• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dma-direct.h>
32 #include <linux/iommu-helper.h>
33 #include <linux/iommu.h>
34 #include <linux/delay.h>
35 #include <linux/amd-iommu.h>
36 #include <linux/notifier.h>
37 #include <linux/export.h>
38 #include <linux/irq.h>
39 #include <linux/msi.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/irqdomain.h>
42 #include <linux/percpu.h>
43 #include <linux/iova.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/io_apic.h>
46 #include <asm/apic.h>
47 #include <asm/hw_irq.h>
48 #include <asm/msidef.h>
49 #include <asm/proto.h>
50 #include <asm/iommu.h>
51 #include <asm/gart.h>
52 #include <asm/dma.h>
53 
54 #include "amd_iommu_proto.h"
55 #include "amd_iommu_types.h"
56 #include "irq_remapping.h"
57 
58 #define AMD_IOMMU_MAPPING_ERROR	0
59 
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61 
62 #define LOOP_TIMEOUT	100000
63 
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN		(1)
66 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
67 
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START		(0xfee00000)
70 #define MSI_RANGE_END		(0xfeefffff)
71 #define HT_RANGE_START		(0xfd00000000ULL)
72 #define HT_RANGE_END		(0xffffffffffULL)
73 
74 /*
75  * This bitmap is used to advertise the page sizes our hardware support
76  * to the IOMMU core, which will then use this information to split
77  * physically contiguous memory regions it is mapping into page sizes
78  * that we support.
79  *
80  * 512GB Pages are not supported due to a hardware bug
81  */
82 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83 
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85 static DEFINE_SPINLOCK(pd_bitmap_lock);
86 
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list);
89 
90 LIST_HEAD(ioapic_map);
91 LIST_HEAD(hpet_map);
92 LIST_HEAD(acpihid_map);
93 
94 /*
95  * Domain for untranslated devices - only allocated
96  * if iommu=pt passed on kernel cmd line.
97  */
98 const struct iommu_ops amd_iommu_ops;
99 
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101 int amd_iommu_max_glx_val = -1;
102 
103 static const struct dma_map_ops amd_iommu_dma_ops;
104 
105 /*
106  * general struct to manage commands send to an IOMMU
107  */
108 struct iommu_cmd {
109 	u32 data[4];
110 };
111 
112 struct kmem_cache *amd_iommu_irq_cache;
113 
114 static void update_domain(struct protection_domain *domain);
115 static int protection_domain_init(struct protection_domain *domain);
116 static void detach_device(struct device *dev);
117 static void iova_domain_flush_tlb(struct iova_domain *iovad);
118 
119 /*
120  * Data container for a dma_ops specific protection domain
121  */
122 struct dma_ops_domain {
123 	/* generic protection domain information */
124 	struct protection_domain domain;
125 
126 	/* IOVA RB-Tree */
127 	struct iova_domain iovad;
128 };
129 
130 static struct iova_domain reserved_iova_ranges;
131 static struct lock_class_key reserved_rbtree_key;
132 
133 /****************************************************************************
134  *
135  * Helper functions
136  *
137  ****************************************************************************/
138 
match_hid_uid(struct device * dev,struct acpihid_map_entry * entry)139 static inline int match_hid_uid(struct device *dev,
140 				struct acpihid_map_entry *entry)
141 {
142 	struct acpi_device *adev = ACPI_COMPANION(dev);
143 	const char *hid, *uid;
144 
145 	if (!adev)
146 		return -ENODEV;
147 
148 	hid = acpi_device_hid(adev);
149 	uid = acpi_device_uid(adev);
150 
151 	if (!hid || !(*hid))
152 		return -ENODEV;
153 
154 	if (!uid || !(*uid))
155 		return strcmp(hid, entry->hid);
156 
157 	if (!(*entry->uid))
158 		return strcmp(hid, entry->hid);
159 
160 	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
161 }
162 
get_pci_device_id(struct device * dev)163 static inline u16 get_pci_device_id(struct device *dev)
164 {
165 	struct pci_dev *pdev = to_pci_dev(dev);
166 
167 	return PCI_DEVID(pdev->bus->number, pdev->devfn);
168 }
169 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)170 static inline int get_acpihid_device_id(struct device *dev,
171 					struct acpihid_map_entry **entry)
172 {
173 	struct acpihid_map_entry *p;
174 
175 	list_for_each_entry(p, &acpihid_map, list) {
176 		if (!match_hid_uid(dev, p)) {
177 			if (entry)
178 				*entry = p;
179 			return p->devid;
180 		}
181 	}
182 	return -EINVAL;
183 }
184 
get_device_id(struct device * dev)185 static inline int get_device_id(struct device *dev)
186 {
187 	int devid;
188 
189 	if (dev_is_pci(dev))
190 		devid = get_pci_device_id(dev);
191 	else
192 		devid = get_acpihid_device_id(dev, NULL);
193 
194 	return devid;
195 }
196 
to_pdomain(struct iommu_domain * dom)197 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
198 {
199 	return container_of(dom, struct protection_domain, domain);
200 }
201 
to_dma_ops_domain(struct protection_domain * domain)202 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
203 {
204 	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
205 	return container_of(domain, struct dma_ops_domain, domain);
206 }
207 
alloc_dev_data(u16 devid)208 static struct iommu_dev_data *alloc_dev_data(u16 devid)
209 {
210 	struct iommu_dev_data *dev_data;
211 
212 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
213 	if (!dev_data)
214 		return NULL;
215 
216 	dev_data->devid = devid;
217 	ratelimit_default_init(&dev_data->rs);
218 
219 	llist_add(&dev_data->dev_data_list, &dev_data_list);
220 	return dev_data;
221 }
222 
search_dev_data(u16 devid)223 static struct iommu_dev_data *search_dev_data(u16 devid)
224 {
225 	struct iommu_dev_data *dev_data;
226 	struct llist_node *node;
227 
228 	if (llist_empty(&dev_data_list))
229 		return NULL;
230 
231 	node = dev_data_list.first;
232 	llist_for_each_entry(dev_data, node, dev_data_list) {
233 		if (dev_data->devid == devid)
234 			return dev_data;
235 	}
236 
237 	return NULL;
238 }
239 
__last_alias(struct pci_dev * pdev,u16 alias,void * data)240 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
241 {
242 	*(u16 *)data = alias;
243 	return 0;
244 }
245 
get_alias(struct device * dev)246 static u16 get_alias(struct device *dev)
247 {
248 	struct pci_dev *pdev = to_pci_dev(dev);
249 	u16 devid, ivrs_alias, pci_alias;
250 
251 	/* The callers make sure that get_device_id() does not fail here */
252 	devid = get_device_id(dev);
253 
254 	/* For ACPI HID devices, we simply return the devid as such */
255 	if (!dev_is_pci(dev))
256 		return devid;
257 
258 	ivrs_alias = amd_iommu_alias_table[devid];
259 
260 	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
261 
262 	if (ivrs_alias == pci_alias)
263 		return ivrs_alias;
264 
265 	/*
266 	 * DMA alias showdown
267 	 *
268 	 * The IVRS is fairly reliable in telling us about aliases, but it
269 	 * can't know about every screwy device.  If we don't have an IVRS
270 	 * reported alias, use the PCI reported alias.  In that case we may
271 	 * still need to initialize the rlookup and dev_table entries if the
272 	 * alias is to a non-existent device.
273 	 */
274 	if (ivrs_alias == devid) {
275 		if (!amd_iommu_rlookup_table[pci_alias]) {
276 			amd_iommu_rlookup_table[pci_alias] =
277 				amd_iommu_rlookup_table[devid];
278 			memcpy(amd_iommu_dev_table[pci_alias].data,
279 			       amd_iommu_dev_table[devid].data,
280 			       sizeof(amd_iommu_dev_table[pci_alias].data));
281 		}
282 
283 		return pci_alias;
284 	}
285 
286 	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
287 		"for device %s[%04x:%04x], kernel reported alias "
288 		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
289 		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
290 		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
291 		PCI_FUNC(pci_alias));
292 
293 	/*
294 	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
295 	 * bus, then the IVRS table may know about a quirk that we don't.
296 	 */
297 	if (pci_alias == devid &&
298 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
299 		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
300 		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
301 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
302 			dev_name(dev));
303 	}
304 
305 	return ivrs_alias;
306 }
307 
find_dev_data(u16 devid)308 static struct iommu_dev_data *find_dev_data(u16 devid)
309 {
310 	struct iommu_dev_data *dev_data;
311 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
312 
313 	dev_data = search_dev_data(devid);
314 
315 	if (dev_data == NULL) {
316 		dev_data = alloc_dev_data(devid);
317 		if (!dev_data)
318 			return NULL;
319 
320 		if (translation_pre_enabled(iommu))
321 			dev_data->defer_attach = true;
322 	}
323 
324 	return dev_data;
325 }
326 
get_dev_data(struct device * dev)327 struct iommu_dev_data *get_dev_data(struct device *dev)
328 {
329 	return dev->archdata.iommu;
330 }
331 EXPORT_SYMBOL(get_dev_data);
332 
333 /*
334 * Find or create an IOMMU group for a acpihid device.
335 */
acpihid_device_group(struct device * dev)336 static struct iommu_group *acpihid_device_group(struct device *dev)
337 {
338 	struct acpihid_map_entry *p, *entry = NULL;
339 	int devid;
340 
341 	devid = get_acpihid_device_id(dev, &entry);
342 	if (devid < 0)
343 		return ERR_PTR(devid);
344 
345 	list_for_each_entry(p, &acpihid_map, list) {
346 		if ((devid == p->devid) && p->group)
347 			entry->group = p->group;
348 	}
349 
350 	if (!entry->group)
351 		entry->group = generic_device_group(dev);
352 	else
353 		iommu_group_ref_get(entry->group);
354 
355 	return entry->group;
356 }
357 
pci_iommuv2_capable(struct pci_dev * pdev)358 static bool pci_iommuv2_capable(struct pci_dev *pdev)
359 {
360 	static const int caps[] = {
361 		PCI_EXT_CAP_ID_ATS,
362 		PCI_EXT_CAP_ID_PRI,
363 		PCI_EXT_CAP_ID_PASID,
364 	};
365 	int i, pos;
366 
367 	if (pci_ats_disabled())
368 		return false;
369 
370 	for (i = 0; i < 3; ++i) {
371 		pos = pci_find_ext_capability(pdev, caps[i]);
372 		if (pos == 0)
373 			return false;
374 	}
375 
376 	return true;
377 }
378 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)379 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
380 {
381 	struct iommu_dev_data *dev_data;
382 
383 	dev_data = get_dev_data(&pdev->dev);
384 
385 	return dev_data->errata & (1 << erratum) ? true : false;
386 }
387 
388 /*
389  * This function checks if the driver got a valid device from the caller to
390  * avoid dereferencing invalid pointers.
391  */
check_device(struct device * dev)392 static bool check_device(struct device *dev)
393 {
394 	int devid;
395 
396 	if (!dev || !dev->dma_mask)
397 		return false;
398 
399 	devid = get_device_id(dev);
400 	if (devid < 0)
401 		return false;
402 
403 	/* Out of our scope? */
404 	if (devid > amd_iommu_last_bdf)
405 		return false;
406 
407 	if (amd_iommu_rlookup_table[devid] == NULL)
408 		return false;
409 
410 	return true;
411 }
412 
init_iommu_group(struct device * dev)413 static void init_iommu_group(struct device *dev)
414 {
415 	struct iommu_group *group;
416 
417 	group = iommu_group_get_for_dev(dev);
418 	if (IS_ERR(group))
419 		return;
420 
421 	iommu_group_put(group);
422 }
423 
iommu_init_device(struct device * dev)424 static int iommu_init_device(struct device *dev)
425 {
426 	struct iommu_dev_data *dev_data;
427 	struct amd_iommu *iommu;
428 	int devid;
429 
430 	if (dev->archdata.iommu)
431 		return 0;
432 
433 	devid = get_device_id(dev);
434 	if (devid < 0)
435 		return devid;
436 
437 	iommu = amd_iommu_rlookup_table[devid];
438 
439 	dev_data = find_dev_data(devid);
440 	if (!dev_data)
441 		return -ENOMEM;
442 
443 	dev_data->alias = get_alias(dev);
444 
445 	/*
446 	 * By default we use passthrough mode for IOMMUv2 capable device.
447 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
448 	 * invalid address), we ignore the capability for the device so
449 	 * it'll be forced to go into translation mode.
450 	 */
451 	if ((iommu_pass_through || !amd_iommu_force_isolation) &&
452 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
453 		struct amd_iommu *iommu;
454 
455 		iommu = amd_iommu_rlookup_table[dev_data->devid];
456 		dev_data->iommu_v2 = iommu->is_iommu_v2;
457 	}
458 
459 	dev->archdata.iommu = dev_data;
460 
461 	iommu_device_link(&iommu->iommu, dev);
462 
463 	return 0;
464 }
465 
iommu_ignore_device(struct device * dev)466 static void iommu_ignore_device(struct device *dev)
467 {
468 	u16 alias;
469 	int devid;
470 
471 	devid = get_device_id(dev);
472 	if (devid < 0)
473 		return;
474 
475 	alias = get_alias(dev);
476 
477 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
478 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
479 
480 	amd_iommu_rlookup_table[devid] = NULL;
481 	amd_iommu_rlookup_table[alias] = NULL;
482 }
483 
iommu_uninit_device(struct device * dev)484 static void iommu_uninit_device(struct device *dev)
485 {
486 	struct iommu_dev_data *dev_data;
487 	struct amd_iommu *iommu;
488 	int devid;
489 
490 	devid = get_device_id(dev);
491 	if (devid < 0)
492 		return;
493 
494 	iommu = amd_iommu_rlookup_table[devid];
495 
496 	dev_data = search_dev_data(devid);
497 	if (!dev_data)
498 		return;
499 
500 	if (dev_data->domain)
501 		detach_device(dev);
502 
503 	iommu_device_unlink(&iommu->iommu, dev);
504 
505 	iommu_group_remove_device(dev);
506 
507 	/* Remove dma-ops */
508 	dev->dma_ops = NULL;
509 
510 	/*
511 	 * We keep dev_data around for unplugged devices and reuse it when the
512 	 * device is re-plugged - not doing so would introduce a ton of races.
513 	 */
514 }
515 
516 /****************************************************************************
517  *
518  * Interrupt handling functions
519  *
520  ****************************************************************************/
521 
dump_dte_entry(u16 devid)522 static void dump_dte_entry(u16 devid)
523 {
524 	int i;
525 
526 	for (i = 0; i < 4; ++i)
527 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
528 			amd_iommu_dev_table[devid].data[i]);
529 }
530 
dump_command(unsigned long phys_addr)531 static void dump_command(unsigned long phys_addr)
532 {
533 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
534 	int i;
535 
536 	for (i = 0; i < 4; ++i)
537 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
538 }
539 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)540 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
541 					u64 address, int flags)
542 {
543 	struct iommu_dev_data *dev_data = NULL;
544 	struct pci_dev *pdev;
545 
546 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
547 					   devid & 0xff);
548 	if (pdev)
549 		dev_data = get_dev_data(&pdev->dev);
550 
551 	if (dev_data && __ratelimit(&dev_data->rs)) {
552 		dev_err(&pdev->dev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
553 			domain_id, address, flags);
554 	} else if (printk_ratelimit()) {
555 		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
556 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
557 			domain_id, address, flags);
558 	}
559 
560 	if (pdev)
561 		pci_dev_put(pdev);
562 }
563 
iommu_print_event(struct amd_iommu * iommu,void * __evt)564 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
565 {
566 	struct device *dev = iommu->iommu.dev;
567 	int type, devid, pasid, flags, tag;
568 	volatile u32 *event = __evt;
569 	int count = 0;
570 	u64 address;
571 
572 retry:
573 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
574 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
575 	pasid   = PPR_PASID(*(u64 *)&event[0]);
576 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
577 	address = (u64)(((u64)event[3]) << 32) | event[2];
578 
579 	if (type == 0) {
580 		/* Did we hit the erratum? */
581 		if (++count == LOOP_TIMEOUT) {
582 			pr_err("AMD-Vi: No event written to event log\n");
583 			return;
584 		}
585 		udelay(1);
586 		goto retry;
587 	}
588 
589 	if (type == EVENT_TYPE_IO_FAULT) {
590 		amd_iommu_report_page_fault(devid, pasid, address, flags);
591 		return;
592 	}
593 
594 	switch (type) {
595 	case EVENT_TYPE_ILL_DEV:
596 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
597 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 			pasid, address, flags);
599 		dump_dte_entry(devid);
600 		break;
601 	case EVENT_TYPE_DEV_TAB_ERR:
602 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603 			"address=0x%016llx flags=0x%04x]\n",
604 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
605 			address, flags);
606 		break;
607 	case EVENT_TYPE_PAGE_TAB_ERR:
608 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
609 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 			pasid, address, flags);
611 		break;
612 	case EVENT_TYPE_ILL_CMD:
613 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
614 		dump_command(address);
615 		break;
616 	case EVENT_TYPE_CMD_HARD_ERR:
617 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
618 			address, flags);
619 		break;
620 	case EVENT_TYPE_IOTLB_INV_TO:
621 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
622 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
623 			address);
624 		break;
625 	case EVENT_TYPE_INV_DEV_REQ:
626 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
627 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 			pasid, address, flags);
629 		break;
630 	case EVENT_TYPE_INV_PPR_REQ:
631 		pasid = ((event[0] >> 16) & 0xFFFF)
632 			| ((event[1] << 6) & 0xF0000);
633 		tag = event[1] & 0x03FF;
634 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
635 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 			pasid, address, flags);
637 		break;
638 	default:
639 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640 			event[0], event[1], event[2], event[3]);
641 	}
642 
643 	memset(__evt, 0, 4 * sizeof(u32));
644 }
645 
iommu_poll_events(struct amd_iommu * iommu)646 static void iommu_poll_events(struct amd_iommu *iommu)
647 {
648 	u32 head, tail;
649 
650 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
651 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
652 
653 	while (head != tail) {
654 		iommu_print_event(iommu, iommu->evt_buf + head);
655 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
656 	}
657 
658 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
659 }
660 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)661 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
662 {
663 	struct amd_iommu_fault fault;
664 
665 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
666 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
667 		return;
668 	}
669 
670 	fault.address   = raw[1];
671 	fault.pasid     = PPR_PASID(raw[0]);
672 	fault.device_id = PPR_DEVID(raw[0]);
673 	fault.tag       = PPR_TAG(raw[0]);
674 	fault.flags     = PPR_FLAGS(raw[0]);
675 
676 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
677 }
678 
iommu_poll_ppr_log(struct amd_iommu * iommu)679 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
680 {
681 	u32 head, tail;
682 
683 	if (iommu->ppr_log == NULL)
684 		return;
685 
686 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
687 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
688 
689 	while (head != tail) {
690 		volatile u64 *raw;
691 		u64 entry[2];
692 		int i;
693 
694 		raw = (u64 *)(iommu->ppr_log + head);
695 
696 		/*
697 		 * Hardware bug: Interrupt may arrive before the entry is
698 		 * written to memory. If this happens we need to wait for the
699 		 * entry to arrive.
700 		 */
701 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
702 			if (PPR_REQ_TYPE(raw[0]) != 0)
703 				break;
704 			udelay(1);
705 		}
706 
707 		/* Avoid memcpy function-call overhead */
708 		entry[0] = raw[0];
709 		entry[1] = raw[1];
710 
711 		/*
712 		 * To detect the hardware bug we need to clear the entry
713 		 * back to zero.
714 		 */
715 		raw[0] = raw[1] = 0UL;
716 
717 		/* Update head pointer of hardware ring-buffer */
718 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
719 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
720 
721 		/* Handle PPR entry */
722 		iommu_handle_ppr_entry(iommu, entry);
723 
724 		/* Refresh ring-buffer information */
725 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
726 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
727 	}
728 }
729 
730 #ifdef CONFIG_IRQ_REMAP
731 static int (*iommu_ga_log_notifier)(u32);
732 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))733 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
734 {
735 	iommu_ga_log_notifier = notifier;
736 
737 	return 0;
738 }
739 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
740 
iommu_poll_ga_log(struct amd_iommu * iommu)741 static void iommu_poll_ga_log(struct amd_iommu *iommu)
742 {
743 	u32 head, tail, cnt = 0;
744 
745 	if (iommu->ga_log == NULL)
746 		return;
747 
748 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
749 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
750 
751 	while (head != tail) {
752 		volatile u64 *raw;
753 		u64 log_entry;
754 
755 		raw = (u64 *)(iommu->ga_log + head);
756 		cnt++;
757 
758 		/* Avoid memcpy function-call overhead */
759 		log_entry = *raw;
760 
761 		/* Update head pointer of hardware ring-buffer */
762 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
763 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
764 
765 		/* Handle GA entry */
766 		switch (GA_REQ_TYPE(log_entry)) {
767 		case GA_GUEST_NR:
768 			if (!iommu_ga_log_notifier)
769 				break;
770 
771 			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
772 				 __func__, GA_DEVID(log_entry),
773 				 GA_TAG(log_entry));
774 
775 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
776 				pr_err("AMD-Vi: GA log notifier failed.\n");
777 			break;
778 		default:
779 			break;
780 		}
781 	}
782 }
783 #endif /* CONFIG_IRQ_REMAP */
784 
785 #define AMD_IOMMU_INT_MASK	\
786 	(MMIO_STATUS_EVT_INT_MASK | \
787 	 MMIO_STATUS_PPR_INT_MASK | \
788 	 MMIO_STATUS_GALOG_INT_MASK)
789 
amd_iommu_int_thread(int irq,void * data)790 irqreturn_t amd_iommu_int_thread(int irq, void *data)
791 {
792 	struct amd_iommu *iommu = (struct amd_iommu *) data;
793 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
794 
795 	while (status & AMD_IOMMU_INT_MASK) {
796 		/* Enable EVT and PPR and GA interrupts again */
797 		writel(AMD_IOMMU_INT_MASK,
798 			iommu->mmio_base + MMIO_STATUS_OFFSET);
799 
800 		if (status & MMIO_STATUS_EVT_INT_MASK) {
801 			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
802 			iommu_poll_events(iommu);
803 		}
804 
805 		if (status & MMIO_STATUS_PPR_INT_MASK) {
806 			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
807 			iommu_poll_ppr_log(iommu);
808 		}
809 
810 #ifdef CONFIG_IRQ_REMAP
811 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
812 			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
813 			iommu_poll_ga_log(iommu);
814 		}
815 #endif
816 
817 		/*
818 		 * Hardware bug: ERBT1312
819 		 * When re-enabling interrupt (by writing 1
820 		 * to clear the bit), the hardware might also try to set
821 		 * the interrupt bit in the event status register.
822 		 * In this scenario, the bit will be set, and disable
823 		 * subsequent interrupts.
824 		 *
825 		 * Workaround: The IOMMU driver should read back the
826 		 * status register and check if the interrupt bits are cleared.
827 		 * If not, driver will need to go through the interrupt handler
828 		 * again and re-clear the bits
829 		 */
830 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
831 	}
832 	return IRQ_HANDLED;
833 }
834 
amd_iommu_int_handler(int irq,void * data)835 irqreturn_t amd_iommu_int_handler(int irq, void *data)
836 {
837 	return IRQ_WAKE_THREAD;
838 }
839 
840 /****************************************************************************
841  *
842  * IOMMU command queuing functions
843  *
844  ****************************************************************************/
845 
wait_on_sem(volatile u64 * sem)846 static int wait_on_sem(volatile u64 *sem)
847 {
848 	int i = 0;
849 
850 	while (*sem == 0 && i < LOOP_TIMEOUT) {
851 		udelay(1);
852 		i += 1;
853 	}
854 
855 	if (i == LOOP_TIMEOUT) {
856 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
857 		return -EIO;
858 	}
859 
860 	return 0;
861 }
862 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)863 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 			       struct iommu_cmd *cmd)
865 {
866 	u8 *target;
867 
868 	target = iommu->cmd_buf + iommu->cmd_buf_tail;
869 
870 	iommu->cmd_buf_tail += sizeof(*cmd);
871 	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
872 
873 	/* Copy command to buffer */
874 	memcpy(target, cmd, sizeof(*cmd));
875 
876 	/* Tell the IOMMU about it */
877 	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
878 }
879 
build_completion_wait(struct iommu_cmd * cmd,u64 address)880 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
881 {
882 	u64 paddr = iommu_virt_to_phys((void *)address);
883 
884 	WARN_ON(address & 0x7ULL);
885 
886 	memset(cmd, 0, sizeof(*cmd));
887 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
888 	cmd->data[1] = upper_32_bits(paddr);
889 	cmd->data[2] = 1;
890 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
891 }
892 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)893 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
894 {
895 	memset(cmd, 0, sizeof(*cmd));
896 	cmd->data[0] = devid;
897 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
898 }
899 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)900 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
901 				  size_t size, u16 domid, int pde)
902 {
903 	u64 pages;
904 	bool s;
905 
906 	pages = iommu_num_pages(address, size, PAGE_SIZE);
907 	s     = false;
908 
909 	if (pages > 1) {
910 		/*
911 		 * If we have to flush more than one page, flush all
912 		 * TLB entries for this domain
913 		 */
914 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
915 		s = true;
916 	}
917 
918 	address &= PAGE_MASK;
919 
920 	memset(cmd, 0, sizeof(*cmd));
921 	cmd->data[1] |= domid;
922 	cmd->data[2]  = lower_32_bits(address);
923 	cmd->data[3]  = upper_32_bits(address);
924 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
925 	if (s) /* size bit - we flush more than one 4kb page */
926 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
927 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
928 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
929 }
930 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)931 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
932 				  u64 address, size_t size)
933 {
934 	u64 pages;
935 	bool s;
936 
937 	pages = iommu_num_pages(address, size, PAGE_SIZE);
938 	s     = false;
939 
940 	if (pages > 1) {
941 		/*
942 		 * If we have to flush more than one page, flush all
943 		 * TLB entries for this domain
944 		 */
945 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
946 		s = true;
947 	}
948 
949 	address &= PAGE_MASK;
950 
951 	memset(cmd, 0, sizeof(*cmd));
952 	cmd->data[0]  = devid;
953 	cmd->data[0] |= (qdep & 0xff) << 24;
954 	cmd->data[1]  = devid;
955 	cmd->data[2]  = lower_32_bits(address);
956 	cmd->data[3]  = upper_32_bits(address);
957 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
958 	if (s)
959 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
960 }
961 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)962 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
963 				  u64 address, bool size)
964 {
965 	memset(cmd, 0, sizeof(*cmd));
966 
967 	address &= ~(0xfffULL);
968 
969 	cmd->data[0]  = pasid;
970 	cmd->data[1]  = domid;
971 	cmd->data[2]  = lower_32_bits(address);
972 	cmd->data[3]  = upper_32_bits(address);
973 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
974 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
975 	if (size)
976 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
977 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
978 }
979 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)980 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
981 				  int qdep, u64 address, bool size)
982 {
983 	memset(cmd, 0, sizeof(*cmd));
984 
985 	address &= ~(0xfffULL);
986 
987 	cmd->data[0]  = devid;
988 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
989 	cmd->data[0] |= (qdep  & 0xff) << 24;
990 	cmd->data[1]  = devid;
991 	cmd->data[1] |= (pasid & 0xff) << 16;
992 	cmd->data[2]  = lower_32_bits(address);
993 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
994 	cmd->data[3]  = upper_32_bits(address);
995 	if (size)
996 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
997 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
998 }
999 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)1000 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1001 			       int status, int tag, bool gn)
1002 {
1003 	memset(cmd, 0, sizeof(*cmd));
1004 
1005 	cmd->data[0]  = devid;
1006 	if (gn) {
1007 		cmd->data[1]  = pasid;
1008 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1009 	}
1010 	cmd->data[3]  = tag & 0x1ff;
1011 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1012 
1013 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1014 }
1015 
build_inv_all(struct iommu_cmd * cmd)1016 static void build_inv_all(struct iommu_cmd *cmd)
1017 {
1018 	memset(cmd, 0, sizeof(*cmd));
1019 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1020 }
1021 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1022 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1023 {
1024 	memset(cmd, 0, sizeof(*cmd));
1025 	cmd->data[0] = devid;
1026 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1027 }
1028 
1029 /*
1030  * Writes the command to the IOMMUs command buffer and informs the
1031  * hardware about the new command.
1032  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1033 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1034 				      struct iommu_cmd *cmd,
1035 				      bool sync)
1036 {
1037 	unsigned int count = 0;
1038 	u32 left, next_tail;
1039 
1040 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1041 again:
1042 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1043 
1044 	if (left <= 0x20) {
1045 		/* Skip udelay() the first time around */
1046 		if (count++) {
1047 			if (count == LOOP_TIMEOUT) {
1048 				pr_err("AMD-Vi: Command buffer timeout\n");
1049 				return -EIO;
1050 			}
1051 
1052 			udelay(1);
1053 		}
1054 
1055 		/* Update head and recheck remaining space */
1056 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1057 					    MMIO_CMD_HEAD_OFFSET);
1058 
1059 		goto again;
1060 	}
1061 
1062 	copy_cmd_to_buffer(iommu, cmd);
1063 
1064 	/* Do we need to make sure all commands are processed? */
1065 	iommu->need_sync = sync;
1066 
1067 	return 0;
1068 }
1069 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1070 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1071 				    struct iommu_cmd *cmd,
1072 				    bool sync)
1073 {
1074 	unsigned long flags;
1075 	int ret;
1076 
1077 	raw_spin_lock_irqsave(&iommu->lock, flags);
1078 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1079 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1080 
1081 	return ret;
1082 }
1083 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1084 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1085 {
1086 	return iommu_queue_command_sync(iommu, cmd, true);
1087 }
1088 
1089 /*
1090  * This function queues a completion wait command into the command
1091  * buffer of an IOMMU
1092  */
iommu_completion_wait(struct amd_iommu * iommu)1093 static int iommu_completion_wait(struct amd_iommu *iommu)
1094 {
1095 	struct iommu_cmd cmd;
1096 	unsigned long flags;
1097 	int ret;
1098 
1099 	if (!iommu->need_sync)
1100 		return 0;
1101 
1102 
1103 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1104 
1105 	raw_spin_lock_irqsave(&iommu->lock, flags);
1106 
1107 	iommu->cmd_sem = 0;
1108 
1109 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1110 	if (ret)
1111 		goto out_unlock;
1112 
1113 	ret = wait_on_sem(&iommu->cmd_sem);
1114 
1115 out_unlock:
1116 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1117 
1118 	return ret;
1119 }
1120 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1121 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1122 {
1123 	struct iommu_cmd cmd;
1124 
1125 	build_inv_dte(&cmd, devid);
1126 
1127 	return iommu_queue_command(iommu, &cmd);
1128 }
1129 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1130 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1131 {
1132 	u32 devid;
1133 
1134 	for (devid = 0; devid <= 0xffff; ++devid)
1135 		iommu_flush_dte(iommu, devid);
1136 
1137 	iommu_completion_wait(iommu);
1138 }
1139 
1140 /*
1141  * This function uses heavy locking and may disable irqs for some time. But
1142  * this is no issue because it is only called during resume.
1143  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1144 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1145 {
1146 	u32 dom_id;
1147 
1148 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1149 		struct iommu_cmd cmd;
1150 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1151 				      dom_id, 1);
1152 		iommu_queue_command(iommu, &cmd);
1153 	}
1154 
1155 	iommu_completion_wait(iommu);
1156 }
1157 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1158 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1159 {
1160 	struct iommu_cmd cmd;
1161 
1162 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1163 			      dom_id, 1);
1164 	iommu_queue_command(iommu, &cmd);
1165 
1166 	iommu_completion_wait(iommu);
1167 }
1168 
amd_iommu_flush_all(struct amd_iommu * iommu)1169 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1170 {
1171 	struct iommu_cmd cmd;
1172 
1173 	build_inv_all(&cmd);
1174 
1175 	iommu_queue_command(iommu, &cmd);
1176 	iommu_completion_wait(iommu);
1177 }
1178 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1179 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1180 {
1181 	struct iommu_cmd cmd;
1182 
1183 	build_inv_irt(&cmd, devid);
1184 
1185 	iommu_queue_command(iommu, &cmd);
1186 }
1187 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1188 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1189 {
1190 	u32 devid;
1191 
1192 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1193 		iommu_flush_irt(iommu, devid);
1194 
1195 	iommu_completion_wait(iommu);
1196 }
1197 
iommu_flush_all_caches(struct amd_iommu * iommu)1198 void iommu_flush_all_caches(struct amd_iommu *iommu)
1199 {
1200 	if (iommu_feature(iommu, FEATURE_IA)) {
1201 		amd_iommu_flush_all(iommu);
1202 	} else {
1203 		amd_iommu_flush_dte_all(iommu);
1204 		amd_iommu_flush_irt_all(iommu);
1205 		amd_iommu_flush_tlb_all(iommu);
1206 	}
1207 }
1208 
1209 /*
1210  * Command send function for flushing on-device TLB
1211  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1212 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1213 			      u64 address, size_t size)
1214 {
1215 	struct amd_iommu *iommu;
1216 	struct iommu_cmd cmd;
1217 	int qdep;
1218 
1219 	qdep     = dev_data->ats.qdep;
1220 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1221 
1222 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1223 
1224 	return iommu_queue_command(iommu, &cmd);
1225 }
1226 
1227 /*
1228  * Command send function for invalidating a device table entry
1229  */
device_flush_dte(struct iommu_dev_data * dev_data)1230 static int device_flush_dte(struct iommu_dev_data *dev_data)
1231 {
1232 	struct amd_iommu *iommu;
1233 	u16 alias;
1234 	int ret;
1235 
1236 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1237 	alias = dev_data->alias;
1238 
1239 	ret = iommu_flush_dte(iommu, dev_data->devid);
1240 	if (!ret && alias != dev_data->devid)
1241 		ret = iommu_flush_dte(iommu, alias);
1242 	if (ret)
1243 		return ret;
1244 
1245 	if (dev_data->ats.enabled)
1246 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1247 
1248 	return ret;
1249 }
1250 
1251 /*
1252  * TLB invalidation function which is called from the mapping functions.
1253  * It invalidates a single PTE if the range to flush is within a single
1254  * page. Otherwise it flushes the whole TLB of the IOMMU.
1255  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1256 static void __domain_flush_pages(struct protection_domain *domain,
1257 				 u64 address, size_t size, int pde)
1258 {
1259 	struct iommu_dev_data *dev_data;
1260 	struct iommu_cmd cmd;
1261 	int ret = 0, i;
1262 
1263 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1264 
1265 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1266 		if (!domain->dev_iommu[i])
1267 			continue;
1268 
1269 		/*
1270 		 * Devices of this domain are behind this IOMMU
1271 		 * We need a TLB flush
1272 		 */
1273 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1274 	}
1275 
1276 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1277 
1278 		if (!dev_data->ats.enabled)
1279 			continue;
1280 
1281 		ret |= device_flush_iotlb(dev_data, address, size);
1282 	}
1283 
1284 	WARN_ON(ret);
1285 }
1286 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1287 static void domain_flush_pages(struct protection_domain *domain,
1288 			       u64 address, size_t size)
1289 {
1290 	__domain_flush_pages(domain, address, size, 0);
1291 }
1292 
1293 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1294 static void domain_flush_tlb(struct protection_domain *domain)
1295 {
1296 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1297 }
1298 
1299 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1300 static void domain_flush_tlb_pde(struct protection_domain *domain)
1301 {
1302 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1303 }
1304 
domain_flush_complete(struct protection_domain * domain)1305 static void domain_flush_complete(struct protection_domain *domain)
1306 {
1307 	int i;
1308 
1309 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1310 		if (domain && !domain->dev_iommu[i])
1311 			continue;
1312 
1313 		/*
1314 		 * Devices of this domain are behind this IOMMU
1315 		 * We need to wait for completion of all commands.
1316 		 */
1317 		iommu_completion_wait(amd_iommus[i]);
1318 	}
1319 }
1320 
1321 
1322 /*
1323  * This function flushes the DTEs for all devices in domain
1324  */
domain_flush_devices(struct protection_domain * domain)1325 static void domain_flush_devices(struct protection_domain *domain)
1326 {
1327 	struct iommu_dev_data *dev_data;
1328 
1329 	list_for_each_entry(dev_data, &domain->dev_list, list)
1330 		device_flush_dte(dev_data);
1331 }
1332 
1333 /****************************************************************************
1334  *
1335  * The functions below are used the create the page table mappings for
1336  * unity mapped regions.
1337  *
1338  ****************************************************************************/
1339 
1340 /*
1341  * This function is used to add another level to an IO page table. Adding
1342  * another level increases the size of the address space by 9 bits to a size up
1343  * to 64 bits.
1344  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1345 static void increase_address_space(struct protection_domain *domain,
1346 				   gfp_t gfp)
1347 {
1348 	unsigned long flags;
1349 	u64 *pte;
1350 
1351 	spin_lock_irqsave(&domain->lock, flags);
1352 
1353 	if (WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1354 		/* address space already 64 bit large */
1355 		goto out;
1356 
1357 	pte = (void *)get_zeroed_page(gfp);
1358 	if (!pte)
1359 		goto out;
1360 
1361 	*pte             = PM_LEVEL_PDE(domain->mode,
1362 					iommu_virt_to_phys(domain->pt_root));
1363 	domain->pt_root  = pte;
1364 	domain->mode    += 1;
1365 	domain->updated  = true;
1366 
1367 out:
1368 	spin_unlock_irqrestore(&domain->lock, flags);
1369 
1370 	return;
1371 }
1372 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1373 static u64 *alloc_pte(struct protection_domain *domain,
1374 		      unsigned long address,
1375 		      unsigned long page_size,
1376 		      u64 **pte_page,
1377 		      gfp_t gfp)
1378 {
1379 	int level, end_lvl;
1380 	u64 *pte, *page;
1381 
1382 	BUG_ON(!is_power_of_2(page_size));
1383 
1384 	while (address > PM_LEVEL_SIZE(domain->mode))
1385 		increase_address_space(domain, gfp);
1386 
1387 	level   = domain->mode - 1;
1388 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389 	address = PAGE_SIZE_ALIGN(address, page_size);
1390 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1391 
1392 	while (level > end_lvl) {
1393 		u64 __pte, __npte;
1394 
1395 		__pte = *pte;
1396 
1397 		if (!IOMMU_PTE_PRESENT(__pte)) {
1398 			page = (u64 *)get_zeroed_page(gfp);
1399 			if (!page)
1400 				return NULL;
1401 
1402 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1403 
1404 			/* pte could have been changed somewhere. */
1405 			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1406 				free_page((unsigned long)page);
1407 				continue;
1408 			}
1409 		}
1410 
1411 		/* No level skipping support yet */
1412 		if (PM_PTE_LEVEL(*pte) != level)
1413 			return NULL;
1414 
1415 		level -= 1;
1416 
1417 		pte = IOMMU_PTE_PAGE(*pte);
1418 
1419 		if (pte_page && level == end_lvl)
1420 			*pte_page = pte;
1421 
1422 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1423 	}
1424 
1425 	return pte;
1426 }
1427 
1428 /*
1429  * This function checks if there is a PTE for a given dma address. If
1430  * there is one, it returns the pointer to it.
1431  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1432 static u64 *fetch_pte(struct protection_domain *domain,
1433 		      unsigned long address,
1434 		      unsigned long *page_size)
1435 {
1436 	int level;
1437 	u64 *pte;
1438 
1439 	*page_size = 0;
1440 
1441 	if (address > PM_LEVEL_SIZE(domain->mode))
1442 		return NULL;
1443 
1444 	level	   =  domain->mode - 1;
1445 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1446 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1447 
1448 	while (level > 0) {
1449 
1450 		/* Not Present */
1451 		if (!IOMMU_PTE_PRESENT(*pte))
1452 			return NULL;
1453 
1454 		/* Large PTE */
1455 		if (PM_PTE_LEVEL(*pte) == 7 ||
1456 		    PM_PTE_LEVEL(*pte) == 0)
1457 			break;
1458 
1459 		/* No level skipping support yet */
1460 		if (PM_PTE_LEVEL(*pte) != level)
1461 			return NULL;
1462 
1463 		level -= 1;
1464 
1465 		/* Walk to the next level */
1466 		pte	   = IOMMU_PTE_PAGE(*pte);
1467 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1468 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1469 	}
1470 
1471 	if (PM_PTE_LEVEL(*pte) == 0x07) {
1472 		unsigned long pte_mask;
1473 
1474 		/*
1475 		 * If we have a series of large PTEs, make
1476 		 * sure to return a pointer to the first one.
1477 		 */
1478 		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1479 		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1480 		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1481 	}
1482 
1483 	return pte;
1484 }
1485 
1486 /*
1487  * Generic mapping functions. It maps a physical address into a DMA
1488  * address space. It allocates the page table pages if necessary.
1489  * In the future it can be extended to a generic mapping function
1490  * supporting all features of AMD IOMMU page tables like level skipping
1491  * and full 64 bit address spaces.
1492  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1493 static int iommu_map_page(struct protection_domain *dom,
1494 			  unsigned long bus_addr,
1495 			  unsigned long phys_addr,
1496 			  unsigned long page_size,
1497 			  int prot,
1498 			  gfp_t gfp)
1499 {
1500 	u64 __pte, *pte;
1501 	int i, count;
1502 
1503 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1504 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1505 
1506 	if (!(prot & IOMMU_PROT_MASK))
1507 		return -EINVAL;
1508 
1509 	count = PAGE_SIZE_PTE_COUNT(page_size);
1510 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1511 
1512 	if (!pte)
1513 		return -ENOMEM;
1514 
1515 	for (i = 0; i < count; ++i)
1516 		if (IOMMU_PTE_PRESENT(pte[i]))
1517 			return -EBUSY;
1518 
1519 	if (count > 1) {
1520 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1521 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1522 	} else
1523 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1524 
1525 	if (prot & IOMMU_PROT_IR)
1526 		__pte |= IOMMU_PTE_IR;
1527 	if (prot & IOMMU_PROT_IW)
1528 		__pte |= IOMMU_PTE_IW;
1529 
1530 	for (i = 0; i < count; ++i)
1531 		pte[i] = __pte;
1532 
1533 	update_domain(dom);
1534 
1535 	return 0;
1536 }
1537 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1538 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1539 				      unsigned long bus_addr,
1540 				      unsigned long page_size)
1541 {
1542 	unsigned long long unmapped;
1543 	unsigned long unmap_size;
1544 	u64 *pte;
1545 
1546 	BUG_ON(!is_power_of_2(page_size));
1547 
1548 	unmapped = 0;
1549 
1550 	while (unmapped < page_size) {
1551 
1552 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1553 
1554 		if (pte) {
1555 			int i, count;
1556 
1557 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1558 			for (i = 0; i < count; i++)
1559 				pte[i] = 0ULL;
1560 		}
1561 
1562 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1563 		unmapped += unmap_size;
1564 	}
1565 
1566 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1567 
1568 	return unmapped;
1569 }
1570 
1571 /****************************************************************************
1572  *
1573  * The next functions belong to the address allocator for the dma_ops
1574  * interface functions.
1575  *
1576  ****************************************************************************/
1577 
1578 
dma_ops_alloc_iova(struct device * dev,struct dma_ops_domain * dma_dom,unsigned int pages,u64 dma_mask)1579 static unsigned long dma_ops_alloc_iova(struct device *dev,
1580 					struct dma_ops_domain *dma_dom,
1581 					unsigned int pages, u64 dma_mask)
1582 {
1583 	unsigned long pfn = 0;
1584 
1585 	pages = __roundup_pow_of_two(pages);
1586 
1587 	if (dma_mask > DMA_BIT_MASK(32))
1588 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1589 				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1590 
1591 	if (!pfn)
1592 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1593 				      IOVA_PFN(dma_mask), true);
1594 
1595 	return (pfn << PAGE_SHIFT);
1596 }
1597 
dma_ops_free_iova(struct dma_ops_domain * dma_dom,unsigned long address,unsigned int pages)1598 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1599 			      unsigned long address,
1600 			      unsigned int pages)
1601 {
1602 	pages = __roundup_pow_of_two(pages);
1603 	address >>= PAGE_SHIFT;
1604 
1605 	free_iova_fast(&dma_dom->iovad, address, pages);
1606 }
1607 
1608 /****************************************************************************
1609  *
1610  * The next functions belong to the domain allocation. A domain is
1611  * allocated for every IOMMU as the default domain. If device isolation
1612  * is enabled, every device get its own domain. The most important thing
1613  * about domains is the page table mapping the DMA address space they
1614  * contain.
1615  *
1616  ****************************************************************************/
1617 
1618 /*
1619  * This function adds a protection domain to the global protection domain list
1620  */
add_domain_to_list(struct protection_domain * domain)1621 static void add_domain_to_list(struct protection_domain *domain)
1622 {
1623 	unsigned long flags;
1624 
1625 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1626 	list_add(&domain->list, &amd_iommu_pd_list);
1627 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1628 }
1629 
1630 /*
1631  * This function removes a protection domain to the global
1632  * protection domain list
1633  */
del_domain_from_list(struct protection_domain * domain)1634 static void del_domain_from_list(struct protection_domain *domain)
1635 {
1636 	unsigned long flags;
1637 
1638 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1639 	list_del(&domain->list);
1640 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1641 }
1642 
domain_id_alloc(void)1643 static u16 domain_id_alloc(void)
1644 {
1645 	int id;
1646 
1647 	spin_lock(&pd_bitmap_lock);
1648 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1649 	BUG_ON(id == 0);
1650 	if (id > 0 && id < MAX_DOMAIN_ID)
1651 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1652 	else
1653 		id = 0;
1654 	spin_unlock(&pd_bitmap_lock);
1655 
1656 	return id;
1657 }
1658 
domain_id_free(int id)1659 static void domain_id_free(int id)
1660 {
1661 	spin_lock(&pd_bitmap_lock);
1662 	if (id > 0 && id < MAX_DOMAIN_ID)
1663 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1664 	spin_unlock(&pd_bitmap_lock);
1665 }
1666 
1667 #define DEFINE_FREE_PT_FN(LVL, FN)				\
1668 static void free_pt_##LVL (unsigned long __pt)			\
1669 {								\
1670 	unsigned long p;					\
1671 	u64 *pt;						\
1672 	int i;							\
1673 								\
1674 	pt = (u64 *)__pt;					\
1675 								\
1676 	for (i = 0; i < 512; ++i) {				\
1677 		/* PTE present? */				\
1678 		if (!IOMMU_PTE_PRESENT(pt[i]))			\
1679 			continue;				\
1680 								\
1681 		/* Large PTE? */				\
1682 		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
1683 		    PM_PTE_LEVEL(pt[i]) == 7)			\
1684 			continue;				\
1685 								\
1686 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
1687 		FN(p);						\
1688 	}							\
1689 	free_page((unsigned long)pt);				\
1690 }
1691 
DEFINE_FREE_PT_FN(l2,free_page)1692 DEFINE_FREE_PT_FN(l2, free_page)
1693 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1694 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1695 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1696 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1697 
1698 static void free_pagetable(struct protection_domain *domain)
1699 {
1700 	unsigned long root = (unsigned long)domain->pt_root;
1701 
1702 	switch (domain->mode) {
1703 	case PAGE_MODE_NONE:
1704 		break;
1705 	case PAGE_MODE_1_LEVEL:
1706 		free_page(root);
1707 		break;
1708 	case PAGE_MODE_2_LEVEL:
1709 		free_pt_l2(root);
1710 		break;
1711 	case PAGE_MODE_3_LEVEL:
1712 		free_pt_l3(root);
1713 		break;
1714 	case PAGE_MODE_4_LEVEL:
1715 		free_pt_l4(root);
1716 		break;
1717 	case PAGE_MODE_5_LEVEL:
1718 		free_pt_l5(root);
1719 		break;
1720 	case PAGE_MODE_6_LEVEL:
1721 		free_pt_l6(root);
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726 }
1727 
free_gcr3_tbl_level1(u64 * tbl)1728 static void free_gcr3_tbl_level1(u64 *tbl)
1729 {
1730 	u64 *ptr;
1731 	int i;
1732 
1733 	for (i = 0; i < 512; ++i) {
1734 		if (!(tbl[i] & GCR3_VALID))
1735 			continue;
1736 
1737 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1738 
1739 		free_page((unsigned long)ptr);
1740 	}
1741 }
1742 
free_gcr3_tbl_level2(u64 * tbl)1743 static void free_gcr3_tbl_level2(u64 *tbl)
1744 {
1745 	u64 *ptr;
1746 	int i;
1747 
1748 	for (i = 0; i < 512; ++i) {
1749 		if (!(tbl[i] & GCR3_VALID))
1750 			continue;
1751 
1752 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1753 
1754 		free_gcr3_tbl_level1(ptr);
1755 	}
1756 }
1757 
free_gcr3_table(struct protection_domain * domain)1758 static void free_gcr3_table(struct protection_domain *domain)
1759 {
1760 	if (domain->glx == 2)
1761 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1762 	else if (domain->glx == 1)
1763 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1764 	else
1765 		BUG_ON(domain->glx != 0);
1766 
1767 	free_page((unsigned long)domain->gcr3_tbl);
1768 }
1769 
dma_ops_domain_flush_tlb(struct dma_ops_domain * dom)1770 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1771 {
1772 	domain_flush_tlb(&dom->domain);
1773 	domain_flush_complete(&dom->domain);
1774 }
1775 
iova_domain_flush_tlb(struct iova_domain * iovad)1776 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1777 {
1778 	struct dma_ops_domain *dom;
1779 
1780 	dom = container_of(iovad, struct dma_ops_domain, iovad);
1781 
1782 	dma_ops_domain_flush_tlb(dom);
1783 }
1784 
1785 /*
1786  * Free a domain, only used if something went wrong in the
1787  * allocation path and we need to free an already allocated page table
1788  */
dma_ops_domain_free(struct dma_ops_domain * dom)1789 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1790 {
1791 	if (!dom)
1792 		return;
1793 
1794 	del_domain_from_list(&dom->domain);
1795 
1796 	put_iova_domain(&dom->iovad);
1797 
1798 	free_pagetable(&dom->domain);
1799 
1800 	if (dom->domain.id)
1801 		domain_id_free(dom->domain.id);
1802 
1803 	kfree(dom);
1804 }
1805 
1806 /*
1807  * Allocates a new protection domain usable for the dma_ops functions.
1808  * It also initializes the page table and the address allocator data
1809  * structures required for the dma_ops interface
1810  */
dma_ops_domain_alloc(void)1811 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1812 {
1813 	struct dma_ops_domain *dma_dom;
1814 
1815 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1816 	if (!dma_dom)
1817 		return NULL;
1818 
1819 	if (protection_domain_init(&dma_dom->domain))
1820 		goto free_dma_dom;
1821 
1822 	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1823 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1824 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1825 	if (!dma_dom->domain.pt_root)
1826 		goto free_dma_dom;
1827 
1828 	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1829 
1830 	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1831 		goto free_dma_dom;
1832 
1833 	/* Initialize reserved ranges */
1834 	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1835 
1836 	add_domain_to_list(&dma_dom->domain);
1837 
1838 	return dma_dom;
1839 
1840 free_dma_dom:
1841 	dma_ops_domain_free(dma_dom);
1842 
1843 	return NULL;
1844 }
1845 
1846 /*
1847  * little helper function to check whether a given protection domain is a
1848  * dma_ops domain
1849  */
dma_ops_domain(struct protection_domain * domain)1850 static bool dma_ops_domain(struct protection_domain *domain)
1851 {
1852 	return domain->flags & PD_DMA_OPS_MASK;
1853 }
1854 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1855 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1856 			  bool ats, bool ppr)
1857 {
1858 	u64 pte_root = 0;
1859 	u64 flags = 0;
1860 	u32 old_domid;
1861 
1862 	if (domain->mode != PAGE_MODE_NONE)
1863 		pte_root = iommu_virt_to_phys(domain->pt_root);
1864 
1865 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1866 		    << DEV_ENTRY_MODE_SHIFT;
1867 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1868 
1869 	flags = amd_iommu_dev_table[devid].data[1];
1870 
1871 	if (ats)
1872 		flags |= DTE_FLAG_IOTLB;
1873 
1874 	if (ppr) {
1875 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1876 
1877 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1878 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1879 	}
1880 
1881 	if (domain->flags & PD_IOMMUV2_MASK) {
1882 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1883 		u64 glx  = domain->glx;
1884 		u64 tmp;
1885 
1886 		pte_root |= DTE_FLAG_GV;
1887 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1888 
1889 		/* First mask out possible old values for GCR3 table */
1890 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1891 		flags    &= ~tmp;
1892 
1893 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1894 		flags    &= ~tmp;
1895 
1896 		/* Encode GCR3 table into DTE */
1897 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1898 		pte_root |= tmp;
1899 
1900 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1901 		flags    |= tmp;
1902 
1903 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1904 		flags    |= tmp;
1905 	}
1906 
1907 	flags &= ~DEV_DOMID_MASK;
1908 	flags |= domain->id;
1909 
1910 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1911 	amd_iommu_dev_table[devid].data[1]  = flags;
1912 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1913 
1914 	/*
1915 	 * A kdump kernel might be replacing a domain ID that was copied from
1916 	 * the previous kernel--if so, it needs to flush the translation cache
1917 	 * entries for the old domain ID that is being overwritten
1918 	 */
1919 	if (old_domid) {
1920 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1921 
1922 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1923 	}
1924 }
1925 
clear_dte_entry(u16 devid)1926 static void clear_dte_entry(u16 devid)
1927 {
1928 	/* remove entry from the device table seen by the hardware */
1929 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1930 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1931 
1932 	amd_iommu_apply_erratum_63(devid);
1933 }
1934 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1935 static void do_attach(struct iommu_dev_data *dev_data,
1936 		      struct protection_domain *domain)
1937 {
1938 	struct amd_iommu *iommu;
1939 	u16 alias;
1940 	bool ats;
1941 
1942 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1943 	alias = dev_data->alias;
1944 	ats   = dev_data->ats.enabled;
1945 
1946 	/* Update data structures */
1947 	dev_data->domain = domain;
1948 	list_add(&dev_data->list, &domain->dev_list);
1949 
1950 	/* Do reference counting */
1951 	domain->dev_iommu[iommu->index] += 1;
1952 	domain->dev_cnt                 += 1;
1953 
1954 	/* Update device table */
1955 	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1956 	if (alias != dev_data->devid)
1957 		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1958 
1959 	device_flush_dte(dev_data);
1960 }
1961 
do_detach(struct iommu_dev_data * dev_data)1962 static void do_detach(struct iommu_dev_data *dev_data)
1963 {
1964 	struct protection_domain *domain = dev_data->domain;
1965 	struct amd_iommu *iommu;
1966 	u16 alias;
1967 
1968 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1969 	alias = dev_data->alias;
1970 
1971 	/* Update data structures */
1972 	dev_data->domain = NULL;
1973 	list_del(&dev_data->list);
1974 	clear_dte_entry(dev_data->devid);
1975 	if (alias != dev_data->devid)
1976 		clear_dte_entry(alias);
1977 
1978 	/* Flush the DTE entry */
1979 	device_flush_dte(dev_data);
1980 
1981 	/* Flush IOTLB */
1982 	domain_flush_tlb_pde(domain);
1983 
1984 	/* Wait for the flushes to finish */
1985 	domain_flush_complete(domain);
1986 
1987 	/* decrease reference counters - needs to happen after the flushes */
1988 	domain->dev_iommu[iommu->index] -= 1;
1989 	domain->dev_cnt                 -= 1;
1990 }
1991 
1992 /*
1993  * If a device is not yet associated with a domain, this function makes the
1994  * device visible in the domain
1995  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)1996 static int __attach_device(struct iommu_dev_data *dev_data,
1997 			   struct protection_domain *domain)
1998 {
1999 	int ret;
2000 
2001 	/* lock domain */
2002 	spin_lock(&domain->lock);
2003 
2004 	ret = -EBUSY;
2005 	if (dev_data->domain != NULL)
2006 		goto out_unlock;
2007 
2008 	/* Attach alias group root */
2009 	do_attach(dev_data, domain);
2010 
2011 	ret = 0;
2012 
2013 out_unlock:
2014 
2015 	/* ready */
2016 	spin_unlock(&domain->lock);
2017 
2018 	return ret;
2019 }
2020 
2021 
pdev_iommuv2_disable(struct pci_dev * pdev)2022 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2023 {
2024 	pci_disable_ats(pdev);
2025 	pci_disable_pri(pdev);
2026 	pci_disable_pasid(pdev);
2027 }
2028 
2029 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2030 static int pri_reset_while_enabled(struct pci_dev *pdev)
2031 {
2032 	u16 control;
2033 	int pos;
2034 
2035 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2036 	if (!pos)
2037 		return -EINVAL;
2038 
2039 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2040 	control |= PCI_PRI_CTRL_RESET;
2041 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2042 
2043 	return 0;
2044 }
2045 
pdev_iommuv2_enable(struct pci_dev * pdev)2046 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2047 {
2048 	bool reset_enable;
2049 	int reqs, ret;
2050 
2051 	/* FIXME: Hardcode number of outstanding requests for now */
2052 	reqs = 32;
2053 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2054 		reqs = 1;
2055 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2056 
2057 	/* Only allow access to user-accessible pages */
2058 	ret = pci_enable_pasid(pdev, 0);
2059 	if (ret)
2060 		goto out_err;
2061 
2062 	/* First reset the PRI state of the device */
2063 	ret = pci_reset_pri(pdev);
2064 	if (ret)
2065 		goto out_err;
2066 
2067 	/* Enable PRI */
2068 	ret = pci_enable_pri(pdev, reqs);
2069 	if (ret)
2070 		goto out_err;
2071 
2072 	if (reset_enable) {
2073 		ret = pri_reset_while_enabled(pdev);
2074 		if (ret)
2075 			goto out_err;
2076 	}
2077 
2078 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2079 	if (ret)
2080 		goto out_err;
2081 
2082 	return 0;
2083 
2084 out_err:
2085 	pci_disable_pri(pdev);
2086 	pci_disable_pasid(pdev);
2087 
2088 	return ret;
2089 }
2090 
2091 /* FIXME: Move this to PCI code */
2092 #define PCI_PRI_TLP_OFF		(1 << 15)
2093 
pci_pri_tlp_required(struct pci_dev * pdev)2094 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2095 {
2096 	u16 status;
2097 	int pos;
2098 
2099 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2100 	if (!pos)
2101 		return false;
2102 
2103 	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2104 
2105 	return (status & PCI_PRI_TLP_OFF) ? true : false;
2106 }
2107 
2108 /*
2109  * If a device is not yet associated with a domain, this function makes the
2110  * device visible in the domain
2111  */
attach_device(struct device * dev,struct protection_domain * domain)2112 static int attach_device(struct device *dev,
2113 			 struct protection_domain *domain)
2114 {
2115 	struct pci_dev *pdev;
2116 	struct iommu_dev_data *dev_data;
2117 	unsigned long flags;
2118 	int ret;
2119 
2120 	dev_data = get_dev_data(dev);
2121 
2122 	if (!dev_is_pci(dev))
2123 		goto skip_ats_check;
2124 
2125 	pdev = to_pci_dev(dev);
2126 	if (domain->flags & PD_IOMMUV2_MASK) {
2127 		if (!dev_data->passthrough)
2128 			return -EINVAL;
2129 
2130 		if (dev_data->iommu_v2) {
2131 			if (pdev_iommuv2_enable(pdev) != 0)
2132 				return -EINVAL;
2133 
2134 			dev_data->ats.enabled = true;
2135 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2136 			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2137 		}
2138 	} else if (amd_iommu_iotlb_sup &&
2139 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2140 		dev_data->ats.enabled = true;
2141 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2142 	}
2143 
2144 skip_ats_check:
2145 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2146 	ret = __attach_device(dev_data, domain);
2147 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2148 
2149 	/*
2150 	 * We might boot into a crash-kernel here. The crashed kernel
2151 	 * left the caches in the IOMMU dirty. So we have to flush
2152 	 * here to evict all dirty stuff.
2153 	 */
2154 	domain_flush_tlb_pde(domain);
2155 
2156 	domain_flush_complete(domain);
2157 
2158 	return ret;
2159 }
2160 
2161 /*
2162  * Removes a device from a protection domain (unlocked)
2163  */
__detach_device(struct iommu_dev_data * dev_data)2164 static void __detach_device(struct iommu_dev_data *dev_data)
2165 {
2166 	struct protection_domain *domain;
2167 
2168 	domain = dev_data->domain;
2169 
2170 	spin_lock(&domain->lock);
2171 
2172 	do_detach(dev_data);
2173 
2174 	spin_unlock(&domain->lock);
2175 }
2176 
2177 /*
2178  * Removes a device from a protection domain (with devtable_lock held)
2179  */
detach_device(struct device * dev)2180 static void detach_device(struct device *dev)
2181 {
2182 	struct protection_domain *domain;
2183 	struct iommu_dev_data *dev_data;
2184 	unsigned long flags;
2185 
2186 	dev_data = get_dev_data(dev);
2187 	domain   = dev_data->domain;
2188 
2189 	/*
2190 	 * First check if the device is still attached. It might already
2191 	 * be detached from its domain because the generic
2192 	 * iommu_detach_group code detached it and we try again here in
2193 	 * our alias handling.
2194 	 */
2195 	if (WARN_ON(!dev_data->domain))
2196 		return;
2197 
2198 	/* lock device table */
2199 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2200 	__detach_device(dev_data);
2201 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2202 
2203 	if (!dev_is_pci(dev))
2204 		return;
2205 
2206 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2207 		pdev_iommuv2_disable(to_pci_dev(dev));
2208 	else if (dev_data->ats.enabled)
2209 		pci_disable_ats(to_pci_dev(dev));
2210 
2211 	dev_data->ats.enabled = false;
2212 }
2213 
amd_iommu_add_device(struct device * dev)2214 static int amd_iommu_add_device(struct device *dev)
2215 {
2216 	struct iommu_dev_data *dev_data;
2217 	struct iommu_domain *domain;
2218 	struct amd_iommu *iommu;
2219 	int ret, devid;
2220 
2221 	if (!check_device(dev) || get_dev_data(dev))
2222 		return 0;
2223 
2224 	devid = get_device_id(dev);
2225 	if (devid < 0)
2226 		return devid;
2227 
2228 	iommu = amd_iommu_rlookup_table[devid];
2229 
2230 	ret = iommu_init_device(dev);
2231 	if (ret) {
2232 		if (ret != -ENOTSUPP)
2233 			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2234 				dev_name(dev));
2235 
2236 		iommu_ignore_device(dev);
2237 		dev->dma_ops = &dma_direct_ops;
2238 		goto out;
2239 	}
2240 	init_iommu_group(dev);
2241 
2242 	dev_data = get_dev_data(dev);
2243 
2244 	BUG_ON(!dev_data);
2245 
2246 	if (iommu_pass_through || dev_data->iommu_v2)
2247 		iommu_request_dm_for_dev(dev);
2248 
2249 	/* Domains are initialized for this device - have a look what we ended up with */
2250 	domain = iommu_get_domain_for_dev(dev);
2251 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2252 		dev_data->passthrough = true;
2253 	else
2254 		dev->dma_ops = &amd_iommu_dma_ops;
2255 
2256 out:
2257 	iommu_completion_wait(iommu);
2258 
2259 	return 0;
2260 }
2261 
amd_iommu_remove_device(struct device * dev)2262 static void amd_iommu_remove_device(struct device *dev)
2263 {
2264 	struct amd_iommu *iommu;
2265 	int devid;
2266 
2267 	if (!check_device(dev))
2268 		return;
2269 
2270 	devid = get_device_id(dev);
2271 	if (devid < 0)
2272 		return;
2273 
2274 	iommu = amd_iommu_rlookup_table[devid];
2275 
2276 	iommu_uninit_device(dev);
2277 	iommu_completion_wait(iommu);
2278 }
2279 
amd_iommu_device_group(struct device * dev)2280 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2281 {
2282 	if (dev_is_pci(dev))
2283 		return pci_device_group(dev);
2284 
2285 	return acpihid_device_group(dev);
2286 }
2287 
2288 /*****************************************************************************
2289  *
2290  * The next functions belong to the dma_ops mapping/unmapping code.
2291  *
2292  *****************************************************************************/
2293 
2294 /*
2295  * In the dma_ops path we only have the struct device. This function
2296  * finds the corresponding IOMMU, the protection domain and the
2297  * requestor id for a given device.
2298  * If the device is not yet associated with a domain this is also done
2299  * in this function.
2300  */
get_domain(struct device * dev)2301 static struct protection_domain *get_domain(struct device *dev)
2302 {
2303 	struct protection_domain *domain;
2304 	struct iommu_domain *io_domain;
2305 
2306 	if (!check_device(dev))
2307 		return ERR_PTR(-EINVAL);
2308 
2309 	domain = get_dev_data(dev)->domain;
2310 	if (domain == NULL && get_dev_data(dev)->defer_attach) {
2311 		get_dev_data(dev)->defer_attach = false;
2312 		io_domain = iommu_get_domain_for_dev(dev);
2313 		domain = to_pdomain(io_domain);
2314 		attach_device(dev, domain);
2315 	}
2316 	if (domain == NULL)
2317 		return ERR_PTR(-EBUSY);
2318 
2319 	if (!dma_ops_domain(domain))
2320 		return ERR_PTR(-EBUSY);
2321 
2322 	return domain;
2323 }
2324 
update_device_table(struct protection_domain * domain)2325 static void update_device_table(struct protection_domain *domain)
2326 {
2327 	struct iommu_dev_data *dev_data;
2328 
2329 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2330 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2331 			      dev_data->iommu_v2);
2332 
2333 		if (dev_data->devid == dev_data->alias)
2334 			continue;
2335 
2336 		/* There is an alias, update device table entry for it */
2337 		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2338 			      dev_data->iommu_v2);
2339 	}
2340 }
2341 
update_domain(struct protection_domain * domain)2342 static void update_domain(struct protection_domain *domain)
2343 {
2344 	if (!domain->updated)
2345 		return;
2346 
2347 	update_device_table(domain);
2348 
2349 	domain_flush_devices(domain);
2350 	domain_flush_tlb_pde(domain);
2351 
2352 	domain->updated = false;
2353 }
2354 
dir2prot(enum dma_data_direction direction)2355 static int dir2prot(enum dma_data_direction direction)
2356 {
2357 	if (direction == DMA_TO_DEVICE)
2358 		return IOMMU_PROT_IR;
2359 	else if (direction == DMA_FROM_DEVICE)
2360 		return IOMMU_PROT_IW;
2361 	else if (direction == DMA_BIDIRECTIONAL)
2362 		return IOMMU_PROT_IW | IOMMU_PROT_IR;
2363 	else
2364 		return 0;
2365 }
2366 
2367 /*
2368  * This function contains common code for mapping of a physically
2369  * contiguous memory region into DMA address space. It is used by all
2370  * mapping functions provided with this IOMMU driver.
2371  * Must be called with the domain lock held.
2372  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,enum dma_data_direction direction,u64 dma_mask)2373 static dma_addr_t __map_single(struct device *dev,
2374 			       struct dma_ops_domain *dma_dom,
2375 			       phys_addr_t paddr,
2376 			       size_t size,
2377 			       enum dma_data_direction direction,
2378 			       u64 dma_mask)
2379 {
2380 	dma_addr_t offset = paddr & ~PAGE_MASK;
2381 	dma_addr_t address, start, ret;
2382 	unsigned int pages;
2383 	int prot = 0;
2384 	int i;
2385 
2386 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2387 	paddr &= PAGE_MASK;
2388 
2389 	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2390 	if (address == AMD_IOMMU_MAPPING_ERROR)
2391 		goto out;
2392 
2393 	prot = dir2prot(direction);
2394 
2395 	start = address;
2396 	for (i = 0; i < pages; ++i) {
2397 		ret = iommu_map_page(&dma_dom->domain, start, paddr,
2398 				     PAGE_SIZE, prot, GFP_ATOMIC);
2399 		if (ret)
2400 			goto out_unmap;
2401 
2402 		paddr += PAGE_SIZE;
2403 		start += PAGE_SIZE;
2404 	}
2405 	address += offset;
2406 
2407 	if (unlikely(amd_iommu_np_cache)) {
2408 		domain_flush_pages(&dma_dom->domain, address, size);
2409 		domain_flush_complete(&dma_dom->domain);
2410 	}
2411 
2412 out:
2413 	return address;
2414 
2415 out_unmap:
2416 
2417 	for (--i; i >= 0; --i) {
2418 		start -= PAGE_SIZE;
2419 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2420 	}
2421 
2422 	domain_flush_tlb(&dma_dom->domain);
2423 	domain_flush_complete(&dma_dom->domain);
2424 
2425 	dma_ops_free_iova(dma_dom, address, pages);
2426 
2427 	return AMD_IOMMU_MAPPING_ERROR;
2428 }
2429 
2430 /*
2431  * Does the reverse of the __map_single function. Must be called with
2432  * the domain lock held too
2433  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2434 static void __unmap_single(struct dma_ops_domain *dma_dom,
2435 			   dma_addr_t dma_addr,
2436 			   size_t size,
2437 			   int dir)
2438 {
2439 	dma_addr_t i, start;
2440 	unsigned int pages;
2441 
2442 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2443 	dma_addr &= PAGE_MASK;
2444 	start = dma_addr;
2445 
2446 	for (i = 0; i < pages; ++i) {
2447 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2448 		start += PAGE_SIZE;
2449 	}
2450 
2451 	if (amd_iommu_unmap_flush) {
2452 		domain_flush_tlb(&dma_dom->domain);
2453 		domain_flush_complete(&dma_dom->domain);
2454 		dma_ops_free_iova(dma_dom, dma_addr, pages);
2455 	} else {
2456 		pages = __roundup_pow_of_two(pages);
2457 		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2458 	}
2459 }
2460 
2461 /*
2462  * The exported map_single function for dma_ops.
2463  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2464 static dma_addr_t map_page(struct device *dev, struct page *page,
2465 			   unsigned long offset, size_t size,
2466 			   enum dma_data_direction dir,
2467 			   unsigned long attrs)
2468 {
2469 	phys_addr_t paddr = page_to_phys(page) + offset;
2470 	struct protection_domain *domain;
2471 	struct dma_ops_domain *dma_dom;
2472 	u64 dma_mask;
2473 
2474 	domain = get_domain(dev);
2475 	if (PTR_ERR(domain) == -EINVAL)
2476 		return (dma_addr_t)paddr;
2477 	else if (IS_ERR(domain))
2478 		return AMD_IOMMU_MAPPING_ERROR;
2479 
2480 	dma_mask = *dev->dma_mask;
2481 	dma_dom = to_dma_ops_domain(domain);
2482 
2483 	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2484 }
2485 
2486 /*
2487  * The exported unmap_single function for dma_ops.
2488  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2489 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2490 		       enum dma_data_direction dir, unsigned long attrs)
2491 {
2492 	struct protection_domain *domain;
2493 	struct dma_ops_domain *dma_dom;
2494 
2495 	domain = get_domain(dev);
2496 	if (IS_ERR(domain))
2497 		return;
2498 
2499 	dma_dom = to_dma_ops_domain(domain);
2500 
2501 	__unmap_single(dma_dom, dma_addr, size, dir);
2502 }
2503 
sg_num_pages(struct device * dev,struct scatterlist * sglist,int nelems)2504 static int sg_num_pages(struct device *dev,
2505 			struct scatterlist *sglist,
2506 			int nelems)
2507 {
2508 	unsigned long mask, boundary_size;
2509 	struct scatterlist *s;
2510 	int i, npages = 0;
2511 
2512 	mask          = dma_get_seg_boundary(dev);
2513 	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2514 				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2515 
2516 	for_each_sg(sglist, s, nelems, i) {
2517 		int p, n;
2518 
2519 		s->dma_address = npages << PAGE_SHIFT;
2520 		p = npages % boundary_size;
2521 		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2522 		if (p + n > boundary_size)
2523 			npages += boundary_size - p;
2524 		npages += n;
2525 	}
2526 
2527 	return npages;
2528 }
2529 
2530 /*
2531  * The exported map_sg function for dma_ops (handles scatter-gather
2532  * lists).
2533  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)2534 static int map_sg(struct device *dev, struct scatterlist *sglist,
2535 		  int nelems, enum dma_data_direction direction,
2536 		  unsigned long attrs)
2537 {
2538 	int mapped_pages = 0, npages = 0, prot = 0, i;
2539 	struct protection_domain *domain;
2540 	struct dma_ops_domain *dma_dom;
2541 	struct scatterlist *s;
2542 	unsigned long address;
2543 	u64 dma_mask;
2544 
2545 	domain = get_domain(dev);
2546 	if (IS_ERR(domain))
2547 		return 0;
2548 
2549 	dma_dom  = to_dma_ops_domain(domain);
2550 	dma_mask = *dev->dma_mask;
2551 
2552 	npages = sg_num_pages(dev, sglist, nelems);
2553 
2554 	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2555 	if (address == AMD_IOMMU_MAPPING_ERROR)
2556 		goto out_err;
2557 
2558 	prot = dir2prot(direction);
2559 
2560 	/* Map all sg entries */
2561 	for_each_sg(sglist, s, nelems, i) {
2562 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2563 
2564 		for (j = 0; j < pages; ++j) {
2565 			unsigned long bus_addr, phys_addr;
2566 			int ret;
2567 
2568 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2569 			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2570 			ret = iommu_map_page(domain, bus_addr, phys_addr,
2571 					     PAGE_SIZE, prot,
2572 					     GFP_ATOMIC | __GFP_NOWARN);
2573 			if (ret)
2574 				goto out_unmap;
2575 
2576 			mapped_pages += 1;
2577 		}
2578 	}
2579 
2580 	/* Everything is mapped - write the right values into s->dma_address */
2581 	for_each_sg(sglist, s, nelems, i) {
2582 		/*
2583 		 * Add in the remaining piece of the scatter-gather offset that
2584 		 * was masked out when we were determining the physical address
2585 		 * via (sg_phys(s) & PAGE_MASK) earlier.
2586 		 */
2587 		s->dma_address += address + (s->offset & ~PAGE_MASK);
2588 		s->dma_length   = s->length;
2589 	}
2590 
2591 	return nelems;
2592 
2593 out_unmap:
2594 	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2595 	       dev_name(dev), npages);
2596 
2597 	for_each_sg(sglist, s, nelems, i) {
2598 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2599 
2600 		for (j = 0; j < pages; ++j) {
2601 			unsigned long bus_addr;
2602 
2603 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2604 			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2605 
2606 			if (--mapped_pages == 0)
2607 				goto out_free_iova;
2608 		}
2609 	}
2610 
2611 out_free_iova:
2612 	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2613 
2614 out_err:
2615 	return 0;
2616 }
2617 
2618 /*
2619  * The exported map_sg function for dma_ops (handles scatter-gather
2620  * lists).
2621  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)2622 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2623 		     int nelems, enum dma_data_direction dir,
2624 		     unsigned long attrs)
2625 {
2626 	struct protection_domain *domain;
2627 	struct dma_ops_domain *dma_dom;
2628 	unsigned long startaddr;
2629 	int npages = 2;
2630 
2631 	domain = get_domain(dev);
2632 	if (IS_ERR(domain))
2633 		return;
2634 
2635 	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2636 	dma_dom   = to_dma_ops_domain(domain);
2637 	npages    = sg_num_pages(dev, sglist, nelems);
2638 
2639 	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2640 }
2641 
2642 /*
2643  * The exported alloc_coherent function for dma_ops.
2644  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,unsigned long attrs)2645 static void *alloc_coherent(struct device *dev, size_t size,
2646 			    dma_addr_t *dma_addr, gfp_t flag,
2647 			    unsigned long attrs)
2648 {
2649 	u64 dma_mask = dev->coherent_dma_mask;
2650 	struct protection_domain *domain;
2651 	struct dma_ops_domain *dma_dom;
2652 	struct page *page;
2653 
2654 	domain = get_domain(dev);
2655 	if (PTR_ERR(domain) == -EINVAL) {
2656 		page = alloc_pages(flag, get_order(size));
2657 		*dma_addr = page_to_phys(page);
2658 		return page_address(page);
2659 	} else if (IS_ERR(domain))
2660 		return NULL;
2661 
2662 	dma_dom   = to_dma_ops_domain(domain);
2663 	size	  = PAGE_ALIGN(size);
2664 	dma_mask  = dev->coherent_dma_mask;
2665 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2666 	flag     |= __GFP_ZERO;
2667 
2668 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2669 	if (!page) {
2670 		if (!gfpflags_allow_blocking(flag))
2671 			return NULL;
2672 
2673 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2674 					get_order(size), flag & __GFP_NOWARN);
2675 		if (!page)
2676 			return NULL;
2677 	}
2678 
2679 	if (!dma_mask)
2680 		dma_mask = *dev->dma_mask;
2681 
2682 	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2683 				 size, DMA_BIDIRECTIONAL, dma_mask);
2684 
2685 	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2686 		goto out_free;
2687 
2688 	return page_address(page);
2689 
2690 out_free:
2691 
2692 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2693 		__free_pages(page, get_order(size));
2694 
2695 	return NULL;
2696 }
2697 
2698 /*
2699  * The exported free_coherent function for dma_ops.
2700  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,unsigned long attrs)2701 static void free_coherent(struct device *dev, size_t size,
2702 			  void *virt_addr, dma_addr_t dma_addr,
2703 			  unsigned long attrs)
2704 {
2705 	struct protection_domain *domain;
2706 	struct dma_ops_domain *dma_dom;
2707 	struct page *page;
2708 
2709 	page = virt_to_page(virt_addr);
2710 	size = PAGE_ALIGN(size);
2711 
2712 	domain = get_domain(dev);
2713 	if (IS_ERR(domain))
2714 		goto free_mem;
2715 
2716 	dma_dom = to_dma_ops_domain(domain);
2717 
2718 	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2719 
2720 free_mem:
2721 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2722 		__free_pages(page, get_order(size));
2723 }
2724 
2725 /*
2726  * This function is called by the DMA layer to find out if we can handle a
2727  * particular device. It is part of the dma_ops.
2728  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2729 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2730 {
2731 	if (!dma_direct_supported(dev, mask))
2732 		return 0;
2733 	return check_device(dev);
2734 }
2735 
amd_iommu_mapping_error(struct device * dev,dma_addr_t dma_addr)2736 static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2737 {
2738 	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2739 }
2740 
2741 static const struct dma_map_ops amd_iommu_dma_ops = {
2742 	.alloc		= alloc_coherent,
2743 	.free		= free_coherent,
2744 	.map_page	= map_page,
2745 	.unmap_page	= unmap_page,
2746 	.map_sg		= map_sg,
2747 	.unmap_sg	= unmap_sg,
2748 	.dma_supported	= amd_iommu_dma_supported,
2749 	.mapping_error	= amd_iommu_mapping_error,
2750 };
2751 
init_reserved_iova_ranges(void)2752 static int init_reserved_iova_ranges(void)
2753 {
2754 	struct pci_dev *pdev = NULL;
2755 	struct iova *val;
2756 
2757 	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2758 
2759 	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2760 			  &reserved_rbtree_key);
2761 
2762 	/* MSI memory range */
2763 	val = reserve_iova(&reserved_iova_ranges,
2764 			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2765 	if (!val) {
2766 		pr_err("Reserving MSI range failed\n");
2767 		return -ENOMEM;
2768 	}
2769 
2770 	/* HT memory range */
2771 	val = reserve_iova(&reserved_iova_ranges,
2772 			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2773 	if (!val) {
2774 		pr_err("Reserving HT range failed\n");
2775 		return -ENOMEM;
2776 	}
2777 
2778 	/*
2779 	 * Memory used for PCI resources
2780 	 * FIXME: Check whether we can reserve the PCI-hole completly
2781 	 */
2782 	for_each_pci_dev(pdev) {
2783 		int i;
2784 
2785 		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2786 			struct resource *r = &pdev->resource[i];
2787 
2788 			if (!(r->flags & IORESOURCE_MEM))
2789 				continue;
2790 
2791 			val = reserve_iova(&reserved_iova_ranges,
2792 					   IOVA_PFN(r->start),
2793 					   IOVA_PFN(r->end));
2794 			if (!val) {
2795 				pr_err("Reserve pci-resource range failed\n");
2796 				return -ENOMEM;
2797 			}
2798 		}
2799 	}
2800 
2801 	return 0;
2802 }
2803 
amd_iommu_init_api(void)2804 int __init amd_iommu_init_api(void)
2805 {
2806 	int ret, err = 0;
2807 
2808 	ret = iova_cache_get();
2809 	if (ret)
2810 		return ret;
2811 
2812 	ret = init_reserved_iova_ranges();
2813 	if (ret)
2814 		return ret;
2815 
2816 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2817 	if (err)
2818 		return err;
2819 #ifdef CONFIG_ARM_AMBA
2820 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2821 	if (err)
2822 		return err;
2823 #endif
2824 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2825 	if (err)
2826 		return err;
2827 
2828 	return 0;
2829 }
2830 
amd_iommu_init_dma_ops(void)2831 int __init amd_iommu_init_dma_ops(void)
2832 {
2833 	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2834 	iommu_detected = 1;
2835 
2836 	/*
2837 	 * In case we don't initialize SWIOTLB (actually the common case
2838 	 * when AMD IOMMU is enabled and SME is not active), make sure there
2839 	 * are global dma_ops set as a fall-back for devices not handled by
2840 	 * this driver (for example non-PCI devices). When SME is active,
2841 	 * make sure that swiotlb variable remains set so the global dma_ops
2842 	 * continue to be SWIOTLB.
2843 	 */
2844 	if (!swiotlb)
2845 		dma_ops = &dma_direct_ops;
2846 
2847 	if (amd_iommu_unmap_flush)
2848 		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2849 	else
2850 		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2851 
2852 	return 0;
2853 
2854 }
2855 
2856 /*****************************************************************************
2857  *
2858  * The following functions belong to the exported interface of AMD IOMMU
2859  *
2860  * This interface allows access to lower level functions of the IOMMU
2861  * like protection domain handling and assignement of devices to domains
2862  * which is not possible with the dma_ops interface.
2863  *
2864  *****************************************************************************/
2865 
cleanup_domain(struct protection_domain * domain)2866 static void cleanup_domain(struct protection_domain *domain)
2867 {
2868 	struct iommu_dev_data *entry;
2869 	unsigned long flags;
2870 
2871 	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2872 
2873 	while (!list_empty(&domain->dev_list)) {
2874 		entry = list_first_entry(&domain->dev_list,
2875 					 struct iommu_dev_data, list);
2876 		BUG_ON(!entry->domain);
2877 		__detach_device(entry);
2878 	}
2879 
2880 	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2881 }
2882 
protection_domain_free(struct protection_domain * domain)2883 static void protection_domain_free(struct protection_domain *domain)
2884 {
2885 	if (!domain)
2886 		return;
2887 
2888 	del_domain_from_list(domain);
2889 
2890 	if (domain->id)
2891 		domain_id_free(domain->id);
2892 
2893 	kfree(domain);
2894 }
2895 
protection_domain_init(struct protection_domain * domain)2896 static int protection_domain_init(struct protection_domain *domain)
2897 {
2898 	spin_lock_init(&domain->lock);
2899 	mutex_init(&domain->api_lock);
2900 	domain->id = domain_id_alloc();
2901 	if (!domain->id)
2902 		return -ENOMEM;
2903 	INIT_LIST_HEAD(&domain->dev_list);
2904 
2905 	return 0;
2906 }
2907 
protection_domain_alloc(void)2908 static struct protection_domain *protection_domain_alloc(void)
2909 {
2910 	struct protection_domain *domain;
2911 
2912 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2913 	if (!domain)
2914 		return NULL;
2915 
2916 	if (protection_domain_init(domain))
2917 		goto out_err;
2918 
2919 	add_domain_to_list(domain);
2920 
2921 	return domain;
2922 
2923 out_err:
2924 	kfree(domain);
2925 
2926 	return NULL;
2927 }
2928 
amd_iommu_domain_alloc(unsigned type)2929 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2930 {
2931 	struct protection_domain *pdomain;
2932 	struct dma_ops_domain *dma_domain;
2933 
2934 	switch (type) {
2935 	case IOMMU_DOMAIN_UNMANAGED:
2936 		pdomain = protection_domain_alloc();
2937 		if (!pdomain)
2938 			return NULL;
2939 
2940 		pdomain->mode    = PAGE_MODE_3_LEVEL;
2941 		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2942 		if (!pdomain->pt_root) {
2943 			protection_domain_free(pdomain);
2944 			return NULL;
2945 		}
2946 
2947 		pdomain->domain.geometry.aperture_start = 0;
2948 		pdomain->domain.geometry.aperture_end   = ~0ULL;
2949 		pdomain->domain.geometry.force_aperture = true;
2950 
2951 		break;
2952 	case IOMMU_DOMAIN_DMA:
2953 		dma_domain = dma_ops_domain_alloc();
2954 		if (!dma_domain) {
2955 			pr_err("AMD-Vi: Failed to allocate\n");
2956 			return NULL;
2957 		}
2958 		pdomain = &dma_domain->domain;
2959 		break;
2960 	case IOMMU_DOMAIN_IDENTITY:
2961 		pdomain = protection_domain_alloc();
2962 		if (!pdomain)
2963 			return NULL;
2964 
2965 		pdomain->mode = PAGE_MODE_NONE;
2966 		break;
2967 	default:
2968 		return NULL;
2969 	}
2970 
2971 	return &pdomain->domain;
2972 }
2973 
amd_iommu_domain_free(struct iommu_domain * dom)2974 static void amd_iommu_domain_free(struct iommu_domain *dom)
2975 {
2976 	struct protection_domain *domain;
2977 	struct dma_ops_domain *dma_dom;
2978 
2979 	domain = to_pdomain(dom);
2980 
2981 	if (domain->dev_cnt > 0)
2982 		cleanup_domain(domain);
2983 
2984 	BUG_ON(domain->dev_cnt != 0);
2985 
2986 	if (!dom)
2987 		return;
2988 
2989 	switch (dom->type) {
2990 	case IOMMU_DOMAIN_DMA:
2991 		/* Now release the domain */
2992 		dma_dom = to_dma_ops_domain(domain);
2993 		dma_ops_domain_free(dma_dom);
2994 		break;
2995 	default:
2996 		if (domain->mode != PAGE_MODE_NONE)
2997 			free_pagetable(domain);
2998 
2999 		if (domain->flags & PD_IOMMUV2_MASK)
3000 			free_gcr3_table(domain);
3001 
3002 		protection_domain_free(domain);
3003 		break;
3004 	}
3005 }
3006 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3007 static void amd_iommu_detach_device(struct iommu_domain *dom,
3008 				    struct device *dev)
3009 {
3010 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3011 	struct amd_iommu *iommu;
3012 	int devid;
3013 
3014 	if (!check_device(dev))
3015 		return;
3016 
3017 	devid = get_device_id(dev);
3018 	if (devid < 0)
3019 		return;
3020 
3021 	if (dev_data->domain != NULL)
3022 		detach_device(dev);
3023 
3024 	iommu = amd_iommu_rlookup_table[devid];
3025 	if (!iommu)
3026 		return;
3027 
3028 #ifdef CONFIG_IRQ_REMAP
3029 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3030 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
3031 		dev_data->use_vapic = 0;
3032 #endif
3033 
3034 	iommu_completion_wait(iommu);
3035 }
3036 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3037 static int amd_iommu_attach_device(struct iommu_domain *dom,
3038 				   struct device *dev)
3039 {
3040 	struct protection_domain *domain = to_pdomain(dom);
3041 	struct iommu_dev_data *dev_data;
3042 	struct amd_iommu *iommu;
3043 	int ret;
3044 
3045 	if (!check_device(dev))
3046 		return -EINVAL;
3047 
3048 	dev_data = dev->archdata.iommu;
3049 
3050 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3051 	if (!iommu)
3052 		return -EINVAL;
3053 
3054 	if (dev_data->domain)
3055 		detach_device(dev);
3056 
3057 	ret = attach_device(dev, domain);
3058 
3059 #ifdef CONFIG_IRQ_REMAP
3060 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3061 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3062 			dev_data->use_vapic = 1;
3063 		else
3064 			dev_data->use_vapic = 0;
3065 	}
3066 #endif
3067 
3068 	iommu_completion_wait(iommu);
3069 
3070 	return ret;
3071 }
3072 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3073 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3074 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3075 {
3076 	struct protection_domain *domain = to_pdomain(dom);
3077 	int prot = 0;
3078 	int ret;
3079 
3080 	if (domain->mode == PAGE_MODE_NONE)
3081 		return -EINVAL;
3082 
3083 	if (iommu_prot & IOMMU_READ)
3084 		prot |= IOMMU_PROT_IR;
3085 	if (iommu_prot & IOMMU_WRITE)
3086 		prot |= IOMMU_PROT_IW;
3087 
3088 	mutex_lock(&domain->api_lock);
3089 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3090 	mutex_unlock(&domain->api_lock);
3091 
3092 	return ret;
3093 }
3094 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3095 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3096 			   size_t page_size)
3097 {
3098 	struct protection_domain *domain = to_pdomain(dom);
3099 	size_t unmap_size;
3100 
3101 	if (domain->mode == PAGE_MODE_NONE)
3102 		return 0;
3103 
3104 	mutex_lock(&domain->api_lock);
3105 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3106 	mutex_unlock(&domain->api_lock);
3107 
3108 	return unmap_size;
3109 }
3110 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3111 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3112 					  dma_addr_t iova)
3113 {
3114 	struct protection_domain *domain = to_pdomain(dom);
3115 	unsigned long offset_mask, pte_pgsize;
3116 	u64 *pte, __pte;
3117 
3118 	if (domain->mode == PAGE_MODE_NONE)
3119 		return iova;
3120 
3121 	pte = fetch_pte(domain, iova, &pte_pgsize);
3122 
3123 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3124 		return 0;
3125 
3126 	offset_mask = pte_pgsize - 1;
3127 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3128 
3129 	return (__pte & ~offset_mask) | (iova & offset_mask);
3130 }
3131 
amd_iommu_capable(enum iommu_cap cap)3132 static bool amd_iommu_capable(enum iommu_cap cap)
3133 {
3134 	switch (cap) {
3135 	case IOMMU_CAP_CACHE_COHERENCY:
3136 		return true;
3137 	case IOMMU_CAP_INTR_REMAP:
3138 		return (irq_remapping_enabled == 1);
3139 	case IOMMU_CAP_NOEXEC:
3140 		return false;
3141 	}
3142 
3143 	return false;
3144 }
3145 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)3146 static void amd_iommu_get_resv_regions(struct device *dev,
3147 				       struct list_head *head)
3148 {
3149 	struct iommu_resv_region *region;
3150 	struct unity_map_entry *entry;
3151 	int devid;
3152 
3153 	devid = get_device_id(dev);
3154 	if (devid < 0)
3155 		return;
3156 
3157 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3158 		int type, prot = 0;
3159 		size_t length;
3160 
3161 		if (devid < entry->devid_start || devid > entry->devid_end)
3162 			continue;
3163 
3164 		type   = IOMMU_RESV_DIRECT;
3165 		length = entry->address_end - entry->address_start;
3166 		if (entry->prot & IOMMU_PROT_IR)
3167 			prot |= IOMMU_READ;
3168 		if (entry->prot & IOMMU_PROT_IW)
3169 			prot |= IOMMU_WRITE;
3170 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3171 			/* Exclusion range */
3172 			type = IOMMU_RESV_RESERVED;
3173 
3174 		region = iommu_alloc_resv_region(entry->address_start,
3175 						 length, prot, type);
3176 		if (!region) {
3177 			pr_err("Out of memory allocating dm-regions for %s\n",
3178 				dev_name(dev));
3179 			return;
3180 		}
3181 		list_add_tail(&region->list, head);
3182 	}
3183 
3184 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3185 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3186 					 0, IOMMU_RESV_MSI);
3187 	if (!region)
3188 		return;
3189 	list_add_tail(&region->list, head);
3190 
3191 	region = iommu_alloc_resv_region(HT_RANGE_START,
3192 					 HT_RANGE_END - HT_RANGE_START + 1,
3193 					 0, IOMMU_RESV_RESERVED);
3194 	if (!region)
3195 		return;
3196 	list_add_tail(&region->list, head);
3197 }
3198 
amd_iommu_put_resv_regions(struct device * dev,struct list_head * head)3199 static void amd_iommu_put_resv_regions(struct device *dev,
3200 				     struct list_head *head)
3201 {
3202 	struct iommu_resv_region *entry, *next;
3203 
3204 	list_for_each_entry_safe(entry, next, head, list)
3205 		kfree(entry);
3206 }
3207 
amd_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)3208 static void amd_iommu_apply_resv_region(struct device *dev,
3209 				      struct iommu_domain *domain,
3210 				      struct iommu_resv_region *region)
3211 {
3212 	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3213 	unsigned long start, end;
3214 
3215 	start = IOVA_PFN(region->start);
3216 	end   = IOVA_PFN(region->start + region->length - 1);
3217 
3218 	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3219 }
3220 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)3221 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3222 					 struct device *dev)
3223 {
3224 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3225 	return dev_data->defer_attach;
3226 }
3227 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)3228 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3229 {
3230 	struct protection_domain *dom = to_pdomain(domain);
3231 
3232 	domain_flush_tlb_pde(dom);
3233 	domain_flush_complete(dom);
3234 }
3235 
amd_iommu_iotlb_range_add(struct iommu_domain * domain,unsigned long iova,size_t size)3236 static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3237 				      unsigned long iova, size_t size)
3238 {
3239 }
3240 
3241 const struct iommu_ops amd_iommu_ops = {
3242 	.capable = amd_iommu_capable,
3243 	.domain_alloc = amd_iommu_domain_alloc,
3244 	.domain_free  = amd_iommu_domain_free,
3245 	.attach_dev = amd_iommu_attach_device,
3246 	.detach_dev = amd_iommu_detach_device,
3247 	.map = amd_iommu_map,
3248 	.unmap = amd_iommu_unmap,
3249 	.iova_to_phys = amd_iommu_iova_to_phys,
3250 	.add_device = amd_iommu_add_device,
3251 	.remove_device = amd_iommu_remove_device,
3252 	.device_group = amd_iommu_device_group,
3253 	.get_resv_regions = amd_iommu_get_resv_regions,
3254 	.put_resv_regions = amd_iommu_put_resv_regions,
3255 	.apply_resv_region = amd_iommu_apply_resv_region,
3256 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3257 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3258 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3259 	.iotlb_range_add = amd_iommu_iotlb_range_add,
3260 	.iotlb_sync = amd_iommu_flush_iotlb_all,
3261 };
3262 
3263 /*****************************************************************************
3264  *
3265  * The next functions do a basic initialization of IOMMU for pass through
3266  * mode
3267  *
3268  * In passthrough mode the IOMMU is initialized and enabled but not used for
3269  * DMA-API translation.
3270  *
3271  *****************************************************************************/
3272 
3273 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3274 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3275 {
3276 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3277 }
3278 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3279 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3280 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3281 {
3282 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3283 }
3284 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3285 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3286 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3287 {
3288 	struct protection_domain *domain = to_pdomain(dom);
3289 	unsigned long flags;
3290 
3291 	spin_lock_irqsave(&domain->lock, flags);
3292 
3293 	/* Update data structure */
3294 	domain->mode    = PAGE_MODE_NONE;
3295 	domain->updated = true;
3296 
3297 	/* Make changes visible to IOMMUs */
3298 	update_domain(domain);
3299 
3300 	/* Page-table is not visible to IOMMU anymore, so free it */
3301 	free_pagetable(domain);
3302 
3303 	spin_unlock_irqrestore(&domain->lock, flags);
3304 }
3305 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3306 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3307 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3308 {
3309 	struct protection_domain *domain = to_pdomain(dom);
3310 	unsigned long flags;
3311 	int levels, ret;
3312 
3313 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3314 		return -EINVAL;
3315 
3316 	/* Number of GCR3 table levels required */
3317 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3318 		levels += 1;
3319 
3320 	if (levels > amd_iommu_max_glx_val)
3321 		return -EINVAL;
3322 
3323 	spin_lock_irqsave(&domain->lock, flags);
3324 
3325 	/*
3326 	 * Save us all sanity checks whether devices already in the
3327 	 * domain support IOMMUv2. Just force that the domain has no
3328 	 * devices attached when it is switched into IOMMUv2 mode.
3329 	 */
3330 	ret = -EBUSY;
3331 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3332 		goto out;
3333 
3334 	ret = -ENOMEM;
3335 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3336 	if (domain->gcr3_tbl == NULL)
3337 		goto out;
3338 
3339 	domain->glx      = levels;
3340 	domain->flags   |= PD_IOMMUV2_MASK;
3341 	domain->updated  = true;
3342 
3343 	update_domain(domain);
3344 
3345 	ret = 0;
3346 
3347 out:
3348 	spin_unlock_irqrestore(&domain->lock, flags);
3349 
3350 	return ret;
3351 }
3352 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3353 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3354 static int __flush_pasid(struct protection_domain *domain, int pasid,
3355 			 u64 address, bool size)
3356 {
3357 	struct iommu_dev_data *dev_data;
3358 	struct iommu_cmd cmd;
3359 	int i, ret;
3360 
3361 	if (!(domain->flags & PD_IOMMUV2_MASK))
3362 		return -EINVAL;
3363 
3364 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3365 
3366 	/*
3367 	 * IOMMU TLB needs to be flushed before Device TLB to
3368 	 * prevent device TLB refill from IOMMU TLB
3369 	 */
3370 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3371 		if (domain->dev_iommu[i] == 0)
3372 			continue;
3373 
3374 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3375 		if (ret != 0)
3376 			goto out;
3377 	}
3378 
3379 	/* Wait until IOMMU TLB flushes are complete */
3380 	domain_flush_complete(domain);
3381 
3382 	/* Now flush device TLBs */
3383 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3384 		struct amd_iommu *iommu;
3385 		int qdep;
3386 
3387 		/*
3388 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3389 		 * domain.
3390 		 */
3391 		if (!dev_data->ats.enabled)
3392 			continue;
3393 
3394 		qdep  = dev_data->ats.qdep;
3395 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3396 
3397 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3398 				      qdep, address, size);
3399 
3400 		ret = iommu_queue_command(iommu, &cmd);
3401 		if (ret != 0)
3402 			goto out;
3403 	}
3404 
3405 	/* Wait until all device TLBs are flushed */
3406 	domain_flush_complete(domain);
3407 
3408 	ret = 0;
3409 
3410 out:
3411 
3412 	return ret;
3413 }
3414 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3415 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3416 				  u64 address)
3417 {
3418 	return __flush_pasid(domain, pasid, address, false);
3419 }
3420 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3421 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3422 			 u64 address)
3423 {
3424 	struct protection_domain *domain = to_pdomain(dom);
3425 	unsigned long flags;
3426 	int ret;
3427 
3428 	spin_lock_irqsave(&domain->lock, flags);
3429 	ret = __amd_iommu_flush_page(domain, pasid, address);
3430 	spin_unlock_irqrestore(&domain->lock, flags);
3431 
3432 	return ret;
3433 }
3434 EXPORT_SYMBOL(amd_iommu_flush_page);
3435 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3436 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3437 {
3438 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3439 			     true);
3440 }
3441 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3442 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3443 {
3444 	struct protection_domain *domain = to_pdomain(dom);
3445 	unsigned long flags;
3446 	int ret;
3447 
3448 	spin_lock_irqsave(&domain->lock, flags);
3449 	ret = __amd_iommu_flush_tlb(domain, pasid);
3450 	spin_unlock_irqrestore(&domain->lock, flags);
3451 
3452 	return ret;
3453 }
3454 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3455 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3456 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3457 {
3458 	int index;
3459 	u64 *pte;
3460 
3461 	while (true) {
3462 
3463 		index = (pasid >> (9 * level)) & 0x1ff;
3464 		pte   = &root[index];
3465 
3466 		if (level == 0)
3467 			break;
3468 
3469 		if (!(*pte & GCR3_VALID)) {
3470 			if (!alloc)
3471 				return NULL;
3472 
3473 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3474 			if (root == NULL)
3475 				return NULL;
3476 
3477 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3478 		}
3479 
3480 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3481 
3482 		level -= 1;
3483 	}
3484 
3485 	return pte;
3486 }
3487 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3488 static int __set_gcr3(struct protection_domain *domain, int pasid,
3489 		      unsigned long cr3)
3490 {
3491 	u64 *pte;
3492 
3493 	if (domain->mode != PAGE_MODE_NONE)
3494 		return -EINVAL;
3495 
3496 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3497 	if (pte == NULL)
3498 		return -ENOMEM;
3499 
3500 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3501 
3502 	return __amd_iommu_flush_tlb(domain, pasid);
3503 }
3504 
__clear_gcr3(struct protection_domain * domain,int pasid)3505 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3506 {
3507 	u64 *pte;
3508 
3509 	if (domain->mode != PAGE_MODE_NONE)
3510 		return -EINVAL;
3511 
3512 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3513 	if (pte == NULL)
3514 		return 0;
3515 
3516 	*pte = 0;
3517 
3518 	return __amd_iommu_flush_tlb(domain, pasid);
3519 }
3520 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3521 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3522 			      unsigned long cr3)
3523 {
3524 	struct protection_domain *domain = to_pdomain(dom);
3525 	unsigned long flags;
3526 	int ret;
3527 
3528 	spin_lock_irqsave(&domain->lock, flags);
3529 	ret = __set_gcr3(domain, pasid, cr3);
3530 	spin_unlock_irqrestore(&domain->lock, flags);
3531 
3532 	return ret;
3533 }
3534 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3535 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3536 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3537 {
3538 	struct protection_domain *domain = to_pdomain(dom);
3539 	unsigned long flags;
3540 	int ret;
3541 
3542 	spin_lock_irqsave(&domain->lock, flags);
3543 	ret = __clear_gcr3(domain, pasid);
3544 	spin_unlock_irqrestore(&domain->lock, flags);
3545 
3546 	return ret;
3547 }
3548 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3549 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3550 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3551 			   int status, int tag)
3552 {
3553 	struct iommu_dev_data *dev_data;
3554 	struct amd_iommu *iommu;
3555 	struct iommu_cmd cmd;
3556 
3557 	dev_data = get_dev_data(&pdev->dev);
3558 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3559 
3560 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3561 			   tag, dev_data->pri_tlp);
3562 
3563 	return iommu_queue_command(iommu, &cmd);
3564 }
3565 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3566 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3567 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3568 {
3569 	struct protection_domain *pdomain;
3570 
3571 	pdomain = get_domain(&pdev->dev);
3572 	if (IS_ERR(pdomain))
3573 		return NULL;
3574 
3575 	/* Only return IOMMUv2 domains */
3576 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3577 		return NULL;
3578 
3579 	return &pdomain->domain;
3580 }
3581 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3582 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3583 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3584 {
3585 	struct iommu_dev_data *dev_data;
3586 
3587 	if (!amd_iommu_v2_supported())
3588 		return;
3589 
3590 	dev_data = get_dev_data(&pdev->dev);
3591 	dev_data->errata |= (1 << erratum);
3592 }
3593 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3594 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3595 int amd_iommu_device_info(struct pci_dev *pdev,
3596                           struct amd_iommu_device_info *info)
3597 {
3598 	int max_pasids;
3599 	int pos;
3600 
3601 	if (pdev == NULL || info == NULL)
3602 		return -EINVAL;
3603 
3604 	if (!amd_iommu_v2_supported())
3605 		return -EINVAL;
3606 
3607 	memset(info, 0, sizeof(*info));
3608 
3609 	if (!pci_ats_disabled()) {
3610 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3611 		if (pos)
3612 			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3613 	}
3614 
3615 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3616 	if (pos)
3617 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3618 
3619 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3620 	if (pos) {
3621 		int features;
3622 
3623 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3624 		max_pasids = min(max_pasids, (1 << 20));
3625 
3626 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3627 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3628 
3629 		features = pci_pasid_features(pdev);
3630 		if (features & PCI_PASID_CAP_EXEC)
3631 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3632 		if (features & PCI_PASID_CAP_PRIV)
3633 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3634 	}
3635 
3636 	return 0;
3637 }
3638 EXPORT_SYMBOL(amd_iommu_device_info);
3639 
3640 #ifdef CONFIG_IRQ_REMAP
3641 
3642 /*****************************************************************************
3643  *
3644  * Interrupt Remapping Implementation
3645  *
3646  *****************************************************************************/
3647 
3648 static struct irq_chip amd_ir_chip;
3649 static DEFINE_SPINLOCK(iommu_table_lock);
3650 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3651 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3652 {
3653 	u64 dte;
3654 
3655 	dte	= amd_iommu_dev_table[devid].data[2];
3656 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3657 	dte	|= iommu_virt_to_phys(table->table);
3658 	dte	|= DTE_IRQ_REMAP_INTCTL;
3659 	dte	|= DTE_IRQ_TABLE_LEN;
3660 	dte	|= DTE_IRQ_REMAP_ENABLE;
3661 
3662 	amd_iommu_dev_table[devid].data[2] = dte;
3663 }
3664 
get_irq_table(u16 devid)3665 static struct irq_remap_table *get_irq_table(u16 devid)
3666 {
3667 	struct irq_remap_table *table;
3668 
3669 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3670 		      "%s: no iommu for devid %x\n", __func__, devid))
3671 		return NULL;
3672 
3673 	table = irq_lookup_table[devid];
3674 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3675 		return NULL;
3676 
3677 	return table;
3678 }
3679 
__alloc_irq_table(void)3680 static struct irq_remap_table *__alloc_irq_table(void)
3681 {
3682 	struct irq_remap_table *table;
3683 
3684 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3685 	if (!table)
3686 		return NULL;
3687 
3688 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3689 	if (!table->table) {
3690 		kfree(table);
3691 		return NULL;
3692 	}
3693 	raw_spin_lock_init(&table->lock);
3694 
3695 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3696 		memset(table->table, 0,
3697 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3698 	else
3699 		memset(table->table, 0,
3700 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3701 	return table;
3702 }
3703 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3704 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3705 				  struct irq_remap_table *table)
3706 {
3707 	irq_lookup_table[devid] = table;
3708 	set_dte_irq_entry(devid, table);
3709 	iommu_flush_dte(iommu, devid);
3710 }
3711 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3712 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3713 				       void *data)
3714 {
3715 	struct irq_remap_table *table = data;
3716 
3717 	irq_lookup_table[alias] = table;
3718 	set_dte_irq_entry(alias, table);
3719 
3720 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3721 
3722 	return 0;
3723 }
3724 
alloc_irq_table(u16 devid,struct pci_dev * pdev)3725 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3726 {
3727 	struct irq_remap_table *table = NULL;
3728 	struct irq_remap_table *new_table = NULL;
3729 	struct amd_iommu *iommu;
3730 	unsigned long flags;
3731 	u16 alias;
3732 
3733 	spin_lock_irqsave(&iommu_table_lock, flags);
3734 
3735 	iommu = amd_iommu_rlookup_table[devid];
3736 	if (!iommu)
3737 		goto out_unlock;
3738 
3739 	table = irq_lookup_table[devid];
3740 	if (table)
3741 		goto out_unlock;
3742 
3743 	alias = amd_iommu_alias_table[devid];
3744 	table = irq_lookup_table[alias];
3745 	if (table) {
3746 		set_remap_table_entry(iommu, devid, table);
3747 		goto out_wait;
3748 	}
3749 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3750 
3751 	/* Nothing there yet, allocate new irq remapping table */
3752 	new_table = __alloc_irq_table();
3753 	if (!new_table)
3754 		return NULL;
3755 
3756 	spin_lock_irqsave(&iommu_table_lock, flags);
3757 
3758 	table = irq_lookup_table[devid];
3759 	if (table)
3760 		goto out_unlock;
3761 
3762 	table = irq_lookup_table[alias];
3763 	if (table) {
3764 		set_remap_table_entry(iommu, devid, table);
3765 		goto out_wait;
3766 	}
3767 
3768 	table = new_table;
3769 	new_table = NULL;
3770 
3771 	if (pdev)
3772 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3773 				       table);
3774 	else
3775 		set_remap_table_entry(iommu, devid, table);
3776 
3777 	if (devid != alias)
3778 		set_remap_table_entry(iommu, alias, table);
3779 
3780 out_wait:
3781 	iommu_completion_wait(iommu);
3782 
3783 out_unlock:
3784 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3785 
3786 	if (new_table) {
3787 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3788 		kfree(new_table);
3789 	}
3790 	return table;
3791 }
3792 
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)3793 static int alloc_irq_index(u16 devid, int count, bool align,
3794 			   struct pci_dev *pdev)
3795 {
3796 	struct irq_remap_table *table;
3797 	int index, c, alignment = 1;
3798 	unsigned long flags;
3799 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3800 
3801 	if (!iommu)
3802 		return -ENODEV;
3803 
3804 	table = alloc_irq_table(devid, pdev);
3805 	if (!table)
3806 		return -ENODEV;
3807 
3808 	if (align)
3809 		alignment = roundup_pow_of_two(count);
3810 
3811 	raw_spin_lock_irqsave(&table->lock, flags);
3812 
3813 	/* Scan table for free entries */
3814 	for (index = ALIGN(table->min_index, alignment), c = 0;
3815 	     index < MAX_IRQS_PER_TABLE;) {
3816 		if (!iommu->irte_ops->is_allocated(table, index)) {
3817 			c += 1;
3818 		} else {
3819 			c     = 0;
3820 			index = ALIGN(index + 1, alignment);
3821 			continue;
3822 		}
3823 
3824 		if (c == count)	{
3825 			for (; c != 0; --c)
3826 				iommu->irte_ops->set_allocated(table, index - c + 1);
3827 
3828 			index -= count - 1;
3829 			goto out;
3830 		}
3831 
3832 		index++;
3833 	}
3834 
3835 	index = -ENOSPC;
3836 
3837 out:
3838 	raw_spin_unlock_irqrestore(&table->lock, flags);
3839 
3840 	return index;
3841 }
3842 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3843 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3844 			  struct amd_ir_data *data)
3845 {
3846 	struct irq_remap_table *table;
3847 	struct amd_iommu *iommu;
3848 	unsigned long flags;
3849 	struct irte_ga *entry;
3850 
3851 	iommu = amd_iommu_rlookup_table[devid];
3852 	if (iommu == NULL)
3853 		return -EINVAL;
3854 
3855 	table = get_irq_table(devid);
3856 	if (!table)
3857 		return -ENOMEM;
3858 
3859 	raw_spin_lock_irqsave(&table->lock, flags);
3860 
3861 	entry = (struct irte_ga *)table->table;
3862 	entry = &entry[index];
3863 	entry->lo.fields_remap.valid = 0;
3864 	entry->hi.val = irte->hi.val;
3865 	entry->lo.val = irte->lo.val;
3866 	entry->lo.fields_remap.valid = 1;
3867 	if (data)
3868 		data->ref = entry;
3869 
3870 	raw_spin_unlock_irqrestore(&table->lock, flags);
3871 
3872 	iommu_flush_irt(iommu, devid);
3873 	iommu_completion_wait(iommu);
3874 
3875 	return 0;
3876 }
3877 
modify_irte(u16 devid,int index,union irte * irte)3878 static int modify_irte(u16 devid, int index, union irte *irte)
3879 {
3880 	struct irq_remap_table *table;
3881 	struct amd_iommu *iommu;
3882 	unsigned long flags;
3883 
3884 	iommu = amd_iommu_rlookup_table[devid];
3885 	if (iommu == NULL)
3886 		return -EINVAL;
3887 
3888 	table = get_irq_table(devid);
3889 	if (!table)
3890 		return -ENOMEM;
3891 
3892 	raw_spin_lock_irqsave(&table->lock, flags);
3893 	table->table[index] = irte->val;
3894 	raw_spin_unlock_irqrestore(&table->lock, flags);
3895 
3896 	iommu_flush_irt(iommu, devid);
3897 	iommu_completion_wait(iommu);
3898 
3899 	return 0;
3900 }
3901 
free_irte(u16 devid,int index)3902 static void free_irte(u16 devid, int index)
3903 {
3904 	struct irq_remap_table *table;
3905 	struct amd_iommu *iommu;
3906 	unsigned long flags;
3907 
3908 	iommu = amd_iommu_rlookup_table[devid];
3909 	if (iommu == NULL)
3910 		return;
3911 
3912 	table = get_irq_table(devid);
3913 	if (!table)
3914 		return;
3915 
3916 	raw_spin_lock_irqsave(&table->lock, flags);
3917 	iommu->irte_ops->clear_allocated(table, index);
3918 	raw_spin_unlock_irqrestore(&table->lock, flags);
3919 
3920 	iommu_flush_irt(iommu, devid);
3921 	iommu_completion_wait(iommu);
3922 }
3923 
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3924 static void irte_prepare(void *entry,
3925 			 u32 delivery_mode, u32 dest_mode,
3926 			 u8 vector, u32 dest_apicid, int devid)
3927 {
3928 	union irte *irte = (union irte *) entry;
3929 
3930 	irte->val                = 0;
3931 	irte->fields.vector      = vector;
3932 	irte->fields.int_type    = delivery_mode;
3933 	irte->fields.destination = dest_apicid;
3934 	irte->fields.dm          = dest_mode;
3935 	irte->fields.valid       = 1;
3936 }
3937 
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3938 static void irte_ga_prepare(void *entry,
3939 			    u32 delivery_mode, u32 dest_mode,
3940 			    u8 vector, u32 dest_apicid, int devid)
3941 {
3942 	struct irte_ga *irte = (struct irte_ga *) entry;
3943 
3944 	irte->lo.val                      = 0;
3945 	irte->hi.val                      = 0;
3946 	irte->lo.fields_remap.int_type    = delivery_mode;
3947 	irte->lo.fields_remap.dm          = dest_mode;
3948 	irte->hi.fields.vector            = vector;
3949 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3950 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3951 	irte->lo.fields_remap.valid       = 1;
3952 }
3953 
irte_activate(void * entry,u16 devid,u16 index)3954 static void irte_activate(void *entry, u16 devid, u16 index)
3955 {
3956 	union irte *irte = (union irte *) entry;
3957 
3958 	irte->fields.valid = 1;
3959 	modify_irte(devid, index, irte);
3960 }
3961 
irte_ga_activate(void * entry,u16 devid,u16 index)3962 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3963 {
3964 	struct irte_ga *irte = (struct irte_ga *) entry;
3965 
3966 	irte->lo.fields_remap.valid = 1;
3967 	modify_irte_ga(devid, index, irte, NULL);
3968 }
3969 
irte_deactivate(void * entry,u16 devid,u16 index)3970 static void irte_deactivate(void *entry, u16 devid, u16 index)
3971 {
3972 	union irte *irte = (union irte *) entry;
3973 
3974 	irte->fields.valid = 0;
3975 	modify_irte(devid, index, irte);
3976 }
3977 
irte_ga_deactivate(void * entry,u16 devid,u16 index)3978 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3979 {
3980 	struct irte_ga *irte = (struct irte_ga *) entry;
3981 
3982 	irte->lo.fields_remap.valid = 0;
3983 	modify_irte_ga(devid, index, irte, NULL);
3984 }
3985 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3986 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3987 			      u8 vector, u32 dest_apicid)
3988 {
3989 	union irte *irte = (union irte *) entry;
3990 
3991 	irte->fields.vector = vector;
3992 	irte->fields.destination = dest_apicid;
3993 	modify_irte(devid, index, irte);
3994 }
3995 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3996 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3997 				 u8 vector, u32 dest_apicid)
3998 {
3999 	struct irte_ga *irte = (struct irte_ga *) entry;
4000 
4001 	if (!irte->lo.fields_remap.guest_mode) {
4002 		irte->hi.fields.vector = vector;
4003 		irte->lo.fields_remap.destination =
4004 					APICID_TO_IRTE_DEST_LO(dest_apicid);
4005 		irte->hi.fields.destination =
4006 					APICID_TO_IRTE_DEST_HI(dest_apicid);
4007 		modify_irte_ga(devid, index, irte, NULL);
4008 	}
4009 }
4010 
4011 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)4012 static void irte_set_allocated(struct irq_remap_table *table, int index)
4013 {
4014 	table->table[index] = IRTE_ALLOCATED;
4015 }
4016 
irte_ga_set_allocated(struct irq_remap_table * table,int index)4017 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4018 {
4019 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4020 	struct irte_ga *irte = &ptr[index];
4021 
4022 	memset(&irte->lo.val, 0, sizeof(u64));
4023 	memset(&irte->hi.val, 0, sizeof(u64));
4024 	irte->hi.fields.vector = 0xff;
4025 }
4026 
irte_is_allocated(struct irq_remap_table * table,int index)4027 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4028 {
4029 	union irte *ptr = (union irte *)table->table;
4030 	union irte *irte = &ptr[index];
4031 
4032 	return irte->val != 0;
4033 }
4034 
irte_ga_is_allocated(struct irq_remap_table * table,int index)4035 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4036 {
4037 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4038 	struct irte_ga *irte = &ptr[index];
4039 
4040 	return irte->hi.fields.vector != 0;
4041 }
4042 
irte_clear_allocated(struct irq_remap_table * table,int index)4043 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4044 {
4045 	table->table[index] = 0;
4046 }
4047 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)4048 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4049 {
4050 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4051 	struct irte_ga *irte = &ptr[index];
4052 
4053 	memset(&irte->lo.val, 0, sizeof(u64));
4054 	memset(&irte->hi.val, 0, sizeof(u64));
4055 }
4056 
get_devid(struct irq_alloc_info * info)4057 static int get_devid(struct irq_alloc_info *info)
4058 {
4059 	int devid = -1;
4060 
4061 	switch (info->type) {
4062 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4063 		devid     = get_ioapic_devid(info->ioapic_id);
4064 		break;
4065 	case X86_IRQ_ALLOC_TYPE_HPET:
4066 		devid     = get_hpet_devid(info->hpet_id);
4067 		break;
4068 	case X86_IRQ_ALLOC_TYPE_MSI:
4069 	case X86_IRQ_ALLOC_TYPE_MSIX:
4070 		devid = get_device_id(&info->msi_dev->dev);
4071 		break;
4072 	default:
4073 		BUG_ON(1);
4074 		break;
4075 	}
4076 
4077 	return devid;
4078 }
4079 
get_ir_irq_domain(struct irq_alloc_info * info)4080 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4081 {
4082 	struct amd_iommu *iommu;
4083 	int devid;
4084 
4085 	if (!info)
4086 		return NULL;
4087 
4088 	devid = get_devid(info);
4089 	if (devid >= 0) {
4090 		iommu = amd_iommu_rlookup_table[devid];
4091 		if (iommu)
4092 			return iommu->ir_domain;
4093 	}
4094 
4095 	return NULL;
4096 }
4097 
get_irq_domain(struct irq_alloc_info * info)4098 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4099 {
4100 	struct amd_iommu *iommu;
4101 	int devid;
4102 
4103 	if (!info)
4104 		return NULL;
4105 
4106 	switch (info->type) {
4107 	case X86_IRQ_ALLOC_TYPE_MSI:
4108 	case X86_IRQ_ALLOC_TYPE_MSIX:
4109 		devid = get_device_id(&info->msi_dev->dev);
4110 		if (devid < 0)
4111 			return NULL;
4112 
4113 		iommu = amd_iommu_rlookup_table[devid];
4114 		if (iommu)
4115 			return iommu->msi_domain;
4116 		break;
4117 	default:
4118 		break;
4119 	}
4120 
4121 	return NULL;
4122 }
4123 
4124 struct irq_remap_ops amd_iommu_irq_ops = {
4125 	.prepare		= amd_iommu_prepare,
4126 	.enable			= amd_iommu_enable,
4127 	.disable		= amd_iommu_disable,
4128 	.reenable		= amd_iommu_reenable,
4129 	.enable_faulting	= amd_iommu_enable_faulting,
4130 	.get_ir_irq_domain	= get_ir_irq_domain,
4131 	.get_irq_domain		= get_irq_domain,
4132 };
4133 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)4134 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4135 				       struct irq_cfg *irq_cfg,
4136 				       struct irq_alloc_info *info,
4137 				       int devid, int index, int sub_handle)
4138 {
4139 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4140 	struct msi_msg *msg = &data->msi_entry;
4141 	struct IO_APIC_route_entry *entry;
4142 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4143 
4144 	if (!iommu)
4145 		return;
4146 
4147 	data->irq_2_irte.devid = devid;
4148 	data->irq_2_irte.index = index + sub_handle;
4149 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4150 				 apic->irq_dest_mode, irq_cfg->vector,
4151 				 irq_cfg->dest_apicid, devid);
4152 
4153 	switch (info->type) {
4154 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4155 		/* Setup IOAPIC entry */
4156 		entry = info->ioapic_entry;
4157 		info->ioapic_entry = NULL;
4158 		memset(entry, 0, sizeof(*entry));
4159 		entry->vector        = index;
4160 		entry->mask          = 0;
4161 		entry->trigger       = info->ioapic_trigger;
4162 		entry->polarity      = info->ioapic_polarity;
4163 		/* Mask level triggered irqs. */
4164 		if (info->ioapic_trigger)
4165 			entry->mask = 1;
4166 		break;
4167 
4168 	case X86_IRQ_ALLOC_TYPE_HPET:
4169 	case X86_IRQ_ALLOC_TYPE_MSI:
4170 	case X86_IRQ_ALLOC_TYPE_MSIX:
4171 		msg->address_hi = MSI_ADDR_BASE_HI;
4172 		msg->address_lo = MSI_ADDR_BASE_LO;
4173 		msg->data = irte_info->index;
4174 		break;
4175 
4176 	default:
4177 		BUG_ON(1);
4178 		break;
4179 	}
4180 }
4181 
4182 struct amd_irte_ops irte_32_ops = {
4183 	.prepare = irte_prepare,
4184 	.activate = irte_activate,
4185 	.deactivate = irte_deactivate,
4186 	.set_affinity = irte_set_affinity,
4187 	.set_allocated = irte_set_allocated,
4188 	.is_allocated = irte_is_allocated,
4189 	.clear_allocated = irte_clear_allocated,
4190 };
4191 
4192 struct amd_irte_ops irte_128_ops = {
4193 	.prepare = irte_ga_prepare,
4194 	.activate = irte_ga_activate,
4195 	.deactivate = irte_ga_deactivate,
4196 	.set_affinity = irte_ga_set_affinity,
4197 	.set_allocated = irte_ga_set_allocated,
4198 	.is_allocated = irte_ga_is_allocated,
4199 	.clear_allocated = irte_ga_clear_allocated,
4200 };
4201 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)4202 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4203 			       unsigned int nr_irqs, void *arg)
4204 {
4205 	struct irq_alloc_info *info = arg;
4206 	struct irq_data *irq_data;
4207 	struct amd_ir_data *data = NULL;
4208 	struct irq_cfg *cfg;
4209 	int i, ret, devid;
4210 	int index;
4211 
4212 	if (!info)
4213 		return -EINVAL;
4214 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4215 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4216 		return -EINVAL;
4217 
4218 	/*
4219 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
4220 	 * to support multiple MSI interrupts.
4221 	 */
4222 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4223 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4224 
4225 	devid = get_devid(info);
4226 	if (devid < 0)
4227 		return -EINVAL;
4228 
4229 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4230 	if (ret < 0)
4231 		return ret;
4232 
4233 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4234 		struct irq_remap_table *table;
4235 		struct amd_iommu *iommu;
4236 
4237 		table = alloc_irq_table(devid, NULL);
4238 		if (table) {
4239 			if (!table->min_index) {
4240 				/*
4241 				 * Keep the first 32 indexes free for IOAPIC
4242 				 * interrupts.
4243 				 */
4244 				table->min_index = 32;
4245 				iommu = amd_iommu_rlookup_table[devid];
4246 				for (i = 0; i < 32; ++i)
4247 					iommu->irte_ops->set_allocated(table, i);
4248 			}
4249 			WARN_ON(table->min_index != 32);
4250 			index = info->ioapic_pin;
4251 		} else {
4252 			index = -ENOMEM;
4253 		}
4254 	} else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
4255 		   info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
4256 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4257 
4258 		index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
4259 	} else {
4260 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
4261 	}
4262 
4263 	if (index < 0) {
4264 		pr_warn("Failed to allocate IRTE\n");
4265 		ret = index;
4266 		goto out_free_parent;
4267 	}
4268 
4269 	for (i = 0; i < nr_irqs; i++) {
4270 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4271 		cfg = irqd_cfg(irq_data);
4272 		if (!irq_data || !cfg) {
4273 			ret = -EINVAL;
4274 			goto out_free_data;
4275 		}
4276 
4277 		ret = -ENOMEM;
4278 		data = kzalloc(sizeof(*data), GFP_KERNEL);
4279 		if (!data)
4280 			goto out_free_data;
4281 
4282 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4283 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4284 		else
4285 			data->entry = kzalloc(sizeof(struct irte_ga),
4286 						     GFP_KERNEL);
4287 		if (!data->entry) {
4288 			kfree(data);
4289 			goto out_free_data;
4290 		}
4291 
4292 		irq_data->hwirq = (devid << 16) + i;
4293 		irq_data->chip_data = data;
4294 		irq_data->chip = &amd_ir_chip;
4295 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4296 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4297 	}
4298 
4299 	return 0;
4300 
4301 out_free_data:
4302 	for (i--; i >= 0; i--) {
4303 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4304 		if (irq_data)
4305 			kfree(irq_data->chip_data);
4306 	}
4307 	for (i = 0; i < nr_irqs; i++)
4308 		free_irte(devid, index + i);
4309 out_free_parent:
4310 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4311 	return ret;
4312 }
4313 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4314 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4315 			       unsigned int nr_irqs)
4316 {
4317 	struct irq_2_irte *irte_info;
4318 	struct irq_data *irq_data;
4319 	struct amd_ir_data *data;
4320 	int i;
4321 
4322 	for (i = 0; i < nr_irqs; i++) {
4323 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
4324 		if (irq_data && irq_data->chip_data) {
4325 			data = irq_data->chip_data;
4326 			irte_info = &data->irq_2_irte;
4327 			free_irte(irte_info->devid, irte_info->index);
4328 			kfree(data->entry);
4329 			kfree(data);
4330 		}
4331 	}
4332 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4333 }
4334 
4335 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4336 			       struct amd_ir_data *ir_data,
4337 			       struct irq_2_irte *irte_info,
4338 			       struct irq_cfg *cfg);
4339 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)4340 static int irq_remapping_activate(struct irq_domain *domain,
4341 				  struct irq_data *irq_data, bool reserve)
4342 {
4343 	struct amd_ir_data *data = irq_data->chip_data;
4344 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4345 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4346 	struct irq_cfg *cfg = irqd_cfg(irq_data);
4347 
4348 	if (!iommu)
4349 		return 0;
4350 
4351 	iommu->irte_ops->activate(data->entry, irte_info->devid,
4352 				  irte_info->index);
4353 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4354 	return 0;
4355 }
4356 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4357 static void irq_remapping_deactivate(struct irq_domain *domain,
4358 				     struct irq_data *irq_data)
4359 {
4360 	struct amd_ir_data *data = irq_data->chip_data;
4361 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4362 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4363 
4364 	if (iommu)
4365 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4366 					    irte_info->index);
4367 }
4368 
4369 static const struct irq_domain_ops amd_ir_domain_ops = {
4370 	.alloc = irq_remapping_alloc,
4371 	.free = irq_remapping_free,
4372 	.activate = irq_remapping_activate,
4373 	.deactivate = irq_remapping_deactivate,
4374 };
4375 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)4376 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4377 {
4378 	struct amd_iommu *iommu;
4379 	struct amd_iommu_pi_data *pi_data = vcpu_info;
4380 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4381 	struct amd_ir_data *ir_data = data->chip_data;
4382 	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4383 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4384 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4385 
4386 	/* Note:
4387 	 * This device has never been set up for guest mode.
4388 	 * we should not modify the IRTE
4389 	 */
4390 	if (!dev_data || !dev_data->use_vapic)
4391 		return 0;
4392 
4393 	pi_data->ir_data = ir_data;
4394 
4395 	/* Note:
4396 	 * SVM tries to set up for VAPIC mode, but we are in
4397 	 * legacy mode. So, we force legacy mode instead.
4398 	 */
4399 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4400 		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4401 			 __func__);
4402 		pi_data->is_guest_mode = false;
4403 	}
4404 
4405 	iommu = amd_iommu_rlookup_table[irte_info->devid];
4406 	if (iommu == NULL)
4407 		return -EINVAL;
4408 
4409 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4410 	if (pi_data->is_guest_mode) {
4411 		/* Setting */
4412 		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4413 		irte->hi.fields.vector = vcpu_pi_info->vector;
4414 		irte->lo.fields_vapic.ga_log_intr = 1;
4415 		irte->lo.fields_vapic.guest_mode = 1;
4416 		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4417 
4418 		ir_data->cached_ga_tag = pi_data->ga_tag;
4419 	} else {
4420 		/* Un-Setting */
4421 		struct irq_cfg *cfg = irqd_cfg(data);
4422 
4423 		irte->hi.val = 0;
4424 		irte->lo.val = 0;
4425 		irte->hi.fields.vector = cfg->vector;
4426 		irte->lo.fields_remap.guest_mode = 0;
4427 		irte->lo.fields_remap.destination =
4428 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4429 		irte->hi.fields.destination =
4430 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4431 		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4432 		irte->lo.fields_remap.dm = apic->irq_dest_mode;
4433 
4434 		/*
4435 		 * This communicates the ga_tag back to the caller
4436 		 * so that it can do all the necessary clean up.
4437 		 */
4438 		ir_data->cached_ga_tag = 0;
4439 	}
4440 
4441 	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4442 }
4443 
4444 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4445 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4446 			       struct amd_ir_data *ir_data,
4447 			       struct irq_2_irte *irte_info,
4448 			       struct irq_cfg *cfg)
4449 {
4450 
4451 	/*
4452 	 * Atomically updates the IRTE with the new destination, vector
4453 	 * and flushes the interrupt entry cache.
4454 	 */
4455 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4456 				      irte_info->index, cfg->vector,
4457 				      cfg->dest_apicid);
4458 }
4459 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4460 static int amd_ir_set_affinity(struct irq_data *data,
4461 			       const struct cpumask *mask, bool force)
4462 {
4463 	struct amd_ir_data *ir_data = data->chip_data;
4464 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4465 	struct irq_cfg *cfg = irqd_cfg(data);
4466 	struct irq_data *parent = data->parent_data;
4467 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4468 	int ret;
4469 
4470 	if (!iommu)
4471 		return -ENODEV;
4472 
4473 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4474 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4475 		return ret;
4476 
4477 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4478 	/*
4479 	 * After this point, all the interrupts will start arriving
4480 	 * at the new destination. So, time to cleanup the previous
4481 	 * vector allocation.
4482 	 */
4483 	send_cleanup_vector(cfg);
4484 
4485 	return IRQ_SET_MASK_OK_DONE;
4486 }
4487 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4488 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4489 {
4490 	struct amd_ir_data *ir_data = irq_data->chip_data;
4491 
4492 	*msg = ir_data->msi_entry;
4493 }
4494 
4495 static struct irq_chip amd_ir_chip = {
4496 	.name			= "AMD-IR",
4497 	.irq_ack		= apic_ack_irq,
4498 	.irq_set_affinity	= amd_ir_set_affinity,
4499 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4500 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4501 };
4502 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4503 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4504 {
4505 	struct fwnode_handle *fn;
4506 
4507 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4508 	if (!fn)
4509 		return -ENOMEM;
4510 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4511 	if (!iommu->ir_domain) {
4512 		irq_domain_free_fwnode(fn);
4513 		return -ENOMEM;
4514 	}
4515 
4516 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4517 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4518 							     "AMD-IR-MSI",
4519 							     iommu->index);
4520 	return 0;
4521 }
4522 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4523 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4524 {
4525 	unsigned long flags;
4526 	struct amd_iommu *iommu;
4527 	struct irq_remap_table *table;
4528 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4529 	int devid = ir_data->irq_2_irte.devid;
4530 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4531 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4532 
4533 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4534 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4535 		return 0;
4536 
4537 	iommu = amd_iommu_rlookup_table[devid];
4538 	if (!iommu)
4539 		return -ENODEV;
4540 
4541 	table = get_irq_table(devid);
4542 	if (!table)
4543 		return -ENODEV;
4544 
4545 	raw_spin_lock_irqsave(&table->lock, flags);
4546 
4547 	if (ref->lo.fields_vapic.guest_mode) {
4548 		if (cpu >= 0) {
4549 			ref->lo.fields_vapic.destination =
4550 						APICID_TO_IRTE_DEST_LO(cpu);
4551 			ref->hi.fields.destination =
4552 						APICID_TO_IRTE_DEST_HI(cpu);
4553 		}
4554 		ref->lo.fields_vapic.is_run = is_run;
4555 		barrier();
4556 	}
4557 
4558 	raw_spin_unlock_irqrestore(&table->lock, flags);
4559 
4560 	iommu_flush_irt(iommu, devid);
4561 	iommu_completion_wait(iommu);
4562 	return 0;
4563 }
4564 EXPORT_SYMBOL(amd_iommu_update_ga);
4565 #endif
4566