• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
remove_mappable_node(struct drm_mm_node * node)75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,u64 size)81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,u64 size)90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
i915_mutex_lock_interruptible(struct drm_device * dev)124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
__i915_gem_park(struct drm_i915_private * i915)140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) {
178 		i915_rc6_ctx_wa_check(i915);
179 		intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
180 	}
181 
182 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
183 
184 	intel_runtime_pm_put(i915);
185 
186 	return i915->gt.epoch;
187 }
188 
i915_gem_park(struct drm_i915_private * i915)189 void i915_gem_park(struct drm_i915_private *i915)
190 {
191 	GEM_TRACE("\n");
192 
193 	lockdep_assert_held(&i915->drm.struct_mutex);
194 	GEM_BUG_ON(i915->gt.active_requests);
195 
196 	if (!i915->gt.awake)
197 		return;
198 
199 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
200 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
201 }
202 
i915_gem_unpark(struct drm_i915_private * i915)203 void i915_gem_unpark(struct drm_i915_private *i915)
204 {
205 	GEM_TRACE("\n");
206 
207 	lockdep_assert_held(&i915->drm.struct_mutex);
208 	GEM_BUG_ON(!i915->gt.active_requests);
209 
210 	if (i915->gt.awake)
211 		return;
212 
213 	intel_runtime_pm_get_noresume(i915);
214 
215 	/*
216 	 * It seems that the DMC likes to transition between the DC states a lot
217 	 * when there are no connected displays (no active power domains) during
218 	 * command submission.
219 	 *
220 	 * This activity has negative impact on the performance of the chip with
221 	 * huge latencies observed in the interrupt handler and elsewhere.
222 	 *
223 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
224 	 * GT activity, preventing any DC state transitions.
225 	 */
226 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
227 
228 	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
229 		intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
230 
231 	i915->gt.awake = true;
232 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
233 		i915->gt.epoch = 1;
234 
235 	intel_enable_gt_powersave(i915);
236 	i915_update_gfx_val(i915);
237 	if (INTEL_GEN(i915) >= 6)
238 		gen6_rps_busy(i915);
239 	i915_pmu_gt_unparked(i915);
240 
241 	intel_engines_unpark(i915);
242 
243 	i915_queue_hangcheck(i915);
244 
245 	queue_delayed_work(i915->wq,
246 			   &i915->gt.retire_work,
247 			   round_jiffies_up_relative(HZ));
248 }
249 
250 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)251 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
252 			    struct drm_file *file)
253 {
254 	struct drm_i915_private *dev_priv = to_i915(dev);
255 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
256 	struct drm_i915_gem_get_aperture *args = data;
257 	struct i915_vma *vma;
258 	u64 pinned;
259 
260 	pinned = ggtt->vm.reserved;
261 	mutex_lock(&dev->struct_mutex);
262 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
263 		if (i915_vma_is_pinned(vma))
264 			pinned += vma->node.size;
265 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
266 		if (i915_vma_is_pinned(vma))
267 			pinned += vma->node.size;
268 	mutex_unlock(&dev->struct_mutex);
269 
270 	args->aper_size = ggtt->vm.total;
271 	args->aper_available_size = args->aper_size - pinned;
272 
273 	return 0;
274 }
275 
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)276 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
277 {
278 	struct address_space *mapping = obj->base.filp->f_mapping;
279 	drm_dma_handle_t *phys;
280 	struct sg_table *st;
281 	struct scatterlist *sg;
282 	char *vaddr;
283 	int i;
284 	int err;
285 
286 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
287 		return -EINVAL;
288 
289 	/* Always aligning to the object size, allows a single allocation
290 	 * to handle all possible callers, and given typical object sizes,
291 	 * the alignment of the buddy allocation will naturally match.
292 	 */
293 	phys = drm_pci_alloc(obj->base.dev,
294 			     roundup_pow_of_two(obj->base.size),
295 			     roundup_pow_of_two(obj->base.size));
296 	if (!phys)
297 		return -ENOMEM;
298 
299 	vaddr = phys->vaddr;
300 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
301 		struct page *page;
302 		char *src;
303 
304 		page = shmem_read_mapping_page(mapping, i);
305 		if (IS_ERR(page)) {
306 			err = PTR_ERR(page);
307 			goto err_phys;
308 		}
309 
310 		src = kmap_atomic(page);
311 		memcpy(vaddr, src, PAGE_SIZE);
312 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
313 		kunmap_atomic(src);
314 
315 		put_page(page);
316 		vaddr += PAGE_SIZE;
317 	}
318 
319 	i915_gem_chipset_flush(to_i915(obj->base.dev));
320 
321 	st = kmalloc(sizeof(*st), GFP_KERNEL);
322 	if (!st) {
323 		err = -ENOMEM;
324 		goto err_phys;
325 	}
326 
327 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
328 		kfree(st);
329 		err = -ENOMEM;
330 		goto err_phys;
331 	}
332 
333 	sg = st->sgl;
334 	sg->offset = 0;
335 	sg->length = obj->base.size;
336 
337 	sg_dma_address(sg) = phys->busaddr;
338 	sg_dma_len(sg) = obj->base.size;
339 
340 	obj->phys_handle = phys;
341 
342 	__i915_gem_object_set_pages(obj, st, sg->length);
343 
344 	return 0;
345 
346 err_phys:
347 	drm_pci_free(obj->base.dev, phys);
348 
349 	return err;
350 }
351 
__start_cpu_write(struct drm_i915_gem_object * obj)352 static void __start_cpu_write(struct drm_i915_gem_object *obj)
353 {
354 	obj->read_domains = I915_GEM_DOMAIN_CPU;
355 	obj->write_domain = I915_GEM_DOMAIN_CPU;
356 	if (cpu_write_needs_clflush(obj))
357 		obj->cache_dirty = true;
358 }
359 
360 static void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)361 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
362 				struct sg_table *pages,
363 				bool needs_clflush)
364 {
365 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
366 
367 	if (obj->mm.madv == I915_MADV_DONTNEED)
368 		obj->mm.dirty = false;
369 
370 	if (needs_clflush &&
371 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
372 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
373 		drm_clflush_sg(pages);
374 
375 	__start_cpu_write(obj);
376 }
377 
378 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj,struct sg_table * pages)379 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
380 			       struct sg_table *pages)
381 {
382 	__i915_gem_object_release_shmem(obj, pages, false);
383 
384 	if (obj->mm.dirty) {
385 		struct address_space *mapping = obj->base.filp->f_mapping;
386 		char *vaddr = obj->phys_handle->vaddr;
387 		int i;
388 
389 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
390 			struct page *page;
391 			char *dst;
392 
393 			page = shmem_read_mapping_page(mapping, i);
394 			if (IS_ERR(page))
395 				continue;
396 
397 			dst = kmap_atomic(page);
398 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
399 			memcpy(dst, vaddr, PAGE_SIZE);
400 			kunmap_atomic(dst);
401 
402 			set_page_dirty(page);
403 			if (obj->mm.madv == I915_MADV_WILLNEED)
404 				mark_page_accessed(page);
405 			put_page(page);
406 			vaddr += PAGE_SIZE;
407 		}
408 		obj->mm.dirty = false;
409 	}
410 
411 	sg_free_table(pages);
412 	kfree(pages);
413 
414 	drm_pci_free(obj->base.dev, obj->phys_handle);
415 }
416 
417 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)418 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
419 {
420 	i915_gem_object_unpin_pages(obj);
421 }
422 
423 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
424 	.get_pages = i915_gem_object_get_pages_phys,
425 	.put_pages = i915_gem_object_put_pages_phys,
426 	.release = i915_gem_object_release_phys,
427 };
428 
429 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
430 
i915_gem_object_unbind(struct drm_i915_gem_object * obj)431 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
432 {
433 	struct i915_vma *vma;
434 	LIST_HEAD(still_in_list);
435 	int ret;
436 
437 	lockdep_assert_held(&obj->base.dev->struct_mutex);
438 
439 	/* Closed vma are removed from the obj->vma_list - but they may
440 	 * still have an active binding on the object. To remove those we
441 	 * must wait for all rendering to complete to the object (as unbinding
442 	 * must anyway), and retire the requests.
443 	 */
444 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
445 	if (ret)
446 		return ret;
447 
448 	while ((vma = list_first_entry_or_null(&obj->vma_list,
449 					       struct i915_vma,
450 					       obj_link))) {
451 		list_move_tail(&vma->obj_link, &still_in_list);
452 		ret = i915_vma_unbind(vma);
453 		if (ret)
454 			break;
455 	}
456 	list_splice(&still_in_list, &obj->vma_list);
457 
458 	return ret;
459 }
460 
461 static long
i915_gem_object_wait_fence(struct dma_fence * fence,unsigned int flags,long timeout,struct intel_rps_client * rps_client)462 i915_gem_object_wait_fence(struct dma_fence *fence,
463 			   unsigned int flags,
464 			   long timeout,
465 			   struct intel_rps_client *rps_client)
466 {
467 	struct i915_request *rq;
468 
469 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
470 
471 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
472 		return timeout;
473 
474 	if (!dma_fence_is_i915(fence))
475 		return dma_fence_wait_timeout(fence,
476 					      flags & I915_WAIT_INTERRUPTIBLE,
477 					      timeout);
478 
479 	rq = to_request(fence);
480 	if (i915_request_completed(rq))
481 		goto out;
482 
483 	/*
484 	 * This client is about to stall waiting for the GPU. In many cases
485 	 * this is undesirable and limits the throughput of the system, as
486 	 * many clients cannot continue processing user input/output whilst
487 	 * blocked. RPS autotuning may take tens of milliseconds to respond
488 	 * to the GPU load and thus incurs additional latency for the client.
489 	 * We can circumvent that by promoting the GPU frequency to maximum
490 	 * before we wait. This makes the GPU throttle up much more quickly
491 	 * (good for benchmarks and user experience, e.g. window animations),
492 	 * but at a cost of spending more power processing the workload
493 	 * (bad for battery). Not all clients even want their results
494 	 * immediately and for them we should just let the GPU select its own
495 	 * frequency to maximise efficiency. To prevent a single client from
496 	 * forcing the clocks too high for the whole system, we only allow
497 	 * each client to waitboost once in a busy period.
498 	 */
499 	if (rps_client && !i915_request_started(rq)) {
500 		if (INTEL_GEN(rq->i915) >= 6)
501 			gen6_rps_boost(rq, rps_client);
502 	}
503 
504 	timeout = i915_request_wait(rq, flags, timeout);
505 
506 out:
507 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
508 		i915_request_retire_upto(rq);
509 
510 	return timeout;
511 }
512 
513 static long
i915_gem_object_wait_reservation(struct reservation_object * resv,unsigned int flags,long timeout,struct intel_rps_client * rps_client)514 i915_gem_object_wait_reservation(struct reservation_object *resv,
515 				 unsigned int flags,
516 				 long timeout,
517 				 struct intel_rps_client *rps_client)
518 {
519 	unsigned int seq = __read_seqcount_begin(&resv->seq);
520 	struct dma_fence *excl;
521 	bool prune_fences = false;
522 
523 	if (flags & I915_WAIT_ALL) {
524 		struct dma_fence **shared;
525 		unsigned int count, i;
526 		int ret;
527 
528 		ret = reservation_object_get_fences_rcu(resv,
529 							&excl, &count, &shared);
530 		if (ret)
531 			return ret;
532 
533 		for (i = 0; i < count; i++) {
534 			timeout = i915_gem_object_wait_fence(shared[i],
535 							     flags, timeout,
536 							     rps_client);
537 			if (timeout < 0)
538 				break;
539 
540 			dma_fence_put(shared[i]);
541 		}
542 
543 		for (; i < count; i++)
544 			dma_fence_put(shared[i]);
545 		kfree(shared);
546 
547 		/*
548 		 * If both shared fences and an exclusive fence exist,
549 		 * then by construction the shared fences must be later
550 		 * than the exclusive fence. If we successfully wait for
551 		 * all the shared fences, we know that the exclusive fence
552 		 * must all be signaled. If all the shared fences are
553 		 * signaled, we can prune the array and recover the
554 		 * floating references on the fences/requests.
555 		 */
556 		prune_fences = count && timeout >= 0;
557 	} else {
558 		excl = reservation_object_get_excl_rcu(resv);
559 	}
560 
561 	if (excl && timeout >= 0)
562 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
563 						     rps_client);
564 
565 	dma_fence_put(excl);
566 
567 	/*
568 	 * Opportunistically prune the fences iff we know they have *all* been
569 	 * signaled and that the reservation object has not been changed (i.e.
570 	 * no new fences have been added).
571 	 */
572 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
573 		if (reservation_object_trylock(resv)) {
574 			if (!__read_seqcount_retry(&resv->seq, seq))
575 				reservation_object_add_excl_fence(resv, NULL);
576 			reservation_object_unlock(resv);
577 		}
578 	}
579 
580 	return timeout;
581 }
582 
__fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)583 static void __fence_set_priority(struct dma_fence *fence,
584 				 const struct i915_sched_attr *attr)
585 {
586 	struct i915_request *rq;
587 	struct intel_engine_cs *engine;
588 
589 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
590 		return;
591 
592 	rq = to_request(fence);
593 	engine = rq->engine;
594 
595 	local_bh_disable();
596 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
597 	if (engine->schedule)
598 		engine->schedule(rq, attr);
599 	rcu_read_unlock();
600 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
601 }
602 
fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)603 static void fence_set_priority(struct dma_fence *fence,
604 			       const struct i915_sched_attr *attr)
605 {
606 	/* Recurse once into a fence-array */
607 	if (dma_fence_is_array(fence)) {
608 		struct dma_fence_array *array = to_dma_fence_array(fence);
609 		int i;
610 
611 		for (i = 0; i < array->num_fences; i++)
612 			__fence_set_priority(array->fences[i], attr);
613 	} else {
614 		__fence_set_priority(fence, attr);
615 	}
616 }
617 
618 int
i915_gem_object_wait_priority(struct drm_i915_gem_object * obj,unsigned int flags,const struct i915_sched_attr * attr)619 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
620 			      unsigned int flags,
621 			      const struct i915_sched_attr *attr)
622 {
623 	struct dma_fence *excl;
624 
625 	if (flags & I915_WAIT_ALL) {
626 		struct dma_fence **shared;
627 		unsigned int count, i;
628 		int ret;
629 
630 		ret = reservation_object_get_fences_rcu(obj->resv,
631 							&excl, &count, &shared);
632 		if (ret)
633 			return ret;
634 
635 		for (i = 0; i < count; i++) {
636 			fence_set_priority(shared[i], attr);
637 			dma_fence_put(shared[i]);
638 		}
639 
640 		kfree(shared);
641 	} else {
642 		excl = reservation_object_get_excl_rcu(obj->resv);
643 	}
644 
645 	if (excl) {
646 		fence_set_priority(excl, attr);
647 		dma_fence_put(excl);
648 	}
649 	return 0;
650 }
651 
652 /**
653  * Waits for rendering to the object to be completed
654  * @obj: i915 gem object
655  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
656  * @timeout: how long to wait
657  * @rps_client: client (user process) to charge for any waitboosting
658  */
659 int
i915_gem_object_wait(struct drm_i915_gem_object * obj,unsigned int flags,long timeout,struct intel_rps_client * rps_client)660 i915_gem_object_wait(struct drm_i915_gem_object *obj,
661 		     unsigned int flags,
662 		     long timeout,
663 		     struct intel_rps_client *rps_client)
664 {
665 	might_sleep();
666 #if IS_ENABLED(CONFIG_LOCKDEP)
667 	GEM_BUG_ON(debug_locks &&
668 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
669 		   !!(flags & I915_WAIT_LOCKED));
670 #endif
671 	GEM_BUG_ON(timeout < 0);
672 
673 	timeout = i915_gem_object_wait_reservation(obj->resv,
674 						   flags, timeout,
675 						   rps_client);
676 	return timeout < 0 ? timeout : 0;
677 }
678 
to_rps_client(struct drm_file * file)679 static struct intel_rps_client *to_rps_client(struct drm_file *file)
680 {
681 	struct drm_i915_file_private *fpriv = file->driver_priv;
682 
683 	return &fpriv->rps_client;
684 }
685 
686 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)687 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
688 		     struct drm_i915_gem_pwrite *args,
689 		     struct drm_file *file)
690 {
691 	void *vaddr = obj->phys_handle->vaddr + args->offset;
692 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
693 
694 	/* We manually control the domain here and pretend that it
695 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
696 	 */
697 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
698 	if (copy_from_user(vaddr, user_data, args->size))
699 		return -EFAULT;
700 
701 	drm_clflush_virt_range(vaddr, args->size);
702 	i915_gem_chipset_flush(to_i915(obj->base.dev));
703 
704 	intel_fb_obj_flush(obj, ORIGIN_CPU);
705 	return 0;
706 }
707 
i915_gem_object_alloc(struct drm_i915_private * dev_priv)708 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
709 {
710 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
711 }
712 
i915_gem_object_free(struct drm_i915_gem_object * obj)713 void i915_gem_object_free(struct drm_i915_gem_object *obj)
714 {
715 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
716 	kmem_cache_free(dev_priv->objects, obj);
717 }
718 
719 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,uint64_t size,uint32_t * handle_p)720 i915_gem_create(struct drm_file *file,
721 		struct drm_i915_private *dev_priv,
722 		uint64_t size,
723 		uint32_t *handle_p)
724 {
725 	struct drm_i915_gem_object *obj;
726 	int ret;
727 	u32 handle;
728 
729 	size = roundup(size, PAGE_SIZE);
730 	if (size == 0)
731 		return -EINVAL;
732 
733 	/* Allocate the new object */
734 	obj = i915_gem_object_create(dev_priv, size);
735 	if (IS_ERR(obj))
736 		return PTR_ERR(obj);
737 
738 	ret = drm_gem_handle_create(file, &obj->base, &handle);
739 	/* drop reference from allocate - handle holds it now */
740 	i915_gem_object_put(obj);
741 	if (ret)
742 		return ret;
743 
744 	*handle_p = handle;
745 	return 0;
746 }
747 
748 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)749 i915_gem_dumb_create(struct drm_file *file,
750 		     struct drm_device *dev,
751 		     struct drm_mode_create_dumb *args)
752 {
753 	/* have to work out size/pitch and return them */
754 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
755 	args->size = args->pitch * args->height;
756 	return i915_gem_create(file, to_i915(dev),
757 			       args->size, &args->handle);
758 }
759 
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)760 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
761 {
762 	return !(obj->cache_level == I915_CACHE_NONE ||
763 		 obj->cache_level == I915_CACHE_WT);
764 }
765 
766 /**
767  * Creates a new mm object and returns a handle to it.
768  * @dev: drm device pointer
769  * @data: ioctl data blob
770  * @file: drm file pointer
771  */
772 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)773 i915_gem_create_ioctl(struct drm_device *dev, void *data,
774 		      struct drm_file *file)
775 {
776 	struct drm_i915_private *dev_priv = to_i915(dev);
777 	struct drm_i915_gem_create *args = data;
778 
779 	i915_gem_flush_free_objects(dev_priv);
780 
781 	return i915_gem_create(file, dev_priv,
782 			       args->size, &args->handle);
783 }
784 
785 static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object * obj,unsigned int domain)786 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
787 {
788 	return (domain == I915_GEM_DOMAIN_GTT ?
789 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
790 }
791 
i915_gem_flush_ggtt_writes(struct drm_i915_private * dev_priv)792 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
793 {
794 	/*
795 	 * No actual flushing is required for the GTT write domain for reads
796 	 * from the GTT domain. Writes to it "immediately" go to main memory
797 	 * as far as we know, so there's no chipset flush. It also doesn't
798 	 * land in the GPU render cache.
799 	 *
800 	 * However, we do have to enforce the order so that all writes through
801 	 * the GTT land before any writes to the device, such as updates to
802 	 * the GATT itself.
803 	 *
804 	 * We also have to wait a bit for the writes to land from the GTT.
805 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
806 	 * timing. This issue has only been observed when switching quickly
807 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
808 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
809 	 * system agents we cannot reproduce this behaviour, until Cannonlake
810 	 * that was!).
811 	 */
812 
813 	i915_gem_chipset_flush(dev_priv);
814 
815 	intel_runtime_pm_get(dev_priv);
816 	spin_lock_irq(&dev_priv->uncore.lock);
817 
818 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
819 
820 	spin_unlock_irq(&dev_priv->uncore.lock);
821 	intel_runtime_pm_put(dev_priv);
822 }
823 
824 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)825 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
826 {
827 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
828 	struct i915_vma *vma;
829 
830 	if (!(obj->write_domain & flush_domains))
831 		return;
832 
833 	switch (obj->write_domain) {
834 	case I915_GEM_DOMAIN_GTT:
835 		i915_gem_flush_ggtt_writes(dev_priv);
836 
837 		intel_fb_obj_flush(obj,
838 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
839 
840 		for_each_ggtt_vma(vma, obj) {
841 			if (vma->iomap)
842 				continue;
843 
844 			i915_vma_unset_ggtt_write(vma);
845 		}
846 		break;
847 
848 	case I915_GEM_DOMAIN_WC:
849 		wmb();
850 		break;
851 
852 	case I915_GEM_DOMAIN_CPU:
853 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
854 		break;
855 
856 	case I915_GEM_DOMAIN_RENDER:
857 		if (gpu_write_needs_clflush(obj))
858 			obj->cache_dirty = true;
859 		break;
860 	}
861 
862 	obj->write_domain = 0;
863 }
864 
865 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)866 __copy_to_user_swizzled(char __user *cpu_vaddr,
867 			const char *gpu_vaddr, int gpu_offset,
868 			int length)
869 {
870 	int ret, cpu_offset = 0;
871 
872 	while (length > 0) {
873 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
874 		int this_length = min(cacheline_end - gpu_offset, length);
875 		int swizzled_gpu_offset = gpu_offset ^ 64;
876 
877 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
878 				     gpu_vaddr + swizzled_gpu_offset,
879 				     this_length);
880 		if (ret)
881 			return ret + length;
882 
883 		cpu_offset += this_length;
884 		gpu_offset += this_length;
885 		length -= this_length;
886 	}
887 
888 	return 0;
889 }
890 
891 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)892 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
893 			  const char __user *cpu_vaddr,
894 			  int length)
895 {
896 	int ret, cpu_offset = 0;
897 
898 	while (length > 0) {
899 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
900 		int this_length = min(cacheline_end - gpu_offset, length);
901 		int swizzled_gpu_offset = gpu_offset ^ 64;
902 
903 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
904 				       cpu_vaddr + cpu_offset,
905 				       this_length);
906 		if (ret)
907 			return ret + length;
908 
909 		cpu_offset += this_length;
910 		gpu_offset += this_length;
911 		length -= this_length;
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * Pins the specified object's pages and synchronizes the object with
919  * GPU accesses. Sets needs_clflush to non-zero if the caller should
920  * flush the object from the CPU cache.
921  */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)922 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
923 				    unsigned int *needs_clflush)
924 {
925 	int ret;
926 
927 	lockdep_assert_held(&obj->base.dev->struct_mutex);
928 
929 	*needs_clflush = 0;
930 	if (!i915_gem_object_has_struct_page(obj))
931 		return -ENODEV;
932 
933 	ret = i915_gem_object_wait(obj,
934 				   I915_WAIT_INTERRUPTIBLE |
935 				   I915_WAIT_LOCKED,
936 				   MAX_SCHEDULE_TIMEOUT,
937 				   NULL);
938 	if (ret)
939 		return ret;
940 
941 	ret = i915_gem_object_pin_pages(obj);
942 	if (ret)
943 		return ret;
944 
945 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
946 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
947 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
948 		if (ret)
949 			goto err_unpin;
950 		else
951 			goto out;
952 	}
953 
954 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
955 
956 	/* If we're not in the cpu read domain, set ourself into the gtt
957 	 * read domain and manually flush cachelines (if required). This
958 	 * optimizes for the case when the gpu will dirty the data
959 	 * anyway again before the next pread happens.
960 	 */
961 	if (!obj->cache_dirty &&
962 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
963 		*needs_clflush = CLFLUSH_BEFORE;
964 
965 out:
966 	/* return with the pages pinned */
967 	return 0;
968 
969 err_unpin:
970 	i915_gem_object_unpin_pages(obj);
971 	return ret;
972 }
973 
i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)974 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
975 				     unsigned int *needs_clflush)
976 {
977 	int ret;
978 
979 	lockdep_assert_held(&obj->base.dev->struct_mutex);
980 
981 	*needs_clflush = 0;
982 	if (!i915_gem_object_has_struct_page(obj))
983 		return -ENODEV;
984 
985 	ret = i915_gem_object_wait(obj,
986 				   I915_WAIT_INTERRUPTIBLE |
987 				   I915_WAIT_LOCKED |
988 				   I915_WAIT_ALL,
989 				   MAX_SCHEDULE_TIMEOUT,
990 				   NULL);
991 	if (ret)
992 		return ret;
993 
994 	ret = i915_gem_object_pin_pages(obj);
995 	if (ret)
996 		return ret;
997 
998 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
999 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
1000 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
1001 		if (ret)
1002 			goto err_unpin;
1003 		else
1004 			goto out;
1005 	}
1006 
1007 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1008 
1009 	/* If we're not in the cpu write domain, set ourself into the
1010 	 * gtt write domain and manually flush cachelines (as required).
1011 	 * This optimizes for the case when the gpu will use the data
1012 	 * right away and we therefore have to clflush anyway.
1013 	 */
1014 	if (!obj->cache_dirty) {
1015 		*needs_clflush |= CLFLUSH_AFTER;
1016 
1017 		/*
1018 		 * Same trick applies to invalidate partially written
1019 		 * cachelines read before writing.
1020 		 */
1021 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1022 			*needs_clflush |= CLFLUSH_BEFORE;
1023 	}
1024 
1025 out:
1026 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1027 	obj->mm.dirty = true;
1028 	/* return with the pages pinned */
1029 	return 0;
1030 
1031 err_unpin:
1032 	i915_gem_object_unpin_pages(obj);
1033 	return ret;
1034 }
1035 
1036 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)1037 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1038 			     bool swizzled)
1039 {
1040 	if (unlikely(swizzled)) {
1041 		unsigned long start = (unsigned long) addr;
1042 		unsigned long end = (unsigned long) addr + length;
1043 
1044 		/* For swizzling simply ensure that we always flush both
1045 		 * channels. Lame, but simple and it works. Swizzled
1046 		 * pwrite/pread is far from a hotpath - current userspace
1047 		 * doesn't use it at all. */
1048 		start = round_down(start, 128);
1049 		end = round_up(end, 128);
1050 
1051 		drm_clflush_virt_range((void *)start, end - start);
1052 	} else {
1053 		drm_clflush_virt_range(addr, length);
1054 	}
1055 
1056 }
1057 
1058 /* Only difference to the fast-path function is that this can handle bit17
1059  * and uses non-atomic copy and kmap functions. */
1060 static int
shmem_pread_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1061 shmem_pread_slow(struct page *page, int offset, int length,
1062 		 char __user *user_data,
1063 		 bool page_do_bit17_swizzling, bool needs_clflush)
1064 {
1065 	char *vaddr;
1066 	int ret;
1067 
1068 	vaddr = kmap(page);
1069 	if (needs_clflush)
1070 		shmem_clflush_swizzled_range(vaddr + offset, length,
1071 					     page_do_bit17_swizzling);
1072 
1073 	if (page_do_bit17_swizzling)
1074 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1075 	else
1076 		ret = __copy_to_user(user_data, vaddr + offset, length);
1077 	kunmap(page);
1078 
1079 	return ret ? - EFAULT : 0;
1080 }
1081 
1082 static int
shmem_pread(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1083 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1084 	    bool page_do_bit17_swizzling, bool needs_clflush)
1085 {
1086 	int ret;
1087 
1088 	ret = -ENODEV;
1089 	if (!page_do_bit17_swizzling) {
1090 		char *vaddr = kmap_atomic(page);
1091 
1092 		if (needs_clflush)
1093 			drm_clflush_virt_range(vaddr + offset, length);
1094 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1095 		kunmap_atomic(vaddr);
1096 	}
1097 	if (ret == 0)
1098 		return 0;
1099 
1100 	return shmem_pread_slow(page, offset, length, user_data,
1101 				page_do_bit17_swizzling, needs_clflush);
1102 }
1103 
1104 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)1105 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1106 		     struct drm_i915_gem_pread *args)
1107 {
1108 	char __user *user_data;
1109 	u64 remain;
1110 	unsigned int obj_do_bit17_swizzling;
1111 	unsigned int needs_clflush;
1112 	unsigned int idx, offset;
1113 	int ret;
1114 
1115 	obj_do_bit17_swizzling = 0;
1116 	if (i915_gem_object_needs_bit17_swizzle(obj))
1117 		obj_do_bit17_swizzling = BIT(17);
1118 
1119 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1124 	mutex_unlock(&obj->base.dev->struct_mutex);
1125 	if (ret)
1126 		return ret;
1127 
1128 	remain = args->size;
1129 	user_data = u64_to_user_ptr(args->data_ptr);
1130 	offset = offset_in_page(args->offset);
1131 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1132 		struct page *page = i915_gem_object_get_page(obj, idx);
1133 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1134 
1135 		ret = shmem_pread(page, offset, length, user_data,
1136 				  page_to_phys(page) & obj_do_bit17_swizzling,
1137 				  needs_clflush);
1138 		if (ret)
1139 			break;
1140 
1141 		remain -= length;
1142 		user_data += length;
1143 		offset = 0;
1144 	}
1145 
1146 	i915_gem_obj_finish_shmem_access(obj);
1147 	return ret;
1148 }
1149 
1150 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1151 gtt_user_read(struct io_mapping *mapping,
1152 	      loff_t base, int offset,
1153 	      char __user *user_data, int length)
1154 {
1155 	void __iomem *vaddr;
1156 	unsigned long unwritten;
1157 
1158 	/* We can use the cpu mem copy function because this is X86. */
1159 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1160 	unwritten = __copy_to_user_inatomic(user_data,
1161 					    (void __force *)vaddr + offset,
1162 					    length);
1163 	io_mapping_unmap_atomic(vaddr);
1164 	if (unwritten) {
1165 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 		unwritten = copy_to_user(user_data,
1167 					 (void __force *)vaddr + offset,
1168 					 length);
1169 		io_mapping_unmap(vaddr);
1170 	}
1171 	return unwritten;
1172 }
1173 
1174 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)1175 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1176 		   const struct drm_i915_gem_pread *args)
1177 {
1178 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1179 	struct i915_ggtt *ggtt = &i915->ggtt;
1180 	struct drm_mm_node node;
1181 	struct i915_vma *vma;
1182 	void __user *user_data;
1183 	u64 remain, offset;
1184 	int ret;
1185 
1186 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1187 	if (ret)
1188 		return ret;
1189 
1190 	intel_runtime_pm_get(i915);
1191 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1192 				       PIN_MAPPABLE |
1193 				       PIN_NONFAULT |
1194 				       PIN_NONBLOCK);
1195 	if (!IS_ERR(vma)) {
1196 		node.start = i915_ggtt_offset(vma);
1197 		node.allocated = false;
1198 		ret = i915_vma_put_fence(vma);
1199 		if (ret) {
1200 			i915_vma_unpin(vma);
1201 			vma = ERR_PTR(ret);
1202 		}
1203 	}
1204 	if (IS_ERR(vma)) {
1205 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1206 		if (ret)
1207 			goto out_unlock;
1208 		GEM_BUG_ON(!node.allocated);
1209 	}
1210 
1211 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1212 	if (ret)
1213 		goto out_unpin;
1214 
1215 	mutex_unlock(&i915->drm.struct_mutex);
1216 
1217 	user_data = u64_to_user_ptr(args->data_ptr);
1218 	remain = args->size;
1219 	offset = args->offset;
1220 
1221 	while (remain > 0) {
1222 		/* Operation in this page
1223 		 *
1224 		 * page_base = page offset within aperture
1225 		 * page_offset = offset within page
1226 		 * page_length = bytes to copy for this page
1227 		 */
1228 		u32 page_base = node.start;
1229 		unsigned page_offset = offset_in_page(offset);
1230 		unsigned page_length = PAGE_SIZE - page_offset;
1231 		page_length = remain < page_length ? remain : page_length;
1232 		if (node.allocated) {
1233 			wmb();
1234 			ggtt->vm.insert_page(&ggtt->vm,
1235 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1236 					     node.start, I915_CACHE_NONE, 0);
1237 			wmb();
1238 		} else {
1239 			page_base += offset & PAGE_MASK;
1240 		}
1241 
1242 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1243 				  user_data, page_length)) {
1244 			ret = -EFAULT;
1245 			break;
1246 		}
1247 
1248 		remain -= page_length;
1249 		user_data += page_length;
1250 		offset += page_length;
1251 	}
1252 
1253 	mutex_lock(&i915->drm.struct_mutex);
1254 out_unpin:
1255 	if (node.allocated) {
1256 		wmb();
1257 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1258 		remove_mappable_node(&node);
1259 	} else {
1260 		i915_vma_unpin(vma);
1261 	}
1262 out_unlock:
1263 	intel_runtime_pm_put(i915);
1264 	mutex_unlock(&i915->drm.struct_mutex);
1265 
1266 	return ret;
1267 }
1268 
1269 /**
1270  * Reads data from the object referenced by handle.
1271  * @dev: drm device pointer
1272  * @data: ioctl data blob
1273  * @file: drm file pointer
1274  *
1275  * On error, the contents of *data are undefined.
1276  */
1277 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1278 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1279 		     struct drm_file *file)
1280 {
1281 	struct drm_i915_gem_pread *args = data;
1282 	struct drm_i915_gem_object *obj;
1283 	int ret;
1284 
1285 	if (args->size == 0)
1286 		return 0;
1287 
1288 	if (!access_ok(VERIFY_WRITE,
1289 		       u64_to_user_ptr(args->data_ptr),
1290 		       args->size))
1291 		return -EFAULT;
1292 
1293 	obj = i915_gem_object_lookup(file, args->handle);
1294 	if (!obj)
1295 		return -ENOENT;
1296 
1297 	/* Bounds check source.  */
1298 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1299 		ret = -EINVAL;
1300 		goto out;
1301 	}
1302 
1303 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1304 
1305 	ret = i915_gem_object_wait(obj,
1306 				   I915_WAIT_INTERRUPTIBLE,
1307 				   MAX_SCHEDULE_TIMEOUT,
1308 				   to_rps_client(file));
1309 	if (ret)
1310 		goto out;
1311 
1312 	ret = i915_gem_object_pin_pages(obj);
1313 	if (ret)
1314 		goto out;
1315 
1316 	ret = i915_gem_shmem_pread(obj, args);
1317 	if (ret == -EFAULT || ret == -ENODEV)
1318 		ret = i915_gem_gtt_pread(obj, args);
1319 
1320 	i915_gem_object_unpin_pages(obj);
1321 out:
1322 	i915_gem_object_put(obj);
1323 	return ret;
1324 }
1325 
1326 /* This is the fast write path which cannot handle
1327  * page faults in the source data
1328  */
1329 
1330 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1331 ggtt_write(struct io_mapping *mapping,
1332 	   loff_t base, int offset,
1333 	   char __user *user_data, int length)
1334 {
1335 	void __iomem *vaddr;
1336 	unsigned long unwritten;
1337 
1338 	/* We can use the cpu mem copy function because this is X86. */
1339 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1340 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1341 						      user_data, length);
1342 	io_mapping_unmap_atomic(vaddr);
1343 	if (unwritten) {
1344 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1345 		unwritten = copy_from_user((void __force *)vaddr + offset,
1346 					   user_data, length);
1347 		io_mapping_unmap(vaddr);
1348 	}
1349 
1350 	return unwritten;
1351 }
1352 
1353 /**
1354  * This is the fast pwrite path, where we copy the data directly from the
1355  * user into the GTT, uncached.
1356  * @obj: i915 GEM object
1357  * @args: pwrite arguments structure
1358  */
1359 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1360 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1361 			 const struct drm_i915_gem_pwrite *args)
1362 {
1363 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1364 	struct i915_ggtt *ggtt = &i915->ggtt;
1365 	struct drm_mm_node node;
1366 	struct i915_vma *vma;
1367 	u64 remain, offset;
1368 	void __user *user_data;
1369 	int ret;
1370 
1371 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1372 	if (ret)
1373 		return ret;
1374 
1375 	if (i915_gem_object_has_struct_page(obj)) {
1376 		/*
1377 		 * Avoid waking the device up if we can fallback, as
1378 		 * waking/resuming is very slow (worst-case 10-100 ms
1379 		 * depending on PCI sleeps and our own resume time).
1380 		 * This easily dwarfs any performance advantage from
1381 		 * using the cache bypass of indirect GGTT access.
1382 		 */
1383 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1384 			ret = -EFAULT;
1385 			goto out_unlock;
1386 		}
1387 	} else {
1388 		/* No backing pages, no fallback, we must force GGTT access */
1389 		intel_runtime_pm_get(i915);
1390 	}
1391 
1392 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1393 				       PIN_MAPPABLE |
1394 				       PIN_NONFAULT |
1395 				       PIN_NONBLOCK);
1396 	if (!IS_ERR(vma)) {
1397 		node.start = i915_ggtt_offset(vma);
1398 		node.allocated = false;
1399 		ret = i915_vma_put_fence(vma);
1400 		if (ret) {
1401 			i915_vma_unpin(vma);
1402 			vma = ERR_PTR(ret);
1403 		}
1404 	}
1405 	if (IS_ERR(vma)) {
1406 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1407 		if (ret)
1408 			goto out_rpm;
1409 		GEM_BUG_ON(!node.allocated);
1410 	}
1411 
1412 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1413 	if (ret)
1414 		goto out_unpin;
1415 
1416 	mutex_unlock(&i915->drm.struct_mutex);
1417 
1418 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1419 
1420 	user_data = u64_to_user_ptr(args->data_ptr);
1421 	offset = args->offset;
1422 	remain = args->size;
1423 	while (remain) {
1424 		/* Operation in this page
1425 		 *
1426 		 * page_base = page offset within aperture
1427 		 * page_offset = offset within page
1428 		 * page_length = bytes to copy for this page
1429 		 */
1430 		u32 page_base = node.start;
1431 		unsigned int page_offset = offset_in_page(offset);
1432 		unsigned int page_length = PAGE_SIZE - page_offset;
1433 		page_length = remain < page_length ? remain : page_length;
1434 		if (node.allocated) {
1435 			wmb(); /* flush the write before we modify the GGTT */
1436 			ggtt->vm.insert_page(&ggtt->vm,
1437 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1438 					     node.start, I915_CACHE_NONE, 0);
1439 			wmb(); /* flush modifications to the GGTT (insert_page) */
1440 		} else {
1441 			page_base += offset & PAGE_MASK;
1442 		}
1443 		/* If we get a fault while copying data, then (presumably) our
1444 		 * source page isn't available.  Return the error and we'll
1445 		 * retry in the slow path.
1446 		 * If the object is non-shmem backed, we retry again with the
1447 		 * path that handles page fault.
1448 		 */
1449 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1450 			       user_data, page_length)) {
1451 			ret = -EFAULT;
1452 			break;
1453 		}
1454 
1455 		remain -= page_length;
1456 		user_data += page_length;
1457 		offset += page_length;
1458 	}
1459 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1460 
1461 	mutex_lock(&i915->drm.struct_mutex);
1462 out_unpin:
1463 	if (node.allocated) {
1464 		wmb();
1465 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1466 		remove_mappable_node(&node);
1467 	} else {
1468 		i915_vma_unpin(vma);
1469 	}
1470 out_rpm:
1471 	intel_runtime_pm_put(i915);
1472 out_unlock:
1473 	mutex_unlock(&i915->drm.struct_mutex);
1474 	return ret;
1475 }
1476 
1477 static int
shmem_pwrite_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1478 shmem_pwrite_slow(struct page *page, int offset, int length,
1479 		  char __user *user_data,
1480 		  bool page_do_bit17_swizzling,
1481 		  bool needs_clflush_before,
1482 		  bool needs_clflush_after)
1483 {
1484 	char *vaddr;
1485 	int ret;
1486 
1487 	vaddr = kmap(page);
1488 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1489 		shmem_clflush_swizzled_range(vaddr + offset, length,
1490 					     page_do_bit17_swizzling);
1491 	if (page_do_bit17_swizzling)
1492 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1493 						length);
1494 	else
1495 		ret = __copy_from_user(vaddr + offset, user_data, length);
1496 	if (needs_clflush_after)
1497 		shmem_clflush_swizzled_range(vaddr + offset, length,
1498 					     page_do_bit17_swizzling);
1499 	kunmap(page);
1500 
1501 	return ret ? -EFAULT : 0;
1502 }
1503 
1504 /* Per-page copy function for the shmem pwrite fastpath.
1505  * Flushes invalid cachelines before writing to the target if
1506  * needs_clflush_before is set and flushes out any written cachelines after
1507  * writing if needs_clflush is set.
1508  */
1509 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1510 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1511 	     bool page_do_bit17_swizzling,
1512 	     bool needs_clflush_before,
1513 	     bool needs_clflush_after)
1514 {
1515 	int ret;
1516 
1517 	ret = -ENODEV;
1518 	if (!page_do_bit17_swizzling) {
1519 		char *vaddr = kmap_atomic(page);
1520 
1521 		if (needs_clflush_before)
1522 			drm_clflush_virt_range(vaddr + offset, len);
1523 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1524 		if (needs_clflush_after)
1525 			drm_clflush_virt_range(vaddr + offset, len);
1526 
1527 		kunmap_atomic(vaddr);
1528 	}
1529 	if (ret == 0)
1530 		return ret;
1531 
1532 	return shmem_pwrite_slow(page, offset, len, user_data,
1533 				 page_do_bit17_swizzling,
1534 				 needs_clflush_before,
1535 				 needs_clflush_after);
1536 }
1537 
1538 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1539 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1540 		      const struct drm_i915_gem_pwrite *args)
1541 {
1542 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1543 	void __user *user_data;
1544 	u64 remain;
1545 	unsigned int obj_do_bit17_swizzling;
1546 	unsigned int partial_cacheline_write;
1547 	unsigned int needs_clflush;
1548 	unsigned int offset, idx;
1549 	int ret;
1550 
1551 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1552 	if (ret)
1553 		return ret;
1554 
1555 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1556 	mutex_unlock(&i915->drm.struct_mutex);
1557 	if (ret)
1558 		return ret;
1559 
1560 	obj_do_bit17_swizzling = 0;
1561 	if (i915_gem_object_needs_bit17_swizzle(obj))
1562 		obj_do_bit17_swizzling = BIT(17);
1563 
1564 	/* If we don't overwrite a cacheline completely we need to be
1565 	 * careful to have up-to-date data by first clflushing. Don't
1566 	 * overcomplicate things and flush the entire patch.
1567 	 */
1568 	partial_cacheline_write = 0;
1569 	if (needs_clflush & CLFLUSH_BEFORE)
1570 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1571 
1572 	user_data = u64_to_user_ptr(args->data_ptr);
1573 	remain = args->size;
1574 	offset = offset_in_page(args->offset);
1575 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1576 		struct page *page = i915_gem_object_get_page(obj, idx);
1577 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1578 
1579 		ret = shmem_pwrite(page, offset, length, user_data,
1580 				   page_to_phys(page) & obj_do_bit17_swizzling,
1581 				   (offset | length) & partial_cacheline_write,
1582 				   needs_clflush & CLFLUSH_AFTER);
1583 		if (ret)
1584 			break;
1585 
1586 		remain -= length;
1587 		user_data += length;
1588 		offset = 0;
1589 	}
1590 
1591 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1592 	i915_gem_obj_finish_shmem_access(obj);
1593 	return ret;
1594 }
1595 
1596 /**
1597  * Writes data to the object referenced by handle.
1598  * @dev: drm device
1599  * @data: ioctl data blob
1600  * @file: drm file
1601  *
1602  * On error, the contents of the buffer that were to be modified are undefined.
1603  */
1604 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1605 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606 		      struct drm_file *file)
1607 {
1608 	struct drm_i915_gem_pwrite *args = data;
1609 	struct drm_i915_gem_object *obj;
1610 	int ret;
1611 
1612 	if (args->size == 0)
1613 		return 0;
1614 
1615 	if (!access_ok(VERIFY_READ,
1616 		       u64_to_user_ptr(args->data_ptr),
1617 		       args->size))
1618 		return -EFAULT;
1619 
1620 	obj = i915_gem_object_lookup(file, args->handle);
1621 	if (!obj)
1622 		return -ENOENT;
1623 
1624 	/* Bounds check destination. */
1625 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1626 		ret = -EINVAL;
1627 		goto err;
1628 	}
1629 
1630 	/* Writes not allowed into this read-only object */
1631 	if (i915_gem_object_is_readonly(obj)) {
1632 		ret = -EINVAL;
1633 		goto err;
1634 	}
1635 
1636 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1637 
1638 	ret = -ENODEV;
1639 	if (obj->ops->pwrite)
1640 		ret = obj->ops->pwrite(obj, args);
1641 	if (ret != -ENODEV)
1642 		goto err;
1643 
1644 	ret = i915_gem_object_wait(obj,
1645 				   I915_WAIT_INTERRUPTIBLE |
1646 				   I915_WAIT_ALL,
1647 				   MAX_SCHEDULE_TIMEOUT,
1648 				   to_rps_client(file));
1649 	if (ret)
1650 		goto err;
1651 
1652 	ret = i915_gem_object_pin_pages(obj);
1653 	if (ret)
1654 		goto err;
1655 
1656 	ret = -EFAULT;
1657 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1658 	 * it would end up going through the fenced access, and we'll get
1659 	 * different detiling behavior between reading and writing.
1660 	 * pread/pwrite currently are reading and writing from the CPU
1661 	 * perspective, requiring manual detiling by the client.
1662 	 */
1663 	if (!i915_gem_object_has_struct_page(obj) ||
1664 	    cpu_write_needs_clflush(obj))
1665 		/* Note that the gtt paths might fail with non-page-backed user
1666 		 * pointers (e.g. gtt mappings when moving data between
1667 		 * textures). Fallback to the shmem path in that case.
1668 		 */
1669 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1670 
1671 	if (ret == -EFAULT || ret == -ENOSPC) {
1672 		if (obj->phys_handle)
1673 			ret = i915_gem_phys_pwrite(obj, args, file);
1674 		else
1675 			ret = i915_gem_shmem_pwrite(obj, args);
1676 	}
1677 
1678 	i915_gem_object_unpin_pages(obj);
1679 err:
1680 	i915_gem_object_put(obj);
1681 	return ret;
1682 }
1683 
i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object * obj)1684 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1685 {
1686 	struct drm_i915_private *i915;
1687 	struct list_head *list;
1688 	struct i915_vma *vma;
1689 
1690 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1691 
1692 	for_each_ggtt_vma(vma, obj) {
1693 		if (i915_vma_is_active(vma))
1694 			continue;
1695 
1696 		if (!drm_mm_node_allocated(&vma->node))
1697 			continue;
1698 
1699 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1700 	}
1701 
1702 	i915 = to_i915(obj->base.dev);
1703 	spin_lock(&i915->mm.obj_lock);
1704 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1705 	list_move_tail(&obj->mm.link, list);
1706 	spin_unlock(&i915->mm.obj_lock);
1707 }
1708 
1709 /**
1710  * Called when user space prepares to use an object with the CPU, either
1711  * through the mmap ioctl's mapping or a GTT mapping.
1712  * @dev: drm device
1713  * @data: ioctl data blob
1714  * @file: drm file
1715  */
1716 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1717 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1718 			  struct drm_file *file)
1719 {
1720 	struct drm_i915_gem_set_domain *args = data;
1721 	struct drm_i915_gem_object *obj;
1722 	uint32_t read_domains = args->read_domains;
1723 	uint32_t write_domain = args->write_domain;
1724 	int err;
1725 
1726 	/* Only handle setting domains to types used by the CPU. */
1727 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1728 		return -EINVAL;
1729 
1730 	/* Having something in the write domain implies it's in the read
1731 	 * domain, and only that read domain.  Enforce that in the request.
1732 	 */
1733 	if (write_domain != 0 && read_domains != write_domain)
1734 		return -EINVAL;
1735 
1736 	obj = i915_gem_object_lookup(file, args->handle);
1737 	if (!obj)
1738 		return -ENOENT;
1739 
1740 	/* Try to flush the object off the GPU without holding the lock.
1741 	 * We will repeat the flush holding the lock in the normal manner
1742 	 * to catch cases where we are gazumped.
1743 	 */
1744 	err = i915_gem_object_wait(obj,
1745 				   I915_WAIT_INTERRUPTIBLE |
1746 				   (write_domain ? I915_WAIT_ALL : 0),
1747 				   MAX_SCHEDULE_TIMEOUT,
1748 				   to_rps_client(file));
1749 	if (err)
1750 		goto out;
1751 
1752 	/*
1753 	 * Proxy objects do not control access to the backing storage, ergo
1754 	 * they cannot be used as a means to manipulate the cache domain
1755 	 * tracking for that backing storage. The proxy object is always
1756 	 * considered to be outside of any cache domain.
1757 	 */
1758 	if (i915_gem_object_is_proxy(obj)) {
1759 		err = -ENXIO;
1760 		goto out;
1761 	}
1762 
1763 	/*
1764 	 * Flush and acquire obj->pages so that we are coherent through
1765 	 * direct access in memory with previous cached writes through
1766 	 * shmemfs and that our cache domain tracking remains valid.
1767 	 * For example, if the obj->filp was moved to swap without us
1768 	 * being notified and releasing the pages, we would mistakenly
1769 	 * continue to assume that the obj remained out of the CPU cached
1770 	 * domain.
1771 	 */
1772 	err = i915_gem_object_pin_pages(obj);
1773 	if (err)
1774 		goto out;
1775 
1776 	err = i915_mutex_lock_interruptible(dev);
1777 	if (err)
1778 		goto out_unpin;
1779 
1780 	if (read_domains & I915_GEM_DOMAIN_WC)
1781 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1782 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1783 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1784 	else
1785 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1786 
1787 	/* And bump the LRU for this access */
1788 	i915_gem_object_bump_inactive_ggtt(obj);
1789 
1790 	mutex_unlock(&dev->struct_mutex);
1791 
1792 	if (write_domain != 0)
1793 		intel_fb_obj_invalidate(obj,
1794 					fb_write_origin(obj, write_domain));
1795 
1796 out_unpin:
1797 	i915_gem_object_unpin_pages(obj);
1798 out:
1799 	i915_gem_object_put(obj);
1800 	return err;
1801 }
1802 
1803 /**
1804  * Called when user space has done writes to this buffer
1805  * @dev: drm device
1806  * @data: ioctl data blob
1807  * @file: drm file
1808  */
1809 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1810 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1811 			 struct drm_file *file)
1812 {
1813 	struct drm_i915_gem_sw_finish *args = data;
1814 	struct drm_i915_gem_object *obj;
1815 
1816 	obj = i915_gem_object_lookup(file, args->handle);
1817 	if (!obj)
1818 		return -ENOENT;
1819 
1820 	/*
1821 	 * Proxy objects are barred from CPU access, so there is no
1822 	 * need to ban sw_finish as it is a nop.
1823 	 */
1824 
1825 	/* Pinned buffers may be scanout, so flush the cache */
1826 	i915_gem_object_flush_if_display(obj);
1827 	i915_gem_object_put(obj);
1828 
1829 	return 0;
1830 }
1831 
1832 static inline bool
__vma_matches(struct vm_area_struct * vma,struct file * filp,unsigned long addr,unsigned long size)1833 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1834 	      unsigned long addr, unsigned long size)
1835 {
1836 	if (vma->vm_file != filp)
1837 		return false;
1838 
1839 	return vma->vm_start == addr &&
1840 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1841 }
1842 
1843 /**
1844  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1845  *			 it is mapped to.
1846  * @dev: drm device
1847  * @data: ioctl data blob
1848  * @file: drm file
1849  *
1850  * While the mapping holds a reference on the contents of the object, it doesn't
1851  * imply a ref on the object itself.
1852  *
1853  * IMPORTANT:
1854  *
1855  * DRM driver writers who look a this function as an example for how to do GEM
1856  * mmap support, please don't implement mmap support like here. The modern way
1857  * to implement DRM mmap support is with an mmap offset ioctl (like
1858  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1859  * That way debug tooling like valgrind will understand what's going on, hiding
1860  * the mmap call in a driver private ioctl will break that. The i915 driver only
1861  * does cpu mmaps this way because we didn't know better.
1862  */
1863 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1864 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1865 		    struct drm_file *file)
1866 {
1867 	struct drm_i915_gem_mmap *args = data;
1868 	struct drm_i915_gem_object *obj;
1869 	unsigned long addr;
1870 
1871 	if (args->flags & ~(I915_MMAP_WC))
1872 		return -EINVAL;
1873 
1874 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1875 		return -ENODEV;
1876 
1877 	obj = i915_gem_object_lookup(file, args->handle);
1878 	if (!obj)
1879 		return -ENOENT;
1880 
1881 	/* prime objects have no backing filp to GEM mmap
1882 	 * pages from.
1883 	 */
1884 	if (!obj->base.filp) {
1885 		addr = -ENXIO;
1886 		goto err;
1887 	}
1888 
1889 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
1890 		addr = -EINVAL;
1891 		goto err;
1892 	}
1893 
1894 	addr = vm_mmap(obj->base.filp, 0, args->size,
1895 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1896 		       args->offset);
1897 	if (IS_ERR_VALUE(addr))
1898 		goto err;
1899 
1900 	if (args->flags & I915_MMAP_WC) {
1901 		struct mm_struct *mm = current->mm;
1902 		struct vm_area_struct *vma;
1903 
1904 		if (down_write_killable(&mm->mmap_sem)) {
1905 			addr = -EINTR;
1906 			goto err;
1907 		}
1908 		vma = find_vma(mm, addr);
1909 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1910 			vma->vm_page_prot =
1911 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1912 		else
1913 			addr = -ENOMEM;
1914 		up_write(&mm->mmap_sem);
1915 		if (IS_ERR_VALUE(addr))
1916 			goto err;
1917 
1918 		/* This may race, but that's ok, it only gets set */
1919 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1920 	}
1921 	i915_gem_object_put(obj);
1922 
1923 	args->addr_ptr = (uint64_t) addr;
1924 	return 0;
1925 
1926 err:
1927 	i915_gem_object_put(obj);
1928 	return addr;
1929 }
1930 
tile_row_pages(struct drm_i915_gem_object * obj)1931 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1932 {
1933 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1934 }
1935 
1936 /**
1937  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1938  *
1939  * A history of the GTT mmap interface:
1940  *
1941  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1942  *     aligned and suitable for fencing, and still fit into the available
1943  *     mappable space left by the pinned display objects. A classic problem
1944  *     we called the page-fault-of-doom where we would ping-pong between
1945  *     two objects that could not fit inside the GTT and so the memcpy
1946  *     would page one object in at the expense of the other between every
1947  *     single byte.
1948  *
1949  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1950  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1951  *     object is too large for the available space (or simply too large
1952  *     for the mappable aperture!), a view is created instead and faulted
1953  *     into userspace. (This view is aligned and sized appropriately for
1954  *     fenced access.)
1955  *
1956  * 2 - Recognise WC as a separate cache domain so that we can flush the
1957  *     delayed writes via GTT before performing direct access via WC.
1958  *
1959  * Restrictions:
1960  *
1961  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1962  *    hangs on some architectures, corruption on others. An attempt to service
1963  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1964  *
1965  *  * the object must be able to fit into RAM (physical memory, though no
1966  *    limited to the mappable aperture).
1967  *
1968  *
1969  * Caveats:
1970  *
1971  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1972  *    all data to system memory. Subsequent access will not be synchronized.
1973  *
1974  *  * all mappings are revoked on runtime device suspend.
1975  *
1976  *  * there are only 8, 16 or 32 fence registers to share between all users
1977  *    (older machines require fence register for display and blitter access
1978  *    as well). Contention of the fence registers will cause the previous users
1979  *    to be unmapped and any new access will generate new page faults.
1980  *
1981  *  * running out of memory while servicing a fault may generate a SIGBUS,
1982  *    rather than the expected SIGSEGV.
1983  */
i915_gem_mmap_gtt_version(void)1984 int i915_gem_mmap_gtt_version(void)
1985 {
1986 	return 2;
1987 }
1988 
1989 static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object * obj,pgoff_t page_offset,unsigned int chunk)1990 compute_partial_view(struct drm_i915_gem_object *obj,
1991 		     pgoff_t page_offset,
1992 		     unsigned int chunk)
1993 {
1994 	struct i915_ggtt_view view;
1995 
1996 	if (i915_gem_object_is_tiled(obj))
1997 		chunk = roundup(chunk, tile_row_pages(obj));
1998 
1999 	view.type = I915_GGTT_VIEW_PARTIAL;
2000 	view.partial.offset = rounddown(page_offset, chunk);
2001 	view.partial.size =
2002 		min_t(unsigned int, chunk,
2003 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2004 
2005 	/* If the partial covers the entire object, just create a normal VMA. */
2006 	if (chunk >= obj->base.size >> PAGE_SHIFT)
2007 		view.type = I915_GGTT_VIEW_NORMAL;
2008 
2009 	return view;
2010 }
2011 
2012 /**
2013  * i915_gem_fault - fault a page into the GTT
2014  * @vmf: fault info
2015  *
2016  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2017  * from userspace.  The fault handler takes care of binding the object to
2018  * the GTT (if needed), allocating and programming a fence register (again,
2019  * only if needed based on whether the old reg is still valid or the object
2020  * is tiled) and inserting a new PTE into the faulting process.
2021  *
2022  * Note that the faulting process may involve evicting existing objects
2023  * from the GTT and/or fence registers to make room.  So performance may
2024  * suffer if the GTT working set is large or there are few fence registers
2025  * left.
2026  *
2027  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2028  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2029  */
i915_gem_fault(struct vm_fault * vmf)2030 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2031 {
2032 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2033 	struct vm_area_struct *area = vmf->vma;
2034 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2035 	struct drm_device *dev = obj->base.dev;
2036 	struct drm_i915_private *dev_priv = to_i915(dev);
2037 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2038 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2039 	struct i915_vma *vma;
2040 	pgoff_t page_offset;
2041 	int ret;
2042 
2043 	/* Sanity check that we allow writing into this object */
2044 	if (i915_gem_object_is_readonly(obj) && write)
2045 		return VM_FAULT_SIGBUS;
2046 
2047 	/* We don't use vmf->pgoff since that has the fake offset */
2048 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2049 
2050 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2051 
2052 	/* Try to flush the object off the GPU first without holding the lock.
2053 	 * Upon acquiring the lock, we will perform our sanity checks and then
2054 	 * repeat the flush holding the lock in the normal manner to catch cases
2055 	 * where we are gazumped.
2056 	 */
2057 	ret = i915_gem_object_wait(obj,
2058 				   I915_WAIT_INTERRUPTIBLE,
2059 				   MAX_SCHEDULE_TIMEOUT,
2060 				   NULL);
2061 	if (ret)
2062 		goto err;
2063 
2064 	ret = i915_gem_object_pin_pages(obj);
2065 	if (ret)
2066 		goto err;
2067 
2068 	intel_runtime_pm_get(dev_priv);
2069 
2070 	ret = i915_mutex_lock_interruptible(dev);
2071 	if (ret)
2072 		goto err_rpm;
2073 
2074 	/* Access to snoopable pages through the GTT is incoherent. */
2075 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2076 		ret = -EFAULT;
2077 		goto err_unlock;
2078 	}
2079 
2080 
2081 	/* Now pin it into the GTT as needed */
2082 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2083 				       PIN_MAPPABLE |
2084 				       PIN_NONBLOCK |
2085 				       PIN_NONFAULT);
2086 	if (IS_ERR(vma)) {
2087 		/* Use a partial view if it is bigger than available space */
2088 		struct i915_ggtt_view view =
2089 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2090 		unsigned int flags;
2091 
2092 		flags = PIN_MAPPABLE;
2093 		if (view.type == I915_GGTT_VIEW_NORMAL)
2094 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2095 
2096 		/*
2097 		 * Userspace is now writing through an untracked VMA, abandon
2098 		 * all hope that the hardware is able to track future writes.
2099 		 */
2100 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2101 
2102 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2103 		if (IS_ERR(vma) && !view.type) {
2104 			flags = PIN_MAPPABLE;
2105 			view.type = I915_GGTT_VIEW_PARTIAL;
2106 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2107 		}
2108 	}
2109 	if (IS_ERR(vma)) {
2110 		ret = PTR_ERR(vma);
2111 		goto err_unlock;
2112 	}
2113 
2114 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2115 	if (ret)
2116 		goto err_unpin;
2117 
2118 	ret = i915_vma_pin_fence(vma);
2119 	if (ret)
2120 		goto err_unpin;
2121 
2122 	/* Finally, remap it using the new GTT offset */
2123 	ret = remap_io_mapping(area,
2124 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2125 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2126 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2127 			       &ggtt->iomap);
2128 	if (ret)
2129 		goto err_fence;
2130 
2131 	/* Mark as being mmapped into userspace for later revocation */
2132 	assert_rpm_wakelock_held(dev_priv);
2133 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2134 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2135 	GEM_BUG_ON(!obj->userfault_count);
2136 
2137 	i915_vma_set_ggtt_write(vma);
2138 
2139 err_fence:
2140 	i915_vma_unpin_fence(vma);
2141 err_unpin:
2142 	__i915_vma_unpin(vma);
2143 err_unlock:
2144 	mutex_unlock(&dev->struct_mutex);
2145 err_rpm:
2146 	intel_runtime_pm_put(dev_priv);
2147 	i915_gem_object_unpin_pages(obj);
2148 err:
2149 	switch (ret) {
2150 	case -EIO:
2151 		/*
2152 		 * We eat errors when the gpu is terminally wedged to avoid
2153 		 * userspace unduly crashing (gl has no provisions for mmaps to
2154 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2155 		 * and so needs to be reported.
2156 		 */
2157 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2158 			return VM_FAULT_SIGBUS;
2159 		/* else: fall through */
2160 	case -EAGAIN:
2161 		/*
2162 		 * EAGAIN means the gpu is hung and we'll wait for the error
2163 		 * handler to reset everything when re-faulting in
2164 		 * i915_mutex_lock_interruptible.
2165 		 */
2166 	case 0:
2167 	case -ERESTARTSYS:
2168 	case -EINTR:
2169 	case -EBUSY:
2170 		/*
2171 		 * EBUSY is ok: this just means that another thread
2172 		 * already did the job.
2173 		 */
2174 		return VM_FAULT_NOPAGE;
2175 	case -ENOMEM:
2176 		return VM_FAULT_OOM;
2177 	case -ENOSPC:
2178 	case -EFAULT:
2179 		return VM_FAULT_SIGBUS;
2180 	default:
2181 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2182 		return VM_FAULT_SIGBUS;
2183 	}
2184 }
2185 
__i915_gem_object_release_mmap(struct drm_i915_gem_object * obj)2186 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2187 {
2188 	struct i915_vma *vma;
2189 
2190 	GEM_BUG_ON(!obj->userfault_count);
2191 
2192 	obj->userfault_count = 0;
2193 	list_del(&obj->userfault_link);
2194 	drm_vma_node_unmap(&obj->base.vma_node,
2195 			   obj->base.dev->anon_inode->i_mapping);
2196 
2197 	for_each_ggtt_vma(vma, obj)
2198 		i915_vma_unset_userfault(vma);
2199 }
2200 
2201 /**
2202  * i915_gem_release_mmap - remove physical page mappings
2203  * @obj: obj in question
2204  *
2205  * Preserve the reservation of the mmapping with the DRM core code, but
2206  * relinquish ownership of the pages back to the system.
2207  *
2208  * It is vital that we remove the page mapping if we have mapped a tiled
2209  * object through the GTT and then lose the fence register due to
2210  * resource pressure. Similarly if the object has been moved out of the
2211  * aperture, than pages mapped into userspace must be revoked. Removing the
2212  * mapping will then trigger a page fault on the next user access, allowing
2213  * fixup by i915_gem_fault().
2214  */
2215 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)2216 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2217 {
2218 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2219 
2220 	/* Serialisation between user GTT access and our code depends upon
2221 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2222 	 * pagefault then has to wait until we release the mutex.
2223 	 *
2224 	 * Note that RPM complicates somewhat by adding an additional
2225 	 * requirement that operations to the GGTT be made holding the RPM
2226 	 * wakeref.
2227 	 */
2228 	lockdep_assert_held(&i915->drm.struct_mutex);
2229 	intel_runtime_pm_get(i915);
2230 
2231 	if (!obj->userfault_count)
2232 		goto out;
2233 
2234 	__i915_gem_object_release_mmap(obj);
2235 
2236 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2237 	 * memory transactions from userspace before we return. The TLB
2238 	 * flushing implied above by changing the PTE above *should* be
2239 	 * sufficient, an extra barrier here just provides us with a bit
2240 	 * of paranoid documentation about our requirement to serialise
2241 	 * memory writes before touching registers / GSM.
2242 	 */
2243 	wmb();
2244 
2245 out:
2246 	intel_runtime_pm_put(i915);
2247 }
2248 
i915_gem_runtime_suspend(struct drm_i915_private * dev_priv)2249 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2250 {
2251 	struct drm_i915_gem_object *obj, *on;
2252 	int i;
2253 
2254 	/*
2255 	 * Only called during RPM suspend. All users of the userfault_list
2256 	 * must be holding an RPM wakeref to ensure that this can not
2257 	 * run concurrently with themselves (and use the struct_mutex for
2258 	 * protection between themselves).
2259 	 */
2260 
2261 	list_for_each_entry_safe(obj, on,
2262 				 &dev_priv->mm.userfault_list, userfault_link)
2263 		__i915_gem_object_release_mmap(obj);
2264 
2265 	/* The fence will be lost when the device powers down. If any were
2266 	 * in use by hardware (i.e. they are pinned), we should not be powering
2267 	 * down! All other fences will be reacquired by the user upon waking.
2268 	 */
2269 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2270 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2271 
2272 		/* Ideally we want to assert that the fence register is not
2273 		 * live at this point (i.e. that no piece of code will be
2274 		 * trying to write through fence + GTT, as that both violates
2275 		 * our tracking of activity and associated locking/barriers,
2276 		 * but also is illegal given that the hw is powered down).
2277 		 *
2278 		 * Previously we used reg->pin_count as a "liveness" indicator.
2279 		 * That is not sufficient, and we need a more fine-grained
2280 		 * tool if we want to have a sanity check here.
2281 		 */
2282 
2283 		if (!reg->vma)
2284 			continue;
2285 
2286 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2287 		reg->dirty = true;
2288 	}
2289 }
2290 
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2291 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2292 {
2293 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2294 	int err;
2295 
2296 	err = drm_gem_create_mmap_offset(&obj->base);
2297 	if (likely(!err))
2298 		return 0;
2299 
2300 	/* Attempt to reap some mmap space from dead objects */
2301 	do {
2302 		err = i915_gem_wait_for_idle(dev_priv,
2303 					     I915_WAIT_INTERRUPTIBLE,
2304 					     MAX_SCHEDULE_TIMEOUT);
2305 		if (err)
2306 			break;
2307 
2308 		i915_gem_drain_freed_objects(dev_priv);
2309 		err = drm_gem_create_mmap_offset(&obj->base);
2310 		if (!err)
2311 			break;
2312 
2313 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2314 
2315 	return err;
2316 }
2317 
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2318 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2319 {
2320 	drm_gem_free_mmap_offset(&obj->base);
2321 }
2322 
2323 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2324 i915_gem_mmap_gtt(struct drm_file *file,
2325 		  struct drm_device *dev,
2326 		  uint32_t handle,
2327 		  uint64_t *offset)
2328 {
2329 	struct drm_i915_gem_object *obj;
2330 	int ret;
2331 
2332 	obj = i915_gem_object_lookup(file, handle);
2333 	if (!obj)
2334 		return -ENOENT;
2335 
2336 	ret = i915_gem_object_create_mmap_offset(obj);
2337 	if (ret == 0)
2338 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2339 
2340 	i915_gem_object_put(obj);
2341 	return ret;
2342 }
2343 
2344 /**
2345  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2346  * @dev: DRM device
2347  * @data: GTT mapping ioctl data
2348  * @file: GEM object info
2349  *
2350  * Simply returns the fake offset to userspace so it can mmap it.
2351  * The mmap call will end up in drm_gem_mmap(), which will set things
2352  * up so we can get faults in the handler above.
2353  *
2354  * The fault handler will take care of binding the object into the GTT
2355  * (since it may have been evicted to make room for something), allocating
2356  * a fence register, and mapping the appropriate aperture address into
2357  * userspace.
2358  */
2359 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2360 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2361 			struct drm_file *file)
2362 {
2363 	struct drm_i915_gem_mmap_gtt *args = data;
2364 
2365 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2366 }
2367 
2368 /* Immediately discard the backing storage */
2369 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2370 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2371 {
2372 	i915_gem_object_free_mmap_offset(obj);
2373 
2374 	if (obj->base.filp == NULL)
2375 		return;
2376 
2377 	/* Our goal here is to return as much of the memory as
2378 	 * is possible back to the system as we are called from OOM.
2379 	 * To do this we must instruct the shmfs to drop all of its
2380 	 * backing pages, *now*.
2381 	 */
2382 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2383 	obj->mm.madv = __I915_MADV_PURGED;
2384 	obj->mm.pages = ERR_PTR(-EFAULT);
2385 }
2386 
2387 /* Try to discard unwanted pages */
__i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2388 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2389 {
2390 	struct address_space *mapping;
2391 
2392 	lockdep_assert_held(&obj->mm.lock);
2393 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2394 
2395 	switch (obj->mm.madv) {
2396 	case I915_MADV_DONTNEED:
2397 		i915_gem_object_truncate(obj);
2398 	case __I915_MADV_PURGED:
2399 		return;
2400 	}
2401 
2402 	if (obj->base.filp == NULL)
2403 		return;
2404 
2405 	mapping = obj->base.filp->f_mapping,
2406 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2407 }
2408 
2409 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj,struct sg_table * pages)2410 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2411 			      struct sg_table *pages)
2412 {
2413 	struct sgt_iter sgt_iter;
2414 	struct page *page;
2415 
2416 	__i915_gem_object_release_shmem(obj, pages, true);
2417 
2418 	i915_gem_gtt_finish_pages(obj, pages);
2419 
2420 	if (i915_gem_object_needs_bit17_swizzle(obj))
2421 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2422 
2423 	for_each_sgt_page(page, sgt_iter, pages) {
2424 		if (obj->mm.dirty)
2425 			set_page_dirty(page);
2426 
2427 		if (obj->mm.madv == I915_MADV_WILLNEED)
2428 			mark_page_accessed(page);
2429 
2430 		put_page(page);
2431 	}
2432 	obj->mm.dirty = false;
2433 
2434 	sg_free_table(pages);
2435 	kfree(pages);
2436 }
2437 
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)2438 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2439 {
2440 	struct radix_tree_iter iter;
2441 	void __rcu **slot;
2442 
2443 	rcu_read_lock();
2444 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2445 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2446 	rcu_read_unlock();
2447 }
2448 
2449 static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)2450 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2451 {
2452 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2453 	struct sg_table *pages;
2454 
2455 	pages = fetch_and_zero(&obj->mm.pages);
2456 	if (!pages)
2457 		return NULL;
2458 
2459 	spin_lock(&i915->mm.obj_lock);
2460 	list_del(&obj->mm.link);
2461 	spin_unlock(&i915->mm.obj_lock);
2462 
2463 	if (obj->mm.mapping) {
2464 		void *ptr;
2465 
2466 		ptr = page_mask_bits(obj->mm.mapping);
2467 		if (is_vmalloc_addr(ptr))
2468 			vunmap(ptr);
2469 		else
2470 			kunmap(kmap_to_page(ptr));
2471 
2472 		obj->mm.mapping = NULL;
2473 	}
2474 
2475 	__i915_gem_object_reset_page_iter(obj);
2476 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2477 
2478 	return pages;
2479 }
2480 
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj,enum i915_mm_subclass subclass)2481 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2482 				 enum i915_mm_subclass subclass)
2483 {
2484 	struct sg_table *pages;
2485 
2486 	if (i915_gem_object_has_pinned_pages(obj))
2487 		return;
2488 
2489 	GEM_BUG_ON(obj->bind_count);
2490 	if (!i915_gem_object_has_pages(obj))
2491 		return;
2492 
2493 	/* May be called by shrinker from within get_pages() (on another bo) */
2494 	mutex_lock_nested(&obj->mm.lock, subclass);
2495 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2496 		goto unlock;
2497 
2498 	/*
2499 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2500 	 * array, hence protect them from being reaped by removing them from gtt
2501 	 * lists early.
2502 	 */
2503 	pages = __i915_gem_object_unset_pages(obj);
2504 	if (!IS_ERR(pages))
2505 		obj->ops->put_pages(obj, pages);
2506 
2507 unlock:
2508 	mutex_unlock(&obj->mm.lock);
2509 }
2510 
i915_sg_trim(struct sg_table * orig_st)2511 static bool i915_sg_trim(struct sg_table *orig_st)
2512 {
2513 	struct sg_table new_st;
2514 	struct scatterlist *sg, *new_sg;
2515 	unsigned int i;
2516 
2517 	if (orig_st->nents == orig_st->orig_nents)
2518 		return false;
2519 
2520 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2521 		return false;
2522 
2523 	new_sg = new_st.sgl;
2524 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2525 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2526 		/* called before being DMA mapped, no need to copy sg->dma_* */
2527 		new_sg = sg_next(new_sg);
2528 	}
2529 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2530 
2531 	sg_free_table(orig_st);
2532 
2533 	*orig_st = new_st;
2534 	return true;
2535 }
2536 
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2537 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2538 {
2539 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2540 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2541 	unsigned long i;
2542 	struct address_space *mapping;
2543 	struct sg_table *st;
2544 	struct scatterlist *sg;
2545 	struct sgt_iter sgt_iter;
2546 	struct page *page;
2547 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2548 	unsigned int max_segment = i915_sg_segment_size();
2549 	unsigned int sg_page_sizes;
2550 	gfp_t noreclaim;
2551 	int ret;
2552 
2553 	/* Assert that the object is not currently in any GPU domain. As it
2554 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2555 	 * a GPU cache
2556 	 */
2557 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2558 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2559 
2560 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2561 	if (st == NULL)
2562 		return -ENOMEM;
2563 
2564 rebuild_st:
2565 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2566 		kfree(st);
2567 		return -ENOMEM;
2568 	}
2569 
2570 	/* Get the list of pages out of our struct file.  They'll be pinned
2571 	 * at this point until we release them.
2572 	 *
2573 	 * Fail silently without starting the shrinker
2574 	 */
2575 	mapping = obj->base.filp->f_mapping;
2576 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2577 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2578 
2579 	sg = st->sgl;
2580 	st->nents = 0;
2581 	sg_page_sizes = 0;
2582 	for (i = 0; i < page_count; i++) {
2583 		const unsigned int shrink[] = {
2584 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2585 			0,
2586 		}, *s = shrink;
2587 		gfp_t gfp = noreclaim;
2588 
2589 		do {
2590 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2591 			if (likely(!IS_ERR(page)))
2592 				break;
2593 
2594 			if (!*s) {
2595 				ret = PTR_ERR(page);
2596 				goto err_sg;
2597 			}
2598 
2599 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2600 			cond_resched();
2601 
2602 			/* We've tried hard to allocate the memory by reaping
2603 			 * our own buffer, now let the real VM do its job and
2604 			 * go down in flames if truly OOM.
2605 			 *
2606 			 * However, since graphics tend to be disposable,
2607 			 * defer the oom here by reporting the ENOMEM back
2608 			 * to userspace.
2609 			 */
2610 			if (!*s) {
2611 				/* reclaim and warn, but no oom */
2612 				gfp = mapping_gfp_mask(mapping);
2613 
2614 				/* Our bo are always dirty and so we require
2615 				 * kswapd to reclaim our pages (direct reclaim
2616 				 * does not effectively begin pageout of our
2617 				 * buffers on its own). However, direct reclaim
2618 				 * only waits for kswapd when under allocation
2619 				 * congestion. So as a result __GFP_RECLAIM is
2620 				 * unreliable and fails to actually reclaim our
2621 				 * dirty pages -- unless you try over and over
2622 				 * again with !__GFP_NORETRY. However, we still
2623 				 * want to fail this allocation rather than
2624 				 * trigger the out-of-memory killer and for
2625 				 * this we want __GFP_RETRY_MAYFAIL.
2626 				 */
2627 				gfp |= __GFP_RETRY_MAYFAIL;
2628 			}
2629 		} while (1);
2630 
2631 		if (!i ||
2632 		    sg->length >= max_segment ||
2633 		    page_to_pfn(page) != last_pfn + 1) {
2634 			if (i) {
2635 				sg_page_sizes |= sg->length;
2636 				sg = sg_next(sg);
2637 			}
2638 			st->nents++;
2639 			sg_set_page(sg, page, PAGE_SIZE, 0);
2640 		} else {
2641 			sg->length += PAGE_SIZE;
2642 		}
2643 		last_pfn = page_to_pfn(page);
2644 
2645 		/* Check that the i965g/gm workaround works. */
2646 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2647 	}
2648 	if (sg) { /* loop terminated early; short sg table */
2649 		sg_page_sizes |= sg->length;
2650 		sg_mark_end(sg);
2651 	}
2652 
2653 	/* Trim unused sg entries to avoid wasting memory. */
2654 	i915_sg_trim(st);
2655 
2656 	ret = i915_gem_gtt_prepare_pages(obj, st);
2657 	if (ret) {
2658 		/* DMA remapping failed? One possible cause is that
2659 		 * it could not reserve enough large entries, asking
2660 		 * for PAGE_SIZE chunks instead may be helpful.
2661 		 */
2662 		if (max_segment > PAGE_SIZE) {
2663 			for_each_sgt_page(page, sgt_iter, st)
2664 				put_page(page);
2665 			sg_free_table(st);
2666 
2667 			max_segment = PAGE_SIZE;
2668 			goto rebuild_st;
2669 		} else {
2670 			dev_warn(&dev_priv->drm.pdev->dev,
2671 				 "Failed to DMA remap %lu pages\n",
2672 				 page_count);
2673 			goto err_pages;
2674 		}
2675 	}
2676 
2677 	if (i915_gem_object_needs_bit17_swizzle(obj))
2678 		i915_gem_object_do_bit_17_swizzle(obj, st);
2679 
2680 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2681 
2682 	return 0;
2683 
2684 err_sg:
2685 	sg_mark_end(sg);
2686 err_pages:
2687 	for_each_sgt_page(page, sgt_iter, st)
2688 		put_page(page);
2689 	sg_free_table(st);
2690 	kfree(st);
2691 
2692 	/* shmemfs first checks if there is enough memory to allocate the page
2693 	 * and reports ENOSPC should there be insufficient, along with the usual
2694 	 * ENOMEM for a genuine allocation failure.
2695 	 *
2696 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2697 	 * space and so want to translate the error from shmemfs back to our
2698 	 * usual understanding of ENOMEM.
2699 	 */
2700 	if (ret == -ENOSPC)
2701 		ret = -ENOMEM;
2702 
2703 	return ret;
2704 }
2705 
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)2706 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2707 				 struct sg_table *pages,
2708 				 unsigned int sg_page_sizes)
2709 {
2710 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2711 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2712 	int i;
2713 
2714 	lockdep_assert_held(&obj->mm.lock);
2715 
2716 	obj->mm.get_page.sg_pos = pages->sgl;
2717 	obj->mm.get_page.sg_idx = 0;
2718 
2719 	obj->mm.pages = pages;
2720 
2721 	if (i915_gem_object_is_tiled(obj) &&
2722 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2723 		GEM_BUG_ON(obj->mm.quirked);
2724 		__i915_gem_object_pin_pages(obj);
2725 		obj->mm.quirked = true;
2726 	}
2727 
2728 	GEM_BUG_ON(!sg_page_sizes);
2729 	obj->mm.page_sizes.phys = sg_page_sizes;
2730 
2731 	/*
2732 	 * Calculate the supported page-sizes which fit into the given
2733 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2734 	 * to use opportunistically when later inserting into the GTT. For
2735 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2736 	 * 64K or 4K pages, although in practice this will depend on a number of
2737 	 * other factors.
2738 	 */
2739 	obj->mm.page_sizes.sg = 0;
2740 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2741 		if (obj->mm.page_sizes.phys & ~0u << i)
2742 			obj->mm.page_sizes.sg |= BIT(i);
2743 	}
2744 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2745 
2746 	spin_lock(&i915->mm.obj_lock);
2747 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2748 	spin_unlock(&i915->mm.obj_lock);
2749 }
2750 
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2751 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2752 {
2753 	int err;
2754 
2755 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2756 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2757 		return -EFAULT;
2758 	}
2759 
2760 	err = obj->ops->get_pages(obj);
2761 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2762 
2763 	return err;
2764 }
2765 
2766 /* Ensure that the associated pages are gathered from the backing storage
2767  * and pinned into our object. i915_gem_object_pin_pages() may be called
2768  * multiple times before they are released by a single call to
2769  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2770  * either as a result of memory pressure (reaping pages under the shrinker)
2771  * or as the object is itself released.
2772  */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2773 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2774 {
2775 	int err;
2776 
2777 	err = mutex_lock_interruptible(&obj->mm.lock);
2778 	if (err)
2779 		return err;
2780 
2781 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2782 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2783 
2784 		err = ____i915_gem_object_get_pages(obj);
2785 		if (err)
2786 			goto unlock;
2787 
2788 		smp_mb__before_atomic();
2789 	}
2790 	atomic_inc(&obj->mm.pages_pin_count);
2791 
2792 unlock:
2793 	mutex_unlock(&obj->mm.lock);
2794 	return err;
2795 }
2796 
2797 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map(const struct drm_i915_gem_object * obj,enum i915_map_type type)2798 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2799 				 enum i915_map_type type)
2800 {
2801 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2802 	struct sg_table *sgt = obj->mm.pages;
2803 	struct sgt_iter sgt_iter;
2804 	struct page *page;
2805 	struct page *stack_pages[32];
2806 	struct page **pages = stack_pages;
2807 	unsigned long i = 0;
2808 	pgprot_t pgprot;
2809 	void *addr;
2810 
2811 	/* A single page can always be kmapped */
2812 	if (n_pages == 1 && type == I915_MAP_WB)
2813 		return kmap(sg_page(sgt->sgl));
2814 
2815 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2816 		/* Too big for stack -- allocate temporary array instead */
2817 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2818 		if (!pages)
2819 			return NULL;
2820 	}
2821 
2822 	for_each_sgt_page(page, sgt_iter, sgt)
2823 		pages[i++] = page;
2824 
2825 	/* Check that we have the expected number of pages */
2826 	GEM_BUG_ON(i != n_pages);
2827 
2828 	switch (type) {
2829 	default:
2830 		MISSING_CASE(type);
2831 		/* fallthrough to use PAGE_KERNEL anyway */
2832 	case I915_MAP_WB:
2833 		pgprot = PAGE_KERNEL;
2834 		break;
2835 	case I915_MAP_WC:
2836 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2837 		break;
2838 	}
2839 	addr = vmap(pages, n_pages, 0, pgprot);
2840 
2841 	if (pages != stack_pages)
2842 		kvfree(pages);
2843 
2844 	return addr;
2845 }
2846 
2847 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)2848 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2849 			      enum i915_map_type type)
2850 {
2851 	enum i915_map_type has_type;
2852 	bool pinned;
2853 	void *ptr;
2854 	int ret;
2855 
2856 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2857 		return ERR_PTR(-ENXIO);
2858 
2859 	ret = mutex_lock_interruptible(&obj->mm.lock);
2860 	if (ret)
2861 		return ERR_PTR(ret);
2862 
2863 	pinned = !(type & I915_MAP_OVERRIDE);
2864 	type &= ~I915_MAP_OVERRIDE;
2865 
2866 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2867 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2868 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2869 
2870 			ret = ____i915_gem_object_get_pages(obj);
2871 			if (ret)
2872 				goto err_unlock;
2873 
2874 			smp_mb__before_atomic();
2875 		}
2876 		atomic_inc(&obj->mm.pages_pin_count);
2877 		pinned = false;
2878 	}
2879 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2880 
2881 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2882 	if (ptr && has_type != type) {
2883 		if (pinned) {
2884 			ret = -EBUSY;
2885 			goto err_unpin;
2886 		}
2887 
2888 		if (is_vmalloc_addr(ptr))
2889 			vunmap(ptr);
2890 		else
2891 			kunmap(kmap_to_page(ptr));
2892 
2893 		ptr = obj->mm.mapping = NULL;
2894 	}
2895 
2896 	if (!ptr) {
2897 		ptr = i915_gem_object_map(obj, type);
2898 		if (!ptr) {
2899 			ret = -ENOMEM;
2900 			goto err_unpin;
2901 		}
2902 
2903 		obj->mm.mapping = page_pack_bits(ptr, type);
2904 	}
2905 
2906 out_unlock:
2907 	mutex_unlock(&obj->mm.lock);
2908 	return ptr;
2909 
2910 err_unpin:
2911 	atomic_dec(&obj->mm.pages_pin_count);
2912 err_unlock:
2913 	ptr = ERR_PTR(ret);
2914 	goto out_unlock;
2915 }
2916 
2917 static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)2918 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2919 			   const struct drm_i915_gem_pwrite *arg)
2920 {
2921 	struct address_space *mapping = obj->base.filp->f_mapping;
2922 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2923 	u64 remain, offset;
2924 	unsigned int pg;
2925 
2926 	/* Before we instantiate/pin the backing store for our use, we
2927 	 * can prepopulate the shmemfs filp efficiently using a write into
2928 	 * the pagecache. We avoid the penalty of instantiating all the
2929 	 * pages, important if the user is just writing to a few and never
2930 	 * uses the object on the GPU, and using a direct write into shmemfs
2931 	 * allows it to avoid the cost of retrieving a page (either swapin
2932 	 * or clearing-before-use) before it is overwritten.
2933 	 */
2934 	if (i915_gem_object_has_pages(obj))
2935 		return -ENODEV;
2936 
2937 	if (obj->mm.madv != I915_MADV_WILLNEED)
2938 		return -EFAULT;
2939 
2940 	/* Before the pages are instantiated the object is treated as being
2941 	 * in the CPU domain. The pages will be clflushed as required before
2942 	 * use, and we can freely write into the pages directly. If userspace
2943 	 * races pwrite with any other operation; corruption will ensue -
2944 	 * that is userspace's prerogative!
2945 	 */
2946 
2947 	remain = arg->size;
2948 	offset = arg->offset;
2949 	pg = offset_in_page(offset);
2950 
2951 	do {
2952 		unsigned int len, unwritten;
2953 		struct page *page;
2954 		void *data, *vaddr;
2955 		int err;
2956 
2957 		len = PAGE_SIZE - pg;
2958 		if (len > remain)
2959 			len = remain;
2960 
2961 		err = pagecache_write_begin(obj->base.filp, mapping,
2962 					    offset, len, 0,
2963 					    &page, &data);
2964 		if (err < 0)
2965 			return err;
2966 
2967 		vaddr = kmap(page);
2968 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2969 		kunmap(page);
2970 
2971 		err = pagecache_write_end(obj->base.filp, mapping,
2972 					  offset, len, len - unwritten,
2973 					  page, data);
2974 		if (err < 0)
2975 			return err;
2976 
2977 		if (unwritten)
2978 			return -EFAULT;
2979 
2980 		remain -= len;
2981 		user_data += len;
2982 		offset += len;
2983 		pg = 0;
2984 	} while (remain);
2985 
2986 	return 0;
2987 }
2988 
i915_gem_client_mark_guilty(struct drm_i915_file_private * file_priv,const struct i915_gem_context * ctx)2989 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2990 					const struct i915_gem_context *ctx)
2991 {
2992 	unsigned int score;
2993 	unsigned long prev_hang;
2994 
2995 	if (i915_gem_context_is_banned(ctx))
2996 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
2997 	else
2998 		score = 0;
2999 
3000 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3001 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3002 		score += I915_CLIENT_SCORE_HANG_FAST;
3003 
3004 	if (score) {
3005 		atomic_add(score, &file_priv->ban_score);
3006 
3007 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3008 				 ctx->name, score,
3009 				 atomic_read(&file_priv->ban_score));
3010 	}
3011 }
3012 
i915_gem_context_mark_guilty(struct i915_gem_context * ctx)3013 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3014 {
3015 	unsigned int score;
3016 	bool banned, bannable;
3017 
3018 	atomic_inc(&ctx->guilty_count);
3019 
3020 	bannable = i915_gem_context_is_bannable(ctx);
3021 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3022 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3023 
3024 	/* Cool contexts don't accumulate client ban score */
3025 	if (!bannable)
3026 		return;
3027 
3028 	if (banned) {
3029 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3030 				 ctx->name, atomic_read(&ctx->guilty_count),
3031 				 score);
3032 		i915_gem_context_set_banned(ctx);
3033 	}
3034 
3035 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3036 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3037 }
3038 
i915_gem_context_mark_innocent(struct i915_gem_context * ctx)3039 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3040 {
3041 	atomic_inc(&ctx->active_count);
3042 }
3043 
3044 struct i915_request *
i915_gem_find_active_request(struct intel_engine_cs * engine)3045 i915_gem_find_active_request(struct intel_engine_cs *engine)
3046 {
3047 	struct i915_request *request, *active = NULL;
3048 	unsigned long flags;
3049 
3050 	/*
3051 	 * We are called by the error capture, reset and to dump engine
3052 	 * state at random points in time. In particular, note that neither is
3053 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3054 	 * and we assume that no more writes can happen (we waited long enough
3055 	 * for all writes that were in transaction to be flushed) - adding an
3056 	 * extra delay for a recent interrupt is pointless. Hence, we do
3057 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3058 	 * At all other times, we must assume the GPU is still running, but
3059 	 * we only care about the snapshot of this moment.
3060 	 */
3061 	spin_lock_irqsave(&engine->timeline.lock, flags);
3062 	list_for_each_entry(request, &engine->timeline.requests, link) {
3063 		if (__i915_request_completed(request, request->global_seqno))
3064 			continue;
3065 
3066 		active = request;
3067 		break;
3068 	}
3069 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3070 
3071 	return active;
3072 }
3073 
3074 /*
3075  * Ensure irq handler finishes, and not run again.
3076  * Also return the active request so that we only search for it once.
3077  */
3078 struct i915_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs * engine)3079 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3080 {
3081 	struct i915_request *request;
3082 
3083 	/*
3084 	 * During the reset sequence, we must prevent the engine from
3085 	 * entering RC6. As the context state is undefined until we restart
3086 	 * the engine, if it does enter RC6 during the reset, the state
3087 	 * written to the powercontext is undefined and so we may lose
3088 	 * GPU state upon resume, i.e. fail to restart after a reset.
3089 	 */
3090 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3091 
3092 	request = engine->reset.prepare(engine);
3093 	if (request && request->fence.error == -EIO)
3094 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3095 
3096 	return request;
3097 }
3098 
i915_gem_reset_prepare(struct drm_i915_private * dev_priv)3099 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3100 {
3101 	struct intel_engine_cs *engine;
3102 	struct i915_request *request;
3103 	enum intel_engine_id id;
3104 	int err = 0;
3105 
3106 	for_each_engine(engine, dev_priv, id) {
3107 		request = i915_gem_reset_prepare_engine(engine);
3108 		if (IS_ERR(request)) {
3109 			err = PTR_ERR(request);
3110 			continue;
3111 		}
3112 
3113 		engine->hangcheck.active_request = request;
3114 	}
3115 
3116 	i915_gem_revoke_fences(dev_priv);
3117 	intel_uc_sanitize(dev_priv);
3118 
3119 	return err;
3120 }
3121 
engine_skip_context(struct i915_request * request)3122 static void engine_skip_context(struct i915_request *request)
3123 {
3124 	struct intel_engine_cs *engine = request->engine;
3125 	struct i915_gem_context *hung_ctx = request->gem_context;
3126 	struct i915_timeline *timeline = request->timeline;
3127 	unsigned long flags;
3128 
3129 	GEM_BUG_ON(timeline == &engine->timeline);
3130 
3131 	spin_lock_irqsave(&engine->timeline.lock, flags);
3132 	spin_lock(&timeline->lock);
3133 
3134 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3135 		if (request->gem_context == hung_ctx)
3136 			i915_request_skip(request, -EIO);
3137 
3138 	list_for_each_entry(request, &timeline->requests, link)
3139 		i915_request_skip(request, -EIO);
3140 
3141 	spin_unlock(&timeline->lock);
3142 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3143 }
3144 
3145 /* Returns the request if it was guilty of the hang */
3146 static struct i915_request *
i915_gem_reset_request(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3147 i915_gem_reset_request(struct intel_engine_cs *engine,
3148 		       struct i915_request *request,
3149 		       bool stalled)
3150 {
3151 	/* The guilty request will get skipped on a hung engine.
3152 	 *
3153 	 * Users of client default contexts do not rely on logical
3154 	 * state preserved between batches so it is safe to execute
3155 	 * queued requests following the hang. Non default contexts
3156 	 * rely on preserved state, so skipping a batch loses the
3157 	 * evolution of the state and it needs to be considered corrupted.
3158 	 * Executing more queued batches on top of corrupted state is
3159 	 * risky. But we take the risk by trying to advance through
3160 	 * the queued requests in order to make the client behaviour
3161 	 * more predictable around resets, by not throwing away random
3162 	 * amount of batches it has prepared for execution. Sophisticated
3163 	 * clients can use gem_reset_stats_ioctl and dma fence status
3164 	 * (exported via sync_file info ioctl on explicit fences) to observe
3165 	 * when it loses the context state and should rebuild accordingly.
3166 	 *
3167 	 * The context ban, and ultimately the client ban, mechanism are safety
3168 	 * valves if client submission ends up resulting in nothing more than
3169 	 * subsequent hangs.
3170 	 */
3171 
3172 	if (i915_request_completed(request)) {
3173 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3174 			  engine->name, request->global_seqno,
3175 			  request->fence.context, request->fence.seqno,
3176 			  intel_engine_get_seqno(engine));
3177 		stalled = false;
3178 	}
3179 
3180 	if (stalled) {
3181 		i915_gem_context_mark_guilty(request->gem_context);
3182 		i915_request_skip(request, -EIO);
3183 
3184 		/* If this context is now banned, skip all pending requests. */
3185 		if (i915_gem_context_is_banned(request->gem_context))
3186 			engine_skip_context(request);
3187 	} else {
3188 		/*
3189 		 * Since this is not the hung engine, it may have advanced
3190 		 * since the hang declaration. Double check by refinding
3191 		 * the active request at the time of the reset.
3192 		 */
3193 		request = i915_gem_find_active_request(engine);
3194 		if (request) {
3195 			unsigned long flags;
3196 
3197 			i915_gem_context_mark_innocent(request->gem_context);
3198 			dma_fence_set_error(&request->fence, -EAGAIN);
3199 
3200 			/* Rewind the engine to replay the incomplete rq */
3201 			spin_lock_irqsave(&engine->timeline.lock, flags);
3202 			request = list_prev_entry(request, link);
3203 			if (&request->link == &engine->timeline.requests)
3204 				request = NULL;
3205 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3206 		}
3207 	}
3208 
3209 	return request;
3210 }
3211 
i915_gem_reset_engine(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3212 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3213 			   struct i915_request *request,
3214 			   bool stalled)
3215 {
3216 	/*
3217 	 * Make sure this write is visible before we re-enable the interrupt
3218 	 * handlers on another CPU, as tasklet_enable() resolves to just
3219 	 * a compiler barrier which is insufficient for our purpose here.
3220 	 */
3221 	smp_store_mb(engine->irq_posted, 0);
3222 
3223 	if (request)
3224 		request = i915_gem_reset_request(engine, request, stalled);
3225 
3226 	/* Setup the CS to resume from the breadcrumb of the hung request */
3227 	engine->reset.reset(engine, request);
3228 }
3229 
i915_gem_reset(struct drm_i915_private * dev_priv,unsigned int stalled_mask)3230 void i915_gem_reset(struct drm_i915_private *dev_priv,
3231 		    unsigned int stalled_mask)
3232 {
3233 	struct intel_engine_cs *engine;
3234 	enum intel_engine_id id;
3235 
3236 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3237 
3238 	i915_retire_requests(dev_priv);
3239 
3240 	for_each_engine(engine, dev_priv, id) {
3241 		struct intel_context *ce;
3242 
3243 		i915_gem_reset_engine(engine,
3244 				      engine->hangcheck.active_request,
3245 				      stalled_mask & ENGINE_MASK(id));
3246 		ce = fetch_and_zero(&engine->last_retired_context);
3247 		if (ce)
3248 			intel_context_unpin(ce);
3249 
3250 		/*
3251 		 * Ostensibily, we always want a context loaded for powersaving,
3252 		 * so if the engine is idle after the reset, send a request
3253 		 * to load our scratch kernel_context.
3254 		 *
3255 		 * More mysteriously, if we leave the engine idle after a reset,
3256 		 * the next userspace batch may hang, with what appears to be
3257 		 * an incoherent read by the CS (presumably stale TLB). An
3258 		 * empty request appears sufficient to paper over the glitch.
3259 		 */
3260 		if (intel_engine_is_idle(engine)) {
3261 			struct i915_request *rq;
3262 
3263 			rq = i915_request_alloc(engine,
3264 						dev_priv->kernel_context);
3265 			if (!IS_ERR(rq))
3266 				i915_request_add(rq);
3267 		}
3268 	}
3269 
3270 	i915_gem_restore_fences(dev_priv);
3271 }
3272 
i915_gem_reset_finish_engine(struct intel_engine_cs * engine)3273 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3274 {
3275 	engine->reset.finish(engine);
3276 
3277 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3278 }
3279 
i915_gem_reset_finish(struct drm_i915_private * dev_priv)3280 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3281 {
3282 	struct intel_engine_cs *engine;
3283 	enum intel_engine_id id;
3284 
3285 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3286 
3287 	for_each_engine(engine, dev_priv, id) {
3288 		engine->hangcheck.active_request = NULL;
3289 		i915_gem_reset_finish_engine(engine);
3290 	}
3291 }
3292 
nop_submit_request(struct i915_request * request)3293 static void nop_submit_request(struct i915_request *request)
3294 {
3295 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3296 		  request->engine->name,
3297 		  request->fence.context, request->fence.seqno);
3298 	dma_fence_set_error(&request->fence, -EIO);
3299 
3300 	i915_request_submit(request);
3301 }
3302 
nop_complete_submit_request(struct i915_request * request)3303 static void nop_complete_submit_request(struct i915_request *request)
3304 {
3305 	unsigned long flags;
3306 
3307 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3308 		  request->engine->name,
3309 		  request->fence.context, request->fence.seqno);
3310 	dma_fence_set_error(&request->fence, -EIO);
3311 
3312 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3313 	__i915_request_submit(request);
3314 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3315 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3316 }
3317 
i915_gem_set_wedged(struct drm_i915_private * i915)3318 void i915_gem_set_wedged(struct drm_i915_private *i915)
3319 {
3320 	struct intel_engine_cs *engine;
3321 	enum intel_engine_id id;
3322 
3323 	GEM_TRACE("start\n");
3324 
3325 	if (GEM_SHOW_DEBUG()) {
3326 		struct drm_printer p = drm_debug_printer(__func__);
3327 
3328 		for_each_engine(engine, i915, id)
3329 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3330 	}
3331 
3332 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3333 	smp_mb__after_atomic();
3334 
3335 	/*
3336 	 * First, stop submission to hw, but do not yet complete requests by
3337 	 * rolling the global seqno forward (since this would complete requests
3338 	 * for which we haven't set the fence error to EIO yet).
3339 	 */
3340 	for_each_engine(engine, i915, id) {
3341 		i915_gem_reset_prepare_engine(engine);
3342 
3343 		engine->submit_request = nop_submit_request;
3344 		engine->schedule = NULL;
3345 	}
3346 	i915->caps.scheduler = 0;
3347 
3348 	/* Even if the GPU reset fails, it should still stop the engines */
3349 	intel_gpu_reset(i915, ALL_ENGINES);
3350 
3351 	/*
3352 	 * Make sure no one is running the old callback before we proceed with
3353 	 * cancelling requests and resetting the completion tracking. Otherwise
3354 	 * we might submit a request to the hardware which never completes.
3355 	 */
3356 	synchronize_rcu();
3357 
3358 	for_each_engine(engine, i915, id) {
3359 		/* Mark all executing requests as skipped */
3360 		engine->cancel_requests(engine);
3361 
3362 		/*
3363 		 * Only once we've force-cancelled all in-flight requests can we
3364 		 * start to complete all requests.
3365 		 */
3366 		engine->submit_request = nop_complete_submit_request;
3367 	}
3368 
3369 	/*
3370 	 * Make sure no request can slip through without getting completed by
3371 	 * either this call here to intel_engine_init_global_seqno, or the one
3372 	 * in nop_complete_submit_request.
3373 	 */
3374 	synchronize_rcu();
3375 
3376 	for_each_engine(engine, i915, id) {
3377 		unsigned long flags;
3378 
3379 		/*
3380 		 * Mark all pending requests as complete so that any concurrent
3381 		 * (lockless) lookup doesn't try and wait upon the request as we
3382 		 * reset it.
3383 		 */
3384 		spin_lock_irqsave(&engine->timeline.lock, flags);
3385 		intel_engine_init_global_seqno(engine,
3386 					       intel_engine_last_submit(engine));
3387 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3388 
3389 		i915_gem_reset_finish_engine(engine);
3390 	}
3391 
3392 	GEM_TRACE("end\n");
3393 
3394 	wake_up_all(&i915->gpu_error.reset_queue);
3395 }
3396 
i915_gem_unset_wedged(struct drm_i915_private * i915)3397 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3398 {
3399 	struct i915_timeline *tl;
3400 
3401 	lockdep_assert_held(&i915->drm.struct_mutex);
3402 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3403 		return true;
3404 
3405 	GEM_TRACE("start\n");
3406 
3407 	/*
3408 	 * Before unwedging, make sure that all pending operations
3409 	 * are flushed and errored out - we may have requests waiting upon
3410 	 * third party fences. We marked all inflight requests as EIO, and
3411 	 * every execbuf since returned EIO, for consistency we want all
3412 	 * the currently pending requests to also be marked as EIO, which
3413 	 * is done inside our nop_submit_request - and so we must wait.
3414 	 *
3415 	 * No more can be submitted until we reset the wedged bit.
3416 	 */
3417 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3418 		struct i915_request *rq;
3419 
3420 		rq = i915_gem_active_peek(&tl->last_request,
3421 					  &i915->drm.struct_mutex);
3422 		if (!rq)
3423 			continue;
3424 
3425 		/*
3426 		 * We can't use our normal waiter as we want to
3427 		 * avoid recursively trying to handle the current
3428 		 * reset. The basic dma_fence_default_wait() installs
3429 		 * a callback for dma_fence_signal(), which is
3430 		 * triggered by our nop handler (indirectly, the
3431 		 * callback enables the signaler thread which is
3432 		 * woken by the nop_submit_request() advancing the seqno
3433 		 * and when the seqno passes the fence, the signaler
3434 		 * then signals the fence waking us up).
3435 		 */
3436 		if (dma_fence_default_wait(&rq->fence, true,
3437 					   MAX_SCHEDULE_TIMEOUT) < 0)
3438 			return false;
3439 	}
3440 	i915_retire_requests(i915);
3441 	GEM_BUG_ON(i915->gt.active_requests);
3442 
3443 	/*
3444 	 * Undo nop_submit_request. We prevent all new i915 requests from
3445 	 * being queued (by disallowing execbuf whilst wedged) so having
3446 	 * waited for all active requests above, we know the system is idle
3447 	 * and do not have to worry about a thread being inside
3448 	 * engine->submit_request() as we swap over. So unlike installing
3449 	 * the nop_submit_request on reset, we can do this from normal
3450 	 * context and do not require stop_machine().
3451 	 */
3452 	intel_engines_reset_default_submission(i915);
3453 	i915_gem_contexts_lost(i915);
3454 
3455 	GEM_TRACE("end\n");
3456 
3457 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3458 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3459 
3460 	return true;
3461 }
3462 
3463 static void
i915_gem_retire_work_handler(struct work_struct * work)3464 i915_gem_retire_work_handler(struct work_struct *work)
3465 {
3466 	struct drm_i915_private *dev_priv =
3467 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3468 	struct drm_device *dev = &dev_priv->drm;
3469 
3470 	/* Come back later if the device is busy... */
3471 	if (mutex_trylock(&dev->struct_mutex)) {
3472 		i915_retire_requests(dev_priv);
3473 		mutex_unlock(&dev->struct_mutex);
3474 	}
3475 
3476 	/*
3477 	 * Keep the retire handler running until we are finally idle.
3478 	 * We do not need to do this test under locking as in the worst-case
3479 	 * we queue the retire worker once too often.
3480 	 */
3481 	if (READ_ONCE(dev_priv->gt.awake))
3482 		queue_delayed_work(dev_priv->wq,
3483 				   &dev_priv->gt.retire_work,
3484 				   round_jiffies_up_relative(HZ));
3485 }
3486 
shrink_caches(struct drm_i915_private * i915)3487 static void shrink_caches(struct drm_i915_private *i915)
3488 {
3489 	/*
3490 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3491 	 * filled slabs to prioritise allocating from the mostly full slabs,
3492 	 * with the aim of reducing fragmentation.
3493 	 */
3494 	kmem_cache_shrink(i915->priorities);
3495 	kmem_cache_shrink(i915->dependencies);
3496 	kmem_cache_shrink(i915->requests);
3497 	kmem_cache_shrink(i915->luts);
3498 	kmem_cache_shrink(i915->vmas);
3499 	kmem_cache_shrink(i915->objects);
3500 }
3501 
3502 struct sleep_rcu_work {
3503 	union {
3504 		struct rcu_head rcu;
3505 		struct work_struct work;
3506 	};
3507 	struct drm_i915_private *i915;
3508 	unsigned int epoch;
3509 };
3510 
3511 static inline bool
same_epoch(struct drm_i915_private * i915,unsigned int epoch)3512 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3513 {
3514 	/*
3515 	 * There is a small chance that the epoch wrapped since we started
3516 	 * sleeping. If we assume that epoch is at least a u32, then it will
3517 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3518 	 */
3519 	return epoch == READ_ONCE(i915->gt.epoch);
3520 }
3521 
__sleep_work(struct work_struct * work)3522 static void __sleep_work(struct work_struct *work)
3523 {
3524 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3525 	struct drm_i915_private *i915 = s->i915;
3526 	unsigned int epoch = s->epoch;
3527 
3528 	kfree(s);
3529 	if (same_epoch(i915, epoch))
3530 		shrink_caches(i915);
3531 }
3532 
__sleep_rcu(struct rcu_head * rcu)3533 static void __sleep_rcu(struct rcu_head *rcu)
3534 {
3535 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3536 	struct drm_i915_private *i915 = s->i915;
3537 
3538 	if (same_epoch(i915, s->epoch)) {
3539 		INIT_WORK(&s->work, __sleep_work);
3540 		queue_work(i915->wq, &s->work);
3541 	} else {
3542 		kfree(s);
3543 	}
3544 }
3545 
3546 static inline bool
new_requests_since_last_retire(const struct drm_i915_private * i915)3547 new_requests_since_last_retire(const struct drm_i915_private *i915)
3548 {
3549 	return (READ_ONCE(i915->gt.active_requests) ||
3550 		work_pending(&i915->gt.idle_work.work));
3551 }
3552 
assert_kernel_context_is_current(struct drm_i915_private * i915)3553 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3554 {
3555 	struct intel_engine_cs *engine;
3556 	enum intel_engine_id id;
3557 
3558 	if (i915_terminally_wedged(&i915->gpu_error))
3559 		return;
3560 
3561 	GEM_BUG_ON(i915->gt.active_requests);
3562 	for_each_engine(engine, i915, id) {
3563 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3564 		GEM_BUG_ON(engine->last_retired_context !=
3565 			   to_intel_context(i915->kernel_context, engine));
3566 	}
3567 }
3568 
3569 static void
i915_gem_idle_work_handler(struct work_struct * work)3570 i915_gem_idle_work_handler(struct work_struct *work)
3571 {
3572 	struct drm_i915_private *dev_priv =
3573 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3574 	unsigned int epoch = I915_EPOCH_INVALID;
3575 	bool rearm_hangcheck;
3576 
3577 	if (!READ_ONCE(dev_priv->gt.awake))
3578 		return;
3579 
3580 	if (READ_ONCE(dev_priv->gt.active_requests))
3581 		return;
3582 
3583 	/*
3584 	 * Flush out the last user context, leaving only the pinned
3585 	 * kernel context resident. When we are idling on the kernel_context,
3586 	 * no more new requests (with a context switch) are emitted and we
3587 	 * can finally rest. A consequence is that the idle work handler is
3588 	 * always called at least twice before idling (and if the system is
3589 	 * idle that implies a round trip through the retire worker).
3590 	 */
3591 	mutex_lock(&dev_priv->drm.struct_mutex);
3592 	i915_gem_switch_to_kernel_context(dev_priv);
3593 	mutex_unlock(&dev_priv->drm.struct_mutex);
3594 
3595 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3596 		  READ_ONCE(dev_priv->gt.active_requests));
3597 
3598 	/*
3599 	 * Wait for last execlists context complete, but bail out in case a
3600 	 * new request is submitted. As we don't trust the hardware, we
3601 	 * continue on if the wait times out. This is necessary to allow
3602 	 * the machine to suspend even if the hardware dies, and we will
3603 	 * try to recover in resume (after depriving the hardware of power,
3604 	 * it may be in a better mmod).
3605 	 */
3606 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3607 		   intel_engines_are_idle(dev_priv),
3608 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3609 		   10, 500);
3610 
3611 	rearm_hangcheck =
3612 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3613 
3614 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3615 		/* Currently busy, come back later */
3616 		mod_delayed_work(dev_priv->wq,
3617 				 &dev_priv->gt.idle_work,
3618 				 msecs_to_jiffies(50));
3619 		goto out_rearm;
3620 	}
3621 
3622 	/*
3623 	 * New request retired after this work handler started, extend active
3624 	 * period until next instance of the work.
3625 	 */
3626 	if (new_requests_since_last_retire(dev_priv))
3627 		goto out_unlock;
3628 
3629 	epoch = __i915_gem_park(dev_priv);
3630 
3631 	assert_kernel_context_is_current(dev_priv);
3632 
3633 	rearm_hangcheck = false;
3634 out_unlock:
3635 	mutex_unlock(&dev_priv->drm.struct_mutex);
3636 
3637 out_rearm:
3638 	if (rearm_hangcheck) {
3639 		GEM_BUG_ON(!dev_priv->gt.awake);
3640 		i915_queue_hangcheck(dev_priv);
3641 	}
3642 
3643 	/*
3644 	 * When we are idle, it is an opportune time to reap our caches.
3645 	 * However, we have many objects that utilise RCU and the ordered
3646 	 * i915->wq that this work is executing on. To try and flush any
3647 	 * pending frees now we are idle, we first wait for an RCU grace
3648 	 * period, and then queue a task (that will run last on the wq) to
3649 	 * shrink and re-optimize the caches.
3650 	 */
3651 	if (same_epoch(dev_priv, epoch)) {
3652 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3653 		if (s) {
3654 			s->i915 = dev_priv;
3655 			s->epoch = epoch;
3656 			call_rcu(&s->rcu, __sleep_rcu);
3657 		}
3658 	}
3659 }
3660 
i915_gem_close_object(struct drm_gem_object * gem,struct drm_file * file)3661 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3662 {
3663 	struct drm_i915_private *i915 = to_i915(gem->dev);
3664 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3665 	struct drm_i915_file_private *fpriv = file->driver_priv;
3666 	struct i915_lut_handle *lut, *ln;
3667 
3668 	mutex_lock(&i915->drm.struct_mutex);
3669 
3670 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3671 		struct i915_gem_context *ctx = lut->ctx;
3672 		struct i915_vma *vma;
3673 
3674 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3675 		if (ctx->file_priv != fpriv)
3676 			continue;
3677 
3678 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3679 		GEM_BUG_ON(vma->obj != obj);
3680 
3681 		/* We allow the process to have multiple handles to the same
3682 		 * vma, in the same fd namespace, by virtue of flink/open.
3683 		 */
3684 		GEM_BUG_ON(!vma->open_count);
3685 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3686 			i915_vma_close(vma);
3687 
3688 		list_del(&lut->obj_link);
3689 		list_del(&lut->ctx_link);
3690 
3691 		kmem_cache_free(i915->luts, lut);
3692 		__i915_gem_object_release_unless_active(obj);
3693 	}
3694 
3695 	mutex_unlock(&i915->drm.struct_mutex);
3696 }
3697 
to_wait_timeout(s64 timeout_ns)3698 static unsigned long to_wait_timeout(s64 timeout_ns)
3699 {
3700 	if (timeout_ns < 0)
3701 		return MAX_SCHEDULE_TIMEOUT;
3702 
3703 	if (timeout_ns == 0)
3704 		return 0;
3705 
3706 	return nsecs_to_jiffies_timeout(timeout_ns);
3707 }
3708 
3709 /**
3710  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3711  * @dev: drm device pointer
3712  * @data: ioctl data blob
3713  * @file: drm file pointer
3714  *
3715  * Returns 0 if successful, else an error is returned with the remaining time in
3716  * the timeout parameter.
3717  *  -ETIME: object is still busy after timeout
3718  *  -ERESTARTSYS: signal interrupted the wait
3719  *  -ENONENT: object doesn't exist
3720  * Also possible, but rare:
3721  *  -EAGAIN: incomplete, restart syscall
3722  *  -ENOMEM: damn
3723  *  -ENODEV: Internal IRQ fail
3724  *  -E?: The add request failed
3725  *
3726  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3727  * non-zero timeout parameter the wait ioctl will wait for the given number of
3728  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3729  * without holding struct_mutex the object may become re-busied before this
3730  * function completes. A similar but shorter * race condition exists in the busy
3731  * ioctl
3732  */
3733 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3734 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3735 {
3736 	struct drm_i915_gem_wait *args = data;
3737 	struct drm_i915_gem_object *obj;
3738 	ktime_t start;
3739 	long ret;
3740 
3741 	if (args->flags != 0)
3742 		return -EINVAL;
3743 
3744 	obj = i915_gem_object_lookup(file, args->bo_handle);
3745 	if (!obj)
3746 		return -ENOENT;
3747 
3748 	start = ktime_get();
3749 
3750 	ret = i915_gem_object_wait(obj,
3751 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3752 				   to_wait_timeout(args->timeout_ns),
3753 				   to_rps_client(file));
3754 
3755 	if (args->timeout_ns > 0) {
3756 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3757 		if (args->timeout_ns < 0)
3758 			args->timeout_ns = 0;
3759 
3760 		/*
3761 		 * Apparently ktime isn't accurate enough and occasionally has a
3762 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3763 		 * things up to make the test happy. We allow up to 1 jiffy.
3764 		 *
3765 		 * This is a regression from the timespec->ktime conversion.
3766 		 */
3767 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3768 			args->timeout_ns = 0;
3769 
3770 		/* Asked to wait beyond the jiffie/scheduler precision? */
3771 		if (ret == -ETIME && args->timeout_ns)
3772 			ret = -EAGAIN;
3773 	}
3774 
3775 	i915_gem_object_put(obj);
3776 	return ret;
3777 }
3778 
wait_for_timeline(struct i915_timeline * tl,unsigned int flags,long timeout)3779 static long wait_for_timeline(struct i915_timeline *tl,
3780 			      unsigned int flags, long timeout)
3781 {
3782 	struct i915_request *rq;
3783 
3784 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3785 	if (!rq)
3786 		return timeout;
3787 
3788 	/*
3789 	 * "Race-to-idle".
3790 	 *
3791 	 * Switching to the kernel context is often used a synchronous
3792 	 * step prior to idling, e.g. in suspend for flushing all
3793 	 * current operations to memory before sleeping. These we
3794 	 * want to complete as quickly as possible to avoid prolonged
3795 	 * stalls, so allow the gpu to boost to maximum clocks.
3796 	 */
3797 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3798 		gen6_rps_boost(rq, NULL);
3799 
3800 	timeout = i915_request_wait(rq, flags, timeout);
3801 	i915_request_put(rq);
3802 
3803 	return timeout;
3804 }
3805 
wait_for_engines(struct drm_i915_private * i915)3806 static int wait_for_engines(struct drm_i915_private *i915)
3807 {
3808 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3809 		dev_err(i915->drm.dev,
3810 			"Failed to idle engines, declaring wedged!\n");
3811 		GEM_TRACE_DUMP();
3812 		i915_gem_set_wedged(i915);
3813 		return -EIO;
3814 	}
3815 
3816 	return 0;
3817 }
3818 
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags,long timeout)3819 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3820 			   unsigned int flags, long timeout)
3821 {
3822 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3823 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3824 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3825 
3826 	/* If the device is asleep, we have no requests outstanding */
3827 	if (!READ_ONCE(i915->gt.awake))
3828 		return 0;
3829 
3830 	if (flags & I915_WAIT_LOCKED) {
3831 		struct i915_timeline *tl;
3832 		int err;
3833 
3834 		lockdep_assert_held(&i915->drm.struct_mutex);
3835 
3836 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3837 			timeout = wait_for_timeline(tl, flags, timeout);
3838 			if (timeout < 0)
3839 				return timeout;
3840 		}
3841 
3842 		err = wait_for_engines(i915);
3843 		if (err)
3844 			return err;
3845 
3846 		i915_retire_requests(i915);
3847 		GEM_BUG_ON(i915->gt.active_requests);
3848 	} else {
3849 		struct intel_engine_cs *engine;
3850 		enum intel_engine_id id;
3851 
3852 		for_each_engine(engine, i915, id) {
3853 			struct i915_timeline *tl = &engine->timeline;
3854 
3855 			timeout = wait_for_timeline(tl, flags, timeout);
3856 			if (timeout < 0)
3857 				return timeout;
3858 		}
3859 	}
3860 
3861 	return 0;
3862 }
3863 
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)3864 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3865 {
3866 	/*
3867 	 * We manually flush the CPU domain so that we can override and
3868 	 * force the flush for the display, and perform it asyncrhonously.
3869 	 */
3870 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3871 	if (obj->cache_dirty)
3872 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3873 	obj->write_domain = 0;
3874 }
3875 
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)3876 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3877 {
3878 	if (!READ_ONCE(obj->pin_global))
3879 		return;
3880 
3881 	mutex_lock(&obj->base.dev->struct_mutex);
3882 	__i915_gem_object_flush_for_display(obj);
3883 	mutex_unlock(&obj->base.dev->struct_mutex);
3884 }
3885 
3886 /**
3887  * Moves a single object to the WC read, and possibly write domain.
3888  * @obj: object to act on
3889  * @write: ask for write access or read only
3890  *
3891  * This function returns when the move is complete, including waiting on
3892  * flushes to occur.
3893  */
3894 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)3895 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3896 {
3897 	int ret;
3898 
3899 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3900 
3901 	ret = i915_gem_object_wait(obj,
3902 				   I915_WAIT_INTERRUPTIBLE |
3903 				   I915_WAIT_LOCKED |
3904 				   (write ? I915_WAIT_ALL : 0),
3905 				   MAX_SCHEDULE_TIMEOUT,
3906 				   NULL);
3907 	if (ret)
3908 		return ret;
3909 
3910 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3911 		return 0;
3912 
3913 	/* Flush and acquire obj->pages so that we are coherent through
3914 	 * direct access in memory with previous cached writes through
3915 	 * shmemfs and that our cache domain tracking remains valid.
3916 	 * For example, if the obj->filp was moved to swap without us
3917 	 * being notified and releasing the pages, we would mistakenly
3918 	 * continue to assume that the obj remained out of the CPU cached
3919 	 * domain.
3920 	 */
3921 	ret = i915_gem_object_pin_pages(obj);
3922 	if (ret)
3923 		return ret;
3924 
3925 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3926 
3927 	/* Serialise direct access to this object with the barriers for
3928 	 * coherent writes from the GPU, by effectively invalidating the
3929 	 * WC domain upon first access.
3930 	 */
3931 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3932 		mb();
3933 
3934 	/* It should now be out of any other write domains, and we can update
3935 	 * the domain values for our changes.
3936 	 */
3937 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3938 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3939 	if (write) {
3940 		obj->read_domains = I915_GEM_DOMAIN_WC;
3941 		obj->write_domain = I915_GEM_DOMAIN_WC;
3942 		obj->mm.dirty = true;
3943 	}
3944 
3945 	i915_gem_object_unpin_pages(obj);
3946 	return 0;
3947 }
3948 
3949 /**
3950  * Moves a single object to the GTT read, and possibly write domain.
3951  * @obj: object to act on
3952  * @write: ask for write access or read only
3953  *
3954  * This function returns when the move is complete, including waiting on
3955  * flushes to occur.
3956  */
3957 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3958 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3959 {
3960 	int ret;
3961 
3962 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3963 
3964 	ret = i915_gem_object_wait(obj,
3965 				   I915_WAIT_INTERRUPTIBLE |
3966 				   I915_WAIT_LOCKED |
3967 				   (write ? I915_WAIT_ALL : 0),
3968 				   MAX_SCHEDULE_TIMEOUT,
3969 				   NULL);
3970 	if (ret)
3971 		return ret;
3972 
3973 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3974 		return 0;
3975 
3976 	/* Flush and acquire obj->pages so that we are coherent through
3977 	 * direct access in memory with previous cached writes through
3978 	 * shmemfs and that our cache domain tracking remains valid.
3979 	 * For example, if the obj->filp was moved to swap without us
3980 	 * being notified and releasing the pages, we would mistakenly
3981 	 * continue to assume that the obj remained out of the CPU cached
3982 	 * domain.
3983 	 */
3984 	ret = i915_gem_object_pin_pages(obj);
3985 	if (ret)
3986 		return ret;
3987 
3988 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3989 
3990 	/* Serialise direct access to this object with the barriers for
3991 	 * coherent writes from the GPU, by effectively invalidating the
3992 	 * GTT domain upon first access.
3993 	 */
3994 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3995 		mb();
3996 
3997 	/* It should now be out of any other write domains, and we can update
3998 	 * the domain values for our changes.
3999 	 */
4000 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4001 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4002 	if (write) {
4003 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4004 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4005 		obj->mm.dirty = true;
4006 	}
4007 
4008 	i915_gem_object_unpin_pages(obj);
4009 	return 0;
4010 }
4011 
4012 /**
4013  * Changes the cache-level of an object across all VMA.
4014  * @obj: object to act on
4015  * @cache_level: new cache level to set for the object
4016  *
4017  * After this function returns, the object will be in the new cache-level
4018  * across all GTT and the contents of the backing storage will be coherent,
4019  * with respect to the new cache-level. In order to keep the backing storage
4020  * coherent for all users, we only allow a single cache level to be set
4021  * globally on the object and prevent it from being changed whilst the
4022  * hardware is reading from the object. That is if the object is currently
4023  * on the scanout it will be set to uncached (or equivalent display
4024  * cache coherency) and all non-MOCS GPU access will also be uncached so
4025  * that all direct access to the scanout remains coherent.
4026  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)4027 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4028 				    enum i915_cache_level cache_level)
4029 {
4030 	struct i915_vma *vma;
4031 	int ret;
4032 
4033 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4034 
4035 	if (obj->cache_level == cache_level)
4036 		return 0;
4037 
4038 	/* Inspect the list of currently bound VMA and unbind any that would
4039 	 * be invalid given the new cache-level. This is principally to
4040 	 * catch the issue of the CS prefetch crossing page boundaries and
4041 	 * reading an invalid PTE on older architectures.
4042 	 */
4043 restart:
4044 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4045 		if (!drm_mm_node_allocated(&vma->node))
4046 			continue;
4047 
4048 		if (i915_vma_is_pinned(vma)) {
4049 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4050 			return -EBUSY;
4051 		}
4052 
4053 		if (!i915_vma_is_closed(vma) &&
4054 		    i915_gem_valid_gtt_space(vma, cache_level))
4055 			continue;
4056 
4057 		ret = i915_vma_unbind(vma);
4058 		if (ret)
4059 			return ret;
4060 
4061 		/* As unbinding may affect other elements in the
4062 		 * obj->vma_list (due to side-effects from retiring
4063 		 * an active vma), play safe and restart the iterator.
4064 		 */
4065 		goto restart;
4066 	}
4067 
4068 	/* We can reuse the existing drm_mm nodes but need to change the
4069 	 * cache-level on the PTE. We could simply unbind them all and
4070 	 * rebind with the correct cache-level on next use. However since
4071 	 * we already have a valid slot, dma mapping, pages etc, we may as
4072 	 * rewrite the PTE in the belief that doing so tramples upon less
4073 	 * state and so involves less work.
4074 	 */
4075 	if (obj->bind_count) {
4076 		/* Before we change the PTE, the GPU must not be accessing it.
4077 		 * If we wait upon the object, we know that all the bound
4078 		 * VMA are no longer active.
4079 		 */
4080 		ret = i915_gem_object_wait(obj,
4081 					   I915_WAIT_INTERRUPTIBLE |
4082 					   I915_WAIT_LOCKED |
4083 					   I915_WAIT_ALL,
4084 					   MAX_SCHEDULE_TIMEOUT,
4085 					   NULL);
4086 		if (ret)
4087 			return ret;
4088 
4089 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4090 		    cache_level != I915_CACHE_NONE) {
4091 			/* Access to snoopable pages through the GTT is
4092 			 * incoherent and on some machines causes a hard
4093 			 * lockup. Relinquish the CPU mmaping to force
4094 			 * userspace to refault in the pages and we can
4095 			 * then double check if the GTT mapping is still
4096 			 * valid for that pointer access.
4097 			 */
4098 			i915_gem_release_mmap(obj);
4099 
4100 			/* As we no longer need a fence for GTT access,
4101 			 * we can relinquish it now (and so prevent having
4102 			 * to steal a fence from someone else on the next
4103 			 * fence request). Note GPU activity would have
4104 			 * dropped the fence as all snoopable access is
4105 			 * supposed to be linear.
4106 			 */
4107 			for_each_ggtt_vma(vma, obj) {
4108 				ret = i915_vma_put_fence(vma);
4109 				if (ret)
4110 					return ret;
4111 			}
4112 		} else {
4113 			/* We either have incoherent backing store and
4114 			 * so no GTT access or the architecture is fully
4115 			 * coherent. In such cases, existing GTT mmaps
4116 			 * ignore the cache bit in the PTE and we can
4117 			 * rewrite it without confusing the GPU or having
4118 			 * to force userspace to fault back in its mmaps.
4119 			 */
4120 		}
4121 
4122 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4123 			if (!drm_mm_node_allocated(&vma->node))
4124 				continue;
4125 
4126 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4127 			if (ret)
4128 				return ret;
4129 		}
4130 	}
4131 
4132 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4133 		vma->node.color = cache_level;
4134 	i915_gem_object_set_cache_coherency(obj, cache_level);
4135 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4136 
4137 	return 0;
4138 }
4139 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4140 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4141 			       struct drm_file *file)
4142 {
4143 	struct drm_i915_gem_caching *args = data;
4144 	struct drm_i915_gem_object *obj;
4145 	int err = 0;
4146 
4147 	rcu_read_lock();
4148 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4149 	if (!obj) {
4150 		err = -ENOENT;
4151 		goto out;
4152 	}
4153 
4154 	switch (obj->cache_level) {
4155 	case I915_CACHE_LLC:
4156 	case I915_CACHE_L3_LLC:
4157 		args->caching = I915_CACHING_CACHED;
4158 		break;
4159 
4160 	case I915_CACHE_WT:
4161 		args->caching = I915_CACHING_DISPLAY;
4162 		break;
4163 
4164 	default:
4165 		args->caching = I915_CACHING_NONE;
4166 		break;
4167 	}
4168 out:
4169 	rcu_read_unlock();
4170 	return err;
4171 }
4172 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4173 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4174 			       struct drm_file *file)
4175 {
4176 	struct drm_i915_private *i915 = to_i915(dev);
4177 	struct drm_i915_gem_caching *args = data;
4178 	struct drm_i915_gem_object *obj;
4179 	enum i915_cache_level level;
4180 	int ret = 0;
4181 
4182 	switch (args->caching) {
4183 	case I915_CACHING_NONE:
4184 		level = I915_CACHE_NONE;
4185 		break;
4186 	case I915_CACHING_CACHED:
4187 		/*
4188 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4189 		 * snooped mapping may leave stale data in a corresponding CPU
4190 		 * cacheline, whereas normally such cachelines would get
4191 		 * invalidated.
4192 		 */
4193 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4194 			return -ENODEV;
4195 
4196 		level = I915_CACHE_LLC;
4197 		break;
4198 	case I915_CACHING_DISPLAY:
4199 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4200 		break;
4201 	default:
4202 		return -EINVAL;
4203 	}
4204 
4205 	obj = i915_gem_object_lookup(file, args->handle);
4206 	if (!obj)
4207 		return -ENOENT;
4208 
4209 	/*
4210 	 * The caching mode of proxy object is handled by its generator, and
4211 	 * not allowed to be changed by userspace.
4212 	 */
4213 	if (i915_gem_object_is_proxy(obj)) {
4214 		ret = -ENXIO;
4215 		goto out;
4216 	}
4217 
4218 	if (obj->cache_level == level)
4219 		goto out;
4220 
4221 	ret = i915_gem_object_wait(obj,
4222 				   I915_WAIT_INTERRUPTIBLE,
4223 				   MAX_SCHEDULE_TIMEOUT,
4224 				   to_rps_client(file));
4225 	if (ret)
4226 		goto out;
4227 
4228 	ret = i915_mutex_lock_interruptible(dev);
4229 	if (ret)
4230 		goto out;
4231 
4232 	ret = i915_gem_object_set_cache_level(obj, level);
4233 	mutex_unlock(&dev->struct_mutex);
4234 
4235 out:
4236 	i915_gem_object_put(obj);
4237 	return ret;
4238 }
4239 
4240 /*
4241  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4242  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4243  * (for pageflips). We only flush the caches while preparing the buffer for
4244  * display, the callers are responsible for frontbuffer flush.
4245  */
4246 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,const struct i915_ggtt_view * view,unsigned int flags)4247 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4248 				     u32 alignment,
4249 				     const struct i915_ggtt_view *view,
4250 				     unsigned int flags)
4251 {
4252 	struct i915_vma *vma;
4253 	int ret;
4254 
4255 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4256 
4257 	/* Mark the global pin early so that we account for the
4258 	 * display coherency whilst setting up the cache domains.
4259 	 */
4260 	obj->pin_global++;
4261 
4262 	/* The display engine is not coherent with the LLC cache on gen6.  As
4263 	 * a result, we make sure that the pinning that is about to occur is
4264 	 * done with uncached PTEs. This is lowest common denominator for all
4265 	 * chipsets.
4266 	 *
4267 	 * However for gen6+, we could do better by using the GFDT bit instead
4268 	 * of uncaching, which would allow us to flush all the LLC-cached data
4269 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4270 	 */
4271 	ret = i915_gem_object_set_cache_level(obj,
4272 					      HAS_WT(to_i915(obj->base.dev)) ?
4273 					      I915_CACHE_WT : I915_CACHE_NONE);
4274 	if (ret) {
4275 		vma = ERR_PTR(ret);
4276 		goto err_unpin_global;
4277 	}
4278 
4279 	/* As the user may map the buffer once pinned in the display plane
4280 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4281 	 * always use map_and_fenceable for all scanout buffers. However,
4282 	 * it may simply be too big to fit into mappable, in which case
4283 	 * put it anyway and hope that userspace can cope (but always first
4284 	 * try to preserve the existing ABI).
4285 	 */
4286 	vma = ERR_PTR(-ENOSPC);
4287 	if ((flags & PIN_MAPPABLE) == 0 &&
4288 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4289 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4290 					       flags |
4291 					       PIN_MAPPABLE |
4292 					       PIN_NONBLOCK);
4293 	if (IS_ERR(vma))
4294 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4295 	if (IS_ERR(vma))
4296 		goto err_unpin_global;
4297 
4298 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4299 
4300 	__i915_gem_object_flush_for_display(obj);
4301 
4302 	/* It should now be out of any other write domains, and we can update
4303 	 * the domain values for our changes.
4304 	 */
4305 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4306 
4307 	return vma;
4308 
4309 err_unpin_global:
4310 	obj->pin_global--;
4311 	return vma;
4312 }
4313 
4314 void
i915_gem_object_unpin_from_display_plane(struct i915_vma * vma)4315 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4316 {
4317 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4318 
4319 	if (WARN_ON(vma->obj->pin_global == 0))
4320 		return;
4321 
4322 	if (--vma->obj->pin_global == 0)
4323 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4324 
4325 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4326 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4327 
4328 	i915_vma_unpin(vma);
4329 }
4330 
4331 /**
4332  * Moves a single object to the CPU read, and possibly write domain.
4333  * @obj: object to act on
4334  * @write: requesting write or read-only access
4335  *
4336  * This function returns when the move is complete, including waiting on
4337  * flushes to occur.
4338  */
4339 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4340 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4341 {
4342 	int ret;
4343 
4344 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4345 
4346 	ret = i915_gem_object_wait(obj,
4347 				   I915_WAIT_INTERRUPTIBLE |
4348 				   I915_WAIT_LOCKED |
4349 				   (write ? I915_WAIT_ALL : 0),
4350 				   MAX_SCHEDULE_TIMEOUT,
4351 				   NULL);
4352 	if (ret)
4353 		return ret;
4354 
4355 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4356 
4357 	/* Flush the CPU cache if it's still invalid. */
4358 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4359 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4360 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4361 	}
4362 
4363 	/* It should now be out of any other write domains, and we can update
4364 	 * the domain values for our changes.
4365 	 */
4366 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4367 
4368 	/* If we're writing through the CPU, then the GPU read domains will
4369 	 * need to be invalidated at next use.
4370 	 */
4371 	if (write)
4372 		__start_cpu_write(obj);
4373 
4374 	return 0;
4375 }
4376 
4377 /* Throttle our rendering by waiting until the ring has completed our requests
4378  * emitted over 20 msec ago.
4379  *
4380  * Note that if we were to use the current jiffies each time around the loop,
4381  * we wouldn't escape the function with any frames outstanding if the time to
4382  * render a frame was over 20ms.
4383  *
4384  * This should get us reasonable parallelism between CPU and GPU but also
4385  * relatively low latency when blocking on a particular request to finish.
4386  */
4387 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4388 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4389 {
4390 	struct drm_i915_private *dev_priv = to_i915(dev);
4391 	struct drm_i915_file_private *file_priv = file->driver_priv;
4392 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4393 	struct i915_request *request, *target = NULL;
4394 	long ret;
4395 
4396 	/* ABI: return -EIO if already wedged */
4397 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4398 		return -EIO;
4399 
4400 	spin_lock(&file_priv->mm.lock);
4401 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4402 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4403 			break;
4404 
4405 		if (target) {
4406 			list_del(&target->client_link);
4407 			target->file_priv = NULL;
4408 		}
4409 
4410 		target = request;
4411 	}
4412 	if (target)
4413 		i915_request_get(target);
4414 	spin_unlock(&file_priv->mm.lock);
4415 
4416 	if (target == NULL)
4417 		return 0;
4418 
4419 	ret = i915_request_wait(target,
4420 				I915_WAIT_INTERRUPTIBLE,
4421 				MAX_SCHEDULE_TIMEOUT);
4422 	i915_request_put(target);
4423 
4424 	return ret < 0 ? ret : 0;
4425 }
4426 
4427 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4428 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4429 			 const struct i915_ggtt_view *view,
4430 			 u64 size,
4431 			 u64 alignment,
4432 			 u64 flags)
4433 {
4434 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4435 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4436 
4437 	return i915_gem_object_pin(obj, vm, view, size, alignment,
4438 				   flags | PIN_GLOBAL);
4439 }
4440 
4441 struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4442 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4443 		    struct i915_address_space *vm,
4444 		    const struct i915_ggtt_view *view,
4445 		    u64 size,
4446 		    u64 alignment,
4447 		    u64 flags)
4448 {
4449 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4450 	struct i915_vma *vma;
4451 	int ret;
4452 
4453 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4454 
4455 	if (flags & PIN_MAPPABLE &&
4456 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4457 		/* If the required space is larger than the available
4458 		 * aperture, we will not able to find a slot for the
4459 		 * object and unbinding the object now will be in
4460 		 * vain. Worse, doing so may cause us to ping-pong
4461 		 * the object in and out of the Global GTT and
4462 		 * waste a lot of cycles under the mutex.
4463 		 */
4464 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4465 			return ERR_PTR(-E2BIG);
4466 
4467 		/* If NONBLOCK is set the caller is optimistically
4468 		 * trying to cache the full object within the mappable
4469 		 * aperture, and *must* have a fallback in place for
4470 		 * situations where we cannot bind the object. We
4471 		 * can be a little more lax here and use the fallback
4472 		 * more often to avoid costly migrations of ourselves
4473 		 * and other objects within the aperture.
4474 		 *
4475 		 * Half-the-aperture is used as a simple heuristic.
4476 		 * More interesting would to do search for a free
4477 		 * block prior to making the commitment to unbind.
4478 		 * That caters for the self-harm case, and with a
4479 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4480 		 * we could try to minimise harm to others.
4481 		 */
4482 		if (flags & PIN_NONBLOCK &&
4483 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4484 			return ERR_PTR(-ENOSPC);
4485 	}
4486 
4487 	vma = i915_vma_instance(obj, vm, view);
4488 	if (unlikely(IS_ERR(vma)))
4489 		return vma;
4490 
4491 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4492 		if (flags & PIN_NONBLOCK) {
4493 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4494 				return ERR_PTR(-ENOSPC);
4495 
4496 			if (flags & PIN_MAPPABLE &&
4497 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4498 				return ERR_PTR(-ENOSPC);
4499 		}
4500 
4501 		WARN(i915_vma_is_pinned(vma),
4502 		     "bo is already pinned in ggtt with incorrect alignment:"
4503 		     " offset=%08x, req.alignment=%llx,"
4504 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4505 		     i915_ggtt_offset(vma), alignment,
4506 		     !!(flags & PIN_MAPPABLE),
4507 		     i915_vma_is_map_and_fenceable(vma));
4508 		ret = i915_vma_unbind(vma);
4509 		if (ret)
4510 			return ERR_PTR(ret);
4511 	}
4512 
4513 	ret = i915_vma_pin(vma, size, alignment, flags);
4514 	if (ret)
4515 		return ERR_PTR(ret);
4516 
4517 	return vma;
4518 }
4519 
__busy_read_flag(unsigned int id)4520 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4521 {
4522 	/* Note that we could alias engines in the execbuf API, but
4523 	 * that would be very unwise as it prevents userspace from
4524 	 * fine control over engine selection. Ahem.
4525 	 *
4526 	 * This should be something like EXEC_MAX_ENGINE instead of
4527 	 * I915_NUM_ENGINES.
4528 	 */
4529 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4530 	return 0x10000 << id;
4531 }
4532 
__busy_write_id(unsigned int id)4533 static __always_inline unsigned int __busy_write_id(unsigned int id)
4534 {
4535 	/* The uABI guarantees an active writer is also amongst the read
4536 	 * engines. This would be true if we accessed the activity tracking
4537 	 * under the lock, but as we perform the lookup of the object and
4538 	 * its activity locklessly we can not guarantee that the last_write
4539 	 * being active implies that we have set the same engine flag from
4540 	 * last_read - hence we always set both read and write busy for
4541 	 * last_write.
4542 	 */
4543 	return id | __busy_read_flag(id);
4544 }
4545 
4546 static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence * fence,unsigned int (* flag)(unsigned int id))4547 __busy_set_if_active(const struct dma_fence *fence,
4548 		     unsigned int (*flag)(unsigned int id))
4549 {
4550 	struct i915_request *rq;
4551 
4552 	/* We have to check the current hw status of the fence as the uABI
4553 	 * guarantees forward progress. We could rely on the idle worker
4554 	 * to eventually flush us, but to minimise latency just ask the
4555 	 * hardware.
4556 	 *
4557 	 * Note we only report on the status of native fences.
4558 	 */
4559 	if (!dma_fence_is_i915(fence))
4560 		return 0;
4561 
4562 	/* opencode to_request() in order to avoid const warnings */
4563 	rq = container_of(fence, struct i915_request, fence);
4564 	if (i915_request_completed(rq))
4565 		return 0;
4566 
4567 	return flag(rq->engine->uabi_id);
4568 }
4569 
4570 static __always_inline unsigned int
busy_check_reader(const struct dma_fence * fence)4571 busy_check_reader(const struct dma_fence *fence)
4572 {
4573 	return __busy_set_if_active(fence, __busy_read_flag);
4574 }
4575 
4576 static __always_inline unsigned int
busy_check_writer(const struct dma_fence * fence)4577 busy_check_writer(const struct dma_fence *fence)
4578 {
4579 	if (!fence)
4580 		return 0;
4581 
4582 	return __busy_set_if_active(fence, __busy_write_id);
4583 }
4584 
4585 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4586 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4587 		    struct drm_file *file)
4588 {
4589 	struct drm_i915_gem_busy *args = data;
4590 	struct drm_i915_gem_object *obj;
4591 	struct reservation_object_list *list;
4592 	unsigned int seq;
4593 	int err;
4594 
4595 	err = -ENOENT;
4596 	rcu_read_lock();
4597 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4598 	if (!obj)
4599 		goto out;
4600 
4601 	/* A discrepancy here is that we do not report the status of
4602 	 * non-i915 fences, i.e. even though we may report the object as idle,
4603 	 * a call to set-domain may still stall waiting for foreign rendering.
4604 	 * This also means that wait-ioctl may report an object as busy,
4605 	 * where busy-ioctl considers it idle.
4606 	 *
4607 	 * We trade the ability to warn of foreign fences to report on which
4608 	 * i915 engines are active for the object.
4609 	 *
4610 	 * Alternatively, we can trade that extra information on read/write
4611 	 * activity with
4612 	 *	args->busy =
4613 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4614 	 * to report the overall busyness. This is what the wait-ioctl does.
4615 	 *
4616 	 */
4617 retry:
4618 	seq = raw_read_seqcount(&obj->resv->seq);
4619 
4620 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4621 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4622 
4623 	/* Translate shared fences to READ set of engines */
4624 	list = rcu_dereference(obj->resv->fence);
4625 	if (list) {
4626 		unsigned int shared_count = list->shared_count, i;
4627 
4628 		for (i = 0; i < shared_count; ++i) {
4629 			struct dma_fence *fence =
4630 				rcu_dereference(list->shared[i]);
4631 
4632 			args->busy |= busy_check_reader(fence);
4633 		}
4634 	}
4635 
4636 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4637 		goto retry;
4638 
4639 	err = 0;
4640 out:
4641 	rcu_read_unlock();
4642 	return err;
4643 }
4644 
4645 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4646 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4647 			struct drm_file *file_priv)
4648 {
4649 	return i915_gem_ring_throttle(dev, file_priv);
4650 }
4651 
4652 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4653 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4654 		       struct drm_file *file_priv)
4655 {
4656 	struct drm_i915_private *dev_priv = to_i915(dev);
4657 	struct drm_i915_gem_madvise *args = data;
4658 	struct drm_i915_gem_object *obj;
4659 	int err;
4660 
4661 	switch (args->madv) {
4662 	case I915_MADV_DONTNEED:
4663 	case I915_MADV_WILLNEED:
4664 	    break;
4665 	default:
4666 	    return -EINVAL;
4667 	}
4668 
4669 	obj = i915_gem_object_lookup(file_priv, args->handle);
4670 	if (!obj)
4671 		return -ENOENT;
4672 
4673 	err = mutex_lock_interruptible(&obj->mm.lock);
4674 	if (err)
4675 		goto out;
4676 
4677 	if (i915_gem_object_has_pages(obj) &&
4678 	    i915_gem_object_is_tiled(obj) &&
4679 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4680 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4681 			GEM_BUG_ON(!obj->mm.quirked);
4682 			__i915_gem_object_unpin_pages(obj);
4683 			obj->mm.quirked = false;
4684 		}
4685 		if (args->madv == I915_MADV_WILLNEED) {
4686 			GEM_BUG_ON(obj->mm.quirked);
4687 			__i915_gem_object_pin_pages(obj);
4688 			obj->mm.quirked = true;
4689 		}
4690 	}
4691 
4692 	if (obj->mm.madv != __I915_MADV_PURGED)
4693 		obj->mm.madv = args->madv;
4694 
4695 	/* if the object is no longer attached, discard its backing storage */
4696 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4697 	    !i915_gem_object_has_pages(obj))
4698 		i915_gem_object_truncate(obj);
4699 
4700 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4701 	mutex_unlock(&obj->mm.lock);
4702 
4703 out:
4704 	i915_gem_object_put(obj);
4705 	return err;
4706 }
4707 
4708 static void
frontbuffer_retire(struct i915_gem_active * active,struct i915_request * request)4709 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4710 {
4711 	struct drm_i915_gem_object *obj =
4712 		container_of(active, typeof(*obj), frontbuffer_write);
4713 
4714 	intel_fb_obj_flush(obj, ORIGIN_CS);
4715 }
4716 
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4717 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4718 			  const struct drm_i915_gem_object_ops *ops)
4719 {
4720 	mutex_init(&obj->mm.lock);
4721 
4722 	INIT_LIST_HEAD(&obj->vma_list);
4723 	INIT_LIST_HEAD(&obj->lut_list);
4724 	INIT_LIST_HEAD(&obj->batch_pool_link);
4725 
4726 	obj->ops = ops;
4727 
4728 	reservation_object_init(&obj->__builtin_resv);
4729 	obj->resv = &obj->__builtin_resv;
4730 
4731 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4732 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4733 
4734 	obj->mm.madv = I915_MADV_WILLNEED;
4735 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4736 	mutex_init(&obj->mm.get_page.lock);
4737 
4738 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4739 }
4740 
4741 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4742 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4743 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4744 
4745 	.get_pages = i915_gem_object_get_pages_gtt,
4746 	.put_pages = i915_gem_object_put_pages_gtt,
4747 
4748 	.pwrite = i915_gem_object_pwrite_gtt,
4749 };
4750 
i915_gem_object_create_shmem(struct drm_device * dev,struct drm_gem_object * obj,size_t size)4751 static int i915_gem_object_create_shmem(struct drm_device *dev,
4752 					struct drm_gem_object *obj,
4753 					size_t size)
4754 {
4755 	struct drm_i915_private *i915 = to_i915(dev);
4756 	unsigned long flags = VM_NORESERVE;
4757 	struct file *filp;
4758 
4759 	drm_gem_private_object_init(dev, obj, size);
4760 
4761 	if (i915->mm.gemfs)
4762 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4763 						 flags);
4764 	else
4765 		filp = shmem_file_setup("i915", size, flags);
4766 
4767 	if (IS_ERR(filp))
4768 		return PTR_ERR(filp);
4769 
4770 	obj->filp = filp;
4771 
4772 	return 0;
4773 }
4774 
4775 struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private * dev_priv,u64 size)4776 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4777 {
4778 	struct drm_i915_gem_object *obj;
4779 	struct address_space *mapping;
4780 	unsigned int cache_level;
4781 	gfp_t mask;
4782 	int ret;
4783 
4784 	/* There is a prevalence of the assumption that we fit the object's
4785 	 * page count inside a 32bit _signed_ variable. Let's document this and
4786 	 * catch if we ever need to fix it. In the meantime, if you do spot
4787 	 * such a local variable, please consider fixing!
4788 	 */
4789 	if (size >> PAGE_SHIFT > INT_MAX)
4790 		return ERR_PTR(-E2BIG);
4791 
4792 	if (overflows_type(size, obj->base.size))
4793 		return ERR_PTR(-E2BIG);
4794 
4795 	obj = i915_gem_object_alloc(dev_priv);
4796 	if (obj == NULL)
4797 		return ERR_PTR(-ENOMEM);
4798 
4799 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4800 	if (ret)
4801 		goto fail;
4802 
4803 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4804 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4805 		/* 965gm cannot relocate objects above 4GiB. */
4806 		mask &= ~__GFP_HIGHMEM;
4807 		mask |= __GFP_DMA32;
4808 	}
4809 
4810 	mapping = obj->base.filp->f_mapping;
4811 	mapping_set_gfp_mask(mapping, mask);
4812 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4813 
4814 	i915_gem_object_init(obj, &i915_gem_object_ops);
4815 
4816 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4817 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4818 
4819 	if (HAS_LLC(dev_priv))
4820 		/* On some devices, we can have the GPU use the LLC (the CPU
4821 		 * cache) for about a 10% performance improvement
4822 		 * compared to uncached.  Graphics requests other than
4823 		 * display scanout are coherent with the CPU in
4824 		 * accessing this cache.  This means in this mode we
4825 		 * don't need to clflush on the CPU side, and on the
4826 		 * GPU side we only need to flush internal caches to
4827 		 * get data visible to the CPU.
4828 		 *
4829 		 * However, we maintain the display planes as UC, and so
4830 		 * need to rebind when first used as such.
4831 		 */
4832 		cache_level = I915_CACHE_LLC;
4833 	else
4834 		cache_level = I915_CACHE_NONE;
4835 
4836 	i915_gem_object_set_cache_coherency(obj, cache_level);
4837 
4838 	trace_i915_gem_object_create(obj);
4839 
4840 	return obj;
4841 
4842 fail:
4843 	i915_gem_object_free(obj);
4844 	return ERR_PTR(ret);
4845 }
4846 
discard_backing_storage(struct drm_i915_gem_object * obj)4847 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4848 {
4849 	/* If we are the last user of the backing storage (be it shmemfs
4850 	 * pages or stolen etc), we know that the pages are going to be
4851 	 * immediately released. In this case, we can then skip copying
4852 	 * back the contents from the GPU.
4853 	 */
4854 
4855 	if (obj->mm.madv != I915_MADV_WILLNEED)
4856 		return false;
4857 
4858 	if (obj->base.filp == NULL)
4859 		return true;
4860 
4861 	/* At first glance, this looks racy, but then again so would be
4862 	 * userspace racing mmap against close. However, the first external
4863 	 * reference to the filp can only be obtained through the
4864 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4865 	 * acquiring such a reference whilst we are in the middle of
4866 	 * freeing the object.
4867 	 */
4868 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4869 }
4870 
__i915_gem_free_objects(struct drm_i915_private * i915,struct llist_node * freed)4871 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4872 				    struct llist_node *freed)
4873 {
4874 	struct drm_i915_gem_object *obj, *on;
4875 
4876 	intel_runtime_pm_get(i915);
4877 	llist_for_each_entry_safe(obj, on, freed, freed) {
4878 		struct i915_vma *vma, *vn;
4879 
4880 		trace_i915_gem_object_destroy(obj);
4881 
4882 		mutex_lock(&i915->drm.struct_mutex);
4883 
4884 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4885 		list_for_each_entry_safe(vma, vn,
4886 					 &obj->vma_list, obj_link) {
4887 			GEM_BUG_ON(i915_vma_is_active(vma));
4888 			vma->flags &= ~I915_VMA_PIN_MASK;
4889 			i915_vma_destroy(vma);
4890 		}
4891 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4892 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4893 
4894 		/* This serializes freeing with the shrinker. Since the free
4895 		 * is delayed, first by RCU then by the workqueue, we want the
4896 		 * shrinker to be able to free pages of unreferenced objects,
4897 		 * or else we may oom whilst there are plenty of deferred
4898 		 * freed objects.
4899 		 */
4900 		if (i915_gem_object_has_pages(obj)) {
4901 			spin_lock(&i915->mm.obj_lock);
4902 			list_del_init(&obj->mm.link);
4903 			spin_unlock(&i915->mm.obj_lock);
4904 		}
4905 
4906 		mutex_unlock(&i915->drm.struct_mutex);
4907 
4908 		GEM_BUG_ON(obj->bind_count);
4909 		GEM_BUG_ON(obj->userfault_count);
4910 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4911 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4912 
4913 		if (obj->ops->release)
4914 			obj->ops->release(obj);
4915 
4916 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4917 			atomic_set(&obj->mm.pages_pin_count, 0);
4918 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4919 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4920 
4921 		if (obj->base.import_attach)
4922 			drm_prime_gem_destroy(&obj->base, NULL);
4923 
4924 		reservation_object_fini(&obj->__builtin_resv);
4925 		drm_gem_object_release(&obj->base);
4926 		i915_gem_info_remove_obj(i915, obj->base.size);
4927 
4928 		kfree(obj->bit_17);
4929 		i915_gem_object_free(obj);
4930 
4931 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4932 		atomic_dec(&i915->mm.free_count);
4933 
4934 		if (on)
4935 			cond_resched();
4936 	}
4937 	intel_runtime_pm_put(i915);
4938 }
4939 
i915_gem_flush_free_objects(struct drm_i915_private * i915)4940 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4941 {
4942 	struct llist_node *freed;
4943 
4944 	/* Free the oldest, most stale object to keep the free_list short */
4945 	freed = NULL;
4946 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4947 		/* Only one consumer of llist_del_first() allowed */
4948 		spin_lock(&i915->mm.free_lock);
4949 		freed = llist_del_first(&i915->mm.free_list);
4950 		spin_unlock(&i915->mm.free_lock);
4951 	}
4952 	if (unlikely(freed)) {
4953 		freed->next = NULL;
4954 		__i915_gem_free_objects(i915, freed);
4955 	}
4956 }
4957 
__i915_gem_free_work(struct work_struct * work)4958 static void __i915_gem_free_work(struct work_struct *work)
4959 {
4960 	struct drm_i915_private *i915 =
4961 		container_of(work, struct drm_i915_private, mm.free_work);
4962 	struct llist_node *freed;
4963 
4964 	/*
4965 	 * All file-owned VMA should have been released by this point through
4966 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4967 	 * However, the object may also be bound into the global GTT (e.g.
4968 	 * older GPUs without per-process support, or for direct access through
4969 	 * the GTT either for the user or for scanout). Those VMA still need to
4970 	 * unbound now.
4971 	 */
4972 
4973 	spin_lock(&i915->mm.free_lock);
4974 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4975 		spin_unlock(&i915->mm.free_lock);
4976 
4977 		__i915_gem_free_objects(i915, freed);
4978 		if (need_resched())
4979 			return;
4980 
4981 		spin_lock(&i915->mm.free_lock);
4982 	}
4983 	spin_unlock(&i915->mm.free_lock);
4984 }
4985 
__i915_gem_free_object_rcu(struct rcu_head * head)4986 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4987 {
4988 	struct drm_i915_gem_object *obj =
4989 		container_of(head, typeof(*obj), rcu);
4990 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4991 
4992 	/*
4993 	 * Since we require blocking on struct_mutex to unbind the freed
4994 	 * object from the GPU before releasing resources back to the
4995 	 * system, we can not do that directly from the RCU callback (which may
4996 	 * be a softirq context), but must instead then defer that work onto a
4997 	 * kthread. We use the RCU callback rather than move the freed object
4998 	 * directly onto the work queue so that we can mix between using the
4999 	 * worker and performing frees directly from subsequent allocations for
5000 	 * crude but effective memory throttling.
5001 	 */
5002 	if (llist_add(&obj->freed, &i915->mm.free_list))
5003 		queue_work(i915->wq, &i915->mm.free_work);
5004 }
5005 
i915_gem_free_object(struct drm_gem_object * gem_obj)5006 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5007 {
5008 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5009 
5010 	if (obj->mm.quirked)
5011 		__i915_gem_object_unpin_pages(obj);
5012 
5013 	if (discard_backing_storage(obj))
5014 		obj->mm.madv = I915_MADV_DONTNEED;
5015 
5016 	/*
5017 	 * Before we free the object, make sure any pure RCU-only
5018 	 * read-side critical sections are complete, e.g.
5019 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5020 	 * lookup see i915_gem_object_lookup_rcu().
5021 	 */
5022 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5023 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5024 }
5025 
__i915_gem_object_release_unless_active(struct drm_i915_gem_object * obj)5026 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5027 {
5028 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5029 
5030 	if (!i915_gem_object_has_active_reference(obj) &&
5031 	    i915_gem_object_is_active(obj))
5032 		i915_gem_object_set_active_reference(obj);
5033 	else
5034 		i915_gem_object_put(obj);
5035 }
5036 
i915_gem_sanitize(struct drm_i915_private * i915)5037 void i915_gem_sanitize(struct drm_i915_private *i915)
5038 {
5039 	int err;
5040 
5041 	GEM_TRACE("\n");
5042 
5043 	mutex_lock(&i915->drm.struct_mutex);
5044 
5045 	intel_runtime_pm_get(i915);
5046 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5047 
5048 	/*
5049 	 * As we have just resumed the machine and woken the device up from
5050 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5051 	 * back to defaults, recovering from whatever wedged state we left it
5052 	 * in and so worth trying to use the device once more.
5053 	 */
5054 	if (i915_terminally_wedged(&i915->gpu_error))
5055 		i915_gem_unset_wedged(i915);
5056 
5057 	/*
5058 	 * If we inherit context state from the BIOS or earlier occupants
5059 	 * of the GPU, the GPU may be in an inconsistent state when we
5060 	 * try to take over. The only way to remove the earlier state
5061 	 * is by resetting. However, resetting on earlier gen is tricky as
5062 	 * it may impact the display and we are uncertain about the stability
5063 	 * of the reset, so this could be applied to even earlier gen.
5064 	 */
5065 	err = -ENODEV;
5066 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5067 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5068 	if (!err)
5069 		intel_engines_sanitize(i915);
5070 
5071 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5072 	intel_runtime_pm_put(i915);
5073 
5074 	i915_gem_contexts_lost(i915);
5075 	mutex_unlock(&i915->drm.struct_mutex);
5076 }
5077 
i915_gem_suspend(struct drm_i915_private * i915)5078 int i915_gem_suspend(struct drm_i915_private *i915)
5079 {
5080 	int ret;
5081 
5082 	GEM_TRACE("\n");
5083 
5084 	intel_runtime_pm_get(i915);
5085 	intel_suspend_gt_powersave(i915);
5086 
5087 	mutex_lock(&i915->drm.struct_mutex);
5088 
5089 	/*
5090 	 * We have to flush all the executing contexts to main memory so
5091 	 * that they can saved in the hibernation image. To ensure the last
5092 	 * context image is coherent, we have to switch away from it. That
5093 	 * leaves the i915->kernel_context still active when
5094 	 * we actually suspend, and its image in memory may not match the GPU
5095 	 * state. Fortunately, the kernel_context is disposable and we do
5096 	 * not rely on its state.
5097 	 */
5098 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5099 		ret = i915_gem_switch_to_kernel_context(i915);
5100 		if (ret)
5101 			goto err_unlock;
5102 
5103 		ret = i915_gem_wait_for_idle(i915,
5104 					     I915_WAIT_INTERRUPTIBLE |
5105 					     I915_WAIT_LOCKED |
5106 					     I915_WAIT_FOR_IDLE_BOOST,
5107 					     MAX_SCHEDULE_TIMEOUT);
5108 		if (ret && ret != -EIO)
5109 			goto err_unlock;
5110 
5111 		assert_kernel_context_is_current(i915);
5112 	}
5113 	i915_retire_requests(i915); /* ensure we flush after wedging */
5114 
5115 	mutex_unlock(&i915->drm.struct_mutex);
5116 
5117 	intel_uc_suspend(i915);
5118 
5119 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5120 	cancel_delayed_work_sync(&i915->gt.retire_work);
5121 
5122 	/*
5123 	 * As the idle_work is rearming if it detects a race, play safe and
5124 	 * repeat the flush until it is definitely idle.
5125 	 */
5126 	drain_delayed_work(&i915->gt.idle_work);
5127 
5128 	/*
5129 	 * Assert that we successfully flushed all the work and
5130 	 * reset the GPU back to its idle, low power state.
5131 	 */
5132 	WARN_ON(i915->gt.awake);
5133 	if (WARN_ON(!intel_engines_are_idle(i915)))
5134 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5135 
5136 	intel_runtime_pm_put(i915);
5137 	return 0;
5138 
5139 err_unlock:
5140 	mutex_unlock(&i915->drm.struct_mutex);
5141 	intel_runtime_pm_put(i915);
5142 	return ret;
5143 }
5144 
i915_gem_suspend_late(struct drm_i915_private * i915)5145 void i915_gem_suspend_late(struct drm_i915_private *i915)
5146 {
5147 	struct drm_i915_gem_object *obj;
5148 	struct list_head *phases[] = {
5149 		&i915->mm.unbound_list,
5150 		&i915->mm.bound_list,
5151 		NULL
5152 	}, **phase;
5153 
5154 	/*
5155 	 * Neither the BIOS, ourselves or any other kernel
5156 	 * expects the system to be in execlists mode on startup,
5157 	 * so we need to reset the GPU back to legacy mode. And the only
5158 	 * known way to disable logical contexts is through a GPU reset.
5159 	 *
5160 	 * So in order to leave the system in a known default configuration,
5161 	 * always reset the GPU upon unload and suspend. Afterwards we then
5162 	 * clean up the GEM state tracking, flushing off the requests and
5163 	 * leaving the system in a known idle state.
5164 	 *
5165 	 * Note that is of the upmost importance that the GPU is idle and
5166 	 * all stray writes are flushed *before* we dismantle the backing
5167 	 * storage for the pinned objects.
5168 	 *
5169 	 * However, since we are uncertain that resetting the GPU on older
5170 	 * machines is a good idea, we don't - just in case it leaves the
5171 	 * machine in an unusable condition.
5172 	 */
5173 
5174 	mutex_lock(&i915->drm.struct_mutex);
5175 	for (phase = phases; *phase; phase++) {
5176 		list_for_each_entry(obj, *phase, mm.link)
5177 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5178 	}
5179 	mutex_unlock(&i915->drm.struct_mutex);
5180 
5181 	intel_uc_sanitize(i915);
5182 	i915_gem_sanitize(i915);
5183 }
5184 
i915_gem_resume(struct drm_i915_private * i915)5185 void i915_gem_resume(struct drm_i915_private *i915)
5186 {
5187 	GEM_TRACE("\n");
5188 
5189 	WARN_ON(i915->gt.awake);
5190 
5191 	mutex_lock(&i915->drm.struct_mutex);
5192 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5193 
5194 	i915_gem_restore_gtt_mappings(i915);
5195 	i915_gem_restore_fences(i915);
5196 
5197 	/*
5198 	 * As we didn't flush the kernel context before suspend, we cannot
5199 	 * guarantee that the context image is complete. So let's just reset
5200 	 * it and start again.
5201 	 */
5202 	i915->gt.resume(i915);
5203 
5204 	if (i915_gem_init_hw(i915))
5205 		goto err_wedged;
5206 
5207 	intel_uc_resume(i915);
5208 
5209 	/* Always reload a context for powersaving. */
5210 	if (i915_gem_switch_to_kernel_context(i915))
5211 		goto err_wedged;
5212 
5213 out_unlock:
5214 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5215 	mutex_unlock(&i915->drm.struct_mutex);
5216 	return;
5217 
5218 err_wedged:
5219 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5220 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5221 		i915_gem_set_wedged(i915);
5222 	}
5223 	goto out_unlock;
5224 }
5225 
i915_gem_init_swizzling(struct drm_i915_private * dev_priv)5226 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5227 {
5228 	if (INTEL_GEN(dev_priv) < 5 ||
5229 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5230 		return;
5231 
5232 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5233 				 DISP_TILE_SURFACE_SWIZZLING);
5234 
5235 	if (IS_GEN5(dev_priv))
5236 		return;
5237 
5238 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5239 	if (IS_GEN6(dev_priv))
5240 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5241 	else if (IS_GEN7(dev_priv))
5242 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5243 	else if (IS_GEN8(dev_priv))
5244 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5245 	else
5246 		BUG();
5247 }
5248 
init_unused_ring(struct drm_i915_private * dev_priv,u32 base)5249 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5250 {
5251 	I915_WRITE(RING_CTL(base), 0);
5252 	I915_WRITE(RING_HEAD(base), 0);
5253 	I915_WRITE(RING_TAIL(base), 0);
5254 	I915_WRITE(RING_START(base), 0);
5255 }
5256 
init_unused_rings(struct drm_i915_private * dev_priv)5257 static void init_unused_rings(struct drm_i915_private *dev_priv)
5258 {
5259 	if (IS_I830(dev_priv)) {
5260 		init_unused_ring(dev_priv, PRB1_BASE);
5261 		init_unused_ring(dev_priv, SRB0_BASE);
5262 		init_unused_ring(dev_priv, SRB1_BASE);
5263 		init_unused_ring(dev_priv, SRB2_BASE);
5264 		init_unused_ring(dev_priv, SRB3_BASE);
5265 	} else if (IS_GEN2(dev_priv)) {
5266 		init_unused_ring(dev_priv, SRB0_BASE);
5267 		init_unused_ring(dev_priv, SRB1_BASE);
5268 	} else if (IS_GEN3(dev_priv)) {
5269 		init_unused_ring(dev_priv, PRB1_BASE);
5270 		init_unused_ring(dev_priv, PRB2_BASE);
5271 	}
5272 }
5273 
__i915_gem_restart_engines(void * data)5274 static int __i915_gem_restart_engines(void *data)
5275 {
5276 	struct drm_i915_private *i915 = data;
5277 	struct intel_engine_cs *engine;
5278 	enum intel_engine_id id;
5279 	int err;
5280 
5281 	for_each_engine(engine, i915, id) {
5282 		err = engine->init_hw(engine);
5283 		if (err) {
5284 			DRM_ERROR("Failed to restart %s (%d)\n",
5285 				  engine->name, err);
5286 			return err;
5287 		}
5288 	}
5289 
5290 	return 0;
5291 }
5292 
i915_gem_init_hw(struct drm_i915_private * dev_priv)5293 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5294 {
5295 	int ret;
5296 
5297 	dev_priv->gt.last_init_time = ktime_get();
5298 
5299 	/* Double layer security blanket, see i915_gem_init() */
5300 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5301 
5302 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5303 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5304 
5305 	if (IS_HASWELL(dev_priv))
5306 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5307 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5308 
5309 	if (HAS_PCH_NOP(dev_priv)) {
5310 		if (IS_IVYBRIDGE(dev_priv)) {
5311 			u32 temp = I915_READ(GEN7_MSG_CTL);
5312 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5313 			I915_WRITE(GEN7_MSG_CTL, temp);
5314 		} else if (INTEL_GEN(dev_priv) >= 7) {
5315 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5316 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5317 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5318 		}
5319 	}
5320 
5321 	intel_gt_workarounds_apply(dev_priv);
5322 
5323 	i915_gem_init_swizzling(dev_priv);
5324 
5325 	/*
5326 	 * At least 830 can leave some of the unused rings
5327 	 * "active" (ie. head != tail) after resume which
5328 	 * will prevent c3 entry. Makes sure all unused rings
5329 	 * are totally idle.
5330 	 */
5331 	init_unused_rings(dev_priv);
5332 
5333 	BUG_ON(!dev_priv->kernel_context);
5334 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5335 		ret = -EIO;
5336 		goto out;
5337 	}
5338 
5339 	ret = i915_ppgtt_init_hw(dev_priv);
5340 	if (ret) {
5341 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5342 		goto out;
5343 	}
5344 
5345 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5346 	if (ret) {
5347 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5348 		goto out;
5349 	}
5350 
5351 	/* We can't enable contexts until all firmware is loaded */
5352 	ret = intel_uc_init_hw(dev_priv);
5353 	if (ret) {
5354 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5355 		goto out;
5356 	}
5357 
5358 	intel_mocs_init_l3cc_table(dev_priv);
5359 
5360 	/* Only when the HW is re-initialised, can we replay the requests */
5361 	ret = __i915_gem_restart_engines(dev_priv);
5362 	if (ret)
5363 		goto cleanup_uc;
5364 
5365 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5366 
5367 	return 0;
5368 
5369 cleanup_uc:
5370 	intel_uc_fini_hw(dev_priv);
5371 out:
5372 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5373 
5374 	return ret;
5375 }
5376 
__intel_engines_record_defaults(struct drm_i915_private * i915)5377 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5378 {
5379 	struct i915_gem_context *ctx;
5380 	struct intel_engine_cs *engine;
5381 	enum intel_engine_id id;
5382 	int err;
5383 
5384 	/*
5385 	 * As we reset the gpu during very early sanitisation, the current
5386 	 * register state on the GPU should reflect its defaults values.
5387 	 * We load a context onto the hw (with restore-inhibit), then switch
5388 	 * over to a second context to save that default register state. We
5389 	 * can then prime every new context with that state so they all start
5390 	 * from the same default HW values.
5391 	 */
5392 
5393 	ctx = i915_gem_context_create_kernel(i915, 0);
5394 	if (IS_ERR(ctx))
5395 		return PTR_ERR(ctx);
5396 
5397 	for_each_engine(engine, i915, id) {
5398 		struct i915_request *rq;
5399 
5400 		rq = i915_request_alloc(engine, ctx);
5401 		if (IS_ERR(rq)) {
5402 			err = PTR_ERR(rq);
5403 			goto out_ctx;
5404 		}
5405 
5406 		err = 0;
5407 		if (engine->init_context)
5408 			err = engine->init_context(rq);
5409 
5410 		i915_request_add(rq);
5411 		if (err)
5412 			goto err_active;
5413 	}
5414 
5415 	err = i915_gem_switch_to_kernel_context(i915);
5416 	if (err)
5417 		goto err_active;
5418 
5419 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5420 		i915_gem_set_wedged(i915);
5421 		err = -EIO; /* Caller will declare us wedged */
5422 		goto err_active;
5423 	}
5424 
5425 	assert_kernel_context_is_current(i915);
5426 
5427 	for_each_engine(engine, i915, id) {
5428 		struct i915_vma *state;
5429 
5430 		state = to_intel_context(ctx, engine)->state;
5431 		if (!state)
5432 			continue;
5433 
5434 		/*
5435 		 * As we will hold a reference to the logical state, it will
5436 		 * not be torn down with the context, and importantly the
5437 		 * object will hold onto its vma (making it possible for a
5438 		 * stray GTT write to corrupt our defaults). Unmap the vma
5439 		 * from the GTT to prevent such accidents and reclaim the
5440 		 * space.
5441 		 */
5442 		err = i915_vma_unbind(state);
5443 		if (err)
5444 			goto err_active;
5445 
5446 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5447 		if (err)
5448 			goto err_active;
5449 
5450 		engine->default_state = i915_gem_object_get(state->obj);
5451 	}
5452 
5453 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5454 		unsigned int found = intel_engines_has_context_isolation(i915);
5455 
5456 		/*
5457 		 * Make sure that classes with multiple engine instances all
5458 		 * share the same basic configuration.
5459 		 */
5460 		for_each_engine(engine, i915, id) {
5461 			unsigned int bit = BIT(engine->uabi_class);
5462 			unsigned int expected = engine->default_state ? bit : 0;
5463 
5464 			if ((found & bit) != expected) {
5465 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5466 					  engine->uabi_class, engine->name);
5467 			}
5468 		}
5469 	}
5470 
5471 out_ctx:
5472 	i915_gem_context_set_closed(ctx);
5473 	i915_gem_context_put(ctx);
5474 	return err;
5475 
5476 err_active:
5477 	/*
5478 	 * If we have to abandon now, we expect the engines to be idle
5479 	 * and ready to be torn-down. First try to flush any remaining
5480 	 * request, ensure we are pointing at the kernel context and
5481 	 * then remove it.
5482 	 */
5483 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5484 		goto out_ctx;
5485 
5486 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5487 					   I915_WAIT_LOCKED,
5488 					   MAX_SCHEDULE_TIMEOUT)))
5489 		goto out_ctx;
5490 
5491 	i915_gem_contexts_lost(i915);
5492 	goto out_ctx;
5493 }
5494 
i915_gem_init(struct drm_i915_private * dev_priv)5495 int i915_gem_init(struct drm_i915_private *dev_priv)
5496 {
5497 	int ret;
5498 
5499 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5500 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5501 		mkwrite_device_info(dev_priv)->page_sizes =
5502 			I915_GTT_PAGE_SIZE_4K;
5503 
5504 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5505 
5506 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5507 		dev_priv->gt.resume = intel_lr_context_resume;
5508 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5509 	} else {
5510 		dev_priv->gt.resume = intel_legacy_submission_resume;
5511 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5512 	}
5513 
5514 	ret = i915_gem_init_userptr(dev_priv);
5515 	if (ret)
5516 		return ret;
5517 
5518 	ret = intel_uc_init_misc(dev_priv);
5519 	if (ret)
5520 		return ret;
5521 
5522 	ret = intel_wopcm_init(&dev_priv->wopcm);
5523 	if (ret)
5524 		goto err_uc_misc;
5525 
5526 	/* This is just a security blanket to placate dragons.
5527 	 * On some systems, we very sporadically observe that the first TLBs
5528 	 * used by the CS may be stale, despite us poking the TLB reset. If
5529 	 * we hold the forcewake during initialisation these problems
5530 	 * just magically go away.
5531 	 */
5532 	mutex_lock(&dev_priv->drm.struct_mutex);
5533 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5534 
5535 	ret = i915_gem_init_ggtt(dev_priv);
5536 	if (ret) {
5537 		GEM_BUG_ON(ret == -EIO);
5538 		goto err_unlock;
5539 	}
5540 
5541 	ret = i915_gem_contexts_init(dev_priv);
5542 	if (ret) {
5543 		GEM_BUG_ON(ret == -EIO);
5544 		goto err_ggtt;
5545 	}
5546 
5547 	ret = intel_engines_init(dev_priv);
5548 	if (ret) {
5549 		GEM_BUG_ON(ret == -EIO);
5550 		goto err_context;
5551 	}
5552 
5553 	intel_init_gt_powersave(dev_priv);
5554 
5555 	ret = intel_uc_init(dev_priv);
5556 	if (ret)
5557 		goto err_pm;
5558 
5559 	ret = i915_gem_init_hw(dev_priv);
5560 	if (ret)
5561 		goto err_uc_init;
5562 
5563 	/*
5564 	 * Despite its name intel_init_clock_gating applies both display
5565 	 * clock gating workarounds; GT mmio workarounds and the occasional
5566 	 * GT power context workaround. Worse, sometimes it includes a context
5567 	 * register workaround which we need to apply before we record the
5568 	 * default HW state for all contexts.
5569 	 *
5570 	 * FIXME: break up the workarounds and apply them at the right time!
5571 	 */
5572 	intel_init_clock_gating(dev_priv);
5573 
5574 	ret = __intel_engines_record_defaults(dev_priv);
5575 	if (ret)
5576 		goto err_init_hw;
5577 
5578 	if (i915_inject_load_failure()) {
5579 		ret = -ENODEV;
5580 		goto err_init_hw;
5581 	}
5582 
5583 	if (i915_inject_load_failure()) {
5584 		ret = -EIO;
5585 		goto err_init_hw;
5586 	}
5587 
5588 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5589 	mutex_unlock(&dev_priv->drm.struct_mutex);
5590 
5591 	return 0;
5592 
5593 	/*
5594 	 * Unwinding is complicated by that we want to handle -EIO to mean
5595 	 * disable GPU submission but keep KMS alive. We want to mark the
5596 	 * HW as irrevisibly wedged, but keep enough state around that the
5597 	 * driver doesn't explode during runtime.
5598 	 */
5599 err_init_hw:
5600 	mutex_unlock(&dev_priv->drm.struct_mutex);
5601 
5602 	WARN_ON(i915_gem_suspend(dev_priv));
5603 	i915_gem_suspend_late(dev_priv);
5604 
5605 	i915_gem_drain_workqueue(dev_priv);
5606 
5607 	mutex_lock(&dev_priv->drm.struct_mutex);
5608 	intel_uc_fini_hw(dev_priv);
5609 err_uc_init:
5610 	intel_uc_fini(dev_priv);
5611 err_pm:
5612 	if (ret != -EIO) {
5613 		intel_cleanup_gt_powersave(dev_priv);
5614 		i915_gem_cleanup_engines(dev_priv);
5615 	}
5616 err_context:
5617 	if (ret != -EIO)
5618 		i915_gem_contexts_fini(dev_priv);
5619 err_ggtt:
5620 err_unlock:
5621 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5622 	mutex_unlock(&dev_priv->drm.struct_mutex);
5623 
5624 err_uc_misc:
5625 	intel_uc_fini_misc(dev_priv);
5626 
5627 	if (ret != -EIO)
5628 		i915_gem_cleanup_userptr(dev_priv);
5629 
5630 	if (ret == -EIO) {
5631 		mutex_lock(&dev_priv->drm.struct_mutex);
5632 
5633 		/*
5634 		 * Allow engine initialisation to fail by marking the GPU as
5635 		 * wedged. But we only want to do this where the GPU is angry,
5636 		 * for all other failure, such as an allocation failure, bail.
5637 		 */
5638 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5639 			i915_load_error(dev_priv,
5640 					"Failed to initialize GPU, declaring it wedged!\n");
5641 			i915_gem_set_wedged(dev_priv);
5642 		}
5643 
5644 		/* Minimal basic recovery for KMS */
5645 		ret = i915_ggtt_enable_hw(dev_priv);
5646 		i915_gem_restore_gtt_mappings(dev_priv);
5647 		i915_gem_restore_fences(dev_priv);
5648 		intel_init_clock_gating(dev_priv);
5649 
5650 		mutex_unlock(&dev_priv->drm.struct_mutex);
5651 	}
5652 
5653 	i915_gem_drain_freed_objects(dev_priv);
5654 	return ret;
5655 }
5656 
i915_gem_fini(struct drm_i915_private * dev_priv)5657 void i915_gem_fini(struct drm_i915_private *dev_priv)
5658 {
5659 	i915_gem_suspend_late(dev_priv);
5660 	intel_disable_gt_powersave(dev_priv);
5661 
5662 	/* Flush any outstanding unpin_work. */
5663 	i915_gem_drain_workqueue(dev_priv);
5664 
5665 	mutex_lock(&dev_priv->drm.struct_mutex);
5666 	intel_uc_fini_hw(dev_priv);
5667 	intel_uc_fini(dev_priv);
5668 	i915_gem_cleanup_engines(dev_priv);
5669 	i915_gem_contexts_fini(dev_priv);
5670 	mutex_unlock(&dev_priv->drm.struct_mutex);
5671 
5672 	intel_cleanup_gt_powersave(dev_priv);
5673 
5674 	intel_uc_fini_misc(dev_priv);
5675 	i915_gem_cleanup_userptr(dev_priv);
5676 
5677 	i915_gem_drain_freed_objects(dev_priv);
5678 
5679 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5680 }
5681 
i915_gem_init_mmio(struct drm_i915_private * i915)5682 void i915_gem_init_mmio(struct drm_i915_private *i915)
5683 {
5684 	i915_gem_sanitize(i915);
5685 }
5686 
5687 void
i915_gem_cleanup_engines(struct drm_i915_private * dev_priv)5688 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5689 {
5690 	struct intel_engine_cs *engine;
5691 	enum intel_engine_id id;
5692 
5693 	for_each_engine(engine, dev_priv, id)
5694 		dev_priv->gt.cleanup_engine(engine);
5695 }
5696 
5697 void
i915_gem_load_init_fences(struct drm_i915_private * dev_priv)5698 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5699 {
5700 	int i;
5701 
5702 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5703 	    !IS_CHERRYVIEW(dev_priv))
5704 		dev_priv->num_fence_regs = 32;
5705 	else if (INTEL_GEN(dev_priv) >= 4 ||
5706 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5707 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5708 		dev_priv->num_fence_regs = 16;
5709 	else
5710 		dev_priv->num_fence_regs = 8;
5711 
5712 	if (intel_vgpu_active(dev_priv))
5713 		dev_priv->num_fence_regs =
5714 				I915_READ(vgtif_reg(avail_rs.fence_num));
5715 
5716 	/* Initialize fence registers to zero */
5717 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5718 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5719 
5720 		fence->i915 = dev_priv;
5721 		fence->id = i;
5722 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5723 	}
5724 	i915_gem_restore_fences(dev_priv);
5725 
5726 	i915_gem_detect_bit_6_swizzle(dev_priv);
5727 }
5728 
i915_gem_init__mm(struct drm_i915_private * i915)5729 static void i915_gem_init__mm(struct drm_i915_private *i915)
5730 {
5731 	spin_lock_init(&i915->mm.object_stat_lock);
5732 	spin_lock_init(&i915->mm.obj_lock);
5733 	spin_lock_init(&i915->mm.free_lock);
5734 
5735 	init_llist_head(&i915->mm.free_list);
5736 
5737 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5738 	INIT_LIST_HEAD(&i915->mm.bound_list);
5739 	INIT_LIST_HEAD(&i915->mm.fence_list);
5740 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5741 
5742 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5743 }
5744 
i915_gem_init_early(struct drm_i915_private * dev_priv)5745 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5746 {
5747 	int err = -ENOMEM;
5748 
5749 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5750 	if (!dev_priv->objects)
5751 		goto err_out;
5752 
5753 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5754 	if (!dev_priv->vmas)
5755 		goto err_objects;
5756 
5757 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5758 	if (!dev_priv->luts)
5759 		goto err_vmas;
5760 
5761 	dev_priv->requests = KMEM_CACHE(i915_request,
5762 					SLAB_HWCACHE_ALIGN |
5763 					SLAB_RECLAIM_ACCOUNT |
5764 					SLAB_TYPESAFE_BY_RCU);
5765 	if (!dev_priv->requests)
5766 		goto err_luts;
5767 
5768 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5769 					    SLAB_HWCACHE_ALIGN |
5770 					    SLAB_RECLAIM_ACCOUNT);
5771 	if (!dev_priv->dependencies)
5772 		goto err_requests;
5773 
5774 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5775 	if (!dev_priv->priorities)
5776 		goto err_dependencies;
5777 
5778 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5779 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5780 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5781 
5782 	i915_gem_init__mm(dev_priv);
5783 
5784 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5785 			  i915_gem_retire_work_handler);
5786 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5787 			  i915_gem_idle_work_handler);
5788 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5789 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5790 
5791 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5792 
5793 	spin_lock_init(&dev_priv->fb_tracking.lock);
5794 
5795 	err = i915_gemfs_init(dev_priv);
5796 	if (err)
5797 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5798 
5799 	return 0;
5800 
5801 err_dependencies:
5802 	kmem_cache_destroy(dev_priv->dependencies);
5803 err_requests:
5804 	kmem_cache_destroy(dev_priv->requests);
5805 err_luts:
5806 	kmem_cache_destroy(dev_priv->luts);
5807 err_vmas:
5808 	kmem_cache_destroy(dev_priv->vmas);
5809 err_objects:
5810 	kmem_cache_destroy(dev_priv->objects);
5811 err_out:
5812 	return err;
5813 }
5814 
i915_gem_cleanup_early(struct drm_i915_private * dev_priv)5815 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5816 {
5817 	i915_gem_drain_freed_objects(dev_priv);
5818 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5819 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5820 	WARN_ON(dev_priv->mm.object_count);
5821 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5822 
5823 	kmem_cache_destroy(dev_priv->priorities);
5824 	kmem_cache_destroy(dev_priv->dependencies);
5825 	kmem_cache_destroy(dev_priv->requests);
5826 	kmem_cache_destroy(dev_priv->luts);
5827 	kmem_cache_destroy(dev_priv->vmas);
5828 	kmem_cache_destroy(dev_priv->objects);
5829 
5830 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5831 	rcu_barrier();
5832 
5833 	i915_gemfs_fini(dev_priv);
5834 }
5835 
i915_gem_freeze(struct drm_i915_private * dev_priv)5836 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5837 {
5838 	/* Discard all purgeable objects, let userspace recover those as
5839 	 * required after resuming.
5840 	 */
5841 	i915_gem_shrink_all(dev_priv);
5842 
5843 	return 0;
5844 }
5845 
i915_gem_freeze_late(struct drm_i915_private * i915)5846 int i915_gem_freeze_late(struct drm_i915_private *i915)
5847 {
5848 	struct drm_i915_gem_object *obj;
5849 	struct list_head *phases[] = {
5850 		&i915->mm.unbound_list,
5851 		&i915->mm.bound_list,
5852 		NULL
5853 	}, **phase;
5854 
5855 	/*
5856 	 * Called just before we write the hibernation image.
5857 	 *
5858 	 * We need to update the domain tracking to reflect that the CPU
5859 	 * will be accessing all the pages to create and restore from the
5860 	 * hibernation, and so upon restoration those pages will be in the
5861 	 * CPU domain.
5862 	 *
5863 	 * To make sure the hibernation image contains the latest state,
5864 	 * we update that state just before writing out the image.
5865 	 *
5866 	 * To try and reduce the hibernation image, we manually shrink
5867 	 * the objects as well, see i915_gem_freeze()
5868 	 */
5869 
5870 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5871 	i915_gem_drain_freed_objects(i915);
5872 
5873 	mutex_lock(&i915->drm.struct_mutex);
5874 	for (phase = phases; *phase; phase++) {
5875 		list_for_each_entry(obj, *phase, mm.link)
5876 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5877 	}
5878 	mutex_unlock(&i915->drm.struct_mutex);
5879 
5880 	return 0;
5881 }
5882 
i915_gem_release(struct drm_device * dev,struct drm_file * file)5883 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5884 {
5885 	struct drm_i915_file_private *file_priv = file->driver_priv;
5886 	struct i915_request *request;
5887 
5888 	/* Clean up our request list when the client is going away, so that
5889 	 * later retire_requests won't dereference our soon-to-be-gone
5890 	 * file_priv.
5891 	 */
5892 	spin_lock(&file_priv->mm.lock);
5893 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5894 		request->file_priv = NULL;
5895 	spin_unlock(&file_priv->mm.lock);
5896 }
5897 
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)5898 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5899 {
5900 	struct drm_i915_file_private *file_priv;
5901 	int ret;
5902 
5903 	DRM_DEBUG("\n");
5904 
5905 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5906 	if (!file_priv)
5907 		return -ENOMEM;
5908 
5909 	file->driver_priv = file_priv;
5910 	file_priv->dev_priv = i915;
5911 	file_priv->file = file;
5912 
5913 	spin_lock_init(&file_priv->mm.lock);
5914 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5915 
5916 	file_priv->bsd_engine = -1;
5917 	file_priv->hang_timestamp = jiffies;
5918 
5919 	ret = i915_gem_context_open(i915, file);
5920 	if (ret)
5921 		kfree(file_priv);
5922 
5923 	return ret;
5924 }
5925 
5926 /**
5927  * i915_gem_track_fb - update frontbuffer tracking
5928  * @old: current GEM buffer for the frontbuffer slots
5929  * @new: new GEM buffer for the frontbuffer slots
5930  * @frontbuffer_bits: bitmask of frontbuffer slots
5931  *
5932  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5933  * from @old and setting them in @new. Both @old and @new can be NULL.
5934  */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5935 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5936 		       struct drm_i915_gem_object *new,
5937 		       unsigned frontbuffer_bits)
5938 {
5939 	/* Control of individual bits within the mask are guarded by
5940 	 * the owning plane->mutex, i.e. we can never see concurrent
5941 	 * manipulation of individual bits. But since the bitfield as a whole
5942 	 * is updated using RMW, we need to use atomics in order to update
5943 	 * the bits.
5944 	 */
5945 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5946 		     sizeof(atomic_t) * BITS_PER_BYTE);
5947 
5948 	if (old) {
5949 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5950 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5951 	}
5952 
5953 	if (new) {
5954 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5955 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5956 	}
5957 }
5958 
5959 /* Allocate a new GEM object and fill it with the supplied data */
5960 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)5961 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5962 			         const void *data, size_t size)
5963 {
5964 	struct drm_i915_gem_object *obj;
5965 	struct file *file;
5966 	size_t offset;
5967 	int err;
5968 
5969 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5970 	if (IS_ERR(obj))
5971 		return obj;
5972 
5973 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5974 
5975 	file = obj->base.filp;
5976 	offset = 0;
5977 	do {
5978 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5979 		struct page *page;
5980 		void *pgdata, *vaddr;
5981 
5982 		err = pagecache_write_begin(file, file->f_mapping,
5983 					    offset, len, 0,
5984 					    &page, &pgdata);
5985 		if (err < 0)
5986 			goto fail;
5987 
5988 		vaddr = kmap(page);
5989 		memcpy(vaddr, data, len);
5990 		kunmap(page);
5991 
5992 		err = pagecache_write_end(file, file->f_mapping,
5993 					  offset, len, len,
5994 					  page, pgdata);
5995 		if (err < 0)
5996 			goto fail;
5997 
5998 		size -= len;
5999 		data += len;
6000 		offset += len;
6001 	} while (size);
6002 
6003 	return obj;
6004 
6005 fail:
6006 	i915_gem_object_put(obj);
6007 	return ERR_PTR(err);
6008 }
6009 
6010 struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object * obj,unsigned int n,unsigned int * offset)6011 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6012 		       unsigned int n,
6013 		       unsigned int *offset)
6014 {
6015 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6016 	struct scatterlist *sg;
6017 	unsigned int idx, count;
6018 
6019 	might_sleep();
6020 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6021 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6022 
6023 	/* As we iterate forward through the sg, we record each entry in a
6024 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6025 	 * this index previously, we will have an entry for it.
6026 	 *
6027 	 * Initial lookup is O(N), but this is amortized to O(1) for
6028 	 * sequential page access (where each new request is consecutive
6029 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6030 	 * i.e. O(1) with a large constant!
6031 	 */
6032 	if (n < READ_ONCE(iter->sg_idx))
6033 		goto lookup;
6034 
6035 	mutex_lock(&iter->lock);
6036 
6037 	/* We prefer to reuse the last sg so that repeated lookup of this
6038 	 * (or the subsequent) sg are fast - comparing against the last
6039 	 * sg is faster than going through the radixtree.
6040 	 */
6041 
6042 	sg = iter->sg_pos;
6043 	idx = iter->sg_idx;
6044 	count = __sg_page_count(sg);
6045 
6046 	while (idx + count <= n) {
6047 		unsigned long exception, i;
6048 		int ret;
6049 
6050 		/* If we cannot allocate and insert this entry, or the
6051 		 * individual pages from this range, cancel updating the
6052 		 * sg_idx so that on this lookup we are forced to linearly
6053 		 * scan onwards, but on future lookups we will try the
6054 		 * insertion again (in which case we need to be careful of
6055 		 * the error return reporting that we have already inserted
6056 		 * this index).
6057 		 */
6058 		ret = radix_tree_insert(&iter->radix, idx, sg);
6059 		if (ret && ret != -EEXIST)
6060 			goto scan;
6061 
6062 		exception =
6063 			RADIX_TREE_EXCEPTIONAL_ENTRY |
6064 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6065 		for (i = 1; i < count; i++) {
6066 			ret = radix_tree_insert(&iter->radix, idx + i,
6067 						(void *)exception);
6068 			if (ret && ret != -EEXIST)
6069 				goto scan;
6070 		}
6071 
6072 		idx += count;
6073 		sg = ____sg_next(sg);
6074 		count = __sg_page_count(sg);
6075 	}
6076 
6077 scan:
6078 	iter->sg_pos = sg;
6079 	iter->sg_idx = idx;
6080 
6081 	mutex_unlock(&iter->lock);
6082 
6083 	if (unlikely(n < idx)) /* insertion completed by another thread */
6084 		goto lookup;
6085 
6086 	/* In case we failed to insert the entry into the radixtree, we need
6087 	 * to look beyond the current sg.
6088 	 */
6089 	while (idx + count <= n) {
6090 		idx += count;
6091 		sg = ____sg_next(sg);
6092 		count = __sg_page_count(sg);
6093 	}
6094 
6095 	*offset = n - idx;
6096 	return sg;
6097 
6098 lookup:
6099 	rcu_read_lock();
6100 
6101 	sg = radix_tree_lookup(&iter->radix, n);
6102 	GEM_BUG_ON(!sg);
6103 
6104 	/* If this index is in the middle of multi-page sg entry,
6105 	 * the radixtree will contain an exceptional entry that points
6106 	 * to the start of that range. We will return the pointer to
6107 	 * the base page and the offset of this page within the
6108 	 * sg entry's range.
6109 	 */
6110 	*offset = 0;
6111 	if (unlikely(radix_tree_exception(sg))) {
6112 		unsigned long base =
6113 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6114 
6115 		sg = radix_tree_lookup(&iter->radix, base);
6116 		GEM_BUG_ON(!sg);
6117 
6118 		*offset = n - base;
6119 	}
6120 
6121 	rcu_read_unlock();
6122 
6123 	return sg;
6124 }
6125 
6126 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)6127 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6128 {
6129 	struct scatterlist *sg;
6130 	unsigned int offset;
6131 
6132 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6133 
6134 	sg = i915_gem_object_get_sg(obj, n, &offset);
6135 	return nth_page(sg_page(sg), offset);
6136 }
6137 
6138 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6139 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)6140 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6141 			       unsigned int n)
6142 {
6143 	struct page *page;
6144 
6145 	page = i915_gem_object_get_page(obj, n);
6146 	if (!obj->mm.dirty)
6147 		set_page_dirty(page);
6148 
6149 	return page;
6150 }
6151 
6152 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)6153 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6154 				unsigned long n)
6155 {
6156 	struct scatterlist *sg;
6157 	unsigned int offset;
6158 
6159 	sg = i915_gem_object_get_sg(obj, n, &offset);
6160 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6161 }
6162 
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)6163 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6164 {
6165 	struct sg_table *pages;
6166 	int err;
6167 
6168 	if (align > obj->base.size)
6169 		return -EINVAL;
6170 
6171 	if (obj->ops == &i915_gem_phys_ops)
6172 		return 0;
6173 
6174 	if (obj->ops != &i915_gem_object_ops)
6175 		return -EINVAL;
6176 
6177 	err = i915_gem_object_unbind(obj);
6178 	if (err)
6179 		return err;
6180 
6181 	mutex_lock(&obj->mm.lock);
6182 
6183 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6184 		err = -EFAULT;
6185 		goto err_unlock;
6186 	}
6187 
6188 	if (obj->mm.quirked) {
6189 		err = -EFAULT;
6190 		goto err_unlock;
6191 	}
6192 
6193 	if (obj->mm.mapping) {
6194 		err = -EBUSY;
6195 		goto err_unlock;
6196 	}
6197 
6198 	pages = __i915_gem_object_unset_pages(obj);
6199 
6200 	obj->ops = &i915_gem_phys_ops;
6201 
6202 	err = ____i915_gem_object_get_pages(obj);
6203 	if (err)
6204 		goto err_xfer;
6205 
6206 	/* Perma-pin (until release) the physical set of pages */
6207 	__i915_gem_object_pin_pages(obj);
6208 
6209 	if (!IS_ERR_OR_NULL(pages))
6210 		i915_gem_object_ops.put_pages(obj, pages);
6211 	mutex_unlock(&obj->mm.lock);
6212 	return 0;
6213 
6214 err_xfer:
6215 	obj->ops = &i915_gem_object_ops;
6216 	if (!IS_ERR_OR_NULL(pages)) {
6217 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6218 
6219 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6220 	}
6221 err_unlock:
6222 	mutex_unlock(&obj->mm.lock);
6223 	return err;
6224 }
6225 
6226 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6227 #include "selftests/scatterlist.c"
6228 #include "selftests/mock_gem_device.c"
6229 #include "selftests/huge_gem_object.c"
6230 #include "selftests/huge_pages.c"
6231 #include "selftests/i915_gem_object.c"
6232 #include "selftests/i915_gem_coherency.c"
6233 #endif
6234