strtoul(value, NULL, 16);
570 break;
571 default:
572 break;
573 }
574
575 return 0;
576 }
577 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);
578
env_get_bootm_low(void)579 ulong env_get_bootm_low(void)
580 {
581 char *s = env_get("bootm_low");
582 if (s) {
583 ulong tmp = simple_strtoul(s, NULL, 16);
584 return tmp;
585 }
586
587 #if defined(CONFIG_SYS_SDRAM_BASE)
588 return CONFIG_SYS_SDRAM_BASE;
589 #elif defined(CONFIG_ARM) || defined(CONFIG_MICROBLAZE)
590 return gd->bd->bi_dram[0].start;
591 #else
592 return 0;
593 #endif
594 }
595
env_get_bootm_size(void)596 phys_size_t env_get_bootm_size(void)
597 {
598 phys_size_t tmp, size;
599 phys_addr_t start;
600 char *s = env_get("bootm_size");
601 if (s) {
602 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
603 return tmp;
604 }
605
606 #if (defined(CONFIG_ARM) || defined(CONFIG_MICROBLAZE)) && \
607 defined(CONFIG_NR_DRAM_BANKS)
608 start = gd->bd->bi_dram[0].start;
609 size = gd->bd->bi_dram[0].size;
610 #else
611 start = gd->bd->bi_memstart;
612 size = gd->bd->bi_memsize;
613 #endif
614
615 s = env_get("bootm_low");
616 if (s)
617 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
618 else
619 tmp = start;
620
621 return size - (tmp - start);
622 }
623
env_get_bootm_mapsize(void)624 phys_size_t env_get_bootm_mapsize(void)
625 {
626 phys_size_t tmp;
627 char *s = env_get("bootm_mapsize");
628 if (s) {
629 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
630 return tmp;
631 }
632
633 #if defined(CONFIG_SYS_BOOTMAPSZ)
634 return CONFIG_SYS_BOOTMAPSZ;
635 #else
636 return env_get_bootm_size();
637 #endif
638 }
639
memmove_wd(void * to,void * from,size_t len,ulong chunksz)640 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
641 {
642 if (to == from)
643 return;
644
645 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
646 if (to > from) {
647 from += len;
648 to += len;
649 }
650 while (len > 0) {
651 size_t tail = (len > chunksz) ? chunksz : len;
652 WATCHDOG_RESET();
653 if (to > from) {
654 to -= tail;
655 from -= tail;
656 }
657 memmove(to, from, tail);
658 if (to < from) {
659 to += tail;
660 from += tail;
661 }
662 len -= tail;
663 }
664 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
665 memmove(to, from, len);
666 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
667 }
668 #else /* USE_HOSTCC */
memmove_wd(void * to,void * from,size_t len,ulong chunksz)669 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
670 {
671 memmove(to, from, len);
672 }
673 #endif /* !USE_HOSTCC */
674
genimg_print_size(uint32_t size)675 void genimg_print_size(uint32_t size)
676 {
677 #ifndef USE_HOSTCC
678 printf("%d Bytes = ", size);
679 print_size(size, "\n");
680 #else
681 printf("%d Bytes = %.2f KiB = %.2f MiB\n",
682 size, (double)size / 1.024e3,
683 (double)size / 1.048576e6);
684 #endif
685 }
686
687 #if IMAGE_ENABLE_TIMESTAMP
genimg_print_time(time_t timestamp)688 void genimg_print_time(time_t timestamp)
689 {
690 #ifndef USE_HOSTCC
691 struct rtc_time tm;
692
693 rtc_to_tm(timestamp, &tm);
694 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
695 tm.tm_year, tm.tm_mon, tm.tm_mday,
696 tm.tm_hour, tm.tm_min, tm.tm_sec);
697 #else
698 printf("%s", ctime(×tamp));
699 #endif
700 }
701 #endif
702
get_table_entry(const table_entry_t * table,int id)703 const table_entry_t *get_table_entry(const table_entry_t *table, int id)
704 {
705 for (; table->id >= 0; ++table) {
706 if (table->id == id)
707 return table;
708 }
709 return NULL;
710 }
711
unknown_msg(enum ih_category category)712 static const char *unknown_msg(enum ih_category category)
713 {
714 static const char unknown_str[] = "Unknown ";
715 static char msg[30];
716
717 strcpy(msg, unknown_str);
718 strncat(msg, table_info[category].desc,
719 sizeof(msg) - sizeof(unknown_str));
720
721 return msg;
722 }
723
724 /**
725 * get_cat_table_entry_name - translate entry id to long name
726 * @category: category to look up (enum ih_category)
727 * @id: entry id to be translated
728 *
729 * This will scan the translation table trying to find the entry that matches
730 * the given id.
731 *
732 * @retur long entry name if translation succeeds; error string on failure
733 */
genimg_get_cat_name(enum ih_category category,uint id)734 const char *genimg_get_cat_name(enum ih_category category, uint id)
735 {
736 const table_entry_t *entry;
737
738 entry = get_table_entry(table_info[category].table, id);
739 if (!entry)
740 return unknown_msg(category);
741 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
742 return entry->lname;
743 #else
744 return entry->lname + gd->reloc_off;
745 #endif
746 }
747
748 /**
749 * get_cat_table_entry_short_name - translate entry id to short name
750 * @category: category to look up (enum ih_category)
751 * @id: entry id to be translated
752 *
753 * This will scan the translation table trying to find the entry that matches
754 * the given id.
755 *
756 * @retur short entry name if translation succeeds; error string on failure
757 */
genimg_get_cat_short_name(enum ih_category category,uint id)758 const char *genimg_get_cat_short_name(enum ih_category category, uint id)
759 {
760 const table_entry_t *entry;
761
762 entry = get_table_entry(table_info[category].table, id);
763 if (!entry)
764 return unknown_msg(category);
765 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
766 return entry->sname;
767 #else
768 return entry->sname + gd->reloc_off;
769 #endif
770 }
771
genimg_get_cat_count(enum ih_category category)772 int genimg_get_cat_count(enum ih_category category)
773 {
774 return table_info[category].count;
775 }
776
genimg_get_cat_desc(enum ih_category category)777 const char *genimg_get_cat_desc(enum ih_category category)
778 {
779 return table_info[category].desc;
780 }
781
782 /**
783 * get_table_entry_name - translate entry id to long name
784 * @table: pointer to a translation table for entries of a specific type
785 * @msg: message to be returned when translation fails
786 * @id: entry id to be translated
787 *
788 * get_table_entry_name() will go over translation table trying to find
789 * entry that matches given id. If matching entry is found, its long
790 * name is returned to the caller.
791 *
792 * returns:
793 * long entry name if translation succeeds
794 * msg otherwise
795 */
get_table_entry_name(const table_entry_t * table,char * msg,int id)796 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
797 {
798 table = get_table_entry(table, id);
799 if (!table)
800 return msg;
801 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
802 return table->lname;
803 #else
804 return table->lname + gd->reloc_off;
805 #endif
806 }
807
genimg_get_os_name(uint8_t os)808 const char *genimg_get_os_name(uint8_t os)
809 {
810 return (get_table_entry_name(uimage_os, "Unknown OS", os));
811 }
812
genimg_get_arch_name(uint8_t arch)813 const char *genimg_get_arch_name(uint8_t arch)
814 {
815 return (get_table_entry_name(uimage_arch, "Unknown Architecture",
816 arch));
817 }
818
genimg_get_type_name(uint8_t type)819 const char *genimg_get_type_name(uint8_t type)
820 {
821 return (get_table_entry_name(uimage_type, "Unknown Image", type));
822 }
823
genimg_get_short_name(const table_entry_t * table,int val)824 static const char *genimg_get_short_name(const table_entry_t *table, int val)
825 {
826 table = get_table_entry(table, val);
827 if (!table)
828 return "unknown";
829 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
830 return table->sname;
831 #else
832 return table->sname + gd->reloc_off;
833 #endif
834 }
835
genimg_get_type_short_name(uint8_t type)836 const char *genimg_get_type_short_name(uint8_t type)
837 {
838 return genimg_get_short_name(uimage_type, type);
839 }
840
genimg_get_comp_name(uint8_t comp)841 const char *genimg_get_comp_name(uint8_t comp)
842 {
843 return (get_table_entry_name(uimage_comp, "Unknown Compression",
844 comp));
845 }
846
genimg_get_comp_short_name(uint8_t comp)847 const char *genimg_get_comp_short_name(uint8_t comp)
848 {
849 return genimg_get_short_name(uimage_comp, comp);
850 }
851
genimg_get_os_short_name(uint8_t os)852 const char *genimg_get_os_short_name(uint8_t os)
853 {
854 return genimg_get_short_name(uimage_os, os);
855 }
856
genimg_get_arch_short_name(uint8_t arch)857 const char *genimg_get_arch_short_name(uint8_t arch)
858 {
859 return genimg_get_short_name(uimage_arch, arch);
860 }
861
862 /**
863 * get_table_entry_id - translate short entry name to id
864 * @table: pointer to a translation table for entries of a specific type
865 * @table_name: to be used in case of error
866 * @name: entry short name to be translated
867 *
868 * get_table_entry_id() will go over translation table trying to find
869 * entry that matches given short name. If matching entry is found,
870 * its id returned to the caller.
871 *
872 * returns:
873 * entry id if translation succeeds
874 * -1 otherwise
875 */
get_table_entry_id(const table_entry_t * table,const char * table_name,const char * name)876 int get_table_entry_id(const table_entry_t *table,
877 const char *table_name, const char *name)
878 {
879 const table_entry_t *t;
880
881 for (t = table; t->id >= 0; ++t) {
882 #ifdef CONFIG_NEEDS_MANUAL_RELOC
883 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0)
884 #else
885 if (t->sname && strcasecmp(t->sname, name) == 0)
886 #endif
887 return (t->id);
888 }
889 debug("Invalid %s Type: %s\n", table_name, name);
890
891 return -1;
892 }
893
genimg_get_os_id(const char * name)894 int genimg_get_os_id(const char *name)
895 {
896 return (get_table_entry_id(uimage_os, "OS", name));
897 }
898
genimg_get_arch_id(const char * name)899 int genimg_get_arch_id(const char *name)
900 {
901 return (get_table_entry_id(uimage_arch, "CPU", name));
902 }
903
genimg_get_type_id(const char * name)904 int genimg_get_type_id(const char *name)
905 {
906 return (get_table_entry_id(uimage_type, "Image", name));
907 }
908
genimg_get_comp_id(const char * name)909 int genimg_get_comp_id(const char *name)
910 {
911 return (get_table_entry_id(uimage_comp, "Compression", name));
912 }
913
914 #ifndef USE_HOSTCC
915 /**
916 * genimg_get_kernel_addr_fit - get the real kernel address and return 2
917 * FIT strings
918 * @img_addr: a string might contain real image address
919 * @fit_uname_config: double pointer to a char, will hold pointer to a
920 * configuration unit name
921 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage
922 * name
923 *
924 * genimg_get_kernel_addr_fit get the real kernel start address from a string
925 * which is normally the first argv of bootm/bootz
926 *
927 * returns:
928 * kernel start address
929 */
genimg_get_kernel_addr_fit(char * const img_addr,const char ** fit_uname_config,const char ** fit_uname_kernel)930 ulong genimg_get_kernel_addr_fit(char * const img_addr,
931 const char **fit_uname_config,
932 const char **fit_uname_kernel)
933 {
934 ulong kernel_addr;
935
936 /* find out kernel image address */
937 if (!img_addr) {
938 kernel_addr = load_addr;
939 debug("* kernel: default image load address = 0x%08lx\n",
940 load_addr);
941 #if CONFIG_IS_ENABLED(FIT)
942 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr,
943 fit_uname_config)) {
944 debug("* kernel: config '%s' from image at 0x%08lx\n",
945 *fit_uname_config, kernel_addr);
946 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr,
947 fit_uname_kernel)) {
948 debug("* kernel: subimage '%s' from image at 0x%08lx\n",
949 *fit_uname_kernel, kernel_addr);
950 #endif
951 } else {
952 kernel_addr = simple_strtoul(img_addr, NULL, 16);
953 debug("* kernel: cmdline image address = 0x%08lx\n",
954 kernel_addr);
955 }
956
957 return kernel_addr;
958 }
959
960 /**
961 * genimg_get_kernel_addr() is the simple version of
962 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings
963 */
genimg_get_kernel_addr(char * const img_addr)964 ulong genimg_get_kernel_addr(char * const img_addr)
965 {
966 const char *fit_uname_config = NULL;
967 const char *fit_uname_kernel = NULL;
968
969 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config,
970 &fit_uname_kernel);
971 }
972
973 /**
974 * genimg_get_format - get image format type
975 * @img_addr: image start address
976 *
977 * genimg_get_format() checks whether provided address points to a valid
978 * legacy or FIT image.
979 *
980 * New uImage format and FDT blob are based on a libfdt. FDT blob
981 * may be passed directly or embedded in a FIT image. In both situations
982 * genimg_get_format() must be able to dectect libfdt header.
983 *
984 * returns:
985 * image format type or IMAGE_FORMAT_INVALID if no image is present
986 */
genimg_get_format(const void * img_addr)987 int genimg_get_format(const void *img_addr)
988 {
989 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
990 const image_header_t *hdr;
991
992 hdr = (const image_header_t *)img_addr;
993 if (image_check_magic(hdr))
994 return IMAGE_FORMAT_LEGACY;
995 #endif
996 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
997 if (fdt_check_header(img_addr) == 0)
998 return IMAGE_FORMAT_FIT;
999 #endif
1000 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1001 if (android_image_check_header(img_addr) == 0)
1002 return IMAGE_FORMAT_ANDROID;
1003 #endif
1004
1005 return IMAGE_FORMAT_INVALID;
1006 }
1007
1008 /**
1009 * fit_has_config - check if there is a valid FIT configuration
1010 * @images: pointer to the bootm command headers structure
1011 *
1012 * fit_has_config() checks if there is a FIT configuration in use
1013 * (if FTI support is present).
1014 *
1015 * returns:
1016 * 0, no FIT support or no configuration found
1017 * 1, configuration found
1018 */
genimg_has_config(bootm_headers_t * images)1019 int genimg_has_config(bootm_headers_t *images)
1020 {
1021 #if IMAGE_ENABLE_FIT
1022 if (images->fit_uname_cfg)
1023 return 1;
1024 #endif
1025 return 0;
1026 }
1027
1028 extern int EmmcInitParam();
1029
fit_change_bootargs(ulong rd_data,ulong rd_len)1030 static int fit_change_bootargs(ulong rd_data, ulong rd_len)
1031 {
1032 int len = 0;
1033 char *bootargs;
1034 char *newbootargs;
1035 char str[30];
1036
1037 sprintf(str, " initrd=0x%lx,0x%lx", rd_data , rd_len);
1038 bootargs = env_get("bootargs");
1039 if (bootargs)
1040 len += strlen(bootargs);
1041
1042 newbootargs = malloc(len + sizeof(str));
1043 if (!newbootargs) {
1044 puts("Error: malloc in newbootargs failed!\n");
1045 return -ENOMEM;
1046 }
1047
1048 if (bootargs) {
1049 strcpy(newbootargs, bootargs);
1050 strcat(newbootargs, str);
1051 }
1052 env_set("bootargs", newbootargs);
1053 return 0;
1054 }
1055
1056 /**
1057 * boot_get_ramdisk - main ramdisk handling routine
1058 * @argc: command argument count
1059 * @argv: command argument list
1060 * @images: pointer to the bootm images structure
1061 * @arch: expected ramdisk architecture
1062 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
1063 * @rd_end: pointer to a ulong variable, will hold ramdisk end
1064 *
1065 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
1066 * Curently supported are the following ramdisk sources:
1067 * - multicomponent kernel/ramdisk image,
1068 * - commandline provided address of decicated ramdisk image.
1069 *
1070 * returns:
1071 * 0, if ramdisk image was found and valid, or skiped
1072 * rd_start and rd_end are set to ramdisk start/end addresses if
1073 * ramdisk image is found and valid
1074 *
1075 * 1, if ramdisk image is found but corrupted, or invalid
1076 * rd_start and rd_end are set to 0 if no ramdisk exists
1077 */
boot_get_ramdisk(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,ulong * rd_start,ulong * rd_end)1078 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
1079 uint8_t arch, ulong *rd_start, ulong *rd_end)
1080 {
1081 ulong rd_addr, rd_load;
1082 ulong rd_data, rd_len;
1083 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
1084 const image_header_t *rd_hdr;
1085 #endif
1086 void *buf;
1087 #ifdef CONFIG_SUPPORT_RAW_INITRD
1088 char *end;
1089 #endif
1090 #if IMAGE_ENABLE_FIT
1091 const char *fit_uname_config = images->fit_uname_cfg;
1092 const char *fit_uname_ramdisk = NULL;
1093 ulong default_addr;
1094 int rd_noffset;
1095 #endif
1096 const char *select = NULL;
1097
1098 *rd_start = 0;
1099 *rd_end = 0;
1100
1101 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1102 /*
1103 * Look for an Android boot image.
1104 */
1105 buf = map_sysmem(images->os.start, 0);
1106 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID)
1107 select = (argc == 0) ? env_get("loadaddr") : argv[0];
1108 #endif
1109
1110 if (argc >= 2)
1111 select = argv[1];
1112
1113 /*
1114 * Look for a '-' which indicates to ignore the
1115 * ramdisk argument
1116 */
1117 if (select && strcmp(select, "-") == 0) {
1118 debug("## Skipping init Ramdisk\n");
1119 rd_len = rd_data = 0;
1120 } else if (select || genimg_has_config(images)) {
1121 #if IMAGE_ENABLE_FIT
1122 if (select) {
1123 /*
1124 * If the init ramdisk comes from the FIT image and
1125 * the FIT image address is omitted in the command
1126 * line argument, try to use os FIT image address or
1127 * default load address.
1128 */
1129 if (images->fit_uname_os)
1130 default_addr = (ulong)images->fit_hdr_os;
1131 else
1132 default_addr = load_addr;
1133
1134 if (fit_parse_conf(select, default_addr,
1135 &rd_addr, &fit_uname_config)) {
1136 debug("* ramdisk: config '%s' from image at "
1137 "0x%08lx\n",
1138 fit_uname_config, rd_addr);
1139 } else if (fit_parse_subimage(select, default_addr,
1140 &rd_addr, &fit_uname_ramdisk)) {
1141 debug("* ramdisk: subimage '%s' from image at "
1142 "0x%08lx\n",
1143 fit_uname_ramdisk, rd_addr);
1144 } else
1145 #endif
1146 {
1147 rd_addr = simple_strtoul(select, NULL, 16);
1148 debug("* ramdisk: cmdline image address = "
1149 "0x%08lx\n",
1150 rd_addr);
1151 }
1152 #if IMAGE_ENABLE_FIT
1153 } else {
1154 /* use FIT configuration provided in first bootm
1155 * command argument. If the property is not defined,
1156 * quit silently.
1157 */
1158 rd_addr = map_to_sysmem(images->fit_hdr_os);
1159 rd_noffset = fit_get_node_from_config(images,
1160 FIT_RAMDISK_PROP, rd_addr);
1161 if (rd_noffset == -ENOENT)
1162 return 0;
1163 else if (rd_noffset < 0)
1164 return 1;
1165 }
1166 #endif
1167
1168 /*
1169 * Check if there is an initrd image at the
1170 * address provided in the second bootm argument
1171 * check image type, for FIT images get FIT node.
1172 */
1173 buf = map_sysmem(rd_addr, 0);
1174 switch (genimg_get_format(buf)) {
1175 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
1176 case IMAGE_FORMAT_LEGACY:
1177 printf("## Loading init Ramdisk from Legacy "
1178 "Image at %08lx ...\n", rd_addr);
1179
1180 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
1181 rd_hdr = image_get_ramdisk(rd_addr, arch,
1182 images->verify);
1183
1184 if (rd_hdr == NULL)
1185 return 1;
1186
1187 rd_data = image_get_data(rd_hdr);
1188 rd_len = image_get_data_size(rd_hdr);
1189 rd_load = image_get_load(rd_hdr);
1190 break;
1191 #endif
1192 #if IMAGE_ENABLE_FIT
1193 case IMAGE_FORMAT_FIT:
1194 rd_noffset = fit_image_load(images,
1195 rd_addr, &fit_uname_ramdisk,
1196 &fit_uname_config, arch,
1197 IH_TYPE_RAMDISK,
1198 BOOTSTAGE_ID_FIT_RD_START,
1199 FIT_LOAD_OPTIONAL_NON_ZERO,
1200 &rd_data, &rd_len);
1201 if (rd_noffset < 0)
1202 return 1;
1203
1204 images->fit_hdr_rd = map_sysmem(rd_addr, 0);
1205 images->fit_uname_rd = fit_uname_ramdisk;
1206 images->fit_noffset_rd = rd_noffset;
1207
1208 if (!EmmcInitParam()){
1209 if(fit_change_bootargs(rd_data, rd_len))
1210 printf("Error additional bootargs fail!\n");
1211 }
1212 break;
1213 #endif
1214 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1215 case IMAGE_FORMAT_ANDROID:
1216 android_image_get_ramdisk((void *)images->os.start,
1217 &rd_data, &rd_len);
1218 break;
1219 #endif
1220 default:
1221 #ifdef CONFIG_SUPPORT_RAW_INITRD
1222 end = NULL;
1223 if (select)
1224 end = strchr(select, ':');
1225 if (end) {
1226 rd_len = simple_strtoul(++end, NULL, 16);
1227 rd_data = rd_addr;
1228 } else
1229 #endif
1230 {
1231 puts("Wrong Ramdisk Image Format\n");
1232 rd_data = rd_len = rd_load = 0;
1233 return 1;
1234 }
1235 }
1236 } else if (images->legacy_hdr_valid &&
1237 image_check_type(&images->legacy_hdr_os_copy,
1238 IH_TYPE_MULTI)) {
1239
1240 /*
1241 * Now check if we have a legacy mult-component image,
1242 * get second entry data start address and len.
1243 */
1244 bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1245 printf("## Loading init Ramdisk from multi component "
1246 "Legacy Image at %08lx ...\n",
1247 (ulong)images->legacy_hdr_os);
1248
1249 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1250 } else {
1251 /*
1252 * no initrd image
1253 */
1254 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1255 rd_len = rd_data = 0;
1256 }
1257
1258 if (!rd_data) {
1259 debug("## No init Ramdisk\n");
1260 } else {
1261 *rd_start = rd_data;
1262 *rd_end = rd_data + rd_len;
1263 }
1264 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1265 *rd_start, *rd_end);
1266
1267 return 0;
1268 }
1269
1270 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1271 /**
1272 * boot_ramdisk_high - relocate init ramdisk
1273 * @lmb: pointer to lmb handle, will be used for memory mgmt
1274 * @rd_data: ramdisk data start address
1275 * @rd_len: ramdisk data length
1276 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1277 * start address (after possible relocation)
1278 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1279 * end address (after possible relocation)
1280 *
1281 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment
1282 * variable and if requested ramdisk data is moved to a specified location.
1283 *
1284 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1285 * start/end addresses if ramdisk image start and len were provided,
1286 * otherwise set initrd_start and initrd_end set to zeros.
1287 *
1288 * returns:
1289 * 0 - success
1290 * -1 - failure
1291 */
boot_ramdisk_high(struct lmb * lmb,ulong rd_data,ulong rd_len,ulong * initrd_start,ulong * initrd_end)1292 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1293 ulong *initrd_start, ulong *initrd_end)
1294 {
1295 char *s;
1296 ulong initrd_high;
1297 int initrd_copy_to_ram = 1;
1298
1299 s = env_get("initrd_high");
1300 if (s) {
1301 /* a value of "no" or a similar string will act like 0,
1302 * turning the "load high" feature off. This is intentional.
1303 */
1304 initrd_high = simple_strtoul(s, NULL, 16);
1305 if (initrd_high == ~0)
1306 initrd_copy_to_ram = 0;
1307 } else {
1308 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low();
1309 }
1310
1311
1312 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1313 initrd_high, initrd_copy_to_ram);
1314
1315 if (rd_data) {
1316 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
1317 debug(" in-place initrd\n");
1318 *initrd_start = rd_data;
1319 *initrd_end = rd_data + rd_len;
1320 lmb_reserve(lmb, rd_data, rd_len);
1321 } else {
1322 if (initrd_high)
1323 *initrd_start = (ulong)lmb_alloc_base(lmb,
1324 rd_len, 0x1000, initrd_high);
1325 else
1326 *initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1327 0x1000);
1328
1329 if (*initrd_start == 0) {
1330 puts("ramdisk - allocation error\n");
1331 goto error;
1332 }
1333 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1334
1335 *initrd_end = *initrd_start + rd_len;
1336 printf(" Loading Ramdisk to %08lx, end %08lx ... ",
1337 *initrd_start, *initrd_end);
1338
1339 memmove_wd((void *)*initrd_start,
1340 (void *)rd_data, rd_len, CHUNKSZ);
1341
1342 #ifdef CONFIG_MP
1343 /*
1344 * Ensure the image is flushed to memory to handle
1345 * AMP boot scenarios in which we might not be
1346 * HW cache coherent
1347 */
1348 flush_cache((unsigned long)*initrd_start,
1349 ALIGN(rd_len, ARCH_DMA_MINALIGN));
1350 #endif
1351 puts("OK\n");
1352 }
1353 } else {
1354 *initrd_start = 0;
1355 *initrd_end = 0;
1356 }
1357 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1358 *initrd_start, *initrd_end);
1359
1360 return 0;
1361
1362 error:
1363 return -1;
1364 }
1365 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1366
boot_get_setup(bootm_headers_t * images,uint8_t arch,ulong * setup_start,ulong * setup_len)1367 int boot_get_setup(bootm_headers_t *images, uint8_t arch,
1368 ulong *setup_start, ulong *setup_len)
1369 {
1370 #if IMAGE_ENABLE_FIT
1371 return boot_get_setup_fit(images, arch, setup_start, setup_len);
1372 #else
1373 return -ENOENT;
1374 #endif
1375 }
1376
1377 #if IMAGE_ENABLE_FIT
1378 #if defined(CONFIG_FPGA)
boot_get_fpga(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,const ulong * ld_start,ulong * const ld_len)1379 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images,
1380 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1381 {
1382 ulong tmp_img_addr, img_data, img_len;
1383 void *buf;
1384 int conf_noffset;
1385 int fit_img_result;
1386 const char *uname, *name;
1387 int err;
1388 int devnum = 0; /* TODO support multi fpga platforms */
1389
1390 /* Check to see if the images struct has a FIT configuration */
1391 if (!genimg_has_config(images)) {
1392 debug("## FIT configuration was not specified\n");
1393 return 0;
1394 }
1395
1396 /*
1397 * Obtain the os FIT header from the images struct
1398 */
1399 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1400 buf = map_sysmem(tmp_img_addr, 0);
1401 /*
1402 * Check image type. For FIT images get FIT node
1403 * and attempt to locate a generic binary.
1404 */
1405 switch (genimg_get_format(buf)) {
1406 case IMAGE_FORMAT_FIT:
1407 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1408
1409 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0,
1410 NULL);
1411 if (!uname) {
1412 debug("## FPGA image is not specified\n");
1413 return 0;
1414 }
1415 fit_img_result = fit_image_load(images,
1416 tmp_img_addr,
1417 (const char **)&uname,
1418 &(images->fit_uname_cfg),
1419 arch,
1420 IH_TYPE_FPGA,
1421 BOOTSTAGE_ID_FPGA_INIT,
1422 FIT_LOAD_OPTIONAL_NON_ZERO,
1423 &img_data, &img_len);
1424
1425 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n",
1426 uname, img_data, img_len);
1427
1428 if (fit_img_result < 0) {
1429 /* Something went wrong! */
1430 return fit_img_result;
1431 }
1432
1433 if (!fpga_is_partial_data(devnum, img_len)) {
1434 name = "full";
1435 err = fpga_loadbitstream(devnum, (char *)img_data,
1436 img_len, BIT_FULL);
1437 if (err)
1438 err = fpga_load(devnum, (const void *)img_data,
1439 img_len, BIT_FULL);
1440 } else {
1441 name = "partial";
1442 err = fpga_loadbitstream(devnum, (char *)img_data,
1443 img_len, BIT_PARTIAL);
1444 if (err)
1445 err = fpga_load(devnum, (const void *)img_data,
1446 img_len, BIT_PARTIAL);
1447 }
1448
1449 if (err)
1450 return err;
1451
1452 printf(" Programming %s bitstream... OK\n", name);
1453 break;
1454 default:
1455 printf("The given image format is not supported (corrupt?)\n");
1456 return 1;
1457 }
1458
1459 return 0;
1460 }
1461 #endif
1462
fit_loadable_process(uint8_t img_type,ulong img_data,ulong img_len)1463 static void fit_loadable_process(uint8_t img_type,
1464 ulong img_data,
1465 ulong img_len)
1466 {
1467 int i;
1468 const unsigned int count =
1469 ll_entry_count(struct fit_loadable_tbl, fit_loadable);
1470 struct fit_loadable_tbl *fit_loadable_handler =
1471 ll_entry_start(struct fit_loadable_tbl, fit_loadable);
1472 /* For each loadable handler */
1473 for (i = 0; i < count; i++, fit_loadable_handler++)
1474 /* matching this type */
1475 if (fit_loadable_handler->type == img_type)
1476 /* call that handler with this image data */
1477 fit_loadable_handler->handler(img_data, img_len);
1478 }
1479
boot_get_loadable(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,const ulong * ld_start,ulong * const ld_len)1480 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images,
1481 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1482 {
1483 /*
1484 * These variables are used to hold the current image location
1485 * in system memory.
1486 */
1487 ulong tmp_img_addr;
1488 /*
1489 * These two variables are requirements for fit_image_load, but
1490 * their values are not used
1491 */
1492 ulong img_data, img_len;
1493 void *buf;
1494 int loadables_index;
1495 int conf_noffset;
1496 int fit_img_result;
1497 const char *uname;
1498 uint8_t img_type;
1499
1500 /* Check to see if the images struct has a FIT configuration */
1501 if (!genimg_has_config(images)) {
1502 debug("## FIT configuration was not specified\n");
1503 return 0;
1504 }
1505
1506 /*
1507 * Obtain the os FIT header from the images struct
1508 */
1509 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1510 buf = map_sysmem(tmp_img_addr, 0);
1511 /*
1512 * Check image type. For FIT images get FIT node
1513 * and attempt to locate a generic binary.
1514 */
1515 switch (genimg_get_format(buf)) {
1516 case IMAGE_FORMAT_FIT:
1517 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1518
1519 for (loadables_index = 0;
1520 uname = fdt_stringlist_get(buf, conf_noffset,
1521 FIT_LOADABLE_PROP, loadables_index,
1522 NULL), uname;
1523 loadables_index++)
1524 {
1525 fit_img_result = fit_image_load(images,
1526 tmp_img_addr,
1527 &uname,
1528 &(images->fit_uname_cfg), arch,
1529 IH_TYPE_LOADABLE,
1530 BOOTSTAGE_ID_FIT_LOADABLE_START,
1531 FIT_LOAD_OPTIONAL_NON_ZERO,
1532 &img_data, &img_len);
1533 if (fit_img_result < 0) {
1534 /* Something went wrong! */
1535 return fit_img_result;
1536 }
1537
1538 fit_img_result = fit_image_get_node(buf, uname);
1539 if (fit_img_result < 0) {
1540 /* Something went wrong! */
1541 return fit_img_result;
1542 }
1543 fit_img_result = fit_image_get_type(buf,
1544 fit_img_result,
1545 &img_type);
1546 if (fit_img_result < 0) {
1547 /* Something went wrong! */
1548 return fit_img_result;
1549 }
1550
1551 fit_loadable_process(img_type, img_data, img_len);
1552 }
1553 break;
1554 default:
1555 printf("The given image format is not supported (corrupt?)\n");
1556 return 1;
1557 }
1558
1559 return 0;
1560 }
1561 #endif
1562
1563 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1564 /**
1565 * boot_get_cmdline - allocate and initialize kernel cmdline
1566 * @lmb: pointer to lmb handle, will be used for memory mgmt
1567 * @cmd_start: pointer to a ulong variable, will hold cmdline start
1568 * @cmd_end: pointer to a ulong variable, will hold cmdline end
1569 *
1570 * boot_get_cmdline() allocates space for kernel command line below
1571 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environment
1572 * variable is present its contents is copied to allocated kernel
1573 * command line.
1574 *
1575 * returns:
1576 * 0 - success
1577 * -1 - failure
1578 */
boot_get_cmdline(struct lmb * lmb,ulong * cmd_start,ulong * cmd_end)1579 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1580 {
1581 char *cmdline;
1582 char *s;
1583
1584 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1585 env_get_bootm_mapsize() + env_get_bootm_low());
1586
1587 if (cmdline == NULL)
1588 return -1;
1589
1590 s = env_get("bootargs");
1591 if (!s)
1592 s = "";
1593
1594 strcpy(cmdline, s);
1595
1596 *cmd_start = (ulong) & cmdline[0];
1597 *cmd_end = *cmd_start + strlen(cmdline);
1598
1599 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1600
1601 return 0;
1602 }
1603 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1604
1605 #ifdef CONFIG_SYS_BOOT_GET_KBD
1606 /**
1607 * boot_get_kbd - allocate and initialize kernel copy of board info
1608 * @lmb: pointer to lmb handle, will be used for memory mgmt
1609 * @kbd: double pointer to board info data
1610 *
1611 * boot_get_kbd() allocates space for kernel copy of board info data below
1612 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized
1613 * with the current u-boot board info data.
1614 *
1615 * returns:
1616 * 0 - success
1617 * -1 - failure
1618 */
boot_get_kbd(struct lmb * lmb,bd_t ** kbd)1619 int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
1620 {
1621 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
1622 env_get_bootm_mapsize() + env_get_bootm_low());
1623 if (*kbd == NULL)
1624 return -1;
1625
1626 **kbd = *(gd->bd);
1627
1628 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1629
1630 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1631 do_bdinfo(NULL, 0, 0, NULL);
1632 #endif
1633
1634 return 0;
1635 }
1636 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1637
1638 #ifdef CONFIG_LMB
image_setup_linux(bootm_headers_t * images)1639 int image_setup_linux(bootm_headers_t *images)
1640 {
1641 ulong of_size = images->ft_len;
1642 char **of_flat_tree = &images->ft_addr;
1643 struct lmb *lmb = &images->lmb;
1644 int ret;
1645
1646 if (IMAGE_ENABLE_OF_LIBFDT)
1647 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
1648
1649 if (IMAGE_BOOT_GET_CMDLINE) {
1650 ret = boot_get_cmdline(lmb, &images->cmdline_start,
1651 &images->cmdline_end);
1652 if (ret) {
1653 puts("ERROR with allocation of cmdline\n");
1654 return ret;
1655 }
1656 }
1657
1658 if (IMAGE_ENABLE_OF_LIBFDT) {
1659 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
1660 if (ret)
1661 return ret;
1662 }
1663
1664 if (IMAGE_ENABLE_OF_LIBFDT && of_size) {
1665 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb);
1666 if (ret)
1667 return ret;
1668 }
1669
1670 return 0;
1671 }
1672 #endif /* CONFIG_LMB */
1673 #endif /* !USE_HOSTCC */
1674