1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16
17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45 static void ice_vsi_release_all(struct ice_pf *pf);
46
47 /**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62 }
63
64 /**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116 }
117
118 /**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153 }
154
155 /**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175 }
176
177 /**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 /* Under some circumstances, we might receive a request to delete our
193 * own device address from our uc list. Because we store the device
194 * address in the VSI's MAC filter list, we need to ignore such
195 * requests and not delete our device address from this list.
196 */
197 if (ether_addr_equal(addr, netdev->dev_addr))
198 return 0;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_vsi_fltr_changed - check if filter state changed
209 * @vsi: VSI to be checked
210 *
211 * returns true if filter state has changed, false otherwise.
212 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219
220 /**
221 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222 * @vsi: the VSI being configured
223 * @promisc_m: mask of promiscuous config bits
224 * @set_promisc: enable or disable promisc flag request
225 *
226 */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 struct ice_hw *hw = &vsi->back->hw;
230 enum ice_status status = 0;
231
232 if (vsi->type != ICE_VSI_PF)
233 return 0;
234
235 if (vsi->vlan_ena) {
236 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 set_promisc);
238 } else {
239 if (set_promisc)
240 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 0);
242 else
243 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 0);
245 }
246
247 if (status)
248 return -EIO;
249
250 return 0;
251 }
252
253 /**
254 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255 * @vsi: ptr to the VSI
256 *
257 * Push any outstanding VSI filter changes through the AdminQ.
258 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 struct device *dev = ice_pf_to_dev(vsi->back);
262 struct net_device *netdev = vsi->netdev;
263 bool promisc_forced_on = false;
264 struct ice_pf *pf = vsi->back;
265 struct ice_hw *hw = &pf->hw;
266 enum ice_status status = 0;
267 u32 changed_flags = 0;
268 u8 promisc_m;
269 int err = 0;
270
271 if (!vsi->netdev)
272 return -EINVAL;
273
274 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 usleep_range(1000, 2000);
276
277 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 vsi->current_netdev_flags = vsi->netdev->flags;
279
280 INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282
283 if (ice_vsi_fltr_changed(vsi)) {
284 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287
288 /* grab the netdev's addr_list_lock */
289 netif_addr_lock_bh(netdev);
290 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 ice_add_mac_to_unsync_list);
292 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 /* our temp lists are populated. release lock */
295 netif_addr_unlock_bh(netdev);
296 }
297
298 /* Remove MAC addresses in the unsync list */
299 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 if (status) {
302 netdev_err(netdev, "Failed to delete MAC filters\n");
303 /* if we failed because of alloc failures, just bail */
304 if (status == ICE_ERR_NO_MEMORY) {
305 err = -ENOMEM;
306 goto out;
307 }
308 }
309
310 /* Add MAC addresses in the sync list */
311 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 /* If filter is added successfully or already exists, do not go into
314 * 'if' condition and report it as error. Instead continue processing
315 * rest of the function.
316 */
317 if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 netdev_err(netdev, "Failed to add MAC filters\n");
319 /* If there is no more space for new umac filters, VSI
320 * should go into promiscuous mode. There should be some
321 * space reserved for promiscuous filters.
322 */
323 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 vsi->state)) {
326 promisc_forced_on = true;
327 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 vsi->vsi_num);
329 } else {
330 err = -EIO;
331 goto out;
332 }
333 }
334 /* check for changes in promiscuous modes */
335 if (changed_flags & IFF_ALLMULTI) {
336 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 if (vsi->vlan_ena)
338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 else
340 promisc_m = ICE_MCAST_PROMISC_BITS;
341
342 err = ice_cfg_promisc(vsi, promisc_m, true);
343 if (err) {
344 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 vsi->vsi_num);
346 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 goto out_promisc;
348 }
349 } else {
350 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 if (vsi->vlan_ena)
352 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 else
354 promisc_m = ICE_MCAST_PROMISC_BITS;
355
356 err = ice_cfg_promisc(vsi, promisc_m, false);
357 if (err) {
358 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 vsi->vsi_num);
360 vsi->current_netdev_flags |= IFF_ALLMULTI;
361 goto out_promisc;
362 }
363 }
364 }
365
366 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 if (vsi->current_netdev_flags & IFF_PROMISC) {
370 /* Apply Rx filter rule to get traffic from wire */
371 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 err, vsi->vsi_num);
376 vsi->current_netdev_flags &=
377 ~IFF_PROMISC;
378 goto out_promisc;
379 }
380 ice_cfg_vlan_pruning(vsi, false, false);
381 }
382 } else {
383 /* Clear Rx filter to remove traffic from wire */
384 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 err = ice_clear_dflt_vsi(pf->first_sw);
386 if (err) {
387 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 err, vsi->vsi_num);
389 vsi->current_netdev_flags |=
390 IFF_PROMISC;
391 goto out_promisc;
392 }
393 if (vsi->num_vlan > 1)
394 ice_cfg_vlan_pruning(vsi, true, false);
395 }
396 }
397 }
398 goto exit;
399
400 out_promisc:
401 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 goto exit;
403 out:
404 /* if something went wrong then set the changed flag so we try again */
405 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 clear_bit(__ICE_CFG_BUSY, vsi->state);
409 return err;
410 }
411
412 /**
413 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414 * @pf: board private structure
415 */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 int v;
419
420 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 return;
422
423 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424
425 ice_for_each_vsi(pf, v)
426 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 ice_vsi_sync_fltr(pf->vsi[v])) {
428 /* come back and try again later */
429 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 break;
431 }
432 }
433
434 /**
435 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436 * @pf: the PF
437 * @locked: is the rtnl_lock already held
438 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 int v;
442
443 ice_for_each_vsi(pf, v)
444 if (pf->vsi[v])
445 ice_dis_vsi(pf->vsi[v], locked);
446 }
447
448 /**
449 * ice_prepare_for_reset - prep for the core to reset
450 * @pf: board private structure
451 *
452 * Inform or close all dependent features in prep for reset.
453 */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 struct ice_hw *hw = &pf->hw;
458 unsigned int i;
459
460 /* already prepared for reset */
461 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 return;
463
464 /* Notify VFs of impending reset */
465 if (ice_check_sq_alive(hw, &hw->mailboxq))
466 ice_vc_notify_reset(pf);
467
468 /* Disable VFs until reset is completed */
469 ice_for_each_vf(pf, i)
470 ice_set_vf_state_qs_dis(&pf->vf[i]);
471
472 /* clear SW filtering DB */
473 ice_clear_hw_tbls(hw);
474 /* disable the VSIs and their queues that are not already DOWN */
475 ice_pf_dis_all_vsi(pf, false);
476
477 if (hw->port_info)
478 ice_sched_clear_port(hw->port_info);
479
480 ice_shutdown_all_ctrlq(hw);
481
482 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484
485 /**
486 * ice_do_reset - Initiate one of many types of resets
487 * @pf: board private structure
488 * @reset_type: reset type requested
489 * before this function was called.
490 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 struct device *dev = ice_pf_to_dev(pf);
494 struct ice_hw *hw = &pf->hw;
495
496 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497
498 ice_prepare_for_reset(pf);
499
500 /* trigger the reset */
501 if (ice_reset(hw, reset_type)) {
502 dev_err(dev, "reset %d failed\n", reset_type);
503 set_bit(__ICE_RESET_FAILED, pf->state);
504 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 clear_bit(__ICE_PFR_REQ, pf->state);
507 clear_bit(__ICE_CORER_REQ, pf->state);
508 clear_bit(__ICE_GLOBR_REQ, pf->state);
509 return;
510 }
511
512 /* PFR is a bit of a special case because it doesn't result in an OICR
513 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 * associated state bits.
515 */
516 if (reset_type == ICE_RESET_PFR) {
517 pf->pfr_count++;
518 ice_rebuild(pf, reset_type);
519 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(__ICE_PFR_REQ, pf->state);
521 ice_reset_all_vfs(pf, true);
522 }
523 }
524
525 /**
526 * ice_reset_subtask - Set up for resetting the device and driver
527 * @pf: board private structure
528 */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 enum ice_reset_req reset_type = ICE_RESET_INVAL;
532
533 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 * of reset is pending and sets bits in pf->state indicating the reset
536 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 * prepare for pending reset if not already (for PF software-initiated
538 * global resets the software should already be prepared for it as
539 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 * by firmware or software on other PFs, that bit is not set so prepare
541 * for the reset now), poll for reset done, rebuild and return.
542 */
543 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 /* Perform the largest reset requested */
545 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 reset_type = ICE_RESET_CORER;
547 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 reset_type = ICE_RESET_EMPR;
551 /* return if no valid reset type requested */
552 if (reset_type == ICE_RESET_INVAL)
553 return;
554 ice_prepare_for_reset(pf);
555
556 /* make sure we are ready to rebuild */
557 if (ice_check_reset(&pf->hw)) {
558 set_bit(__ICE_RESET_FAILED, pf->state);
559 } else {
560 /* done with reset. start rebuild */
561 pf->hw.reset_ongoing = false;
562 ice_rebuild(pf, reset_type);
563 /* clear bit to resume normal operations, but
564 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 */
566 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 clear_bit(__ICE_PFR_REQ, pf->state);
569 clear_bit(__ICE_CORER_REQ, pf->state);
570 clear_bit(__ICE_GLOBR_REQ, pf->state);
571 ice_reset_all_vfs(pf, true);
572 }
573
574 return;
575 }
576
577 /* No pending resets to finish processing. Check for new resets */
578 if (test_bit(__ICE_PFR_REQ, pf->state))
579 reset_type = ICE_RESET_PFR;
580 if (test_bit(__ICE_CORER_REQ, pf->state))
581 reset_type = ICE_RESET_CORER;
582 if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 reset_type = ICE_RESET_GLOBR;
584 /* If no valid reset type requested just return */
585 if (reset_type == ICE_RESET_INVAL)
586 return;
587
588 /* reset if not already down or busy */
589 if (!test_bit(__ICE_DOWN, pf->state) &&
590 !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 ice_do_reset(pf, reset_type);
592 }
593 }
594
595 /**
596 * ice_print_topo_conflict - print topology conflict message
597 * @vsi: the VSI whose topology status is being checked
598 */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 case ICE_AQ_LINK_TOPO_CONFLICT:
603 case ICE_AQ_LINK_MEDIA_CONFLICT:
604 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 break;
609 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 break;
612 default:
613 break;
614 }
615 }
616
617 /**
618 * ice_print_link_msg - print link up or down message
619 * @vsi: the VSI whose link status is being queried
620 * @isup: boolean for if the link is now up or down
621 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 struct ice_aqc_get_phy_caps_data *caps;
625 const char *an_advertised;
626 enum ice_status status;
627 const char *fec_req;
628 const char *speed;
629 const char *fec;
630 const char *fc;
631 const char *an;
632
633 if (!vsi)
634 return;
635
636 if (vsi->current_isup == isup)
637 return;
638
639 vsi->current_isup = isup;
640
641 if (!isup) {
642 netdev_info(vsi->netdev, "NIC Link is Down\n");
643 return;
644 }
645
646 switch (vsi->port_info->phy.link_info.link_speed) {
647 case ICE_AQ_LINK_SPEED_100GB:
648 speed = "100 G";
649 break;
650 case ICE_AQ_LINK_SPEED_50GB:
651 speed = "50 G";
652 break;
653 case ICE_AQ_LINK_SPEED_40GB:
654 speed = "40 G";
655 break;
656 case ICE_AQ_LINK_SPEED_25GB:
657 speed = "25 G";
658 break;
659 case ICE_AQ_LINK_SPEED_20GB:
660 speed = "20 G";
661 break;
662 case ICE_AQ_LINK_SPEED_10GB:
663 speed = "10 G";
664 break;
665 case ICE_AQ_LINK_SPEED_5GB:
666 speed = "5 G";
667 break;
668 case ICE_AQ_LINK_SPEED_2500MB:
669 speed = "2.5 G";
670 break;
671 case ICE_AQ_LINK_SPEED_1000MB:
672 speed = "1 G";
673 break;
674 case ICE_AQ_LINK_SPEED_100MB:
675 speed = "100 M";
676 break;
677 default:
678 speed = "Unknown";
679 break;
680 }
681
682 switch (vsi->port_info->fc.current_mode) {
683 case ICE_FC_FULL:
684 fc = "Rx/Tx";
685 break;
686 case ICE_FC_TX_PAUSE:
687 fc = "Tx";
688 break;
689 case ICE_FC_RX_PAUSE:
690 fc = "Rx";
691 break;
692 case ICE_FC_NONE:
693 fc = "None";
694 break;
695 default:
696 fc = "Unknown";
697 break;
698 }
699
700 /* Get FEC mode based on negotiated link info */
701 switch (vsi->port_info->phy.link_info.fec_info) {
702 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 fec = "RS-FEC";
705 break;
706 case ICE_AQ_LINK_25G_KR_FEC_EN:
707 fec = "FC-FEC/BASE-R";
708 break;
709 default:
710 fec = "NONE";
711 break;
712 }
713
714 /* check if autoneg completed, might be false due to not supported */
715 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 an = "True";
717 else
718 an = "False";
719
720 /* Get FEC mode requested based on PHY caps last SW configuration */
721 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 if (!caps) {
723 fec_req = "Unknown";
724 an_advertised = "Unknown";
725 goto done;
726 }
727
728 status = ice_aq_get_phy_caps(vsi->port_info, false,
729 ICE_AQC_REPORT_SW_CFG, caps, NULL);
730 if (status)
731 netdev_info(vsi->netdev, "Get phy capability failed.\n");
732
733 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734
735 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 fec_req = "RS-FEC";
738 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 fec_req = "FC-FEC/BASE-R";
741 else
742 fec_req = "NONE";
743
744 kfree(caps);
745
746 done:
747 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 speed, fec_req, fec, an_advertised, an, fc);
749 ice_print_topo_conflict(vsi);
750 }
751
752 /**
753 * ice_vsi_link_event - update the VSI's netdev
754 * @vsi: the VSI on which the link event occurred
755 * @link_up: whether or not the VSI needs to be set up or down
756 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 if (!vsi)
760 return;
761
762 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 return;
764
765 if (vsi->type == ICE_VSI_PF) {
766 if (link_up == netif_carrier_ok(vsi->netdev))
767 return;
768
769 if (link_up) {
770 netif_carrier_on(vsi->netdev);
771 netif_tx_wake_all_queues(vsi->netdev);
772 } else {
773 netif_carrier_off(vsi->netdev);
774 netif_tx_stop_all_queues(vsi->netdev);
775 }
776 }
777 }
778
779 /**
780 * ice_set_dflt_mib - send a default config MIB to the FW
781 * @pf: private PF struct
782 *
783 * This function sends a default configuration MIB to the FW.
784 *
785 * If this function errors out at any point, the driver is still able to
786 * function. The main impact is that LFC may not operate as expected.
787 * Therefore an error state in this function should be treated with a DBG
788 * message and continue on with driver rebuild/reenable.
789 */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 struct device *dev = ice_pf_to_dev(pf);
793 u8 mib_type, *buf, *lldpmib = NULL;
794 u16 len, typelen, offset = 0;
795 struct ice_lldp_org_tlv *tlv;
796 struct ice_hw *hw;
797 u32 ouisubtype;
798
799 if (!pf) {
800 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 return;
802 }
803
804 hw = &pf->hw;
805 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 if (!lldpmib) {
808 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 __func__);
810 return;
811 }
812
813 /* Add ETS CFG TLV */
814 tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 ICE_IEEE_ETS_TLV_LEN);
817 tlv->typelen = htons(typelen);
818 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 ICE_IEEE_SUBTYPE_ETS_CFG);
820 tlv->ouisubtype = htonl(ouisubtype);
821
822 buf = tlv->tlvinfo;
823 buf[0] = 0;
824
825 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 * Octets 13 - 20 are TSA values - leave as zeros
828 */
829 buf[5] = 0x64;
830 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 offset += len + 2;
832 tlv = (struct ice_lldp_org_tlv *)
833 ((char *)tlv + sizeof(tlv->typelen) + len);
834
835 /* Add ETS REC TLV */
836 buf = tlv->tlvinfo;
837 tlv->typelen = htons(typelen);
838
839 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 ICE_IEEE_SUBTYPE_ETS_REC);
841 tlv->ouisubtype = htonl(ouisubtype);
842
843 /* First octet of buf is reserved
844 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 * Octets 13 - 20 are TSA value - leave as zeros
847 */
848 buf[5] = 0x64;
849 offset += len + 2;
850 tlv = (struct ice_lldp_org_tlv *)
851 ((char *)tlv + sizeof(tlv->typelen) + len);
852
853 /* Add PFC CFG TLV */
854 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 ICE_IEEE_PFC_TLV_LEN);
856 tlv->typelen = htons(typelen);
857
858 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 ICE_IEEE_SUBTYPE_PFC_CFG);
860 tlv->ouisubtype = htonl(ouisubtype);
861
862 /* Octet 1 left as all zeros - PFC disabled */
863 buf[0] = 0x08;
864 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 offset += len + 2;
866
867 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869
870 kfree(lldpmib);
871 }
872
873 /**
874 * ice_link_event - process the link event
875 * @pf: PF that the link event is associated with
876 * @pi: port_info for the port that the link event is associated with
877 * @link_up: true if the physical link is up and false if it is down
878 * @link_speed: current link speed received from the link event
879 *
880 * Returns 0 on success and negative on failure
881 */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 u16 link_speed)
885 {
886 struct device *dev = ice_pf_to_dev(pf);
887 struct ice_phy_info *phy_info;
888 struct ice_vsi *vsi;
889 u16 old_link_speed;
890 bool old_link;
891 int result;
892
893 phy_info = &pi->phy;
894 phy_info->link_info_old = phy_info->link_info;
895
896 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 old_link_speed = phy_info->link_info_old.link_speed;
898
899 /* update the link info structures and re-enable link events,
900 * don't bail on failure due to other book keeping needed
901 */
902 result = ice_update_link_info(pi);
903 if (result)
904 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 pi->lport);
906
907 /* Check if the link state is up after updating link info, and treat
908 * this event as an UP event since the link is actually UP now.
909 */
910 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 link_up = true;
912
913 vsi = ice_get_main_vsi(pf);
914 if (!vsi || !vsi->port_info)
915 return -EINVAL;
916
917 /* turn off PHY if media was removed */
918 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921
922 result = ice_aq_set_link_restart_an(pi, false, NULL);
923 if (result) {
924 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 vsi->vsi_num, result);
926 return result;
927 }
928 }
929
930 /* if the old link up/down and speed is the same as the new */
931 if (link_up == old_link && link_speed == old_link_speed)
932 return result;
933
934 if (ice_is_dcb_active(pf)) {
935 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 ice_dcb_rebuild(pf);
937 } else {
938 if (link_up)
939 ice_set_dflt_mib(pf);
940 }
941 ice_vsi_link_event(vsi, link_up);
942 ice_print_link_msg(vsi, link_up);
943
944 ice_vc_notify_link_state(pf);
945
946 return result;
947 }
948
949 /**
950 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951 * @pf: board private structure
952 */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 int i;
956
957 /* if interface is down do nothing */
958 if (test_bit(__ICE_DOWN, pf->state) ||
959 test_bit(__ICE_CFG_BUSY, pf->state))
960 return;
961
962 /* make sure we don't do these things too often */
963 if (time_before(jiffies,
964 pf->serv_tmr_prev + pf->serv_tmr_period))
965 return;
966
967 pf->serv_tmr_prev = jiffies;
968
969 /* Update the stats for active netdevs so the network stack
970 * can look at updated numbers whenever it cares to
971 */
972 ice_update_pf_stats(pf);
973 ice_for_each_vsi(pf, i)
974 if (pf->vsi[i] && pf->vsi[i]->netdev)
975 ice_update_vsi_stats(pf->vsi[i]);
976 }
977
978 /**
979 * ice_init_link_events - enable/initialize link events
980 * @pi: pointer to the port_info instance
981 *
982 * Returns -EIO on failure, 0 on success
983 */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 u16 mask;
987
988 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990
991 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 pi->lport);
994 return -EIO;
995 }
996
997 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 pi->lport);
1000 return -EIO;
1001 }
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * ice_handle_link_event - handle link event via ARQ
1008 * @pf: PF that the link event is associated with
1009 * @event: event structure containing link status info
1010 */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 struct ice_aqc_get_link_status_data *link_data;
1015 struct ice_port_info *port_info;
1016 int status;
1017
1018 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 port_info = pf->hw.port_info;
1020 if (!port_info)
1021 return -EINVAL;
1022
1023 status = ice_link_event(pf, port_info,
1024 !!(link_data->link_info & ICE_AQ_LINK_UP),
1025 le16_to_cpu(link_data->link_speed));
1026 if (status)
1027 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 status);
1029
1030 return status;
1031 }
1032
1033 enum ice_aq_task_state {
1034 ICE_AQ_TASK_WAITING = 0,
1035 ICE_AQ_TASK_COMPLETE,
1036 ICE_AQ_TASK_CANCELED,
1037 };
1038
1039 struct ice_aq_task {
1040 struct hlist_node entry;
1041
1042 u16 opcode;
1043 struct ice_rq_event_info *event;
1044 enum ice_aq_task_state state;
1045 };
1046
1047 /**
1048 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049 * @pf: pointer to the PF private structure
1050 * @opcode: the opcode to wait for
1051 * @timeout: how long to wait, in jiffies
1052 * @event: storage for the event info
1053 *
1054 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055 * current thread will be put to sleep until the specified event occurs or
1056 * until the given timeout is reached.
1057 *
1058 * To obtain only the descriptor contents, pass an event without an allocated
1059 * msg_buf. If the complete data buffer is desired, allocate the
1060 * event->msg_buf with enough space ahead of time.
1061 *
1062 * Returns: zero on success, or a negative error code on failure.
1063 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 struct ice_rq_event_info *event)
1066 {
1067 struct device *dev = ice_pf_to_dev(pf);
1068 struct ice_aq_task *task;
1069 unsigned long start;
1070 long ret;
1071 int err;
1072
1073 task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 if (!task)
1075 return -ENOMEM;
1076
1077 INIT_HLIST_NODE(&task->entry);
1078 task->opcode = opcode;
1079 task->event = event;
1080 task->state = ICE_AQ_TASK_WAITING;
1081
1082 spin_lock_bh(&pf->aq_wait_lock);
1083 hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 spin_unlock_bh(&pf->aq_wait_lock);
1085
1086 start = jiffies;
1087
1088 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 timeout);
1090 switch (task->state) {
1091 case ICE_AQ_TASK_WAITING:
1092 err = ret < 0 ? ret : -ETIMEDOUT;
1093 break;
1094 case ICE_AQ_TASK_CANCELED:
1095 err = ret < 0 ? ret : -ECANCELED;
1096 break;
1097 case ICE_AQ_TASK_COMPLETE:
1098 err = ret < 0 ? ret : 0;
1099 break;
1100 default:
1101 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 err = -EINVAL;
1103 break;
1104 }
1105
1106 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 jiffies_to_msecs(jiffies - start),
1108 jiffies_to_msecs(timeout),
1109 opcode);
1110
1111 spin_lock_bh(&pf->aq_wait_lock);
1112 hlist_del(&task->entry);
1113 spin_unlock_bh(&pf->aq_wait_lock);
1114 kfree(task);
1115
1116 return err;
1117 }
1118
1119 /**
1120 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121 * @pf: pointer to the PF private structure
1122 * @opcode: the opcode of the event
1123 * @event: the event to check
1124 *
1125 * Loops over the current list of pending threads waiting for an AdminQ event.
1126 * For each matching task, copy the contents of the event into the task
1127 * structure and wake up the thread.
1128 *
1129 * If multiple threads wait for the same opcode, they will all be woken up.
1130 *
1131 * Note that event->msg_buf will only be duplicated if the event has a buffer
1132 * with enough space already allocated. Otherwise, only the descriptor and
1133 * message length will be copied.
1134 *
1135 * Returns: true if an event was found, false otherwise
1136 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 struct ice_rq_event_info *event)
1139 {
1140 struct ice_aq_task *task;
1141 bool found = false;
1142
1143 spin_lock_bh(&pf->aq_wait_lock);
1144 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1145 if (task->state || task->opcode != opcode)
1146 continue;
1147
1148 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1149 task->event->msg_len = event->msg_len;
1150
1151 /* Only copy the data buffer if a destination was set */
1152 if (task->event->msg_buf &&
1153 task->event->buf_len > event->buf_len) {
1154 memcpy(task->event->msg_buf, event->msg_buf,
1155 event->buf_len);
1156 task->event->buf_len = event->buf_len;
1157 }
1158
1159 task->state = ICE_AQ_TASK_COMPLETE;
1160 found = true;
1161 }
1162 spin_unlock_bh(&pf->aq_wait_lock);
1163
1164 if (found)
1165 wake_up(&pf->aq_wait_queue);
1166 }
1167
1168 /**
1169 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1170 * @pf: the PF private structure
1171 *
1172 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1173 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1174 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1175 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1176 {
1177 struct ice_aq_task *task;
1178
1179 spin_lock_bh(&pf->aq_wait_lock);
1180 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1181 task->state = ICE_AQ_TASK_CANCELED;
1182 spin_unlock_bh(&pf->aq_wait_lock);
1183
1184 wake_up(&pf->aq_wait_queue);
1185 }
1186
1187 /**
1188 * __ice_clean_ctrlq - helper function to clean controlq rings
1189 * @pf: ptr to struct ice_pf
1190 * @q_type: specific Control queue type
1191 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1192 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1193 {
1194 struct device *dev = ice_pf_to_dev(pf);
1195 struct ice_rq_event_info event;
1196 struct ice_hw *hw = &pf->hw;
1197 struct ice_ctl_q_info *cq;
1198 u16 pending, i = 0;
1199 const char *qtype;
1200 u32 oldval, val;
1201
1202 /* Do not clean control queue if/when PF reset fails */
1203 if (test_bit(__ICE_RESET_FAILED, pf->state))
1204 return 0;
1205
1206 switch (q_type) {
1207 case ICE_CTL_Q_ADMIN:
1208 cq = &hw->adminq;
1209 qtype = "Admin";
1210 break;
1211 case ICE_CTL_Q_MAILBOX:
1212 cq = &hw->mailboxq;
1213 qtype = "Mailbox";
1214 break;
1215 default:
1216 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1217 return 0;
1218 }
1219
1220 /* check for error indications - PF_xx_AxQLEN register layout for
1221 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1222 */
1223 val = rd32(hw, cq->rq.len);
1224 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1225 PF_FW_ARQLEN_ARQCRIT_M)) {
1226 oldval = val;
1227 if (val & PF_FW_ARQLEN_ARQVFE_M)
1228 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1229 qtype);
1230 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1231 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1232 qtype);
1233 }
1234 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1235 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1236 qtype);
1237 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1238 PF_FW_ARQLEN_ARQCRIT_M);
1239 if (oldval != val)
1240 wr32(hw, cq->rq.len, val);
1241 }
1242
1243 val = rd32(hw, cq->sq.len);
1244 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1245 PF_FW_ATQLEN_ATQCRIT_M)) {
1246 oldval = val;
1247 if (val & PF_FW_ATQLEN_ATQVFE_M)
1248 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1249 qtype);
1250 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1251 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1252 qtype);
1253 }
1254 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1255 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1256 qtype);
1257 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1258 PF_FW_ATQLEN_ATQCRIT_M);
1259 if (oldval != val)
1260 wr32(hw, cq->sq.len, val);
1261 }
1262
1263 event.buf_len = cq->rq_buf_size;
1264 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1265 if (!event.msg_buf)
1266 return 0;
1267
1268 do {
1269 enum ice_status ret;
1270 u16 opcode;
1271
1272 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1273 if (ret == ICE_ERR_AQ_NO_WORK)
1274 break;
1275 if (ret) {
1276 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1277 ice_stat_str(ret));
1278 break;
1279 }
1280
1281 opcode = le16_to_cpu(event.desc.opcode);
1282
1283 /* Notify any thread that might be waiting for this event */
1284 ice_aq_check_events(pf, opcode, &event);
1285
1286 switch (opcode) {
1287 case ice_aqc_opc_get_link_status:
1288 if (ice_handle_link_event(pf, &event))
1289 dev_err(dev, "Could not handle link event\n");
1290 break;
1291 case ice_aqc_opc_event_lan_overflow:
1292 ice_vf_lan_overflow_event(pf, &event);
1293 break;
1294 case ice_mbx_opc_send_msg_to_pf:
1295 ice_vc_process_vf_msg(pf, &event);
1296 break;
1297 case ice_aqc_opc_fw_logging:
1298 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1299 break;
1300 case ice_aqc_opc_lldp_set_mib_change:
1301 ice_dcb_process_lldp_set_mib_change(pf, &event);
1302 break;
1303 default:
1304 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1305 qtype, opcode);
1306 break;
1307 }
1308 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1309
1310 kfree(event.msg_buf);
1311
1312 return pending && (i == ICE_DFLT_IRQ_WORK);
1313 }
1314
1315 /**
1316 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1317 * @hw: pointer to hardware info
1318 * @cq: control queue information
1319 *
1320 * returns true if there are pending messages in a queue, false if there aren't
1321 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1322 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1323 {
1324 u16 ntu;
1325
1326 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1327 return cq->rq.next_to_clean != ntu;
1328 }
1329
1330 /**
1331 * ice_clean_adminq_subtask - clean the AdminQ rings
1332 * @pf: board private structure
1333 */
ice_clean_adminq_subtask(struct ice_pf * pf)1334 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1335 {
1336 struct ice_hw *hw = &pf->hw;
1337
1338 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1339 return;
1340
1341 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1342 return;
1343
1344 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1345
1346 /* There might be a situation where new messages arrive to a control
1347 * queue between processing the last message and clearing the
1348 * EVENT_PENDING bit. So before exiting, check queue head again (using
1349 * ice_ctrlq_pending) and process new messages if any.
1350 */
1351 if (ice_ctrlq_pending(hw, &hw->adminq))
1352 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1353
1354 ice_flush(hw);
1355 }
1356
1357 /**
1358 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1359 * @pf: board private structure
1360 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1361 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1362 {
1363 struct ice_hw *hw = &pf->hw;
1364
1365 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1366 return;
1367
1368 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1369 return;
1370
1371 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1372
1373 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1374 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1375
1376 ice_flush(hw);
1377 }
1378
1379 /**
1380 * ice_service_task_schedule - schedule the service task to wake up
1381 * @pf: board private structure
1382 *
1383 * If not already scheduled, this puts the task into the work queue.
1384 */
ice_service_task_schedule(struct ice_pf * pf)1385 void ice_service_task_schedule(struct ice_pf *pf)
1386 {
1387 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1388 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1389 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1390 queue_work(ice_wq, &pf->serv_task);
1391 }
1392
1393 /**
1394 * ice_service_task_complete - finish up the service task
1395 * @pf: board private structure
1396 */
ice_service_task_complete(struct ice_pf * pf)1397 static void ice_service_task_complete(struct ice_pf *pf)
1398 {
1399 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1400
1401 /* force memory (pf->state) to sync before next service task */
1402 smp_mb__before_atomic();
1403 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1404 }
1405
1406 /**
1407 * ice_service_task_stop - stop service task and cancel works
1408 * @pf: board private structure
1409 *
1410 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1411 * 1 otherwise.
1412 */
ice_service_task_stop(struct ice_pf * pf)1413 static int ice_service_task_stop(struct ice_pf *pf)
1414 {
1415 int ret;
1416
1417 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1418
1419 if (pf->serv_tmr.function)
1420 del_timer_sync(&pf->serv_tmr);
1421 if (pf->serv_task.func)
1422 cancel_work_sync(&pf->serv_task);
1423
1424 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1425 return ret;
1426 }
1427
1428 /**
1429 * ice_service_task_restart - restart service task and schedule works
1430 * @pf: board private structure
1431 *
1432 * This function is needed for suspend and resume works (e.g WoL scenario)
1433 */
ice_service_task_restart(struct ice_pf * pf)1434 static void ice_service_task_restart(struct ice_pf *pf)
1435 {
1436 clear_bit(__ICE_SERVICE_DIS, pf->state);
1437 ice_service_task_schedule(pf);
1438 }
1439
1440 /**
1441 * ice_service_timer - timer callback to schedule service task
1442 * @t: pointer to timer_list
1443 */
ice_service_timer(struct timer_list * t)1444 static void ice_service_timer(struct timer_list *t)
1445 {
1446 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1447
1448 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1449 ice_service_task_schedule(pf);
1450 }
1451
1452 /**
1453 * ice_handle_mdd_event - handle malicious driver detect event
1454 * @pf: pointer to the PF structure
1455 *
1456 * Called from service task. OICR interrupt handler indicates MDD event.
1457 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1458 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1459 * disable the queue, the PF can be configured to reset the VF using ethtool
1460 * private flag mdd-auto-reset-vf.
1461 */
ice_handle_mdd_event(struct ice_pf * pf)1462 static void ice_handle_mdd_event(struct ice_pf *pf)
1463 {
1464 struct device *dev = ice_pf_to_dev(pf);
1465 struct ice_hw *hw = &pf->hw;
1466 unsigned int i;
1467 u32 reg;
1468
1469 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1470 /* Since the VF MDD event logging is rate limited, check if
1471 * there are pending MDD events.
1472 */
1473 ice_print_vfs_mdd_events(pf);
1474 return;
1475 }
1476
1477 /* find what triggered an MDD event */
1478 reg = rd32(hw, GL_MDET_TX_PQM);
1479 if (reg & GL_MDET_TX_PQM_VALID_M) {
1480 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1481 GL_MDET_TX_PQM_PF_NUM_S;
1482 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1483 GL_MDET_TX_PQM_VF_NUM_S;
1484 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1485 GL_MDET_TX_PQM_MAL_TYPE_S;
1486 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1487 GL_MDET_TX_PQM_QNUM_S);
1488
1489 if (netif_msg_tx_err(pf))
1490 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1491 event, queue, pf_num, vf_num);
1492 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1493 }
1494
1495 reg = rd32(hw, GL_MDET_TX_TCLAN);
1496 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1497 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1498 GL_MDET_TX_TCLAN_PF_NUM_S;
1499 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1500 GL_MDET_TX_TCLAN_VF_NUM_S;
1501 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1502 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1503 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1504 GL_MDET_TX_TCLAN_QNUM_S);
1505
1506 if (netif_msg_tx_err(pf))
1507 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1508 event, queue, pf_num, vf_num);
1509 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1510 }
1511
1512 reg = rd32(hw, GL_MDET_RX);
1513 if (reg & GL_MDET_RX_VALID_M) {
1514 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1515 GL_MDET_RX_PF_NUM_S;
1516 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1517 GL_MDET_RX_VF_NUM_S;
1518 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1519 GL_MDET_RX_MAL_TYPE_S;
1520 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1521 GL_MDET_RX_QNUM_S);
1522
1523 if (netif_msg_rx_err(pf))
1524 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1525 event, queue, pf_num, vf_num);
1526 wr32(hw, GL_MDET_RX, 0xffffffff);
1527 }
1528
1529 /* check to see if this PF caused an MDD event */
1530 reg = rd32(hw, PF_MDET_TX_PQM);
1531 if (reg & PF_MDET_TX_PQM_VALID_M) {
1532 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1533 if (netif_msg_tx_err(pf))
1534 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1535 }
1536
1537 reg = rd32(hw, PF_MDET_TX_TCLAN);
1538 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1539 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1540 if (netif_msg_tx_err(pf))
1541 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1542 }
1543
1544 reg = rd32(hw, PF_MDET_RX);
1545 if (reg & PF_MDET_RX_VALID_M) {
1546 wr32(hw, PF_MDET_RX, 0xFFFF);
1547 if (netif_msg_rx_err(pf))
1548 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1549 }
1550
1551 /* Check to see if one of the VFs caused an MDD event, and then
1552 * increment counters and set print pending
1553 */
1554 ice_for_each_vf(pf, i) {
1555 struct ice_vf *vf = &pf->vf[i];
1556
1557 reg = rd32(hw, VP_MDET_TX_PQM(i));
1558 if (reg & VP_MDET_TX_PQM_VALID_M) {
1559 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1560 vf->mdd_tx_events.count++;
1561 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1562 if (netif_msg_tx_err(pf))
1563 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1564 i);
1565 }
1566
1567 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1568 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1569 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1570 vf->mdd_tx_events.count++;
1571 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1572 if (netif_msg_tx_err(pf))
1573 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1574 i);
1575 }
1576
1577 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1578 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1579 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1580 vf->mdd_tx_events.count++;
1581 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1582 if (netif_msg_tx_err(pf))
1583 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1584 i);
1585 }
1586
1587 reg = rd32(hw, VP_MDET_RX(i));
1588 if (reg & VP_MDET_RX_VALID_M) {
1589 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1590 vf->mdd_rx_events.count++;
1591 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1592 if (netif_msg_rx_err(pf))
1593 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1594 i);
1595
1596 /* Since the queue is disabled on VF Rx MDD events, the
1597 * PF can be configured to reset the VF through ethtool
1598 * private flag mdd-auto-reset-vf.
1599 */
1600 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1601 /* VF MDD event counters will be cleared by
1602 * reset, so print the event prior to reset.
1603 */
1604 ice_print_vf_rx_mdd_event(vf);
1605 ice_reset_vf(&pf->vf[i], false);
1606 }
1607 }
1608 }
1609
1610 ice_print_vfs_mdd_events(pf);
1611 }
1612
1613 /**
1614 * ice_force_phys_link_state - Force the physical link state
1615 * @vsi: VSI to force the physical link state to up/down
1616 * @link_up: true/false indicates to set the physical link to up/down
1617 *
1618 * Force the physical link state by getting the current PHY capabilities from
1619 * hardware and setting the PHY config based on the determined capabilities. If
1620 * link changes a link event will be triggered because both the Enable Automatic
1621 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1622 *
1623 * Returns 0 on success, negative on failure
1624 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1625 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1626 {
1627 struct ice_aqc_get_phy_caps_data *pcaps;
1628 struct ice_aqc_set_phy_cfg_data *cfg;
1629 struct ice_port_info *pi;
1630 struct device *dev;
1631 int retcode;
1632
1633 if (!vsi || !vsi->port_info || !vsi->back)
1634 return -EINVAL;
1635 if (vsi->type != ICE_VSI_PF)
1636 return 0;
1637
1638 dev = ice_pf_to_dev(vsi->back);
1639
1640 pi = vsi->port_info;
1641
1642 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1643 if (!pcaps)
1644 return -ENOMEM;
1645
1646 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1647 NULL);
1648 if (retcode) {
1649 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1650 vsi->vsi_num, retcode);
1651 retcode = -EIO;
1652 goto out;
1653 }
1654
1655 /* No change in link */
1656 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1657 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1658 goto out;
1659
1660 /* Use the current user PHY configuration. The current user PHY
1661 * configuration is initialized during probe from PHY capabilities
1662 * software mode, and updated on set PHY configuration.
1663 */
1664 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1665 if (!cfg) {
1666 retcode = -ENOMEM;
1667 goto out;
1668 }
1669
1670 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1671 if (link_up)
1672 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1673 else
1674 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1675
1676 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1677 if (retcode) {
1678 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1679 vsi->vsi_num, retcode);
1680 retcode = -EIO;
1681 }
1682
1683 kfree(cfg);
1684 out:
1685 kfree(pcaps);
1686 return retcode;
1687 }
1688
1689 /**
1690 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1691 * @pi: port info structure
1692 *
1693 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1694 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1695 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1696 {
1697 struct ice_aqc_get_phy_caps_data *pcaps;
1698 struct ice_pf *pf = pi->hw->back;
1699 enum ice_status status;
1700 int err = 0;
1701
1702 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1703 if (!pcaps)
1704 return -ENOMEM;
1705
1706 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1707 NULL);
1708
1709 if (status) {
1710 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1711 err = -EIO;
1712 goto out;
1713 }
1714
1715 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1716 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1717
1718 out:
1719 kfree(pcaps);
1720 return err;
1721 }
1722
1723 /**
1724 * ice_init_link_dflt_override - Initialize link default override
1725 * @pi: port info structure
1726 *
1727 * Initialize link default override and PHY total port shutdown during probe
1728 */
ice_init_link_dflt_override(struct ice_port_info * pi)1729 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1730 {
1731 struct ice_link_default_override_tlv *ldo;
1732 struct ice_pf *pf = pi->hw->back;
1733
1734 ldo = &pf->link_dflt_override;
1735 if (ice_get_link_default_override(ldo, pi))
1736 return;
1737
1738 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1739 return;
1740
1741 /* Enable Total Port Shutdown (override/replace link-down-on-close
1742 * ethtool private flag) for ports with Port Disable bit set.
1743 */
1744 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1745 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1746 }
1747
1748 /**
1749 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1750 * @pi: port info structure
1751 *
1752 * If default override is enabled, initialized the user PHY cfg speed and FEC
1753 * settings using the default override mask from the NVM.
1754 *
1755 * The PHY should only be configured with the default override settings the
1756 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1757 * is used to indicate that the user PHY cfg default override is initialized
1758 * and the PHY has not been configured with the default override settings. The
1759 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1760 * configured.
1761 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1762 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1763 {
1764 struct ice_link_default_override_tlv *ldo;
1765 struct ice_aqc_set_phy_cfg_data *cfg;
1766 struct ice_phy_info *phy = &pi->phy;
1767 struct ice_pf *pf = pi->hw->back;
1768
1769 ldo = &pf->link_dflt_override;
1770
1771 /* If link default override is enabled, use to mask NVM PHY capabilities
1772 * for speed and FEC default configuration.
1773 */
1774 cfg = &phy->curr_user_phy_cfg;
1775
1776 if (ldo->phy_type_low || ldo->phy_type_high) {
1777 cfg->phy_type_low = pf->nvm_phy_type_lo &
1778 cpu_to_le64(ldo->phy_type_low);
1779 cfg->phy_type_high = pf->nvm_phy_type_hi &
1780 cpu_to_le64(ldo->phy_type_high);
1781 }
1782 cfg->link_fec_opt = ldo->fec_options;
1783 phy->curr_user_fec_req = ICE_FEC_AUTO;
1784
1785 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1786 }
1787
1788 /**
1789 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1790 * @pi: port info structure
1791 *
1792 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1793 * mode to default. The PHY defaults are from get PHY capabilities topology
1794 * with media so call when media is first available. An error is returned if
1795 * called when media is not available. The PHY initialization completed state is
1796 * set here.
1797 *
1798 * These configurations are used when setting PHY
1799 * configuration. The user PHY configuration is updated on set PHY
1800 * configuration. Returns 0 on success, negative on failure
1801 */
ice_init_phy_user_cfg(struct ice_port_info * pi)1802 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1803 {
1804 struct ice_aqc_get_phy_caps_data *pcaps;
1805 struct ice_phy_info *phy = &pi->phy;
1806 struct ice_pf *pf = pi->hw->back;
1807 enum ice_status status;
1808 struct ice_vsi *vsi;
1809 int err = 0;
1810
1811 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1812 return -EIO;
1813
1814 vsi = ice_get_main_vsi(pf);
1815 if (!vsi)
1816 return -EINVAL;
1817
1818 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1819 if (!pcaps)
1820 return -ENOMEM;
1821
1822 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1823 NULL);
1824 if (status) {
1825 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1826 err = -EIO;
1827 goto err_out;
1828 }
1829
1830 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1831
1832 /* check if lenient mode is supported and enabled */
1833 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1834 !(pcaps->module_compliance_enforcement &
1835 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1836 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1837
1838 /* if link default override is enabled, initialize user PHY
1839 * configuration with link default override values
1840 */
1841 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1842 ice_init_phy_cfg_dflt_override(pi);
1843 goto out;
1844 }
1845 }
1846
1847 /* if link default override is not enabled, initialize PHY using
1848 * topology with media
1849 */
1850 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1851 pcaps->link_fec_options);
1852 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1853
1854 out:
1855 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1856 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1857 err_out:
1858 kfree(pcaps);
1859 return err;
1860 }
1861
1862 /**
1863 * ice_configure_phy - configure PHY
1864 * @vsi: VSI of PHY
1865 *
1866 * Set the PHY configuration. If the current PHY configuration is the same as
1867 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1868 * configure the based get PHY capabilities for topology with media.
1869 */
ice_configure_phy(struct ice_vsi * vsi)1870 static int ice_configure_phy(struct ice_vsi *vsi)
1871 {
1872 struct device *dev = ice_pf_to_dev(vsi->back);
1873 struct ice_aqc_get_phy_caps_data *pcaps;
1874 struct ice_aqc_set_phy_cfg_data *cfg;
1875 struct ice_port_info *pi;
1876 enum ice_status status;
1877 int err = 0;
1878
1879 pi = vsi->port_info;
1880 if (!pi)
1881 return -EINVAL;
1882
1883 /* Ensure we have media as we cannot configure a medialess port */
1884 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1885 return -EPERM;
1886
1887 ice_print_topo_conflict(vsi);
1888
1889 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1890 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1891 return -EPERM;
1892
1893 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1894 return ice_force_phys_link_state(vsi, true);
1895
1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1897 if (!pcaps)
1898 return -ENOMEM;
1899
1900 /* Get current PHY config */
1901 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1902 NULL);
1903 if (status) {
1904 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1905 vsi->vsi_num, ice_stat_str(status));
1906 err = -EIO;
1907 goto done;
1908 }
1909
1910 /* If PHY enable link is configured and configuration has not changed,
1911 * there's nothing to do
1912 */
1913 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1914 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1915 goto done;
1916
1917 /* Use PHY topology as baseline for configuration */
1918 memset(pcaps, 0, sizeof(*pcaps));
1919 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1920 NULL);
1921 if (status) {
1922 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1923 vsi->vsi_num, ice_stat_str(status));
1924 err = -EIO;
1925 goto done;
1926 }
1927
1928 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1929 if (!cfg) {
1930 err = -ENOMEM;
1931 goto done;
1932 }
1933
1934 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1935
1936 /* Speed - If default override pending, use curr_user_phy_cfg set in
1937 * ice_init_phy_user_cfg_ldo.
1938 */
1939 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1940 vsi->back->state)) {
1941 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1942 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1943 } else {
1944 u64 phy_low = 0, phy_high = 0;
1945
1946 ice_update_phy_type(&phy_low, &phy_high,
1947 pi->phy.curr_user_speed_req);
1948 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1949 cfg->phy_type_high = pcaps->phy_type_high &
1950 cpu_to_le64(phy_high);
1951 }
1952
1953 /* Can't provide what was requested; use PHY capabilities */
1954 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1955 cfg->phy_type_low = pcaps->phy_type_low;
1956 cfg->phy_type_high = pcaps->phy_type_high;
1957 }
1958
1959 /* FEC */
1960 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1961
1962 /* Can't provide what was requested; use PHY capabilities */
1963 if (cfg->link_fec_opt !=
1964 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1965 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1966 cfg->link_fec_opt = pcaps->link_fec_options;
1967 }
1968
1969 /* Flow Control - always supported; no need to check against
1970 * capabilities
1971 */
1972 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1973
1974 /* Enable link and link update */
1975 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1976
1977 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1978 if (status) {
1979 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1980 vsi->vsi_num, ice_stat_str(status));
1981 err = -EIO;
1982 }
1983
1984 kfree(cfg);
1985 done:
1986 kfree(pcaps);
1987 return err;
1988 }
1989
1990 /**
1991 * ice_check_media_subtask - Check for media
1992 * @pf: pointer to PF struct
1993 *
1994 * If media is available, then initialize PHY user configuration if it is not
1995 * been, and configure the PHY if the interface is up.
1996 */
ice_check_media_subtask(struct ice_pf * pf)1997 static void ice_check_media_subtask(struct ice_pf *pf)
1998 {
1999 struct ice_port_info *pi;
2000 struct ice_vsi *vsi;
2001 int err;
2002
2003 /* No need to check for media if it's already present */
2004 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2005 return;
2006
2007 vsi = ice_get_main_vsi(pf);
2008 if (!vsi)
2009 return;
2010
2011 /* Refresh link info and check if media is present */
2012 pi = vsi->port_info;
2013 err = ice_update_link_info(pi);
2014 if (err)
2015 return;
2016
2017 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2018 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2019 ice_init_phy_user_cfg(pi);
2020
2021 /* PHY settings are reset on media insertion, reconfigure
2022 * PHY to preserve settings.
2023 */
2024 if (test_bit(__ICE_DOWN, vsi->state) &&
2025 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2026 return;
2027
2028 err = ice_configure_phy(vsi);
2029 if (!err)
2030 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2031
2032 /* A Link Status Event will be generated; the event handler
2033 * will complete bringing the interface up
2034 */
2035 }
2036 }
2037
2038 /**
2039 * ice_service_task - manage and run subtasks
2040 * @work: pointer to work_struct contained by the PF struct
2041 */
ice_service_task(struct work_struct * work)2042 static void ice_service_task(struct work_struct *work)
2043 {
2044 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2045 unsigned long start_time = jiffies;
2046
2047 /* subtasks */
2048
2049 /* process reset requests first */
2050 ice_reset_subtask(pf);
2051
2052 /* bail if a reset/recovery cycle is pending or rebuild failed */
2053 if (ice_is_reset_in_progress(pf->state) ||
2054 test_bit(__ICE_SUSPENDED, pf->state) ||
2055 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2056 ice_service_task_complete(pf);
2057 return;
2058 }
2059
2060 ice_clean_adminq_subtask(pf);
2061 ice_check_media_subtask(pf);
2062 ice_check_for_hang_subtask(pf);
2063 ice_sync_fltr_subtask(pf);
2064 ice_handle_mdd_event(pf);
2065 ice_watchdog_subtask(pf);
2066
2067 if (ice_is_safe_mode(pf)) {
2068 ice_service_task_complete(pf);
2069 return;
2070 }
2071
2072 ice_process_vflr_event(pf);
2073 ice_clean_mailboxq_subtask(pf);
2074 ice_sync_arfs_fltrs(pf);
2075 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2076 ice_service_task_complete(pf);
2077
2078 /* If the tasks have taken longer than one service timer period
2079 * or there is more work to be done, reset the service timer to
2080 * schedule the service task now.
2081 */
2082 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2083 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2084 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2085 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2086 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2087 mod_timer(&pf->serv_tmr, jiffies);
2088 }
2089
2090 /**
2091 * ice_set_ctrlq_len - helper function to set controlq length
2092 * @hw: pointer to the HW instance
2093 */
ice_set_ctrlq_len(struct ice_hw * hw)2094 static void ice_set_ctrlq_len(struct ice_hw *hw)
2095 {
2096 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2097 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2098 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2099 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2100 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2101 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2102 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2103 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2104 }
2105
2106 /**
2107 * ice_schedule_reset - schedule a reset
2108 * @pf: board private structure
2109 * @reset: reset being requested
2110 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2111 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2112 {
2113 struct device *dev = ice_pf_to_dev(pf);
2114
2115 /* bail out if earlier reset has failed */
2116 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2117 dev_dbg(dev, "earlier reset has failed\n");
2118 return -EIO;
2119 }
2120 /* bail if reset/recovery already in progress */
2121 if (ice_is_reset_in_progress(pf->state)) {
2122 dev_dbg(dev, "Reset already in progress\n");
2123 return -EBUSY;
2124 }
2125
2126 switch (reset) {
2127 case ICE_RESET_PFR:
2128 set_bit(__ICE_PFR_REQ, pf->state);
2129 break;
2130 case ICE_RESET_CORER:
2131 set_bit(__ICE_CORER_REQ, pf->state);
2132 break;
2133 case ICE_RESET_GLOBR:
2134 set_bit(__ICE_GLOBR_REQ, pf->state);
2135 break;
2136 default:
2137 return -EINVAL;
2138 }
2139
2140 ice_service_task_schedule(pf);
2141 return 0;
2142 }
2143
2144 /**
2145 * ice_irq_affinity_notify - Callback for affinity changes
2146 * @notify: context as to what irq was changed
2147 * @mask: the new affinity mask
2148 *
2149 * This is a callback function used by the irq_set_affinity_notifier function
2150 * so that we may register to receive changes to the irq affinity masks.
2151 */
2152 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2153 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2154 const cpumask_t *mask)
2155 {
2156 struct ice_q_vector *q_vector =
2157 container_of(notify, struct ice_q_vector, affinity_notify);
2158
2159 cpumask_copy(&q_vector->affinity_mask, mask);
2160 }
2161
2162 /**
2163 * ice_irq_affinity_release - Callback for affinity notifier release
2164 * @ref: internal core kernel usage
2165 *
2166 * This is a callback function used by the irq_set_affinity_notifier function
2167 * to inform the current notification subscriber that they will no longer
2168 * receive notifications.
2169 */
ice_irq_affinity_release(struct kref __always_unused * ref)2170 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2171
2172 /**
2173 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2174 * @vsi: the VSI being configured
2175 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2176 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2177 {
2178 struct ice_hw *hw = &vsi->back->hw;
2179 int i;
2180
2181 ice_for_each_q_vector(vsi, i)
2182 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2183
2184 ice_flush(hw);
2185 return 0;
2186 }
2187
2188 /**
2189 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2190 * @vsi: the VSI being configured
2191 * @basename: name for the vector
2192 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2193 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2194 {
2195 int q_vectors = vsi->num_q_vectors;
2196 struct ice_pf *pf = vsi->back;
2197 int base = vsi->base_vector;
2198 struct device *dev;
2199 int rx_int_idx = 0;
2200 int tx_int_idx = 0;
2201 int vector, err;
2202 int irq_num;
2203
2204 dev = ice_pf_to_dev(pf);
2205 for (vector = 0; vector < q_vectors; vector++) {
2206 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2207
2208 irq_num = pf->msix_entries[base + vector].vector;
2209
2210 if (q_vector->tx.ring && q_vector->rx.ring) {
2211 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2212 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2213 tx_int_idx++;
2214 } else if (q_vector->rx.ring) {
2215 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2216 "%s-%s-%d", basename, "rx", rx_int_idx++);
2217 } else if (q_vector->tx.ring) {
2218 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2219 "%s-%s-%d", basename, "tx", tx_int_idx++);
2220 } else {
2221 /* skip this unused q_vector */
2222 continue;
2223 }
2224 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2225 q_vector->name, q_vector);
2226 if (err) {
2227 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2228 err);
2229 goto free_q_irqs;
2230 }
2231
2232 /* register for affinity change notifications */
2233 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2234 struct irq_affinity_notify *affinity_notify;
2235
2236 affinity_notify = &q_vector->affinity_notify;
2237 affinity_notify->notify = ice_irq_affinity_notify;
2238 affinity_notify->release = ice_irq_affinity_release;
2239 irq_set_affinity_notifier(irq_num, affinity_notify);
2240 }
2241
2242 /* assign the mask for this irq */
2243 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2244 }
2245
2246 vsi->irqs_ready = true;
2247 return 0;
2248
2249 free_q_irqs:
2250 while (vector) {
2251 vector--;
2252 irq_num = pf->msix_entries[base + vector].vector;
2253 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2254 irq_set_affinity_notifier(irq_num, NULL);
2255 irq_set_affinity_hint(irq_num, NULL);
2256 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2257 }
2258 return err;
2259 }
2260
2261 /**
2262 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2263 * @vsi: VSI to setup Tx rings used by XDP
2264 *
2265 * Return 0 on success and negative value on error
2266 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2267 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2268 {
2269 struct device *dev = ice_pf_to_dev(vsi->back);
2270 int i;
2271
2272 for (i = 0; i < vsi->num_xdp_txq; i++) {
2273 u16 xdp_q_idx = vsi->alloc_txq + i;
2274 struct ice_ring *xdp_ring;
2275
2276 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2277
2278 if (!xdp_ring)
2279 goto free_xdp_rings;
2280
2281 xdp_ring->q_index = xdp_q_idx;
2282 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2283 xdp_ring->ring_active = false;
2284 xdp_ring->vsi = vsi;
2285 xdp_ring->netdev = NULL;
2286 xdp_ring->dev = dev;
2287 xdp_ring->count = vsi->num_tx_desc;
2288 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2289 if (ice_setup_tx_ring(xdp_ring))
2290 goto free_xdp_rings;
2291 ice_set_ring_xdp(xdp_ring);
2292 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2293 }
2294
2295 return 0;
2296
2297 free_xdp_rings:
2298 for (; i >= 0; i--)
2299 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2300 ice_free_tx_ring(vsi->xdp_rings[i]);
2301 return -ENOMEM;
2302 }
2303
2304 /**
2305 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2306 * @vsi: VSI to set the bpf prog on
2307 * @prog: the bpf prog pointer
2308 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2309 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2310 {
2311 struct bpf_prog *old_prog;
2312 int i;
2313
2314 old_prog = xchg(&vsi->xdp_prog, prog);
2315 if (old_prog)
2316 bpf_prog_put(old_prog);
2317
2318 ice_for_each_rxq(vsi, i)
2319 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2320 }
2321
2322 /**
2323 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2324 * @vsi: VSI to bring up Tx rings used by XDP
2325 * @prog: bpf program that will be assigned to VSI
2326 *
2327 * Return 0 on success and negative value on error
2328 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2329 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2330 {
2331 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2332 int xdp_rings_rem = vsi->num_xdp_txq;
2333 struct ice_pf *pf = vsi->back;
2334 struct ice_qs_cfg xdp_qs_cfg = {
2335 .qs_mutex = &pf->avail_q_mutex,
2336 .pf_map = pf->avail_txqs,
2337 .pf_map_size = pf->max_pf_txqs,
2338 .q_count = vsi->num_xdp_txq,
2339 .scatter_count = ICE_MAX_SCATTER_TXQS,
2340 .vsi_map = vsi->txq_map,
2341 .vsi_map_offset = vsi->alloc_txq,
2342 .mapping_mode = ICE_VSI_MAP_CONTIG
2343 };
2344 enum ice_status status;
2345 struct device *dev;
2346 int i, v_idx;
2347
2348 dev = ice_pf_to_dev(pf);
2349 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2350 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2351 if (!vsi->xdp_rings)
2352 return -ENOMEM;
2353
2354 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2355 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2356 goto err_map_xdp;
2357
2358 if (ice_xdp_alloc_setup_rings(vsi))
2359 goto clear_xdp_rings;
2360
2361 /* follow the logic from ice_vsi_map_rings_to_vectors */
2362 ice_for_each_q_vector(vsi, v_idx) {
2363 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2364 int xdp_rings_per_v, q_id, q_base;
2365
2366 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2367 vsi->num_q_vectors - v_idx);
2368 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2369
2370 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2371 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2372
2373 xdp_ring->q_vector = q_vector;
2374 xdp_ring->next = q_vector->tx.ring;
2375 q_vector->tx.ring = xdp_ring;
2376 }
2377 xdp_rings_rem -= xdp_rings_per_v;
2378 }
2379
2380 /* omit the scheduler update if in reset path; XDP queues will be
2381 * taken into account at the end of ice_vsi_rebuild, where
2382 * ice_cfg_vsi_lan is being called
2383 */
2384 if (ice_is_reset_in_progress(pf->state))
2385 return 0;
2386
2387 /* tell the Tx scheduler that right now we have
2388 * additional queues
2389 */
2390 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2391 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2392
2393 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2394 max_txqs);
2395 if (status) {
2396 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2397 ice_stat_str(status));
2398 goto clear_xdp_rings;
2399 }
2400 ice_vsi_assign_bpf_prog(vsi, prog);
2401
2402 return 0;
2403 clear_xdp_rings:
2404 for (i = 0; i < vsi->num_xdp_txq; i++)
2405 if (vsi->xdp_rings[i]) {
2406 kfree_rcu(vsi->xdp_rings[i], rcu);
2407 vsi->xdp_rings[i] = NULL;
2408 }
2409
2410 err_map_xdp:
2411 mutex_lock(&pf->avail_q_mutex);
2412 for (i = 0; i < vsi->num_xdp_txq; i++) {
2413 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2414 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2415 }
2416 mutex_unlock(&pf->avail_q_mutex);
2417
2418 devm_kfree(dev, vsi->xdp_rings);
2419 return -ENOMEM;
2420 }
2421
2422 /**
2423 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2424 * @vsi: VSI to remove XDP rings
2425 *
2426 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2427 * resources
2428 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2429 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2430 {
2431 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432 struct ice_pf *pf = vsi->back;
2433 int i, v_idx;
2434
2435 /* q_vectors are freed in reset path so there's no point in detaching
2436 * rings; in case of rebuild being triggered not from reset bits
2437 * in pf->state won't be set, so additionally check first q_vector
2438 * against NULL
2439 */
2440 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2441 goto free_qmap;
2442
2443 ice_for_each_q_vector(vsi, v_idx) {
2444 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2445 struct ice_ring *ring;
2446
2447 ice_for_each_ring(ring, q_vector->tx)
2448 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2449 break;
2450
2451 /* restore the value of last node prior to XDP setup */
2452 q_vector->tx.ring = ring;
2453 }
2454
2455 free_qmap:
2456 mutex_lock(&pf->avail_q_mutex);
2457 for (i = 0; i < vsi->num_xdp_txq; i++) {
2458 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2459 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2460 }
2461 mutex_unlock(&pf->avail_q_mutex);
2462
2463 for (i = 0; i < vsi->num_xdp_txq; i++)
2464 if (vsi->xdp_rings[i]) {
2465 if (vsi->xdp_rings[i]->desc)
2466 ice_free_tx_ring(vsi->xdp_rings[i]);
2467 kfree_rcu(vsi->xdp_rings[i], rcu);
2468 vsi->xdp_rings[i] = NULL;
2469 }
2470
2471 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2472 vsi->xdp_rings = NULL;
2473
2474 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2475 return 0;
2476
2477 ice_vsi_assign_bpf_prog(vsi, NULL);
2478
2479 /* notify Tx scheduler that we destroyed XDP queues and bring
2480 * back the old number of child nodes
2481 */
2482 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2483 max_txqs[i] = vsi->num_txq;
2484
2485 /* change number of XDP Tx queues to 0 */
2486 vsi->num_xdp_txq = 0;
2487
2488 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2489 max_txqs);
2490 }
2491
2492 /**
2493 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2494 * @vsi: VSI to setup XDP for
2495 * @prog: XDP program
2496 * @extack: netlink extended ack
2497 */
2498 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2499 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2500 struct netlink_ext_ack *extack)
2501 {
2502 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2503 bool if_running = netif_running(vsi->netdev);
2504 int ret = 0, xdp_ring_err = 0;
2505
2506 if (frame_size > vsi->rx_buf_len) {
2507 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2508 return -EOPNOTSUPP;
2509 }
2510
2511 /* need to stop netdev while setting up the program for Rx rings */
2512 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2513 ret = ice_down(vsi);
2514 if (ret) {
2515 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2516 return ret;
2517 }
2518 }
2519
2520 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2521 vsi->num_xdp_txq = vsi->alloc_rxq;
2522 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2523 if (xdp_ring_err)
2524 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2525 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2526 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2527 if (xdp_ring_err)
2528 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2529 } else {
2530 ice_vsi_assign_bpf_prog(vsi, prog);
2531 }
2532
2533 if (if_running)
2534 ret = ice_up(vsi);
2535
2536 if (!ret && prog && vsi->xsk_pools) {
2537 int i;
2538
2539 ice_for_each_rxq(vsi, i) {
2540 struct ice_ring *rx_ring = vsi->rx_rings[i];
2541
2542 if (rx_ring->xsk_pool)
2543 napi_schedule(&rx_ring->q_vector->napi);
2544 }
2545 }
2546
2547 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2548 }
2549
2550 /**
2551 * ice_xdp_safe_mode - XDP handler for safe mode
2552 * @dev: netdevice
2553 * @xdp: XDP command
2554 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2555 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2556 struct netdev_bpf *xdp)
2557 {
2558 NL_SET_ERR_MSG_MOD(xdp->extack,
2559 "Please provide working DDP firmware package in order to use XDP\n"
2560 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2561 return -EOPNOTSUPP;
2562 }
2563
2564 /**
2565 * ice_xdp - implements XDP handler
2566 * @dev: netdevice
2567 * @xdp: XDP command
2568 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2569 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2570 {
2571 struct ice_netdev_priv *np = netdev_priv(dev);
2572 struct ice_vsi *vsi = np->vsi;
2573
2574 if (vsi->type != ICE_VSI_PF) {
2575 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2576 return -EINVAL;
2577 }
2578
2579 switch (xdp->command) {
2580 case XDP_SETUP_PROG:
2581 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2582 case XDP_SETUP_XSK_POOL:
2583 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2584 xdp->xsk.queue_id);
2585 default:
2586 return -EINVAL;
2587 }
2588 }
2589
2590 /**
2591 * ice_ena_misc_vector - enable the non-queue interrupts
2592 * @pf: board private structure
2593 */
ice_ena_misc_vector(struct ice_pf * pf)2594 static void ice_ena_misc_vector(struct ice_pf *pf)
2595 {
2596 struct ice_hw *hw = &pf->hw;
2597 u32 val;
2598
2599 /* Disable anti-spoof detection interrupt to prevent spurious event
2600 * interrupts during a function reset. Anti-spoof functionally is
2601 * still supported.
2602 */
2603 val = rd32(hw, GL_MDCK_TX_TDPU);
2604 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2605 wr32(hw, GL_MDCK_TX_TDPU, val);
2606
2607 /* clear things first */
2608 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2609 rd32(hw, PFINT_OICR); /* read to clear */
2610
2611 val = (PFINT_OICR_ECC_ERR_M |
2612 PFINT_OICR_MAL_DETECT_M |
2613 PFINT_OICR_GRST_M |
2614 PFINT_OICR_PCI_EXCEPTION_M |
2615 PFINT_OICR_VFLR_M |
2616 PFINT_OICR_HMC_ERR_M |
2617 PFINT_OICR_PE_CRITERR_M);
2618
2619 wr32(hw, PFINT_OICR_ENA, val);
2620
2621 /* SW_ITR_IDX = 0, but don't change INTENA */
2622 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2623 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2624 }
2625
2626 /**
2627 * ice_misc_intr - misc interrupt handler
2628 * @irq: interrupt number
2629 * @data: pointer to a q_vector
2630 */
ice_misc_intr(int __always_unused irq,void * data)2631 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2632 {
2633 struct ice_pf *pf = (struct ice_pf *)data;
2634 struct ice_hw *hw = &pf->hw;
2635 irqreturn_t ret = IRQ_NONE;
2636 struct device *dev;
2637 u32 oicr, ena_mask;
2638
2639 dev = ice_pf_to_dev(pf);
2640 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2641 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2642
2643 oicr = rd32(hw, PFINT_OICR);
2644 ena_mask = rd32(hw, PFINT_OICR_ENA);
2645
2646 if (oicr & PFINT_OICR_SWINT_M) {
2647 ena_mask &= ~PFINT_OICR_SWINT_M;
2648 pf->sw_int_count++;
2649 }
2650
2651 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2652 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2653 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2654 }
2655 if (oicr & PFINT_OICR_VFLR_M) {
2656 /* disable any further VFLR event notifications */
2657 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2658 u32 reg = rd32(hw, PFINT_OICR_ENA);
2659
2660 reg &= ~PFINT_OICR_VFLR_M;
2661 wr32(hw, PFINT_OICR_ENA, reg);
2662 } else {
2663 ena_mask &= ~PFINT_OICR_VFLR_M;
2664 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2665 }
2666 }
2667
2668 if (oicr & PFINT_OICR_GRST_M) {
2669 u32 reset;
2670
2671 /* we have a reset warning */
2672 ena_mask &= ~PFINT_OICR_GRST_M;
2673 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2674 GLGEN_RSTAT_RESET_TYPE_S;
2675
2676 if (reset == ICE_RESET_CORER)
2677 pf->corer_count++;
2678 else if (reset == ICE_RESET_GLOBR)
2679 pf->globr_count++;
2680 else if (reset == ICE_RESET_EMPR)
2681 pf->empr_count++;
2682 else
2683 dev_dbg(dev, "Invalid reset type %d\n", reset);
2684
2685 /* If a reset cycle isn't already in progress, we set a bit in
2686 * pf->state so that the service task can start a reset/rebuild.
2687 * We also make note of which reset happened so that peer
2688 * devices/drivers can be informed.
2689 */
2690 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2691 if (reset == ICE_RESET_CORER)
2692 set_bit(__ICE_CORER_RECV, pf->state);
2693 else if (reset == ICE_RESET_GLOBR)
2694 set_bit(__ICE_GLOBR_RECV, pf->state);
2695 else
2696 set_bit(__ICE_EMPR_RECV, pf->state);
2697
2698 /* There are couple of different bits at play here.
2699 * hw->reset_ongoing indicates whether the hardware is
2700 * in reset. This is set to true when a reset interrupt
2701 * is received and set back to false after the driver
2702 * has determined that the hardware is out of reset.
2703 *
2704 * __ICE_RESET_OICR_RECV in pf->state indicates
2705 * that a post reset rebuild is required before the
2706 * driver is operational again. This is set above.
2707 *
2708 * As this is the start of the reset/rebuild cycle, set
2709 * both to indicate that.
2710 */
2711 hw->reset_ongoing = true;
2712 }
2713 }
2714
2715 if (oicr & PFINT_OICR_HMC_ERR_M) {
2716 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2717 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2718 rd32(hw, PFHMC_ERRORINFO),
2719 rd32(hw, PFHMC_ERRORDATA));
2720 }
2721
2722 /* Report any remaining unexpected interrupts */
2723 oicr &= ena_mask;
2724 if (oicr) {
2725 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2726 /* If a critical error is pending there is no choice but to
2727 * reset the device.
2728 */
2729 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2730 PFINT_OICR_PCI_EXCEPTION_M |
2731 PFINT_OICR_ECC_ERR_M)) {
2732 set_bit(__ICE_PFR_REQ, pf->state);
2733 ice_service_task_schedule(pf);
2734 }
2735 }
2736 ret = IRQ_HANDLED;
2737
2738 ice_service_task_schedule(pf);
2739 ice_irq_dynamic_ena(hw, NULL, NULL);
2740
2741 return ret;
2742 }
2743
2744 /**
2745 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2746 * @hw: pointer to HW structure
2747 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2748 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2749 {
2750 /* disable Admin queue Interrupt causes */
2751 wr32(hw, PFINT_FW_CTL,
2752 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2753
2754 /* disable Mailbox queue Interrupt causes */
2755 wr32(hw, PFINT_MBX_CTL,
2756 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2757
2758 /* disable Control queue Interrupt causes */
2759 wr32(hw, PFINT_OICR_CTL,
2760 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2761
2762 ice_flush(hw);
2763 }
2764
2765 /**
2766 * ice_free_irq_msix_misc - Unroll misc vector setup
2767 * @pf: board private structure
2768 */
ice_free_irq_msix_misc(struct ice_pf * pf)2769 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2770 {
2771 struct ice_hw *hw = &pf->hw;
2772
2773 ice_dis_ctrlq_interrupts(hw);
2774
2775 /* disable OICR interrupt */
2776 wr32(hw, PFINT_OICR_ENA, 0);
2777 ice_flush(hw);
2778
2779 if (pf->msix_entries) {
2780 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2781 devm_free_irq(ice_pf_to_dev(pf),
2782 pf->msix_entries[pf->oicr_idx].vector, pf);
2783 }
2784
2785 pf->num_avail_sw_msix += 1;
2786 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2787 }
2788
2789 /**
2790 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2791 * @hw: pointer to HW structure
2792 * @reg_idx: HW vector index to associate the control queue interrupts with
2793 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2794 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2795 {
2796 u32 val;
2797
2798 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2799 PFINT_OICR_CTL_CAUSE_ENA_M);
2800 wr32(hw, PFINT_OICR_CTL, val);
2801
2802 /* enable Admin queue Interrupt causes */
2803 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2804 PFINT_FW_CTL_CAUSE_ENA_M);
2805 wr32(hw, PFINT_FW_CTL, val);
2806
2807 /* enable Mailbox queue Interrupt causes */
2808 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2809 PFINT_MBX_CTL_CAUSE_ENA_M);
2810 wr32(hw, PFINT_MBX_CTL, val);
2811
2812 ice_flush(hw);
2813 }
2814
2815 /**
2816 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2817 * @pf: board private structure
2818 *
2819 * This sets up the handler for MSIX 0, which is used to manage the
2820 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2821 * when in MSI or Legacy interrupt mode.
2822 */
ice_req_irq_msix_misc(struct ice_pf * pf)2823 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2824 {
2825 struct device *dev = ice_pf_to_dev(pf);
2826 struct ice_hw *hw = &pf->hw;
2827 int oicr_idx, err = 0;
2828
2829 if (!pf->int_name[0])
2830 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2831 dev_driver_string(dev), dev_name(dev));
2832
2833 /* Do not request IRQ but do enable OICR interrupt since settings are
2834 * lost during reset. Note that this function is called only during
2835 * rebuild path and not while reset is in progress.
2836 */
2837 if (ice_is_reset_in_progress(pf->state))
2838 goto skip_req_irq;
2839
2840 /* reserve one vector in irq_tracker for misc interrupts */
2841 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2842 if (oicr_idx < 0)
2843 return oicr_idx;
2844
2845 pf->num_avail_sw_msix -= 1;
2846 pf->oicr_idx = (u16)oicr_idx;
2847
2848 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2849 ice_misc_intr, 0, pf->int_name, pf);
2850 if (err) {
2851 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2852 pf->int_name, err);
2853 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2854 pf->num_avail_sw_msix += 1;
2855 return err;
2856 }
2857
2858 skip_req_irq:
2859 ice_ena_misc_vector(pf);
2860
2861 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2862 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2863 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2864
2865 ice_flush(hw);
2866 ice_irq_dynamic_ena(hw, NULL, NULL);
2867
2868 return 0;
2869 }
2870
2871 /**
2872 * ice_napi_add - register NAPI handler for the VSI
2873 * @vsi: VSI for which NAPI handler is to be registered
2874 *
2875 * This function is only called in the driver's load path. Registering the NAPI
2876 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2877 * reset/rebuild, etc.)
2878 */
ice_napi_add(struct ice_vsi * vsi)2879 static void ice_napi_add(struct ice_vsi *vsi)
2880 {
2881 int v_idx;
2882
2883 if (!vsi->netdev)
2884 return;
2885
2886 ice_for_each_q_vector(vsi, v_idx)
2887 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2888 ice_napi_poll, NAPI_POLL_WEIGHT);
2889 }
2890
2891 /**
2892 * ice_set_ops - set netdev and ethtools ops for the given netdev
2893 * @netdev: netdev instance
2894 */
ice_set_ops(struct net_device * netdev)2895 static void ice_set_ops(struct net_device *netdev)
2896 {
2897 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2898
2899 if (ice_is_safe_mode(pf)) {
2900 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2901 ice_set_ethtool_safe_mode_ops(netdev);
2902 return;
2903 }
2904
2905 netdev->netdev_ops = &ice_netdev_ops;
2906 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2907 ice_set_ethtool_ops(netdev);
2908 }
2909
2910 /**
2911 * ice_set_netdev_features - set features for the given netdev
2912 * @netdev: netdev instance
2913 */
ice_set_netdev_features(struct net_device * netdev)2914 static void ice_set_netdev_features(struct net_device *netdev)
2915 {
2916 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2917 netdev_features_t csumo_features;
2918 netdev_features_t vlano_features;
2919 netdev_features_t dflt_features;
2920 netdev_features_t tso_features;
2921
2922 if (ice_is_safe_mode(pf)) {
2923 /* safe mode */
2924 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2925 netdev->hw_features = netdev->features;
2926 return;
2927 }
2928
2929 dflt_features = NETIF_F_SG |
2930 NETIF_F_HIGHDMA |
2931 NETIF_F_NTUPLE |
2932 NETIF_F_RXHASH;
2933
2934 csumo_features = NETIF_F_RXCSUM |
2935 NETIF_F_IP_CSUM |
2936 NETIF_F_SCTP_CRC |
2937 NETIF_F_IPV6_CSUM;
2938
2939 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2940 NETIF_F_HW_VLAN_CTAG_TX |
2941 NETIF_F_HW_VLAN_CTAG_RX;
2942
2943 tso_features = NETIF_F_TSO |
2944 NETIF_F_TSO_ECN |
2945 NETIF_F_TSO6 |
2946 NETIF_F_GSO_GRE |
2947 NETIF_F_GSO_UDP_TUNNEL |
2948 NETIF_F_GSO_GRE_CSUM |
2949 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2950 NETIF_F_GSO_PARTIAL |
2951 NETIF_F_GSO_IPXIP4 |
2952 NETIF_F_GSO_IPXIP6 |
2953 NETIF_F_GSO_UDP_L4;
2954
2955 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2956 NETIF_F_GSO_GRE_CSUM;
2957 /* set features that user can change */
2958 netdev->hw_features = dflt_features | csumo_features |
2959 vlano_features | tso_features;
2960
2961 /* add support for HW_CSUM on packets with MPLS header */
2962 netdev->mpls_features = NETIF_F_HW_CSUM;
2963
2964 /* enable features */
2965 netdev->features |= netdev->hw_features;
2966 /* encap and VLAN devices inherit default, csumo and tso features */
2967 netdev->hw_enc_features |= dflt_features | csumo_features |
2968 tso_features;
2969 netdev->vlan_features |= dflt_features | csumo_features |
2970 tso_features;
2971 }
2972
2973 /**
2974 * ice_cfg_netdev - Allocate, configure and register a netdev
2975 * @vsi: the VSI associated with the new netdev
2976 *
2977 * Returns 0 on success, negative value on failure
2978 */
ice_cfg_netdev(struct ice_vsi * vsi)2979 static int ice_cfg_netdev(struct ice_vsi *vsi)
2980 {
2981 struct ice_pf *pf = vsi->back;
2982 struct ice_netdev_priv *np;
2983 struct net_device *netdev;
2984 u8 mac_addr[ETH_ALEN];
2985 int err;
2986
2987 err = ice_devlink_create_port(vsi);
2988 if (err)
2989 return err;
2990
2991 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2992 vsi->alloc_rxq);
2993 if (!netdev) {
2994 err = -ENOMEM;
2995 goto err_destroy_devlink_port;
2996 }
2997
2998 vsi->netdev = netdev;
2999 np = netdev_priv(netdev);
3000 np->vsi = vsi;
3001
3002 ice_set_netdev_features(netdev);
3003
3004 ice_set_ops(netdev);
3005
3006 if (vsi->type == ICE_VSI_PF) {
3007 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3008 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3009 ether_addr_copy(netdev->dev_addr, mac_addr);
3010 ether_addr_copy(netdev->perm_addr, mac_addr);
3011 }
3012
3013 netdev->priv_flags |= IFF_UNICAST_FLT;
3014
3015 /* Setup netdev TC information */
3016 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3017
3018 /* setup watchdog timeout value to be 5 second */
3019 netdev->watchdog_timeo = 5 * HZ;
3020
3021 netdev->min_mtu = ETH_MIN_MTU;
3022 netdev->max_mtu = ICE_MAX_MTU;
3023
3024 err = register_netdev(vsi->netdev);
3025 if (err)
3026 goto err_free_netdev;
3027
3028 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3029
3030 netif_carrier_off(vsi->netdev);
3031
3032 /* make sure transmit queues start off as stopped */
3033 netif_tx_stop_all_queues(vsi->netdev);
3034
3035 return 0;
3036
3037 err_free_netdev:
3038 free_netdev(vsi->netdev);
3039 vsi->netdev = NULL;
3040 err_destroy_devlink_port:
3041 ice_devlink_destroy_port(vsi);
3042 return err;
3043 }
3044
3045 /**
3046 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3047 * @lut: Lookup table
3048 * @rss_table_size: Lookup table size
3049 * @rss_size: Range of queue number for hashing
3050 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3051 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3052 {
3053 u16 i;
3054
3055 for (i = 0; i < rss_table_size; i++)
3056 lut[i] = i % rss_size;
3057 }
3058
3059 /**
3060 * ice_pf_vsi_setup - Set up a PF VSI
3061 * @pf: board private structure
3062 * @pi: pointer to the port_info instance
3063 *
3064 * Returns pointer to the successfully allocated VSI software struct
3065 * on success, otherwise returns NULL on failure.
3066 */
3067 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3068 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3069 {
3070 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3071 }
3072
3073 /**
3074 * ice_ctrl_vsi_setup - Set up a control VSI
3075 * @pf: board private structure
3076 * @pi: pointer to the port_info instance
3077 *
3078 * Returns pointer to the successfully allocated VSI software struct
3079 * on success, otherwise returns NULL on failure.
3080 */
3081 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3082 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3083 {
3084 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3085 }
3086
3087 /**
3088 * ice_lb_vsi_setup - Set up a loopback VSI
3089 * @pf: board private structure
3090 * @pi: pointer to the port_info instance
3091 *
3092 * Returns pointer to the successfully allocated VSI software struct
3093 * on success, otherwise returns NULL on failure.
3094 */
3095 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3096 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3097 {
3098 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3099 }
3100
3101 /**
3102 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3103 * @netdev: network interface to be adjusted
3104 * @proto: unused protocol
3105 * @vid: VLAN ID to be added
3106 *
3107 * net_device_ops implementation for adding VLAN IDs
3108 */
3109 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3110 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3111 u16 vid)
3112 {
3113 struct ice_netdev_priv *np = netdev_priv(netdev);
3114 struct ice_vsi *vsi = np->vsi;
3115 int ret;
3116
3117 if (vid >= VLAN_N_VID) {
3118 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3119 vid, VLAN_N_VID);
3120 return -EINVAL;
3121 }
3122
3123 if (vsi->info.pvid)
3124 return -EINVAL;
3125
3126 /* VLAN 0 is added by default during load/reset */
3127 if (!vid)
3128 return 0;
3129
3130 /* Enable VLAN pruning when a VLAN other than 0 is added */
3131 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3132 ret = ice_cfg_vlan_pruning(vsi, true, false);
3133 if (ret)
3134 return ret;
3135 }
3136
3137 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3138 * packets aren't pruned by the device's internal switch on Rx
3139 */
3140 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3141 if (!ret) {
3142 vsi->vlan_ena = true;
3143 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3144 }
3145
3146 return ret;
3147 }
3148
3149 /**
3150 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3151 * @netdev: network interface to be adjusted
3152 * @proto: unused protocol
3153 * @vid: VLAN ID to be removed
3154 *
3155 * net_device_ops implementation for removing VLAN IDs
3156 */
3157 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3158 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3159 u16 vid)
3160 {
3161 struct ice_netdev_priv *np = netdev_priv(netdev);
3162 struct ice_vsi *vsi = np->vsi;
3163 int ret;
3164
3165 if (vsi->info.pvid)
3166 return -EINVAL;
3167
3168 /* don't allow removal of VLAN 0 */
3169 if (!vid)
3170 return 0;
3171
3172 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3173 * information
3174 */
3175 ret = ice_vsi_kill_vlan(vsi, vid);
3176 if (ret)
3177 return ret;
3178
3179 /* Disable pruning when VLAN 0 is the only VLAN rule */
3180 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3181 ret = ice_cfg_vlan_pruning(vsi, false, false);
3182
3183 vsi->vlan_ena = false;
3184 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3185 return ret;
3186 }
3187
3188 /**
3189 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3190 * @pf: board private structure
3191 *
3192 * Returns 0 on success, negative value on failure
3193 */
ice_setup_pf_sw(struct ice_pf * pf)3194 static int ice_setup_pf_sw(struct ice_pf *pf)
3195 {
3196 struct ice_vsi *vsi;
3197 int status = 0;
3198
3199 if (ice_is_reset_in_progress(pf->state))
3200 return -EBUSY;
3201
3202 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3203 if (!vsi)
3204 return -ENOMEM;
3205
3206 status = ice_cfg_netdev(vsi);
3207 if (status) {
3208 status = -ENODEV;
3209 goto unroll_vsi_setup;
3210 }
3211 /* netdev has to be configured before setting frame size */
3212 ice_vsi_cfg_frame_size(vsi);
3213
3214 /* Setup DCB netlink interface */
3215 ice_dcbnl_setup(vsi);
3216
3217 /* registering the NAPI handler requires both the queues and
3218 * netdev to be created, which are done in ice_pf_vsi_setup()
3219 * and ice_cfg_netdev() respectively
3220 */
3221 ice_napi_add(vsi);
3222
3223 status = ice_set_cpu_rx_rmap(vsi);
3224 if (status) {
3225 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3226 vsi->vsi_num, status);
3227 status = -EINVAL;
3228 goto unroll_napi_add;
3229 }
3230 status = ice_init_mac_fltr(pf);
3231 if (status)
3232 goto free_cpu_rx_map;
3233
3234 return status;
3235
3236 free_cpu_rx_map:
3237 ice_free_cpu_rx_rmap(vsi);
3238
3239 unroll_napi_add:
3240 if (vsi) {
3241 ice_napi_del(vsi);
3242 if (vsi->netdev) {
3243 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3244 unregister_netdev(vsi->netdev);
3245 free_netdev(vsi->netdev);
3246 vsi->netdev = NULL;
3247 }
3248 }
3249
3250 unroll_vsi_setup:
3251 ice_vsi_release(vsi);
3252 return status;
3253 }
3254
3255 /**
3256 * ice_get_avail_q_count - Get count of queues in use
3257 * @pf_qmap: bitmap to get queue use count from
3258 * @lock: pointer to a mutex that protects access to pf_qmap
3259 * @size: size of the bitmap
3260 */
3261 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3262 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3263 {
3264 unsigned long bit;
3265 u16 count = 0;
3266
3267 mutex_lock(lock);
3268 for_each_clear_bit(bit, pf_qmap, size)
3269 count++;
3270 mutex_unlock(lock);
3271
3272 return count;
3273 }
3274
3275 /**
3276 * ice_get_avail_txq_count - Get count of Tx queues in use
3277 * @pf: pointer to an ice_pf instance
3278 */
ice_get_avail_txq_count(struct ice_pf * pf)3279 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3280 {
3281 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3282 pf->max_pf_txqs);
3283 }
3284
3285 /**
3286 * ice_get_avail_rxq_count - Get count of Rx queues in use
3287 * @pf: pointer to an ice_pf instance
3288 */
ice_get_avail_rxq_count(struct ice_pf * pf)3289 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3290 {
3291 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3292 pf->max_pf_rxqs);
3293 }
3294
3295 /**
3296 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3297 * @pf: board private structure to initialize
3298 */
ice_deinit_pf(struct ice_pf * pf)3299 static void ice_deinit_pf(struct ice_pf *pf)
3300 {
3301 ice_service_task_stop(pf);
3302 mutex_destroy(&pf->sw_mutex);
3303 mutex_destroy(&pf->tc_mutex);
3304 mutex_destroy(&pf->avail_q_mutex);
3305
3306 if (pf->avail_txqs) {
3307 bitmap_free(pf->avail_txqs);
3308 pf->avail_txqs = NULL;
3309 }
3310
3311 if (pf->avail_rxqs) {
3312 bitmap_free(pf->avail_rxqs);
3313 pf->avail_rxqs = NULL;
3314 }
3315 }
3316
3317 /**
3318 * ice_set_pf_caps - set PFs capability flags
3319 * @pf: pointer to the PF instance
3320 */
ice_set_pf_caps(struct ice_pf * pf)3321 static void ice_set_pf_caps(struct ice_pf *pf)
3322 {
3323 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3324
3325 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3326 if (func_caps->common_cap.dcb)
3327 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3328 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3329 if (func_caps->common_cap.sr_iov_1_1) {
3330 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3331 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3332 ICE_MAX_VF_COUNT);
3333 }
3334 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3335 if (func_caps->common_cap.rss_table_size)
3336 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3337
3338 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3339 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3340 u16 unused;
3341
3342 /* ctrl_vsi_idx will be set to a valid value when flow director
3343 * is setup by ice_init_fdir
3344 */
3345 pf->ctrl_vsi_idx = ICE_NO_VSI;
3346 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3347 /* force guaranteed filter pool for PF */
3348 ice_alloc_fd_guar_item(&pf->hw, &unused,
3349 func_caps->fd_fltr_guar);
3350 /* force shared filter pool for PF */
3351 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3352 func_caps->fd_fltr_best_effort);
3353 }
3354
3355 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3356 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3357 }
3358
3359 /**
3360 * ice_init_pf - Initialize general software structures (struct ice_pf)
3361 * @pf: board private structure to initialize
3362 */
ice_init_pf(struct ice_pf * pf)3363 static int ice_init_pf(struct ice_pf *pf)
3364 {
3365 ice_set_pf_caps(pf);
3366
3367 mutex_init(&pf->sw_mutex);
3368 mutex_init(&pf->tc_mutex);
3369
3370 INIT_HLIST_HEAD(&pf->aq_wait_list);
3371 spin_lock_init(&pf->aq_wait_lock);
3372 init_waitqueue_head(&pf->aq_wait_queue);
3373
3374 /* setup service timer and periodic service task */
3375 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3376 pf->serv_tmr_period = HZ;
3377 INIT_WORK(&pf->serv_task, ice_service_task);
3378 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3379
3380 mutex_init(&pf->avail_q_mutex);
3381 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3382 if (!pf->avail_txqs)
3383 return -ENOMEM;
3384
3385 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3386 if (!pf->avail_rxqs) {
3387 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3388 pf->avail_txqs = NULL;
3389 return -ENOMEM;
3390 }
3391
3392 return 0;
3393 }
3394
3395 /**
3396 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3397 * @pf: board private structure
3398 *
3399 * compute the number of MSIX vectors required (v_budget) and request from
3400 * the OS. Return the number of vectors reserved or negative on failure
3401 */
ice_ena_msix_range(struct ice_pf * pf)3402 static int ice_ena_msix_range(struct ice_pf *pf)
3403 {
3404 struct device *dev = ice_pf_to_dev(pf);
3405 int v_left, v_actual, v_budget = 0;
3406 int needed, err, i;
3407
3408 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3409
3410 /* reserve one vector for miscellaneous handler */
3411 needed = 1;
3412 if (v_left < needed)
3413 goto no_hw_vecs_left_err;
3414 v_budget += needed;
3415 v_left -= needed;
3416
3417 /* reserve vectors for LAN traffic */
3418 needed = min_t(int, num_online_cpus(), v_left);
3419 if (v_left < needed)
3420 goto no_hw_vecs_left_err;
3421 pf->num_lan_msix = needed;
3422 v_budget += needed;
3423 v_left -= needed;
3424
3425 /* reserve one vector for flow director */
3426 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3427 needed = ICE_FDIR_MSIX;
3428 if (v_left < needed)
3429 goto no_hw_vecs_left_err;
3430 v_budget += needed;
3431 v_left -= needed;
3432 }
3433
3434 pf->msix_entries = devm_kcalloc(dev, v_budget,
3435 sizeof(*pf->msix_entries), GFP_KERNEL);
3436
3437 if (!pf->msix_entries) {
3438 err = -ENOMEM;
3439 goto exit_err;
3440 }
3441
3442 for (i = 0; i < v_budget; i++)
3443 pf->msix_entries[i].entry = i;
3444
3445 /* actually reserve the vectors */
3446 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3447 ICE_MIN_MSIX, v_budget);
3448
3449 if (v_actual < 0) {
3450 dev_err(dev, "unable to reserve MSI-X vectors\n");
3451 err = v_actual;
3452 goto msix_err;
3453 }
3454
3455 if (v_actual < v_budget) {
3456 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3457 v_budget, v_actual);
3458
3459 if (v_actual < ICE_MIN_MSIX) {
3460 /* error if we can't get minimum vectors */
3461 pci_disable_msix(pf->pdev);
3462 err = -ERANGE;
3463 goto msix_err;
3464 } else {
3465 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3466 }
3467 }
3468
3469 return v_actual;
3470
3471 msix_err:
3472 devm_kfree(dev, pf->msix_entries);
3473 goto exit_err;
3474
3475 no_hw_vecs_left_err:
3476 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3477 needed, v_left);
3478 err = -ERANGE;
3479 exit_err:
3480 pf->num_lan_msix = 0;
3481 return err;
3482 }
3483
3484 /**
3485 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3486 * @pf: board private structure
3487 */
ice_dis_msix(struct ice_pf * pf)3488 static void ice_dis_msix(struct ice_pf *pf)
3489 {
3490 pci_disable_msix(pf->pdev);
3491 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3492 pf->msix_entries = NULL;
3493 }
3494
3495 /**
3496 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3497 * @pf: board private structure
3498 */
ice_clear_interrupt_scheme(struct ice_pf * pf)3499 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3500 {
3501 ice_dis_msix(pf);
3502
3503 if (pf->irq_tracker) {
3504 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3505 pf->irq_tracker = NULL;
3506 }
3507 }
3508
3509 /**
3510 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3511 * @pf: board private structure to initialize
3512 */
ice_init_interrupt_scheme(struct ice_pf * pf)3513 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3514 {
3515 int vectors;
3516
3517 vectors = ice_ena_msix_range(pf);
3518
3519 if (vectors < 0)
3520 return vectors;
3521
3522 /* set up vector assignment tracking */
3523 pf->irq_tracker =
3524 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3525 (sizeof(u16) * vectors), GFP_KERNEL);
3526 if (!pf->irq_tracker) {
3527 ice_dis_msix(pf);
3528 return -ENOMEM;
3529 }
3530
3531 /* populate SW interrupts pool with number of OS granted IRQs. */
3532 pf->num_avail_sw_msix = (u16)vectors;
3533 pf->irq_tracker->num_entries = (u16)vectors;
3534 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3535
3536 return 0;
3537 }
3538
3539 /**
3540 * ice_is_wol_supported - check if WoL is supported
3541 * @hw: pointer to hardware info
3542 *
3543 * Check if WoL is supported based on the HW configuration.
3544 * Returns true if NVM supports and enables WoL for this port, false otherwise
3545 */
ice_is_wol_supported(struct ice_hw * hw)3546 bool ice_is_wol_supported(struct ice_hw *hw)
3547 {
3548 u16 wol_ctrl;
3549
3550 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3551 * word) indicates WoL is not supported on the corresponding PF ID.
3552 */
3553 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3554 return false;
3555
3556 return !(BIT(hw->port_info->lport) & wol_ctrl);
3557 }
3558
3559 /**
3560 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3561 * @vsi: VSI being changed
3562 * @new_rx: new number of Rx queues
3563 * @new_tx: new number of Tx queues
3564 *
3565 * Only change the number of queues if new_tx, or new_rx is non-0.
3566 *
3567 * Returns 0 on success.
3568 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3569 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3570 {
3571 struct ice_pf *pf = vsi->back;
3572 int err = 0, timeout = 50;
3573
3574 if (!new_rx && !new_tx)
3575 return -EINVAL;
3576
3577 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3578 timeout--;
3579 if (!timeout)
3580 return -EBUSY;
3581 usleep_range(1000, 2000);
3582 }
3583
3584 if (new_tx)
3585 vsi->req_txq = (u16)new_tx;
3586 if (new_rx)
3587 vsi->req_rxq = (u16)new_rx;
3588
3589 /* set for the next time the netdev is started */
3590 if (!netif_running(vsi->netdev)) {
3591 ice_vsi_rebuild(vsi, false);
3592 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3593 goto done;
3594 }
3595
3596 ice_vsi_close(vsi);
3597 ice_vsi_rebuild(vsi, false);
3598 ice_pf_dcb_recfg(pf);
3599 ice_vsi_open(vsi);
3600 done:
3601 clear_bit(__ICE_CFG_BUSY, pf->state);
3602 return err;
3603 }
3604
3605 /**
3606 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3607 * @pf: PF to configure
3608 *
3609 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3610 * VSI can still Tx/Rx VLAN tagged packets.
3611 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3612 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3613 {
3614 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3615 struct ice_vsi_ctx *ctxt;
3616 enum ice_status status;
3617 struct ice_hw *hw;
3618
3619 if (!vsi)
3620 return;
3621
3622 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3623 if (!ctxt)
3624 return;
3625
3626 hw = &pf->hw;
3627 ctxt->info = vsi->info;
3628
3629 ctxt->info.valid_sections =
3630 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3631 ICE_AQ_VSI_PROP_SECURITY_VALID |
3632 ICE_AQ_VSI_PROP_SW_VALID);
3633
3634 /* disable VLAN anti-spoof */
3635 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3636 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3637
3638 /* disable VLAN pruning and keep all other settings */
3639 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3640
3641 /* allow all VLANs on Tx and don't strip on Rx */
3642 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3643 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3644
3645 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3646 if (status) {
3647 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3648 ice_stat_str(status),
3649 ice_aq_str(hw->adminq.sq_last_status));
3650 } else {
3651 vsi->info.sec_flags = ctxt->info.sec_flags;
3652 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3653 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3654 }
3655
3656 kfree(ctxt);
3657 }
3658
3659 /**
3660 * ice_log_pkg_init - log result of DDP package load
3661 * @hw: pointer to hardware info
3662 * @status: status of package load
3663 */
3664 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3665 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3666 {
3667 struct ice_pf *pf = (struct ice_pf *)hw->back;
3668 struct device *dev = ice_pf_to_dev(pf);
3669
3670 switch (*status) {
3671 case ICE_SUCCESS:
3672 /* The package download AdminQ command returned success because
3673 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3674 * already a package loaded on the device.
3675 */
3676 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3677 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3678 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3679 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3680 !memcmp(hw->pkg_name, hw->active_pkg_name,
3681 sizeof(hw->pkg_name))) {
3682 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3683 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3684 hw->active_pkg_name,
3685 hw->active_pkg_ver.major,
3686 hw->active_pkg_ver.minor,
3687 hw->active_pkg_ver.update,
3688 hw->active_pkg_ver.draft);
3689 else
3690 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3691 hw->active_pkg_name,
3692 hw->active_pkg_ver.major,
3693 hw->active_pkg_ver.minor,
3694 hw->active_pkg_ver.update,
3695 hw->active_pkg_ver.draft);
3696 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3697 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3698 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3699 hw->active_pkg_name,
3700 hw->active_pkg_ver.major,
3701 hw->active_pkg_ver.minor,
3702 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3703 *status = ICE_ERR_NOT_SUPPORTED;
3704 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3705 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3706 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3707 hw->active_pkg_name,
3708 hw->active_pkg_ver.major,
3709 hw->active_pkg_ver.minor,
3710 hw->active_pkg_ver.update,
3711 hw->active_pkg_ver.draft,
3712 hw->pkg_name,
3713 hw->pkg_ver.major,
3714 hw->pkg_ver.minor,
3715 hw->pkg_ver.update,
3716 hw->pkg_ver.draft);
3717 } else {
3718 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3719 *status = ICE_ERR_NOT_SUPPORTED;
3720 }
3721 break;
3722 case ICE_ERR_FW_DDP_MISMATCH:
3723 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3724 break;
3725 case ICE_ERR_BUF_TOO_SHORT:
3726 case ICE_ERR_CFG:
3727 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3728 break;
3729 case ICE_ERR_NOT_SUPPORTED:
3730 /* Package File version not supported */
3731 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3732 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3733 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3734 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3735 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3736 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3737 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3738 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3739 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3740 break;
3741 case ICE_ERR_AQ_ERROR:
3742 switch (hw->pkg_dwnld_status) {
3743 case ICE_AQ_RC_ENOSEC:
3744 case ICE_AQ_RC_EBADSIG:
3745 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3746 return;
3747 case ICE_AQ_RC_ESVN:
3748 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3749 return;
3750 case ICE_AQ_RC_EBADMAN:
3751 case ICE_AQ_RC_EBADBUF:
3752 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3753 /* poll for reset to complete */
3754 if (ice_check_reset(hw))
3755 dev_err(dev, "Error resetting device. Please reload the driver\n");
3756 return;
3757 default:
3758 break;
3759 }
3760 fallthrough;
3761 default:
3762 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3763 *status);
3764 break;
3765 }
3766 }
3767
3768 /**
3769 * ice_load_pkg - load/reload the DDP Package file
3770 * @firmware: firmware structure when firmware requested or NULL for reload
3771 * @pf: pointer to the PF instance
3772 *
3773 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3774 * initialize HW tables.
3775 */
3776 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3777 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3778 {
3779 enum ice_status status = ICE_ERR_PARAM;
3780 struct device *dev = ice_pf_to_dev(pf);
3781 struct ice_hw *hw = &pf->hw;
3782
3783 /* Load DDP Package */
3784 if (firmware && !hw->pkg_copy) {
3785 status = ice_copy_and_init_pkg(hw, firmware->data,
3786 firmware->size);
3787 ice_log_pkg_init(hw, &status);
3788 } else if (!firmware && hw->pkg_copy) {
3789 /* Reload package during rebuild after CORER/GLOBR reset */
3790 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3791 ice_log_pkg_init(hw, &status);
3792 } else {
3793 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3794 }
3795
3796 if (status) {
3797 /* Safe Mode */
3798 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3799 return;
3800 }
3801
3802 /* Successful download package is the precondition for advanced
3803 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3804 */
3805 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3806 }
3807
3808 /**
3809 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3810 * @pf: pointer to the PF structure
3811 *
3812 * There is no error returned here because the driver should be able to handle
3813 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3814 * specifically with Tx.
3815 */
ice_verify_cacheline_size(struct ice_pf * pf)3816 static void ice_verify_cacheline_size(struct ice_pf *pf)
3817 {
3818 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3819 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3820 ICE_CACHE_LINE_BYTES);
3821 }
3822
3823 /**
3824 * ice_send_version - update firmware with driver version
3825 * @pf: PF struct
3826 *
3827 * Returns ICE_SUCCESS on success, else error code
3828 */
ice_send_version(struct ice_pf * pf)3829 static enum ice_status ice_send_version(struct ice_pf *pf)
3830 {
3831 struct ice_driver_ver dv;
3832
3833 dv.major_ver = 0xff;
3834 dv.minor_ver = 0xff;
3835 dv.build_ver = 0xff;
3836 dv.subbuild_ver = 0;
3837 strscpy((char *)dv.driver_string, UTS_RELEASE,
3838 sizeof(dv.driver_string));
3839 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3840 }
3841
3842 /**
3843 * ice_init_fdir - Initialize flow director VSI and configuration
3844 * @pf: pointer to the PF instance
3845 *
3846 * returns 0 on success, negative on error
3847 */
ice_init_fdir(struct ice_pf * pf)3848 static int ice_init_fdir(struct ice_pf *pf)
3849 {
3850 struct device *dev = ice_pf_to_dev(pf);
3851 struct ice_vsi *ctrl_vsi;
3852 int err;
3853
3854 /* Side Band Flow Director needs to have a control VSI.
3855 * Allocate it and store it in the PF.
3856 */
3857 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3858 if (!ctrl_vsi) {
3859 dev_dbg(dev, "could not create control VSI\n");
3860 return -ENOMEM;
3861 }
3862
3863 err = ice_vsi_open_ctrl(ctrl_vsi);
3864 if (err) {
3865 dev_dbg(dev, "could not open control VSI\n");
3866 goto err_vsi_open;
3867 }
3868
3869 mutex_init(&pf->hw.fdir_fltr_lock);
3870
3871 err = ice_fdir_create_dflt_rules(pf);
3872 if (err)
3873 goto err_fdir_rule;
3874
3875 return 0;
3876
3877 err_fdir_rule:
3878 ice_fdir_release_flows(&pf->hw);
3879 ice_vsi_close(ctrl_vsi);
3880 err_vsi_open:
3881 ice_vsi_release(ctrl_vsi);
3882 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3883 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3884 pf->ctrl_vsi_idx = ICE_NO_VSI;
3885 }
3886 return err;
3887 }
3888
3889 /**
3890 * ice_get_opt_fw_name - return optional firmware file name or NULL
3891 * @pf: pointer to the PF instance
3892 */
ice_get_opt_fw_name(struct ice_pf * pf)3893 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3894 {
3895 /* Optional firmware name same as default with additional dash
3896 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3897 */
3898 struct pci_dev *pdev = pf->pdev;
3899 char *opt_fw_filename;
3900 u64 dsn;
3901
3902 /* Determine the name of the optional file using the DSN (two
3903 * dwords following the start of the DSN Capability).
3904 */
3905 dsn = pci_get_dsn(pdev);
3906 if (!dsn)
3907 return NULL;
3908
3909 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3910 if (!opt_fw_filename)
3911 return NULL;
3912
3913 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3914 ICE_DDP_PKG_PATH, dsn);
3915
3916 return opt_fw_filename;
3917 }
3918
3919 /**
3920 * ice_request_fw - Device initialization routine
3921 * @pf: pointer to the PF instance
3922 */
ice_request_fw(struct ice_pf * pf)3923 static void ice_request_fw(struct ice_pf *pf)
3924 {
3925 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3926 const struct firmware *firmware = NULL;
3927 struct device *dev = ice_pf_to_dev(pf);
3928 int err = 0;
3929
3930 /* optional device-specific DDP (if present) overrides the default DDP
3931 * package file. kernel logs a debug message if the file doesn't exist,
3932 * and warning messages for other errors.
3933 */
3934 if (opt_fw_filename) {
3935 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3936 if (err) {
3937 kfree(opt_fw_filename);
3938 goto dflt_pkg_load;
3939 }
3940
3941 /* request for firmware was successful. Download to device */
3942 ice_load_pkg(firmware, pf);
3943 kfree(opt_fw_filename);
3944 release_firmware(firmware);
3945 return;
3946 }
3947
3948 dflt_pkg_load:
3949 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3950 if (err) {
3951 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3952 return;
3953 }
3954
3955 /* request for firmware was successful. Download to device */
3956 ice_load_pkg(firmware, pf);
3957 release_firmware(firmware);
3958 }
3959
3960 /**
3961 * ice_print_wake_reason - show the wake up cause in the log
3962 * @pf: pointer to the PF struct
3963 */
ice_print_wake_reason(struct ice_pf * pf)3964 static void ice_print_wake_reason(struct ice_pf *pf)
3965 {
3966 u32 wus = pf->wakeup_reason;
3967 const char *wake_str;
3968
3969 /* if no wake event, nothing to print */
3970 if (!wus)
3971 return;
3972
3973 if (wus & PFPM_WUS_LNKC_M)
3974 wake_str = "Link\n";
3975 else if (wus & PFPM_WUS_MAG_M)
3976 wake_str = "Magic Packet\n";
3977 else if (wus & PFPM_WUS_MNG_M)
3978 wake_str = "Management\n";
3979 else if (wus & PFPM_WUS_FW_RST_WK_M)
3980 wake_str = "Firmware Reset\n";
3981 else
3982 wake_str = "Unknown\n";
3983
3984 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3985 }
3986
3987 /**
3988 * ice_probe - Device initialization routine
3989 * @pdev: PCI device information struct
3990 * @ent: entry in ice_pci_tbl
3991 *
3992 * Returns 0 on success, negative on failure
3993 */
3994 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)3995 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3996 {
3997 struct device *dev = &pdev->dev;
3998 struct ice_pf *pf;
3999 struct ice_hw *hw;
4000 int i, err;
4001
4002 if (pdev->is_virtfn) {
4003 dev_err(dev, "can't probe a virtual function\n");
4004 return -EINVAL;
4005 }
4006
4007 /* this driver uses devres, see
4008 * Documentation/driver-api/driver-model/devres.rst
4009 */
4010 err = pcim_enable_device(pdev);
4011 if (err)
4012 return err;
4013
4014 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4015 if (err) {
4016 dev_err(dev, "BAR0 I/O map error %d\n", err);
4017 return err;
4018 }
4019
4020 pf = ice_allocate_pf(dev);
4021 if (!pf)
4022 return -ENOMEM;
4023
4024 /* set up for high or low DMA */
4025 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4026 if (err)
4027 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4028 if (err) {
4029 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4030 return err;
4031 }
4032
4033 pci_enable_pcie_error_reporting(pdev);
4034 pci_set_master(pdev);
4035
4036 pf->pdev = pdev;
4037 pci_set_drvdata(pdev, pf);
4038 set_bit(__ICE_DOWN, pf->state);
4039 /* Disable service task until DOWN bit is cleared */
4040 set_bit(__ICE_SERVICE_DIS, pf->state);
4041
4042 hw = &pf->hw;
4043 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4044 pci_save_state(pdev);
4045
4046 hw->back = pf;
4047 hw->vendor_id = pdev->vendor;
4048 hw->device_id = pdev->device;
4049 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4050 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4051 hw->subsystem_device_id = pdev->subsystem_device;
4052 hw->bus.device = PCI_SLOT(pdev->devfn);
4053 hw->bus.func = PCI_FUNC(pdev->devfn);
4054 ice_set_ctrlq_len(hw);
4055
4056 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4057
4058 err = ice_devlink_register(pf);
4059 if (err) {
4060 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4061 goto err_exit_unroll;
4062 }
4063
4064 #ifndef CONFIG_DYNAMIC_DEBUG
4065 if (debug < -1)
4066 hw->debug_mask = debug;
4067 #endif
4068
4069 err = ice_init_hw(hw);
4070 if (err) {
4071 dev_err(dev, "ice_init_hw failed: %d\n", err);
4072 err = -EIO;
4073 goto err_exit_unroll;
4074 }
4075
4076 ice_request_fw(pf);
4077
4078 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4079 * set in pf->state, which will cause ice_is_safe_mode to return
4080 * true
4081 */
4082 if (ice_is_safe_mode(pf)) {
4083 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4084 /* we already got function/device capabilities but these don't
4085 * reflect what the driver needs to do in safe mode. Instead of
4086 * adding conditional logic everywhere to ignore these
4087 * device/function capabilities, override them.
4088 */
4089 ice_set_safe_mode_caps(hw);
4090 }
4091
4092 err = ice_init_pf(pf);
4093 if (err) {
4094 dev_err(dev, "ice_init_pf failed: %d\n", err);
4095 goto err_init_pf_unroll;
4096 }
4097
4098 ice_devlink_init_regions(pf);
4099
4100 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4101 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4102 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4103 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4104 i = 0;
4105 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4106 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4107 pf->hw.tnl.valid_count[TNL_VXLAN];
4108 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4109 UDP_TUNNEL_TYPE_VXLAN;
4110 i++;
4111 }
4112 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4113 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4114 pf->hw.tnl.valid_count[TNL_GENEVE];
4115 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4116 UDP_TUNNEL_TYPE_GENEVE;
4117 i++;
4118 }
4119
4120 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4121 if (!pf->num_alloc_vsi) {
4122 err = -EIO;
4123 goto err_init_pf_unroll;
4124 }
4125 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4126 dev_warn(&pf->pdev->dev,
4127 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4128 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4129 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4130 }
4131
4132 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4133 GFP_KERNEL);
4134 if (!pf->vsi) {
4135 err = -ENOMEM;
4136 goto err_init_pf_unroll;
4137 }
4138
4139 err = ice_init_interrupt_scheme(pf);
4140 if (err) {
4141 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4142 err = -EIO;
4143 goto err_init_vsi_unroll;
4144 }
4145
4146 /* In case of MSIX we are going to setup the misc vector right here
4147 * to handle admin queue events etc. In case of legacy and MSI
4148 * the misc functionality and queue processing is combined in
4149 * the same vector and that gets setup at open.
4150 */
4151 err = ice_req_irq_msix_misc(pf);
4152 if (err) {
4153 dev_err(dev, "setup of misc vector failed: %d\n", err);
4154 goto err_init_interrupt_unroll;
4155 }
4156
4157 /* create switch struct for the switch element created by FW on boot */
4158 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4159 if (!pf->first_sw) {
4160 err = -ENOMEM;
4161 goto err_msix_misc_unroll;
4162 }
4163
4164 if (hw->evb_veb)
4165 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4166 else
4167 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4168
4169 pf->first_sw->pf = pf;
4170
4171 /* record the sw_id available for later use */
4172 pf->first_sw->sw_id = hw->port_info->sw_id;
4173
4174 err = ice_setup_pf_sw(pf);
4175 if (err) {
4176 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4177 goto err_alloc_sw_unroll;
4178 }
4179
4180 clear_bit(__ICE_SERVICE_DIS, pf->state);
4181
4182 /* tell the firmware we are up */
4183 err = ice_send_version(pf);
4184 if (err) {
4185 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4186 UTS_RELEASE, err);
4187 goto err_send_version_unroll;
4188 }
4189
4190 /* since everything is good, start the service timer */
4191 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4192
4193 err = ice_init_link_events(pf->hw.port_info);
4194 if (err) {
4195 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4196 goto err_send_version_unroll;
4197 }
4198
4199 /* not a fatal error if this fails */
4200 err = ice_init_nvm_phy_type(pf->hw.port_info);
4201 if (err)
4202 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4203
4204 /* not a fatal error if this fails */
4205 err = ice_update_link_info(pf->hw.port_info);
4206 if (err)
4207 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4208
4209 ice_init_link_dflt_override(pf->hw.port_info);
4210
4211 /* if media available, initialize PHY settings */
4212 if (pf->hw.port_info->phy.link_info.link_info &
4213 ICE_AQ_MEDIA_AVAILABLE) {
4214 /* not a fatal error if this fails */
4215 err = ice_init_phy_user_cfg(pf->hw.port_info);
4216 if (err)
4217 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4218
4219 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4220 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4221
4222 if (vsi)
4223 ice_configure_phy(vsi);
4224 }
4225 } else {
4226 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4227 }
4228
4229 ice_verify_cacheline_size(pf);
4230
4231 /* Save wakeup reason register for later use */
4232 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4233
4234 /* check for a power management event */
4235 ice_print_wake_reason(pf);
4236
4237 /* clear wake status, all bits */
4238 wr32(hw, PFPM_WUS, U32_MAX);
4239
4240 /* Disable WoL at init, wait for user to enable */
4241 device_set_wakeup_enable(dev, false);
4242
4243 if (ice_is_safe_mode(pf)) {
4244 ice_set_safe_mode_vlan_cfg(pf);
4245 goto probe_done;
4246 }
4247
4248 /* initialize DDP driven features */
4249
4250 /* Note: Flow director init failure is non-fatal to load */
4251 if (ice_init_fdir(pf))
4252 dev_err(dev, "could not initialize flow director\n");
4253
4254 /* Note: DCB init failure is non-fatal to load */
4255 if (ice_init_pf_dcb(pf, false)) {
4256 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4257 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4258 } else {
4259 ice_cfg_lldp_mib_change(&pf->hw, true);
4260 }
4261
4262 /* print PCI link speed and width */
4263 pcie_print_link_status(pf->pdev);
4264
4265 probe_done:
4266 /* ready to go, so clear down state bit */
4267 clear_bit(__ICE_DOWN, pf->state);
4268 return 0;
4269
4270 err_send_version_unroll:
4271 ice_vsi_release_all(pf);
4272 err_alloc_sw_unroll:
4273 set_bit(__ICE_SERVICE_DIS, pf->state);
4274 set_bit(__ICE_DOWN, pf->state);
4275 devm_kfree(dev, pf->first_sw);
4276 err_msix_misc_unroll:
4277 ice_free_irq_msix_misc(pf);
4278 err_init_interrupt_unroll:
4279 ice_clear_interrupt_scheme(pf);
4280 err_init_vsi_unroll:
4281 devm_kfree(dev, pf->vsi);
4282 err_init_pf_unroll:
4283 ice_deinit_pf(pf);
4284 ice_devlink_destroy_regions(pf);
4285 ice_deinit_hw(hw);
4286 err_exit_unroll:
4287 ice_devlink_unregister(pf);
4288 pci_disable_pcie_error_reporting(pdev);
4289 pci_disable_device(pdev);
4290 return err;
4291 }
4292
4293 /**
4294 * ice_set_wake - enable or disable Wake on LAN
4295 * @pf: pointer to the PF struct
4296 *
4297 * Simple helper for WoL control
4298 */
ice_set_wake(struct ice_pf * pf)4299 static void ice_set_wake(struct ice_pf *pf)
4300 {
4301 struct ice_hw *hw = &pf->hw;
4302 bool wol = pf->wol_ena;
4303
4304 /* clear wake state, otherwise new wake events won't fire */
4305 wr32(hw, PFPM_WUS, U32_MAX);
4306
4307 /* enable / disable APM wake up, no RMW needed */
4308 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4309
4310 /* set magic packet filter enabled */
4311 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4312 }
4313
4314 /**
4315 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4316 * @pf: pointer to the PF struct
4317 *
4318 * Issue firmware command to enable multicast magic wake, making
4319 * sure that any locally administered address (LAA) is used for
4320 * wake, and that PF reset doesn't undo the LAA.
4321 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4322 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4323 {
4324 struct device *dev = ice_pf_to_dev(pf);
4325 struct ice_hw *hw = &pf->hw;
4326 enum ice_status status;
4327 u8 mac_addr[ETH_ALEN];
4328 struct ice_vsi *vsi;
4329 u8 flags;
4330
4331 if (!pf->wol_ena)
4332 return;
4333
4334 vsi = ice_get_main_vsi(pf);
4335 if (!vsi)
4336 return;
4337
4338 /* Get current MAC address in case it's an LAA */
4339 if (vsi->netdev)
4340 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4341 else
4342 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4343
4344 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4345 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4346 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4347
4348 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4349 if (status)
4350 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4351 ice_stat_str(status),
4352 ice_aq_str(hw->adminq.sq_last_status));
4353 }
4354
4355 /**
4356 * ice_remove - Device removal routine
4357 * @pdev: PCI device information struct
4358 */
ice_remove(struct pci_dev * pdev)4359 static void ice_remove(struct pci_dev *pdev)
4360 {
4361 struct ice_pf *pf = pci_get_drvdata(pdev);
4362 int i;
4363
4364 if (!pf)
4365 return;
4366
4367 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4368 if (!ice_is_reset_in_progress(pf->state))
4369 break;
4370 msleep(100);
4371 }
4372
4373 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4374 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4375 ice_free_vfs(pf);
4376 }
4377
4378 set_bit(__ICE_DOWN, pf->state);
4379 ice_service_task_stop(pf);
4380
4381 ice_aq_cancel_waiting_tasks(pf);
4382
4383 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4384 if (!ice_is_safe_mode(pf))
4385 ice_remove_arfs(pf);
4386 ice_setup_mc_magic_wake(pf);
4387 ice_vsi_release_all(pf);
4388 ice_set_wake(pf);
4389 ice_free_irq_msix_misc(pf);
4390 ice_for_each_vsi(pf, i) {
4391 if (!pf->vsi[i])
4392 continue;
4393 ice_vsi_free_q_vectors(pf->vsi[i]);
4394 }
4395 ice_deinit_pf(pf);
4396 ice_devlink_destroy_regions(pf);
4397 ice_deinit_hw(&pf->hw);
4398 ice_devlink_unregister(pf);
4399
4400 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4401 * do it via ice_schedule_reset() since there is no need to rebuild
4402 * and the service task is already stopped.
4403 */
4404 ice_reset(&pf->hw, ICE_RESET_PFR);
4405 pci_wait_for_pending_transaction(pdev);
4406 ice_clear_interrupt_scheme(pf);
4407 pci_disable_pcie_error_reporting(pdev);
4408 pci_disable_device(pdev);
4409 }
4410
4411 /**
4412 * ice_shutdown - PCI callback for shutting down device
4413 * @pdev: PCI device information struct
4414 */
ice_shutdown(struct pci_dev * pdev)4415 static void ice_shutdown(struct pci_dev *pdev)
4416 {
4417 struct ice_pf *pf = pci_get_drvdata(pdev);
4418
4419 ice_remove(pdev);
4420
4421 if (system_state == SYSTEM_POWER_OFF) {
4422 pci_wake_from_d3(pdev, pf->wol_ena);
4423 pci_set_power_state(pdev, PCI_D3hot);
4424 }
4425 }
4426
4427 #ifdef CONFIG_PM
4428 /**
4429 * ice_prepare_for_shutdown - prep for PCI shutdown
4430 * @pf: board private structure
4431 *
4432 * Inform or close all dependent features in prep for PCI device shutdown
4433 */
ice_prepare_for_shutdown(struct ice_pf * pf)4434 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4435 {
4436 struct ice_hw *hw = &pf->hw;
4437 u32 v;
4438
4439 /* Notify VFs of impending reset */
4440 if (ice_check_sq_alive(hw, &hw->mailboxq))
4441 ice_vc_notify_reset(pf);
4442
4443 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4444
4445 /* disable the VSIs and their queues that are not already DOWN */
4446 ice_pf_dis_all_vsi(pf, false);
4447
4448 ice_for_each_vsi(pf, v)
4449 if (pf->vsi[v])
4450 pf->vsi[v]->vsi_num = 0;
4451
4452 ice_shutdown_all_ctrlq(hw);
4453 }
4454
4455 /**
4456 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4457 * @pf: board private structure to reinitialize
4458 *
4459 * This routine reinitialize interrupt scheme that was cleared during
4460 * power management suspend callback.
4461 *
4462 * This should be called during resume routine to re-allocate the q_vectors
4463 * and reacquire interrupts.
4464 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4465 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4466 {
4467 struct device *dev = ice_pf_to_dev(pf);
4468 int ret, v;
4469
4470 /* Since we clear MSIX flag during suspend, we need to
4471 * set it back during resume...
4472 */
4473
4474 ret = ice_init_interrupt_scheme(pf);
4475 if (ret) {
4476 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4477 return ret;
4478 }
4479
4480 /* Remap vectors and rings, after successful re-init interrupts */
4481 ice_for_each_vsi(pf, v) {
4482 if (!pf->vsi[v])
4483 continue;
4484
4485 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4486 if (ret)
4487 goto err_reinit;
4488 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4489 }
4490
4491 ret = ice_req_irq_msix_misc(pf);
4492 if (ret) {
4493 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4494 ret);
4495 goto err_reinit;
4496 }
4497
4498 return 0;
4499
4500 err_reinit:
4501 while (v--)
4502 if (pf->vsi[v])
4503 ice_vsi_free_q_vectors(pf->vsi[v]);
4504
4505 return ret;
4506 }
4507
4508 /**
4509 * ice_suspend
4510 * @dev: generic device information structure
4511 *
4512 * Power Management callback to quiesce the device and prepare
4513 * for D3 transition.
4514 */
ice_suspend(struct device * dev)4515 static int __maybe_unused ice_suspend(struct device *dev)
4516 {
4517 struct pci_dev *pdev = to_pci_dev(dev);
4518 struct ice_pf *pf;
4519 int disabled, v;
4520
4521 pf = pci_get_drvdata(pdev);
4522
4523 if (!ice_pf_state_is_nominal(pf)) {
4524 dev_err(dev, "Device is not ready, no need to suspend it\n");
4525 return -EBUSY;
4526 }
4527
4528 /* Stop watchdog tasks until resume completion.
4529 * Even though it is most likely that the service task is
4530 * disabled if the device is suspended or down, the service task's
4531 * state is controlled by a different state bit, and we should
4532 * store and honor whatever state that bit is in at this point.
4533 */
4534 disabled = ice_service_task_stop(pf);
4535
4536 /* Already suspended?, then there is nothing to do */
4537 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4538 if (!disabled)
4539 ice_service_task_restart(pf);
4540 return 0;
4541 }
4542
4543 if (test_bit(__ICE_DOWN, pf->state) ||
4544 ice_is_reset_in_progress(pf->state)) {
4545 dev_err(dev, "can't suspend device in reset or already down\n");
4546 if (!disabled)
4547 ice_service_task_restart(pf);
4548 return 0;
4549 }
4550
4551 ice_setup_mc_magic_wake(pf);
4552
4553 ice_prepare_for_shutdown(pf);
4554
4555 ice_set_wake(pf);
4556
4557 /* Free vectors, clear the interrupt scheme and release IRQs
4558 * for proper hibernation, especially with large number of CPUs.
4559 * Otherwise hibernation might fail when mapping all the vectors back
4560 * to CPU0.
4561 */
4562 ice_free_irq_msix_misc(pf);
4563 ice_for_each_vsi(pf, v) {
4564 if (!pf->vsi[v])
4565 continue;
4566 ice_vsi_free_q_vectors(pf->vsi[v]);
4567 }
4568 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4569 ice_clear_interrupt_scheme(pf);
4570
4571 pci_save_state(pdev);
4572 pci_wake_from_d3(pdev, pf->wol_ena);
4573 pci_set_power_state(pdev, PCI_D3hot);
4574 return 0;
4575 }
4576
4577 /**
4578 * ice_resume - PM callback for waking up from D3
4579 * @dev: generic device information structure
4580 */
ice_resume(struct device * dev)4581 static int __maybe_unused ice_resume(struct device *dev)
4582 {
4583 struct pci_dev *pdev = to_pci_dev(dev);
4584 enum ice_reset_req reset_type;
4585 struct ice_pf *pf;
4586 struct ice_hw *hw;
4587 int ret;
4588
4589 pci_set_power_state(pdev, PCI_D0);
4590 pci_restore_state(pdev);
4591 pci_save_state(pdev);
4592
4593 if (!pci_device_is_present(pdev))
4594 return -ENODEV;
4595
4596 ret = pci_enable_device_mem(pdev);
4597 if (ret) {
4598 dev_err(dev, "Cannot enable device after suspend\n");
4599 return ret;
4600 }
4601
4602 pf = pci_get_drvdata(pdev);
4603 hw = &pf->hw;
4604
4605 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4606 ice_print_wake_reason(pf);
4607
4608 /* We cleared the interrupt scheme when we suspended, so we need to
4609 * restore it now to resume device functionality.
4610 */
4611 ret = ice_reinit_interrupt_scheme(pf);
4612 if (ret)
4613 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4614
4615 clear_bit(__ICE_DOWN, pf->state);
4616 /* Now perform PF reset and rebuild */
4617 reset_type = ICE_RESET_PFR;
4618 /* re-enable service task for reset, but allow reset to schedule it */
4619 clear_bit(__ICE_SERVICE_DIS, pf->state);
4620
4621 if (ice_schedule_reset(pf, reset_type))
4622 dev_err(dev, "Reset during resume failed.\n");
4623
4624 clear_bit(__ICE_SUSPENDED, pf->state);
4625 ice_service_task_restart(pf);
4626
4627 /* Restart the service task */
4628 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4629
4630 return 0;
4631 }
4632 #endif /* CONFIG_PM */
4633
4634 /**
4635 * ice_pci_err_detected - warning that PCI error has been detected
4636 * @pdev: PCI device information struct
4637 * @err: the type of PCI error
4638 *
4639 * Called to warn that something happened on the PCI bus and the error handling
4640 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4641 */
4642 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4643 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4644 {
4645 struct ice_pf *pf = pci_get_drvdata(pdev);
4646
4647 if (!pf) {
4648 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4649 __func__, err);
4650 return PCI_ERS_RESULT_DISCONNECT;
4651 }
4652
4653 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4654 ice_service_task_stop(pf);
4655
4656 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4657 set_bit(__ICE_PFR_REQ, pf->state);
4658 ice_prepare_for_reset(pf);
4659 }
4660 }
4661
4662 return PCI_ERS_RESULT_NEED_RESET;
4663 }
4664
4665 /**
4666 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4667 * @pdev: PCI device information struct
4668 *
4669 * Called to determine if the driver can recover from the PCI slot reset by
4670 * using a register read to determine if the device is recoverable.
4671 */
ice_pci_err_slot_reset(struct pci_dev * pdev)4672 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4673 {
4674 struct ice_pf *pf = pci_get_drvdata(pdev);
4675 pci_ers_result_t result;
4676 int err;
4677 u32 reg;
4678
4679 err = pci_enable_device_mem(pdev);
4680 if (err) {
4681 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4682 err);
4683 result = PCI_ERS_RESULT_DISCONNECT;
4684 } else {
4685 pci_set_master(pdev);
4686 pci_restore_state(pdev);
4687 pci_save_state(pdev);
4688 pci_wake_from_d3(pdev, false);
4689
4690 /* Check for life */
4691 reg = rd32(&pf->hw, GLGEN_RTRIG);
4692 if (!reg)
4693 result = PCI_ERS_RESULT_RECOVERED;
4694 else
4695 result = PCI_ERS_RESULT_DISCONNECT;
4696 }
4697
4698 err = pci_aer_clear_nonfatal_status(pdev);
4699 if (err)
4700 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4701 err);
4702 /* non-fatal, continue */
4703
4704 return result;
4705 }
4706
4707 /**
4708 * ice_pci_err_resume - restart operations after PCI error recovery
4709 * @pdev: PCI device information struct
4710 *
4711 * Called to allow the driver to bring things back up after PCI error and/or
4712 * reset recovery have finished
4713 */
ice_pci_err_resume(struct pci_dev * pdev)4714 static void ice_pci_err_resume(struct pci_dev *pdev)
4715 {
4716 struct ice_pf *pf = pci_get_drvdata(pdev);
4717
4718 if (!pf) {
4719 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4720 __func__);
4721 return;
4722 }
4723
4724 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4725 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4726 __func__);
4727 return;
4728 }
4729
4730 ice_restore_all_vfs_msi_state(pdev);
4731
4732 ice_do_reset(pf, ICE_RESET_PFR);
4733 ice_service_task_restart(pf);
4734 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4735 }
4736
4737 /**
4738 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4739 * @pdev: PCI device information struct
4740 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4741 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4742 {
4743 struct ice_pf *pf = pci_get_drvdata(pdev);
4744
4745 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4746 ice_service_task_stop(pf);
4747
4748 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4749 set_bit(__ICE_PFR_REQ, pf->state);
4750 ice_prepare_for_reset(pf);
4751 }
4752 }
4753 }
4754
4755 /**
4756 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4757 * @pdev: PCI device information struct
4758 */
ice_pci_err_reset_done(struct pci_dev * pdev)4759 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4760 {
4761 ice_pci_err_resume(pdev);
4762 }
4763
4764 /* ice_pci_tbl - PCI Device ID Table
4765 *
4766 * Wildcard entries (PCI_ANY_ID) should come last
4767 * Last entry must be all 0s
4768 *
4769 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4770 * Class, Class Mask, private data (not used) }
4771 */
4772 static const struct pci_device_id ice_pci_tbl[] = {
4773 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4774 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4775 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4776 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4777 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4778 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4779 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4780 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4781 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4782 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4783 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4784 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4785 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4786 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4787 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4788 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4789 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4798 /* required last entry */
4799 { 0, }
4800 };
4801 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4802
4803 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4804
4805 static const struct pci_error_handlers ice_pci_err_handler = {
4806 .error_detected = ice_pci_err_detected,
4807 .slot_reset = ice_pci_err_slot_reset,
4808 .reset_prepare = ice_pci_err_reset_prepare,
4809 .reset_done = ice_pci_err_reset_done,
4810 .resume = ice_pci_err_resume
4811 };
4812
4813 static struct pci_driver ice_driver = {
4814 .name = KBUILD_MODNAME,
4815 .id_table = ice_pci_tbl,
4816 .probe = ice_probe,
4817 .remove = ice_remove,
4818 #ifdef CONFIG_PM
4819 .driver.pm = &ice_pm_ops,
4820 #endif /* CONFIG_PM */
4821 .shutdown = ice_shutdown,
4822 .sriov_configure = ice_sriov_configure,
4823 .err_handler = &ice_pci_err_handler
4824 };
4825
4826 /**
4827 * ice_module_init - Driver registration routine
4828 *
4829 * ice_module_init is the first routine called when the driver is
4830 * loaded. All it does is register with the PCI subsystem.
4831 */
ice_module_init(void)4832 static int __init ice_module_init(void)
4833 {
4834 int status;
4835
4836 pr_info("%s\n", ice_driver_string);
4837 pr_info("%s\n", ice_copyright);
4838
4839 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4840 if (!ice_wq) {
4841 pr_err("Failed to create workqueue\n");
4842 return -ENOMEM;
4843 }
4844
4845 status = pci_register_driver(&ice_driver);
4846 if (status) {
4847 pr_err("failed to register PCI driver, err %d\n", status);
4848 destroy_workqueue(ice_wq);
4849 }
4850
4851 return status;
4852 }
4853 module_init(ice_module_init);
4854
4855 /**
4856 * ice_module_exit - Driver exit cleanup routine
4857 *
4858 * ice_module_exit is called just before the driver is removed
4859 * from memory.
4860 */
ice_module_exit(void)4861 static void __exit ice_module_exit(void)
4862 {
4863 pci_unregister_driver(&ice_driver);
4864 destroy_workqueue(ice_wq);
4865 pr_info("module unloaded\n");
4866 }
4867 module_exit(ice_module_exit);
4868
4869 /**
4870 * ice_set_mac_address - NDO callback to set MAC address
4871 * @netdev: network interface device structure
4872 * @pi: pointer to an address structure
4873 *
4874 * Returns 0 on success, negative on failure
4875 */
ice_set_mac_address(struct net_device * netdev,void * pi)4876 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4877 {
4878 struct ice_netdev_priv *np = netdev_priv(netdev);
4879 struct ice_vsi *vsi = np->vsi;
4880 struct ice_pf *pf = vsi->back;
4881 struct ice_hw *hw = &pf->hw;
4882 struct sockaddr *addr = pi;
4883 enum ice_status status;
4884 u8 old_mac[ETH_ALEN];
4885 u8 flags = 0;
4886 int err = 0;
4887 u8 *mac;
4888
4889 mac = (u8 *)addr->sa_data;
4890
4891 if (!is_valid_ether_addr(mac))
4892 return -EADDRNOTAVAIL;
4893
4894 if (ether_addr_equal(netdev->dev_addr, mac)) {
4895 netdev_dbg(netdev, "already using mac %pM\n", mac);
4896 return 0;
4897 }
4898
4899 if (test_bit(__ICE_DOWN, pf->state) ||
4900 ice_is_reset_in_progress(pf->state)) {
4901 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4902 mac);
4903 return -EBUSY;
4904 }
4905
4906 netif_addr_lock_bh(netdev);
4907 ether_addr_copy(old_mac, netdev->dev_addr);
4908 /* change the netdev's MAC address */
4909 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4910 netif_addr_unlock_bh(netdev);
4911
4912 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4913 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4914 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4915 err = -EADDRNOTAVAIL;
4916 goto err_update_filters;
4917 }
4918
4919 /* Add filter for new MAC. If filter exists, return success */
4920 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4921 if (status == ICE_ERR_ALREADY_EXISTS)
4922 /* Although this MAC filter is already present in hardware it's
4923 * possible in some cases (e.g. bonding) that dev_addr was
4924 * modified outside of the driver and needs to be restored back
4925 * to this value.
4926 */
4927 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4928 else if (status)
4929 /* error if the new filter addition failed */
4930 err = -EADDRNOTAVAIL;
4931
4932 err_update_filters:
4933 if (err) {
4934 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4935 mac);
4936 netif_addr_lock_bh(netdev);
4937 ether_addr_copy(netdev->dev_addr, old_mac);
4938 netif_addr_unlock_bh(netdev);
4939 return err;
4940 }
4941
4942 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4943 netdev->dev_addr);
4944
4945 /* write new MAC address to the firmware */
4946 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4947 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4948 if (status) {
4949 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4950 mac, ice_stat_str(status));
4951 }
4952 return 0;
4953 }
4954
4955 /**
4956 * ice_set_rx_mode - NDO callback to set the netdev filters
4957 * @netdev: network interface device structure
4958 */
ice_set_rx_mode(struct net_device * netdev)4959 static void ice_set_rx_mode(struct net_device *netdev)
4960 {
4961 struct ice_netdev_priv *np = netdev_priv(netdev);
4962 struct ice_vsi *vsi = np->vsi;
4963
4964 if (!vsi)
4965 return;
4966
4967 /* Set the flags to synchronize filters
4968 * ndo_set_rx_mode may be triggered even without a change in netdev
4969 * flags
4970 */
4971 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4972 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4973 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4974
4975 /* schedule our worker thread which will take care of
4976 * applying the new filter changes
4977 */
4978 ice_service_task_schedule(vsi->back);
4979 }
4980
4981 /**
4982 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4983 * @netdev: network interface device structure
4984 * @queue_index: Queue ID
4985 * @maxrate: maximum bandwidth in Mbps
4986 */
4987 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)4988 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4989 {
4990 struct ice_netdev_priv *np = netdev_priv(netdev);
4991 struct ice_vsi *vsi = np->vsi;
4992 enum ice_status status;
4993 u16 q_handle;
4994 u8 tc;
4995
4996 /* Validate maxrate requested is within permitted range */
4997 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4998 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4999 maxrate, queue_index);
5000 return -EINVAL;
5001 }
5002
5003 q_handle = vsi->tx_rings[queue_index]->q_handle;
5004 tc = ice_dcb_get_tc(vsi, queue_index);
5005
5006 /* Set BW back to default, when user set maxrate to 0 */
5007 if (!maxrate)
5008 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5009 q_handle, ICE_MAX_BW);
5010 else
5011 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5012 q_handle, ICE_MAX_BW, maxrate * 1000);
5013 if (status) {
5014 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5015 ice_stat_str(status));
5016 return -EIO;
5017 }
5018
5019 return 0;
5020 }
5021
5022 /**
5023 * ice_fdb_add - add an entry to the hardware database
5024 * @ndm: the input from the stack
5025 * @tb: pointer to array of nladdr (unused)
5026 * @dev: the net device pointer
5027 * @addr: the MAC address entry being added
5028 * @vid: VLAN ID
5029 * @flags: instructions from stack about fdb operation
5030 * @extack: netlink extended ack
5031 */
5032 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5033 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5034 struct net_device *dev, const unsigned char *addr, u16 vid,
5035 u16 flags, struct netlink_ext_ack __always_unused *extack)
5036 {
5037 int err;
5038
5039 if (vid) {
5040 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5041 return -EINVAL;
5042 }
5043 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5044 netdev_err(dev, "FDB only supports static addresses\n");
5045 return -EINVAL;
5046 }
5047
5048 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5049 err = dev_uc_add_excl(dev, addr);
5050 else if (is_multicast_ether_addr(addr))
5051 err = dev_mc_add_excl(dev, addr);
5052 else
5053 err = -EINVAL;
5054
5055 /* Only return duplicate errors if NLM_F_EXCL is set */
5056 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5057 err = 0;
5058
5059 return err;
5060 }
5061
5062 /**
5063 * ice_fdb_del - delete an entry from the hardware database
5064 * @ndm: the input from the stack
5065 * @tb: pointer to array of nladdr (unused)
5066 * @dev: the net device pointer
5067 * @addr: the MAC address entry being added
5068 * @vid: VLAN ID
5069 */
5070 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5071 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5072 struct net_device *dev, const unsigned char *addr,
5073 __always_unused u16 vid)
5074 {
5075 int err;
5076
5077 if (ndm->ndm_state & NUD_PERMANENT) {
5078 netdev_err(dev, "FDB only supports static addresses\n");
5079 return -EINVAL;
5080 }
5081
5082 if (is_unicast_ether_addr(addr))
5083 err = dev_uc_del(dev, addr);
5084 else if (is_multicast_ether_addr(addr))
5085 err = dev_mc_del(dev, addr);
5086 else
5087 err = -EINVAL;
5088
5089 return err;
5090 }
5091
5092 /**
5093 * ice_set_features - set the netdev feature flags
5094 * @netdev: ptr to the netdev being adjusted
5095 * @features: the feature set that the stack is suggesting
5096 */
5097 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5098 ice_set_features(struct net_device *netdev, netdev_features_t features)
5099 {
5100 struct ice_netdev_priv *np = netdev_priv(netdev);
5101 struct ice_vsi *vsi = np->vsi;
5102 struct ice_pf *pf = vsi->back;
5103 int ret = 0;
5104
5105 /* Don't set any netdev advanced features with device in Safe Mode */
5106 if (ice_is_safe_mode(vsi->back)) {
5107 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5108 return ret;
5109 }
5110
5111 /* Do not change setting during reset */
5112 if (ice_is_reset_in_progress(pf->state)) {
5113 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5114 return -EBUSY;
5115 }
5116
5117 /* Multiple features can be changed in one call so keep features in
5118 * separate if/else statements to guarantee each feature is checked
5119 */
5120 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5121 ret = ice_vsi_manage_rss_lut(vsi, true);
5122 else if (!(features & NETIF_F_RXHASH) &&
5123 netdev->features & NETIF_F_RXHASH)
5124 ret = ice_vsi_manage_rss_lut(vsi, false);
5125
5126 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5127 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5128 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5129 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5130 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5131 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5132
5133 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5134 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5135 ret = ice_vsi_manage_vlan_insertion(vsi);
5136 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5137 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5138 ret = ice_vsi_manage_vlan_insertion(vsi);
5139
5140 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5141 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5142 ret = ice_cfg_vlan_pruning(vsi, true, false);
5143 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5144 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5145 ret = ice_cfg_vlan_pruning(vsi, false, false);
5146
5147 if ((features & NETIF_F_NTUPLE) &&
5148 !(netdev->features & NETIF_F_NTUPLE)) {
5149 ice_vsi_manage_fdir(vsi, true);
5150 ice_init_arfs(vsi);
5151 } else if (!(features & NETIF_F_NTUPLE) &&
5152 (netdev->features & NETIF_F_NTUPLE)) {
5153 ice_vsi_manage_fdir(vsi, false);
5154 ice_clear_arfs(vsi);
5155 }
5156
5157 return ret;
5158 }
5159
5160 /**
5161 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5162 * @vsi: VSI to setup VLAN properties for
5163 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5164 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5165 {
5166 int ret = 0;
5167
5168 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5169 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5170 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5171 ret = ice_vsi_manage_vlan_insertion(vsi);
5172
5173 return ret;
5174 }
5175
5176 /**
5177 * ice_vsi_cfg - Setup the VSI
5178 * @vsi: the VSI being configured
5179 *
5180 * Return 0 on success and negative value on error
5181 */
ice_vsi_cfg(struct ice_vsi * vsi)5182 int ice_vsi_cfg(struct ice_vsi *vsi)
5183 {
5184 int err;
5185
5186 if (vsi->netdev) {
5187 ice_set_rx_mode(vsi->netdev);
5188
5189 err = ice_vsi_vlan_setup(vsi);
5190
5191 if (err)
5192 return err;
5193 }
5194 ice_vsi_cfg_dcb_rings(vsi);
5195
5196 err = ice_vsi_cfg_lan_txqs(vsi);
5197 if (!err && ice_is_xdp_ena_vsi(vsi))
5198 err = ice_vsi_cfg_xdp_txqs(vsi);
5199 if (!err)
5200 err = ice_vsi_cfg_rxqs(vsi);
5201
5202 return err;
5203 }
5204
5205 /**
5206 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5207 * @vsi: the VSI being configured
5208 */
ice_napi_enable_all(struct ice_vsi * vsi)5209 static void ice_napi_enable_all(struct ice_vsi *vsi)
5210 {
5211 int q_idx;
5212
5213 if (!vsi->netdev)
5214 return;
5215
5216 ice_for_each_q_vector(vsi, q_idx) {
5217 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5218
5219 if (q_vector->rx.ring || q_vector->tx.ring)
5220 napi_enable(&q_vector->napi);
5221 }
5222 }
5223
5224 /**
5225 * ice_up_complete - Finish the last steps of bringing up a connection
5226 * @vsi: The VSI being configured
5227 *
5228 * Return 0 on success and negative value on error
5229 */
ice_up_complete(struct ice_vsi * vsi)5230 static int ice_up_complete(struct ice_vsi *vsi)
5231 {
5232 struct ice_pf *pf = vsi->back;
5233 int err;
5234
5235 ice_vsi_cfg_msix(vsi);
5236
5237 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5238 * Tx queue group list was configured and the context bits were
5239 * programmed using ice_vsi_cfg_txqs
5240 */
5241 err = ice_vsi_start_all_rx_rings(vsi);
5242 if (err)
5243 return err;
5244
5245 clear_bit(__ICE_DOWN, vsi->state);
5246 ice_napi_enable_all(vsi);
5247 ice_vsi_ena_irq(vsi);
5248
5249 if (vsi->port_info &&
5250 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5251 vsi->netdev) {
5252 ice_print_link_msg(vsi, true);
5253 netif_tx_start_all_queues(vsi->netdev);
5254 netif_carrier_on(vsi->netdev);
5255 }
5256
5257 ice_service_task_schedule(pf);
5258
5259 return 0;
5260 }
5261
5262 /**
5263 * ice_up - Bring the connection back up after being down
5264 * @vsi: VSI being configured
5265 */
ice_up(struct ice_vsi * vsi)5266 int ice_up(struct ice_vsi *vsi)
5267 {
5268 int err;
5269
5270 err = ice_vsi_cfg(vsi);
5271 if (!err)
5272 err = ice_up_complete(vsi);
5273
5274 return err;
5275 }
5276
5277 /**
5278 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5279 * @ring: Tx or Rx ring to read stats from
5280 * @pkts: packets stats counter
5281 * @bytes: bytes stats counter
5282 *
5283 * This function fetches stats from the ring considering the atomic operations
5284 * that needs to be performed to read u64 values in 32 bit machine.
5285 */
5286 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5287 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5288 {
5289 unsigned int start;
5290 *pkts = 0;
5291 *bytes = 0;
5292
5293 if (!ring)
5294 return;
5295 do {
5296 start = u64_stats_fetch_begin_irq(&ring->syncp);
5297 *pkts = ring->stats.pkts;
5298 *bytes = ring->stats.bytes;
5299 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5300 }
5301
5302 /**
5303 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5304 * @vsi: the VSI to be updated
5305 * @rings: rings to work on
5306 * @count: number of rings
5307 */
5308 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5309 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5310 u16 count)
5311 {
5312 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5313 u16 i;
5314
5315 for (i = 0; i < count; i++) {
5316 struct ice_ring *ring;
5317 u64 pkts, bytes;
5318
5319 ring = READ_ONCE(rings[i]);
5320 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5321 vsi_stats->tx_packets += pkts;
5322 vsi_stats->tx_bytes += bytes;
5323 vsi->tx_restart += ring->tx_stats.restart_q;
5324 vsi->tx_busy += ring->tx_stats.tx_busy;
5325 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5326 }
5327 }
5328
5329 /**
5330 * ice_update_vsi_ring_stats - Update VSI stats counters
5331 * @vsi: the VSI to be updated
5332 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5333 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5334 {
5335 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5336 struct ice_ring *ring;
5337 u64 pkts, bytes;
5338 int i;
5339
5340 /* reset netdev stats */
5341 vsi_stats->tx_packets = 0;
5342 vsi_stats->tx_bytes = 0;
5343 vsi_stats->rx_packets = 0;
5344 vsi_stats->rx_bytes = 0;
5345
5346 /* reset non-netdev (extended) stats */
5347 vsi->tx_restart = 0;
5348 vsi->tx_busy = 0;
5349 vsi->tx_linearize = 0;
5350 vsi->rx_buf_failed = 0;
5351 vsi->rx_page_failed = 0;
5352 vsi->rx_gro_dropped = 0;
5353
5354 rcu_read_lock();
5355
5356 /* update Tx rings counters */
5357 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5358
5359 /* update Rx rings counters */
5360 ice_for_each_rxq(vsi, i) {
5361 ring = READ_ONCE(vsi->rx_rings[i]);
5362 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5363 vsi_stats->rx_packets += pkts;
5364 vsi_stats->rx_bytes += bytes;
5365 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5366 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5367 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5368 }
5369
5370 /* update XDP Tx rings counters */
5371 if (ice_is_xdp_ena_vsi(vsi))
5372 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5373 vsi->num_xdp_txq);
5374
5375 rcu_read_unlock();
5376 }
5377
5378 /**
5379 * ice_update_vsi_stats - Update VSI stats counters
5380 * @vsi: the VSI to be updated
5381 */
ice_update_vsi_stats(struct ice_vsi * vsi)5382 void ice_update_vsi_stats(struct ice_vsi *vsi)
5383 {
5384 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5385 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5386 struct ice_pf *pf = vsi->back;
5387
5388 if (test_bit(__ICE_DOWN, vsi->state) ||
5389 test_bit(__ICE_CFG_BUSY, pf->state))
5390 return;
5391
5392 /* get stats as recorded by Tx/Rx rings */
5393 ice_update_vsi_ring_stats(vsi);
5394
5395 /* get VSI stats as recorded by the hardware */
5396 ice_update_eth_stats(vsi);
5397
5398 cur_ns->tx_errors = cur_es->tx_errors;
5399 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5400 cur_ns->tx_dropped = cur_es->tx_discards;
5401 cur_ns->multicast = cur_es->rx_multicast;
5402
5403 /* update some more netdev stats if this is main VSI */
5404 if (vsi->type == ICE_VSI_PF) {
5405 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5406 cur_ns->rx_errors = pf->stats.crc_errors +
5407 pf->stats.illegal_bytes +
5408 pf->stats.rx_len_errors +
5409 pf->stats.rx_undersize +
5410 pf->hw_csum_rx_error +
5411 pf->stats.rx_jabber +
5412 pf->stats.rx_fragments +
5413 pf->stats.rx_oversize;
5414 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5415 /* record drops from the port level */
5416 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5417 }
5418 }
5419
5420 /**
5421 * ice_update_pf_stats - Update PF port stats counters
5422 * @pf: PF whose stats needs to be updated
5423 */
ice_update_pf_stats(struct ice_pf * pf)5424 void ice_update_pf_stats(struct ice_pf *pf)
5425 {
5426 struct ice_hw_port_stats *prev_ps, *cur_ps;
5427 struct ice_hw *hw = &pf->hw;
5428 u16 fd_ctr_base;
5429 u8 port;
5430
5431 port = hw->port_info->lport;
5432 prev_ps = &pf->stats_prev;
5433 cur_ps = &pf->stats;
5434
5435 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5436 &prev_ps->eth.rx_bytes,
5437 &cur_ps->eth.rx_bytes);
5438
5439 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5440 &prev_ps->eth.rx_unicast,
5441 &cur_ps->eth.rx_unicast);
5442
5443 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5444 &prev_ps->eth.rx_multicast,
5445 &cur_ps->eth.rx_multicast);
5446
5447 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5448 &prev_ps->eth.rx_broadcast,
5449 &cur_ps->eth.rx_broadcast);
5450
5451 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5452 &prev_ps->eth.rx_discards,
5453 &cur_ps->eth.rx_discards);
5454
5455 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5456 &prev_ps->eth.tx_bytes,
5457 &cur_ps->eth.tx_bytes);
5458
5459 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5460 &prev_ps->eth.tx_unicast,
5461 &cur_ps->eth.tx_unicast);
5462
5463 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5464 &prev_ps->eth.tx_multicast,
5465 &cur_ps->eth.tx_multicast);
5466
5467 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5468 &prev_ps->eth.tx_broadcast,
5469 &cur_ps->eth.tx_broadcast);
5470
5471 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5472 &prev_ps->tx_dropped_link_down,
5473 &cur_ps->tx_dropped_link_down);
5474
5475 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5476 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5477
5478 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5479 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5480
5481 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5482 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5483
5484 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5485 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5486
5487 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5488 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5489
5490 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5491 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5492
5493 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5494 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5495
5496 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5497 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5498
5499 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5500 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5501
5502 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5503 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5504
5505 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5506 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5507
5508 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5509 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5510
5511 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5512 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5513
5514 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5515 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5516
5517 fd_ctr_base = hw->fd_ctr_base;
5518
5519 ice_stat_update40(hw,
5520 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5521 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5522 &cur_ps->fd_sb_match);
5523 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5524 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5525
5526 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5527 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5528
5529 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5530 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5531
5532 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5533 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5534
5535 ice_update_dcb_stats(pf);
5536
5537 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5538 &prev_ps->crc_errors, &cur_ps->crc_errors);
5539
5540 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5541 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5542
5543 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5544 &prev_ps->mac_local_faults,
5545 &cur_ps->mac_local_faults);
5546
5547 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5548 &prev_ps->mac_remote_faults,
5549 &cur_ps->mac_remote_faults);
5550
5551 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5552 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5553
5554 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5555 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5556
5557 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5558 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5559
5560 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5561 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5562
5563 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5564 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5565
5566 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5567
5568 pf->stat_prev_loaded = true;
5569 }
5570
5571 /**
5572 * ice_get_stats64 - get statistics for network device structure
5573 * @netdev: network interface device structure
5574 * @stats: main device statistics structure
5575 */
5576 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5577 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5578 {
5579 struct ice_netdev_priv *np = netdev_priv(netdev);
5580 struct rtnl_link_stats64 *vsi_stats;
5581 struct ice_vsi *vsi = np->vsi;
5582
5583 vsi_stats = &vsi->net_stats;
5584
5585 if (!vsi->num_txq || !vsi->num_rxq)
5586 return;
5587
5588 /* netdev packet/byte stats come from ring counter. These are obtained
5589 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5590 * But, only call the update routine and read the registers if VSI is
5591 * not down.
5592 */
5593 if (!test_bit(__ICE_DOWN, vsi->state))
5594 ice_update_vsi_ring_stats(vsi);
5595 stats->tx_packets = vsi_stats->tx_packets;
5596 stats->tx_bytes = vsi_stats->tx_bytes;
5597 stats->rx_packets = vsi_stats->rx_packets;
5598 stats->rx_bytes = vsi_stats->rx_bytes;
5599
5600 /* The rest of the stats can be read from the hardware but instead we
5601 * just return values that the watchdog task has already obtained from
5602 * the hardware.
5603 */
5604 stats->multicast = vsi_stats->multicast;
5605 stats->tx_errors = vsi_stats->tx_errors;
5606 stats->tx_dropped = vsi_stats->tx_dropped;
5607 stats->rx_errors = vsi_stats->rx_errors;
5608 stats->rx_dropped = vsi_stats->rx_dropped;
5609 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5610 stats->rx_length_errors = vsi_stats->rx_length_errors;
5611 }
5612
5613 /**
5614 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5615 * @vsi: VSI having NAPI disabled
5616 */
ice_napi_disable_all(struct ice_vsi * vsi)5617 static void ice_napi_disable_all(struct ice_vsi *vsi)
5618 {
5619 int q_idx;
5620
5621 if (!vsi->netdev)
5622 return;
5623
5624 ice_for_each_q_vector(vsi, q_idx) {
5625 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5626
5627 if (q_vector->rx.ring || q_vector->tx.ring)
5628 napi_disable(&q_vector->napi);
5629 }
5630 }
5631
5632 /**
5633 * ice_down - Shutdown the connection
5634 * @vsi: The VSI being stopped
5635 */
ice_down(struct ice_vsi * vsi)5636 int ice_down(struct ice_vsi *vsi)
5637 {
5638 int i, tx_err, rx_err, link_err = 0;
5639
5640 /* Caller of this function is expected to set the
5641 * vsi->state __ICE_DOWN bit
5642 */
5643 if (vsi->netdev) {
5644 netif_carrier_off(vsi->netdev);
5645 netif_tx_disable(vsi->netdev);
5646 }
5647
5648 ice_vsi_dis_irq(vsi);
5649
5650 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5651 if (tx_err)
5652 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5653 vsi->vsi_num, tx_err);
5654 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5655 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5656 if (tx_err)
5657 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5658 vsi->vsi_num, tx_err);
5659 }
5660
5661 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5662 if (rx_err)
5663 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5664 vsi->vsi_num, rx_err);
5665
5666 ice_napi_disable_all(vsi);
5667
5668 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5669 link_err = ice_force_phys_link_state(vsi, false);
5670 if (link_err)
5671 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5672 vsi->vsi_num, link_err);
5673 }
5674
5675 ice_for_each_txq(vsi, i)
5676 ice_clean_tx_ring(vsi->tx_rings[i]);
5677
5678 ice_for_each_rxq(vsi, i)
5679 ice_clean_rx_ring(vsi->rx_rings[i]);
5680
5681 if (tx_err || rx_err || link_err) {
5682 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5683 vsi->vsi_num, vsi->vsw->sw_id);
5684 return -EIO;
5685 }
5686
5687 return 0;
5688 }
5689
5690 /**
5691 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5692 * @vsi: VSI having resources allocated
5693 *
5694 * Return 0 on success, negative on failure
5695 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5696 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5697 {
5698 int i, err = 0;
5699
5700 if (!vsi->num_txq) {
5701 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5702 vsi->vsi_num);
5703 return -EINVAL;
5704 }
5705
5706 ice_for_each_txq(vsi, i) {
5707 struct ice_ring *ring = vsi->tx_rings[i];
5708
5709 if (!ring)
5710 return -EINVAL;
5711
5712 ring->netdev = vsi->netdev;
5713 err = ice_setup_tx_ring(ring);
5714 if (err)
5715 break;
5716 }
5717
5718 return err;
5719 }
5720
5721 /**
5722 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5723 * @vsi: VSI having resources allocated
5724 *
5725 * Return 0 on success, negative on failure
5726 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5727 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5728 {
5729 int i, err = 0;
5730
5731 if (!vsi->num_rxq) {
5732 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5733 vsi->vsi_num);
5734 return -EINVAL;
5735 }
5736
5737 ice_for_each_rxq(vsi, i) {
5738 struct ice_ring *ring = vsi->rx_rings[i];
5739
5740 if (!ring)
5741 return -EINVAL;
5742
5743 ring->netdev = vsi->netdev;
5744 err = ice_setup_rx_ring(ring);
5745 if (err)
5746 break;
5747 }
5748
5749 return err;
5750 }
5751
5752 /**
5753 * ice_vsi_open_ctrl - open control VSI for use
5754 * @vsi: the VSI to open
5755 *
5756 * Initialization of the Control VSI
5757 *
5758 * Returns 0 on success, negative value on error
5759 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5760 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5761 {
5762 char int_name[ICE_INT_NAME_STR_LEN];
5763 struct ice_pf *pf = vsi->back;
5764 struct device *dev;
5765 int err;
5766
5767 dev = ice_pf_to_dev(pf);
5768 /* allocate descriptors */
5769 err = ice_vsi_setup_tx_rings(vsi);
5770 if (err)
5771 goto err_setup_tx;
5772
5773 err = ice_vsi_setup_rx_rings(vsi);
5774 if (err)
5775 goto err_setup_rx;
5776
5777 err = ice_vsi_cfg(vsi);
5778 if (err)
5779 goto err_setup_rx;
5780
5781 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5782 dev_driver_string(dev), dev_name(dev));
5783 err = ice_vsi_req_irq_msix(vsi, int_name);
5784 if (err)
5785 goto err_setup_rx;
5786
5787 ice_vsi_cfg_msix(vsi);
5788
5789 err = ice_vsi_start_all_rx_rings(vsi);
5790 if (err)
5791 goto err_up_complete;
5792
5793 clear_bit(__ICE_DOWN, vsi->state);
5794 ice_vsi_ena_irq(vsi);
5795
5796 return 0;
5797
5798 err_up_complete:
5799 ice_down(vsi);
5800 err_setup_rx:
5801 ice_vsi_free_rx_rings(vsi);
5802 err_setup_tx:
5803 ice_vsi_free_tx_rings(vsi);
5804
5805 return err;
5806 }
5807
5808 /**
5809 * ice_vsi_open - Called when a network interface is made active
5810 * @vsi: the VSI to open
5811 *
5812 * Initialization of the VSI
5813 *
5814 * Returns 0 on success, negative value on error
5815 */
ice_vsi_open(struct ice_vsi * vsi)5816 static int ice_vsi_open(struct ice_vsi *vsi)
5817 {
5818 char int_name[ICE_INT_NAME_STR_LEN];
5819 struct ice_pf *pf = vsi->back;
5820 int err;
5821
5822 /* allocate descriptors */
5823 err = ice_vsi_setup_tx_rings(vsi);
5824 if (err)
5825 goto err_setup_tx;
5826
5827 err = ice_vsi_setup_rx_rings(vsi);
5828 if (err)
5829 goto err_setup_rx;
5830
5831 err = ice_vsi_cfg(vsi);
5832 if (err)
5833 goto err_setup_rx;
5834
5835 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5836 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5837 err = ice_vsi_req_irq_msix(vsi, int_name);
5838 if (err)
5839 goto err_setup_rx;
5840
5841 /* Notify the stack of the actual queue counts. */
5842 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5843 if (err)
5844 goto err_set_qs;
5845
5846 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5847 if (err)
5848 goto err_set_qs;
5849
5850 err = ice_up_complete(vsi);
5851 if (err)
5852 goto err_up_complete;
5853
5854 return 0;
5855
5856 err_up_complete:
5857 ice_down(vsi);
5858 err_set_qs:
5859 ice_vsi_free_irq(vsi);
5860 err_setup_rx:
5861 ice_vsi_free_rx_rings(vsi);
5862 err_setup_tx:
5863 ice_vsi_free_tx_rings(vsi);
5864
5865 return err;
5866 }
5867
5868 /**
5869 * ice_vsi_release_all - Delete all VSIs
5870 * @pf: PF from which all VSIs are being removed
5871 */
ice_vsi_release_all(struct ice_pf * pf)5872 static void ice_vsi_release_all(struct ice_pf *pf)
5873 {
5874 int err, i;
5875
5876 if (!pf->vsi)
5877 return;
5878
5879 ice_for_each_vsi(pf, i) {
5880 if (!pf->vsi[i])
5881 continue;
5882
5883 err = ice_vsi_release(pf->vsi[i]);
5884 if (err)
5885 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5886 i, err, pf->vsi[i]->vsi_num);
5887 }
5888 }
5889
5890 /**
5891 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5892 * @pf: pointer to the PF instance
5893 * @type: VSI type to rebuild
5894 *
5895 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5896 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5897 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5898 {
5899 struct device *dev = ice_pf_to_dev(pf);
5900 enum ice_status status;
5901 int i, err;
5902
5903 ice_for_each_vsi(pf, i) {
5904 struct ice_vsi *vsi = pf->vsi[i];
5905
5906 if (!vsi || vsi->type != type)
5907 continue;
5908
5909 /* rebuild the VSI */
5910 err = ice_vsi_rebuild(vsi, true);
5911 if (err) {
5912 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5913 err, vsi->idx, ice_vsi_type_str(type));
5914 return err;
5915 }
5916
5917 /* replay filters for the VSI */
5918 status = ice_replay_vsi(&pf->hw, vsi->idx);
5919 if (status) {
5920 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5921 ice_stat_str(status), vsi->idx,
5922 ice_vsi_type_str(type));
5923 return -EIO;
5924 }
5925
5926 /* Re-map HW VSI number, using VSI handle that has been
5927 * previously validated in ice_replay_vsi() call above
5928 */
5929 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5930
5931 /* enable the VSI */
5932 err = ice_ena_vsi(vsi, false);
5933 if (err) {
5934 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5935 err, vsi->idx, ice_vsi_type_str(type));
5936 return err;
5937 }
5938
5939 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5940 ice_vsi_type_str(type));
5941 }
5942
5943 return 0;
5944 }
5945
5946 /**
5947 * ice_update_pf_netdev_link - Update PF netdev link status
5948 * @pf: pointer to the PF instance
5949 */
ice_update_pf_netdev_link(struct ice_pf * pf)5950 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5951 {
5952 bool link_up;
5953 int i;
5954
5955 ice_for_each_vsi(pf, i) {
5956 struct ice_vsi *vsi = pf->vsi[i];
5957
5958 if (!vsi || vsi->type != ICE_VSI_PF)
5959 return;
5960
5961 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5962 if (link_up) {
5963 netif_carrier_on(pf->vsi[i]->netdev);
5964 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5965 } else {
5966 netif_carrier_off(pf->vsi[i]->netdev);
5967 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5968 }
5969 }
5970 }
5971
5972 /**
5973 * ice_rebuild - rebuild after reset
5974 * @pf: PF to rebuild
5975 * @reset_type: type of reset
5976 *
5977 * Do not rebuild VF VSI in this flow because that is already handled via
5978 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5979 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5980 * to reset/rebuild all the VF VSI twice.
5981 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)5982 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5983 {
5984 struct device *dev = ice_pf_to_dev(pf);
5985 struct ice_hw *hw = &pf->hw;
5986 enum ice_status ret;
5987 int err;
5988
5989 if (test_bit(__ICE_DOWN, pf->state))
5990 goto clear_recovery;
5991
5992 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5993
5994 ret = ice_init_all_ctrlq(hw);
5995 if (ret) {
5996 dev_err(dev, "control queues init failed %s\n",
5997 ice_stat_str(ret));
5998 goto err_init_ctrlq;
5999 }
6000
6001 /* if DDP was previously loaded successfully */
6002 if (!ice_is_safe_mode(pf)) {
6003 /* reload the SW DB of filter tables */
6004 if (reset_type == ICE_RESET_PFR)
6005 ice_fill_blk_tbls(hw);
6006 else
6007 /* Reload DDP Package after CORER/GLOBR reset */
6008 ice_load_pkg(NULL, pf);
6009 }
6010
6011 ret = ice_clear_pf_cfg(hw);
6012 if (ret) {
6013 dev_err(dev, "clear PF configuration failed %s\n",
6014 ice_stat_str(ret));
6015 goto err_init_ctrlq;
6016 }
6017
6018 if (pf->first_sw->dflt_vsi_ena)
6019 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6020 /* clear the default VSI configuration if it exists */
6021 pf->first_sw->dflt_vsi = NULL;
6022 pf->first_sw->dflt_vsi_ena = false;
6023
6024 ice_clear_pxe_mode(hw);
6025
6026 ret = ice_get_caps(hw);
6027 if (ret) {
6028 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6029 goto err_init_ctrlq;
6030 }
6031
6032 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6033 if (ret) {
6034 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6035 goto err_init_ctrlq;
6036 }
6037
6038 err = ice_sched_init_port(hw->port_info);
6039 if (err)
6040 goto err_sched_init_port;
6041
6042 /* start misc vector */
6043 err = ice_req_irq_msix_misc(pf);
6044 if (err) {
6045 dev_err(dev, "misc vector setup failed: %d\n", err);
6046 goto err_sched_init_port;
6047 }
6048
6049 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6050 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6051 if (!rd32(hw, PFQF_FD_SIZE)) {
6052 u16 unused, guar, b_effort;
6053
6054 guar = hw->func_caps.fd_fltr_guar;
6055 b_effort = hw->func_caps.fd_fltr_best_effort;
6056
6057 /* force guaranteed filter pool for PF */
6058 ice_alloc_fd_guar_item(hw, &unused, guar);
6059 /* force shared filter pool for PF */
6060 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6061 }
6062 }
6063
6064 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6065 ice_dcb_rebuild(pf);
6066
6067 /* rebuild PF VSI */
6068 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6069 if (err) {
6070 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6071 goto err_vsi_rebuild;
6072 }
6073
6074 /* If Flow Director is active */
6075 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6076 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6077 if (err) {
6078 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6079 goto err_vsi_rebuild;
6080 }
6081
6082 /* replay HW Flow Director recipes */
6083 if (hw->fdir_prof)
6084 ice_fdir_replay_flows(hw);
6085
6086 /* replay Flow Director filters */
6087 ice_fdir_replay_fltrs(pf);
6088
6089 ice_rebuild_arfs(pf);
6090 }
6091
6092 ice_update_pf_netdev_link(pf);
6093
6094 /* tell the firmware we are up */
6095 ret = ice_send_version(pf);
6096 if (ret) {
6097 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6098 ice_stat_str(ret));
6099 goto err_vsi_rebuild;
6100 }
6101
6102 ice_replay_post(hw);
6103
6104 /* if we get here, reset flow is successful */
6105 clear_bit(__ICE_RESET_FAILED, pf->state);
6106 return;
6107
6108 err_vsi_rebuild:
6109 err_sched_init_port:
6110 ice_sched_cleanup_all(hw);
6111 err_init_ctrlq:
6112 ice_shutdown_all_ctrlq(hw);
6113 set_bit(__ICE_RESET_FAILED, pf->state);
6114 clear_recovery:
6115 /* set this bit in PF state to control service task scheduling */
6116 set_bit(__ICE_NEEDS_RESTART, pf->state);
6117 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6118 }
6119
6120 /**
6121 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6122 * @vsi: Pointer to VSI structure
6123 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6124 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6125 {
6126 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6127 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6128 else
6129 return ICE_RXBUF_3072;
6130 }
6131
6132 /**
6133 * ice_change_mtu - NDO callback to change the MTU
6134 * @netdev: network interface device structure
6135 * @new_mtu: new value for maximum frame size
6136 *
6137 * Returns 0 on success, negative on failure
6138 */
ice_change_mtu(struct net_device * netdev,int new_mtu)6139 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6140 {
6141 struct ice_netdev_priv *np = netdev_priv(netdev);
6142 struct ice_vsi *vsi = np->vsi;
6143 struct ice_pf *pf = vsi->back;
6144 u8 count = 0;
6145
6146 if (new_mtu == (int)netdev->mtu) {
6147 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6148 return 0;
6149 }
6150
6151 if (ice_is_xdp_ena_vsi(vsi)) {
6152 int frame_size = ice_max_xdp_frame_size(vsi);
6153
6154 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6155 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6156 frame_size - ICE_ETH_PKT_HDR_PAD);
6157 return -EINVAL;
6158 }
6159 }
6160
6161 if (new_mtu < (int)netdev->min_mtu) {
6162 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6163 netdev->min_mtu);
6164 return -EINVAL;
6165 } else if (new_mtu > (int)netdev->max_mtu) {
6166 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6167 netdev->min_mtu);
6168 return -EINVAL;
6169 }
6170 /* if a reset is in progress, wait for some time for it to complete */
6171 do {
6172 if (ice_is_reset_in_progress(pf->state)) {
6173 count++;
6174 usleep_range(1000, 2000);
6175 } else {
6176 break;
6177 }
6178
6179 } while (count < 100);
6180
6181 if (count == 100) {
6182 netdev_err(netdev, "can't change MTU. Device is busy\n");
6183 return -EBUSY;
6184 }
6185
6186 netdev->mtu = (unsigned int)new_mtu;
6187
6188 /* if VSI is up, bring it down and then back up */
6189 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6190 int err;
6191
6192 err = ice_down(vsi);
6193 if (err) {
6194 netdev_err(netdev, "change MTU if_up err %d\n", err);
6195 return err;
6196 }
6197
6198 err = ice_up(vsi);
6199 if (err) {
6200 netdev_err(netdev, "change MTU if_up err %d\n", err);
6201 return err;
6202 }
6203 }
6204
6205 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6206 return 0;
6207 }
6208
6209 /**
6210 * ice_aq_str - convert AQ err code to a string
6211 * @aq_err: the AQ error code to convert
6212 */
ice_aq_str(enum ice_aq_err aq_err)6213 const char *ice_aq_str(enum ice_aq_err aq_err)
6214 {
6215 switch (aq_err) {
6216 case ICE_AQ_RC_OK:
6217 return "OK";
6218 case ICE_AQ_RC_EPERM:
6219 return "ICE_AQ_RC_EPERM";
6220 case ICE_AQ_RC_ENOENT:
6221 return "ICE_AQ_RC_ENOENT";
6222 case ICE_AQ_RC_ENOMEM:
6223 return "ICE_AQ_RC_ENOMEM";
6224 case ICE_AQ_RC_EBUSY:
6225 return "ICE_AQ_RC_EBUSY";
6226 case ICE_AQ_RC_EEXIST:
6227 return "ICE_AQ_RC_EEXIST";
6228 case ICE_AQ_RC_EINVAL:
6229 return "ICE_AQ_RC_EINVAL";
6230 case ICE_AQ_RC_ENOSPC:
6231 return "ICE_AQ_RC_ENOSPC";
6232 case ICE_AQ_RC_ENOSYS:
6233 return "ICE_AQ_RC_ENOSYS";
6234 case ICE_AQ_RC_EMODE:
6235 return "ICE_AQ_RC_EMODE";
6236 case ICE_AQ_RC_ENOSEC:
6237 return "ICE_AQ_RC_ENOSEC";
6238 case ICE_AQ_RC_EBADSIG:
6239 return "ICE_AQ_RC_EBADSIG";
6240 case ICE_AQ_RC_ESVN:
6241 return "ICE_AQ_RC_ESVN";
6242 case ICE_AQ_RC_EBADMAN:
6243 return "ICE_AQ_RC_EBADMAN";
6244 case ICE_AQ_RC_EBADBUF:
6245 return "ICE_AQ_RC_EBADBUF";
6246 }
6247
6248 return "ICE_AQ_RC_UNKNOWN";
6249 }
6250
6251 /**
6252 * ice_stat_str - convert status err code to a string
6253 * @stat_err: the status error code to convert
6254 */
ice_stat_str(enum ice_status stat_err)6255 const char *ice_stat_str(enum ice_status stat_err)
6256 {
6257 switch (stat_err) {
6258 case ICE_SUCCESS:
6259 return "OK";
6260 case ICE_ERR_PARAM:
6261 return "ICE_ERR_PARAM";
6262 case ICE_ERR_NOT_IMPL:
6263 return "ICE_ERR_NOT_IMPL";
6264 case ICE_ERR_NOT_READY:
6265 return "ICE_ERR_NOT_READY";
6266 case ICE_ERR_NOT_SUPPORTED:
6267 return "ICE_ERR_NOT_SUPPORTED";
6268 case ICE_ERR_BAD_PTR:
6269 return "ICE_ERR_BAD_PTR";
6270 case ICE_ERR_INVAL_SIZE:
6271 return "ICE_ERR_INVAL_SIZE";
6272 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6273 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6274 case ICE_ERR_RESET_FAILED:
6275 return "ICE_ERR_RESET_FAILED";
6276 case ICE_ERR_FW_API_VER:
6277 return "ICE_ERR_FW_API_VER";
6278 case ICE_ERR_NO_MEMORY:
6279 return "ICE_ERR_NO_MEMORY";
6280 case ICE_ERR_CFG:
6281 return "ICE_ERR_CFG";
6282 case ICE_ERR_OUT_OF_RANGE:
6283 return "ICE_ERR_OUT_OF_RANGE";
6284 case ICE_ERR_ALREADY_EXISTS:
6285 return "ICE_ERR_ALREADY_EXISTS";
6286 case ICE_ERR_NVM_CHECKSUM:
6287 return "ICE_ERR_NVM_CHECKSUM";
6288 case ICE_ERR_BUF_TOO_SHORT:
6289 return "ICE_ERR_BUF_TOO_SHORT";
6290 case ICE_ERR_NVM_BLANK_MODE:
6291 return "ICE_ERR_NVM_BLANK_MODE";
6292 case ICE_ERR_IN_USE:
6293 return "ICE_ERR_IN_USE";
6294 case ICE_ERR_MAX_LIMIT:
6295 return "ICE_ERR_MAX_LIMIT";
6296 case ICE_ERR_RESET_ONGOING:
6297 return "ICE_ERR_RESET_ONGOING";
6298 case ICE_ERR_HW_TABLE:
6299 return "ICE_ERR_HW_TABLE";
6300 case ICE_ERR_DOES_NOT_EXIST:
6301 return "ICE_ERR_DOES_NOT_EXIST";
6302 case ICE_ERR_FW_DDP_MISMATCH:
6303 return "ICE_ERR_FW_DDP_MISMATCH";
6304 case ICE_ERR_AQ_ERROR:
6305 return "ICE_ERR_AQ_ERROR";
6306 case ICE_ERR_AQ_TIMEOUT:
6307 return "ICE_ERR_AQ_TIMEOUT";
6308 case ICE_ERR_AQ_FULL:
6309 return "ICE_ERR_AQ_FULL";
6310 case ICE_ERR_AQ_NO_WORK:
6311 return "ICE_ERR_AQ_NO_WORK";
6312 case ICE_ERR_AQ_EMPTY:
6313 return "ICE_ERR_AQ_EMPTY";
6314 case ICE_ERR_AQ_FW_CRITICAL:
6315 return "ICE_ERR_AQ_FW_CRITICAL";
6316 }
6317
6318 return "ICE_ERR_UNKNOWN";
6319 }
6320
6321 /**
6322 * ice_set_rss - Set RSS keys and lut
6323 * @vsi: Pointer to VSI structure
6324 * @seed: RSS hash seed
6325 * @lut: Lookup table
6326 * @lut_size: Lookup table size
6327 *
6328 * Returns 0 on success, negative on failure
6329 */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6330 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6331 {
6332 struct ice_pf *pf = vsi->back;
6333 struct ice_hw *hw = &pf->hw;
6334 enum ice_status status;
6335 struct device *dev;
6336
6337 dev = ice_pf_to_dev(pf);
6338 if (seed) {
6339 struct ice_aqc_get_set_rss_keys *buf =
6340 (struct ice_aqc_get_set_rss_keys *)seed;
6341
6342 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6343
6344 if (status) {
6345 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6346 ice_stat_str(status),
6347 ice_aq_str(hw->adminq.sq_last_status));
6348 return -EIO;
6349 }
6350 }
6351
6352 if (lut) {
6353 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6354 lut, lut_size);
6355 if (status) {
6356 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6357 ice_stat_str(status),
6358 ice_aq_str(hw->adminq.sq_last_status));
6359 return -EIO;
6360 }
6361 }
6362
6363 return 0;
6364 }
6365
6366 /**
6367 * ice_get_rss - Get RSS keys and lut
6368 * @vsi: Pointer to VSI structure
6369 * @seed: Buffer to store the keys
6370 * @lut: Buffer to store the lookup table entries
6371 * @lut_size: Size of buffer to store the lookup table entries
6372 *
6373 * Returns 0 on success, negative on failure
6374 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6375 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6376 {
6377 struct ice_pf *pf = vsi->back;
6378 struct ice_hw *hw = &pf->hw;
6379 enum ice_status status;
6380 struct device *dev;
6381
6382 dev = ice_pf_to_dev(pf);
6383 if (seed) {
6384 struct ice_aqc_get_set_rss_keys *buf =
6385 (struct ice_aqc_get_set_rss_keys *)seed;
6386
6387 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6388 if (status) {
6389 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6390 ice_stat_str(status),
6391 ice_aq_str(hw->adminq.sq_last_status));
6392 return -EIO;
6393 }
6394 }
6395
6396 if (lut) {
6397 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6398 lut, lut_size);
6399 if (status) {
6400 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6401 ice_stat_str(status),
6402 ice_aq_str(hw->adminq.sq_last_status));
6403 return -EIO;
6404 }
6405 }
6406
6407 return 0;
6408 }
6409
6410 /**
6411 * ice_bridge_getlink - Get the hardware bridge mode
6412 * @skb: skb buff
6413 * @pid: process ID
6414 * @seq: RTNL message seq
6415 * @dev: the netdev being configured
6416 * @filter_mask: filter mask passed in
6417 * @nlflags: netlink flags passed in
6418 *
6419 * Return the bridge mode (VEB/VEPA)
6420 */
6421 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6422 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6423 struct net_device *dev, u32 filter_mask, int nlflags)
6424 {
6425 struct ice_netdev_priv *np = netdev_priv(dev);
6426 struct ice_vsi *vsi = np->vsi;
6427 struct ice_pf *pf = vsi->back;
6428 u16 bmode;
6429
6430 bmode = pf->first_sw->bridge_mode;
6431
6432 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6433 filter_mask, NULL);
6434 }
6435
6436 /**
6437 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6438 * @vsi: Pointer to VSI structure
6439 * @bmode: Hardware bridge mode (VEB/VEPA)
6440 *
6441 * Returns 0 on success, negative on failure
6442 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6443 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6444 {
6445 struct ice_aqc_vsi_props *vsi_props;
6446 struct ice_hw *hw = &vsi->back->hw;
6447 struct ice_vsi_ctx *ctxt;
6448 enum ice_status status;
6449 int ret = 0;
6450
6451 vsi_props = &vsi->info;
6452
6453 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6454 if (!ctxt)
6455 return -ENOMEM;
6456
6457 ctxt->info = vsi->info;
6458
6459 if (bmode == BRIDGE_MODE_VEB)
6460 /* change from VEPA to VEB mode */
6461 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6462 else
6463 /* change from VEB to VEPA mode */
6464 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6465 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6466
6467 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6468 if (status) {
6469 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6470 bmode, ice_stat_str(status),
6471 ice_aq_str(hw->adminq.sq_last_status));
6472 ret = -EIO;
6473 goto out;
6474 }
6475 /* Update sw flags for book keeping */
6476 vsi_props->sw_flags = ctxt->info.sw_flags;
6477
6478 out:
6479 kfree(ctxt);
6480 return ret;
6481 }
6482
6483 /**
6484 * ice_bridge_setlink - Set the hardware bridge mode
6485 * @dev: the netdev being configured
6486 * @nlh: RTNL message
6487 * @flags: bridge setlink flags
6488 * @extack: netlink extended ack
6489 *
6490 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6491 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6492 * not already set for all VSIs connected to this switch. And also update the
6493 * unicast switch filter rules for the corresponding switch of the netdev.
6494 */
6495 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6496 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6497 u16 __always_unused flags,
6498 struct netlink_ext_ack __always_unused *extack)
6499 {
6500 struct ice_netdev_priv *np = netdev_priv(dev);
6501 struct ice_pf *pf = np->vsi->back;
6502 struct nlattr *attr, *br_spec;
6503 struct ice_hw *hw = &pf->hw;
6504 enum ice_status status;
6505 struct ice_sw *pf_sw;
6506 int rem, v, err = 0;
6507
6508 pf_sw = pf->first_sw;
6509 /* find the attribute in the netlink message */
6510 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6511
6512 nla_for_each_nested(attr, br_spec, rem) {
6513 __u16 mode;
6514
6515 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6516 continue;
6517 mode = nla_get_u16(attr);
6518 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6519 return -EINVAL;
6520 /* Continue if bridge mode is not being flipped */
6521 if (mode == pf_sw->bridge_mode)
6522 continue;
6523 /* Iterates through the PF VSI list and update the loopback
6524 * mode of the VSI
6525 */
6526 ice_for_each_vsi(pf, v) {
6527 if (!pf->vsi[v])
6528 continue;
6529 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6530 if (err)
6531 return err;
6532 }
6533
6534 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6535 /* Update the unicast switch filter rules for the corresponding
6536 * switch of the netdev
6537 */
6538 status = ice_update_sw_rule_bridge_mode(hw);
6539 if (status) {
6540 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6541 mode, ice_stat_str(status),
6542 ice_aq_str(hw->adminq.sq_last_status));
6543 /* revert hw->evb_veb */
6544 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6545 return -EIO;
6546 }
6547
6548 pf_sw->bridge_mode = mode;
6549 }
6550
6551 return 0;
6552 }
6553
6554 /**
6555 * ice_tx_timeout - Respond to a Tx Hang
6556 * @netdev: network interface device structure
6557 * @txqueue: Tx queue
6558 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6559 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6560 {
6561 struct ice_netdev_priv *np = netdev_priv(netdev);
6562 struct ice_ring *tx_ring = NULL;
6563 struct ice_vsi *vsi = np->vsi;
6564 struct ice_pf *pf = vsi->back;
6565 u32 i;
6566
6567 pf->tx_timeout_count++;
6568
6569 /* Check if PFC is enabled for the TC to which the queue belongs
6570 * to. If yes then Tx timeout is not caused by a hung queue, no
6571 * need to reset and rebuild
6572 */
6573 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6574 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6575 txqueue);
6576 return;
6577 }
6578
6579 /* now that we have an index, find the tx_ring struct */
6580 for (i = 0; i < vsi->num_txq; i++)
6581 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6582 if (txqueue == vsi->tx_rings[i]->q_index) {
6583 tx_ring = vsi->tx_rings[i];
6584 break;
6585 }
6586
6587 /* Reset recovery level if enough time has elapsed after last timeout.
6588 * Also ensure no new reset action happens before next timeout period.
6589 */
6590 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6591 pf->tx_timeout_recovery_level = 1;
6592 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6593 netdev->watchdog_timeo)))
6594 return;
6595
6596 if (tx_ring) {
6597 struct ice_hw *hw = &pf->hw;
6598 u32 head, val = 0;
6599
6600 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6601 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6602 /* Read interrupt register */
6603 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6604
6605 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6606 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6607 head, tx_ring->next_to_use, val);
6608 }
6609
6610 pf->tx_timeout_last_recovery = jiffies;
6611 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6612 pf->tx_timeout_recovery_level, txqueue);
6613
6614 switch (pf->tx_timeout_recovery_level) {
6615 case 1:
6616 set_bit(__ICE_PFR_REQ, pf->state);
6617 break;
6618 case 2:
6619 set_bit(__ICE_CORER_REQ, pf->state);
6620 break;
6621 case 3:
6622 set_bit(__ICE_GLOBR_REQ, pf->state);
6623 break;
6624 default:
6625 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6626 set_bit(__ICE_DOWN, pf->state);
6627 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6628 set_bit(__ICE_SERVICE_DIS, pf->state);
6629 break;
6630 }
6631
6632 ice_service_task_schedule(pf);
6633 pf->tx_timeout_recovery_level++;
6634 }
6635
6636 /**
6637 * ice_open - Called when a network interface becomes active
6638 * @netdev: network interface device structure
6639 *
6640 * The open entry point is called when a network interface is made
6641 * active by the system (IFF_UP). At this point all resources needed
6642 * for transmit and receive operations are allocated, the interrupt
6643 * handler is registered with the OS, the netdev watchdog is enabled,
6644 * and the stack is notified that the interface is ready.
6645 *
6646 * Returns 0 on success, negative value on failure
6647 */
ice_open(struct net_device * netdev)6648 int ice_open(struct net_device *netdev)
6649 {
6650 struct ice_netdev_priv *np = netdev_priv(netdev);
6651 struct ice_pf *pf = np->vsi->back;
6652
6653 if (ice_is_reset_in_progress(pf->state)) {
6654 netdev_err(netdev, "can't open net device while reset is in progress");
6655 return -EBUSY;
6656 }
6657
6658 return ice_open_internal(netdev);
6659 }
6660
6661 /**
6662 * ice_open_internal - Called when a network interface becomes active
6663 * @netdev: network interface device structure
6664 *
6665 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6666 * handling routine
6667 *
6668 * Returns 0 on success, negative value on failure
6669 */
ice_open_internal(struct net_device * netdev)6670 int ice_open_internal(struct net_device *netdev)
6671 {
6672 struct ice_netdev_priv *np = netdev_priv(netdev);
6673 struct ice_vsi *vsi = np->vsi;
6674 struct ice_pf *pf = vsi->back;
6675 struct ice_port_info *pi;
6676 int err;
6677
6678 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6679 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6680 return -EIO;
6681 }
6682
6683 if (test_bit(__ICE_DOWN, pf->state)) {
6684 netdev_err(netdev, "device is not ready yet\n");
6685 return -EBUSY;
6686 }
6687
6688 netif_carrier_off(netdev);
6689
6690 pi = vsi->port_info;
6691 err = ice_update_link_info(pi);
6692 if (err) {
6693 netdev_err(netdev, "Failed to get link info, error %d\n",
6694 err);
6695 return err;
6696 }
6697
6698 /* Set PHY if there is media, otherwise, turn off PHY */
6699 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6700 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6701 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6702 err = ice_init_phy_user_cfg(pi);
6703 if (err) {
6704 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6705 err);
6706 return err;
6707 }
6708 }
6709
6710 err = ice_configure_phy(vsi);
6711 if (err) {
6712 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6713 err);
6714 return err;
6715 }
6716 } else {
6717 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6718 err = ice_aq_set_link_restart_an(pi, false, NULL);
6719 if (err) {
6720 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6721 vsi->vsi_num, err);
6722 return err;
6723 }
6724 }
6725
6726 err = ice_vsi_open(vsi);
6727 if (err)
6728 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6729 vsi->vsi_num, vsi->vsw->sw_id);
6730
6731 /* Update existing tunnels information */
6732 udp_tunnel_get_rx_info(netdev);
6733
6734 return err;
6735 }
6736
6737 /**
6738 * ice_stop - Disables a network interface
6739 * @netdev: network interface device structure
6740 *
6741 * The stop entry point is called when an interface is de-activated by the OS,
6742 * and the netdevice enters the DOWN state. The hardware is still under the
6743 * driver's control, but the netdev interface is disabled.
6744 *
6745 * Returns success only - not allowed to fail
6746 */
ice_stop(struct net_device * netdev)6747 int ice_stop(struct net_device *netdev)
6748 {
6749 struct ice_netdev_priv *np = netdev_priv(netdev);
6750 struct ice_vsi *vsi = np->vsi;
6751 struct ice_pf *pf = vsi->back;
6752
6753 if (ice_is_reset_in_progress(pf->state)) {
6754 netdev_err(netdev, "can't stop net device while reset is in progress");
6755 return -EBUSY;
6756 }
6757
6758 ice_vsi_close(vsi);
6759
6760 return 0;
6761 }
6762
6763 /**
6764 * ice_features_check - Validate encapsulated packet conforms to limits
6765 * @skb: skb buffer
6766 * @netdev: This port's netdev
6767 * @features: Offload features that the stack believes apply
6768 */
6769 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6770 ice_features_check(struct sk_buff *skb,
6771 struct net_device __always_unused *netdev,
6772 netdev_features_t features)
6773 {
6774 size_t len;
6775
6776 /* No point in doing any of this if neither checksum nor GSO are
6777 * being requested for this frame. We can rule out both by just
6778 * checking for CHECKSUM_PARTIAL
6779 */
6780 if (skb->ip_summed != CHECKSUM_PARTIAL)
6781 return features;
6782
6783 /* We cannot support GSO if the MSS is going to be less than
6784 * 64 bytes. If it is then we need to drop support for GSO.
6785 */
6786 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6787 features &= ~NETIF_F_GSO_MASK;
6788
6789 len = skb_network_header(skb) - skb->data;
6790 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6791 goto out_rm_features;
6792
6793 len = skb_transport_header(skb) - skb_network_header(skb);
6794 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6795 goto out_rm_features;
6796
6797 if (skb->encapsulation) {
6798 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6799 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6800 goto out_rm_features;
6801
6802 len = skb_inner_transport_header(skb) -
6803 skb_inner_network_header(skb);
6804 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6805 goto out_rm_features;
6806 }
6807
6808 return features;
6809 out_rm_features:
6810 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6811 }
6812
6813 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6814 .ndo_open = ice_open,
6815 .ndo_stop = ice_stop,
6816 .ndo_start_xmit = ice_start_xmit,
6817 .ndo_set_mac_address = ice_set_mac_address,
6818 .ndo_validate_addr = eth_validate_addr,
6819 .ndo_change_mtu = ice_change_mtu,
6820 .ndo_get_stats64 = ice_get_stats64,
6821 .ndo_tx_timeout = ice_tx_timeout,
6822 .ndo_bpf = ice_xdp_safe_mode,
6823 };
6824
6825 static const struct net_device_ops ice_netdev_ops = {
6826 .ndo_open = ice_open,
6827 .ndo_stop = ice_stop,
6828 .ndo_start_xmit = ice_start_xmit,
6829 .ndo_features_check = ice_features_check,
6830 .ndo_set_rx_mode = ice_set_rx_mode,
6831 .ndo_set_mac_address = ice_set_mac_address,
6832 .ndo_validate_addr = eth_validate_addr,
6833 .ndo_change_mtu = ice_change_mtu,
6834 .ndo_get_stats64 = ice_get_stats64,
6835 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6836 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6837 .ndo_set_vf_mac = ice_set_vf_mac,
6838 .ndo_get_vf_config = ice_get_vf_cfg,
6839 .ndo_set_vf_trust = ice_set_vf_trust,
6840 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6841 .ndo_set_vf_link_state = ice_set_vf_link_state,
6842 .ndo_get_vf_stats = ice_get_vf_stats,
6843 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6844 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6845 .ndo_set_features = ice_set_features,
6846 .ndo_bridge_getlink = ice_bridge_getlink,
6847 .ndo_bridge_setlink = ice_bridge_setlink,
6848 .ndo_fdb_add = ice_fdb_add,
6849 .ndo_fdb_del = ice_fdb_del,
6850 #ifdef CONFIG_RFS_ACCEL
6851 .ndo_rx_flow_steer = ice_rx_flow_steer,
6852 #endif
6853 .ndo_tx_timeout = ice_tx_timeout,
6854 .ndo_bpf = ice_xdp,
6855 .ndo_xdp_xmit = ice_xdp_xmit,
6856 .ndo_xsk_wakeup = ice_xsk_wakeup,
6857 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6858 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6859 };
6860