1 //
2 // Copyright 2016 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 // FramebufferVk.cpp:
7 // Implements the class methods for FramebufferVk.
8 //
9
10 #include "libANGLE/renderer/vulkan/FramebufferVk.h"
11
12 #include <vulkan/vulkan.h>
13 #include <array>
14
15 #include "common/debug.h"
16 #include "libANGLE/Context.h"
17 #include "libANGLE/Display.h"
18 #include "libANGLE/formatutils.h"
19 #include "libANGLE/renderer/renderer_utils.h"
20 #include "libANGLE/renderer/vulkan/CommandGraph.h"
21 #include "libANGLE/renderer/vulkan/ContextVk.h"
22 #include "libANGLE/renderer/vulkan/DisplayVk.h"
23 #include "libANGLE/renderer/vulkan/RenderTargetVk.h"
24 #include "libANGLE/renderer/vulkan/RendererVk.h"
25 #include "libANGLE/renderer/vulkan/SurfaceVk.h"
26 #include "libANGLE/renderer/vulkan/vk_format_utils.h"
27 #include "libANGLE/trace.h"
28
29 namespace rx
30 {
31
32 namespace
33 {
34 // The value to assign an alpha channel that's emulated. The type is unsigned int, though it will
35 // automatically convert to the actual data type.
36 constexpr unsigned int kEmulatedAlphaValue = 1;
37
38 constexpr size_t kMinReadPixelsBufferSize = 128000;
39
40 // Alignment value to accommodate the largest known, for now, uncompressed Vulkan format
41 // VK_FORMAT_R64G64B64A64_SFLOAT
42 constexpr size_t kReadPixelsBufferAlignment = 32;
43
44 // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a
45 // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better
46 // in case of a bug.
47 constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}};
48
GetReadAttachmentInfo(const gl::Context * context,RenderTargetVk * renderTarget)49 const gl::InternalFormat &GetReadAttachmentInfo(const gl::Context *context,
50 RenderTargetVk *renderTarget)
51 {
52 GLenum implFormat =
53 renderTarget->getImageFormat().imageFormat().fboImplementationInternalFormat;
54 return gl::GetSizedInternalFormatInfo(implFormat);
55 }
56
HasSrcBlitFeature(RendererVk * renderer,RenderTargetVk * srcRenderTarget)57 bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget)
58 {
59 const VkFormat srcFormat = srcRenderTarget->getImageFormat().vkImageFormat;
60 return renderer->hasImageFormatFeatureBits(srcFormat, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
61 }
62
HasDstBlitFeature(RendererVk * renderer,RenderTargetVk * dstRenderTarget)63 bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget)
64 {
65 const VkFormat dstFormat = dstRenderTarget->getImageFormat().vkImageFormat;
66 return renderer->hasImageFormatFeatureBits(dstFormat, VK_FORMAT_FEATURE_BLIT_DST_BIT);
67 }
68
69 // Returns false if destination has any channel the source doesn't. This means that channel was
70 // emulated and using the Vulkan blit command would overwrite that emulated channel.
areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)71 bool areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
72 RenderTargetVk *dstRenderTarget)
73 {
74 const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat();
75 const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat();
76
77 // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to
78 // participate in a blit.
79 ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA());
80
81 // All color formats have the red channel.
82 ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0);
83
84 return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) &&
85 (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) &&
86 (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0);
87 }
88
areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)89 bool areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
90 RenderTargetVk *dstRenderTarget)
91 {
92 const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat();
93 const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat();
94
95 return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) &&
96 (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0);
97 }
98
99 // Special rules apply to VkBufferImageCopy with depth/stencil. The components are tightly packed
100 // into a depth or stencil section of the destination buffer. See the spec:
101 // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkBufferImageCopy.html
GetDepthStencilImageToBufferFormat(const angle::Format & imageFormat,VkImageAspectFlagBits copyAspect)102 const angle::Format &GetDepthStencilImageToBufferFormat(const angle::Format &imageFormat,
103 VkImageAspectFlagBits copyAspect)
104 {
105 if (copyAspect == VK_IMAGE_ASPECT_STENCIL_BIT)
106 {
107 ASSERT(imageFormat.id == angle::FormatID::D24_UNORM_S8_UINT ||
108 imageFormat.id == angle::FormatID::D32_FLOAT_S8X24_UINT ||
109 imageFormat.id == angle::FormatID::S8_UINT);
110 return angle::Format::Get(angle::FormatID::S8_UINT);
111 }
112
113 ASSERT(copyAspect == VK_IMAGE_ASPECT_DEPTH_BIT);
114
115 switch (imageFormat.id)
116 {
117 case angle::FormatID::D16_UNORM:
118 return imageFormat;
119 case angle::FormatID::D24_UNORM_X8_UINT:
120 return imageFormat;
121 case angle::FormatID::D24_UNORM_S8_UINT:
122 return angle::Format::Get(angle::FormatID::D24_UNORM_X8_UINT);
123 case angle::FormatID::D32_FLOAT:
124 return imageFormat;
125 case angle::FormatID::D32_FLOAT_S8X24_UINT:
126 return angle::Format::Get(angle::FormatID::D32_FLOAT);
127 default:
128 UNREACHABLE();
129 return imageFormat;
130 }
131 }
132
SetEmulatedAlphaValue(const vk::Format & format,VkClearColorValue * value)133 void SetEmulatedAlphaValue(const vk::Format &format, VkClearColorValue *value)
134 {
135 if (format.vkFormatIsInt)
136 {
137 if (format.vkFormatIsUnsigned)
138 {
139 value->uint32[3] = kEmulatedAlphaValue;
140 }
141 else
142 {
143 value->int32[3] = kEmulatedAlphaValue;
144 }
145 }
146 else
147 {
148 value->float32[3] = kEmulatedAlphaValue;
149 }
150 }
151 } // anonymous namespace
152
153 // static
CreateUserFBO(RendererVk * renderer,const gl::FramebufferState & state)154 FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state)
155 {
156 return new FramebufferVk(renderer, state, nullptr);
157 }
158
159 // static
CreateDefaultFBO(RendererVk * renderer,const gl::FramebufferState & state,WindowSurfaceVk * backbuffer)160 FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer,
161 const gl::FramebufferState &state,
162 WindowSurfaceVk *backbuffer)
163 {
164 return new FramebufferVk(renderer, state, backbuffer);
165 }
166
FramebufferVk(RendererVk * renderer,const gl::FramebufferState & state,WindowSurfaceVk * backbuffer)167 FramebufferVk::FramebufferVk(RendererVk *renderer,
168 const gl::FramebufferState &state,
169 WindowSurfaceVk *backbuffer)
170 : FramebufferImpl(state), mBackbuffer(backbuffer), mActiveColorComponents(0)
171 {
172 mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment,
173 kMinReadPixelsBufferSize, true);
174 }
175
176 FramebufferVk::~FramebufferVk() = default;
177
destroy(const gl::Context * context)178 void FramebufferVk::destroy(const gl::Context *context)
179 {
180 ContextVk *contextVk = vk::GetImpl(context);
181 mFramebuffer.release(contextVk);
182
183 mReadPixelBuffer.release(contextVk);
184 }
185
discard(const gl::Context * context,size_t count,const GLenum * attachments)186 angle::Result FramebufferVk::discard(const gl::Context *context,
187 size_t count,
188 const GLenum *attachments)
189 {
190 return invalidate(context, count, attachments);
191 }
192
invalidate(const gl::Context * context,size_t count,const GLenum * attachments)193 angle::Result FramebufferVk::invalidate(const gl::Context *context,
194 size_t count,
195 const GLenum *attachments)
196 {
197 mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial());
198
199 if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass())
200 {
201 invalidateImpl(vk::GetImpl(context), count, attachments);
202 }
203
204 return angle::Result::Continue;
205 }
206
invalidateSub(const gl::Context * context,size_t count,const GLenum * attachments,const gl::Rectangle & area)207 angle::Result FramebufferVk::invalidateSub(const gl::Context *context,
208 size_t count,
209 const GLenum *attachments,
210 const gl::Rectangle &area)
211 {
212 mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial());
213
214 // RenderPass' storeOp cannot be made conditional to a specific region, so we only apply this
215 // hint if the requested area encompasses the render area.
216 if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass() &&
217 area.encloses(mFramebuffer.getRenderPassRenderArea()))
218 {
219 invalidateImpl(vk::GetImpl(context), count, attachments);
220 }
221
222 return angle::Result::Continue;
223 }
224
clear(const gl::Context * context,GLbitfield mask)225 angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask)
226 {
227 ContextVk *contextVk = vk::GetImpl(context);
228
229 bool clearColor = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT));
230 bool clearDepth = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT));
231 bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT));
232 gl::DrawBufferMask clearColorBuffers;
233 if (clearColor)
234 {
235 clearColorBuffers = mState.getEnabledDrawBuffers();
236 }
237
238 const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color;
239 const VkClearDepthStencilValue &clearDepthStencilValue =
240 contextVk->getClearDepthStencilValue().depthStencil;
241
242 return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue,
243 clearDepthStencilValue);
244 }
245
clearImpl(const gl::Context * context,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const VkClearColorValue & clearColorValue,const VkClearDepthStencilValue & clearDepthStencilValue)246 angle::Result FramebufferVk::clearImpl(const gl::Context *context,
247 gl::DrawBufferMask clearColorBuffers,
248 bool clearDepth,
249 bool clearStencil,
250 const VkClearColorValue &clearColorValue,
251 const VkClearDepthStencilValue &clearDepthStencilValue)
252 {
253 ContextVk *contextVk = vk::GetImpl(context);
254
255 const gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
256
257 // Discard clear altogether if scissor has 0 width or height.
258 if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0)
259 {
260 return angle::Result::Continue;
261 }
262
263 mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial());
264
265 // This function assumes that only enabled attachments are asked to be cleared.
266 ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers);
267
268 // Adjust clear behavior based on whether the respective attachments are present; if asked to
269 // clear a non-existent attachment, don't attempt to clear it.
270
271 VkColorComponentFlags colorMaskFlags = contextVk->getClearColorMask();
272 bool clearColor = clearColorBuffers.any();
273
274 const gl::FramebufferAttachment *depthAttachment = mState.getDepthAttachment();
275 clearDepth = clearDepth && depthAttachment;
276 ASSERT(!clearDepth || depthAttachment->isAttached());
277
278 const gl::FramebufferAttachment *stencilAttachment = mState.getStencilAttachment();
279 clearStencil = clearStencil && stencilAttachment;
280 ASSERT(!clearStencil || stencilAttachment->isAttached());
281
282 uint8_t stencilMask =
283 static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask);
284
285 // The front-end should ensure we don't attempt to clear color if all channels are masked.
286 ASSERT(!clearColor || colorMaskFlags != 0);
287 // The front-end should ensure we don't attempt to clear depth if depth write is disabled.
288 ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask);
289 // The front-end should ensure we don't attempt to clear stencil if all bits are masked.
290 ASSERT(!clearStencil || stencilMask != 0);
291
292 // If there is nothing to clear, return right away (for example, if asked to clear depth, but
293 // there is no depth attachment).
294 if (!clearColor && !clearDepth && !clearStencil)
295 {
296 return angle::Result::Continue;
297 }
298
299 VkClearDepthStencilValue modifiedDepthStencilValue = clearDepthStencilValue;
300
301 // We can use render pass load ops if clearing depth, unmasked color or unmasked stencil. If
302 // there's a depth mask, depth clearing is already disabled.
303 bool maskedClearColor =
304 clearColor && (mActiveColorComponents & colorMaskFlags) != mActiveColorComponents;
305 bool maskedClearStencil = stencilMask != 0xFF;
306
307 bool clearColorWithRenderPassLoadOp = clearColor && !maskedClearColor;
308 bool clearStencilWithRenderPassLoadOp = clearStencil && !maskedClearStencil;
309
310 // At least one of color, depth or stencil should be clearable with render pass loadOp for us
311 // to use this clear path.
312 bool clearAnyWithRenderPassLoadOp =
313 clearColorWithRenderPassLoadOp || clearDepth || clearStencilWithRenderPassLoadOp;
314
315 if (clearAnyWithRenderPassLoadOp)
316 {
317 // Clearing color is indicated by the set bits in this mask. If not clearing colors with
318 // render pass loadOp, the default value of all-zeros means the clear is not done in
319 // clearWithRenderPassOp below. In that case, only clear depth/stencil with render pass
320 // loadOp.
321 gl::DrawBufferMask clearBuffersWithRenderPassLoadOp;
322 if (clearColorWithRenderPassLoadOp)
323 {
324 clearBuffersWithRenderPassLoadOp = clearColorBuffers;
325 }
326 ANGLE_TRY(clearWithRenderPassOp(
327 contextVk, scissoredRenderArea, clearBuffersWithRenderPassLoadOp, clearDepth,
328 clearStencilWithRenderPassLoadOp, clearColorValue, modifiedDepthStencilValue));
329
330 // On some hardware, having inline commands at this point results in corrupted output. In
331 // that case, end the render pass immediately. http://anglebug.com/2361
332 if (contextVk->getRenderer()->getFeatures().restartRenderPassAfterLoadOpClear.enabled)
333 {
334 mFramebuffer.finishCurrentCommands(contextVk);
335 }
336
337 // Fallback to other methods for whatever isn't cleared here.
338 clearDepth = false;
339 if (clearColorWithRenderPassLoadOp)
340 {
341 clearColorBuffers.reset();
342 clearColor = false;
343 }
344 if (clearStencilWithRenderPassLoadOp)
345 {
346 clearStencil = false;
347 }
348
349 // If nothing left to clear, early out.
350 if (!clearColor && !clearStencil)
351 {
352 return angle::Result::Continue;
353 }
354 }
355
356 // Note: depth clear is always done through render pass loadOp.
357 ASSERT(clearDepth == false);
358
359 // The most costly clear mode is when we need to mask out specific color channels or stencil
360 // bits. This can only be done with a draw call.
361 return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearStencil,
362 colorMaskFlags, stencilMask, clearColorValue,
363 static_cast<uint8_t>(modifiedDepthStencilValue.stencil));
364 }
365
clearBufferfv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLfloat * values)366 angle::Result FramebufferVk::clearBufferfv(const gl::Context *context,
367 GLenum buffer,
368 GLint drawbuffer,
369 const GLfloat *values)
370 {
371 VkClearValue clearValue = {};
372
373 bool clearDepth = false;
374 gl::DrawBufferMask clearColorBuffers;
375
376 if (buffer == GL_DEPTH)
377 {
378 clearDepth = true;
379 clearValue.depthStencil.depth = values[0];
380 }
381 else
382 {
383 clearColorBuffers.set(drawbuffer);
384 clearValue.color.float32[0] = values[0];
385 clearValue.color.float32[1] = values[1];
386 clearValue.color.float32[2] = values[2];
387 clearValue.color.float32[3] = values[3];
388 }
389
390 return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color,
391 clearValue.depthStencil);
392 }
393
clearBufferuiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLuint * values)394 angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context,
395 GLenum buffer,
396 GLint drawbuffer,
397 const GLuint *values)
398 {
399 VkClearValue clearValue = {};
400
401 gl::DrawBufferMask clearColorBuffers;
402 clearColorBuffers.set(drawbuffer);
403
404 clearValue.color.uint32[0] = values[0];
405 clearValue.color.uint32[1] = values[1];
406 clearValue.color.uint32[2] = values[2];
407 clearValue.color.uint32[3] = values[3];
408
409 return clearImpl(context, clearColorBuffers, false, false, clearValue.color,
410 clearValue.depthStencil);
411 }
412
clearBufferiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLint * values)413 angle::Result FramebufferVk::clearBufferiv(const gl::Context *context,
414 GLenum buffer,
415 GLint drawbuffer,
416 const GLint *values)
417 {
418 VkClearValue clearValue = {};
419
420 bool clearStencil = false;
421 gl::DrawBufferMask clearColorBuffers;
422
423 if (buffer == GL_STENCIL)
424 {
425 clearStencil = true;
426 clearValue.depthStencil.stencil =
427 gl::clamp(values[0], 0, std::numeric_limits<uint8_t>::max());
428 }
429 else
430 {
431 clearColorBuffers.set(drawbuffer);
432 clearValue.color.int32[0] = values[0];
433 clearValue.color.int32[1] = values[1];
434 clearValue.color.int32[2] = values[2];
435 clearValue.color.int32[3] = values[3];
436 }
437
438 return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color,
439 clearValue.depthStencil);
440 }
441
clearBufferfi(const gl::Context * context,GLenum buffer,GLint drawbuffer,GLfloat depth,GLint stencil)442 angle::Result FramebufferVk::clearBufferfi(const gl::Context *context,
443 GLenum buffer,
444 GLint drawbuffer,
445 GLfloat depth,
446 GLint stencil)
447 {
448 VkClearValue clearValue = {};
449
450 clearValue.depthStencil.depth = depth;
451 clearValue.depthStencil.stencil = gl::clamp(stencil, 0, std::numeric_limits<uint8_t>::max());
452
453 return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color,
454 clearValue.depthStencil);
455 }
456
getImplementationColorReadFormat(const gl::Context * context) const457 GLenum FramebufferVk::getImplementationColorReadFormat(const gl::Context *context) const
458 {
459 return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).format;
460 }
461
getImplementationColorReadType(const gl::Context * context) const462 GLenum FramebufferVk::getImplementationColorReadType(const gl::Context *context) const
463 {
464 return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).type;
465 }
466
readPixels(const gl::Context * context,const gl::Rectangle & area,GLenum format,GLenum type,void * pixels)467 angle::Result FramebufferVk::readPixels(const gl::Context *context,
468 const gl::Rectangle &area,
469 GLenum format,
470 GLenum type,
471 void *pixels)
472 {
473 // Clip read area to framebuffer.
474 const gl::Extents &fbSize = getState().getReadAttachment()->getSize();
475 const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height);
476 ContextVk *contextVk = vk::GetImpl(context);
477
478 gl::Rectangle clippedArea;
479 if (!ClipRectangle(area, fbRect, &clippedArea))
480 {
481 // nothing to read
482 return angle::Result::Continue;
483 }
484 gl::Rectangle flippedArea = clippedArea;
485 if (contextVk->isViewportFlipEnabledForReadFBO())
486 {
487 flippedArea.y = fbRect.height - flippedArea.y - flippedArea.height;
488 }
489
490 const gl::State &glState = context->getState();
491 const gl::PixelPackState &packState = glState.getPackState();
492
493 const gl::InternalFormat &sizedFormatInfo = gl::GetInternalFormatInfo(format, type);
494
495 GLuint outputPitch = 0;
496 ANGLE_VK_CHECK_MATH(contextVk,
497 sizedFormatInfo.computeRowPitch(type, area.width, packState.alignment,
498 packState.rowLength, &outputPitch));
499 GLuint outputSkipBytes = 0;
500 ANGLE_VK_CHECK_MATH(contextVk, sizedFormatInfo.computeSkipBytes(type, outputPitch, 0, packState,
501 false, &outputSkipBytes));
502
503 outputSkipBytes += (clippedArea.x - area.x) * sizedFormatInfo.pixelBytes +
504 (clippedArea.y - area.y) * outputPitch;
505
506 const angle::Format &angleFormat = GetFormatFromFormatType(format, type);
507
508 PackPixelsParams params(flippedArea, angleFormat, outputPitch, packState.reverseRowOrder,
509 glState.getTargetBuffer(gl::BufferBinding::PixelPack), 0);
510 if (contextVk->isViewportFlipEnabledForReadFBO())
511 {
512 params.reverseRowOrder = !params.reverseRowOrder;
513 }
514
515 ANGLE_TRY(readPixelsImpl(contextVk, flippedArea, params, VK_IMAGE_ASPECT_COLOR_BIT,
516 getColorReadRenderTarget(),
517 static_cast<uint8_t *>(pixels) + outputSkipBytes));
518 mReadPixelBuffer.releaseInFlightBuffers(contextVk);
519 return angle::Result::Continue;
520 }
521
getDepthStencilRenderTarget() const522 RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const
523 {
524 return mRenderTargetCache.getDepthStencil();
525 }
526
getColorReadRenderTarget() const527 RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const
528 {
529 RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState);
530 ASSERT(renderTarget && renderTarget->getImage().valid());
531 return renderTarget;
532 }
533
blitWithCommand(ContextVk * contextVk,const gl::Rectangle & sourceArea,const gl::Rectangle & destArea,RenderTargetVk * readRenderTarget,RenderTargetVk * drawRenderTarget,GLenum filter,bool colorBlit,bool depthBlit,bool stencilBlit,bool flipX,bool flipY)534 angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk,
535 const gl::Rectangle &sourceArea,
536 const gl::Rectangle &destArea,
537 RenderTargetVk *readRenderTarget,
538 RenderTargetVk *drawRenderTarget,
539 GLenum filter,
540 bool colorBlit,
541 bool depthBlit,
542 bool stencilBlit,
543 bool flipX,
544 bool flipY)
545 {
546 // Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
547 // it should never be the case that both color and depth/stencil need to be blitted at
548 // at the same time.
549 ASSERT(colorBlit != (depthBlit || stencilBlit));
550
551 vk::ImageHelper *srcImage = &readRenderTarget->getImage();
552 vk::ImageHelper *dstImage = drawRenderTarget->getImageForWrite(&mFramebuffer);
553
554 VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags();
555 VkImageAspectFlags blitAspectMask = imageAspectMask;
556
557 // Remove depth or stencil aspects if they are not requested to be blitted.
558 if (!depthBlit)
559 {
560 blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
561 }
562 if (!stencilBlit)
563 {
564 blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
565 }
566
567 if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
568 {
569 vk::CommandBuffer *srcLayoutChange;
570 ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
571 srcImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferSrc, srcLayoutChange);
572 }
573
574 vk::CommandBuffer *commandBuffer = nullptr;
575 ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
576
577 srcImage->addReadDependency(&mFramebuffer);
578
579 VkImageBlit blit = {};
580 blit.srcSubresource.aspectMask = blitAspectMask;
581 blit.srcSubresource.mipLevel = readRenderTarget->getLevelIndex();
582 blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex();
583 blit.srcSubresource.layerCount = 1;
584 blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0};
585 blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1};
586 blit.dstSubresource.aspectMask = blitAspectMask;
587 blit.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex();
588 blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
589 blit.dstSubresource.layerCount = 1;
590 blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0};
591 blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1};
592
593 // Requirement of the copyImageToBuffer, the dst image must be in
594 // VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout.
595 dstImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferDst, commandBuffer);
596
597 commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
598 dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
599 gl_vk::GetFilter(filter));
600
601 return angle::Result::Continue;
602 }
603
blit(const gl::Context * context,const gl::Rectangle & sourceAreaIn,const gl::Rectangle & destAreaIn,GLbitfield mask,GLenum filter)604 angle::Result FramebufferVk::blit(const gl::Context *context,
605 const gl::Rectangle &sourceAreaIn,
606 const gl::Rectangle &destAreaIn,
607 GLbitfield mask,
608 GLenum filter)
609 {
610 ContextVk *contextVk = vk::GetImpl(context);
611 RendererVk *renderer = contextVk->getRenderer();
612 UtilsVk &utilsVk = contextVk->getUtils();
613
614 const gl::State &glState = contextVk->getState();
615 const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer();
616
617 const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0;
618 const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0;
619 const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0;
620
621 const bool isResolve = srcFramebuffer->getCachedSamples(context) > 1;
622
623 FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer);
624 const bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO();
625 const bool destFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO();
626
627 gl::Rectangle sourceArea = sourceAreaIn;
628 gl::Rectangle destArea = destAreaIn;
629
630 // Note: GLES (all 3.x versions) require source and dest area to be identical when
631 // resolving.
632 ASSERT(!isResolve ||
633 (sourceArea.x == destArea.x && sourceArea.y == destArea.y &&
634 sourceArea.width == destArea.width && sourceArea.height == destArea.height));
635
636 const gl::Rectangle srcFramebufferDimensions =
637 srcFramebufferVk->mState.getDimensions().toRect();
638
639 // If the destination is flipped in either direction, we will flip the source instead so that
640 // the destination area is always unflipped.
641 sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY());
642 destArea = destArea.removeReversal();
643
644 // Calculate the stretch factor prior to any clipping, as it needs to remain constant.
645 const float stretch[2] = {
646 std::abs(sourceArea.width / static_cast<float>(destArea.width)),
647 std::abs(sourceArea.height / static_cast<float>(destArea.height)),
648 };
649
650 // First, clip the source area to framebuffer. That requires transforming the dest area to
651 // match the clipped source.
652 gl::Rectangle absSourceArea = sourceArea.removeReversal();
653 gl::Rectangle clippedSourceArea;
654 if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea))
655 {
656 return angle::Result::Continue;
657 }
658
659 // Resize the destination area based on the new size of source. Note again that stretch is
660 // calculated as SrcDimension/DestDimension.
661 gl::Rectangle srcClippedDestArea;
662 if (isResolve)
663 {
664 // Source and dest areas are identical in resolve.
665 srcClippedDestArea = clippedSourceArea;
666 }
667 else if (clippedSourceArea == absSourceArea)
668 {
669 // If there was no clipping, keep dest area as is.
670 srcClippedDestArea = destArea;
671 }
672 else
673 {
674 // Shift dest area's x0,y0,x1,y1 by as much as the source area's got shifted (taking
675 // stretching into account)
676 float x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]);
677 float y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]);
678 float x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]);
679 float y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]);
680
681 // If the source area was reversed in any direction, the shift should be applied in the
682 // opposite direction as well.
683 if (sourceArea.isReversedX())
684 {
685 std::swap(x0Shift, x1Shift);
686 }
687
688 if (sourceArea.isReversedY())
689 {
690 std::swap(y0Shift, y1Shift);
691 }
692
693 srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift);
694 srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift);
695 int x1 = destArea.x1() - static_cast<int>(x1Shift);
696 int y1 = destArea.y1() - static_cast<int>(y1Shift);
697
698 srcClippedDestArea.width = x1 - srcClippedDestArea.x;
699 srcClippedDestArea.height = y1 - srcClippedDestArea.y;
700 }
701
702 // If framebuffers are flipped in Y, flip the source and dest area (which define the
703 // transformation regardless of clipping), as well as the blit area (which is the clipped
704 // dest area).
705 if (srcFramebufferFlippedY)
706 {
707 sourceArea.y = srcFramebufferDimensions.height - sourceArea.y;
708 sourceArea.height = -sourceArea.height;
709 }
710 if (destFramebufferFlippedY)
711 {
712 destArea.y = mState.getDimensions().height - destArea.y;
713 destArea.height = -destArea.height;
714
715 srcClippedDestArea.y =
716 mState.getDimensions().height - srcClippedDestArea.y - srcClippedDestArea.height;
717 }
718
719 const bool flipX = sourceArea.isReversedX() != destArea.isReversedX();
720 const bool flipY = sourceArea.isReversedY() != destArea.isReversedY();
721
722 // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve.
723 ASSERT(!isResolve ||
724 (flipX == false && flipY == (srcFramebufferFlippedY != destFramebufferFlippedY)));
725
726 // Again, transfer the destination flip to source, so dest is unflipped. Note that destArea
727 // was not reversed until the final possible Y-flip.
728 ASSERT(!destArea.isReversedX());
729 sourceArea = sourceArea.flip(false, destArea.isReversedY());
730 destArea = destArea.removeReversal();
731
732 // Clip the destination area to the framebuffer size and scissor. Note that we don't care
733 // about the source area anymore. The offset translation is done based on the original source
734 // and destination rectangles. The stretch factor is already calculated as well.
735 gl::Rectangle blitArea;
736 if (!gl::ClipRectangle(getScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea))
737 {
738 return angle::Result::Continue;
739 }
740
741 bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f;
742 bool noFlip = !flipX && !flipY;
743 bool disableFlippingBlitWithCommand =
744 contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled;
745
746 UtilsVk::BlitResolveParameters params;
747 params.srcOffset[0] = sourceArea.x;
748 params.srcOffset[1] = sourceArea.y;
749 params.destOffset[0] = destArea.x;
750 params.destOffset[1] = destArea.y;
751 params.stretch[0] = stretch[0];
752 params.stretch[1] = stretch[1];
753 params.srcExtents[0] = srcFramebufferDimensions.width;
754 params.srcExtents[1] = srcFramebufferDimensions.height;
755 params.blitArea = blitArea;
756 params.linear = filter == GL_LINEAR;
757 params.flipX = flipX;
758 params.flipY = flipY;
759
760 if (blitColorBuffer)
761 {
762 RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget();
763 params.srcLayer = readRenderTarget->getLayerIndex();
764
765 // Multisampled images are not allowed to have mips.
766 ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
767
768 // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit.
769 // The reason clipping is prohibited in this path is that due to rounding errors, it would
770 // be hard to guarantee the image stretching remains perfect. That also allows us not to
771 // have to transform back the dest clipping to source.
772 //
773 // For simplicity, we either blit all render targets with a Vulkan command, or none.
774 bool canBlitWithCommand = !isResolve && noClip &&
775 (noFlip || !disableFlippingBlitWithCommand) &&
776 HasSrcBlitFeature(renderer, readRenderTarget);
777 bool areChannelsBlitCompatible = true;
778 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
779 {
780 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
781 canBlitWithCommand =
782 canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget);
783 areChannelsBlitCompatible =
784 areChannelsBlitCompatible &&
785 areSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
786 }
787
788 if (canBlitWithCommand && areChannelsBlitCompatible)
789 {
790 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
791 {
792 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
793 ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
794 drawRenderTarget, filter, true, false, false, flipX,
795 flipY));
796 }
797 }
798 // If we're not flipping, use Vulkan's builtin resolve.
799 else if (isResolve && !flipX && !flipY && areChannelsBlitCompatible)
800 {
801 ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImage()));
802 }
803 // Otherwise use a shader to do blit or resolve.
804 else
805 {
806 ANGLE_TRY(utilsVk.colorBlitResolve(contextVk, this, &readRenderTarget->getImage(),
807 readRenderTarget->getFetchImageView(), params));
808 }
809 }
810
811 if (blitDepthBuffer || blitStencilBuffer)
812 {
813 RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget();
814 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil();
815 params.srcLayer = readRenderTarget->getLayerIndex();
816
817 // Multisampled images are not allowed to have mips.
818 ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
819
820 // Similarly, only blit if there's been no clipping.
821 bool canBlitWithCommand = !isResolve && noClip &&
822 (noFlip || !disableFlippingBlitWithCommand) &&
823 HasSrcBlitFeature(renderer, readRenderTarget) &&
824 HasDstBlitFeature(renderer, drawRenderTarget);
825 bool areChannelsBlitCompatible =
826 areSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
827
828 if (canBlitWithCommand && areChannelsBlitCompatible)
829 {
830 ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
831 drawRenderTarget, filter, false, blitDepthBuffer,
832 blitStencilBuffer, flipX, flipY));
833 }
834 else
835 {
836 // Create depth- and stencil-only views for reading.
837 vk::Scoped<vk::ImageView> depthView(contextVk->getDevice());
838 vk::Scoped<vk::ImageView> stencilView(contextVk->getDevice());
839
840 vk::ImageHelper *depthStencilImage = &readRenderTarget->getImage();
841 uint32_t levelIndex = readRenderTarget->getLevelIndex();
842 uint32_t layerIndex = readRenderTarget->getLayerIndex();
843 gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(),
844 depthStencilImage->getSamples());
845
846 if (blitDepthBuffer)
847 {
848 ANGLE_TRY(depthStencilImage->initLayerImageView(
849 contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(),
850 &depthView.get(), levelIndex, 1, layerIndex, 1));
851 }
852
853 if (blitStencilBuffer)
854 {
855 ANGLE_TRY(depthStencilImage->initLayerImageView(
856 contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(),
857 &stencilView.get(), levelIndex, 1, layerIndex, 1));
858 }
859
860 // If shader stencil export is not possible, defer stencil blit/stencil to another pass.
861 bool hasShaderStencilExport =
862 contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled;
863
864 // Blit depth. If shader stencil export is present, blit stencil as well.
865 if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport))
866 {
867 vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr;
868 vk::ImageView *stencil =
869 blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr;
870
871 ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth,
872 stencil, params));
873 }
874
875 // If shader stencil export is not present, blit stencil through a different path.
876 if (blitStencilBuffer && !hasShaderStencilExport)
877 {
878 ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport(
879 contextVk, this, depthStencilImage, &stencilView.get(), params));
880 }
881
882 vk::ImageView depthViewObject = depthView.release();
883 vk::ImageView stencilViewObject = stencilView.release();
884
885 contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &depthViewObject);
886 contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &stencilViewObject);
887 }
888 }
889
890 return angle::Result::Continue;
891 } // namespace rx
892
resolveColorWithCommand(ContextVk * contextVk,const UtilsVk::BlitResolveParameters & params,vk::ImageHelper * srcImage)893 angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk,
894 const UtilsVk::BlitResolveParameters ¶ms,
895 vk::ImageHelper *srcImage)
896 {
897 if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
898 {
899 vk::CommandBuffer *srcLayoutChange;
900 ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
901 srcImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc,
902 srcLayoutChange);
903 }
904
905 vk::CommandBuffer *commandBuffer = nullptr;
906 ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
907
908 // Source's layout change should happen before rendering
909 srcImage->addReadDependency(&mFramebuffer);
910
911 VkImageResolve resolveRegion = {};
912 resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
913 resolveRegion.srcSubresource.mipLevel = 0;
914 resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer;
915 resolveRegion.srcSubresource.layerCount = 1;
916 resolveRegion.srcOffset.x = params.srcOffset[0];
917 resolveRegion.srcOffset.y = params.srcOffset[1];
918 resolveRegion.srcOffset.z = 0;
919 resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
920 resolveRegion.dstSubresource.layerCount = 1;
921 resolveRegion.dstOffset.x = params.destOffset[0];
922 resolveRegion.dstOffset.y = params.destOffset[1];
923 resolveRegion.dstOffset.z = 0;
924 resolveRegion.extent.width = params.srcExtents[0];
925 resolveRegion.extent.height = params.srcExtents[1];
926 resolveRegion.extent.depth = 1;
927
928 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
929 {
930 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
931 vk::ImageHelper *drawImage = drawRenderTarget->getImageForWrite(&mFramebuffer);
932 drawImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferDst,
933 commandBuffer);
934
935 resolveRegion.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex();
936 resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
937
938 srcImage->resolve(&drawRenderTarget->getImage(), resolveRegion, commandBuffer);
939 }
940
941 return angle::Result::Continue;
942 }
943
checkStatus(const gl::Context * context) const944 bool FramebufferVk::checkStatus(const gl::Context *context) const
945 {
946 // if we have both a depth and stencil buffer, they must refer to the same object
947 // since we only support packed_depth_stencil and not separate depth and stencil
948 if (mState.hasSeparateDepthAndStencilAttachments())
949 {
950 return false;
951 }
952
953 return true;
954 }
955
updateColorAttachment(const gl::Context * context,size_t colorIndexGL)956 angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, size_t colorIndexGL)
957 {
958 ContextVk *contextVk = vk::GetImpl(context);
959
960 ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL));
961
962 // Update cached masks for masked clears.
963 RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL];
964 if (renderTarget)
965 {
966 const angle::Format &emulatedFormat = renderTarget->getImageFormat().imageFormat();
967 updateActiveColorMasks(colorIndexGL, emulatedFormat.redBits > 0,
968 emulatedFormat.greenBits > 0, emulatedFormat.blueBits > 0,
969 emulatedFormat.alphaBits > 0);
970
971 const angle::Format &sourceFormat = renderTarget->getImageFormat().angleFormat();
972 mEmulatedAlphaAttachmentMask.set(
973 colorIndexGL, sourceFormat.alphaBits == 0 && emulatedFormat.alphaBits > 0);
974
975 contextVk->updateColorMask(context->getState().getBlendState());
976 }
977 else
978 {
979 updateActiveColorMasks(colorIndexGL, false, false, false, false);
980 }
981
982 return angle::Result::Continue;
983 }
984
invalidateImpl(ContextVk * contextVk,size_t count,const GLenum * attachments)985 void FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments)
986 {
987 ASSERT(mFramebuffer.hasStartedRenderPass());
988
989 gl::DrawBufferMask invalidateColorBuffers;
990 bool invalidateDepthBuffer = false;
991 bool invalidateStencilBuffer = false;
992
993 for (size_t i = 0; i < count; ++i)
994 {
995 const GLenum attachment = attachments[i];
996
997 switch (attachment)
998 {
999 case GL_DEPTH:
1000 case GL_DEPTH_ATTACHMENT:
1001 invalidateDepthBuffer = true;
1002 break;
1003 case GL_STENCIL:
1004 case GL_STENCIL_ATTACHMENT:
1005 invalidateStencilBuffer = true;
1006 break;
1007 case GL_DEPTH_STENCIL_ATTACHMENT:
1008 invalidateDepthBuffer = true;
1009 invalidateStencilBuffer = true;
1010 break;
1011 default:
1012 ASSERT(
1013 (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) ||
1014 (attachment == GL_COLOR));
1015
1016 invalidateColorBuffers.set(
1017 attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0));
1018 }
1019 }
1020
1021 // Set the appropriate storeOp for attachments.
1022 size_t attachmentIndexVk = 0;
1023 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1024 {
1025 if (invalidateColorBuffers.test(colorIndexGL))
1026 {
1027 mFramebuffer.invalidateRenderPassColorAttachment(attachmentIndexVk);
1028 }
1029 ++attachmentIndexVk;
1030 }
1031
1032 RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1033 if (depthStencilRenderTarget)
1034 {
1035 if (invalidateDepthBuffer)
1036 {
1037 mFramebuffer.invalidateRenderPassDepthAttachment(attachmentIndexVk);
1038 }
1039
1040 if (invalidateStencilBuffer)
1041 {
1042 mFramebuffer.invalidateRenderPassStencilAttachment(attachmentIndexVk);
1043 }
1044 }
1045
1046 // NOTE: Possible future optimization is to delay setting the storeOp and only do so if the
1047 // render pass is closed by itself before another draw call. Otherwise, in a situation like
1048 // this:
1049 //
1050 // draw()
1051 // invalidate()
1052 // draw()
1053 //
1054 // We would be discarding the attachments only to load them for the next draw (which is less
1055 // efficient than keeping the render pass open and not do the discard at all). While dEQP tests
1056 // this pattern, this optimization may not be necessary if no application does this. It is
1057 // expected that an application would invalidate() when it's done with the framebuffer, so the
1058 // render pass would have closed either way.
1059 mFramebuffer.finishCurrentCommands(contextVk);
1060 }
1061
syncState(const gl::Context * context,const gl::Framebuffer::DirtyBits & dirtyBits)1062 angle::Result FramebufferVk::syncState(const gl::Context *context,
1063 const gl::Framebuffer::DirtyBits &dirtyBits)
1064 {
1065 ContextVk *contextVk = vk::GetImpl(context);
1066
1067 ASSERT(dirtyBits.any());
1068 for (size_t dirtyBit : dirtyBits)
1069 {
1070 switch (dirtyBit)
1071 {
1072 case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT:
1073 case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT:
1074 ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState));
1075 break;
1076 case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS:
1077 case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS:
1078 ANGLE_TRY(mRenderTargetCache.getDepthStencil()->flushStagedUpdates(contextVk));
1079 break;
1080 case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS:
1081 case gl::Framebuffer::DIRTY_BIT_READ_BUFFER:
1082 case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH:
1083 case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT:
1084 case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES:
1085 case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS:
1086 break;
1087 default:
1088 {
1089 static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits");
1090 if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX)
1091 {
1092 size_t colorIndexGL = static_cast<size_t>(
1093 dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0);
1094 ANGLE_TRY(updateColorAttachment(context, colorIndexGL));
1095 }
1096 else
1097 {
1098 ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 &&
1099 dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX);
1100 size_t colorIndexGL = static_cast<size_t>(
1101 dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0);
1102 ANGLE_TRY(mRenderTargetCache.getColors()[colorIndexGL]->flushStagedUpdates(
1103 contextVk));
1104 }
1105 }
1106 }
1107 }
1108
1109 // The FBOs new attachment may have changed the renderable area
1110 const gl::State &glState = context->getState();
1111 contextVk->updateScissor(glState);
1112
1113 mActiveColorComponents = gl_vk::GetColorComponentFlags(
1114 mActiveColorComponentMasksForClear[0].any(), mActiveColorComponentMasksForClear[1].any(),
1115 mActiveColorComponentMasksForClear[2].any(), mActiveColorComponentMasksForClear[3].any());
1116
1117 mFramebuffer.release(contextVk);
1118
1119 // Will freeze the current set of dependencies on this FBO. The next time we render we will
1120 // create a new entry in the command graph.
1121 mFramebuffer.finishCurrentCommands(contextVk);
1122
1123 // Notify the ContextVk to update the pipeline desc.
1124 updateRenderPassDesc();
1125
1126 FramebufferVk *currentDrawFramebuffer = vk::GetImpl(context->getState().getDrawFramebuffer());
1127 if (currentDrawFramebuffer == this)
1128 {
1129 contextVk->onDrawFramebufferChange(this);
1130 }
1131
1132 return angle::Result::Continue;
1133 }
1134
updateRenderPassDesc()1135 void FramebufferVk::updateRenderPassDesc()
1136 {
1137 mRenderPassDesc = {};
1138 mRenderPassDesc.setSamples(getSamples());
1139
1140 const auto &colorRenderTargets = mRenderTargetCache.getColors();
1141 const gl::DrawBufferMask enabledDrawBuffers = mState.getEnabledDrawBuffers();
1142 for (size_t colorIndexGL = 0; colorIndexGL < enabledDrawBuffers.size(); ++colorIndexGL)
1143 {
1144 if (enabledDrawBuffers[colorIndexGL])
1145 {
1146 RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1147 ASSERT(colorRenderTarget);
1148 mRenderPassDesc.packColorAttachment(
1149 colorIndexGL, colorRenderTarget->getImage().getFormat().angleFormatID);
1150 }
1151 else
1152 {
1153 mRenderPassDesc.packColorAttachmentGap(colorIndexGL);
1154 }
1155 }
1156
1157 RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1158 if (depthStencilRenderTarget)
1159 {
1160 mRenderPassDesc.packDepthStencilAttachment(
1161 depthStencilRenderTarget->getImage().getFormat().angleFormatID);
1162 }
1163 }
1164
getFramebuffer(ContextVk * contextVk,vk::Framebuffer ** framebufferOut)1165 angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut)
1166 {
1167 // If we've already created our cached Framebuffer, return it.
1168 if (mFramebuffer.valid())
1169 {
1170 *framebufferOut = &mFramebuffer.getFramebuffer();
1171 return angle::Result::Continue;
1172 }
1173
1174 vk::RenderPass *compatibleRenderPass = nullptr;
1175 ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
1176
1177 // If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it.
1178 if (mBackbuffer)
1179 {
1180 return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut);
1181 }
1182
1183 // Gather VkImageViews over all FBO attachments, also size of attached region.
1184 std::vector<VkImageView> attachments;
1185 gl::Extents attachmentsSize;
1186
1187 const auto &colorRenderTargets = mRenderTargetCache.getColors();
1188 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1189 {
1190 RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1191 ASSERT(colorRenderTarget);
1192 attachments.push_back(colorRenderTarget->getDrawImageView()->getHandle());
1193
1194 ASSERT(attachmentsSize.empty() || attachmentsSize == colorRenderTarget->getExtents());
1195 attachmentsSize = colorRenderTarget->getExtents();
1196 }
1197
1198 RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1199 if (depthStencilRenderTarget)
1200 {
1201 attachments.push_back(depthStencilRenderTarget->getDrawImageView()->getHandle());
1202
1203 ASSERT(attachmentsSize.empty() ||
1204 attachmentsSize == depthStencilRenderTarget->getExtents());
1205 attachmentsSize = depthStencilRenderTarget->getExtents();
1206 }
1207
1208 if (attachmentsSize.empty())
1209 {
1210 // No attachments, so use the default values.
1211 attachmentsSize.height = mState.getDefaultHeight();
1212 attachmentsSize.width = mState.getDefaultWidth();
1213 attachmentsSize.depth = 0;
1214 }
1215
1216 VkFramebufferCreateInfo framebufferInfo = {};
1217
1218 framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
1219 framebufferInfo.flags = 0;
1220 framebufferInfo.renderPass = compatibleRenderPass->getHandle();
1221 framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
1222 framebufferInfo.pAttachments = attachments.data();
1223 framebufferInfo.width = static_cast<uint32_t>(attachmentsSize.width);
1224 framebufferInfo.height = static_cast<uint32_t>(attachmentsSize.height);
1225 framebufferInfo.layers = 1;
1226
1227 ANGLE_TRY(mFramebuffer.init(contextVk, framebufferInfo));
1228
1229 *framebufferOut = &mFramebuffer.getFramebuffer();
1230 return angle::Result::Continue;
1231 }
1232
clearWithRenderPassOp(ContextVk * contextVk,const gl::Rectangle & clearArea,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const VkClearColorValue & clearColorValue,const VkClearDepthStencilValue & clearDepthStencilValue)1233 angle::Result FramebufferVk::clearWithRenderPassOp(
1234 ContextVk *contextVk,
1235 const gl::Rectangle &clearArea,
1236 gl::DrawBufferMask clearColorBuffers,
1237 bool clearDepth,
1238 bool clearStencil,
1239 const VkClearColorValue &clearColorValue,
1240 const VkClearDepthStencilValue &clearDepthStencilValue)
1241 {
1242 // Start a new render pass if:
1243 //
1244 // - no render pass has started,
1245 // - there is a render pass started but it contains commands; we cannot modify its ops, so new
1246 // render pass is needed,
1247 // - the current render area doesn't match the clear area. We need the render area to be
1248 // exactly as specified by the scissor for the loadOp to clear only that area. See
1249 // onScissorChange for more information.
1250
1251 if (!mFramebuffer.valid() || !mFramebuffer.renderPassStartedButEmpty() ||
1252 mFramebuffer.getRenderPassRenderArea() != clearArea)
1253 {
1254 vk::CommandBuffer *commandBuffer;
1255 ANGLE_TRY(startNewRenderPass(contextVk, clearArea, &commandBuffer));
1256 }
1257
1258 size_t attachmentIndexVk = 0;
1259
1260 // Go through clearColorBuffers and set the appropriate loadOp and clear values.
1261 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1262 {
1263 if (clearColorBuffers.test(colorIndexGL))
1264 {
1265 RenderTargetVk *renderTarget = getColorReadRenderTarget();
1266
1267 // If the render target doesn't have alpha, but its emulated format has it, clear the
1268 // alpha to 1.
1269 VkClearColorValue value = clearColorValue;
1270 if (mEmulatedAlphaAttachmentMask[colorIndexGL])
1271 {
1272 SetEmulatedAlphaValue(renderTarget->getImageFormat(), &value);
1273 }
1274
1275 mFramebuffer.clearRenderPassColorAttachment(attachmentIndexVk, value);
1276 }
1277 ++attachmentIndexVk;
1278 }
1279
1280 // Set the appropriate loadOp and clear values for depth and stencil.
1281 RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1282 if (depthStencilRenderTarget)
1283 {
1284 if (clearDepth)
1285 {
1286 mFramebuffer.clearRenderPassDepthAttachment(attachmentIndexVk,
1287 clearDepthStencilValue.depth);
1288 }
1289
1290 if (clearStencil)
1291 {
1292 mFramebuffer.clearRenderPassStencilAttachment(attachmentIndexVk,
1293 clearDepthStencilValue.stencil);
1294 }
1295 }
1296
1297 return angle::Result::Continue;
1298 }
1299
clearWithDraw(ContextVk * contextVk,const gl::Rectangle & clearArea,gl::DrawBufferMask clearColorBuffers,bool clearStencil,VkColorComponentFlags colorMaskFlags,uint8_t stencilMask,const VkClearColorValue & clearColorValue,uint8_t clearStencilValue)1300 angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk,
1301 const gl::Rectangle &clearArea,
1302 gl::DrawBufferMask clearColorBuffers,
1303 bool clearStencil,
1304 VkColorComponentFlags colorMaskFlags,
1305 uint8_t stencilMask,
1306 const VkClearColorValue &clearColorValue,
1307 uint8_t clearStencilValue)
1308 {
1309 UtilsVk::ClearFramebufferParameters params = {};
1310 params.clearArea = clearArea;
1311 params.colorClearValue = clearColorValue;
1312 params.stencilClearValue = clearStencilValue;
1313 params.stencilMask = stencilMask;
1314
1315 params.clearColor = true;
1316 params.clearStencil = clearStencil;
1317
1318 const auto &colorRenderTargets = mRenderTargetCache.getColors();
1319 for (size_t colorIndexGL : clearColorBuffers)
1320 {
1321 const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1322 ASSERT(colorRenderTarget);
1323
1324 params.colorFormat = &colorRenderTarget->getImage().getFormat().imageFormat();
1325 params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL);
1326 params.colorMaskFlags = colorMaskFlags;
1327 if (mEmulatedAlphaAttachmentMask[colorIndexGL])
1328 {
1329 params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT;
1330 }
1331
1332 ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
1333
1334 // Clear stencil only once!
1335 params.clearStencil = false;
1336 }
1337
1338 // If there was no color clear, clear stencil alone.
1339 if (params.clearStencil)
1340 {
1341 params.clearColor = false;
1342 ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
1343 }
1344
1345 return angle::Result::Continue;
1346 }
1347
getSamplePosition(const gl::Context * context,size_t index,GLfloat * xy) const1348 angle::Result FramebufferVk::getSamplePosition(const gl::Context *context,
1349 size_t index,
1350 GLfloat *xy) const
1351 {
1352 ANGLE_VK_UNREACHABLE(vk::GetImpl(context));
1353 return angle::Result::Stop;
1354 }
1355
startNewRenderPass(ContextVk * contextVk,const gl::Rectangle & renderArea,vk::CommandBuffer ** commandBufferOut)1356 angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk,
1357 const gl::Rectangle &renderArea,
1358 vk::CommandBuffer **commandBufferOut)
1359 {
1360 vk::Framebuffer *framebuffer = nullptr;
1361 ANGLE_TRY(getFramebuffer(contextVk, &framebuffer));
1362
1363 vk::AttachmentOpsArray renderPassAttachmentOps;
1364 std::vector<VkClearValue> attachmentClearValues;
1365
1366 vk::CommandBuffer *writeCommands = nullptr;
1367 ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &writeCommands));
1368
1369 // Initialize RenderPass info.
1370 const auto &colorRenderTargets = mRenderTargetCache.getColors();
1371 for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1372 {
1373 RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1374 ASSERT(colorRenderTarget);
1375
1376 ANGLE_TRY(colorRenderTarget->onColorDraw(contextVk, &mFramebuffer, writeCommands));
1377
1378 renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
1379 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
1380 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
1381 attachmentClearValues.emplace_back(kUninitializedClearValue);
1382 }
1383
1384 RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1385 if (depthStencilRenderTarget)
1386 {
1387 ANGLE_TRY(
1388 depthStencilRenderTarget->onDepthStencilDraw(contextVk, &mFramebuffer, writeCommands));
1389
1390 renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
1391 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
1392 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
1393 attachmentClearValues.emplace_back(kUninitializedClearValue);
1394 }
1395
1396 return mFramebuffer.beginRenderPass(contextVk, *framebuffer, renderArea, mRenderPassDesc,
1397 renderPassAttachmentOps, attachmentClearValues,
1398 commandBufferOut);
1399 }
1400
updateActiveColorMasks(size_t colorIndexGL,bool r,bool g,bool b,bool a)1401 void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a)
1402 {
1403 mActiveColorComponentMasksForClear[0].set(colorIndexGL, r);
1404 mActiveColorComponentMasksForClear[1].set(colorIndexGL, g);
1405 mActiveColorComponentMasksForClear[2].set(colorIndexGL, b);
1406 mActiveColorComponentMasksForClear[3].set(colorIndexGL, a);
1407 }
1408
getEmulatedAlphaAttachmentMask() const1409 const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const
1410 {
1411 return mEmulatedAlphaAttachmentMask;
1412 }
1413
readPixelsImpl(ContextVk * contextVk,const gl::Rectangle & area,const PackPixelsParams & packPixelsParams,VkImageAspectFlagBits copyAspectFlags,RenderTargetVk * renderTarget,void * pixels)1414 angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk,
1415 const gl::Rectangle &area,
1416 const PackPixelsParams &packPixelsParams,
1417 VkImageAspectFlagBits copyAspectFlags,
1418 RenderTargetVk *renderTarget,
1419 void *pixels)
1420 {
1421 ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl");
1422
1423 RendererVk *renderer = contextVk->getRenderer();
1424
1425 vk::CommandBuffer *commandBuffer = nullptr;
1426 ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
1427
1428 // Note that although we're reading from the image, we need to update the layout below.
1429 vk::ImageHelper *srcImage =
1430 renderTarget->getImageForRead(&mFramebuffer, vk::ImageLayout::TransferSrc, commandBuffer);
1431
1432 const angle::Format *readFormat = &srcImage->getFormat().imageFormat();
1433
1434 if (copyAspectFlags != VK_IMAGE_ASPECT_COLOR_BIT)
1435 {
1436 readFormat = &GetDepthStencilImageToBufferFormat(*readFormat, copyAspectFlags);
1437 }
1438
1439 uint32_t level = renderTarget->getLevelIndex();
1440 uint32_t layer = renderTarget->getLayerIndex();
1441 VkOffset3D srcOffset = {area.x, area.y, 0};
1442
1443 VkImageSubresourceLayers srcSubresource = {};
1444 srcSubresource.aspectMask = copyAspectFlags;
1445 srcSubresource.mipLevel = level;
1446 srcSubresource.baseArrayLayer = layer;
1447 srcSubresource.layerCount = 1;
1448
1449 VkExtent3D srcExtent = {static_cast<uint32_t>(area.width), static_cast<uint32_t>(area.height),
1450 1};
1451
1452 if (srcImage->getExtents().depth > 1)
1453 {
1454 // Depth > 1 means this is a 3D texture and we need special handling
1455 srcOffset.z = layer;
1456 srcSubresource.baseArrayLayer = 0;
1457 }
1458
1459 // If the source image is multisampled, we need to resolve it into a temporary image before
1460 // performing a readback.
1461 bool isMultisampled = srcImage->getSamples() > 1;
1462 vk::Scoped<vk::ImageHelper> resolvedImage(contextVk->getDevice());
1463 if (isMultisampled)
1464 {
1465 ANGLE_TRY(resolvedImage.get().init2DStaging(
1466 contextVk, renderer->getMemoryProperties(), gl::Extents(area.width, area.height, 1),
1467 srcImage->getFormat(),
1468 VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, 1));
1469 resolvedImage.get().updateQueueSerial(contextVk->getCurrentQueueSerial());
1470
1471 // Note: resolve only works on color images (not depth/stencil).
1472 //
1473 // TODO: Currently, depth/stencil blit can perform a depth/stencil readback, but that code
1474 // path will be optimized away. http://anglebug.com/3200
1475 ASSERT(copyAspectFlags == VK_IMAGE_ASPECT_COLOR_BIT);
1476
1477 VkImageResolve resolveRegion = {};
1478 resolveRegion.srcSubresource = srcSubresource;
1479 resolveRegion.srcOffset = srcOffset;
1480 resolveRegion.dstSubresource.aspectMask = copyAspectFlags;
1481 resolveRegion.dstSubresource.mipLevel = 0;
1482 resolveRegion.dstSubresource.baseArrayLayer = 0;
1483 resolveRegion.dstSubresource.layerCount = 1;
1484 resolveRegion.dstOffset = {};
1485 resolveRegion.extent = srcExtent;
1486
1487 srcImage->resolve(&resolvedImage.get(), resolveRegion, commandBuffer);
1488
1489 resolvedImage.get().changeLayout(copyAspectFlags, vk::ImageLayout::TransferSrc,
1490 commandBuffer);
1491
1492 // Make the resolved image the target of buffer copy.
1493 srcImage = &resolvedImage.get();
1494 level = 0;
1495 layer = 0;
1496 srcOffset = {0, 0, 0};
1497 srcSubresource.baseArrayLayer = 0;
1498 srcSubresource.layerCount = 1;
1499 srcSubresource.mipLevel = 0;
1500 }
1501
1502 VkBuffer bufferHandle = VK_NULL_HANDLE;
1503 uint8_t *readPixelBuffer = nullptr;
1504 VkDeviceSize stagingOffset = 0;
1505 size_t allocationSize = readFormat->pixelBytes * area.width * area.height;
1506
1507 ANGLE_TRY(mReadPixelBuffer.allocate(contextVk, allocationSize, &readPixelBuffer, &bufferHandle,
1508 &stagingOffset, nullptr));
1509
1510 VkBufferImageCopy region = {};
1511 region.bufferImageHeight = srcExtent.height;
1512 region.bufferOffset = stagingOffset;
1513 region.bufferRowLength = srcExtent.width;
1514 region.imageExtent = srcExtent;
1515 region.imageOffset = srcOffset;
1516 region.imageSubresource = srcSubresource;
1517
1518 commandBuffer->copyImageToBuffer(srcImage->getImage(), srcImage->getCurrentLayout(),
1519 bufferHandle, 1, ®ion);
1520
1521 // Triggers a full finish.
1522 // TODO(jmadill): Don't block on asynchronous readback.
1523 ANGLE_TRY(contextVk->finishImpl());
1524
1525 // The buffer we copied to needs to be invalidated before we read from it because its not been
1526 // created with the host coherent bit.
1527 ANGLE_TRY(mReadPixelBuffer.invalidate(contextVk));
1528
1529 const gl::State &glState = contextVk->getState();
1530 gl::Buffer *packBuffer = glState.getTargetBuffer(gl::BufferBinding::PixelPack);
1531 if (packBuffer != nullptr)
1532 {
1533 // Must map the PBO in order to read its contents (and then unmap it later)
1534 BufferVk *packBufferVk = vk::GetImpl(packBuffer);
1535 void *mapPtr = nullptr;
1536 ANGLE_TRY(packBufferVk->mapImpl(contextVk, &mapPtr));
1537 uint8_t *dest = static_cast<uint8_t *>(mapPtr) + reinterpret_cast<ptrdiff_t>(pixels);
1538 PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes,
1539 readPixelBuffer, static_cast<uint8_t *>(dest));
1540 packBufferVk->unmapImpl(contextVk);
1541 }
1542 else
1543 {
1544 PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes,
1545 readPixelBuffer, static_cast<uint8_t *>(pixels));
1546 }
1547
1548 return angle::Result::Continue;
1549 }
1550
getReadImageExtents() const1551 gl::Extents FramebufferVk::getReadImageExtents() const
1552 {
1553 ASSERT(getColorReadRenderTarget()->getExtents().width == mState.getDimensions().width);
1554 ASSERT(getColorReadRenderTarget()->getExtents().height == mState.getDimensions().height);
1555
1556 return getColorReadRenderTarget()->getExtents();
1557 }
1558
getCompleteRenderArea() const1559 gl::Rectangle FramebufferVk::getCompleteRenderArea() const
1560 {
1561 const gl::Box &dimensions = mState.getDimensions();
1562 return gl::Rectangle(0, 0, dimensions.width, dimensions.height);
1563 }
1564
getScissoredRenderArea(ContextVk * contextVk) const1565 gl::Rectangle FramebufferVk::getScissoredRenderArea(ContextVk *contextVk) const
1566 {
1567 const gl::Box &dimensions = mState.getDimensions();
1568 const gl::Rectangle renderArea(0, 0, dimensions.width, dimensions.height);
1569 bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO();
1570
1571 return ClipRectToScissor(contextVk->getState(), renderArea, invertViewport);
1572 }
1573
onScissorChange(ContextVk * contextVk)1574 void FramebufferVk::onScissorChange(ContextVk *contextVk)
1575 {
1576 gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
1577
1578 // If the scissor has grown beyond the previous scissoredRenderArea, make sure the render pass
1579 // is restarted. Otherwise, we can continue using the same renderpass area.
1580 //
1581 // Without a scissor, the render pass area covers the whole of the framebuffer. With a
1582 // scissored clear, the render pass area could be smaller than the framebuffer size. When the
1583 // scissor changes, if the scissor area is completely encompassed by the render pass area, it's
1584 // possible to continue using the same render pass. However, if the current render pass area
1585 // is too small, we need to start a new one. The latter can happen if a scissored clear starts
1586 // a render pass, the scissor is disabled and a draw call is issued to affect the whole
1587 // framebuffer.
1588 mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial());
1589 if (mFramebuffer.hasStartedRenderPass() &&
1590 !mFramebuffer.getRenderPassRenderArea().encloses(scissoredRenderArea))
1591 {
1592 mFramebuffer.finishCurrentCommands(contextVk);
1593 }
1594 }
1595
getFirstRenderTarget() const1596 RenderTargetVk *FramebufferVk::getFirstRenderTarget() const
1597 {
1598 for (auto *renderTarget : mRenderTargetCache.getColors())
1599 {
1600 if (renderTarget)
1601 {
1602 return renderTarget;
1603 }
1604 }
1605
1606 return mRenderTargetCache.getDepthStencil();
1607 }
1608
getSamples() const1609 GLint FramebufferVk::getSamples() const
1610 {
1611 RenderTargetVk *firstRT = getFirstRenderTarget();
1612 return firstRT ? firstRT->getImage().getSamples() : 0;
1613 }
1614
1615 } // namespace rx
1616