• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <linux/kmemleak.h>
23 #include <asm/pgtable.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/setup.h>
27 #include <asm/hugetlb.h>
28 #include <asm/pte-walk.h>
29 
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #define PAGE_SHIFT_64K	16
34 #define PAGE_SHIFT_512K	19
35 #define PAGE_SHIFT_8M	23
36 #define PAGE_SHIFT_16M	24
37 #define PAGE_SHIFT_16G	34
38 
39 bool hugetlb_disabled = false;
40 
41 unsigned int HPAGE_SHIFT;
42 EXPORT_SYMBOL(HPAGE_SHIFT);
43 
44 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
45 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)46 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
47 {
48 	/*
49 	 * Only called for hugetlbfs pages, hence can ignore THP and the
50 	 * irq disabled walk.
51 	 */
52 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
53 }
54 
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned int pdshift,unsigned int pshift,spinlock_t * ptl)55 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
56 			   unsigned long address, unsigned int pdshift,
57 			   unsigned int pshift, spinlock_t *ptl)
58 {
59 	struct kmem_cache *cachep;
60 	pte_t *new;
61 	int i;
62 	int num_hugepd;
63 
64 	if (pshift >= pdshift) {
65 		cachep = hugepte_cache;
66 		num_hugepd = 1 << (pshift - pdshift);
67 	} else {
68 		cachep = PGT_CACHE(pdshift - pshift);
69 		num_hugepd = 1;
70 	}
71 
72 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
73 
74 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
75 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
76 
77 	if (! new)
78 		return -ENOMEM;
79 
80 	/*
81 	 * Make sure other cpus find the hugepd set only after a
82 	 * properly initialized page table is visible to them.
83 	 * For more details look for comment in __pte_alloc().
84 	 */
85 	smp_wmb();
86 
87 	spin_lock(ptl);
88 	/*
89 	 * We have multiple higher-level entries that point to the same
90 	 * actual pte location.  Fill in each as we go and backtrack on error.
91 	 * We need all of these so the DTLB pgtable walk code can find the
92 	 * right higher-level entry without knowing if it's a hugepage or not.
93 	 */
94 	for (i = 0; i < num_hugepd; i++, hpdp++) {
95 		if (unlikely(!hugepd_none(*hpdp)))
96 			break;
97 		else {
98 #ifdef CONFIG_PPC_BOOK3S_64
99 			*hpdp = __hugepd(__pa(new) |
100 					 (shift_to_mmu_psize(pshift) << 2));
101 #elif defined(CONFIG_PPC_8xx)
102 			*hpdp = __hugepd(__pa(new) | _PMD_USER |
103 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
104 					  _PMD_PAGE_512K) | _PMD_PRESENT);
105 #else
106 			/* We use the old format for PPC_FSL_BOOK3E */
107 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
108 #endif
109 		}
110 	}
111 	/* If we bailed from the for loop early, an error occurred, clean up */
112 	if (i < num_hugepd) {
113 		for (i = i - 1 ; i >= 0; i--, hpdp--)
114 			*hpdp = __hugepd(0);
115 		kmem_cache_free(cachep, new);
116 	} else {
117 		kmemleak_ignore(new);
118 	}
119 	spin_unlock(ptl);
120 	return 0;
121 }
122 
123 /*
124  * At this point we do the placement change only for BOOK3S 64. This would
125  * possibly work on other subarchs.
126  */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)127 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
128 {
129 	pgd_t *pg;
130 	pud_t *pu;
131 	pmd_t *pm;
132 	hugepd_t *hpdp = NULL;
133 	unsigned pshift = __ffs(sz);
134 	unsigned pdshift = PGDIR_SHIFT;
135 	spinlock_t *ptl;
136 
137 	addr &= ~(sz-1);
138 	pg = pgd_offset(mm, addr);
139 
140 #ifdef CONFIG_PPC_BOOK3S_64
141 	if (pshift == PGDIR_SHIFT)
142 		/* 16GB huge page */
143 		return (pte_t *) pg;
144 	else if (pshift > PUD_SHIFT) {
145 		/*
146 		 * We need to use hugepd table
147 		 */
148 		ptl = &mm->page_table_lock;
149 		hpdp = (hugepd_t *)pg;
150 	} else {
151 		pdshift = PUD_SHIFT;
152 		pu = pud_alloc(mm, pg, addr);
153 		if (!pu)
154 			return NULL;
155 		if (pshift == PUD_SHIFT)
156 			return (pte_t *)pu;
157 		else if (pshift > PMD_SHIFT) {
158 			ptl = pud_lockptr(mm, pu);
159 			hpdp = (hugepd_t *)pu;
160 		} else {
161 			pdshift = PMD_SHIFT;
162 			pm = pmd_alloc(mm, pu, addr);
163 			if (!pm)
164 				return NULL;
165 			if (pshift == PMD_SHIFT)
166 				/* 16MB hugepage */
167 				return (pte_t *)pm;
168 			else {
169 				ptl = pmd_lockptr(mm, pm);
170 				hpdp = (hugepd_t *)pm;
171 			}
172 		}
173 	}
174 #else
175 	if (pshift >= PGDIR_SHIFT) {
176 		ptl = &mm->page_table_lock;
177 		hpdp = (hugepd_t *)pg;
178 	} else {
179 		pdshift = PUD_SHIFT;
180 		pu = pud_alloc(mm, pg, addr);
181 		if (!pu)
182 			return NULL;
183 		if (pshift >= PUD_SHIFT) {
184 			ptl = pud_lockptr(mm, pu);
185 			hpdp = (hugepd_t *)pu;
186 		} else {
187 			pdshift = PMD_SHIFT;
188 			pm = pmd_alloc(mm, pu, addr);
189 			if (!pm)
190 				return NULL;
191 			ptl = pmd_lockptr(mm, pm);
192 			hpdp = (hugepd_t *)pm;
193 		}
194 	}
195 #endif
196 	if (!hpdp)
197 		return NULL;
198 
199 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
200 
201 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
202 						  pdshift, pshift, ptl))
203 		return NULL;
204 
205 	return hugepte_offset(*hpdp, addr, pdshift);
206 }
207 
208 #ifdef CONFIG_PPC_BOOK3S_64
209 /*
210  * Tracks gpages after the device tree is scanned and before the
211  * huge_boot_pages list is ready on pseries.
212  */
213 #define MAX_NUMBER_GPAGES	1024
214 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
215 __initdata static unsigned nr_gpages;
216 
217 /*
218  * Build list of addresses of gigantic pages.  This function is used in early
219  * boot before the buddy allocator is setup.
220  */
pseries_add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)221 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
222 {
223 	if (!addr)
224 		return;
225 	while (number_of_pages > 0) {
226 		gpage_freearray[nr_gpages] = addr;
227 		nr_gpages++;
228 		number_of_pages--;
229 		addr += page_size;
230 	}
231 }
232 
pseries_alloc_bootmem_huge_page(struct hstate * hstate)233 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
234 {
235 	struct huge_bootmem_page *m;
236 	if (nr_gpages == 0)
237 		return 0;
238 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
239 	gpage_freearray[nr_gpages] = 0;
240 	list_add(&m->list, &huge_boot_pages);
241 	m->hstate = hstate;
242 	return 1;
243 }
244 #endif
245 
246 
alloc_bootmem_huge_page(struct hstate * h)247 int __init alloc_bootmem_huge_page(struct hstate *h)
248 {
249 
250 #ifdef CONFIG_PPC_BOOK3S_64
251 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
252 		return pseries_alloc_bootmem_huge_page(h);
253 #endif
254 	return __alloc_bootmem_huge_page(h);
255 }
256 
257 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
258 #define HUGEPD_FREELIST_SIZE \
259 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
260 
261 struct hugepd_freelist {
262 	struct rcu_head	rcu;
263 	unsigned int index;
264 	void *ptes[0];
265 };
266 
267 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
268 
hugepd_free_rcu_callback(struct rcu_head * head)269 static void hugepd_free_rcu_callback(struct rcu_head *head)
270 {
271 	struct hugepd_freelist *batch =
272 		container_of(head, struct hugepd_freelist, rcu);
273 	unsigned int i;
274 
275 	for (i = 0; i < batch->index; i++)
276 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
277 
278 	free_page((unsigned long)batch);
279 }
280 
hugepd_free(struct mmu_gather * tlb,void * hugepte)281 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
282 {
283 	struct hugepd_freelist **batchp;
284 
285 	batchp = &get_cpu_var(hugepd_freelist_cur);
286 
287 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
288 	    mm_is_thread_local(tlb->mm)) {
289 		kmem_cache_free(hugepte_cache, hugepte);
290 		put_cpu_var(hugepd_freelist_cur);
291 		return;
292 	}
293 
294 	if (*batchp == NULL) {
295 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
296 		(*batchp)->index = 0;
297 	}
298 
299 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
300 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
301 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
302 		*batchp = NULL;
303 	}
304 	put_cpu_var(hugepd_freelist_cur);
305 }
306 #else
hugepd_free(struct mmu_gather * tlb,void * hugepte)307 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
308 #endif
309 
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)310 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
311 			      unsigned long start, unsigned long end,
312 			      unsigned long floor, unsigned long ceiling)
313 {
314 	pte_t *hugepte = hugepd_page(*hpdp);
315 	int i;
316 
317 	unsigned long pdmask = ~((1UL << pdshift) - 1);
318 	unsigned int num_hugepd = 1;
319 	unsigned int shift = hugepd_shift(*hpdp);
320 
321 	/* Note: On fsl the hpdp may be the first of several */
322 	if (shift > pdshift)
323 		num_hugepd = 1 << (shift - pdshift);
324 
325 	start &= pdmask;
326 	if (start < floor)
327 		return;
328 	if (ceiling) {
329 		ceiling &= pdmask;
330 		if (! ceiling)
331 			return;
332 	}
333 	if (end - 1 > ceiling - 1)
334 		return;
335 
336 	for (i = 0; i < num_hugepd; i++, hpdp++)
337 		*hpdp = __hugepd(0);
338 
339 	if (shift >= pdshift)
340 		hugepd_free(tlb, hugepte);
341 	else
342 		pgtable_free_tlb(tlb, hugepte,
343 				 get_hugepd_cache_index(pdshift - shift));
344 }
345 
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)346 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
347 				   unsigned long addr, unsigned long end,
348 				   unsigned long floor, unsigned long ceiling)
349 {
350 	pmd_t *pmd;
351 	unsigned long next;
352 	unsigned long start;
353 
354 	start = addr;
355 	do {
356 		unsigned long more;
357 
358 		pmd = pmd_offset(pud, addr);
359 		next = pmd_addr_end(addr, end);
360 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
361 			/*
362 			 * if it is not hugepd pointer, we should already find
363 			 * it cleared.
364 			 */
365 			WARN_ON(!pmd_none_or_clear_bad(pmd));
366 			continue;
367 		}
368 		/*
369 		 * Increment next by the size of the huge mapping since
370 		 * there may be more than one entry at this level for a
371 		 * single hugepage, but all of them point to
372 		 * the same kmem cache that holds the hugepte.
373 		 */
374 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
375 		if (more > next)
376 			next = more;
377 
378 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
379 				  addr, next, floor, ceiling);
380 	} while (addr = next, addr != end);
381 
382 	start &= PUD_MASK;
383 	if (start < floor)
384 		return;
385 	if (ceiling) {
386 		ceiling &= PUD_MASK;
387 		if (!ceiling)
388 			return;
389 	}
390 	if (end - 1 > ceiling - 1)
391 		return;
392 
393 	pmd = pmd_offset(pud, start);
394 	pud_clear(pud);
395 	pmd_free_tlb(tlb, pmd, start);
396 	mm_dec_nr_pmds(tlb->mm);
397 }
398 
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)399 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
400 				   unsigned long addr, unsigned long end,
401 				   unsigned long floor, unsigned long ceiling)
402 {
403 	pud_t *pud;
404 	unsigned long next;
405 	unsigned long start;
406 
407 	start = addr;
408 	do {
409 		pud = pud_offset(pgd, addr);
410 		next = pud_addr_end(addr, end);
411 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
412 			if (pud_none_or_clear_bad(pud))
413 				continue;
414 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
415 					       ceiling);
416 		} else {
417 			unsigned long more;
418 			/*
419 			 * Increment next by the size of the huge mapping since
420 			 * there may be more than one entry at this level for a
421 			 * single hugepage, but all of them point to
422 			 * the same kmem cache that holds the hugepte.
423 			 */
424 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
425 			if (more > next)
426 				next = more;
427 
428 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
429 					  addr, next, floor, ceiling);
430 		}
431 	} while (addr = next, addr != end);
432 
433 	start &= PGDIR_MASK;
434 	if (start < floor)
435 		return;
436 	if (ceiling) {
437 		ceiling &= PGDIR_MASK;
438 		if (!ceiling)
439 			return;
440 	}
441 	if (end - 1 > ceiling - 1)
442 		return;
443 
444 	pud = pud_offset(pgd, start);
445 	pgd_clear(pgd);
446 	pud_free_tlb(tlb, pud, start);
447 	mm_dec_nr_puds(tlb->mm);
448 }
449 
450 /*
451  * This function frees user-level page tables of a process.
452  */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)453 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
454 			    unsigned long addr, unsigned long end,
455 			    unsigned long floor, unsigned long ceiling)
456 {
457 	pgd_t *pgd;
458 	unsigned long next;
459 
460 	/*
461 	 * Because there are a number of different possible pagetable
462 	 * layouts for hugepage ranges, we limit knowledge of how
463 	 * things should be laid out to the allocation path
464 	 * (huge_pte_alloc(), above).  Everything else works out the
465 	 * structure as it goes from information in the hugepd
466 	 * pointers.  That means that we can't here use the
467 	 * optimization used in the normal page free_pgd_range(), of
468 	 * checking whether we're actually covering a large enough
469 	 * range to have to do anything at the top level of the walk
470 	 * instead of at the bottom.
471 	 *
472 	 * To make sense of this, you should probably go read the big
473 	 * block comment at the top of the normal free_pgd_range(),
474 	 * too.
475 	 */
476 
477 	do {
478 		next = pgd_addr_end(addr, end);
479 		pgd = pgd_offset(tlb->mm, addr);
480 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
481 			if (pgd_none_or_clear_bad(pgd))
482 				continue;
483 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
484 		} else {
485 			unsigned long more;
486 			/*
487 			 * Increment next by the size of the huge mapping since
488 			 * there may be more than one entry at the pgd level
489 			 * for a single hugepage, but all of them point to the
490 			 * same kmem cache that holds the hugepte.
491 			 */
492 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
493 			if (more > next)
494 				next = more;
495 
496 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
497 					  addr, next, floor, ceiling);
498 		}
499 	} while (addr = next, addr != end);
500 }
501 
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)502 struct page *follow_huge_pd(struct vm_area_struct *vma,
503 			    unsigned long address, hugepd_t hpd,
504 			    int flags, int pdshift)
505 {
506 	pte_t *ptep;
507 	spinlock_t *ptl;
508 	struct page *page = NULL;
509 	unsigned long mask;
510 	int shift = hugepd_shift(hpd);
511 	struct mm_struct *mm = vma->vm_mm;
512 
513 retry:
514 	/*
515 	 * hugepage directory entries are protected by mm->page_table_lock
516 	 * Use this instead of huge_pte_lockptr
517 	 */
518 	ptl = &mm->page_table_lock;
519 	spin_lock(ptl);
520 
521 	ptep = hugepte_offset(hpd, address, pdshift);
522 	if (pte_present(*ptep)) {
523 		mask = (1UL << shift) - 1;
524 		page = pte_page(*ptep);
525 		page += ((address & mask) >> PAGE_SHIFT);
526 		if (flags & FOLL_GET)
527 			get_page(page);
528 	} else {
529 		if (is_hugetlb_entry_migration(*ptep)) {
530 			spin_unlock(ptl);
531 			__migration_entry_wait(mm, ptep, ptl);
532 			goto retry;
533 		}
534 	}
535 	spin_unlock(ptl);
536 	return page;
537 }
538 
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)539 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
540 				      unsigned long sz)
541 {
542 	unsigned long __boundary = (addr + sz) & ~(sz-1);
543 	return (__boundary - 1 < end - 1) ? __boundary : end;
544 }
545 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned pdshift,unsigned long end,int write,struct page ** pages,int * nr)546 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
547 		unsigned long end, int write, struct page **pages, int *nr)
548 {
549 	pte_t *ptep;
550 	unsigned long sz = 1UL << hugepd_shift(hugepd);
551 	unsigned long next;
552 
553 	ptep = hugepte_offset(hugepd, addr, pdshift);
554 	do {
555 		next = hugepte_addr_end(addr, end, sz);
556 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
557 			return 0;
558 	} while (ptep++, addr = next, addr != end);
559 
560 	return 1;
561 }
562 
563 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)564 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
565 					unsigned long len, unsigned long pgoff,
566 					unsigned long flags)
567 {
568 	struct hstate *hstate = hstate_file(file);
569 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
570 
571 #ifdef CONFIG_PPC_RADIX_MMU
572 	if (radix_enabled())
573 		return radix__hugetlb_get_unmapped_area(file, addr, len,
574 						       pgoff, flags);
575 #endif
576 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
577 }
578 #endif
579 
vma_mmu_pagesize(struct vm_area_struct * vma)580 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
581 {
582 #ifdef CONFIG_PPC_MM_SLICES
583 	/* With radix we don't use slice, so derive it from vma*/
584 	if (!radix_enabled()) {
585 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
586 
587 		return 1UL << mmu_psize_to_shift(psize);
588 	}
589 #endif
590 	return vma_kernel_pagesize(vma);
591 }
592 
is_power_of_4(unsigned long x)593 static inline bool is_power_of_4(unsigned long x)
594 {
595 	if (is_power_of_2(x))
596 		return (__ilog2(x) % 2) ? false : true;
597 	return false;
598 }
599 
add_huge_page_size(unsigned long long size)600 static int __init add_huge_page_size(unsigned long long size)
601 {
602 	int shift = __ffs(size);
603 	int mmu_psize;
604 
605 	/* Check that it is a page size supported by the hardware and
606 	 * that it fits within pagetable and slice limits. */
607 	if (size <= PAGE_SIZE)
608 		return -EINVAL;
609 #if defined(CONFIG_PPC_FSL_BOOK3E)
610 	if (!is_power_of_4(size))
611 		return -EINVAL;
612 #elif !defined(CONFIG_PPC_8xx)
613 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
614 		return -EINVAL;
615 #endif
616 
617 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
618 		return -EINVAL;
619 
620 #ifdef CONFIG_PPC_BOOK3S_64
621 	/*
622 	 * We need to make sure that for different page sizes reported by
623 	 * firmware we only add hugetlb support for page sizes that can be
624 	 * supported by linux page table layout.
625 	 * For now we have
626 	 * Radix: 2M and 1G
627 	 * Hash: 16M and 16G
628 	 */
629 	if (radix_enabled()) {
630 		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
631 			return -EINVAL;
632 	} else {
633 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
634 			return -EINVAL;
635 	}
636 #endif
637 
638 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
639 
640 	/* Return if huge page size has already been setup */
641 	if (size_to_hstate(size))
642 		return 0;
643 
644 	hugetlb_add_hstate(shift - PAGE_SHIFT);
645 
646 	return 0;
647 }
648 
hugepage_setup_sz(char * str)649 static int __init hugepage_setup_sz(char *str)
650 {
651 	unsigned long long size;
652 
653 	size = memparse(str, &str);
654 
655 	if (add_huge_page_size(size) != 0) {
656 		hugetlb_bad_size();
657 		pr_err("Invalid huge page size specified(%llu)\n", size);
658 	}
659 
660 	return 1;
661 }
662 __setup("hugepagesz=", hugepage_setup_sz);
663 
664 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)665 static int __init hugetlbpage_init(void)
666 {
667 	int psize;
668 
669 	if (hugetlb_disabled) {
670 		pr_info("HugeTLB support is disabled!\n");
671 		return 0;
672 	}
673 
674 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
675 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
676 		return -ENODEV;
677 #endif
678 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
679 		unsigned shift;
680 		unsigned pdshift;
681 
682 		if (!mmu_psize_defs[psize].shift)
683 			continue;
684 
685 		shift = mmu_psize_to_shift(psize);
686 
687 #ifdef CONFIG_PPC_BOOK3S_64
688 		if (shift > PGDIR_SHIFT)
689 			continue;
690 		else if (shift > PUD_SHIFT)
691 			pdshift = PGDIR_SHIFT;
692 		else if (shift > PMD_SHIFT)
693 			pdshift = PUD_SHIFT;
694 		else
695 			pdshift = PMD_SHIFT;
696 #else
697 		if (shift < PUD_SHIFT)
698 			pdshift = PMD_SHIFT;
699 		else if (shift < PGDIR_SHIFT)
700 			pdshift = PUD_SHIFT;
701 		else
702 			pdshift = PGDIR_SHIFT;
703 #endif
704 
705 		if (add_huge_page_size(1ULL << shift) < 0)
706 			continue;
707 		/*
708 		 * if we have pdshift and shift value same, we don't
709 		 * use pgt cache for hugepd.
710 		 */
711 		if (pdshift > shift)
712 			pgtable_cache_add(pdshift - shift, NULL);
713 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
714 		else if (!hugepte_cache) {
715 			/*
716 			 * Create a kmem cache for hugeptes.  The bottom bits in
717 			 * the pte have size information encoded in them, so
718 			 * align them to allow this
719 			 */
720 			hugepte_cache = kmem_cache_create("hugepte-cache",
721 							  sizeof(pte_t),
722 							  HUGEPD_SHIFT_MASK + 1,
723 							  0, NULL);
724 			if (hugepte_cache == NULL)
725 				panic("%s: Unable to create kmem cache "
726 				      "for hugeptes\n", __func__);
727 
728 		}
729 #endif
730 	}
731 
732 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
733 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
734 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
735 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
736 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
737 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
738 #else
739 	/* Set default large page size. Currently, we pick 16M or 1M
740 	 * depending on what is available
741 	 */
742 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
743 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
744 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
745 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
746 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
747 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
748 #endif
749 	return 0;
750 }
751 
752 arch_initcall(hugetlbpage_init);
753 
flush_dcache_icache_hugepage(struct page * page)754 void flush_dcache_icache_hugepage(struct page *page)
755 {
756 	int i;
757 	void *start;
758 
759 	BUG_ON(!PageCompound(page));
760 
761 	for (i = 0; i < (1UL << compound_order(page)); i++) {
762 		if (!PageHighMem(page)) {
763 			__flush_dcache_icache(page_address(page+i));
764 		} else {
765 			start = kmap_atomic(page+i);
766 			__flush_dcache_icache(start);
767 			kunmap_atomic(start);
768 		}
769 	}
770 }
771 
772 #endif /* CONFIG_HUGETLB_PAGE */
773 
774 /*
775  * We have 4 cases for pgds and pmds:
776  * (1) invalid (all zeroes)
777  * (2) pointer to next table, as normal; bottom 6 bits == 0
778  * (3) leaf pte for huge page _PAGE_PTE set
779  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
780  *
781  * So long as we atomically load page table pointers we are safe against teardown,
782  * we can follow the address down to the the page and take a ref on it.
783  * This function need to be called with interrupts disabled. We use this variant
784  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
785  */
__find_linux_pte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * hpage_shift)786 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
787 			bool *is_thp, unsigned *hpage_shift)
788 {
789 	pgd_t pgd, *pgdp;
790 	pud_t pud, *pudp;
791 	pmd_t pmd, *pmdp;
792 	pte_t *ret_pte;
793 	hugepd_t *hpdp = NULL;
794 	unsigned pdshift = PGDIR_SHIFT;
795 
796 	if (hpage_shift)
797 		*hpage_shift = 0;
798 
799 	if (is_thp)
800 		*is_thp = false;
801 
802 	pgdp = pgdir + pgd_index(ea);
803 	pgd  = READ_ONCE(*pgdp);
804 	/*
805 	 * Always operate on the local stack value. This make sure the
806 	 * value don't get updated by a parallel THP split/collapse,
807 	 * page fault or a page unmap. The return pte_t * is still not
808 	 * stable. So should be checked there for above conditions.
809 	 */
810 	if (pgd_none(pgd))
811 		return NULL;
812 	else if (pgd_huge(pgd)) {
813 		ret_pte = (pte_t *) pgdp;
814 		goto out;
815 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
816 		hpdp = (hugepd_t *)&pgd;
817 	else {
818 		/*
819 		 * Even if we end up with an unmap, the pgtable will not
820 		 * be freed, because we do an rcu free and here we are
821 		 * irq disabled
822 		 */
823 		pdshift = PUD_SHIFT;
824 		pudp = pud_offset(&pgd, ea);
825 		pud  = READ_ONCE(*pudp);
826 
827 		if (pud_none(pud))
828 			return NULL;
829 		else if (pud_huge(pud)) {
830 			ret_pte = (pte_t *) pudp;
831 			goto out;
832 		} else if (is_hugepd(__hugepd(pud_val(pud))))
833 			hpdp = (hugepd_t *)&pud;
834 		else {
835 			pdshift = PMD_SHIFT;
836 			pmdp = pmd_offset(&pud, ea);
837 			pmd  = READ_ONCE(*pmdp);
838 			/*
839 			 * A hugepage collapse is captured by pmd_none, because
840 			 * it mark the pmd none and do a hpte invalidate.
841 			 */
842 			if (pmd_none(pmd))
843 				return NULL;
844 
845 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
846 				if (is_thp)
847 					*is_thp = true;
848 				ret_pte = (pte_t *) pmdp;
849 				goto out;
850 			}
851 
852 			if (pmd_huge(pmd)) {
853 				ret_pte = (pte_t *) pmdp;
854 				goto out;
855 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
856 				hpdp = (hugepd_t *)&pmd;
857 			else
858 				return pte_offset_kernel(&pmd, ea);
859 		}
860 	}
861 	if (!hpdp)
862 		return NULL;
863 
864 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
865 	pdshift = hugepd_shift(*hpdp);
866 out:
867 	if (hpage_shift)
868 		*hpage_shift = pdshift;
869 	return ret_pte;
870 }
871 EXPORT_SYMBOL_GPL(__find_linux_pte);
872 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)873 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
874 		unsigned long end, int write, struct page **pages, int *nr)
875 {
876 	unsigned long pte_end;
877 	struct page *head, *page;
878 	pte_t pte;
879 	int refs;
880 
881 	pte_end = (addr + sz) & ~(sz-1);
882 	if (pte_end < end)
883 		end = pte_end;
884 
885 	pte = READ_ONCE(*ptep);
886 
887 	if (!pte_access_permitted(pte, write))
888 		return 0;
889 
890 	/* hugepages are never "special" */
891 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
892 
893 	refs = 0;
894 	head = pte_page(pte);
895 
896 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
897 	do {
898 		VM_BUG_ON(compound_head(page) != head);
899 		pages[*nr] = page;
900 		(*nr)++;
901 		page++;
902 		refs++;
903 	} while (addr += PAGE_SIZE, addr != end);
904 
905 	if (!page_cache_add_speculative(head, refs)) {
906 		*nr -= refs;
907 		return 0;
908 	}
909 
910 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
911 		/* Could be optimized better */
912 		*nr -= refs;
913 		while (refs--)
914 			put_page(head);
915 		return 0;
916 	}
917 
918 	return 1;
919 }
920