1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30 #include <linux/rseq.h>
31
32 /* task_struct member predeclarations (sorted alphabetically): */
33 struct audit_context;
34 struct backing_dev_info;
35 struct bio_list;
36 struct blk_plug;
37 struct cfs_rq;
38 struct fs_struct;
39 struct futex_pi_state;
40 struct io_context;
41 struct mempolicy;
42 struct nameidata;
43 struct nsproxy;
44 struct perf_event_context;
45 struct pid_namespace;
46 struct pipe_inode_info;
47 struct rcu_node;
48 struct reclaim_state;
49 struct robust_list_head;
50 struct sched_attr;
51 struct sched_param;
52 struct seq_file;
53 struct sighand_struct;
54 struct signal_struct;
55 struct task_delay_info;
56 struct task_group;
57
58 /*
59 * Task state bitmask. NOTE! These bits are also
60 * encoded in fs/proc/array.c: get_task_state().
61 *
62 * We have two separate sets of flags: task->state
63 * is about runnability, while task->exit_state are
64 * about the task exiting. Confusing, but this way
65 * modifying one set can't modify the other one by
66 * mistake.
67 */
68
69 /* Used in tsk->state: */
70 #define TASK_RUNNING 0x0000
71 #define TASK_INTERRUPTIBLE 0x0001
72 #define TASK_UNINTERRUPTIBLE 0x0002
73 #define __TASK_STOPPED 0x0004
74 #define __TASK_TRACED 0x0008
75 /* Used in tsk->exit_state: */
76 #define EXIT_DEAD 0x0010
77 #define EXIT_ZOMBIE 0x0020
78 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
79 /* Used in tsk->state again: */
80 #define TASK_PARKED 0x0040
81 #define TASK_DEAD 0x0080
82 #define TASK_WAKEKILL 0x0100
83 #define TASK_WAKING 0x0200
84 #define TASK_NOLOAD 0x0400
85 #define TASK_NEW 0x0800
86 #define TASK_STATE_MAX 0x1000
87
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * where wake_up_state() executes a full memory barrier before accessing the
171 * task state.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 extern void scheduler_tick(void);
210
211 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213 extern long schedule_timeout(long timeout);
214 extern long schedule_timeout_interruptible(long timeout);
215 extern long schedule_timeout_killable(long timeout);
216 extern long schedule_timeout_uninterruptible(long timeout);
217 extern long schedule_timeout_idle(long timeout);
218 asmlinkage void schedule(void);
219 extern void schedule_preempt_disabled(void);
220
221 extern int __must_check io_schedule_prepare(void);
222 extern void io_schedule_finish(int token);
223 extern long io_schedule_timeout(long timeout);
224 extern void io_schedule(void);
225
226 /**
227 * struct prev_cputime - snapshot of system and user cputime
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
230 * @lock: protects the above two fields
231 *
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
234 */
235 struct prev_cputime {
236 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
240 #endif
241 };
242
243 /**
244 * struct task_cputime - collected CPU time counts
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 *
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
252 */
253 struct task_cputime {
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
257 };
258
259 /* Alternate field names when used on cache expirations: */
260 #define virt_exp utime
261 #define prof_exp stime
262 #define sched_exp sum_exec_runtime
263
264 enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271 };
272
273 struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
277 u64 utime;
278 u64 stime;
279 u64 gtime;
280 };
281
282 struct sched_info {
283 #ifdef CONFIG_SCHED_INFO
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
299
300 #endif /* CONFIG_SCHED_INFO */
301 };
302
303 /*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
310 # define SCHED_FIXEDPOINT_SHIFT 10
311 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
312
313 struct load_weight {
314 unsigned long weight;
315 u32 inv_weight;
316 };
317
318 /**
319 * struct util_est - Estimation utilization of FAIR tasks
320 * @enqueued: instantaneous estimated utilization of a task/cpu
321 * @ewma: the Exponential Weighted Moving Average (EWMA)
322 * utilization of a task
323 *
324 * Support data structure to track an Exponential Weighted Moving Average
325 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
326 * average each time a task completes an activation. Sample's weight is chosen
327 * so that the EWMA will be relatively insensitive to transient changes to the
328 * task's workload.
329 *
330 * The enqueued attribute has a slightly different meaning for tasks and cpus:
331 * - task: the task's util_avg at last task dequeue time
332 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
333 * Thus, the util_est.enqueued of a task represents the contribution on the
334 * estimated utilization of the CPU where that task is currently enqueued.
335 *
336 * Only for tasks we track a moving average of the past instantaneous
337 * estimated utilization. This allows to absorb sporadic drops in utilization
338 * of an otherwise almost periodic task.
339 */
340 struct util_est {
341 unsigned int enqueued;
342 unsigned int ewma;
343 #define UTIL_EST_WEIGHT_SHIFT 2
344 } __attribute__((__aligned__(sizeof(u64))));
345
346 /*
347 * The load_avg/util_avg accumulates an infinite geometric series
348 * (see __update_load_avg() in kernel/sched/fair.c).
349 *
350 * [load_avg definition]
351 *
352 * load_avg = runnable% * scale_load_down(load)
353 *
354 * where runnable% is the time ratio that a sched_entity is runnable.
355 * For cfs_rq, it is the aggregated load_avg of all runnable and
356 * blocked sched_entities.
357 *
358 * load_avg may also take frequency scaling into account:
359 *
360 * load_avg = runnable% * scale_load_down(load) * freq%
361 *
362 * where freq% is the CPU frequency normalized to the highest frequency.
363 *
364 * [util_avg definition]
365 *
366 * util_avg = running% * SCHED_CAPACITY_SCALE
367 *
368 * where running% is the time ratio that a sched_entity is running on
369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
370 * and blocked sched_entities.
371 *
372 * util_avg may also factor frequency scaling and CPU capacity scaling:
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
375 *
376 * where freq% is the same as above, and capacity% is the CPU capacity
377 * normalized to the greatest capacity (due to uarch differences, etc).
378 *
379 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
380 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
381 * we therefore scale them to as large a range as necessary. This is for
382 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
383 *
384 * [Overflow issue]
385 *
386 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
387 * with the highest load (=88761), always runnable on a single cfs_rq,
388 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 *
390 * For all other cases (including 32-bit kernels), struct load_weight's
391 * weight will overflow first before we do, because:
392 *
393 * Max(load_avg) <= Max(load.weight)
394 *
395 * Then it is the load_weight's responsibility to consider overflow
396 * issues.
397 */
398 struct sched_avg {
399 u64 last_update_time;
400 u64 load_sum;
401 u64 runnable_load_sum;
402 u32 util_sum;
403 u32 period_contrib;
404 unsigned long load_avg;
405 unsigned long runnable_load_avg;
406 unsigned long util_avg;
407 struct util_est util_est;
408 } ____cacheline_aligned;
409
410 struct sched_statistics {
411 #ifdef CONFIG_SCHEDSTATS
412 u64 wait_start;
413 u64 wait_max;
414 u64 wait_count;
415 u64 wait_sum;
416 u64 iowait_count;
417 u64 iowait_sum;
418
419 u64 sleep_start;
420 u64 sleep_max;
421 s64 sum_sleep_runtime;
422
423 u64 block_start;
424 u64 block_max;
425 u64 exec_max;
426 u64 slice_max;
427
428 u64 nr_migrations_cold;
429 u64 nr_failed_migrations_affine;
430 u64 nr_failed_migrations_running;
431 u64 nr_failed_migrations_hot;
432 u64 nr_forced_migrations;
433
434 u64 nr_wakeups;
435 u64 nr_wakeups_sync;
436 u64 nr_wakeups_migrate;
437 u64 nr_wakeups_local;
438 u64 nr_wakeups_remote;
439 u64 nr_wakeups_affine;
440 u64 nr_wakeups_affine_attempts;
441 u64 nr_wakeups_passive;
442 u64 nr_wakeups_idle;
443 #endif
444 };
445
446 struct sched_entity {
447 /* For load-balancing: */
448 struct load_weight load;
449 unsigned long runnable_weight;
450 struct rb_node run_node;
451 struct list_head group_node;
452 unsigned int on_rq;
453
454 u64 exec_start;
455 u64 sum_exec_runtime;
456 u64 vruntime;
457 u64 prev_sum_exec_runtime;
458
459 u64 nr_migrations;
460
461 struct sched_statistics statistics;
462
463 #ifdef CONFIG_FAIR_GROUP_SCHED
464 int depth;
465 struct sched_entity *parent;
466 /* rq on which this entity is (to be) queued: */
467 struct cfs_rq *cfs_rq;
468 /* rq "owned" by this entity/group: */
469 struct cfs_rq *my_q;
470 #endif
471
472 #ifdef CONFIG_SMP
473 /*
474 * Per entity load average tracking.
475 *
476 * Put into separate cache line so it does not
477 * collide with read-mostly values above.
478 */
479 struct sched_avg avg;
480 #endif
481 };
482
483 struct sched_rt_entity {
484 struct list_head run_list;
485 unsigned long timeout;
486 unsigned long watchdog_stamp;
487 unsigned int time_slice;
488 unsigned short on_rq;
489 unsigned short on_list;
490
491 struct sched_rt_entity *back;
492 #ifdef CONFIG_RT_GROUP_SCHED
493 struct sched_rt_entity *parent;
494 /* rq on which this entity is (to be) queued: */
495 struct rt_rq *rt_rq;
496 /* rq "owned" by this entity/group: */
497 struct rt_rq *my_q;
498 #endif
499 } __randomize_layout;
500
501 struct sched_dl_entity {
502 struct rb_node rb_node;
503
504 /*
505 * Original scheduling parameters. Copied here from sched_attr
506 * during sched_setattr(), they will remain the same until
507 * the next sched_setattr().
508 */
509 u64 dl_runtime; /* Maximum runtime for each instance */
510 u64 dl_deadline; /* Relative deadline of each instance */
511 u64 dl_period; /* Separation of two instances (period) */
512 u64 dl_bw; /* dl_runtime / dl_period */
513 u64 dl_density; /* dl_runtime / dl_deadline */
514
515 /*
516 * Actual scheduling parameters. Initialized with the values above,
517 * they are continously updated during task execution. Note that
518 * the remaining runtime could be < 0 in case we are in overrun.
519 */
520 s64 runtime; /* Remaining runtime for this instance */
521 u64 deadline; /* Absolute deadline for this instance */
522 unsigned int flags; /* Specifying the scheduler behaviour */
523
524 /*
525 * Some bool flags:
526 *
527 * @dl_throttled tells if we exhausted the runtime. If so, the
528 * task has to wait for a replenishment to be performed at the
529 * next firing of dl_timer.
530 *
531 * @dl_boosted tells if we are boosted due to DI. If so we are
532 * outside bandwidth enforcement mechanism (but only until we
533 * exit the critical section);
534 *
535 * @dl_yielded tells if task gave up the CPU before consuming
536 * all its available runtime during the last job.
537 *
538 * @dl_non_contending tells if the task is inactive while still
539 * contributing to the active utilization. In other words, it
540 * indicates if the inactive timer has been armed and its handler
541 * has not been executed yet. This flag is useful to avoid race
542 * conditions between the inactive timer handler and the wakeup
543 * code.
544 *
545 * @dl_overrun tells if the task asked to be informed about runtime
546 * overruns.
547 */
548 unsigned int dl_throttled : 1;
549 unsigned int dl_boosted : 1;
550 unsigned int dl_yielded : 1;
551 unsigned int dl_non_contending : 1;
552 unsigned int dl_overrun : 1;
553
554 /*
555 * Bandwidth enforcement timer. Each -deadline task has its
556 * own bandwidth to be enforced, thus we need one timer per task.
557 */
558 struct hrtimer dl_timer;
559
560 /*
561 * Inactive timer, responsible for decreasing the active utilization
562 * at the "0-lag time". When a -deadline task blocks, it contributes
563 * to GRUB's active utilization until the "0-lag time", hence a
564 * timer is needed to decrease the active utilization at the correct
565 * time.
566 */
567 struct hrtimer inactive_timer;
568 };
569
570 union rcu_special {
571 struct {
572 u8 blocked;
573 u8 need_qs;
574 u8 exp_need_qs;
575
576 /* Otherwise the compiler can store garbage here: */
577 u8 pad;
578 } b; /* Bits. */
579 u32 s; /* Set of bits. */
580 };
581
582 enum perf_event_task_context {
583 perf_invalid_context = -1,
584 perf_hw_context = 0,
585 perf_sw_context,
586 perf_nr_task_contexts,
587 };
588
589 struct wake_q_node {
590 struct wake_q_node *next;
591 };
592
593 struct task_struct {
594 #ifdef CONFIG_THREAD_INFO_IN_TASK
595 /*
596 * For reasons of header soup (see current_thread_info()), this
597 * must be the first element of task_struct.
598 */
599 struct thread_info thread_info;
600 #endif
601 /* -1 unrunnable, 0 runnable, >0 stopped: */
602 volatile long state;
603
604 /*
605 * This begins the randomizable portion of task_struct. Only
606 * scheduling-critical items should be added above here.
607 */
608 randomized_struct_fields_start
609
610 void *stack;
611 atomic_t usage;
612 /* Per task flags (PF_*), defined further below: */
613 unsigned int flags;
614 unsigned int ptrace;
615
616 #ifdef CONFIG_SMP
617 struct llist_node wake_entry;
618 int on_cpu;
619 #ifdef CONFIG_THREAD_INFO_IN_TASK
620 /* Current CPU: */
621 unsigned int cpu;
622 #endif
623 unsigned int wakee_flips;
624 unsigned long wakee_flip_decay_ts;
625 struct task_struct *last_wakee;
626
627 /*
628 * recent_used_cpu is initially set as the last CPU used by a task
629 * that wakes affine another task. Waker/wakee relationships can
630 * push tasks around a CPU where each wakeup moves to the next one.
631 * Tracking a recently used CPU allows a quick search for a recently
632 * used CPU that may be idle.
633 */
634 int recent_used_cpu;
635 int wake_cpu;
636 #endif
637 int on_rq;
638
639 int prio;
640 int static_prio;
641 int normal_prio;
642 unsigned int rt_priority;
643
644 const struct sched_class *sched_class;
645 struct sched_entity se;
646 struct sched_rt_entity rt;
647 #ifdef CONFIG_CGROUP_SCHED
648 struct task_group *sched_task_group;
649 #endif
650 struct sched_dl_entity dl;
651
652 #ifdef CONFIG_PREEMPT_NOTIFIERS
653 /* List of struct preempt_notifier: */
654 struct hlist_head preempt_notifiers;
655 #endif
656
657 #ifdef CONFIG_BLK_DEV_IO_TRACE
658 unsigned int btrace_seq;
659 #endif
660
661 unsigned int policy;
662 int nr_cpus_allowed;
663 cpumask_t cpus_allowed;
664
665 #ifdef CONFIG_PREEMPT_RCU
666 int rcu_read_lock_nesting;
667 union rcu_special rcu_read_unlock_special;
668 struct list_head rcu_node_entry;
669 struct rcu_node *rcu_blocked_node;
670 #endif /* #ifdef CONFIG_PREEMPT_RCU */
671
672 #ifdef CONFIG_TASKS_RCU
673 unsigned long rcu_tasks_nvcsw;
674 u8 rcu_tasks_holdout;
675 u8 rcu_tasks_idx;
676 int rcu_tasks_idle_cpu;
677 struct list_head rcu_tasks_holdout_list;
678 #endif /* #ifdef CONFIG_TASKS_RCU */
679
680 struct sched_info sched_info;
681
682 struct list_head tasks;
683 #ifdef CONFIG_SMP
684 struct plist_node pushable_tasks;
685 struct rb_node pushable_dl_tasks;
686 #endif
687
688 struct mm_struct *mm;
689 struct mm_struct *active_mm;
690
691 /* Per-thread vma caching: */
692 struct vmacache vmacache;
693
694 #ifdef SPLIT_RSS_COUNTING
695 struct task_rss_stat rss_stat;
696 #endif
697 int exit_state;
698 int exit_code;
699 int exit_signal;
700 /* The signal sent when the parent dies: */
701 int pdeath_signal;
702 /* JOBCTL_*, siglock protected: */
703 unsigned long jobctl;
704
705 /* Used for emulating ABI behavior of previous Linux versions: */
706 unsigned int personality;
707
708 /* Scheduler bits, serialized by scheduler locks: */
709 unsigned sched_reset_on_fork:1;
710 unsigned sched_contributes_to_load:1;
711 unsigned sched_migrated:1;
712 unsigned sched_remote_wakeup:1;
713 /* Force alignment to the next boundary: */
714 unsigned :0;
715
716 /* Unserialized, strictly 'current' */
717
718 /* Bit to tell LSMs we're in execve(): */
719 unsigned in_execve:1;
720 unsigned in_iowait:1;
721 #ifndef TIF_RESTORE_SIGMASK
722 unsigned restore_sigmask:1;
723 #endif
724 #ifdef CONFIG_MEMCG
725 unsigned in_user_fault:1;
726 #ifdef CONFIG_MEMCG_KMEM
727 unsigned memcg_kmem_skip_account:1;
728 #endif
729 #endif
730 #ifdef CONFIG_COMPAT_BRK
731 unsigned brk_randomized:1;
732 #endif
733 #ifdef CONFIG_CGROUPS
734 /* disallow userland-initiated cgroup migration */
735 unsigned no_cgroup_migration:1;
736 #endif
737 #ifdef CONFIG_BLK_CGROUP
738 /* to be used once the psi infrastructure lands upstream. */
739 unsigned use_memdelay:1;
740 #endif
741
742 unsigned long atomic_flags; /* Flags requiring atomic access. */
743
744 struct restart_block restart_block;
745
746 pid_t pid;
747 pid_t tgid;
748
749 #ifdef CONFIG_STACKPROTECTOR
750 /* Canary value for the -fstack-protector GCC feature: */
751 unsigned long stack_canary;
752 #endif
753 /*
754 * Pointers to the (original) parent process, youngest child, younger sibling,
755 * older sibling, respectively. (p->father can be replaced with
756 * p->real_parent->pid)
757 */
758
759 /* Real parent process: */
760 struct task_struct __rcu *real_parent;
761
762 /* Recipient of SIGCHLD, wait4() reports: */
763 struct task_struct __rcu *parent;
764
765 /*
766 * Children/sibling form the list of natural children:
767 */
768 struct list_head children;
769 struct list_head sibling;
770 struct task_struct *group_leader;
771
772 /*
773 * 'ptraced' is the list of tasks this task is using ptrace() on.
774 *
775 * This includes both natural children and PTRACE_ATTACH targets.
776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
777 */
778 struct list_head ptraced;
779 struct list_head ptrace_entry;
780
781 /* PID/PID hash table linkage. */
782 struct pid *thread_pid;
783 struct hlist_node pid_links[PIDTYPE_MAX];
784 struct list_head thread_group;
785 struct list_head thread_node;
786
787 struct completion *vfork_done;
788
789 /* CLONE_CHILD_SETTID: */
790 int __user *set_child_tid;
791
792 /* CLONE_CHILD_CLEARTID: */
793 int __user *clear_child_tid;
794
795 u64 utime;
796 u64 stime;
797 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
798 u64 utimescaled;
799 u64 stimescaled;
800 #endif
801 u64 gtime;
802 struct prev_cputime prev_cputime;
803 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
804 struct vtime vtime;
805 #endif
806
807 #ifdef CONFIG_NO_HZ_FULL
808 atomic_t tick_dep_mask;
809 #endif
810 /* Context switch counts: */
811 unsigned long nvcsw;
812 unsigned long nivcsw;
813
814 /* Monotonic time in nsecs: */
815 u64 start_time;
816
817 /* Boot based time in nsecs: */
818 u64 real_start_time;
819
820 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
821 unsigned long min_flt;
822 unsigned long maj_flt;
823
824 #ifdef CONFIG_POSIX_TIMERS
825 struct task_cputime cputime_expires;
826 struct list_head cpu_timers[3];
827 #endif
828
829 /* Process credentials: */
830
831 /* Tracer's credentials at attach: */
832 const struct cred __rcu *ptracer_cred;
833
834 /* Objective and real subjective task credentials (COW): */
835 const struct cred __rcu *real_cred;
836
837 /* Effective (overridable) subjective task credentials (COW): */
838 const struct cred __rcu *cred;
839
840 /*
841 * executable name, excluding path.
842 *
843 * - normally initialized setup_new_exec()
844 * - access it with [gs]et_task_comm()
845 * - lock it with task_lock()
846 */
847 char comm[TASK_COMM_LEN];
848
849 struct nameidata *nameidata;
850
851 #ifdef CONFIG_SYSVIPC
852 struct sysv_sem sysvsem;
853 struct sysv_shm sysvshm;
854 #endif
855 #ifdef CONFIG_DETECT_HUNG_TASK
856 unsigned long last_switch_count;
857 unsigned long last_switch_time;
858 #endif
859 /* Filesystem information: */
860 struct fs_struct *fs;
861
862 /* Open file information: */
863 struct files_struct *files;
864
865 /* Namespaces: */
866 struct nsproxy *nsproxy;
867
868 /* Signal handlers: */
869 struct signal_struct *signal;
870 struct sighand_struct *sighand;
871 sigset_t blocked;
872 sigset_t real_blocked;
873 /* Restored if set_restore_sigmask() was used: */
874 sigset_t saved_sigmask;
875 struct sigpending pending;
876 unsigned long sas_ss_sp;
877 size_t sas_ss_size;
878 unsigned int sas_ss_flags;
879
880 struct callback_head *task_works;
881
882 struct audit_context *audit_context;
883 #ifdef CONFIG_AUDITSYSCALL
884 kuid_t loginuid;
885 unsigned int sessionid;
886 #endif
887 struct seccomp seccomp;
888
889 /* Thread group tracking: */
890 u64 parent_exec_id;
891 u64 self_exec_id;
892
893 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
894 spinlock_t alloc_lock;
895
896 /* Protection of the PI data structures: */
897 raw_spinlock_t pi_lock;
898
899 struct wake_q_node wake_q;
900
901 #ifdef CONFIG_RT_MUTEXES
902 /* PI waiters blocked on a rt_mutex held by this task: */
903 struct rb_root_cached pi_waiters;
904 /* Updated under owner's pi_lock and rq lock */
905 struct task_struct *pi_top_task;
906 /* Deadlock detection and priority inheritance handling: */
907 struct rt_mutex_waiter *pi_blocked_on;
908 #endif
909
910 #ifdef CONFIG_DEBUG_MUTEXES
911 /* Mutex deadlock detection: */
912 struct mutex_waiter *blocked_on;
913 #endif
914
915 #ifdef CONFIG_TRACE_IRQFLAGS
916 unsigned int irq_events;
917 unsigned long hardirq_enable_ip;
918 unsigned long hardirq_disable_ip;
919 unsigned int hardirq_enable_event;
920 unsigned int hardirq_disable_event;
921 int hardirqs_enabled;
922 int hardirq_context;
923 unsigned long softirq_disable_ip;
924 unsigned long softirq_enable_ip;
925 unsigned int softirq_disable_event;
926 unsigned int softirq_enable_event;
927 int softirqs_enabled;
928 int softirq_context;
929 #endif
930
931 #ifdef CONFIG_LOCKDEP
932 # define MAX_LOCK_DEPTH 48UL
933 u64 curr_chain_key;
934 int lockdep_depth;
935 unsigned int lockdep_recursion;
936 struct held_lock held_locks[MAX_LOCK_DEPTH];
937 #endif
938
939 #ifdef CONFIG_UBSAN
940 unsigned int in_ubsan;
941 #endif
942
943 /* Journalling filesystem info: */
944 void *journal_info;
945
946 /* Stacked block device info: */
947 struct bio_list *bio_list;
948
949 #ifdef CONFIG_BLOCK
950 /* Stack plugging: */
951 struct blk_plug *plug;
952 #endif
953
954 /* VM state: */
955 struct reclaim_state *reclaim_state;
956
957 struct backing_dev_info *backing_dev_info;
958
959 struct io_context *io_context;
960
961 /* Ptrace state: */
962 unsigned long ptrace_message;
963 siginfo_t *last_siginfo;
964
965 struct task_io_accounting ioac;
966 #ifdef CONFIG_TASK_XACCT
967 /* Accumulated RSS usage: */
968 u64 acct_rss_mem1;
969 /* Accumulated virtual memory usage: */
970 u64 acct_vm_mem1;
971 /* stime + utime since last update: */
972 u64 acct_timexpd;
973 #endif
974 #ifdef CONFIG_CPUSETS
975 /* Protected by ->alloc_lock: */
976 nodemask_t mems_allowed;
977 /* Seqence number to catch updates: */
978 seqcount_t mems_allowed_seq;
979 int cpuset_mem_spread_rotor;
980 int cpuset_slab_spread_rotor;
981 #endif
982 #ifdef CONFIG_CGROUPS
983 /* Control Group info protected by css_set_lock: */
984 struct css_set __rcu *cgroups;
985 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
986 struct list_head cg_list;
987 #endif
988 #ifdef CONFIG_INTEL_RDT
989 u32 closid;
990 u32 rmid;
991 #endif
992 #ifdef CONFIG_FUTEX
993 struct robust_list_head __user *robust_list;
994 #ifdef CONFIG_COMPAT
995 struct compat_robust_list_head __user *compat_robust_list;
996 #endif
997 struct list_head pi_state_list;
998 struct futex_pi_state *pi_state_cache;
999 #endif
1000 #ifdef CONFIG_PERF_EVENTS
1001 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1002 struct mutex perf_event_mutex;
1003 struct list_head perf_event_list;
1004 #endif
1005 #ifdef CONFIG_DEBUG_PREEMPT
1006 unsigned long preempt_disable_ip;
1007 #endif
1008 #ifdef CONFIG_NUMA
1009 /* Protected by alloc_lock: */
1010 struct mempolicy *mempolicy;
1011 short il_prev;
1012 short pref_node_fork;
1013 #endif
1014 #ifdef CONFIG_NUMA_BALANCING
1015 int numa_scan_seq;
1016 unsigned int numa_scan_period;
1017 unsigned int numa_scan_period_max;
1018 int numa_preferred_nid;
1019 unsigned long numa_migrate_retry;
1020 /* Migration stamp: */
1021 u64 node_stamp;
1022 u64 last_task_numa_placement;
1023 u64 last_sum_exec_runtime;
1024 struct callback_head numa_work;
1025
1026 /*
1027 * This pointer is only modified for current in syscall and
1028 * pagefault context (and for tasks being destroyed), so it can be read
1029 * from any of the following contexts:
1030 * - RCU read-side critical section
1031 * - current->numa_group from everywhere
1032 * - task's runqueue locked, task not running
1033 */
1034 struct numa_group __rcu *numa_group;
1035
1036 /*
1037 * numa_faults is an array split into four regions:
1038 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1039 * in this precise order.
1040 *
1041 * faults_memory: Exponential decaying average of faults on a per-node
1042 * basis. Scheduling placement decisions are made based on these
1043 * counts. The values remain static for the duration of a PTE scan.
1044 * faults_cpu: Track the nodes the process was running on when a NUMA
1045 * hinting fault was incurred.
1046 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1047 * during the current scan window. When the scan completes, the counts
1048 * in faults_memory and faults_cpu decay and these values are copied.
1049 */
1050 unsigned long *numa_faults;
1051 unsigned long total_numa_faults;
1052
1053 /*
1054 * numa_faults_locality tracks if faults recorded during the last
1055 * scan window were remote/local or failed to migrate. The task scan
1056 * period is adapted based on the locality of the faults with different
1057 * weights depending on whether they were shared or private faults
1058 */
1059 unsigned long numa_faults_locality[3];
1060
1061 unsigned long numa_pages_migrated;
1062 #endif /* CONFIG_NUMA_BALANCING */
1063
1064 #ifdef CONFIG_RSEQ
1065 struct rseq __user *rseq;
1066 u32 rseq_len;
1067 u32 rseq_sig;
1068 /*
1069 * RmW on rseq_event_mask must be performed atomically
1070 * with respect to preemption.
1071 */
1072 unsigned long rseq_event_mask;
1073 #endif
1074
1075 struct tlbflush_unmap_batch tlb_ubc;
1076
1077 struct rcu_head rcu;
1078
1079 /* Cache last used pipe for splice(): */
1080 struct pipe_inode_info *splice_pipe;
1081
1082 struct page_frag task_frag;
1083
1084 #ifdef CONFIG_TASK_DELAY_ACCT
1085 struct task_delay_info *delays;
1086 #endif
1087
1088 #ifdef CONFIG_FAULT_INJECTION
1089 int make_it_fail;
1090 unsigned int fail_nth;
1091 #endif
1092 /*
1093 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1094 * balance_dirty_pages() for a dirty throttling pause:
1095 */
1096 int nr_dirtied;
1097 int nr_dirtied_pause;
1098 /* Start of a write-and-pause period: */
1099 unsigned long dirty_paused_when;
1100
1101 #ifdef CONFIG_LATENCYTOP
1102 int latency_record_count;
1103 struct latency_record latency_record[LT_SAVECOUNT];
1104 #endif
1105 /*
1106 * Time slack values; these are used to round up poll() and
1107 * select() etc timeout values. These are in nanoseconds.
1108 */
1109 u64 timer_slack_ns;
1110 u64 default_timer_slack_ns;
1111
1112 #ifdef CONFIG_KASAN
1113 unsigned int kasan_depth;
1114 #endif
1115
1116 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1117 /* Index of current stored address in ret_stack: */
1118 int curr_ret_stack;
1119 int curr_ret_depth;
1120
1121 /* Stack of return addresses for return function tracing: */
1122 struct ftrace_ret_stack *ret_stack;
1123
1124 /* Timestamp for last schedule: */
1125 unsigned long long ftrace_timestamp;
1126
1127 /*
1128 * Number of functions that haven't been traced
1129 * because of depth overrun:
1130 */
1131 atomic_t trace_overrun;
1132
1133 /* Pause tracing: */
1134 atomic_t tracing_graph_pause;
1135 #endif
1136
1137 #ifdef CONFIG_TRACING
1138 /* State flags for use by tracers: */
1139 unsigned long trace;
1140
1141 /* Bitmask and counter of trace recursion: */
1142 unsigned long trace_recursion;
1143 #endif /* CONFIG_TRACING */
1144
1145 #ifdef CONFIG_KCOV
1146 /* Coverage collection mode enabled for this task (0 if disabled): */
1147 unsigned int kcov_mode;
1148
1149 /* Size of the kcov_area: */
1150 unsigned int kcov_size;
1151
1152 /* Buffer for coverage collection: */
1153 void *kcov_area;
1154
1155 /* KCOV descriptor wired with this task or NULL: */
1156 struct kcov *kcov;
1157 #endif
1158
1159 #ifdef CONFIG_MEMCG
1160 struct mem_cgroup *memcg_in_oom;
1161 gfp_t memcg_oom_gfp_mask;
1162 int memcg_oom_order;
1163
1164 /* Number of pages to reclaim on returning to userland: */
1165 unsigned int memcg_nr_pages_over_high;
1166
1167 /* Used by memcontrol for targeted memcg charge: */
1168 struct mem_cgroup *active_memcg;
1169 #endif
1170
1171 #ifdef CONFIG_BLK_CGROUP
1172 struct request_queue *throttle_queue;
1173 #endif
1174
1175 #ifdef CONFIG_UPROBES
1176 struct uprobe_task *utask;
1177 #endif
1178 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1179 unsigned int sequential_io;
1180 unsigned int sequential_io_avg;
1181 #endif
1182 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1183 unsigned long task_state_change;
1184 #endif
1185 int pagefault_disabled;
1186 #ifdef CONFIG_MMU
1187 struct task_struct *oom_reaper_list;
1188 #endif
1189 #ifdef CONFIG_VMAP_STACK
1190 struct vm_struct *stack_vm_area;
1191 #endif
1192 #ifdef CONFIG_THREAD_INFO_IN_TASK
1193 /* A live task holds one reference: */
1194 atomic_t stack_refcount;
1195 #endif
1196 #ifdef CONFIG_LIVEPATCH
1197 int patch_state;
1198 #endif
1199 #ifdef CONFIG_SECURITY
1200 /* Used by LSM modules for access restriction: */
1201 void *security;
1202 #endif
1203
1204 /*
1205 * New fields for task_struct should be added above here, so that
1206 * they are included in the randomized portion of task_struct.
1207 */
1208 randomized_struct_fields_end
1209
1210 /* CPU-specific state of this task: */
1211 struct thread_struct thread;
1212
1213 /*
1214 * WARNING: on x86, 'thread_struct' contains a variable-sized
1215 * structure. It *MUST* be at the end of 'task_struct'.
1216 *
1217 * Do not put anything below here!
1218 */
1219 };
1220
task_pid(struct task_struct * task)1221 static inline struct pid *task_pid(struct task_struct *task)
1222 {
1223 return task->thread_pid;
1224 }
1225
1226 /*
1227 * the helpers to get the task's different pids as they are seen
1228 * from various namespaces
1229 *
1230 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1231 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1232 * current.
1233 * task_xid_nr_ns() : id seen from the ns specified;
1234 *
1235 * see also pid_nr() etc in include/linux/pid.h
1236 */
1237 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1238
task_pid_nr(struct task_struct * tsk)1239 static inline pid_t task_pid_nr(struct task_struct *tsk)
1240 {
1241 return tsk->pid;
1242 }
1243
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1244 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1245 {
1246 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1247 }
1248
task_pid_vnr(struct task_struct * tsk)1249 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1250 {
1251 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1252 }
1253
1254
task_tgid_nr(struct task_struct * tsk)1255 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1256 {
1257 return tsk->tgid;
1258 }
1259
1260 /**
1261 * pid_alive - check that a task structure is not stale
1262 * @p: Task structure to be checked.
1263 *
1264 * Test if a process is not yet dead (at most zombie state)
1265 * If pid_alive fails, then pointers within the task structure
1266 * can be stale and must not be dereferenced.
1267 *
1268 * Return: 1 if the process is alive. 0 otherwise.
1269 */
pid_alive(const struct task_struct * p)1270 static inline int pid_alive(const struct task_struct *p)
1271 {
1272 return p->thread_pid != NULL;
1273 }
1274
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1275 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1276 {
1277 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1278 }
1279
task_pgrp_vnr(struct task_struct * tsk)1280 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1281 {
1282 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1283 }
1284
1285
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1286 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1287 {
1288 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1289 }
1290
task_session_vnr(struct task_struct * tsk)1291 static inline pid_t task_session_vnr(struct task_struct *tsk)
1292 {
1293 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1294 }
1295
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1296 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1297 {
1298 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1299 }
1300
task_tgid_vnr(struct task_struct * tsk)1301 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1302 {
1303 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1304 }
1305
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1306 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1307 {
1308 pid_t pid = 0;
1309
1310 rcu_read_lock();
1311 if (pid_alive(tsk))
1312 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1313 rcu_read_unlock();
1314
1315 return pid;
1316 }
1317
task_ppid_nr(const struct task_struct * tsk)1318 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1319 {
1320 return task_ppid_nr_ns(tsk, &init_pid_ns);
1321 }
1322
1323 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1324 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1325 {
1326 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1327 }
1328
1329 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1330 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1331
task_state_index(struct task_struct * tsk)1332 static inline unsigned int task_state_index(struct task_struct *tsk)
1333 {
1334 unsigned int tsk_state = READ_ONCE(tsk->state);
1335 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1336
1337 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1338
1339 if (tsk_state == TASK_IDLE)
1340 state = TASK_REPORT_IDLE;
1341
1342 return fls(state);
1343 }
1344
task_index_to_char(unsigned int state)1345 static inline char task_index_to_char(unsigned int state)
1346 {
1347 static const char state_char[] = "RSDTtXZPI";
1348
1349 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1350
1351 return state_char[state];
1352 }
1353
task_state_to_char(struct task_struct * tsk)1354 static inline char task_state_to_char(struct task_struct *tsk)
1355 {
1356 return task_index_to_char(task_state_index(tsk));
1357 }
1358
1359 /**
1360 * is_global_init - check if a task structure is init. Since init
1361 * is free to have sub-threads we need to check tgid.
1362 * @tsk: Task structure to be checked.
1363 *
1364 * Check if a task structure is the first user space task the kernel created.
1365 *
1366 * Return: 1 if the task structure is init. 0 otherwise.
1367 */
is_global_init(struct task_struct * tsk)1368 static inline int is_global_init(struct task_struct *tsk)
1369 {
1370 return task_tgid_nr(tsk) == 1;
1371 }
1372
1373 extern struct pid *cad_pid;
1374
1375 /*
1376 * Per process flags
1377 */
1378 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1379 #define PF_EXITING 0x00000004 /* Getting shut down */
1380 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1381 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1382 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1383 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1384 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1385 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1386 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1387 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1388 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1389 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1390 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1391 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1392 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1393 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1394 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1395 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1396 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1397 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1398 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1399 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1400 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1401 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1402 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1403 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1404 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1405 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1406
1407 /*
1408 * Only the _current_ task can read/write to tsk->flags, but other
1409 * tasks can access tsk->flags in readonly mode for example
1410 * with tsk_used_math (like during threaded core dumping).
1411 * There is however an exception to this rule during ptrace
1412 * or during fork: the ptracer task is allowed to write to the
1413 * child->flags of its traced child (same goes for fork, the parent
1414 * can write to the child->flags), because we're guaranteed the
1415 * child is not running and in turn not changing child->flags
1416 * at the same time the parent does it.
1417 */
1418 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1419 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1420 #define clear_used_math() clear_stopped_child_used_math(current)
1421 #define set_used_math() set_stopped_child_used_math(current)
1422
1423 #define conditional_stopped_child_used_math(condition, child) \
1424 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1425
1426 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1427
1428 #define copy_to_stopped_child_used_math(child) \
1429 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1430
1431 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1432 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1433 #define used_math() tsk_used_math(current)
1434
is_percpu_thread(void)1435 static inline bool is_percpu_thread(void)
1436 {
1437 #ifdef CONFIG_SMP
1438 return (current->flags & PF_NO_SETAFFINITY) &&
1439 (current->nr_cpus_allowed == 1);
1440 #else
1441 return true;
1442 #endif
1443 }
1444
1445 /* Per-process atomic flags. */
1446 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1447 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1448 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1449 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1450 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1451 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1452 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1453
1454 #define TASK_PFA_TEST(name, func) \
1455 static inline bool task_##func(struct task_struct *p) \
1456 { return test_bit(PFA_##name, &p->atomic_flags); }
1457
1458 #define TASK_PFA_SET(name, func) \
1459 static inline void task_set_##func(struct task_struct *p) \
1460 { set_bit(PFA_##name, &p->atomic_flags); }
1461
1462 #define TASK_PFA_CLEAR(name, func) \
1463 static inline void task_clear_##func(struct task_struct *p) \
1464 { clear_bit(PFA_##name, &p->atomic_flags); }
1465
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1466 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1467 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1468
1469 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1470 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1471 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1472
1473 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1474 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1475 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1476
1477 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1478 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1479 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1480
1481 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1482 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1483
1484 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1485 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1486 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1487
1488 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1489 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1490
1491 static inline void
1492 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1493 {
1494 current->flags &= ~flags;
1495 current->flags |= orig_flags & flags;
1496 }
1497
1498 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1499 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1500 #ifdef CONFIG_SMP
1501 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1502 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1503 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1504 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1505 {
1506 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1507 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1508 {
1509 if (!cpumask_test_cpu(0, new_mask))
1510 return -EINVAL;
1511 return 0;
1512 }
1513 #endif
1514
1515 #ifndef cpu_relax_yield
1516 #define cpu_relax_yield() cpu_relax()
1517 #endif
1518
1519 extern int yield_to(struct task_struct *p, bool preempt);
1520 extern void set_user_nice(struct task_struct *p, long nice);
1521 extern int task_prio(const struct task_struct *p);
1522
1523 /**
1524 * task_nice - return the nice value of a given task.
1525 * @p: the task in question.
1526 *
1527 * Return: The nice value [ -20 ... 0 ... 19 ].
1528 */
task_nice(const struct task_struct * p)1529 static inline int task_nice(const struct task_struct *p)
1530 {
1531 return PRIO_TO_NICE((p)->static_prio);
1532 }
1533
1534 extern int can_nice(const struct task_struct *p, const int nice);
1535 extern int task_curr(const struct task_struct *p);
1536 extern int idle_cpu(int cpu);
1537 extern int available_idle_cpu(int cpu);
1538 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1539 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1540 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1541 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1542 extern struct task_struct *idle_task(int cpu);
1543
1544 /**
1545 * is_idle_task - is the specified task an idle task?
1546 * @p: the task in question.
1547 *
1548 * Return: 1 if @p is an idle task. 0 otherwise.
1549 */
is_idle_task(const struct task_struct * p)1550 static inline bool is_idle_task(const struct task_struct *p)
1551 {
1552 return !!(p->flags & PF_IDLE);
1553 }
1554
1555 extern struct task_struct *curr_task(int cpu);
1556 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1557
1558 void yield(void);
1559
1560 union thread_union {
1561 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1562 struct task_struct task;
1563 #endif
1564 #ifndef CONFIG_THREAD_INFO_IN_TASK
1565 struct thread_info thread_info;
1566 #endif
1567 unsigned long stack[THREAD_SIZE/sizeof(long)];
1568 };
1569
1570 #ifndef CONFIG_THREAD_INFO_IN_TASK
1571 extern struct thread_info init_thread_info;
1572 #endif
1573
1574 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1575
1576 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1577 static inline struct thread_info *task_thread_info(struct task_struct *task)
1578 {
1579 return &task->thread_info;
1580 }
1581 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1582 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1583 #endif
1584
1585 /*
1586 * find a task by one of its numerical ids
1587 *
1588 * find_task_by_pid_ns():
1589 * finds a task by its pid in the specified namespace
1590 * find_task_by_vpid():
1591 * finds a task by its virtual pid
1592 *
1593 * see also find_vpid() etc in include/linux/pid.h
1594 */
1595
1596 extern struct task_struct *find_task_by_vpid(pid_t nr);
1597 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1598
1599 /*
1600 * find a task by its virtual pid and get the task struct
1601 */
1602 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1603
1604 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1605 extern int wake_up_process(struct task_struct *tsk);
1606 extern void wake_up_new_task(struct task_struct *tsk);
1607
1608 #ifdef CONFIG_SMP
1609 extern void kick_process(struct task_struct *tsk);
1610 #else
kick_process(struct task_struct * tsk)1611 static inline void kick_process(struct task_struct *tsk) { }
1612 #endif
1613
1614 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1615
set_task_comm(struct task_struct * tsk,const char * from)1616 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1617 {
1618 __set_task_comm(tsk, from, false);
1619 }
1620
1621 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1622 #define get_task_comm(buf, tsk) ({ \
1623 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1624 __get_task_comm(buf, sizeof(buf), tsk); \
1625 })
1626
1627 #ifdef CONFIG_SMP
1628 void scheduler_ipi(void);
1629 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1630 #else
scheduler_ipi(void)1631 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)1632 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1633 {
1634 return 1;
1635 }
1636 #endif
1637
1638 /*
1639 * Set thread flags in other task's structures.
1640 * See asm/thread_info.h for TIF_xxxx flags available:
1641 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1642 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1643 {
1644 set_ti_thread_flag(task_thread_info(tsk), flag);
1645 }
1646
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1647 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1648 {
1649 clear_ti_thread_flag(task_thread_info(tsk), flag);
1650 }
1651
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1652 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1653 bool value)
1654 {
1655 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1656 }
1657
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1658 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1659 {
1660 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1661 }
1662
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1663 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1664 {
1665 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1666 }
1667
test_tsk_thread_flag(struct task_struct * tsk,int flag)1668 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1669 {
1670 return test_ti_thread_flag(task_thread_info(tsk), flag);
1671 }
1672
set_tsk_need_resched(struct task_struct * tsk)1673 static inline void set_tsk_need_resched(struct task_struct *tsk)
1674 {
1675 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1676 }
1677
clear_tsk_need_resched(struct task_struct * tsk)1678 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1679 {
1680 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1681 }
1682
test_tsk_need_resched(struct task_struct * tsk)1683 static inline int test_tsk_need_resched(struct task_struct *tsk)
1684 {
1685 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1686 }
1687
1688 /*
1689 * cond_resched() and cond_resched_lock(): latency reduction via
1690 * explicit rescheduling in places that are safe. The return
1691 * value indicates whether a reschedule was done in fact.
1692 * cond_resched_lock() will drop the spinlock before scheduling,
1693 */
1694 #ifndef CONFIG_PREEMPT
1695 extern int _cond_resched(void);
1696 #else
_cond_resched(void)1697 static inline int _cond_resched(void) { return 0; }
1698 #endif
1699
1700 #define cond_resched() ({ \
1701 ___might_sleep(__FILE__, __LINE__, 0); \
1702 _cond_resched(); \
1703 })
1704
1705 extern int __cond_resched_lock(spinlock_t *lock);
1706
1707 #define cond_resched_lock(lock) ({ \
1708 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1709 __cond_resched_lock(lock); \
1710 })
1711
cond_resched_rcu(void)1712 static inline void cond_resched_rcu(void)
1713 {
1714 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1715 rcu_read_unlock();
1716 cond_resched();
1717 rcu_read_lock();
1718 #endif
1719 }
1720
1721 /*
1722 * Does a critical section need to be broken due to another
1723 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1724 * but a general need for low latency)
1725 */
spin_needbreak(spinlock_t * lock)1726 static inline int spin_needbreak(spinlock_t *lock)
1727 {
1728 #ifdef CONFIG_PREEMPT
1729 return spin_is_contended(lock);
1730 #else
1731 return 0;
1732 #endif
1733 }
1734
need_resched(void)1735 static __always_inline bool need_resched(void)
1736 {
1737 return unlikely(tif_need_resched());
1738 }
1739
1740 /*
1741 * Wrappers for p->thread_info->cpu access. No-op on UP.
1742 */
1743 #ifdef CONFIG_SMP
1744
task_cpu(const struct task_struct * p)1745 static inline unsigned int task_cpu(const struct task_struct *p)
1746 {
1747 #ifdef CONFIG_THREAD_INFO_IN_TASK
1748 return READ_ONCE(p->cpu);
1749 #else
1750 return READ_ONCE(task_thread_info(p)->cpu);
1751 #endif
1752 }
1753
1754 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1755
1756 #else
1757
task_cpu(const struct task_struct * p)1758 static inline unsigned int task_cpu(const struct task_struct *p)
1759 {
1760 return 0;
1761 }
1762
set_task_cpu(struct task_struct * p,unsigned int cpu)1763 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1764 {
1765 }
1766
1767 #endif /* CONFIG_SMP */
1768
1769 /*
1770 * In order to reduce various lock holder preemption latencies provide an
1771 * interface to see if a vCPU is currently running or not.
1772 *
1773 * This allows us to terminate optimistic spin loops and block, analogous to
1774 * the native optimistic spin heuristic of testing if the lock owner task is
1775 * running or not.
1776 */
1777 #ifndef vcpu_is_preempted
1778 # define vcpu_is_preempted(cpu) false
1779 #endif
1780
1781 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1782 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1783
1784 #ifndef TASK_SIZE_OF
1785 #define TASK_SIZE_OF(tsk) TASK_SIZE
1786 #endif
1787
1788 #ifdef CONFIG_RSEQ
1789
1790 /*
1791 * Map the event mask on the user-space ABI enum rseq_cs_flags
1792 * for direct mask checks.
1793 */
1794 enum rseq_event_mask_bits {
1795 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1796 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1797 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1798 };
1799
1800 enum rseq_event_mask {
1801 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1802 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1803 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1804 };
1805
rseq_set_notify_resume(struct task_struct * t)1806 static inline void rseq_set_notify_resume(struct task_struct *t)
1807 {
1808 if (t->rseq)
1809 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1810 }
1811
1812 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1813
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1814 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1815 struct pt_regs *regs)
1816 {
1817 if (current->rseq)
1818 __rseq_handle_notify_resume(ksig, regs);
1819 }
1820
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1821 static inline void rseq_signal_deliver(struct ksignal *ksig,
1822 struct pt_regs *regs)
1823 {
1824 preempt_disable();
1825 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1826 preempt_enable();
1827 rseq_handle_notify_resume(ksig, regs);
1828 }
1829
1830 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)1831 static inline void rseq_preempt(struct task_struct *t)
1832 {
1833 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1834 rseq_set_notify_resume(t);
1835 }
1836
1837 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)1838 static inline void rseq_migrate(struct task_struct *t)
1839 {
1840 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1841 rseq_set_notify_resume(t);
1842 }
1843
1844 /*
1845 * If parent process has a registered restartable sequences area, the
1846 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1847 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)1848 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1849 {
1850 if (clone_flags & CLONE_VM) {
1851 t->rseq = NULL;
1852 t->rseq_len = 0;
1853 t->rseq_sig = 0;
1854 t->rseq_event_mask = 0;
1855 } else {
1856 t->rseq = current->rseq;
1857 t->rseq_len = current->rseq_len;
1858 t->rseq_sig = current->rseq_sig;
1859 t->rseq_event_mask = current->rseq_event_mask;
1860 }
1861 }
1862
rseq_execve(struct task_struct * t)1863 static inline void rseq_execve(struct task_struct *t)
1864 {
1865 t->rseq = NULL;
1866 t->rseq_len = 0;
1867 t->rseq_sig = 0;
1868 t->rseq_event_mask = 0;
1869 }
1870
1871 #else
1872
rseq_set_notify_resume(struct task_struct * t)1873 static inline void rseq_set_notify_resume(struct task_struct *t)
1874 {
1875 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1876 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1877 struct pt_regs *regs)
1878 {
1879 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1880 static inline void rseq_signal_deliver(struct ksignal *ksig,
1881 struct pt_regs *regs)
1882 {
1883 }
rseq_preempt(struct task_struct * t)1884 static inline void rseq_preempt(struct task_struct *t)
1885 {
1886 }
rseq_migrate(struct task_struct * t)1887 static inline void rseq_migrate(struct task_struct *t)
1888 {
1889 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)1890 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1891 {
1892 }
rseq_execve(struct task_struct * t)1893 static inline void rseq_execve(struct task_struct *t)
1894 {
1895 }
1896
1897 #endif
1898
1899 #ifdef CONFIG_DEBUG_RSEQ
1900
1901 void rseq_syscall(struct pt_regs *regs);
1902
1903 #else
1904
rseq_syscall(struct pt_regs * regs)1905 static inline void rseq_syscall(struct pt_regs *regs)
1906 {
1907 }
1908
1909 #endif
1910
1911 #endif
1912