• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
igb_get_i2c_data(void * data)565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
igb_set_i2c_data(void * data,int state)581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
igb_set_i2c_clk(void * data,int state)606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
igb_get_i2c_clk(void * data)629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
igb_get_hw_dev(struct e1000_hw * hw)653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
igb_init_module(void)665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
igb_exit_module(void)688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
igb_cache_ring_register(struct igb_adapter * adapter)706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
igb_rd32(struct e1000_hw * hw,u32 reg)740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 	}
757 
758 	return value;
759 }
760 
761 /**
762  *  igb_write_ivar - configure ivar for given MSI-X vector
763  *  @hw: pointer to the HW structure
764  *  @msix_vector: vector number we are allocating to a given ring
765  *  @index: row index of IVAR register to write within IVAR table
766  *  @offset: column offset of in IVAR, should be multiple of 8
767  *
768  *  This function is intended to handle the writing of the IVAR register
769  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
770  *  each containing an cause allocation for an Rx and Tx ring, and a
771  *  variable number of rows depending on the number of queues supported.
772  **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 			   int index, int offset)
775 {
776 	u32 ivar = array_rd32(E1000_IVAR0, index);
777 
778 	/* clear any bits that are currently set */
779 	ivar &= ~((u32)0xFF << offset);
780 
781 	/* write vector and valid bit */
782 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783 
784 	array_wr32(E1000_IVAR0, index, ivar);
785 }
786 
787 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 	struct igb_adapter *adapter = q_vector->adapter;
791 	struct e1000_hw *hw = &adapter->hw;
792 	int rx_queue = IGB_N0_QUEUE;
793 	int tx_queue = IGB_N0_QUEUE;
794 	u32 msixbm = 0;
795 
796 	if (q_vector->rx.ring)
797 		rx_queue = q_vector->rx.ring->reg_idx;
798 	if (q_vector->tx.ring)
799 		tx_queue = q_vector->tx.ring->reg_idx;
800 
801 	switch (hw->mac.type) {
802 	case e1000_82575:
803 		/* The 82575 assigns vectors using a bitmask, which matches the
804 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
805 		 * or more queues to a vector, we write the appropriate bits
806 		 * into the MSIXBM register for that vector.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 		if (tx_queue > IGB_N0_QUEUE)
811 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 			msixbm |= E1000_EIMS_OTHER;
814 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 		q_vector->eims_value = msixbm;
816 		break;
817 	case e1000_82576:
818 		/* 82576 uses a table that essentially consists of 2 columns
819 		 * with 8 rows.  The ordering is column-major so we use the
820 		 * lower 3 bits as the row index, and the 4th bit as the
821 		 * column offset.
822 		 */
823 		if (rx_queue > IGB_N0_QUEUE)
824 			igb_write_ivar(hw, msix_vector,
825 				       rx_queue & 0x7,
826 				       (rx_queue & 0x8) << 1);
827 		if (tx_queue > IGB_N0_QUEUE)
828 			igb_write_ivar(hw, msix_vector,
829 				       tx_queue & 0x7,
830 				       ((tx_queue & 0x8) << 1) + 8);
831 		q_vector->eims_value = BIT(msix_vector);
832 		break;
833 	case e1000_82580:
834 	case e1000_i350:
835 	case e1000_i354:
836 	case e1000_i210:
837 	case e1000_i211:
838 		/* On 82580 and newer adapters the scheme is similar to 82576
839 		 * however instead of ordering column-major we have things
840 		 * ordered row-major.  So we traverse the table by using
841 		 * bit 0 as the column offset, and the remaining bits as the
842 		 * row index.
843 		 */
844 		if (rx_queue > IGB_N0_QUEUE)
845 			igb_write_ivar(hw, msix_vector,
846 				       rx_queue >> 1,
847 				       (rx_queue & 0x1) << 4);
848 		if (tx_queue > IGB_N0_QUEUE)
849 			igb_write_ivar(hw, msix_vector,
850 				       tx_queue >> 1,
851 				       ((tx_queue & 0x1) << 4) + 8);
852 		q_vector->eims_value = BIT(msix_vector);
853 		break;
854 	default:
855 		BUG();
856 		break;
857 	}
858 
859 	/* add q_vector eims value to global eims_enable_mask */
860 	adapter->eims_enable_mask |= q_vector->eims_value;
861 
862 	/* configure q_vector to set itr on first interrupt */
863 	q_vector->set_itr = 1;
864 }
865 
866 /**
867  *  igb_configure_msix - Configure MSI-X hardware
868  *  @adapter: board private structure to initialize
869  *
870  *  igb_configure_msix sets up the hardware to properly
871  *  generate MSI-X interrupts.
872  **/
igb_configure_msix(struct igb_adapter * adapter)873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 	u32 tmp;
876 	int i, vector = 0;
877 	struct e1000_hw *hw = &adapter->hw;
878 
879 	adapter->eims_enable_mask = 0;
880 
881 	/* set vector for other causes, i.e. link changes */
882 	switch (hw->mac.type) {
883 	case e1000_82575:
884 		tmp = rd32(E1000_CTRL_EXT);
885 		/* enable MSI-X PBA support*/
886 		tmp |= E1000_CTRL_EXT_PBA_CLR;
887 
888 		/* Auto-Mask interrupts upon ICR read. */
889 		tmp |= E1000_CTRL_EXT_EIAME;
890 		tmp |= E1000_CTRL_EXT_IRCA;
891 
892 		wr32(E1000_CTRL_EXT, tmp);
893 
894 		/* enable msix_other interrupt */
895 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 		adapter->eims_other = E1000_EIMS_OTHER;
897 
898 		break;
899 
900 	case e1000_82576:
901 	case e1000_82580:
902 	case e1000_i350:
903 	case e1000_i354:
904 	case e1000_i210:
905 	case e1000_i211:
906 		/* Turn on MSI-X capability first, or our settings
907 		 * won't stick.  And it will take days to debug.
908 		 */
909 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 		     E1000_GPIE_NSICR);
912 
913 		/* enable msix_other interrupt */
914 		adapter->eims_other = BIT(vector);
915 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
916 
917 		wr32(E1000_IVAR_MISC, tmp);
918 		break;
919 	default:
920 		/* do nothing, since nothing else supports MSI-X */
921 		break;
922 	} /* switch (hw->mac.type) */
923 
924 	adapter->eims_enable_mask |= adapter->eims_other;
925 
926 	for (i = 0; i < adapter->num_q_vectors; i++)
927 		igb_assign_vector(adapter->q_vector[i], vector++);
928 
929 	wrfl();
930 }
931 
932 /**
933  *  igb_request_msix - Initialize MSI-X interrupts
934  *  @adapter: board private structure to initialize
935  *
936  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
937  *  kernel.
938  **/
igb_request_msix(struct igb_adapter * adapter)939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 	struct net_device *netdev = adapter->netdev;
942 	int i, err = 0, vector = 0, free_vector = 0;
943 
944 	err = request_irq(adapter->msix_entries[vector].vector,
945 			  igb_msix_other, 0, netdev->name, adapter);
946 	if (err)
947 		goto err_out;
948 
949 	for (i = 0; i < adapter->num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count, size;
1193 
1194 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 	if (txr_count > 1 || rxr_count > 1)
1196 		return -ENOMEM;
1197 
1198 	ring_count = txr_count + rxr_count;
1199 	size = sizeof(struct igb_q_vector) +
1200 	       (sizeof(struct igb_ring) * ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		kfree_rcu(q_vector, rcu);
1208 		q_vector = kzalloc(size, GFP_KERNEL);
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		ring->cbs_enable = false;
1264 		ring->idleslope = 0;
1265 		ring->sendslope = 0;
1266 		ring->hicredit = 0;
1267 		ring->locredit = 0;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
igb_request_irq(struct igb_adapter * adapter)1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
igb_free_irq(struct igb_adapter * adapter)1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
igb_irq_disable(struct igb_adapter * adapter)1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
igb_irq_enable(struct igb_adapter * adapter)1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
igb_update_mng_vlan(struct igb_adapter * adapter)1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
igb_release_hw_control(struct igb_adapter * adapter)1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
igb_get_hw_control(struct igb_adapter * adapter)1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
enable_fqtss(struct igb_adapter * adapter,bool enable)1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 	struct net_device *netdev = adapter->netdev;
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	WARN_ON(hw->mac.type != e1000_i210);
1602 
1603 	if (enable)
1604 		adapter->flags |= IGB_FLAG_FQTSS;
1605 	else
1606 		adapter->flags &= ~IGB_FLAG_FQTSS;
1607 
1608 	if (netif_running(netdev))
1609 		schedule_work(&adapter->reset_task);
1610 }
1611 
is_fqtss_enabled(struct igb_adapter * adapter)1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616 
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 				   enum tx_queue_prio prio)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 4);
1624 
1625 	val = rd32(E1000_I210_TXDCTL(queue));
1626 
1627 	if (prio == TX_QUEUE_PRIO_HIGH)
1628 		val |= E1000_TXDCTL_PRIORITY;
1629 	else
1630 		val &= ~E1000_TXDCTL_PRIORITY;
1631 
1632 	wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634 
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 	u32 val;
1638 
1639 	WARN_ON(hw->mac.type != e1000_i210);
1640 	WARN_ON(queue < 0 || queue > 1);
1641 
1642 	val = rd32(E1000_I210_TQAVCC(queue));
1643 
1644 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 		val |= E1000_TQAVCC_QUEUEMODE;
1646 	else
1647 		val &= ~E1000_TQAVCC_QUEUEMODE;
1648 
1649 	wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651 
is_any_cbs_enabled(struct igb_adapter * adapter)1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adapter->num_tx_queues; i++) {
1657 		if (adapter->tx_ring[i]->cbs_enable)
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
is_any_txtime_enabled(struct igb_adapter * adapter)1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
1669 		if (adapter->tx_ring[i]->launchtime_enable)
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 	struct igb_ring *ring = adapter->tx_ring[queue];
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	u32 tqavcc, tqavctrl;
1692 	u16 value;
1693 
1694 	WARN_ON(hw->mac.type != e1000_i210);
1695 	WARN_ON(queue < 0 || queue > 1);
1696 
1697 	/* If any of the Qav features is enabled, configure queues as SR and
1698 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 	 * as SP.
1700 	 */
1701 	if (ring->cbs_enable || ring->launchtime_enable) {
1702 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 	} else {
1705 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 	}
1708 
1709 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1710 	if (ring->cbs_enable || queue == 0) {
1711 		/* i210 does not allow the queue 0 to be in the Strict
1712 		 * Priority mode while the Qav mode is enabled, so,
1713 		 * instead of disabling strict priority mode, we give
1714 		 * queue 0 the maximum of credits possible.
1715 		 *
1716 		 * See section 8.12.19 of the i210 datasheet, "Note:
1717 		 * Queue0 QueueMode must be set to 1b when
1718 		 * TransmitMode is set to Qav."
1719 		 */
1720 		if (queue == 0 && !ring->cbs_enable) {
1721 			/* max "linkspeed" idleslope in kbps */
1722 			ring->idleslope = 1000000;
1723 			ring->hicredit = ETH_FRAME_LEN;
1724 		}
1725 
1726 		/* Always set data transfer arbitration to credit-based
1727 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 		 * the queues.
1729 		 */
1730 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733 
1734 		/* According to i210 datasheet section 7.2.7.7, we should set
1735 		 * the 'idleSlope' field from TQAVCC register following the
1736 		 * equation:
1737 		 *
1738 		 * For 100 Mbps link speed:
1739 		 *
1740 		 *     value = BW * 0x7735 * 0.2                          (E1)
1741 		 *
1742 		 * For 1000Mbps link speed:
1743 		 *
1744 		 *     value = BW * 0x7735 * 2                            (E2)
1745 		 *
1746 		 * E1 and E2 can be merged into one equation as shown below.
1747 		 * Note that 'link-speed' is in Mbps.
1748 		 *
1749 		 *     value = BW * 0x7735 * 2 * link-speed
1750 		 *                           --------------               (E3)
1751 		 *                                1000
1752 		 *
1753 		 * 'BW' is the percentage bandwidth out of full link speed
1754 		 * which can be found with the following equation. Note that
1755 		 * idleSlope here is the parameter from this function which
1756 		 * is in kbps.
1757 		 *
1758 		 *     BW =     idleSlope
1759 		 *          -----------------                             (E4)
1760 		 *          link-speed * 1000
1761 		 *
1762 		 * That said, we can come up with a generic equation to
1763 		 * calculate the value we should set it TQAVCC register by
1764 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 		 *
1766 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767 		 *         -----------------            --------------    (E5)
1768 		 *         link-speed * 1000                 1000
1769 		 *
1770 		 * 'link-speed' is present in both sides of the fraction so
1771 		 * it is canceled out. The final equation is the following:
1772 		 *
1773 		 *     value = idleSlope * 61034
1774 		 *             -----------------                          (E6)
1775 		 *                  1000000
1776 		 *
1777 		 * NOTE: For i210, given the above, we can see that idleslope
1778 		 *       is represented in 16.38431 kbps units by the value at
1779 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1780 		 *       the granularity for idleslope increments.
1781 		 *       For instance, if you want to configure a 2576kbps
1782 		 *       idleslope, the value to be written on the register
1783 		 *       would have to be 157.23. If rounded down, you end
1784 		 *       up with less bandwidth available than originally
1785 		 *       required (~2572 kbps). If rounded up, you end up
1786 		 *       with a higher bandwidth (~2589 kbps). Below the
1787 		 *       approach we take is to always round up the
1788 		 *       calculated value, so the resulting bandwidth might
1789 		 *       be slightly higher for some configurations.
1790 		 */
1791 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792 
1793 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 		tqavcc |= value;
1796 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797 
1798 		wr32(E1000_I210_TQAVHC(queue),
1799 		     0x80000000 + ring->hicredit * 0x7735);
1800 	} else {
1801 
1802 		/* Set idleSlope to zero. */
1803 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806 
1807 		/* Set hiCredit to zero. */
1808 		wr32(E1000_I210_TQAVHC(queue), 0);
1809 
1810 		/* If CBS is not enabled for any queues anymore, then return to
1811 		 * the default state of Data Transmission Arbitration on
1812 		 * TQAVCTRL.
1813 		 */
1814 		if (!is_any_cbs_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 		}
1819 	}
1820 
1821 	/* If LaunchTime is enabled, set DataTranTIM. */
1822 	if (ring->launchtime_enable) {
1823 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 		 * for any of the SR queues, and configure fetchtime delta.
1825 		 * XXX NOTE:
1826 		 *     - LaunchTime will be enabled for all SR queues.
1827 		 *     - A fixed offset can be added relative to the launch
1828 		 *       time of all packets if configured at reg LAUNCH_OS0.
1829 		 *       We are keeping it as 0 for now (default value).
1830 		 */
1831 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 	} else {
1836 		/* If Launchtime is not enabled for any SR queues anymore,
1837 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 		 * effectively disabling Launchtime.
1839 		 */
1840 		if (!is_any_txtime_enabled(adapter)) {
1841 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 		}
1846 	}
1847 
1848 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 	 * CBS are not configurable by software so we don't do any 'controller
1850 	 * configuration' in respect to these parameters.
1851 	 */
1852 
1853 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
1854 			    idleslope %d sendslope %d hiCredit %d \
1855 			    locredit %d\n",
1856 		   (ring->cbs_enable) ? "enabled" : "disabled",
1857 		   (ring->launchtime_enable) ? "enabled" : "disabled", queue,
1858 		   ring->idleslope, ring->sendslope, ring->hicredit,
1859 		   ring->locredit);
1860 }
1861 
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 				  bool enable)
1864 {
1865 	struct igb_ring *ring;
1866 
1867 	if (queue < 0 || queue > adapter->num_tx_queues)
1868 		return -EINVAL;
1869 
1870 	ring = adapter->tx_ring[queue];
1871 	ring->launchtime_enable = enable;
1872 
1873 	return 0;
1874 }
1875 
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 			       bool enable, int idleslope, int sendslope,
1878 			       int hicredit, int locredit)
1879 {
1880 	struct igb_ring *ring;
1881 
1882 	if (queue < 0 || queue > adapter->num_tx_queues)
1883 		return -EINVAL;
1884 
1885 	ring = adapter->tx_ring[queue];
1886 
1887 	ring->cbs_enable = enable;
1888 	ring->idleslope = idleslope;
1889 	ring->sendslope = sendslope;
1890 	ring->hicredit = hicredit;
1891 	ring->locredit = locredit;
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898  *  @adapter: pointer to adapter struct
1899  *
1900  *  Configure TQAVCTRL register switching the controller's Tx mode
1901  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902  *  a call to igb_config_tx_modes() per queue so any previously saved
1903  *  Tx parameters are applied.
1904  **/
igb_setup_tx_mode(struct igb_adapter * adapter)1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 	struct net_device *netdev = adapter->netdev;
1908 	struct e1000_hw *hw = &adapter->hw;
1909 	u32 val;
1910 
1911 	/* Only i210 controller supports changing the transmission mode. */
1912 	if (hw->mac.type != e1000_i210)
1913 		return;
1914 
1915 	if (is_fqtss_enabled(adapter)) {
1916 		int i, max_queue;
1917 
1918 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 		 * so SP queues wait for SR ones.
1921 		 */
1922 		val = rd32(E1000_I210_TQAVCTRL);
1923 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 		wr32(E1000_I210_TQAVCTRL, val);
1926 
1927 		/* Configure Tx and Rx packet buffers sizes as described in
1928 		 * i210 datasheet section 7.2.7.7.
1929 		 */
1930 		val = rd32(E1000_TXPBS);
1931 		val &= ~I210_TXPBSIZE_MASK;
1932 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 		wr32(E1000_TXPBS, val);
1935 
1936 		val = rd32(E1000_RXPBS);
1937 		val &= ~I210_RXPBSIZE_MASK;
1938 		val |= I210_RXPBSIZE_PB_32KB;
1939 		wr32(E1000_RXPBS, val);
1940 
1941 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 		 * register should not exceed the buffer size programmed in
1943 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 		 * 4kB / 64.
1946 		 *
1947 		 * However, when we do so, no frame from queue 2 and 3 are
1948 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 		 */
1952 		val = (4096 - 1) / 64;
1953 		wr32(E1000_I210_DTXMXPKTSZ, val);
1954 
1955 		/* Since FQTSS mode is enabled, apply any CBS configuration
1956 		 * previously set. If no previous CBS configuration has been
1957 		 * done, then the initial configuration is applied, which means
1958 		 * CBS is disabled.
1959 		 */
1960 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962 
1963 		for (i = 0; i < max_queue; i++) {
1964 			igb_config_tx_modes(adapter, i);
1965 		}
1966 	} else {
1967 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970 
1971 		val = rd32(E1000_I210_TQAVCTRL);
1972 		/* According to Section 8.12.21, the other flags we've set when
1973 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 		 * don't set they here.
1975 		 */
1976 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 		wr32(E1000_I210_TQAVCTRL, val);
1978 	}
1979 
1980 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 		   "enabled" : "disabled");
1982 }
1983 
1984 /**
1985  *  igb_configure - configure the hardware for RX and TX
1986  *  @adapter: private board structure
1987  **/
igb_configure(struct igb_adapter * adapter)1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 	struct net_device *netdev = adapter->netdev;
1991 	int i;
1992 
1993 	igb_get_hw_control(adapter);
1994 	igb_set_rx_mode(netdev);
1995 	igb_setup_tx_mode(adapter);
1996 
1997 	igb_restore_vlan(adapter);
1998 
1999 	igb_setup_tctl(adapter);
2000 	igb_setup_mrqc(adapter);
2001 	igb_setup_rctl(adapter);
2002 
2003 	igb_nfc_filter_restore(adapter);
2004 	igb_configure_tx(adapter);
2005 	igb_configure_rx(adapter);
2006 
2007 	igb_rx_fifo_flush_82575(&adapter->hw);
2008 
2009 	/* call igb_desc_unused which always leaves
2010 	 * at least 1 descriptor unused to make sure
2011 	 * next_to_use != next_to_clean
2012 	 */
2013 	for (i = 0; i < adapter->num_rx_queues; i++) {
2014 		struct igb_ring *ring = adapter->rx_ring[i];
2015 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 	}
2017 }
2018 
2019 /**
2020  *  igb_power_up_link - Power up the phy/serdes link
2021  *  @adapter: address of board private structure
2022  **/
igb_power_up_link(struct igb_adapter * adapter)2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 	igb_reset_phy(&adapter->hw);
2026 
2027 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 		igb_power_up_phy_copper(&adapter->hw);
2029 	else
2030 		igb_power_up_serdes_link_82575(&adapter->hw);
2031 
2032 	igb_setup_link(&adapter->hw);
2033 }
2034 
2035 /**
2036  *  igb_power_down_link - Power down the phy/serdes link
2037  *  @adapter: address of board private structure
2038  */
igb_power_down_link(struct igb_adapter * adapter)2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 		igb_power_down_phy_copper_82575(&adapter->hw);
2043 	else
2044 		igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046 
2047 /**
2048  * Detect and switch function for Media Auto Sense
2049  * @adapter: address of the board private structure
2050  **/
igb_check_swap_media(struct igb_adapter * adapter)2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 	struct e1000_hw *hw = &adapter->hw;
2054 	u32 ctrl_ext, connsw;
2055 	bool swap_now = false;
2056 
2057 	ctrl_ext = rd32(E1000_CTRL_EXT);
2058 	connsw = rd32(E1000_CONNSW);
2059 
2060 	/* need to live swap if current media is copper and we have fiber/serdes
2061 	 * to go to.
2062 	 */
2063 
2064 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 		swap_now = true;
2067 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068 		   !(connsw & E1000_CONNSW_SERDESD)) {
2069 		/* copper signal takes time to appear */
2070 		if (adapter->copper_tries < 4) {
2071 			adapter->copper_tries++;
2072 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073 			wr32(E1000_CONNSW, connsw);
2074 			return;
2075 		} else {
2076 			adapter->copper_tries = 0;
2077 			if ((connsw & E1000_CONNSW_PHYSD) &&
2078 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079 				swap_now = true;
2080 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081 				wr32(E1000_CONNSW, connsw);
2082 			}
2083 		}
2084 	}
2085 
2086 	if (!swap_now)
2087 		return;
2088 
2089 	switch (hw->phy.media_type) {
2090 	case e1000_media_type_copper:
2091 		netdev_info(adapter->netdev,
2092 			"MAS: changing media to fiber/serdes\n");
2093 		ctrl_ext |=
2094 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 		adapter->copper_tries = 0;
2097 		break;
2098 	case e1000_media_type_internal_serdes:
2099 	case e1000_media_type_fiber:
2100 		netdev_info(adapter->netdev,
2101 			"MAS: changing media to copper\n");
2102 		ctrl_ext &=
2103 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 		break;
2106 	default:
2107 		/* shouldn't get here during regular operation */
2108 		netdev_err(adapter->netdev,
2109 			"AMS: Invalid media type found, returning\n");
2110 		break;
2111 	}
2112 	wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114 
2115 /**
2116  *  igb_up - Open the interface and prepare it to handle traffic
2117  *  @adapter: board private structure
2118  **/
igb_up(struct igb_adapter * adapter)2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121 	struct e1000_hw *hw = &adapter->hw;
2122 	int i;
2123 
2124 	/* hardware has been reset, we need to reload some things */
2125 	igb_configure(adapter);
2126 
2127 	clear_bit(__IGB_DOWN, &adapter->state);
2128 
2129 	for (i = 0; i < adapter->num_q_vectors; i++)
2130 		napi_enable(&(adapter->q_vector[i]->napi));
2131 
2132 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133 		igb_configure_msix(adapter);
2134 	else
2135 		igb_assign_vector(adapter->q_vector[0], 0);
2136 
2137 	/* Clear any pending interrupts. */
2138 	rd32(E1000_TSICR);
2139 	rd32(E1000_ICR);
2140 	igb_irq_enable(adapter);
2141 
2142 	/* notify VFs that reset has been completed */
2143 	if (adapter->vfs_allocated_count) {
2144 		u32 reg_data = rd32(E1000_CTRL_EXT);
2145 
2146 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2147 		wr32(E1000_CTRL_EXT, reg_data);
2148 	}
2149 
2150 	netif_tx_start_all_queues(adapter->netdev);
2151 
2152 	/* start the watchdog. */
2153 	hw->mac.get_link_status = 1;
2154 	schedule_work(&adapter->watchdog_task);
2155 
2156 	if ((adapter->flags & IGB_FLAG_EEE) &&
2157 	    (!hw->dev_spec._82575.eee_disable))
2158 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159 
2160 	return 0;
2161 }
2162 
igb_down(struct igb_adapter * adapter)2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165 	struct net_device *netdev = adapter->netdev;
2166 	struct e1000_hw *hw = &adapter->hw;
2167 	u32 tctl, rctl;
2168 	int i;
2169 
2170 	/* signal that we're down so the interrupt handler does not
2171 	 * reschedule our watchdog timer
2172 	 */
2173 	set_bit(__IGB_DOWN, &adapter->state);
2174 
2175 	/* disable receives in the hardware */
2176 	rctl = rd32(E1000_RCTL);
2177 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178 	/* flush and sleep below */
2179 
2180 	igb_nfc_filter_exit(adapter);
2181 
2182 	netif_carrier_off(netdev);
2183 	netif_tx_stop_all_queues(netdev);
2184 
2185 	/* disable transmits in the hardware */
2186 	tctl = rd32(E1000_TCTL);
2187 	tctl &= ~E1000_TCTL_EN;
2188 	wr32(E1000_TCTL, tctl);
2189 	/* flush both disables and wait for them to finish */
2190 	wrfl();
2191 	usleep_range(10000, 11000);
2192 
2193 	igb_irq_disable(adapter);
2194 
2195 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196 
2197 	for (i = 0; i < adapter->num_q_vectors; i++) {
2198 		if (adapter->q_vector[i]) {
2199 			napi_synchronize(&adapter->q_vector[i]->napi);
2200 			napi_disable(&adapter->q_vector[i]->napi);
2201 		}
2202 	}
2203 
2204 	del_timer_sync(&adapter->watchdog_timer);
2205 	del_timer_sync(&adapter->phy_info_timer);
2206 
2207 	/* record the stats before reset*/
2208 	spin_lock(&adapter->stats64_lock);
2209 	igb_update_stats(adapter);
2210 	spin_unlock(&adapter->stats64_lock);
2211 
2212 	adapter->link_speed = 0;
2213 	adapter->link_duplex = 0;
2214 
2215 	if (!pci_channel_offline(adapter->pdev))
2216 		igb_reset(adapter);
2217 
2218 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2219 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220 
2221 	igb_clean_all_tx_rings(adapter);
2222 	igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224 
2225 	/* since we reset the hardware DCA settings were cleared */
2226 	igb_setup_dca(adapter);
2227 #endif
2228 }
2229 
igb_reinit_locked(struct igb_adapter * adapter)2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232 	WARN_ON(in_interrupt());
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
igb_enable_mas(struct igb_adapter * adapter)2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
igb_reset(struct igb_adapter * adapter)2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 	struct pci_dev *pdev = adapter->pdev;
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	struct e1000_mac_info *mac = &hw->mac;
2264 	struct e1000_fc_info *fc = &hw->fc;
2265 	u32 pba, hwm;
2266 
2267 	/* Repartition Pba for greater than 9k mtu
2268 	 * To take effect CTRL.RST is required.
2269 	 */
2270 	switch (mac->type) {
2271 	case e1000_i350:
2272 	case e1000_i354:
2273 	case e1000_82580:
2274 		pba = rd32(E1000_RXPBS);
2275 		pba = igb_rxpbs_adjust_82580(pba);
2276 		break;
2277 	case e1000_82576:
2278 		pba = rd32(E1000_RXPBS);
2279 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 		break;
2281 	case e1000_82575:
2282 	case e1000_i210:
2283 	case e1000_i211:
2284 	default:
2285 		pba = E1000_PBA_34K;
2286 		break;
2287 	}
2288 
2289 	if (mac->type == e1000_82575) {
2290 		u32 min_rx_space, min_tx_space, needed_tx_space;
2291 
2292 		/* write Rx PBA so that hardware can report correct Tx PBA */
2293 		wr32(E1000_PBA, pba);
2294 
2295 		/* To maintain wire speed transmits, the Tx FIFO should be
2296 		 * large enough to accommodate two full transmit packets,
2297 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2298 		 * the Rx FIFO should be large enough to accommodate at least
2299 		 * one full receive packet and is similarly rounded up and
2300 		 * expressed in KB.
2301 		 */
2302 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303 
2304 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2305 		 * but don't include Ethernet FCS because hardware appends it.
2306 		 * We only need to round down to the nearest 512 byte block
2307 		 * count since the value we care about is 2 frames, not 1.
2308 		 */
2309 		min_tx_space = adapter->max_frame_size;
2310 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312 
2313 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2314 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315 
2316 		/* If current Tx allocation is less than the min Tx FIFO size,
2317 		 * and the min Tx FIFO size is less than the current Rx FIFO
2318 		 * allocation, take space away from current Rx allocation.
2319 		 */
2320 		if (needed_tx_space < pba) {
2321 			pba -= needed_tx_space;
2322 
2323 			/* if short on Rx space, Rx wins and must trump Tx
2324 			 * adjustment
2325 			 */
2326 			if (pba < min_rx_space)
2327 				pba = min_rx_space;
2328 		}
2329 
2330 		/* adjust PBA for jumbo frames */
2331 		wr32(E1000_PBA, pba);
2332 	}
2333 
2334 	/* flow control settings
2335 	 * The high water mark must be low enough to fit one full frame
2336 	 * after transmitting the pause frame.  As such we must have enough
2337 	 * space to allow for us to complete our current transmit and then
2338 	 * receive the frame that is in progress from the link partner.
2339 	 * Set it to:
2340 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 	 */
2342 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343 
2344 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2345 	fc->low_water = fc->high_water - 16;
2346 	fc->pause_time = 0xFFFF;
2347 	fc->send_xon = 1;
2348 	fc->current_mode = fc->requested_mode;
2349 
2350 	/* disable receive for all VFs and wait one second */
2351 	if (adapter->vfs_allocated_count) {
2352 		int i;
2353 
2354 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356 
2357 		/* ping all the active vfs to let them know we are going down */
2358 		igb_ping_all_vfs(adapter);
2359 
2360 		/* disable transmits and receives */
2361 		wr32(E1000_VFRE, 0);
2362 		wr32(E1000_VFTE, 0);
2363 	}
2364 
2365 	/* Allow time for pending master requests to run */
2366 	hw->mac.ops.reset_hw(hw);
2367 	wr32(E1000_WUC, 0);
2368 
2369 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 		/* need to resetup here after media swap */
2371 		adapter->ei.get_invariants(hw);
2372 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 	}
2374 	if ((mac->type == e1000_82575) &&
2375 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 		igb_enable_mas(adapter);
2377 	}
2378 	if (hw->mac.ops.init_hw(hw))
2379 		dev_err(&pdev->dev, "Hardware Error\n");
2380 
2381 	/* RAR registers were cleared during init_hw, clear mac table */
2382 	igb_flush_mac_table(adapter);
2383 	__dev_uc_unsync(adapter->netdev, NULL);
2384 
2385 	/* Recover default RAR entry */
2386 	igb_set_default_mac_filter(adapter);
2387 
2388 	/* Flow control settings reset on hardware reset, so guarantee flow
2389 	 * control is off when forcing speed.
2390 	 */
2391 	if (!hw->mac.autoneg)
2392 		igb_force_mac_fc(hw);
2393 
2394 	igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 	/* Re-initialize the thermal sensor on i350 devices. */
2397 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 			/* If present, re-initialize the external thermal sensor
2400 			 * interface.
2401 			 */
2402 			if (adapter->ets)
2403 				mac->ops.init_thermal_sensor_thresh(hw);
2404 		}
2405 	}
2406 #endif
2407 	/* Re-establish EEE setting */
2408 	if (hw->phy.media_type == e1000_media_type_copper) {
2409 		switch (mac->type) {
2410 		case e1000_i350:
2411 		case e1000_i210:
2412 		case e1000_i211:
2413 			igb_set_eee_i350(hw, true, true);
2414 			break;
2415 		case e1000_i354:
2416 			igb_set_eee_i354(hw, true, true);
2417 			break;
2418 		default:
2419 			break;
2420 		}
2421 	}
2422 	if (!netif_running(adapter->netdev))
2423 		igb_power_down_link(adapter);
2424 
2425 	igb_update_mng_vlan(adapter);
2426 
2427 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429 
2430 	/* Re-enable PTP, where applicable. */
2431 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 		igb_ptp_reset(adapter);
2433 
2434 	igb_get_phy_info(hw);
2435 }
2436 
igb_fix_features(struct net_device * netdev,netdev_features_t features)2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 	netdev_features_t features)
2439 {
2440 	/* Since there is no support for separate Rx/Tx vlan accel
2441 	 * enable/disable make sure Tx flag is always in same state as Rx.
2442 	 */
2443 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 	else
2446 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447 
2448 	return features;
2449 }
2450 
igb_set_features(struct net_device * netdev,netdev_features_t features)2451 static int igb_set_features(struct net_device *netdev,
2452 	netdev_features_t features)
2453 {
2454 	netdev_features_t changed = netdev->features ^ features;
2455 	struct igb_adapter *adapter = netdev_priv(netdev);
2456 
2457 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 		igb_vlan_mode(netdev, features);
2459 
2460 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 		return 0;
2462 
2463 	if (!(features & NETIF_F_NTUPLE)) {
2464 		struct hlist_node *node2;
2465 		struct igb_nfc_filter *rule;
2466 
2467 		spin_lock(&adapter->nfc_lock);
2468 		hlist_for_each_entry_safe(rule, node2,
2469 					  &adapter->nfc_filter_list, nfc_node) {
2470 			igb_erase_filter(adapter, rule);
2471 			hlist_del(&rule->nfc_node);
2472 			kfree(rule);
2473 		}
2474 		spin_unlock(&adapter->nfc_lock);
2475 		adapter->nfc_filter_count = 0;
2476 	}
2477 
2478 	netdev->features = features;
2479 
2480 	if (netif_running(netdev))
2481 		igb_reinit_locked(adapter);
2482 	else
2483 		igb_reset(adapter);
2484 
2485 	return 0;
2486 }
2487 
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags)2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 			   struct net_device *dev,
2490 			   const unsigned char *addr, u16 vid,
2491 			   u16 flags)
2492 {
2493 	/* guarantee we can provide a unique filter for the unicast address */
2494 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 		struct igb_adapter *adapter = netdev_priv(dev);
2496 		int vfn = adapter->vfs_allocated_count;
2497 
2498 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 			return -ENOMEM;
2500 	}
2501 
2502 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504 
2505 #define IGB_MAX_MAC_HDR_LEN	127
2506 #define IGB_MAX_NETWORK_HDR_LEN	511
2507 
2508 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 		   netdev_features_t features)
2511 {
2512 	unsigned int network_hdr_len, mac_hdr_len;
2513 
2514 	/* Make certain the headers can be described by a context descriptor */
2515 	mac_hdr_len = skb_network_header(skb) - skb->data;
2516 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 		return features & ~(NETIF_F_HW_CSUM |
2518 				    NETIF_F_SCTP_CRC |
2519 				    NETIF_F_HW_VLAN_CTAG_TX |
2520 				    NETIF_F_TSO |
2521 				    NETIF_F_TSO6);
2522 
2523 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2525 		return features & ~(NETIF_F_HW_CSUM |
2526 				    NETIF_F_SCTP_CRC |
2527 				    NETIF_F_TSO |
2528 				    NETIF_F_TSO6);
2529 
2530 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2531 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 	 */
2533 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534 		features &= ~NETIF_F_TSO;
2535 
2536 	return features;
2537 }
2538 
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541 	if (!is_fqtss_enabled(adapter)) {
2542 		enable_fqtss(adapter, true);
2543 		return;
2544 	}
2545 
2546 	igb_config_tx_modes(adapter, queue);
2547 
2548 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549 		enable_fqtss(adapter, false);
2550 }
2551 
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553 			   struct tc_cbs_qopt_offload *qopt)
2554 {
2555 	struct e1000_hw *hw = &adapter->hw;
2556 	int err;
2557 
2558 	/* CBS offloading is only supported by i210 controller. */
2559 	if (hw->mac.type != e1000_i210)
2560 		return -EOPNOTSUPP;
2561 
2562 	/* CBS offloading is only supported by queue 0 and queue 1. */
2563 	if (qopt->queue < 0 || qopt->queue > 1)
2564 		return -EINVAL;
2565 
2566 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567 				  qopt->idleslope, qopt->sendslope,
2568 				  qopt->hicredit, qopt->locredit);
2569 	if (err)
2570 		return err;
2571 
2572 	igb_offload_apply(adapter, qopt->queue);
2573 
2574 	return 0;
2575 }
2576 
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579 
igb_parse_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * f,int traffic_class,struct igb_nfc_filter * input)2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581 				struct tc_cls_flower_offload *f,
2582 				int traffic_class,
2583 				struct igb_nfc_filter *input)
2584 {
2585 	struct netlink_ext_ack *extack = f->common.extack;
2586 
2587 	if (f->dissector->used_keys &
2588 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2589 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2590 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2591 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2592 		NL_SET_ERR_MSG_MOD(extack,
2593 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2594 		return -EOPNOTSUPP;
2595 	}
2596 
2597 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2598 		struct flow_dissector_key_eth_addrs *key, *mask;
2599 
2600 		key = skb_flow_dissector_target(f->dissector,
2601 						FLOW_DISSECTOR_KEY_ETH_ADDRS,
2602 						f->key);
2603 		mask = skb_flow_dissector_target(f->dissector,
2604 						 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2605 						 f->mask);
2606 
2607 		if (!is_zero_ether_addr(mask->dst)) {
2608 			if (!is_broadcast_ether_addr(mask->dst)) {
2609 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2610 				return -EINVAL;
2611 			}
2612 
2613 			input->filter.match_flags |=
2614 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 			ether_addr_copy(input->filter.dst_addr, key->dst);
2616 		}
2617 
2618 		if (!is_zero_ether_addr(mask->src)) {
2619 			if (!is_broadcast_ether_addr(mask->src)) {
2620 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2621 				return -EINVAL;
2622 			}
2623 
2624 			input->filter.match_flags |=
2625 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 			ether_addr_copy(input->filter.src_addr, key->src);
2627 		}
2628 	}
2629 
2630 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2631 		struct flow_dissector_key_basic *key, *mask;
2632 
2633 		key = skb_flow_dissector_target(f->dissector,
2634 						FLOW_DISSECTOR_KEY_BASIC,
2635 						f->key);
2636 		mask = skb_flow_dissector_target(f->dissector,
2637 						 FLOW_DISSECTOR_KEY_BASIC,
2638 						 f->mask);
2639 
2640 		if (mask->n_proto) {
2641 			if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2642 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2643 				return -EINVAL;
2644 			}
2645 
2646 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2647 			input->filter.etype = key->n_proto;
2648 		}
2649 	}
2650 
2651 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2652 		struct flow_dissector_key_vlan *key, *mask;
2653 
2654 		key = skb_flow_dissector_target(f->dissector,
2655 						FLOW_DISSECTOR_KEY_VLAN,
2656 						f->key);
2657 		mask = skb_flow_dissector_target(f->dissector,
2658 						 FLOW_DISSECTOR_KEY_VLAN,
2659 						 f->mask);
2660 
2661 		if (mask->vlan_priority) {
2662 			if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2663 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2664 				return -EINVAL;
2665 			}
2666 
2667 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2668 			input->filter.vlan_tci = key->vlan_priority;
2669 		}
2670 	}
2671 
2672 	input->action = traffic_class;
2673 	input->cookie = f->cookie;
2674 
2675 	return 0;
2676 }
2677 
igb_configure_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2678 static int igb_configure_clsflower(struct igb_adapter *adapter,
2679 				   struct tc_cls_flower_offload *cls_flower)
2680 {
2681 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2682 	struct igb_nfc_filter *filter, *f;
2683 	int err, tc;
2684 
2685 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2686 	if (tc < 0) {
2687 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2688 		return -EINVAL;
2689 	}
2690 
2691 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2692 	if (!filter)
2693 		return -ENOMEM;
2694 
2695 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2696 	if (err < 0)
2697 		goto err_parse;
2698 
2699 	spin_lock(&adapter->nfc_lock);
2700 
2701 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2702 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703 			err = -EEXIST;
2704 			NL_SET_ERR_MSG_MOD(extack,
2705 					   "This filter is already set in ethtool");
2706 			goto err_locked;
2707 		}
2708 	}
2709 
2710 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2711 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2712 			err = -EEXIST;
2713 			NL_SET_ERR_MSG_MOD(extack,
2714 					   "This filter is already set in cls_flower");
2715 			goto err_locked;
2716 		}
2717 	}
2718 
2719 	err = igb_add_filter(adapter, filter);
2720 	if (err < 0) {
2721 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2722 		goto err_locked;
2723 	}
2724 
2725 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2726 
2727 	spin_unlock(&adapter->nfc_lock);
2728 
2729 	return 0;
2730 
2731 err_locked:
2732 	spin_unlock(&adapter->nfc_lock);
2733 
2734 err_parse:
2735 	kfree(filter);
2736 
2737 	return err;
2738 }
2739 
igb_delete_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2740 static int igb_delete_clsflower(struct igb_adapter *adapter,
2741 				struct tc_cls_flower_offload *cls_flower)
2742 {
2743 	struct igb_nfc_filter *filter;
2744 	int err;
2745 
2746 	spin_lock(&adapter->nfc_lock);
2747 
2748 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2749 		if (filter->cookie == cls_flower->cookie)
2750 			break;
2751 
2752 	if (!filter) {
2753 		err = -ENOENT;
2754 		goto out;
2755 	}
2756 
2757 	err = igb_erase_filter(adapter, filter);
2758 	if (err < 0)
2759 		goto out;
2760 
2761 	hlist_del(&filter->nfc_node);
2762 	kfree(filter);
2763 
2764 out:
2765 	spin_unlock(&adapter->nfc_lock);
2766 
2767 	return err;
2768 }
2769 
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2770 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2771 				   struct tc_cls_flower_offload *cls_flower)
2772 {
2773 	switch (cls_flower->command) {
2774 	case TC_CLSFLOWER_REPLACE:
2775 		return igb_configure_clsflower(adapter, cls_flower);
2776 	case TC_CLSFLOWER_DESTROY:
2777 		return igb_delete_clsflower(adapter, cls_flower);
2778 	case TC_CLSFLOWER_STATS:
2779 		return -EOPNOTSUPP;
2780 	default:
2781 		return -EOPNOTSUPP;
2782 	}
2783 }
2784 
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2785 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2786 				 void *cb_priv)
2787 {
2788 	struct igb_adapter *adapter = cb_priv;
2789 
2790 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2791 		return -EOPNOTSUPP;
2792 
2793 	switch (type) {
2794 	case TC_SETUP_CLSFLOWER:
2795 		return igb_setup_tc_cls_flower(adapter, type_data);
2796 
2797 	default:
2798 		return -EOPNOTSUPP;
2799 	}
2800 }
2801 
igb_setup_tc_block(struct igb_adapter * adapter,struct tc_block_offload * f)2802 static int igb_setup_tc_block(struct igb_adapter *adapter,
2803 			      struct tc_block_offload *f)
2804 {
2805 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2806 		return -EOPNOTSUPP;
2807 
2808 	switch (f->command) {
2809 	case TC_BLOCK_BIND:
2810 		return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2811 					     adapter, adapter, f->extack);
2812 	case TC_BLOCK_UNBIND:
2813 		tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2814 					adapter);
2815 		return 0;
2816 	default:
2817 		return -EOPNOTSUPP;
2818 	}
2819 }
2820 
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2821 static int igb_offload_txtime(struct igb_adapter *adapter,
2822 			      struct tc_etf_qopt_offload *qopt)
2823 {
2824 	struct e1000_hw *hw = &adapter->hw;
2825 	int err;
2826 
2827 	/* Launchtime offloading is only supported by i210 controller. */
2828 	if (hw->mac.type != e1000_i210)
2829 		return -EOPNOTSUPP;
2830 
2831 	/* Launchtime offloading is only supported by queues 0 and 1. */
2832 	if (qopt->queue < 0 || qopt->queue > 1)
2833 		return -EINVAL;
2834 
2835 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2836 	if (err)
2837 		return err;
2838 
2839 	igb_offload_apply(adapter, qopt->queue);
2840 
2841 	return 0;
2842 }
2843 
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2844 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2845 			void *type_data)
2846 {
2847 	struct igb_adapter *adapter = netdev_priv(dev);
2848 
2849 	switch (type) {
2850 	case TC_SETUP_QDISC_CBS:
2851 		return igb_offload_cbs(adapter, type_data);
2852 	case TC_SETUP_BLOCK:
2853 		return igb_setup_tc_block(adapter, type_data);
2854 	case TC_SETUP_QDISC_ETF:
2855 		return igb_offload_txtime(adapter, type_data);
2856 
2857 	default:
2858 		return -EOPNOTSUPP;
2859 	}
2860 }
2861 
2862 static const struct net_device_ops igb_netdev_ops = {
2863 	.ndo_open		= igb_open,
2864 	.ndo_stop		= igb_close,
2865 	.ndo_start_xmit		= igb_xmit_frame,
2866 	.ndo_get_stats64	= igb_get_stats64,
2867 	.ndo_set_rx_mode	= igb_set_rx_mode,
2868 	.ndo_set_mac_address	= igb_set_mac,
2869 	.ndo_change_mtu		= igb_change_mtu,
2870 	.ndo_do_ioctl		= igb_ioctl,
2871 	.ndo_tx_timeout		= igb_tx_timeout,
2872 	.ndo_validate_addr	= eth_validate_addr,
2873 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2874 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2875 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2876 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2877 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2878 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2879 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2880 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2881 	.ndo_fix_features	= igb_fix_features,
2882 	.ndo_set_features	= igb_set_features,
2883 	.ndo_fdb_add		= igb_ndo_fdb_add,
2884 	.ndo_features_check	= igb_features_check,
2885 	.ndo_setup_tc		= igb_setup_tc,
2886 };
2887 
2888 /**
2889  * igb_set_fw_version - Configure version string for ethtool
2890  * @adapter: adapter struct
2891  **/
igb_set_fw_version(struct igb_adapter * adapter)2892 void igb_set_fw_version(struct igb_adapter *adapter)
2893 {
2894 	struct e1000_hw *hw = &adapter->hw;
2895 	struct e1000_fw_version fw;
2896 
2897 	igb_get_fw_version(hw, &fw);
2898 
2899 	switch (hw->mac.type) {
2900 	case e1000_i210:
2901 	case e1000_i211:
2902 		if (!(igb_get_flash_presence_i210(hw))) {
2903 			snprintf(adapter->fw_version,
2904 				 sizeof(adapter->fw_version),
2905 				 "%2d.%2d-%d",
2906 				 fw.invm_major, fw.invm_minor,
2907 				 fw.invm_img_type);
2908 			break;
2909 		}
2910 		/* fall through */
2911 	default:
2912 		/* if option is rom valid, display its version too */
2913 		if (fw.or_valid) {
2914 			snprintf(adapter->fw_version,
2915 				 sizeof(adapter->fw_version),
2916 				 "%d.%d, 0x%08x, %d.%d.%d",
2917 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2918 				 fw.or_major, fw.or_build, fw.or_patch);
2919 		/* no option rom */
2920 		} else if (fw.etrack_id != 0X0000) {
2921 			snprintf(adapter->fw_version,
2922 			    sizeof(adapter->fw_version),
2923 			    "%d.%d, 0x%08x",
2924 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2925 		} else {
2926 		snprintf(adapter->fw_version,
2927 		    sizeof(adapter->fw_version),
2928 		    "%d.%d.%d",
2929 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2930 		}
2931 		break;
2932 	}
2933 }
2934 
2935 /**
2936  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2937  *
2938  * @adapter: adapter struct
2939  **/
igb_init_mas(struct igb_adapter * adapter)2940 static void igb_init_mas(struct igb_adapter *adapter)
2941 {
2942 	struct e1000_hw *hw = &adapter->hw;
2943 	u16 eeprom_data;
2944 
2945 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2946 	switch (hw->bus.func) {
2947 	case E1000_FUNC_0:
2948 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2949 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2950 			netdev_info(adapter->netdev,
2951 				"MAS: Enabling Media Autosense for port %d\n",
2952 				hw->bus.func);
2953 		}
2954 		break;
2955 	case E1000_FUNC_1:
2956 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2957 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2958 			netdev_info(adapter->netdev,
2959 				"MAS: Enabling Media Autosense for port %d\n",
2960 				hw->bus.func);
2961 		}
2962 		break;
2963 	case E1000_FUNC_2:
2964 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2965 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2966 			netdev_info(adapter->netdev,
2967 				"MAS: Enabling Media Autosense for port %d\n",
2968 				hw->bus.func);
2969 		}
2970 		break;
2971 	case E1000_FUNC_3:
2972 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2973 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2974 			netdev_info(adapter->netdev,
2975 				"MAS: Enabling Media Autosense for port %d\n",
2976 				hw->bus.func);
2977 		}
2978 		break;
2979 	default:
2980 		/* Shouldn't get here */
2981 		netdev_err(adapter->netdev,
2982 			"MAS: Invalid port configuration, returning\n");
2983 		break;
2984 	}
2985 }
2986 
2987 /**
2988  *  igb_init_i2c - Init I2C interface
2989  *  @adapter: pointer to adapter structure
2990  **/
igb_init_i2c(struct igb_adapter * adapter)2991 static s32 igb_init_i2c(struct igb_adapter *adapter)
2992 {
2993 	s32 status = 0;
2994 
2995 	/* I2C interface supported on i350 devices */
2996 	if (adapter->hw.mac.type != e1000_i350)
2997 		return 0;
2998 
2999 	/* Initialize the i2c bus which is controlled by the registers.
3000 	 * This bus will use the i2c_algo_bit structue that implements
3001 	 * the protocol through toggling of the 4 bits in the register.
3002 	 */
3003 	adapter->i2c_adap.owner = THIS_MODULE;
3004 	adapter->i2c_algo = igb_i2c_algo;
3005 	adapter->i2c_algo.data = adapter;
3006 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3007 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3008 	strlcpy(adapter->i2c_adap.name, "igb BB",
3009 		sizeof(adapter->i2c_adap.name));
3010 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3011 	return status;
3012 }
3013 
3014 /**
3015  *  igb_probe - Device Initialization Routine
3016  *  @pdev: PCI device information struct
3017  *  @ent: entry in igb_pci_tbl
3018  *
3019  *  Returns 0 on success, negative on failure
3020  *
3021  *  igb_probe initializes an adapter identified by a pci_dev structure.
3022  *  The OS initialization, configuring of the adapter private structure,
3023  *  and a hardware reset occur.
3024  **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3025 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3026 {
3027 	struct net_device *netdev;
3028 	struct igb_adapter *adapter;
3029 	struct e1000_hw *hw;
3030 	u16 eeprom_data = 0;
3031 	s32 ret_val;
3032 	static int global_quad_port_a; /* global quad port a indication */
3033 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3034 	int err, pci_using_dac;
3035 	u8 part_str[E1000_PBANUM_LENGTH];
3036 
3037 	/* Catch broken hardware that put the wrong VF device ID in
3038 	 * the PCIe SR-IOV capability.
3039 	 */
3040 	if (pdev->is_virtfn) {
3041 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3042 			pci_name(pdev), pdev->vendor, pdev->device);
3043 		return -EINVAL;
3044 	}
3045 
3046 	err = pci_enable_device_mem(pdev);
3047 	if (err)
3048 		return err;
3049 
3050 	pci_using_dac = 0;
3051 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3052 	if (!err) {
3053 		pci_using_dac = 1;
3054 	} else {
3055 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3056 		if (err) {
3057 			dev_err(&pdev->dev,
3058 				"No usable DMA configuration, aborting\n");
3059 			goto err_dma;
3060 		}
3061 	}
3062 
3063 	err = pci_request_mem_regions(pdev, igb_driver_name);
3064 	if (err)
3065 		goto err_pci_reg;
3066 
3067 	pci_enable_pcie_error_reporting(pdev);
3068 
3069 	pci_set_master(pdev);
3070 	pci_save_state(pdev);
3071 
3072 	err = -ENOMEM;
3073 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3074 				   IGB_MAX_TX_QUEUES);
3075 	if (!netdev)
3076 		goto err_alloc_etherdev;
3077 
3078 	SET_NETDEV_DEV(netdev, &pdev->dev);
3079 
3080 	pci_set_drvdata(pdev, netdev);
3081 	adapter = netdev_priv(netdev);
3082 	adapter->netdev = netdev;
3083 	adapter->pdev = pdev;
3084 	hw = &adapter->hw;
3085 	hw->back = adapter;
3086 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3087 
3088 	err = -EIO;
3089 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3090 	if (!adapter->io_addr)
3091 		goto err_ioremap;
3092 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3093 	hw->hw_addr = adapter->io_addr;
3094 
3095 	netdev->netdev_ops = &igb_netdev_ops;
3096 	igb_set_ethtool_ops(netdev);
3097 	netdev->watchdog_timeo = 5 * HZ;
3098 
3099 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3100 
3101 	netdev->mem_start = pci_resource_start(pdev, 0);
3102 	netdev->mem_end = pci_resource_end(pdev, 0);
3103 
3104 	/* PCI config space info */
3105 	hw->vendor_id = pdev->vendor;
3106 	hw->device_id = pdev->device;
3107 	hw->revision_id = pdev->revision;
3108 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3109 	hw->subsystem_device_id = pdev->subsystem_device;
3110 
3111 	/* Copy the default MAC, PHY and NVM function pointers */
3112 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3113 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3114 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3115 	/* Initialize skew-specific constants */
3116 	err = ei->get_invariants(hw);
3117 	if (err)
3118 		goto err_sw_init;
3119 
3120 	/* setup the private structure */
3121 	err = igb_sw_init(adapter);
3122 	if (err)
3123 		goto err_sw_init;
3124 
3125 	igb_get_bus_info_pcie(hw);
3126 
3127 	hw->phy.autoneg_wait_to_complete = false;
3128 
3129 	/* Copper options */
3130 	if (hw->phy.media_type == e1000_media_type_copper) {
3131 		hw->phy.mdix = AUTO_ALL_MODES;
3132 		hw->phy.disable_polarity_correction = false;
3133 		hw->phy.ms_type = e1000_ms_hw_default;
3134 	}
3135 
3136 	if (igb_check_reset_block(hw))
3137 		dev_info(&pdev->dev,
3138 			"PHY reset is blocked due to SOL/IDER session.\n");
3139 
3140 	/* features is initialized to 0 in allocation, it might have bits
3141 	 * set by igb_sw_init so we should use an or instead of an
3142 	 * assignment.
3143 	 */
3144 	netdev->features |= NETIF_F_SG |
3145 			    NETIF_F_TSO |
3146 			    NETIF_F_TSO6 |
3147 			    NETIF_F_RXHASH |
3148 			    NETIF_F_RXCSUM |
3149 			    NETIF_F_HW_CSUM;
3150 
3151 	if (hw->mac.type >= e1000_82576)
3152 		netdev->features |= NETIF_F_SCTP_CRC;
3153 
3154 	if (hw->mac.type >= e1000_i350)
3155 		netdev->features |= NETIF_F_HW_TC;
3156 
3157 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3158 				  NETIF_F_GSO_GRE_CSUM | \
3159 				  NETIF_F_GSO_IPXIP4 | \
3160 				  NETIF_F_GSO_IPXIP6 | \
3161 				  NETIF_F_GSO_UDP_TUNNEL | \
3162 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3163 
3164 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3165 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3166 
3167 	/* copy netdev features into list of user selectable features */
3168 	netdev->hw_features |= netdev->features |
3169 			       NETIF_F_HW_VLAN_CTAG_RX |
3170 			       NETIF_F_HW_VLAN_CTAG_TX |
3171 			       NETIF_F_RXALL;
3172 
3173 	if (hw->mac.type >= e1000_i350)
3174 		netdev->hw_features |= NETIF_F_NTUPLE;
3175 
3176 	if (pci_using_dac)
3177 		netdev->features |= NETIF_F_HIGHDMA;
3178 
3179 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3180 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3181 	netdev->hw_enc_features |= netdev->vlan_features;
3182 
3183 	/* set this bit last since it cannot be part of vlan_features */
3184 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3185 			    NETIF_F_HW_VLAN_CTAG_RX |
3186 			    NETIF_F_HW_VLAN_CTAG_TX;
3187 
3188 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3189 
3190 	netdev->priv_flags |= IFF_UNICAST_FLT;
3191 
3192 	/* MTU range: 68 - 9216 */
3193 	netdev->min_mtu = ETH_MIN_MTU;
3194 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3195 
3196 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3197 
3198 	/* before reading the NVM, reset the controller to put the device in a
3199 	 * known good starting state
3200 	 */
3201 	hw->mac.ops.reset_hw(hw);
3202 
3203 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3204 	 * that doesn't contain a checksum
3205 	 */
3206 	switch (hw->mac.type) {
3207 	case e1000_i210:
3208 	case e1000_i211:
3209 		if (igb_get_flash_presence_i210(hw)) {
3210 			if (hw->nvm.ops.validate(hw) < 0) {
3211 				dev_err(&pdev->dev,
3212 					"The NVM Checksum Is Not Valid\n");
3213 				err = -EIO;
3214 				goto err_eeprom;
3215 			}
3216 		}
3217 		break;
3218 	default:
3219 		if (hw->nvm.ops.validate(hw) < 0) {
3220 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3221 			err = -EIO;
3222 			goto err_eeprom;
3223 		}
3224 		break;
3225 	}
3226 
3227 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3228 		/* copy the MAC address out of the NVM */
3229 		if (hw->mac.ops.read_mac_addr(hw))
3230 			dev_err(&pdev->dev, "NVM Read Error\n");
3231 	}
3232 
3233 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3234 
3235 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3236 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3237 		err = -EIO;
3238 		goto err_eeprom;
3239 	}
3240 
3241 	igb_set_default_mac_filter(adapter);
3242 
3243 	/* get firmware version for ethtool -i */
3244 	igb_set_fw_version(adapter);
3245 
3246 	/* configure RXPBSIZE and TXPBSIZE */
3247 	if (hw->mac.type == e1000_i210) {
3248 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3249 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3250 	}
3251 
3252 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3253 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3254 
3255 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3256 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3257 
3258 	/* Initialize link properties that are user-changeable */
3259 	adapter->fc_autoneg = true;
3260 	hw->mac.autoneg = true;
3261 	hw->phy.autoneg_advertised = 0x2f;
3262 
3263 	hw->fc.requested_mode = e1000_fc_default;
3264 	hw->fc.current_mode = e1000_fc_default;
3265 
3266 	igb_validate_mdi_setting(hw);
3267 
3268 	/* By default, support wake on port A */
3269 	if (hw->bus.func == 0)
3270 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3271 
3272 	/* Check the NVM for wake support on non-port A ports */
3273 	if (hw->mac.type >= e1000_82580)
3274 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3275 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3276 				 &eeprom_data);
3277 	else if (hw->bus.func == 1)
3278 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3279 
3280 	if (eeprom_data & IGB_EEPROM_APME)
3281 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3282 
3283 	/* now that we have the eeprom settings, apply the special cases where
3284 	 * the eeprom may be wrong or the board simply won't support wake on
3285 	 * lan on a particular port
3286 	 */
3287 	switch (pdev->device) {
3288 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3289 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3290 		break;
3291 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3292 	case E1000_DEV_ID_82576_FIBER:
3293 	case E1000_DEV_ID_82576_SERDES:
3294 		/* Wake events only supported on port A for dual fiber
3295 		 * regardless of eeprom setting
3296 		 */
3297 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3298 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3299 		break;
3300 	case E1000_DEV_ID_82576_QUAD_COPPER:
3301 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3302 		/* if quad port adapter, disable WoL on all but port A */
3303 		if (global_quad_port_a != 0)
3304 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3305 		else
3306 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3307 		/* Reset for multiple quad port adapters */
3308 		if (++global_quad_port_a == 4)
3309 			global_quad_port_a = 0;
3310 		break;
3311 	default:
3312 		/* If the device can't wake, don't set software support */
3313 		if (!device_can_wakeup(&adapter->pdev->dev))
3314 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3315 	}
3316 
3317 	/* initialize the wol settings based on the eeprom settings */
3318 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3319 		adapter->wol |= E1000_WUFC_MAG;
3320 
3321 	/* Some vendors want WoL disabled by default, but still supported */
3322 	if ((hw->mac.type == e1000_i350) &&
3323 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3324 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3325 		adapter->wol = 0;
3326 	}
3327 
3328 	/* Some vendors want the ability to Use the EEPROM setting as
3329 	 * enable/disable only, and not for capability
3330 	 */
3331 	if (((hw->mac.type == e1000_i350) ||
3332 	     (hw->mac.type == e1000_i354)) &&
3333 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3334 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3335 		adapter->wol = 0;
3336 	}
3337 	if (hw->mac.type == e1000_i350) {
3338 		if (((pdev->subsystem_device == 0x5001) ||
3339 		     (pdev->subsystem_device == 0x5002)) &&
3340 				(hw->bus.func == 0)) {
3341 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3342 			adapter->wol = 0;
3343 		}
3344 		if (pdev->subsystem_device == 0x1F52)
3345 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3346 	}
3347 
3348 	device_set_wakeup_enable(&adapter->pdev->dev,
3349 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3350 
3351 	/* reset the hardware with the new settings */
3352 	igb_reset(adapter);
3353 
3354 	/* Init the I2C interface */
3355 	err = igb_init_i2c(adapter);
3356 	if (err) {
3357 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3358 		goto err_eeprom;
3359 	}
3360 
3361 	/* let the f/w know that the h/w is now under the control of the
3362 	 * driver.
3363 	 */
3364 	igb_get_hw_control(adapter);
3365 
3366 	strcpy(netdev->name, "eth%d");
3367 	err = register_netdev(netdev);
3368 	if (err)
3369 		goto err_register;
3370 
3371 	/* carrier off reporting is important to ethtool even BEFORE open */
3372 	netif_carrier_off(netdev);
3373 
3374 #ifdef CONFIG_IGB_DCA
3375 	if (dca_add_requester(&pdev->dev) == 0) {
3376 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3377 		dev_info(&pdev->dev, "DCA enabled\n");
3378 		igb_setup_dca(adapter);
3379 	}
3380 
3381 #endif
3382 #ifdef CONFIG_IGB_HWMON
3383 	/* Initialize the thermal sensor on i350 devices. */
3384 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3385 		u16 ets_word;
3386 
3387 		/* Read the NVM to determine if this i350 device supports an
3388 		 * external thermal sensor.
3389 		 */
3390 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3391 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3392 			adapter->ets = true;
3393 		else
3394 			adapter->ets = false;
3395 		if (igb_sysfs_init(adapter))
3396 			dev_err(&pdev->dev,
3397 				"failed to allocate sysfs resources\n");
3398 	} else {
3399 		adapter->ets = false;
3400 	}
3401 #endif
3402 	/* Check if Media Autosense is enabled */
3403 	adapter->ei = *ei;
3404 	if (hw->dev_spec._82575.mas_capable)
3405 		igb_init_mas(adapter);
3406 
3407 	/* do hw tstamp init after resetting */
3408 	igb_ptp_init(adapter);
3409 
3410 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3411 	/* print bus type/speed/width info, not applicable to i354 */
3412 	if (hw->mac.type != e1000_i354) {
3413 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3414 			 netdev->name,
3415 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3416 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3417 			   "unknown"),
3418 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3419 			  "Width x4" :
3420 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3421 			  "Width x2" :
3422 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3423 			  "Width x1" : "unknown"), netdev->dev_addr);
3424 	}
3425 
3426 	if ((hw->mac.type >= e1000_i210 ||
3427 	     igb_get_flash_presence_i210(hw))) {
3428 		ret_val = igb_read_part_string(hw, part_str,
3429 					       E1000_PBANUM_LENGTH);
3430 	} else {
3431 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3432 	}
3433 
3434 	if (ret_val)
3435 		strcpy(part_str, "Unknown");
3436 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3437 	dev_info(&pdev->dev,
3438 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3439 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3440 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3441 		adapter->num_rx_queues, adapter->num_tx_queues);
3442 	if (hw->phy.media_type == e1000_media_type_copper) {
3443 		switch (hw->mac.type) {
3444 		case e1000_i350:
3445 		case e1000_i210:
3446 		case e1000_i211:
3447 			/* Enable EEE for internal copper PHY devices */
3448 			err = igb_set_eee_i350(hw, true, true);
3449 			if ((!err) &&
3450 			    (!hw->dev_spec._82575.eee_disable)) {
3451 				adapter->eee_advert =
3452 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3453 				adapter->flags |= IGB_FLAG_EEE;
3454 			}
3455 			break;
3456 		case e1000_i354:
3457 			if ((rd32(E1000_CTRL_EXT) &
3458 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3459 				err = igb_set_eee_i354(hw, true, true);
3460 				if ((!err) &&
3461 					(!hw->dev_spec._82575.eee_disable)) {
3462 					adapter->eee_advert =
3463 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3464 					adapter->flags |= IGB_FLAG_EEE;
3465 				}
3466 			}
3467 			break;
3468 		default:
3469 			break;
3470 		}
3471 	}
3472 
3473 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3474 
3475 	pm_runtime_put_noidle(&pdev->dev);
3476 	return 0;
3477 
3478 err_register:
3479 	igb_release_hw_control(adapter);
3480 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3481 err_eeprom:
3482 	if (!igb_check_reset_block(hw))
3483 		igb_reset_phy(hw);
3484 
3485 	if (hw->flash_address)
3486 		iounmap(hw->flash_address);
3487 err_sw_init:
3488 	kfree(adapter->mac_table);
3489 	kfree(adapter->shadow_vfta);
3490 	igb_clear_interrupt_scheme(adapter);
3491 #ifdef CONFIG_PCI_IOV
3492 	igb_disable_sriov(pdev);
3493 #endif
3494 	pci_iounmap(pdev, adapter->io_addr);
3495 err_ioremap:
3496 	free_netdev(netdev);
3497 err_alloc_etherdev:
3498 	pci_release_mem_regions(pdev);
3499 err_pci_reg:
3500 err_dma:
3501 	pci_disable_device(pdev);
3502 	return err;
3503 }
3504 
3505 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3506 static int igb_disable_sriov(struct pci_dev *pdev)
3507 {
3508 	struct net_device *netdev = pci_get_drvdata(pdev);
3509 	struct igb_adapter *adapter = netdev_priv(netdev);
3510 	struct e1000_hw *hw = &adapter->hw;
3511 
3512 	/* reclaim resources allocated to VFs */
3513 	if (adapter->vf_data) {
3514 		/* disable iov and allow time for transactions to clear */
3515 		if (pci_vfs_assigned(pdev)) {
3516 			dev_warn(&pdev->dev,
3517 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3518 			return -EPERM;
3519 		} else {
3520 			pci_disable_sriov(pdev);
3521 			msleep(500);
3522 		}
3523 
3524 		kfree(adapter->vf_mac_list);
3525 		adapter->vf_mac_list = NULL;
3526 		kfree(adapter->vf_data);
3527 		adapter->vf_data = NULL;
3528 		adapter->vfs_allocated_count = 0;
3529 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3530 		wrfl();
3531 		msleep(100);
3532 		dev_info(&pdev->dev, "IOV Disabled\n");
3533 
3534 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3535 		adapter->flags |= IGB_FLAG_DMAC;
3536 	}
3537 
3538 	return 0;
3539 }
3540 
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3541 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3542 {
3543 	struct net_device *netdev = pci_get_drvdata(pdev);
3544 	struct igb_adapter *adapter = netdev_priv(netdev);
3545 	int old_vfs = pci_num_vf(pdev);
3546 	struct vf_mac_filter *mac_list;
3547 	int err = 0;
3548 	int num_vf_mac_filters, i;
3549 
3550 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3551 		err = -EPERM;
3552 		goto out;
3553 	}
3554 	if (!num_vfs)
3555 		goto out;
3556 
3557 	if (old_vfs) {
3558 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3559 			 old_vfs, max_vfs);
3560 		adapter->vfs_allocated_count = old_vfs;
3561 	} else
3562 		adapter->vfs_allocated_count = num_vfs;
3563 
3564 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3565 				sizeof(struct vf_data_storage), GFP_KERNEL);
3566 
3567 	/* if allocation failed then we do not support SR-IOV */
3568 	if (!adapter->vf_data) {
3569 		adapter->vfs_allocated_count = 0;
3570 		err = -ENOMEM;
3571 		goto out;
3572 	}
3573 
3574 	/* Due to the limited number of RAR entries calculate potential
3575 	 * number of MAC filters available for the VFs. Reserve entries
3576 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3577 	 * for each VF for VF MAC.
3578 	 */
3579 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3580 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3581 			      adapter->vfs_allocated_count);
3582 
3583 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3584 				       sizeof(struct vf_mac_filter),
3585 				       GFP_KERNEL);
3586 
3587 	mac_list = adapter->vf_mac_list;
3588 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3589 
3590 	if (adapter->vf_mac_list) {
3591 		/* Initialize list of VF MAC filters */
3592 		for (i = 0; i < num_vf_mac_filters; i++) {
3593 			mac_list->vf = -1;
3594 			mac_list->free = true;
3595 			list_add(&mac_list->l, &adapter->vf_macs.l);
3596 			mac_list++;
3597 		}
3598 	} else {
3599 		/* If we could not allocate memory for the VF MAC filters
3600 		 * we can continue without this feature but warn user.
3601 		 */
3602 		dev_err(&pdev->dev,
3603 			"Unable to allocate memory for VF MAC filter list\n");
3604 	}
3605 
3606 	/* only call pci_enable_sriov() if no VFs are allocated already */
3607 	if (!old_vfs) {
3608 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3609 		if (err)
3610 			goto err_out;
3611 	}
3612 	dev_info(&pdev->dev, "%d VFs allocated\n",
3613 		 adapter->vfs_allocated_count);
3614 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3615 		igb_vf_configure(adapter, i);
3616 
3617 	/* DMA Coalescing is not supported in IOV mode. */
3618 	adapter->flags &= ~IGB_FLAG_DMAC;
3619 	goto out;
3620 
3621 err_out:
3622 	kfree(adapter->vf_mac_list);
3623 	adapter->vf_mac_list = NULL;
3624 	kfree(adapter->vf_data);
3625 	adapter->vf_data = NULL;
3626 	adapter->vfs_allocated_count = 0;
3627 out:
3628 	return err;
3629 }
3630 
3631 #endif
3632 /**
3633  *  igb_remove_i2c - Cleanup  I2C interface
3634  *  @adapter: pointer to adapter structure
3635  **/
igb_remove_i2c(struct igb_adapter * adapter)3636 static void igb_remove_i2c(struct igb_adapter *adapter)
3637 {
3638 	/* free the adapter bus structure */
3639 	i2c_del_adapter(&adapter->i2c_adap);
3640 }
3641 
3642 /**
3643  *  igb_remove - Device Removal Routine
3644  *  @pdev: PCI device information struct
3645  *
3646  *  igb_remove is called by the PCI subsystem to alert the driver
3647  *  that it should release a PCI device.  The could be caused by a
3648  *  Hot-Plug event, or because the driver is going to be removed from
3649  *  memory.
3650  **/
igb_remove(struct pci_dev * pdev)3651 static void igb_remove(struct pci_dev *pdev)
3652 {
3653 	struct net_device *netdev = pci_get_drvdata(pdev);
3654 	struct igb_adapter *adapter = netdev_priv(netdev);
3655 	struct e1000_hw *hw = &adapter->hw;
3656 
3657 	pm_runtime_get_noresume(&pdev->dev);
3658 #ifdef CONFIG_IGB_HWMON
3659 	igb_sysfs_exit(adapter);
3660 #endif
3661 	igb_remove_i2c(adapter);
3662 	igb_ptp_stop(adapter);
3663 	/* The watchdog timer may be rescheduled, so explicitly
3664 	 * disable watchdog from being rescheduled.
3665 	 */
3666 	set_bit(__IGB_DOWN, &adapter->state);
3667 	del_timer_sync(&adapter->watchdog_timer);
3668 	del_timer_sync(&adapter->phy_info_timer);
3669 
3670 	cancel_work_sync(&adapter->reset_task);
3671 	cancel_work_sync(&adapter->watchdog_task);
3672 
3673 #ifdef CONFIG_IGB_DCA
3674 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3675 		dev_info(&pdev->dev, "DCA disabled\n");
3676 		dca_remove_requester(&pdev->dev);
3677 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3678 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3679 	}
3680 #endif
3681 
3682 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3683 	 * would have already happened in close and is redundant.
3684 	 */
3685 	igb_release_hw_control(adapter);
3686 
3687 #ifdef CONFIG_PCI_IOV
3688 	igb_disable_sriov(pdev);
3689 #endif
3690 
3691 	unregister_netdev(netdev);
3692 
3693 	igb_clear_interrupt_scheme(adapter);
3694 
3695 	pci_iounmap(pdev, adapter->io_addr);
3696 	if (hw->flash_address)
3697 		iounmap(hw->flash_address);
3698 	pci_release_mem_regions(pdev);
3699 
3700 	kfree(adapter->mac_table);
3701 	kfree(adapter->shadow_vfta);
3702 	free_netdev(netdev);
3703 
3704 	pci_disable_pcie_error_reporting(pdev);
3705 
3706 	pci_disable_device(pdev);
3707 }
3708 
3709 /**
3710  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3711  *  @adapter: board private structure to initialize
3712  *
3713  *  This function initializes the vf specific data storage and then attempts to
3714  *  allocate the VFs.  The reason for ordering it this way is because it is much
3715  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3716  *  the memory for the VFs.
3717  **/
igb_probe_vfs(struct igb_adapter * adapter)3718 static void igb_probe_vfs(struct igb_adapter *adapter)
3719 {
3720 #ifdef CONFIG_PCI_IOV
3721 	struct pci_dev *pdev = adapter->pdev;
3722 	struct e1000_hw *hw = &adapter->hw;
3723 
3724 	/* Virtualization features not supported on i210 family. */
3725 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3726 		return;
3727 
3728 	/* Of the below we really only want the effect of getting
3729 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3730 	 * igb_enable_sriov() has no effect.
3731 	 */
3732 	igb_set_interrupt_capability(adapter, true);
3733 	igb_reset_interrupt_capability(adapter);
3734 
3735 	pci_sriov_set_totalvfs(pdev, 7);
3736 	igb_enable_sriov(pdev, max_vfs);
3737 
3738 #endif /* CONFIG_PCI_IOV */
3739 }
3740 
igb_get_max_rss_queues(struct igb_adapter * adapter)3741 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3742 {
3743 	struct e1000_hw *hw = &adapter->hw;
3744 	unsigned int max_rss_queues;
3745 
3746 	/* Determine the maximum number of RSS queues supported. */
3747 	switch (hw->mac.type) {
3748 	case e1000_i211:
3749 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3750 		break;
3751 	case e1000_82575:
3752 	case e1000_i210:
3753 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3754 		break;
3755 	case e1000_i350:
3756 		/* I350 cannot do RSS and SR-IOV at the same time */
3757 		if (!!adapter->vfs_allocated_count) {
3758 			max_rss_queues = 1;
3759 			break;
3760 		}
3761 		/* fall through */
3762 	case e1000_82576:
3763 		if (!!adapter->vfs_allocated_count) {
3764 			max_rss_queues = 2;
3765 			break;
3766 		}
3767 		/* fall through */
3768 	case e1000_82580:
3769 	case e1000_i354:
3770 	default:
3771 		max_rss_queues = IGB_MAX_RX_QUEUES;
3772 		break;
3773 	}
3774 
3775 	return max_rss_queues;
3776 }
3777 
igb_init_queue_configuration(struct igb_adapter * adapter)3778 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3779 {
3780 	u32 max_rss_queues;
3781 
3782 	max_rss_queues = igb_get_max_rss_queues(adapter);
3783 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3784 
3785 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3786 }
3787 
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3788 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3789 			      const u32 max_rss_queues)
3790 {
3791 	struct e1000_hw *hw = &adapter->hw;
3792 
3793 	/* Determine if we need to pair queues. */
3794 	switch (hw->mac.type) {
3795 	case e1000_82575:
3796 	case e1000_i211:
3797 		/* Device supports enough interrupts without queue pairing. */
3798 		break;
3799 	case e1000_82576:
3800 	case e1000_82580:
3801 	case e1000_i350:
3802 	case e1000_i354:
3803 	case e1000_i210:
3804 	default:
3805 		/* If rss_queues > half of max_rss_queues, pair the queues in
3806 		 * order to conserve interrupts due to limited supply.
3807 		 */
3808 		if (adapter->rss_queues > (max_rss_queues / 2))
3809 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3810 		else
3811 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3812 		break;
3813 	}
3814 }
3815 
3816 /**
3817  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3818  *  @adapter: board private structure to initialize
3819  *
3820  *  igb_sw_init initializes the Adapter private data structure.
3821  *  Fields are initialized based on PCI device information and
3822  *  OS network device settings (MTU size).
3823  **/
igb_sw_init(struct igb_adapter * adapter)3824 static int igb_sw_init(struct igb_adapter *adapter)
3825 {
3826 	struct e1000_hw *hw = &adapter->hw;
3827 	struct net_device *netdev = adapter->netdev;
3828 	struct pci_dev *pdev = adapter->pdev;
3829 
3830 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3831 
3832 	/* set default ring sizes */
3833 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3834 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3835 
3836 	/* set default ITR values */
3837 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3838 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3839 
3840 	/* set default work limits */
3841 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3842 
3843 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3844 				  VLAN_HLEN;
3845 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3846 
3847 	spin_lock_init(&adapter->nfc_lock);
3848 	spin_lock_init(&adapter->stats64_lock);
3849 #ifdef CONFIG_PCI_IOV
3850 	switch (hw->mac.type) {
3851 	case e1000_82576:
3852 	case e1000_i350:
3853 		if (max_vfs > 7) {
3854 			dev_warn(&pdev->dev,
3855 				 "Maximum of 7 VFs per PF, using max\n");
3856 			max_vfs = adapter->vfs_allocated_count = 7;
3857 		} else
3858 			adapter->vfs_allocated_count = max_vfs;
3859 		if (adapter->vfs_allocated_count)
3860 			dev_warn(&pdev->dev,
3861 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3862 		break;
3863 	default:
3864 		break;
3865 	}
3866 #endif /* CONFIG_PCI_IOV */
3867 
3868 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3869 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3870 
3871 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3872 				     sizeof(struct igb_mac_addr),
3873 				     GFP_KERNEL);
3874 	if (!adapter->mac_table)
3875 		return -ENOMEM;
3876 
3877 	igb_probe_vfs(adapter);
3878 
3879 	igb_init_queue_configuration(adapter);
3880 
3881 	/* Setup and initialize a copy of the hw vlan table array */
3882 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3883 				       GFP_KERNEL);
3884 	if (!adapter->shadow_vfta)
3885 		return -ENOMEM;
3886 
3887 	/* This call may decrease the number of queues */
3888 	if (igb_init_interrupt_scheme(adapter, true)) {
3889 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3890 		return -ENOMEM;
3891 	}
3892 
3893 	/* Explicitly disable IRQ since the NIC can be in any state. */
3894 	igb_irq_disable(adapter);
3895 
3896 	if (hw->mac.type >= e1000_i350)
3897 		adapter->flags &= ~IGB_FLAG_DMAC;
3898 
3899 	set_bit(__IGB_DOWN, &adapter->state);
3900 	return 0;
3901 }
3902 
3903 /**
3904  *  igb_open - Called when a network interface is made active
3905  *  @netdev: network interface device structure
3906  *
3907  *  Returns 0 on success, negative value on failure
3908  *
3909  *  The open entry point is called when a network interface is made
3910  *  active by the system (IFF_UP).  At this point all resources needed
3911  *  for transmit and receive operations are allocated, the interrupt
3912  *  handler is registered with the OS, the watchdog timer is started,
3913  *  and the stack is notified that the interface is ready.
3914  **/
__igb_open(struct net_device * netdev,bool resuming)3915 static int __igb_open(struct net_device *netdev, bool resuming)
3916 {
3917 	struct igb_adapter *adapter = netdev_priv(netdev);
3918 	struct e1000_hw *hw = &adapter->hw;
3919 	struct pci_dev *pdev = adapter->pdev;
3920 	int err;
3921 	int i;
3922 
3923 	/* disallow open during test */
3924 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3925 		WARN_ON(resuming);
3926 		return -EBUSY;
3927 	}
3928 
3929 	if (!resuming)
3930 		pm_runtime_get_sync(&pdev->dev);
3931 
3932 	netif_carrier_off(netdev);
3933 
3934 	/* allocate transmit descriptors */
3935 	err = igb_setup_all_tx_resources(adapter);
3936 	if (err)
3937 		goto err_setup_tx;
3938 
3939 	/* allocate receive descriptors */
3940 	err = igb_setup_all_rx_resources(adapter);
3941 	if (err)
3942 		goto err_setup_rx;
3943 
3944 	igb_power_up_link(adapter);
3945 
3946 	/* before we allocate an interrupt, we must be ready to handle it.
3947 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3948 	 * as soon as we call pci_request_irq, so we have to setup our
3949 	 * clean_rx handler before we do so.
3950 	 */
3951 	igb_configure(adapter);
3952 
3953 	err = igb_request_irq(adapter);
3954 	if (err)
3955 		goto err_req_irq;
3956 
3957 	/* Notify the stack of the actual queue counts. */
3958 	err = netif_set_real_num_tx_queues(adapter->netdev,
3959 					   adapter->num_tx_queues);
3960 	if (err)
3961 		goto err_set_queues;
3962 
3963 	err = netif_set_real_num_rx_queues(adapter->netdev,
3964 					   adapter->num_rx_queues);
3965 	if (err)
3966 		goto err_set_queues;
3967 
3968 	/* From here on the code is the same as igb_up() */
3969 	clear_bit(__IGB_DOWN, &adapter->state);
3970 
3971 	for (i = 0; i < adapter->num_q_vectors; i++)
3972 		napi_enable(&(adapter->q_vector[i]->napi));
3973 
3974 	/* Clear any pending interrupts. */
3975 	rd32(E1000_TSICR);
3976 	rd32(E1000_ICR);
3977 
3978 	igb_irq_enable(adapter);
3979 
3980 	/* notify VFs that reset has been completed */
3981 	if (adapter->vfs_allocated_count) {
3982 		u32 reg_data = rd32(E1000_CTRL_EXT);
3983 
3984 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3985 		wr32(E1000_CTRL_EXT, reg_data);
3986 	}
3987 
3988 	netif_tx_start_all_queues(netdev);
3989 
3990 	if (!resuming)
3991 		pm_runtime_put(&pdev->dev);
3992 
3993 	/* start the watchdog. */
3994 	hw->mac.get_link_status = 1;
3995 	schedule_work(&adapter->watchdog_task);
3996 
3997 	return 0;
3998 
3999 err_set_queues:
4000 	igb_free_irq(adapter);
4001 err_req_irq:
4002 	igb_release_hw_control(adapter);
4003 	igb_power_down_link(adapter);
4004 	igb_free_all_rx_resources(adapter);
4005 err_setup_rx:
4006 	igb_free_all_tx_resources(adapter);
4007 err_setup_tx:
4008 	igb_reset(adapter);
4009 	if (!resuming)
4010 		pm_runtime_put(&pdev->dev);
4011 
4012 	return err;
4013 }
4014 
igb_open(struct net_device * netdev)4015 int igb_open(struct net_device *netdev)
4016 {
4017 	return __igb_open(netdev, false);
4018 }
4019 
4020 /**
4021  *  igb_close - Disables a network interface
4022  *  @netdev: network interface device structure
4023  *
4024  *  Returns 0, this is not allowed to fail
4025  *
4026  *  The close entry point is called when an interface is de-activated
4027  *  by the OS.  The hardware is still under the driver's control, but
4028  *  needs to be disabled.  A global MAC reset is issued to stop the
4029  *  hardware, and all transmit and receive resources are freed.
4030  **/
__igb_close(struct net_device * netdev,bool suspending)4031 static int __igb_close(struct net_device *netdev, bool suspending)
4032 {
4033 	struct igb_adapter *adapter = netdev_priv(netdev);
4034 	struct pci_dev *pdev = adapter->pdev;
4035 
4036 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4037 
4038 	if (!suspending)
4039 		pm_runtime_get_sync(&pdev->dev);
4040 
4041 	igb_down(adapter);
4042 	igb_free_irq(adapter);
4043 
4044 	igb_free_all_tx_resources(adapter);
4045 	igb_free_all_rx_resources(adapter);
4046 
4047 	if (!suspending)
4048 		pm_runtime_put_sync(&pdev->dev);
4049 	return 0;
4050 }
4051 
igb_close(struct net_device * netdev)4052 int igb_close(struct net_device *netdev)
4053 {
4054 	if (netif_device_present(netdev) || netdev->dismantle)
4055 		return __igb_close(netdev, false);
4056 	return 0;
4057 }
4058 
4059 /**
4060  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4061  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4062  *
4063  *  Return 0 on success, negative on failure
4064  **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4065 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4066 {
4067 	struct device *dev = tx_ring->dev;
4068 	int size;
4069 
4070 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4071 
4072 	tx_ring->tx_buffer_info = vmalloc(size);
4073 	if (!tx_ring->tx_buffer_info)
4074 		goto err;
4075 
4076 	/* round up to nearest 4K */
4077 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4078 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4079 
4080 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4081 					   &tx_ring->dma, GFP_KERNEL);
4082 	if (!tx_ring->desc)
4083 		goto err;
4084 
4085 	tx_ring->next_to_use = 0;
4086 	tx_ring->next_to_clean = 0;
4087 
4088 	return 0;
4089 
4090 err:
4091 	vfree(tx_ring->tx_buffer_info);
4092 	tx_ring->tx_buffer_info = NULL;
4093 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4094 	return -ENOMEM;
4095 }
4096 
4097 /**
4098  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4099  *				 (Descriptors) for all queues
4100  *  @adapter: board private structure
4101  *
4102  *  Return 0 on success, negative on failure
4103  **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4104 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4105 {
4106 	struct pci_dev *pdev = adapter->pdev;
4107 	int i, err = 0;
4108 
4109 	for (i = 0; i < adapter->num_tx_queues; i++) {
4110 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4111 		if (err) {
4112 			dev_err(&pdev->dev,
4113 				"Allocation for Tx Queue %u failed\n", i);
4114 			for (i--; i >= 0; i--)
4115 				igb_free_tx_resources(adapter->tx_ring[i]);
4116 			break;
4117 		}
4118 	}
4119 
4120 	return err;
4121 }
4122 
4123 /**
4124  *  igb_setup_tctl - configure the transmit control registers
4125  *  @adapter: Board private structure
4126  **/
igb_setup_tctl(struct igb_adapter * adapter)4127 void igb_setup_tctl(struct igb_adapter *adapter)
4128 {
4129 	struct e1000_hw *hw = &adapter->hw;
4130 	u32 tctl;
4131 
4132 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4133 	wr32(E1000_TXDCTL(0), 0);
4134 
4135 	/* Program the Transmit Control Register */
4136 	tctl = rd32(E1000_TCTL);
4137 	tctl &= ~E1000_TCTL_CT;
4138 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4139 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4140 
4141 	igb_config_collision_dist(hw);
4142 
4143 	/* Enable transmits */
4144 	tctl |= E1000_TCTL_EN;
4145 
4146 	wr32(E1000_TCTL, tctl);
4147 }
4148 
4149 /**
4150  *  igb_configure_tx_ring - Configure transmit ring after Reset
4151  *  @adapter: board private structure
4152  *  @ring: tx ring to configure
4153  *
4154  *  Configure a transmit ring after a reset.
4155  **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4156 void igb_configure_tx_ring(struct igb_adapter *adapter,
4157 			   struct igb_ring *ring)
4158 {
4159 	struct e1000_hw *hw = &adapter->hw;
4160 	u32 txdctl = 0;
4161 	u64 tdba = ring->dma;
4162 	int reg_idx = ring->reg_idx;
4163 
4164 	wr32(E1000_TDLEN(reg_idx),
4165 	     ring->count * sizeof(union e1000_adv_tx_desc));
4166 	wr32(E1000_TDBAL(reg_idx),
4167 	     tdba & 0x00000000ffffffffULL);
4168 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4169 
4170 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4171 	wr32(E1000_TDH(reg_idx), 0);
4172 	writel(0, ring->tail);
4173 
4174 	txdctl |= IGB_TX_PTHRESH;
4175 	txdctl |= IGB_TX_HTHRESH << 8;
4176 	txdctl |= IGB_TX_WTHRESH << 16;
4177 
4178 	/* reinitialize tx_buffer_info */
4179 	memset(ring->tx_buffer_info, 0,
4180 	       sizeof(struct igb_tx_buffer) * ring->count);
4181 
4182 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4183 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4184 }
4185 
4186 /**
4187  *  igb_configure_tx - Configure transmit Unit after Reset
4188  *  @adapter: board private structure
4189  *
4190  *  Configure the Tx unit of the MAC after a reset.
4191  **/
igb_configure_tx(struct igb_adapter * adapter)4192 static void igb_configure_tx(struct igb_adapter *adapter)
4193 {
4194 	struct e1000_hw *hw = &adapter->hw;
4195 	int i;
4196 
4197 	/* disable the queues */
4198 	for (i = 0; i < adapter->num_tx_queues; i++)
4199 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4200 
4201 	wrfl();
4202 	usleep_range(10000, 20000);
4203 
4204 	for (i = 0; i < adapter->num_tx_queues; i++)
4205 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4206 }
4207 
4208 /**
4209  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4210  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4211  *
4212  *  Returns 0 on success, negative on failure
4213  **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4214 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4215 {
4216 	struct device *dev = rx_ring->dev;
4217 	int size;
4218 
4219 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4220 
4221 	rx_ring->rx_buffer_info = vmalloc(size);
4222 	if (!rx_ring->rx_buffer_info)
4223 		goto err;
4224 
4225 	/* Round up to nearest 4K */
4226 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4227 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4228 
4229 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4230 					   &rx_ring->dma, GFP_KERNEL);
4231 	if (!rx_ring->desc)
4232 		goto err;
4233 
4234 	rx_ring->next_to_alloc = 0;
4235 	rx_ring->next_to_clean = 0;
4236 	rx_ring->next_to_use = 0;
4237 
4238 	return 0;
4239 
4240 err:
4241 	vfree(rx_ring->rx_buffer_info);
4242 	rx_ring->rx_buffer_info = NULL;
4243 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4244 	return -ENOMEM;
4245 }
4246 
4247 /**
4248  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4249  *				 (Descriptors) for all queues
4250  *  @adapter: board private structure
4251  *
4252  *  Return 0 on success, negative on failure
4253  **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4254 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4255 {
4256 	struct pci_dev *pdev = adapter->pdev;
4257 	int i, err = 0;
4258 
4259 	for (i = 0; i < adapter->num_rx_queues; i++) {
4260 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4261 		if (err) {
4262 			dev_err(&pdev->dev,
4263 				"Allocation for Rx Queue %u failed\n", i);
4264 			for (i--; i >= 0; i--)
4265 				igb_free_rx_resources(adapter->rx_ring[i]);
4266 			break;
4267 		}
4268 	}
4269 
4270 	return err;
4271 }
4272 
4273 /**
4274  *  igb_setup_mrqc - configure the multiple receive queue control registers
4275  *  @adapter: Board private structure
4276  **/
igb_setup_mrqc(struct igb_adapter * adapter)4277 static void igb_setup_mrqc(struct igb_adapter *adapter)
4278 {
4279 	struct e1000_hw *hw = &adapter->hw;
4280 	u32 mrqc, rxcsum;
4281 	u32 j, num_rx_queues;
4282 	u32 rss_key[10];
4283 
4284 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4285 	for (j = 0; j < 10; j++)
4286 		wr32(E1000_RSSRK(j), rss_key[j]);
4287 
4288 	num_rx_queues = adapter->rss_queues;
4289 
4290 	switch (hw->mac.type) {
4291 	case e1000_82576:
4292 		/* 82576 supports 2 RSS queues for SR-IOV */
4293 		if (adapter->vfs_allocated_count)
4294 			num_rx_queues = 2;
4295 		break;
4296 	default:
4297 		break;
4298 	}
4299 
4300 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4301 		for (j = 0; j < IGB_RETA_SIZE; j++)
4302 			adapter->rss_indir_tbl[j] =
4303 			(j * num_rx_queues) / IGB_RETA_SIZE;
4304 		adapter->rss_indir_tbl_init = num_rx_queues;
4305 	}
4306 	igb_write_rss_indir_tbl(adapter);
4307 
4308 	/* Disable raw packet checksumming so that RSS hash is placed in
4309 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4310 	 * offloads as they are enabled by default
4311 	 */
4312 	rxcsum = rd32(E1000_RXCSUM);
4313 	rxcsum |= E1000_RXCSUM_PCSD;
4314 
4315 	if (adapter->hw.mac.type >= e1000_82576)
4316 		/* Enable Receive Checksum Offload for SCTP */
4317 		rxcsum |= E1000_RXCSUM_CRCOFL;
4318 
4319 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4320 	wr32(E1000_RXCSUM, rxcsum);
4321 
4322 	/* Generate RSS hash based on packet types, TCP/UDP
4323 	 * port numbers and/or IPv4/v6 src and dst addresses
4324 	 */
4325 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4326 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4327 	       E1000_MRQC_RSS_FIELD_IPV6 |
4328 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4329 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4330 
4331 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4332 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4333 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4334 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4335 
4336 	/* If VMDq is enabled then we set the appropriate mode for that, else
4337 	 * we default to RSS so that an RSS hash is calculated per packet even
4338 	 * if we are only using one queue
4339 	 */
4340 	if (adapter->vfs_allocated_count) {
4341 		if (hw->mac.type > e1000_82575) {
4342 			/* Set the default pool for the PF's first queue */
4343 			u32 vtctl = rd32(E1000_VT_CTL);
4344 
4345 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4346 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4347 			vtctl |= adapter->vfs_allocated_count <<
4348 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4349 			wr32(E1000_VT_CTL, vtctl);
4350 		}
4351 		if (adapter->rss_queues > 1)
4352 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4353 		else
4354 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4355 	} else {
4356 		if (hw->mac.type != e1000_i211)
4357 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4358 	}
4359 	igb_vmm_control(adapter);
4360 
4361 	wr32(E1000_MRQC, mrqc);
4362 }
4363 
4364 /**
4365  *  igb_setup_rctl - configure the receive control registers
4366  *  @adapter: Board private structure
4367  **/
igb_setup_rctl(struct igb_adapter * adapter)4368 void igb_setup_rctl(struct igb_adapter *adapter)
4369 {
4370 	struct e1000_hw *hw = &adapter->hw;
4371 	u32 rctl;
4372 
4373 	rctl = rd32(E1000_RCTL);
4374 
4375 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4376 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4377 
4378 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4379 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4380 
4381 	/* enable stripping of CRC. It's unlikely this will break BMC
4382 	 * redirection as it did with e1000. Newer features require
4383 	 * that the HW strips the CRC.
4384 	 */
4385 	rctl |= E1000_RCTL_SECRC;
4386 
4387 	/* disable store bad packets and clear size bits. */
4388 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4389 
4390 	/* enable LPE to allow for reception of jumbo frames */
4391 	rctl |= E1000_RCTL_LPE;
4392 
4393 	/* disable queue 0 to prevent tail write w/o re-config */
4394 	wr32(E1000_RXDCTL(0), 0);
4395 
4396 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4397 	 * queue drop for all VF and PF queues to prevent head of line blocking
4398 	 * if an un-trusted VF does not provide descriptors to hardware.
4399 	 */
4400 	if (adapter->vfs_allocated_count) {
4401 		/* set all queue drop enable bits */
4402 		wr32(E1000_QDE, ALL_QUEUES);
4403 	}
4404 
4405 	/* This is useful for sniffing bad packets. */
4406 	if (adapter->netdev->features & NETIF_F_RXALL) {
4407 		/* UPE and MPE will be handled by normal PROMISC logic
4408 		 * in e1000e_set_rx_mode
4409 		 */
4410 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4411 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4412 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4413 
4414 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4415 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4416 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4417 		 * and that breaks VLANs.
4418 		 */
4419 	}
4420 
4421 	wr32(E1000_RCTL, rctl);
4422 }
4423 
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4424 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4425 				   int vfn)
4426 {
4427 	struct e1000_hw *hw = &adapter->hw;
4428 	u32 vmolr;
4429 
4430 	if (size > MAX_JUMBO_FRAME_SIZE)
4431 		size = MAX_JUMBO_FRAME_SIZE;
4432 
4433 	vmolr = rd32(E1000_VMOLR(vfn));
4434 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4435 	vmolr |= size | E1000_VMOLR_LPE;
4436 	wr32(E1000_VMOLR(vfn), vmolr);
4437 
4438 	return 0;
4439 }
4440 
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4441 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4442 					 int vfn, bool enable)
4443 {
4444 	struct e1000_hw *hw = &adapter->hw;
4445 	u32 val, reg;
4446 
4447 	if (hw->mac.type < e1000_82576)
4448 		return;
4449 
4450 	if (hw->mac.type == e1000_i350)
4451 		reg = E1000_DVMOLR(vfn);
4452 	else
4453 		reg = E1000_VMOLR(vfn);
4454 
4455 	val = rd32(reg);
4456 	if (enable)
4457 		val |= E1000_VMOLR_STRVLAN;
4458 	else
4459 		val &= ~(E1000_VMOLR_STRVLAN);
4460 	wr32(reg, val);
4461 }
4462 
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4463 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4464 				 int vfn, bool aupe)
4465 {
4466 	struct e1000_hw *hw = &adapter->hw;
4467 	u32 vmolr;
4468 
4469 	/* This register exists only on 82576 and newer so if we are older then
4470 	 * we should exit and do nothing
4471 	 */
4472 	if (hw->mac.type < e1000_82576)
4473 		return;
4474 
4475 	vmolr = rd32(E1000_VMOLR(vfn));
4476 	if (aupe)
4477 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4478 	else
4479 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4480 
4481 	/* clear all bits that might not be set */
4482 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4483 
4484 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4485 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4486 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4487 	 * multicast packets
4488 	 */
4489 	if (vfn <= adapter->vfs_allocated_count)
4490 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4491 
4492 	wr32(E1000_VMOLR(vfn), vmolr);
4493 }
4494 
4495 /**
4496  *  igb_configure_rx_ring - Configure a receive ring after Reset
4497  *  @adapter: board private structure
4498  *  @ring: receive ring to be configured
4499  *
4500  *  Configure the Rx unit of the MAC after a reset.
4501  **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4502 void igb_configure_rx_ring(struct igb_adapter *adapter,
4503 			   struct igb_ring *ring)
4504 {
4505 	struct e1000_hw *hw = &adapter->hw;
4506 	union e1000_adv_rx_desc *rx_desc;
4507 	u64 rdba = ring->dma;
4508 	int reg_idx = ring->reg_idx;
4509 	u32 srrctl = 0, rxdctl = 0;
4510 
4511 	/* disable the queue */
4512 	wr32(E1000_RXDCTL(reg_idx), 0);
4513 
4514 	/* Set DMA base address registers */
4515 	wr32(E1000_RDBAL(reg_idx),
4516 	     rdba & 0x00000000ffffffffULL);
4517 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4518 	wr32(E1000_RDLEN(reg_idx),
4519 	     ring->count * sizeof(union e1000_adv_rx_desc));
4520 
4521 	/* initialize head and tail */
4522 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4523 	wr32(E1000_RDH(reg_idx), 0);
4524 	writel(0, ring->tail);
4525 
4526 	/* set descriptor configuration */
4527 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4528 	if (ring_uses_large_buffer(ring))
4529 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4530 	else
4531 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4532 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4533 	if (hw->mac.type >= e1000_82580)
4534 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4535 	/* Only set Drop Enable if we are supporting multiple queues */
4536 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4537 		srrctl |= E1000_SRRCTL_DROP_EN;
4538 
4539 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4540 
4541 	/* set filtering for VMDQ pools */
4542 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4543 
4544 	rxdctl |= IGB_RX_PTHRESH;
4545 	rxdctl |= IGB_RX_HTHRESH << 8;
4546 	rxdctl |= IGB_RX_WTHRESH << 16;
4547 
4548 	/* initialize rx_buffer_info */
4549 	memset(ring->rx_buffer_info, 0,
4550 	       sizeof(struct igb_rx_buffer) * ring->count);
4551 
4552 	/* initialize Rx descriptor 0 */
4553 	rx_desc = IGB_RX_DESC(ring, 0);
4554 	rx_desc->wb.upper.length = 0;
4555 
4556 	/* enable receive descriptor fetching */
4557 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4558 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4559 }
4560 
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4561 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4562 				  struct igb_ring *rx_ring)
4563 {
4564 	/* set build_skb and buffer size flags */
4565 	clear_ring_build_skb_enabled(rx_ring);
4566 	clear_ring_uses_large_buffer(rx_ring);
4567 
4568 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4569 		return;
4570 
4571 	set_ring_build_skb_enabled(rx_ring);
4572 
4573 #if (PAGE_SIZE < 8192)
4574 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4575 		return;
4576 
4577 	set_ring_uses_large_buffer(rx_ring);
4578 #endif
4579 }
4580 
4581 /**
4582  *  igb_configure_rx - Configure receive Unit after Reset
4583  *  @adapter: board private structure
4584  *
4585  *  Configure the Rx unit of the MAC after a reset.
4586  **/
igb_configure_rx(struct igb_adapter * adapter)4587 static void igb_configure_rx(struct igb_adapter *adapter)
4588 {
4589 	int i;
4590 
4591 	/* set the correct pool for the PF default MAC address in entry 0 */
4592 	igb_set_default_mac_filter(adapter);
4593 
4594 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4595 	 * the Base and Length of the Rx Descriptor Ring
4596 	 */
4597 	for (i = 0; i < adapter->num_rx_queues; i++) {
4598 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4599 
4600 		igb_set_rx_buffer_len(adapter, rx_ring);
4601 		igb_configure_rx_ring(adapter, rx_ring);
4602 	}
4603 }
4604 
4605 /**
4606  *  igb_free_tx_resources - Free Tx Resources per Queue
4607  *  @tx_ring: Tx descriptor ring for a specific queue
4608  *
4609  *  Free all transmit software resources
4610  **/
igb_free_tx_resources(struct igb_ring * tx_ring)4611 void igb_free_tx_resources(struct igb_ring *tx_ring)
4612 {
4613 	igb_clean_tx_ring(tx_ring);
4614 
4615 	vfree(tx_ring->tx_buffer_info);
4616 	tx_ring->tx_buffer_info = NULL;
4617 
4618 	/* if not set, then don't free */
4619 	if (!tx_ring->desc)
4620 		return;
4621 
4622 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4623 			  tx_ring->desc, tx_ring->dma);
4624 
4625 	tx_ring->desc = NULL;
4626 }
4627 
4628 /**
4629  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4630  *  @adapter: board private structure
4631  *
4632  *  Free all transmit software resources
4633  **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4634 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4635 {
4636 	int i;
4637 
4638 	for (i = 0; i < adapter->num_tx_queues; i++)
4639 		if (adapter->tx_ring[i])
4640 			igb_free_tx_resources(adapter->tx_ring[i]);
4641 }
4642 
4643 /**
4644  *  igb_clean_tx_ring - Free Tx Buffers
4645  *  @tx_ring: ring to be cleaned
4646  **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4647 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4648 {
4649 	u16 i = tx_ring->next_to_clean;
4650 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4651 
4652 	while (i != tx_ring->next_to_use) {
4653 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4654 
4655 		/* Free all the Tx ring sk_buffs */
4656 		dev_kfree_skb_any(tx_buffer->skb);
4657 
4658 		/* unmap skb header data */
4659 		dma_unmap_single(tx_ring->dev,
4660 				 dma_unmap_addr(tx_buffer, dma),
4661 				 dma_unmap_len(tx_buffer, len),
4662 				 DMA_TO_DEVICE);
4663 
4664 		/* check for eop_desc to determine the end of the packet */
4665 		eop_desc = tx_buffer->next_to_watch;
4666 		tx_desc = IGB_TX_DESC(tx_ring, i);
4667 
4668 		/* unmap remaining buffers */
4669 		while (tx_desc != eop_desc) {
4670 			tx_buffer++;
4671 			tx_desc++;
4672 			i++;
4673 			if (unlikely(i == tx_ring->count)) {
4674 				i = 0;
4675 				tx_buffer = tx_ring->tx_buffer_info;
4676 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4677 			}
4678 
4679 			/* unmap any remaining paged data */
4680 			if (dma_unmap_len(tx_buffer, len))
4681 				dma_unmap_page(tx_ring->dev,
4682 					       dma_unmap_addr(tx_buffer, dma),
4683 					       dma_unmap_len(tx_buffer, len),
4684 					       DMA_TO_DEVICE);
4685 		}
4686 
4687 		/* move us one more past the eop_desc for start of next pkt */
4688 		tx_buffer++;
4689 		i++;
4690 		if (unlikely(i == tx_ring->count)) {
4691 			i = 0;
4692 			tx_buffer = tx_ring->tx_buffer_info;
4693 		}
4694 	}
4695 
4696 	/* reset BQL for queue */
4697 	netdev_tx_reset_queue(txring_txq(tx_ring));
4698 
4699 	/* reset next_to_use and next_to_clean */
4700 	tx_ring->next_to_use = 0;
4701 	tx_ring->next_to_clean = 0;
4702 }
4703 
4704 /**
4705  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4706  *  @adapter: board private structure
4707  **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4708 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4709 {
4710 	int i;
4711 
4712 	for (i = 0; i < adapter->num_tx_queues; i++)
4713 		if (adapter->tx_ring[i])
4714 			igb_clean_tx_ring(adapter->tx_ring[i]);
4715 }
4716 
4717 /**
4718  *  igb_free_rx_resources - Free Rx Resources
4719  *  @rx_ring: ring to clean the resources from
4720  *
4721  *  Free all receive software resources
4722  **/
igb_free_rx_resources(struct igb_ring * rx_ring)4723 void igb_free_rx_resources(struct igb_ring *rx_ring)
4724 {
4725 	igb_clean_rx_ring(rx_ring);
4726 
4727 	vfree(rx_ring->rx_buffer_info);
4728 	rx_ring->rx_buffer_info = NULL;
4729 
4730 	/* if not set, then don't free */
4731 	if (!rx_ring->desc)
4732 		return;
4733 
4734 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4735 			  rx_ring->desc, rx_ring->dma);
4736 
4737 	rx_ring->desc = NULL;
4738 }
4739 
4740 /**
4741  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4742  *  @adapter: board private structure
4743  *
4744  *  Free all receive software resources
4745  **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4746 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4747 {
4748 	int i;
4749 
4750 	for (i = 0; i < adapter->num_rx_queues; i++)
4751 		if (adapter->rx_ring[i])
4752 			igb_free_rx_resources(adapter->rx_ring[i]);
4753 }
4754 
4755 /**
4756  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4757  *  @rx_ring: ring to free buffers from
4758  **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4759 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4760 {
4761 	u16 i = rx_ring->next_to_clean;
4762 
4763 	if (rx_ring->skb)
4764 		dev_kfree_skb(rx_ring->skb);
4765 	rx_ring->skb = NULL;
4766 
4767 	/* Free all the Rx ring sk_buffs */
4768 	while (i != rx_ring->next_to_alloc) {
4769 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4770 
4771 		/* Invalidate cache lines that may have been written to by
4772 		 * device so that we avoid corrupting memory.
4773 		 */
4774 		dma_sync_single_range_for_cpu(rx_ring->dev,
4775 					      buffer_info->dma,
4776 					      buffer_info->page_offset,
4777 					      igb_rx_bufsz(rx_ring),
4778 					      DMA_FROM_DEVICE);
4779 
4780 		/* free resources associated with mapping */
4781 		dma_unmap_page_attrs(rx_ring->dev,
4782 				     buffer_info->dma,
4783 				     igb_rx_pg_size(rx_ring),
4784 				     DMA_FROM_DEVICE,
4785 				     IGB_RX_DMA_ATTR);
4786 		__page_frag_cache_drain(buffer_info->page,
4787 					buffer_info->pagecnt_bias);
4788 
4789 		i++;
4790 		if (i == rx_ring->count)
4791 			i = 0;
4792 	}
4793 
4794 	rx_ring->next_to_alloc = 0;
4795 	rx_ring->next_to_clean = 0;
4796 	rx_ring->next_to_use = 0;
4797 }
4798 
4799 /**
4800  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4801  *  @adapter: board private structure
4802  **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4803 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4804 {
4805 	int i;
4806 
4807 	for (i = 0; i < adapter->num_rx_queues; i++)
4808 		if (adapter->rx_ring[i])
4809 			igb_clean_rx_ring(adapter->rx_ring[i]);
4810 }
4811 
4812 /**
4813  *  igb_set_mac - Change the Ethernet Address of the NIC
4814  *  @netdev: network interface device structure
4815  *  @p: pointer to an address structure
4816  *
4817  *  Returns 0 on success, negative on failure
4818  **/
igb_set_mac(struct net_device * netdev,void * p)4819 static int igb_set_mac(struct net_device *netdev, void *p)
4820 {
4821 	struct igb_adapter *adapter = netdev_priv(netdev);
4822 	struct e1000_hw *hw = &adapter->hw;
4823 	struct sockaddr *addr = p;
4824 
4825 	if (!is_valid_ether_addr(addr->sa_data))
4826 		return -EADDRNOTAVAIL;
4827 
4828 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4829 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4830 
4831 	/* set the correct pool for the new PF MAC address in entry 0 */
4832 	igb_set_default_mac_filter(adapter);
4833 
4834 	return 0;
4835 }
4836 
4837 /**
4838  *  igb_write_mc_addr_list - write multicast addresses to MTA
4839  *  @netdev: network interface device structure
4840  *
4841  *  Writes multicast address list to the MTA hash table.
4842  *  Returns: -ENOMEM on failure
4843  *           0 on no addresses written
4844  *           X on writing X addresses to MTA
4845  **/
igb_write_mc_addr_list(struct net_device * netdev)4846 static int igb_write_mc_addr_list(struct net_device *netdev)
4847 {
4848 	struct igb_adapter *adapter = netdev_priv(netdev);
4849 	struct e1000_hw *hw = &adapter->hw;
4850 	struct netdev_hw_addr *ha;
4851 	u8  *mta_list;
4852 	int i;
4853 
4854 	if (netdev_mc_empty(netdev)) {
4855 		/* nothing to program, so clear mc list */
4856 		igb_update_mc_addr_list(hw, NULL, 0);
4857 		igb_restore_vf_multicasts(adapter);
4858 		return 0;
4859 	}
4860 
4861 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4862 	if (!mta_list)
4863 		return -ENOMEM;
4864 
4865 	/* The shared function expects a packed array of only addresses. */
4866 	i = 0;
4867 	netdev_for_each_mc_addr(ha, netdev)
4868 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4869 
4870 	igb_update_mc_addr_list(hw, mta_list, i);
4871 	kfree(mta_list);
4872 
4873 	return netdev_mc_count(netdev);
4874 }
4875 
igb_vlan_promisc_enable(struct igb_adapter * adapter)4876 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4877 {
4878 	struct e1000_hw *hw = &adapter->hw;
4879 	u32 i, pf_id;
4880 
4881 	switch (hw->mac.type) {
4882 	case e1000_i210:
4883 	case e1000_i211:
4884 	case e1000_i350:
4885 		/* VLAN filtering needed for VLAN prio filter */
4886 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4887 			break;
4888 		/* fall through */
4889 	case e1000_82576:
4890 	case e1000_82580:
4891 	case e1000_i354:
4892 		/* VLAN filtering needed for pool filtering */
4893 		if (adapter->vfs_allocated_count)
4894 			break;
4895 		/* fall through */
4896 	default:
4897 		return 1;
4898 	}
4899 
4900 	/* We are already in VLAN promisc, nothing to do */
4901 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4902 		return 0;
4903 
4904 	if (!adapter->vfs_allocated_count)
4905 		goto set_vfta;
4906 
4907 	/* Add PF to all active pools */
4908 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4909 
4910 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4911 		u32 vlvf = rd32(E1000_VLVF(i));
4912 
4913 		vlvf |= BIT(pf_id);
4914 		wr32(E1000_VLVF(i), vlvf);
4915 	}
4916 
4917 set_vfta:
4918 	/* Set all bits in the VLAN filter table array */
4919 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4920 		hw->mac.ops.write_vfta(hw, i, ~0U);
4921 
4922 	/* Set flag so we don't redo unnecessary work */
4923 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4924 
4925 	return 0;
4926 }
4927 
4928 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)4929 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4930 {
4931 	struct e1000_hw *hw = &adapter->hw;
4932 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4933 	u32 vid_start = vfta_offset * 32;
4934 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4935 	u32 i, vid, word, bits, pf_id;
4936 
4937 	/* guarantee that we don't scrub out management VLAN */
4938 	vid = adapter->mng_vlan_id;
4939 	if (vid >= vid_start && vid < vid_end)
4940 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4941 
4942 	if (!adapter->vfs_allocated_count)
4943 		goto set_vfta;
4944 
4945 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4946 
4947 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4948 		u32 vlvf = rd32(E1000_VLVF(i));
4949 
4950 		/* pull VLAN ID from VLVF */
4951 		vid = vlvf & VLAN_VID_MASK;
4952 
4953 		/* only concern ourselves with a certain range */
4954 		if (vid < vid_start || vid >= vid_end)
4955 			continue;
4956 
4957 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4958 			/* record VLAN ID in VFTA */
4959 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4960 
4961 			/* if PF is part of this then continue */
4962 			if (test_bit(vid, adapter->active_vlans))
4963 				continue;
4964 		}
4965 
4966 		/* remove PF from the pool */
4967 		bits = ~BIT(pf_id);
4968 		bits &= rd32(E1000_VLVF(i));
4969 		wr32(E1000_VLVF(i), bits);
4970 	}
4971 
4972 set_vfta:
4973 	/* extract values from active_vlans and write back to VFTA */
4974 	for (i = VFTA_BLOCK_SIZE; i--;) {
4975 		vid = (vfta_offset + i) * 32;
4976 		word = vid / BITS_PER_LONG;
4977 		bits = vid % BITS_PER_LONG;
4978 
4979 		vfta[i] |= adapter->active_vlans[word] >> bits;
4980 
4981 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4982 	}
4983 }
4984 
igb_vlan_promisc_disable(struct igb_adapter * adapter)4985 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4986 {
4987 	u32 i;
4988 
4989 	/* We are not in VLAN promisc, nothing to do */
4990 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4991 		return;
4992 
4993 	/* Set flag so we don't redo unnecessary work */
4994 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4995 
4996 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4997 		igb_scrub_vfta(adapter, i);
4998 }
4999 
5000 /**
5001  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5002  *  @netdev: network interface device structure
5003  *
5004  *  The set_rx_mode entry point is called whenever the unicast or multicast
5005  *  address lists or the network interface flags are updated.  This routine is
5006  *  responsible for configuring the hardware for proper unicast, multicast,
5007  *  promiscuous mode, and all-multi behavior.
5008  **/
igb_set_rx_mode(struct net_device * netdev)5009 static void igb_set_rx_mode(struct net_device *netdev)
5010 {
5011 	struct igb_adapter *adapter = netdev_priv(netdev);
5012 	struct e1000_hw *hw = &adapter->hw;
5013 	unsigned int vfn = adapter->vfs_allocated_count;
5014 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5015 	int count;
5016 
5017 	/* Check for Promiscuous and All Multicast modes */
5018 	if (netdev->flags & IFF_PROMISC) {
5019 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5020 		vmolr |= E1000_VMOLR_MPME;
5021 
5022 		/* enable use of UTA filter to force packets to default pool */
5023 		if (hw->mac.type == e1000_82576)
5024 			vmolr |= E1000_VMOLR_ROPE;
5025 	} else {
5026 		if (netdev->flags & IFF_ALLMULTI) {
5027 			rctl |= E1000_RCTL_MPE;
5028 			vmolr |= E1000_VMOLR_MPME;
5029 		} else {
5030 			/* Write addresses to the MTA, if the attempt fails
5031 			 * then we should just turn on promiscuous mode so
5032 			 * that we can at least receive multicast traffic
5033 			 */
5034 			count = igb_write_mc_addr_list(netdev);
5035 			if (count < 0) {
5036 				rctl |= E1000_RCTL_MPE;
5037 				vmolr |= E1000_VMOLR_MPME;
5038 			} else if (count) {
5039 				vmolr |= E1000_VMOLR_ROMPE;
5040 			}
5041 		}
5042 	}
5043 
5044 	/* Write addresses to available RAR registers, if there is not
5045 	 * sufficient space to store all the addresses then enable
5046 	 * unicast promiscuous mode
5047 	 */
5048 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5049 		rctl |= E1000_RCTL_UPE;
5050 		vmolr |= E1000_VMOLR_ROPE;
5051 	}
5052 
5053 	/* enable VLAN filtering by default */
5054 	rctl |= E1000_RCTL_VFE;
5055 
5056 	/* disable VLAN filtering for modes that require it */
5057 	if ((netdev->flags & IFF_PROMISC) ||
5058 	    (netdev->features & NETIF_F_RXALL)) {
5059 		/* if we fail to set all rules then just clear VFE */
5060 		if (igb_vlan_promisc_enable(adapter))
5061 			rctl &= ~E1000_RCTL_VFE;
5062 	} else {
5063 		igb_vlan_promisc_disable(adapter);
5064 	}
5065 
5066 	/* update state of unicast, multicast, and VLAN filtering modes */
5067 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5068 				     E1000_RCTL_VFE);
5069 	wr32(E1000_RCTL, rctl);
5070 
5071 #if (PAGE_SIZE < 8192)
5072 	if (!adapter->vfs_allocated_count) {
5073 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5074 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5075 	}
5076 #endif
5077 	wr32(E1000_RLPML, rlpml);
5078 
5079 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5080 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5081 	 * we will have issues with VLAN tag stripping not being done for frames
5082 	 * that are only arriving because we are the default pool
5083 	 */
5084 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5085 		return;
5086 
5087 	/* set UTA to appropriate mode */
5088 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5089 
5090 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5091 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5092 
5093 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5094 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5095 #if (PAGE_SIZE < 8192)
5096 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5097 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5098 	else
5099 #endif
5100 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5101 	vmolr |= E1000_VMOLR_LPE;
5102 
5103 	wr32(E1000_VMOLR(vfn), vmolr);
5104 
5105 	igb_restore_vf_multicasts(adapter);
5106 }
5107 
igb_check_wvbr(struct igb_adapter * adapter)5108 static void igb_check_wvbr(struct igb_adapter *adapter)
5109 {
5110 	struct e1000_hw *hw = &adapter->hw;
5111 	u32 wvbr = 0;
5112 
5113 	switch (hw->mac.type) {
5114 	case e1000_82576:
5115 	case e1000_i350:
5116 		wvbr = rd32(E1000_WVBR);
5117 		if (!wvbr)
5118 			return;
5119 		break;
5120 	default:
5121 		break;
5122 	}
5123 
5124 	adapter->wvbr |= wvbr;
5125 }
5126 
5127 #define IGB_STAGGERED_QUEUE_OFFSET 8
5128 
igb_spoof_check(struct igb_adapter * adapter)5129 static void igb_spoof_check(struct igb_adapter *adapter)
5130 {
5131 	int j;
5132 
5133 	if (!adapter->wvbr)
5134 		return;
5135 
5136 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5137 		if (adapter->wvbr & BIT(j) ||
5138 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5139 			dev_warn(&adapter->pdev->dev,
5140 				"Spoof event(s) detected on VF %d\n", j);
5141 			adapter->wvbr &=
5142 				~(BIT(j) |
5143 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5144 		}
5145 	}
5146 }
5147 
5148 /* Need to wait a few seconds after link up to get diagnostic information from
5149  * the phy
5150  */
igb_update_phy_info(struct timer_list * t)5151 static void igb_update_phy_info(struct timer_list *t)
5152 {
5153 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5154 	igb_get_phy_info(&adapter->hw);
5155 }
5156 
5157 /**
5158  *  igb_has_link - check shared code for link and determine up/down
5159  *  @adapter: pointer to driver private info
5160  **/
igb_has_link(struct igb_adapter * adapter)5161 bool igb_has_link(struct igb_adapter *adapter)
5162 {
5163 	struct e1000_hw *hw = &adapter->hw;
5164 	bool link_active = false;
5165 
5166 	/* get_link_status is set on LSC (link status) interrupt or
5167 	 * rx sequence error interrupt.  get_link_status will stay
5168 	 * false until the e1000_check_for_link establishes link
5169 	 * for copper adapters ONLY
5170 	 */
5171 	switch (hw->phy.media_type) {
5172 	case e1000_media_type_copper:
5173 		if (!hw->mac.get_link_status)
5174 			return true;
5175 		/* fall through */
5176 	case e1000_media_type_internal_serdes:
5177 		hw->mac.ops.check_for_link(hw);
5178 		link_active = !hw->mac.get_link_status;
5179 		break;
5180 	default:
5181 	case e1000_media_type_unknown:
5182 		break;
5183 	}
5184 
5185 	if (((hw->mac.type == e1000_i210) ||
5186 	     (hw->mac.type == e1000_i211)) &&
5187 	     (hw->phy.id == I210_I_PHY_ID)) {
5188 		if (!netif_carrier_ok(adapter->netdev)) {
5189 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5190 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5191 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5192 			adapter->link_check_timeout = jiffies;
5193 		}
5194 	}
5195 
5196 	return link_active;
5197 }
5198 
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5199 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5200 {
5201 	bool ret = false;
5202 	u32 ctrl_ext, thstat;
5203 
5204 	/* check for thermal sensor event on i350 copper only */
5205 	if (hw->mac.type == e1000_i350) {
5206 		thstat = rd32(E1000_THSTAT);
5207 		ctrl_ext = rd32(E1000_CTRL_EXT);
5208 
5209 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5210 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5211 			ret = !!(thstat & event);
5212 	}
5213 
5214 	return ret;
5215 }
5216 
5217 /**
5218  *  igb_check_lvmmc - check for malformed packets received
5219  *  and indicated in LVMMC register
5220  *  @adapter: pointer to adapter
5221  **/
igb_check_lvmmc(struct igb_adapter * adapter)5222 static void igb_check_lvmmc(struct igb_adapter *adapter)
5223 {
5224 	struct e1000_hw *hw = &adapter->hw;
5225 	u32 lvmmc;
5226 
5227 	lvmmc = rd32(E1000_LVMMC);
5228 	if (lvmmc) {
5229 		if (unlikely(net_ratelimit())) {
5230 			netdev_warn(adapter->netdev,
5231 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5232 				    lvmmc);
5233 		}
5234 	}
5235 }
5236 
5237 /**
5238  *  igb_watchdog - Timer Call-back
5239  *  @data: pointer to adapter cast into an unsigned long
5240  **/
igb_watchdog(struct timer_list * t)5241 static void igb_watchdog(struct timer_list *t)
5242 {
5243 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5244 	/* Do the rest outside of interrupt context */
5245 	schedule_work(&adapter->watchdog_task);
5246 }
5247 
igb_watchdog_task(struct work_struct * work)5248 static void igb_watchdog_task(struct work_struct *work)
5249 {
5250 	struct igb_adapter *adapter = container_of(work,
5251 						   struct igb_adapter,
5252 						   watchdog_task);
5253 	struct e1000_hw *hw = &adapter->hw;
5254 	struct e1000_phy_info *phy = &hw->phy;
5255 	struct net_device *netdev = adapter->netdev;
5256 	u32 link;
5257 	int i;
5258 	u32 connsw;
5259 	u16 phy_data, retry_count = 20;
5260 
5261 	link = igb_has_link(adapter);
5262 
5263 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5264 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5265 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5266 		else
5267 			link = false;
5268 	}
5269 
5270 	/* Force link down if we have fiber to swap to */
5271 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5272 		if (hw->phy.media_type == e1000_media_type_copper) {
5273 			connsw = rd32(E1000_CONNSW);
5274 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5275 				link = 0;
5276 		}
5277 	}
5278 	if (link) {
5279 		/* Perform a reset if the media type changed. */
5280 		if (hw->dev_spec._82575.media_changed) {
5281 			hw->dev_spec._82575.media_changed = false;
5282 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5283 			igb_reset(adapter);
5284 		}
5285 		/* Cancel scheduled suspend requests. */
5286 		pm_runtime_resume(netdev->dev.parent);
5287 
5288 		if (!netif_carrier_ok(netdev)) {
5289 			u32 ctrl;
5290 
5291 			hw->mac.ops.get_speed_and_duplex(hw,
5292 							 &adapter->link_speed,
5293 							 &adapter->link_duplex);
5294 
5295 			ctrl = rd32(E1000_CTRL);
5296 			/* Links status message must follow this format */
5297 			netdev_info(netdev,
5298 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5299 			       netdev->name,
5300 			       adapter->link_speed,
5301 			       adapter->link_duplex == FULL_DUPLEX ?
5302 			       "Full" : "Half",
5303 			       (ctrl & E1000_CTRL_TFCE) &&
5304 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5305 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5306 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5307 
5308 			/* disable EEE if enabled */
5309 			if ((adapter->flags & IGB_FLAG_EEE) &&
5310 				(adapter->link_duplex == HALF_DUPLEX)) {
5311 				dev_info(&adapter->pdev->dev,
5312 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5313 				adapter->hw.dev_spec._82575.eee_disable = true;
5314 				adapter->flags &= ~IGB_FLAG_EEE;
5315 			}
5316 
5317 			/* check if SmartSpeed worked */
5318 			igb_check_downshift(hw);
5319 			if (phy->speed_downgraded)
5320 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5321 
5322 			/* check for thermal sensor event */
5323 			if (igb_thermal_sensor_event(hw,
5324 			    E1000_THSTAT_LINK_THROTTLE))
5325 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5326 
5327 			/* adjust timeout factor according to speed/duplex */
5328 			adapter->tx_timeout_factor = 1;
5329 			switch (adapter->link_speed) {
5330 			case SPEED_10:
5331 				adapter->tx_timeout_factor = 14;
5332 				break;
5333 			case SPEED_100:
5334 				/* maybe add some timeout factor ? */
5335 				break;
5336 			}
5337 
5338 			if (adapter->link_speed != SPEED_1000)
5339 				goto no_wait;
5340 
5341 			/* wait for Remote receiver status OK */
5342 retry_read_status:
5343 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5344 					      &phy_data)) {
5345 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5346 				    retry_count) {
5347 					msleep(100);
5348 					retry_count--;
5349 					goto retry_read_status;
5350 				} else if (!retry_count) {
5351 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5352 				}
5353 			} else {
5354 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5355 			}
5356 no_wait:
5357 			netif_carrier_on(netdev);
5358 
5359 			igb_ping_all_vfs(adapter);
5360 			igb_check_vf_rate_limit(adapter);
5361 
5362 			/* link state has changed, schedule phy info update */
5363 			if (!test_bit(__IGB_DOWN, &adapter->state))
5364 				mod_timer(&adapter->phy_info_timer,
5365 					  round_jiffies(jiffies + 2 * HZ));
5366 		}
5367 	} else {
5368 		if (netif_carrier_ok(netdev)) {
5369 			adapter->link_speed = 0;
5370 			adapter->link_duplex = 0;
5371 
5372 			/* check for thermal sensor event */
5373 			if (igb_thermal_sensor_event(hw,
5374 			    E1000_THSTAT_PWR_DOWN)) {
5375 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5376 			}
5377 
5378 			/* Links status message must follow this format */
5379 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5380 			       netdev->name);
5381 			netif_carrier_off(netdev);
5382 
5383 			igb_ping_all_vfs(adapter);
5384 
5385 			/* link state has changed, schedule phy info update */
5386 			if (!test_bit(__IGB_DOWN, &adapter->state))
5387 				mod_timer(&adapter->phy_info_timer,
5388 					  round_jiffies(jiffies + 2 * HZ));
5389 
5390 			/* link is down, time to check for alternate media */
5391 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5392 				igb_check_swap_media(adapter);
5393 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5394 					schedule_work(&adapter->reset_task);
5395 					/* return immediately */
5396 					return;
5397 				}
5398 			}
5399 			pm_schedule_suspend(netdev->dev.parent,
5400 					    MSEC_PER_SEC * 5);
5401 
5402 		/* also check for alternate media here */
5403 		} else if (!netif_carrier_ok(netdev) &&
5404 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5405 			igb_check_swap_media(adapter);
5406 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5407 				schedule_work(&adapter->reset_task);
5408 				/* return immediately */
5409 				return;
5410 			}
5411 		}
5412 	}
5413 
5414 	spin_lock(&adapter->stats64_lock);
5415 	igb_update_stats(adapter);
5416 	spin_unlock(&adapter->stats64_lock);
5417 
5418 	for (i = 0; i < adapter->num_tx_queues; i++) {
5419 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5420 		if (!netif_carrier_ok(netdev)) {
5421 			/* We've lost link, so the controller stops DMA,
5422 			 * but we've got queued Tx work that's never going
5423 			 * to get done, so reset controller to flush Tx.
5424 			 * (Do the reset outside of interrupt context).
5425 			 */
5426 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5427 				adapter->tx_timeout_count++;
5428 				schedule_work(&adapter->reset_task);
5429 				/* return immediately since reset is imminent */
5430 				return;
5431 			}
5432 		}
5433 
5434 		/* Force detection of hung controller every watchdog period */
5435 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5436 	}
5437 
5438 	/* Cause software interrupt to ensure Rx ring is cleaned */
5439 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5440 		u32 eics = 0;
5441 
5442 		for (i = 0; i < adapter->num_q_vectors; i++)
5443 			eics |= adapter->q_vector[i]->eims_value;
5444 		wr32(E1000_EICS, eics);
5445 	} else {
5446 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5447 	}
5448 
5449 	igb_spoof_check(adapter);
5450 	igb_ptp_rx_hang(adapter);
5451 	igb_ptp_tx_hang(adapter);
5452 
5453 	/* Check LVMMC register on i350/i354 only */
5454 	if ((adapter->hw.mac.type == e1000_i350) ||
5455 	    (adapter->hw.mac.type == e1000_i354))
5456 		igb_check_lvmmc(adapter);
5457 
5458 	/* Reset the timer */
5459 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5460 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5461 			mod_timer(&adapter->watchdog_timer,
5462 				  round_jiffies(jiffies +  HZ));
5463 		else
5464 			mod_timer(&adapter->watchdog_timer,
5465 				  round_jiffies(jiffies + 2 * HZ));
5466 	}
5467 }
5468 
5469 enum latency_range {
5470 	lowest_latency = 0,
5471 	low_latency = 1,
5472 	bulk_latency = 2,
5473 	latency_invalid = 255
5474 };
5475 
5476 /**
5477  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5478  *  @q_vector: pointer to q_vector
5479  *
5480  *  Stores a new ITR value based on strictly on packet size.  This
5481  *  algorithm is less sophisticated than that used in igb_update_itr,
5482  *  due to the difficulty of synchronizing statistics across multiple
5483  *  receive rings.  The divisors and thresholds used by this function
5484  *  were determined based on theoretical maximum wire speed and testing
5485  *  data, in order to minimize response time while increasing bulk
5486  *  throughput.
5487  *  This functionality is controlled by ethtool's coalescing settings.
5488  *  NOTE:  This function is called only when operating in a multiqueue
5489  *         receive environment.
5490  **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5491 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5492 {
5493 	int new_val = q_vector->itr_val;
5494 	int avg_wire_size = 0;
5495 	struct igb_adapter *adapter = q_vector->adapter;
5496 	unsigned int packets;
5497 
5498 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5499 	 * ints/sec - ITR timer value of 120 ticks.
5500 	 */
5501 	if (adapter->link_speed != SPEED_1000) {
5502 		new_val = IGB_4K_ITR;
5503 		goto set_itr_val;
5504 	}
5505 
5506 	packets = q_vector->rx.total_packets;
5507 	if (packets)
5508 		avg_wire_size = q_vector->rx.total_bytes / packets;
5509 
5510 	packets = q_vector->tx.total_packets;
5511 	if (packets)
5512 		avg_wire_size = max_t(u32, avg_wire_size,
5513 				      q_vector->tx.total_bytes / packets);
5514 
5515 	/* if avg_wire_size isn't set no work was done */
5516 	if (!avg_wire_size)
5517 		goto clear_counts;
5518 
5519 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5520 	avg_wire_size += 24;
5521 
5522 	/* Don't starve jumbo frames */
5523 	avg_wire_size = min(avg_wire_size, 3000);
5524 
5525 	/* Give a little boost to mid-size frames */
5526 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5527 		new_val = avg_wire_size / 3;
5528 	else
5529 		new_val = avg_wire_size / 2;
5530 
5531 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5532 	if (new_val < IGB_20K_ITR &&
5533 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5534 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5535 		new_val = IGB_20K_ITR;
5536 
5537 set_itr_val:
5538 	if (new_val != q_vector->itr_val) {
5539 		q_vector->itr_val = new_val;
5540 		q_vector->set_itr = 1;
5541 	}
5542 clear_counts:
5543 	q_vector->rx.total_bytes = 0;
5544 	q_vector->rx.total_packets = 0;
5545 	q_vector->tx.total_bytes = 0;
5546 	q_vector->tx.total_packets = 0;
5547 }
5548 
5549 /**
5550  *  igb_update_itr - update the dynamic ITR value based on statistics
5551  *  @q_vector: pointer to q_vector
5552  *  @ring_container: ring info to update the itr for
5553  *
5554  *  Stores a new ITR value based on packets and byte
5555  *  counts during the last interrupt.  The advantage of per interrupt
5556  *  computation is faster updates and more accurate ITR for the current
5557  *  traffic pattern.  Constants in this function were computed
5558  *  based on theoretical maximum wire speed and thresholds were set based
5559  *  on testing data as well as attempting to minimize response time
5560  *  while increasing bulk throughput.
5561  *  This functionality is controlled by ethtool's coalescing settings.
5562  *  NOTE:  These calculations are only valid when operating in a single-
5563  *         queue environment.
5564  **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5565 static void igb_update_itr(struct igb_q_vector *q_vector,
5566 			   struct igb_ring_container *ring_container)
5567 {
5568 	unsigned int packets = ring_container->total_packets;
5569 	unsigned int bytes = ring_container->total_bytes;
5570 	u8 itrval = ring_container->itr;
5571 
5572 	/* no packets, exit with status unchanged */
5573 	if (packets == 0)
5574 		return;
5575 
5576 	switch (itrval) {
5577 	case lowest_latency:
5578 		/* handle TSO and jumbo frames */
5579 		if (bytes/packets > 8000)
5580 			itrval = bulk_latency;
5581 		else if ((packets < 5) && (bytes > 512))
5582 			itrval = low_latency;
5583 		break;
5584 	case low_latency:  /* 50 usec aka 20000 ints/s */
5585 		if (bytes > 10000) {
5586 			/* this if handles the TSO accounting */
5587 			if (bytes/packets > 8000)
5588 				itrval = bulk_latency;
5589 			else if ((packets < 10) || ((bytes/packets) > 1200))
5590 				itrval = bulk_latency;
5591 			else if ((packets > 35))
5592 				itrval = lowest_latency;
5593 		} else if (bytes/packets > 2000) {
5594 			itrval = bulk_latency;
5595 		} else if (packets <= 2 && bytes < 512) {
5596 			itrval = lowest_latency;
5597 		}
5598 		break;
5599 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5600 		if (bytes > 25000) {
5601 			if (packets > 35)
5602 				itrval = low_latency;
5603 		} else if (bytes < 1500) {
5604 			itrval = low_latency;
5605 		}
5606 		break;
5607 	}
5608 
5609 	/* clear work counters since we have the values we need */
5610 	ring_container->total_bytes = 0;
5611 	ring_container->total_packets = 0;
5612 
5613 	/* write updated itr to ring container */
5614 	ring_container->itr = itrval;
5615 }
5616 
igb_set_itr(struct igb_q_vector * q_vector)5617 static void igb_set_itr(struct igb_q_vector *q_vector)
5618 {
5619 	struct igb_adapter *adapter = q_vector->adapter;
5620 	u32 new_itr = q_vector->itr_val;
5621 	u8 current_itr = 0;
5622 
5623 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5624 	if (adapter->link_speed != SPEED_1000) {
5625 		current_itr = 0;
5626 		new_itr = IGB_4K_ITR;
5627 		goto set_itr_now;
5628 	}
5629 
5630 	igb_update_itr(q_vector, &q_vector->tx);
5631 	igb_update_itr(q_vector, &q_vector->rx);
5632 
5633 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5634 
5635 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5636 	if (current_itr == lowest_latency &&
5637 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5638 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5639 		current_itr = low_latency;
5640 
5641 	switch (current_itr) {
5642 	/* counts and packets in update_itr are dependent on these numbers */
5643 	case lowest_latency:
5644 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5645 		break;
5646 	case low_latency:
5647 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5648 		break;
5649 	case bulk_latency:
5650 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5651 		break;
5652 	default:
5653 		break;
5654 	}
5655 
5656 set_itr_now:
5657 	if (new_itr != q_vector->itr_val) {
5658 		/* this attempts to bias the interrupt rate towards Bulk
5659 		 * by adding intermediate steps when interrupt rate is
5660 		 * increasing
5661 		 */
5662 		new_itr = new_itr > q_vector->itr_val ?
5663 			  max((new_itr * q_vector->itr_val) /
5664 			  (new_itr + (q_vector->itr_val >> 2)),
5665 			  new_itr) : new_itr;
5666 		/* Don't write the value here; it resets the adapter's
5667 		 * internal timer, and causes us to delay far longer than
5668 		 * we should between interrupts.  Instead, we write the ITR
5669 		 * value at the beginning of the next interrupt so the timing
5670 		 * ends up being correct.
5671 		 */
5672 		q_vector->itr_val = new_itr;
5673 		q_vector->set_itr = 1;
5674 	}
5675 }
5676 
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5677 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5678 			    struct igb_tx_buffer *first,
5679 			    u32 vlan_macip_lens, u32 type_tucmd,
5680 			    u32 mss_l4len_idx)
5681 {
5682 	struct e1000_adv_tx_context_desc *context_desc;
5683 	u16 i = tx_ring->next_to_use;
5684 	struct timespec64 ts;
5685 
5686 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5687 
5688 	i++;
5689 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5690 
5691 	/* set bits to identify this as an advanced context descriptor */
5692 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5693 
5694 	/* For 82575, context index must be unique per ring. */
5695 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5696 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5697 
5698 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5699 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5700 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5701 
5702 	/* We assume there is always a valid tx time available. Invalid times
5703 	 * should have been handled by the upper layers.
5704 	 */
5705 	if (tx_ring->launchtime_enable) {
5706 		ts = ns_to_timespec64(first->skb->tstamp);
5707 		first->skb->tstamp = 0;
5708 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5709 	} else {
5710 		context_desc->seqnum_seed = 0;
5711 	}
5712 }
5713 
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5714 static int igb_tso(struct igb_ring *tx_ring,
5715 		   struct igb_tx_buffer *first,
5716 		   u8 *hdr_len)
5717 {
5718 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5719 	struct sk_buff *skb = first->skb;
5720 	union {
5721 		struct iphdr *v4;
5722 		struct ipv6hdr *v6;
5723 		unsigned char *hdr;
5724 	} ip;
5725 	union {
5726 		struct tcphdr *tcp;
5727 		unsigned char *hdr;
5728 	} l4;
5729 	u32 paylen, l4_offset;
5730 	int err;
5731 
5732 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5733 		return 0;
5734 
5735 	if (!skb_is_gso(skb))
5736 		return 0;
5737 
5738 	err = skb_cow_head(skb, 0);
5739 	if (err < 0)
5740 		return err;
5741 
5742 	ip.hdr = skb_network_header(skb);
5743 	l4.hdr = skb_checksum_start(skb);
5744 
5745 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5746 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5747 
5748 	/* initialize outer IP header fields */
5749 	if (ip.v4->version == 4) {
5750 		unsigned char *csum_start = skb_checksum_start(skb);
5751 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5752 
5753 		/* IP header will have to cancel out any data that
5754 		 * is not a part of the outer IP header
5755 		 */
5756 		ip.v4->check = csum_fold(csum_partial(trans_start,
5757 						      csum_start - trans_start,
5758 						      0));
5759 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5760 
5761 		ip.v4->tot_len = 0;
5762 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5763 				   IGB_TX_FLAGS_CSUM |
5764 				   IGB_TX_FLAGS_IPV4;
5765 	} else {
5766 		ip.v6->payload_len = 0;
5767 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5768 				   IGB_TX_FLAGS_CSUM;
5769 	}
5770 
5771 	/* determine offset of inner transport header */
5772 	l4_offset = l4.hdr - skb->data;
5773 
5774 	/* compute length of segmentation header */
5775 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5776 
5777 	/* remove payload length from inner checksum */
5778 	paylen = skb->len - l4_offset;
5779 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5780 
5781 	/* update gso size and bytecount with header size */
5782 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5783 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5784 
5785 	/* MSS L4LEN IDX */
5786 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5787 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5788 
5789 	/* VLAN MACLEN IPLEN */
5790 	vlan_macip_lens = l4.hdr - ip.hdr;
5791 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5792 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5793 
5794 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5795 			type_tucmd, mss_l4len_idx);
5796 
5797 	return 1;
5798 }
5799 
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5800 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5801 {
5802 	unsigned int offset = 0;
5803 
5804 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5805 
5806 	return offset == skb_checksum_start_offset(skb);
5807 }
5808 
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5809 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5810 {
5811 	struct sk_buff *skb = first->skb;
5812 	u32 vlan_macip_lens = 0;
5813 	u32 type_tucmd = 0;
5814 
5815 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5816 csum_failed:
5817 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5818 		    !tx_ring->launchtime_enable)
5819 			return;
5820 		goto no_csum;
5821 	}
5822 
5823 	switch (skb->csum_offset) {
5824 	case offsetof(struct tcphdr, check):
5825 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5826 		/* fall through */
5827 	case offsetof(struct udphdr, check):
5828 		break;
5829 	case offsetof(struct sctphdr, checksum):
5830 		/* validate that this is actually an SCTP request */
5831 		if (((first->protocol == htons(ETH_P_IP)) &&
5832 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5833 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5834 		     igb_ipv6_csum_is_sctp(skb))) {
5835 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5836 			break;
5837 		}
5838 		/* fall through */
5839 	default:
5840 		skb_checksum_help(skb);
5841 		goto csum_failed;
5842 	}
5843 
5844 	/* update TX checksum flag */
5845 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5846 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5847 			  skb_network_offset(skb);
5848 no_csum:
5849 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5850 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5851 
5852 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5853 }
5854 
5855 #define IGB_SET_FLAG(_input, _flag, _result) \
5856 	((_flag <= _result) ? \
5857 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5858 	 ((u32)(_input & _flag) / (_flag / _result)))
5859 
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)5860 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5861 {
5862 	/* set type for advanced descriptor with frame checksum insertion */
5863 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5864 		       E1000_ADVTXD_DCMD_DEXT |
5865 		       E1000_ADVTXD_DCMD_IFCS;
5866 
5867 	/* set HW vlan bit if vlan is present */
5868 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5869 				 (E1000_ADVTXD_DCMD_VLE));
5870 
5871 	/* set segmentation bits for TSO */
5872 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5873 				 (E1000_ADVTXD_DCMD_TSE));
5874 
5875 	/* set timestamp bit if present */
5876 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5877 				 (E1000_ADVTXD_MAC_TSTAMP));
5878 
5879 	/* insert frame checksum */
5880 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5881 
5882 	return cmd_type;
5883 }
5884 
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)5885 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5886 				 union e1000_adv_tx_desc *tx_desc,
5887 				 u32 tx_flags, unsigned int paylen)
5888 {
5889 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5890 
5891 	/* 82575 requires a unique index per ring */
5892 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5893 		olinfo_status |= tx_ring->reg_idx << 4;
5894 
5895 	/* insert L4 checksum */
5896 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5897 				      IGB_TX_FLAGS_CSUM,
5898 				      (E1000_TXD_POPTS_TXSM << 8));
5899 
5900 	/* insert IPv4 checksum */
5901 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5902 				      IGB_TX_FLAGS_IPV4,
5903 				      (E1000_TXD_POPTS_IXSM << 8));
5904 
5905 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5906 }
5907 
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5908 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909 {
5910 	struct net_device *netdev = tx_ring->netdev;
5911 
5912 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5913 
5914 	/* Herbert's original patch had:
5915 	 *  smp_mb__after_netif_stop_queue();
5916 	 * but since that doesn't exist yet, just open code it.
5917 	 */
5918 	smp_mb();
5919 
5920 	/* We need to check again in a case another CPU has just
5921 	 * made room available.
5922 	 */
5923 	if (igb_desc_unused(tx_ring) < size)
5924 		return -EBUSY;
5925 
5926 	/* A reprieve! */
5927 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5928 
5929 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5930 	tx_ring->tx_stats.restart_queue2++;
5931 	u64_stats_update_end(&tx_ring->tx_syncp2);
5932 
5933 	return 0;
5934 }
5935 
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5936 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5937 {
5938 	if (igb_desc_unused(tx_ring) >= size)
5939 		return 0;
5940 	return __igb_maybe_stop_tx(tx_ring, size);
5941 }
5942 
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)5943 static int igb_tx_map(struct igb_ring *tx_ring,
5944 		      struct igb_tx_buffer *first,
5945 		      const u8 hdr_len)
5946 {
5947 	struct sk_buff *skb = first->skb;
5948 	struct igb_tx_buffer *tx_buffer;
5949 	union e1000_adv_tx_desc *tx_desc;
5950 	struct skb_frag_struct *frag;
5951 	dma_addr_t dma;
5952 	unsigned int data_len, size;
5953 	u32 tx_flags = first->tx_flags;
5954 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5955 	u16 i = tx_ring->next_to_use;
5956 
5957 	tx_desc = IGB_TX_DESC(tx_ring, i);
5958 
5959 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5960 
5961 	size = skb_headlen(skb);
5962 	data_len = skb->data_len;
5963 
5964 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5965 
5966 	tx_buffer = first;
5967 
5968 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5969 		if (dma_mapping_error(tx_ring->dev, dma))
5970 			goto dma_error;
5971 
5972 		/* record length, and DMA address */
5973 		dma_unmap_len_set(tx_buffer, len, size);
5974 		dma_unmap_addr_set(tx_buffer, dma, dma);
5975 
5976 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5977 
5978 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5979 			tx_desc->read.cmd_type_len =
5980 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5981 
5982 			i++;
5983 			tx_desc++;
5984 			if (i == tx_ring->count) {
5985 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5986 				i = 0;
5987 			}
5988 			tx_desc->read.olinfo_status = 0;
5989 
5990 			dma += IGB_MAX_DATA_PER_TXD;
5991 			size -= IGB_MAX_DATA_PER_TXD;
5992 
5993 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5994 		}
5995 
5996 		if (likely(!data_len))
5997 			break;
5998 
5999 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6000 
6001 		i++;
6002 		tx_desc++;
6003 		if (i == tx_ring->count) {
6004 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6005 			i = 0;
6006 		}
6007 		tx_desc->read.olinfo_status = 0;
6008 
6009 		size = skb_frag_size(frag);
6010 		data_len -= size;
6011 
6012 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6013 				       size, DMA_TO_DEVICE);
6014 
6015 		tx_buffer = &tx_ring->tx_buffer_info[i];
6016 	}
6017 
6018 	/* write last descriptor with RS and EOP bits */
6019 	cmd_type |= size | IGB_TXD_DCMD;
6020 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6021 
6022 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6023 
6024 	/* set the timestamp */
6025 	first->time_stamp = jiffies;
6026 
6027 	/* Force memory writes to complete before letting h/w know there
6028 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6029 	 * memory model archs, such as IA-64).
6030 	 *
6031 	 * We also need this memory barrier to make certain all of the
6032 	 * status bits have been updated before next_to_watch is written.
6033 	 */
6034 	dma_wmb();
6035 
6036 	/* set next_to_watch value indicating a packet is present */
6037 	first->next_to_watch = tx_desc;
6038 
6039 	i++;
6040 	if (i == tx_ring->count)
6041 		i = 0;
6042 
6043 	tx_ring->next_to_use = i;
6044 
6045 	/* Make sure there is space in the ring for the next send. */
6046 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6047 
6048 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6049 		writel(i, tx_ring->tail);
6050 
6051 		/* we need this if more than one processor can write to our tail
6052 		 * at a time, it synchronizes IO on IA64/Altix systems
6053 		 */
6054 		mmiowb();
6055 	}
6056 	return 0;
6057 
6058 dma_error:
6059 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6060 	tx_buffer = &tx_ring->tx_buffer_info[i];
6061 
6062 	/* clear dma mappings for failed tx_buffer_info map */
6063 	while (tx_buffer != first) {
6064 		if (dma_unmap_len(tx_buffer, len))
6065 			dma_unmap_page(tx_ring->dev,
6066 				       dma_unmap_addr(tx_buffer, dma),
6067 				       dma_unmap_len(tx_buffer, len),
6068 				       DMA_TO_DEVICE);
6069 		dma_unmap_len_set(tx_buffer, len, 0);
6070 
6071 		if (i-- == 0)
6072 			i += tx_ring->count;
6073 		tx_buffer = &tx_ring->tx_buffer_info[i];
6074 	}
6075 
6076 	if (dma_unmap_len(tx_buffer, len))
6077 		dma_unmap_single(tx_ring->dev,
6078 				 dma_unmap_addr(tx_buffer, dma),
6079 				 dma_unmap_len(tx_buffer, len),
6080 				 DMA_TO_DEVICE);
6081 	dma_unmap_len_set(tx_buffer, len, 0);
6082 
6083 	dev_kfree_skb_any(tx_buffer->skb);
6084 	tx_buffer->skb = NULL;
6085 
6086 	tx_ring->next_to_use = i;
6087 
6088 	return -1;
6089 }
6090 
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6091 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6092 				struct igb_ring *tx_ring)
6093 {
6094 	struct igb_tx_buffer *first;
6095 	int tso;
6096 	u32 tx_flags = 0;
6097 	unsigned short f;
6098 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6099 	__be16 protocol = vlan_get_protocol(skb);
6100 	u8 hdr_len = 0;
6101 
6102 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6103 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6104 	 *       + 2 desc gap to keep tail from touching head,
6105 	 *       + 1 desc for context descriptor,
6106 	 * otherwise try next time
6107 	 */
6108 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6109 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6110 
6111 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6112 		/* this is a hard error */
6113 		return NETDEV_TX_BUSY;
6114 	}
6115 
6116 	/* record the location of the first descriptor for this packet */
6117 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6118 	first->skb = skb;
6119 	first->bytecount = skb->len;
6120 	first->gso_segs = 1;
6121 
6122 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6123 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6124 
6125 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6126 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6127 					   &adapter->state)) {
6128 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6129 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6130 
6131 			adapter->ptp_tx_skb = skb_get(skb);
6132 			adapter->ptp_tx_start = jiffies;
6133 			if (adapter->hw.mac.type == e1000_82576)
6134 				schedule_work(&adapter->ptp_tx_work);
6135 		} else {
6136 			adapter->tx_hwtstamp_skipped++;
6137 		}
6138 	}
6139 
6140 	if (skb_vlan_tag_present(skb)) {
6141 		tx_flags |= IGB_TX_FLAGS_VLAN;
6142 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6143 	}
6144 
6145 	/* record initial flags and protocol */
6146 	first->tx_flags = tx_flags;
6147 	first->protocol = protocol;
6148 
6149 	tso = igb_tso(tx_ring, first, &hdr_len);
6150 	if (tso < 0)
6151 		goto out_drop;
6152 	else if (!tso)
6153 		igb_tx_csum(tx_ring, first);
6154 
6155 	skb_tx_timestamp(skb);
6156 
6157 	if (igb_tx_map(tx_ring, first, hdr_len))
6158 		goto cleanup_tx_tstamp;
6159 
6160 	return NETDEV_TX_OK;
6161 
6162 out_drop:
6163 	dev_kfree_skb_any(first->skb);
6164 	first->skb = NULL;
6165 cleanup_tx_tstamp:
6166 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6167 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6168 
6169 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6170 		adapter->ptp_tx_skb = NULL;
6171 		if (adapter->hw.mac.type == e1000_82576)
6172 			cancel_work_sync(&adapter->ptp_tx_work);
6173 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6174 	}
6175 
6176 	return NETDEV_TX_OK;
6177 }
6178 
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6179 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6180 						    struct sk_buff *skb)
6181 {
6182 	unsigned int r_idx = skb->queue_mapping;
6183 
6184 	if (r_idx >= adapter->num_tx_queues)
6185 		r_idx = r_idx % adapter->num_tx_queues;
6186 
6187 	return adapter->tx_ring[r_idx];
6188 }
6189 
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6190 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6191 				  struct net_device *netdev)
6192 {
6193 	struct igb_adapter *adapter = netdev_priv(netdev);
6194 
6195 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6196 	 * in order to meet this minimum size requirement.
6197 	 */
6198 	if (skb_put_padto(skb, 17))
6199 		return NETDEV_TX_OK;
6200 
6201 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6202 }
6203 
6204 /**
6205  *  igb_tx_timeout - Respond to a Tx Hang
6206  *  @netdev: network interface device structure
6207  **/
igb_tx_timeout(struct net_device * netdev)6208 static void igb_tx_timeout(struct net_device *netdev)
6209 {
6210 	struct igb_adapter *adapter = netdev_priv(netdev);
6211 	struct e1000_hw *hw = &adapter->hw;
6212 
6213 	/* Do the reset outside of interrupt context */
6214 	adapter->tx_timeout_count++;
6215 
6216 	if (hw->mac.type >= e1000_82580)
6217 		hw->dev_spec._82575.global_device_reset = true;
6218 
6219 	schedule_work(&adapter->reset_task);
6220 	wr32(E1000_EICS,
6221 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6222 }
6223 
igb_reset_task(struct work_struct * work)6224 static void igb_reset_task(struct work_struct *work)
6225 {
6226 	struct igb_adapter *adapter;
6227 	adapter = container_of(work, struct igb_adapter, reset_task);
6228 
6229 	rtnl_lock();
6230 	/* If we're already down or resetting, just bail */
6231 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6232 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6233 		rtnl_unlock();
6234 		return;
6235 	}
6236 
6237 	igb_dump(adapter);
6238 	netdev_err(adapter->netdev, "Reset adapter\n");
6239 	igb_reinit_locked(adapter);
6240 	rtnl_unlock();
6241 }
6242 
6243 /**
6244  *  igb_get_stats64 - Get System Network Statistics
6245  *  @netdev: network interface device structure
6246  *  @stats: rtnl_link_stats64 pointer
6247  **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6248 static void igb_get_stats64(struct net_device *netdev,
6249 			    struct rtnl_link_stats64 *stats)
6250 {
6251 	struct igb_adapter *adapter = netdev_priv(netdev);
6252 
6253 	spin_lock(&adapter->stats64_lock);
6254 	igb_update_stats(adapter);
6255 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6256 	spin_unlock(&adapter->stats64_lock);
6257 }
6258 
6259 /**
6260  *  igb_change_mtu - Change the Maximum Transfer Unit
6261  *  @netdev: network interface device structure
6262  *  @new_mtu: new value for maximum frame size
6263  *
6264  *  Returns 0 on success, negative on failure
6265  **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6266 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6267 {
6268 	struct igb_adapter *adapter = netdev_priv(netdev);
6269 	struct pci_dev *pdev = adapter->pdev;
6270 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6271 
6272 	/* adjust max frame to be at least the size of a standard frame */
6273 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6274 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6275 
6276 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6277 		usleep_range(1000, 2000);
6278 
6279 	/* igb_down has a dependency on max_frame_size */
6280 	adapter->max_frame_size = max_frame;
6281 
6282 	if (netif_running(netdev))
6283 		igb_down(adapter);
6284 
6285 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6286 		 netdev->mtu, new_mtu);
6287 	netdev->mtu = new_mtu;
6288 
6289 	if (netif_running(netdev))
6290 		igb_up(adapter);
6291 	else
6292 		igb_reset(adapter);
6293 
6294 	clear_bit(__IGB_RESETTING, &adapter->state);
6295 
6296 	return 0;
6297 }
6298 
6299 /**
6300  *  igb_update_stats - Update the board statistics counters
6301  *  @adapter: board private structure
6302  **/
igb_update_stats(struct igb_adapter * adapter)6303 void igb_update_stats(struct igb_adapter *adapter)
6304 {
6305 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6306 	struct e1000_hw *hw = &adapter->hw;
6307 	struct pci_dev *pdev = adapter->pdev;
6308 	u32 reg, mpc;
6309 	int i;
6310 	u64 bytes, packets;
6311 	unsigned int start;
6312 	u64 _bytes, _packets;
6313 
6314 	/* Prevent stats update while adapter is being reset, or if the pci
6315 	 * connection is down.
6316 	 */
6317 	if (adapter->link_speed == 0)
6318 		return;
6319 	if (pci_channel_offline(pdev))
6320 		return;
6321 
6322 	bytes = 0;
6323 	packets = 0;
6324 
6325 	rcu_read_lock();
6326 	for (i = 0; i < adapter->num_rx_queues; i++) {
6327 		struct igb_ring *ring = adapter->rx_ring[i];
6328 		u32 rqdpc = rd32(E1000_RQDPC(i));
6329 		if (hw->mac.type >= e1000_i210)
6330 			wr32(E1000_RQDPC(i), 0);
6331 
6332 		if (rqdpc) {
6333 			ring->rx_stats.drops += rqdpc;
6334 			net_stats->rx_fifo_errors += rqdpc;
6335 		}
6336 
6337 		do {
6338 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6339 			_bytes = ring->rx_stats.bytes;
6340 			_packets = ring->rx_stats.packets;
6341 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6342 		bytes += _bytes;
6343 		packets += _packets;
6344 	}
6345 
6346 	net_stats->rx_bytes = bytes;
6347 	net_stats->rx_packets = packets;
6348 
6349 	bytes = 0;
6350 	packets = 0;
6351 	for (i = 0; i < adapter->num_tx_queues; i++) {
6352 		struct igb_ring *ring = adapter->tx_ring[i];
6353 		do {
6354 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6355 			_bytes = ring->tx_stats.bytes;
6356 			_packets = ring->tx_stats.packets;
6357 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6358 		bytes += _bytes;
6359 		packets += _packets;
6360 	}
6361 	net_stats->tx_bytes = bytes;
6362 	net_stats->tx_packets = packets;
6363 	rcu_read_unlock();
6364 
6365 	/* read stats registers */
6366 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6367 	adapter->stats.gprc += rd32(E1000_GPRC);
6368 	adapter->stats.gorc += rd32(E1000_GORCL);
6369 	rd32(E1000_GORCH); /* clear GORCL */
6370 	adapter->stats.bprc += rd32(E1000_BPRC);
6371 	adapter->stats.mprc += rd32(E1000_MPRC);
6372 	adapter->stats.roc += rd32(E1000_ROC);
6373 
6374 	adapter->stats.prc64 += rd32(E1000_PRC64);
6375 	adapter->stats.prc127 += rd32(E1000_PRC127);
6376 	adapter->stats.prc255 += rd32(E1000_PRC255);
6377 	adapter->stats.prc511 += rd32(E1000_PRC511);
6378 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6379 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6380 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6381 	adapter->stats.sec += rd32(E1000_SEC);
6382 
6383 	mpc = rd32(E1000_MPC);
6384 	adapter->stats.mpc += mpc;
6385 	net_stats->rx_fifo_errors += mpc;
6386 	adapter->stats.scc += rd32(E1000_SCC);
6387 	adapter->stats.ecol += rd32(E1000_ECOL);
6388 	adapter->stats.mcc += rd32(E1000_MCC);
6389 	adapter->stats.latecol += rd32(E1000_LATECOL);
6390 	adapter->stats.dc += rd32(E1000_DC);
6391 	adapter->stats.rlec += rd32(E1000_RLEC);
6392 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6393 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6394 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6395 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6396 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6397 	adapter->stats.gptc += rd32(E1000_GPTC);
6398 	adapter->stats.gotc += rd32(E1000_GOTCL);
6399 	rd32(E1000_GOTCH); /* clear GOTCL */
6400 	adapter->stats.rnbc += rd32(E1000_RNBC);
6401 	adapter->stats.ruc += rd32(E1000_RUC);
6402 	adapter->stats.rfc += rd32(E1000_RFC);
6403 	adapter->stats.rjc += rd32(E1000_RJC);
6404 	adapter->stats.tor += rd32(E1000_TORH);
6405 	adapter->stats.tot += rd32(E1000_TOTH);
6406 	adapter->stats.tpr += rd32(E1000_TPR);
6407 
6408 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6409 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6410 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6411 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6412 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6413 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6414 
6415 	adapter->stats.mptc += rd32(E1000_MPTC);
6416 	adapter->stats.bptc += rd32(E1000_BPTC);
6417 
6418 	adapter->stats.tpt += rd32(E1000_TPT);
6419 	adapter->stats.colc += rd32(E1000_COLC);
6420 
6421 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6422 	/* read internal phy specific stats */
6423 	reg = rd32(E1000_CTRL_EXT);
6424 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6425 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6426 
6427 		/* this stat has invalid values on i210/i211 */
6428 		if ((hw->mac.type != e1000_i210) &&
6429 		    (hw->mac.type != e1000_i211))
6430 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6431 	}
6432 
6433 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6434 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6435 
6436 	adapter->stats.iac += rd32(E1000_IAC);
6437 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6438 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6439 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6440 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6441 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6442 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6443 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6444 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6445 
6446 	/* Fill out the OS statistics structure */
6447 	net_stats->multicast = adapter->stats.mprc;
6448 	net_stats->collisions = adapter->stats.colc;
6449 
6450 	/* Rx Errors */
6451 
6452 	/* RLEC on some newer hardware can be incorrect so build
6453 	 * our own version based on RUC and ROC
6454 	 */
6455 	net_stats->rx_errors = adapter->stats.rxerrc +
6456 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6457 		adapter->stats.ruc + adapter->stats.roc +
6458 		adapter->stats.cexterr;
6459 	net_stats->rx_length_errors = adapter->stats.ruc +
6460 				      adapter->stats.roc;
6461 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6462 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6463 	net_stats->rx_missed_errors = adapter->stats.mpc;
6464 
6465 	/* Tx Errors */
6466 	net_stats->tx_errors = adapter->stats.ecol +
6467 			       adapter->stats.latecol;
6468 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6469 	net_stats->tx_window_errors = adapter->stats.latecol;
6470 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6471 
6472 	/* Tx Dropped needs to be maintained elsewhere */
6473 
6474 	/* Management Stats */
6475 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6476 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6477 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6478 
6479 	/* OS2BMC Stats */
6480 	reg = rd32(E1000_MANC);
6481 	if (reg & E1000_MANC_EN_BMC2OS) {
6482 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6483 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6484 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6485 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6486 	}
6487 }
6488 
igb_tsync_interrupt(struct igb_adapter * adapter)6489 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6490 {
6491 	struct e1000_hw *hw = &adapter->hw;
6492 	struct ptp_clock_event event;
6493 	struct timespec64 ts;
6494 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6495 
6496 	if (tsicr & TSINTR_SYS_WRAP) {
6497 		event.type = PTP_CLOCK_PPS;
6498 		if (adapter->ptp_caps.pps)
6499 			ptp_clock_event(adapter->ptp_clock, &event);
6500 		ack |= TSINTR_SYS_WRAP;
6501 	}
6502 
6503 	if (tsicr & E1000_TSICR_TXTS) {
6504 		/* retrieve hardware timestamp */
6505 		schedule_work(&adapter->ptp_tx_work);
6506 		ack |= E1000_TSICR_TXTS;
6507 	}
6508 
6509 	if (tsicr & TSINTR_TT0) {
6510 		spin_lock(&adapter->tmreg_lock);
6511 		ts = timespec64_add(adapter->perout[0].start,
6512 				    adapter->perout[0].period);
6513 		/* u32 conversion of tv_sec is safe until y2106 */
6514 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6515 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6516 		tsauxc = rd32(E1000_TSAUXC);
6517 		tsauxc |= TSAUXC_EN_TT0;
6518 		wr32(E1000_TSAUXC, tsauxc);
6519 		adapter->perout[0].start = ts;
6520 		spin_unlock(&adapter->tmreg_lock);
6521 		ack |= TSINTR_TT0;
6522 	}
6523 
6524 	if (tsicr & TSINTR_TT1) {
6525 		spin_lock(&adapter->tmreg_lock);
6526 		ts = timespec64_add(adapter->perout[1].start,
6527 				    adapter->perout[1].period);
6528 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6529 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6530 		tsauxc = rd32(E1000_TSAUXC);
6531 		tsauxc |= TSAUXC_EN_TT1;
6532 		wr32(E1000_TSAUXC, tsauxc);
6533 		adapter->perout[1].start = ts;
6534 		spin_unlock(&adapter->tmreg_lock);
6535 		ack |= TSINTR_TT1;
6536 	}
6537 
6538 	if (tsicr & TSINTR_AUTT0) {
6539 		nsec = rd32(E1000_AUXSTMPL0);
6540 		sec  = rd32(E1000_AUXSTMPH0);
6541 		event.type = PTP_CLOCK_EXTTS;
6542 		event.index = 0;
6543 		event.timestamp = sec * 1000000000ULL + nsec;
6544 		ptp_clock_event(adapter->ptp_clock, &event);
6545 		ack |= TSINTR_AUTT0;
6546 	}
6547 
6548 	if (tsicr & TSINTR_AUTT1) {
6549 		nsec = rd32(E1000_AUXSTMPL1);
6550 		sec  = rd32(E1000_AUXSTMPH1);
6551 		event.type = PTP_CLOCK_EXTTS;
6552 		event.index = 1;
6553 		event.timestamp = sec * 1000000000ULL + nsec;
6554 		ptp_clock_event(adapter->ptp_clock, &event);
6555 		ack |= TSINTR_AUTT1;
6556 	}
6557 
6558 	/* acknowledge the interrupts */
6559 	wr32(E1000_TSICR, ack);
6560 }
6561 
igb_msix_other(int irq,void * data)6562 static irqreturn_t igb_msix_other(int irq, void *data)
6563 {
6564 	struct igb_adapter *adapter = data;
6565 	struct e1000_hw *hw = &adapter->hw;
6566 	u32 icr = rd32(E1000_ICR);
6567 	/* reading ICR causes bit 31 of EICR to be cleared */
6568 
6569 	if (icr & E1000_ICR_DRSTA)
6570 		schedule_work(&adapter->reset_task);
6571 
6572 	if (icr & E1000_ICR_DOUTSYNC) {
6573 		/* HW is reporting DMA is out of sync */
6574 		adapter->stats.doosync++;
6575 		/* The DMA Out of Sync is also indication of a spoof event
6576 		 * in IOV mode. Check the Wrong VM Behavior register to
6577 		 * see if it is really a spoof event.
6578 		 */
6579 		igb_check_wvbr(adapter);
6580 	}
6581 
6582 	/* Check for a mailbox event */
6583 	if (icr & E1000_ICR_VMMB)
6584 		igb_msg_task(adapter);
6585 
6586 	if (icr & E1000_ICR_LSC) {
6587 		hw->mac.get_link_status = 1;
6588 		/* guard against interrupt when we're going down */
6589 		if (!test_bit(__IGB_DOWN, &adapter->state))
6590 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6591 	}
6592 
6593 	if (icr & E1000_ICR_TS)
6594 		igb_tsync_interrupt(adapter);
6595 
6596 	wr32(E1000_EIMS, adapter->eims_other);
6597 
6598 	return IRQ_HANDLED;
6599 }
6600 
igb_write_itr(struct igb_q_vector * q_vector)6601 static void igb_write_itr(struct igb_q_vector *q_vector)
6602 {
6603 	struct igb_adapter *adapter = q_vector->adapter;
6604 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6605 
6606 	if (!q_vector->set_itr)
6607 		return;
6608 
6609 	if (!itr_val)
6610 		itr_val = 0x4;
6611 
6612 	if (adapter->hw.mac.type == e1000_82575)
6613 		itr_val |= itr_val << 16;
6614 	else
6615 		itr_val |= E1000_EITR_CNT_IGNR;
6616 
6617 	writel(itr_val, q_vector->itr_register);
6618 	q_vector->set_itr = 0;
6619 }
6620 
igb_msix_ring(int irq,void * data)6621 static irqreturn_t igb_msix_ring(int irq, void *data)
6622 {
6623 	struct igb_q_vector *q_vector = data;
6624 
6625 	/* Write the ITR value calculated from the previous interrupt. */
6626 	igb_write_itr(q_vector);
6627 
6628 	napi_schedule(&q_vector->napi);
6629 
6630 	return IRQ_HANDLED;
6631 }
6632 
6633 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6634 static void igb_update_tx_dca(struct igb_adapter *adapter,
6635 			      struct igb_ring *tx_ring,
6636 			      int cpu)
6637 {
6638 	struct e1000_hw *hw = &adapter->hw;
6639 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6640 
6641 	if (hw->mac.type != e1000_82575)
6642 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6643 
6644 	/* We can enable relaxed ordering for reads, but not writes when
6645 	 * DCA is enabled.  This is due to a known issue in some chipsets
6646 	 * which will cause the DCA tag to be cleared.
6647 	 */
6648 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6649 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6650 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6651 
6652 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6653 }
6654 
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6655 static void igb_update_rx_dca(struct igb_adapter *adapter,
6656 			      struct igb_ring *rx_ring,
6657 			      int cpu)
6658 {
6659 	struct e1000_hw *hw = &adapter->hw;
6660 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6661 
6662 	if (hw->mac.type != e1000_82575)
6663 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6664 
6665 	/* We can enable relaxed ordering for reads, but not writes when
6666 	 * DCA is enabled.  This is due to a known issue in some chipsets
6667 	 * which will cause the DCA tag to be cleared.
6668 	 */
6669 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6670 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6671 
6672 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6673 }
6674 
igb_update_dca(struct igb_q_vector * q_vector)6675 static void igb_update_dca(struct igb_q_vector *q_vector)
6676 {
6677 	struct igb_adapter *adapter = q_vector->adapter;
6678 	int cpu = get_cpu();
6679 
6680 	if (q_vector->cpu == cpu)
6681 		goto out_no_update;
6682 
6683 	if (q_vector->tx.ring)
6684 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6685 
6686 	if (q_vector->rx.ring)
6687 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6688 
6689 	q_vector->cpu = cpu;
6690 out_no_update:
6691 	put_cpu();
6692 }
6693 
igb_setup_dca(struct igb_adapter * adapter)6694 static void igb_setup_dca(struct igb_adapter *adapter)
6695 {
6696 	struct e1000_hw *hw = &adapter->hw;
6697 	int i;
6698 
6699 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6700 		return;
6701 
6702 	/* Always use CB2 mode, difference is masked in the CB driver. */
6703 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6704 
6705 	for (i = 0; i < adapter->num_q_vectors; i++) {
6706 		adapter->q_vector[i]->cpu = -1;
6707 		igb_update_dca(adapter->q_vector[i]);
6708 	}
6709 }
6710 
__igb_notify_dca(struct device * dev,void * data)6711 static int __igb_notify_dca(struct device *dev, void *data)
6712 {
6713 	struct net_device *netdev = dev_get_drvdata(dev);
6714 	struct igb_adapter *adapter = netdev_priv(netdev);
6715 	struct pci_dev *pdev = adapter->pdev;
6716 	struct e1000_hw *hw = &adapter->hw;
6717 	unsigned long event = *(unsigned long *)data;
6718 
6719 	switch (event) {
6720 	case DCA_PROVIDER_ADD:
6721 		/* if already enabled, don't do it again */
6722 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6723 			break;
6724 		if (dca_add_requester(dev) == 0) {
6725 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6726 			dev_info(&pdev->dev, "DCA enabled\n");
6727 			igb_setup_dca(adapter);
6728 			break;
6729 		}
6730 		/* Fall Through since DCA is disabled. */
6731 	case DCA_PROVIDER_REMOVE:
6732 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6733 			/* without this a class_device is left
6734 			 * hanging around in the sysfs model
6735 			 */
6736 			dca_remove_requester(dev);
6737 			dev_info(&pdev->dev, "DCA disabled\n");
6738 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6739 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6740 		}
6741 		break;
6742 	}
6743 
6744 	return 0;
6745 }
6746 
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6747 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6748 			  void *p)
6749 {
6750 	int ret_val;
6751 
6752 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6753 					 __igb_notify_dca);
6754 
6755 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6756 }
6757 #endif /* CONFIG_IGB_DCA */
6758 
6759 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)6760 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6761 {
6762 	unsigned char mac_addr[ETH_ALEN];
6763 
6764 	eth_zero_addr(mac_addr);
6765 	igb_set_vf_mac(adapter, vf, mac_addr);
6766 
6767 	/* By default spoof check is enabled for all VFs */
6768 	adapter->vf_data[vf].spoofchk_enabled = true;
6769 
6770 	/* By default VFs are not trusted */
6771 	adapter->vf_data[vf].trusted = false;
6772 
6773 	return 0;
6774 }
6775 
6776 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)6777 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6778 {
6779 	struct e1000_hw *hw = &adapter->hw;
6780 	u32 ping;
6781 	int i;
6782 
6783 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6784 		ping = E1000_PF_CONTROL_MSG;
6785 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6786 			ping |= E1000_VT_MSGTYPE_CTS;
6787 		igb_write_mbx(hw, &ping, 1, i);
6788 	}
6789 }
6790 
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6791 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6792 {
6793 	struct e1000_hw *hw = &adapter->hw;
6794 	u32 vmolr = rd32(E1000_VMOLR(vf));
6795 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6796 
6797 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6798 			    IGB_VF_FLAG_MULTI_PROMISC);
6799 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6800 
6801 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6802 		vmolr |= E1000_VMOLR_MPME;
6803 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6804 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6805 	} else {
6806 		/* if we have hashes and we are clearing a multicast promisc
6807 		 * flag we need to write the hashes to the MTA as this step
6808 		 * was previously skipped
6809 		 */
6810 		if (vf_data->num_vf_mc_hashes > 30) {
6811 			vmolr |= E1000_VMOLR_MPME;
6812 		} else if (vf_data->num_vf_mc_hashes) {
6813 			int j;
6814 
6815 			vmolr |= E1000_VMOLR_ROMPE;
6816 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6817 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6818 		}
6819 	}
6820 
6821 	wr32(E1000_VMOLR(vf), vmolr);
6822 
6823 	/* there are flags left unprocessed, likely not supported */
6824 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6825 		return -EINVAL;
6826 
6827 	return 0;
6828 }
6829 
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6830 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6831 				  u32 *msgbuf, u32 vf)
6832 {
6833 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6834 	u16 *hash_list = (u16 *)&msgbuf[1];
6835 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6836 	int i;
6837 
6838 	/* salt away the number of multicast addresses assigned
6839 	 * to this VF for later use to restore when the PF multi cast
6840 	 * list changes
6841 	 */
6842 	vf_data->num_vf_mc_hashes = n;
6843 
6844 	/* only up to 30 hash values supported */
6845 	if (n > 30)
6846 		n = 30;
6847 
6848 	/* store the hashes for later use */
6849 	for (i = 0; i < n; i++)
6850 		vf_data->vf_mc_hashes[i] = hash_list[i];
6851 
6852 	/* Flush and reset the mta with the new values */
6853 	igb_set_rx_mode(adapter->netdev);
6854 
6855 	return 0;
6856 }
6857 
igb_restore_vf_multicasts(struct igb_adapter * adapter)6858 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6859 {
6860 	struct e1000_hw *hw = &adapter->hw;
6861 	struct vf_data_storage *vf_data;
6862 	int i, j;
6863 
6864 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6865 		u32 vmolr = rd32(E1000_VMOLR(i));
6866 
6867 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6868 
6869 		vf_data = &adapter->vf_data[i];
6870 
6871 		if ((vf_data->num_vf_mc_hashes > 30) ||
6872 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6873 			vmolr |= E1000_VMOLR_MPME;
6874 		} else if (vf_data->num_vf_mc_hashes) {
6875 			vmolr |= E1000_VMOLR_ROMPE;
6876 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6877 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6878 		}
6879 		wr32(E1000_VMOLR(i), vmolr);
6880 	}
6881 }
6882 
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)6883 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6884 {
6885 	struct e1000_hw *hw = &adapter->hw;
6886 	u32 pool_mask, vlvf_mask, i;
6887 
6888 	/* create mask for VF and other pools */
6889 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6890 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6891 
6892 	/* drop PF from pool bits */
6893 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6894 			     adapter->vfs_allocated_count);
6895 
6896 	/* Find the vlan filter for this id */
6897 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6898 		u32 vlvf = rd32(E1000_VLVF(i));
6899 		u32 vfta_mask, vid, vfta;
6900 
6901 		/* remove the vf from the pool */
6902 		if (!(vlvf & vlvf_mask))
6903 			continue;
6904 
6905 		/* clear out bit from VLVF */
6906 		vlvf ^= vlvf_mask;
6907 
6908 		/* if other pools are present, just remove ourselves */
6909 		if (vlvf & pool_mask)
6910 			goto update_vlvfb;
6911 
6912 		/* if PF is present, leave VFTA */
6913 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6914 			goto update_vlvf;
6915 
6916 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6917 		vfta_mask = BIT(vid % 32);
6918 
6919 		/* clear bit from VFTA */
6920 		vfta = adapter->shadow_vfta[vid / 32];
6921 		if (vfta & vfta_mask)
6922 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6923 update_vlvf:
6924 		/* clear pool selection enable */
6925 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6926 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6927 		else
6928 			vlvf = 0;
6929 update_vlvfb:
6930 		/* clear pool bits */
6931 		wr32(E1000_VLVF(i), vlvf);
6932 	}
6933 }
6934 
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)6935 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6936 {
6937 	u32 vlvf;
6938 	int idx;
6939 
6940 	/* short cut the special case */
6941 	if (vlan == 0)
6942 		return 0;
6943 
6944 	/* Search for the VLAN id in the VLVF entries */
6945 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6946 		vlvf = rd32(E1000_VLVF(idx));
6947 		if ((vlvf & VLAN_VID_MASK) == vlan)
6948 			break;
6949 	}
6950 
6951 	return idx;
6952 }
6953 
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)6954 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6955 {
6956 	struct e1000_hw *hw = &adapter->hw;
6957 	u32 bits, pf_id;
6958 	int idx;
6959 
6960 	idx = igb_find_vlvf_entry(hw, vid);
6961 	if (!idx)
6962 		return;
6963 
6964 	/* See if any other pools are set for this VLAN filter
6965 	 * entry other than the PF.
6966 	 */
6967 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6968 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6969 	bits &= rd32(E1000_VLVF(idx));
6970 
6971 	/* Disable the filter so this falls into the default pool. */
6972 	if (!bits) {
6973 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6974 			wr32(E1000_VLVF(idx), BIT(pf_id));
6975 		else
6976 			wr32(E1000_VLVF(idx), 0);
6977 	}
6978 }
6979 
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)6980 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6981 			   bool add, u32 vf)
6982 {
6983 	int pf_id = adapter->vfs_allocated_count;
6984 	struct e1000_hw *hw = &adapter->hw;
6985 	int err;
6986 
6987 	/* If VLAN overlaps with one the PF is currently monitoring make
6988 	 * sure that we are able to allocate a VLVF entry.  This may be
6989 	 * redundant but it guarantees PF will maintain visibility to
6990 	 * the VLAN.
6991 	 */
6992 	if (add && test_bit(vid, adapter->active_vlans)) {
6993 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6994 		if (err)
6995 			return err;
6996 	}
6997 
6998 	err = igb_vfta_set(hw, vid, vf, add, false);
6999 
7000 	if (add && !err)
7001 		return err;
7002 
7003 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7004 	 * we may need to drop the PF pool bit in order to allow us to free
7005 	 * up the VLVF resources.
7006 	 */
7007 	if (test_bit(vid, adapter->active_vlans) ||
7008 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7009 		igb_update_pf_vlvf(adapter, vid);
7010 
7011 	return err;
7012 }
7013 
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7014 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7015 {
7016 	struct e1000_hw *hw = &adapter->hw;
7017 
7018 	if (vid)
7019 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7020 	else
7021 		wr32(E1000_VMVIR(vf), 0);
7022 }
7023 
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7024 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7025 				u16 vlan, u8 qos)
7026 {
7027 	int err;
7028 
7029 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7030 	if (err)
7031 		return err;
7032 
7033 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7034 	igb_set_vmolr(adapter, vf, !vlan);
7035 
7036 	/* revoke access to previous VLAN */
7037 	if (vlan != adapter->vf_data[vf].pf_vlan)
7038 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7039 				false, vf);
7040 
7041 	adapter->vf_data[vf].pf_vlan = vlan;
7042 	adapter->vf_data[vf].pf_qos = qos;
7043 	igb_set_vf_vlan_strip(adapter, vf, true);
7044 	dev_info(&adapter->pdev->dev,
7045 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7046 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7047 		dev_warn(&adapter->pdev->dev,
7048 			 "The VF VLAN has been set, but the PF device is not up.\n");
7049 		dev_warn(&adapter->pdev->dev,
7050 			 "Bring the PF device up before attempting to use the VF device.\n");
7051 	}
7052 
7053 	return err;
7054 }
7055 
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7056 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7057 {
7058 	/* Restore tagless access via VLAN 0 */
7059 	igb_set_vf_vlan(adapter, 0, true, vf);
7060 
7061 	igb_set_vmvir(adapter, 0, vf);
7062 	igb_set_vmolr(adapter, vf, true);
7063 
7064 	/* Remove any PF assigned VLAN */
7065 	if (adapter->vf_data[vf].pf_vlan)
7066 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7067 				false, vf);
7068 
7069 	adapter->vf_data[vf].pf_vlan = 0;
7070 	adapter->vf_data[vf].pf_qos = 0;
7071 	igb_set_vf_vlan_strip(adapter, vf, false);
7072 
7073 	return 0;
7074 }
7075 
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7076 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7077 			       u16 vlan, u8 qos, __be16 vlan_proto)
7078 {
7079 	struct igb_adapter *adapter = netdev_priv(netdev);
7080 
7081 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7082 		return -EINVAL;
7083 
7084 	if (vlan_proto != htons(ETH_P_8021Q))
7085 		return -EPROTONOSUPPORT;
7086 
7087 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7088 			       igb_disable_port_vlan(adapter, vf);
7089 }
7090 
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7091 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7092 {
7093 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7094 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7095 	int ret;
7096 
7097 	if (adapter->vf_data[vf].pf_vlan)
7098 		return -1;
7099 
7100 	/* VLAN 0 is a special case, don't allow it to be removed */
7101 	if (!vid && !add)
7102 		return 0;
7103 
7104 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7105 	if (!ret)
7106 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7107 	return ret;
7108 }
7109 
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7110 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7111 {
7112 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7113 
7114 	/* clear flags - except flag that indicates PF has set the MAC */
7115 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7116 	vf_data->last_nack = jiffies;
7117 
7118 	/* reset vlans for device */
7119 	igb_clear_vf_vfta(adapter, vf);
7120 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7121 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7122 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7123 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7124 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7125 
7126 	/* reset multicast table array for vf */
7127 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7128 
7129 	/* Flush and reset the mta with the new values */
7130 	igb_set_rx_mode(adapter->netdev);
7131 }
7132 
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7133 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7134 {
7135 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7136 
7137 	/* clear mac address as we were hotplug removed/added */
7138 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7139 		eth_zero_addr(vf_mac);
7140 
7141 	/* process remaining reset events */
7142 	igb_vf_reset(adapter, vf);
7143 }
7144 
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7145 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7146 {
7147 	struct e1000_hw *hw = &adapter->hw;
7148 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7149 	u32 reg, msgbuf[3];
7150 	u8 *addr = (u8 *)(&msgbuf[1]);
7151 
7152 	/* process all the same items cleared in a function level reset */
7153 	igb_vf_reset(adapter, vf);
7154 
7155 	/* set vf mac address */
7156 	igb_set_vf_mac(adapter, vf, vf_mac);
7157 
7158 	/* enable transmit and receive for vf */
7159 	reg = rd32(E1000_VFTE);
7160 	wr32(E1000_VFTE, reg | BIT(vf));
7161 	reg = rd32(E1000_VFRE);
7162 	wr32(E1000_VFRE, reg | BIT(vf));
7163 
7164 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7165 
7166 	/* reply to reset with ack and vf mac address */
7167 	if (!is_zero_ether_addr(vf_mac)) {
7168 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7169 		memcpy(addr, vf_mac, ETH_ALEN);
7170 	} else {
7171 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7172 	}
7173 	igb_write_mbx(hw, msgbuf, 3, vf);
7174 }
7175 
igb_flush_mac_table(struct igb_adapter * adapter)7176 static void igb_flush_mac_table(struct igb_adapter *adapter)
7177 {
7178 	struct e1000_hw *hw = &adapter->hw;
7179 	int i;
7180 
7181 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7182 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7183 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7184 		adapter->mac_table[i].queue = 0;
7185 		igb_rar_set_index(adapter, i);
7186 	}
7187 }
7188 
igb_available_rars(struct igb_adapter * adapter,u8 queue)7189 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7190 {
7191 	struct e1000_hw *hw = &adapter->hw;
7192 	/* do not count rar entries reserved for VFs MAC addresses */
7193 	int rar_entries = hw->mac.rar_entry_count -
7194 			  adapter->vfs_allocated_count;
7195 	int i, count = 0;
7196 
7197 	for (i = 0; i < rar_entries; i++) {
7198 		/* do not count default entries */
7199 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7200 			continue;
7201 
7202 		/* do not count "in use" entries for different queues */
7203 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7204 		    (adapter->mac_table[i].queue != queue))
7205 			continue;
7206 
7207 		count++;
7208 	}
7209 
7210 	return count;
7211 }
7212 
7213 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7214 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7215 {
7216 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7217 
7218 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7219 	mac_table->queue = adapter->vfs_allocated_count;
7220 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7221 
7222 	igb_rar_set_index(adapter, 0);
7223 }
7224 
7225 /* If the filter to be added and an already existing filter express
7226  * the same address and address type, it should be possible to only
7227  * override the other configurations, for example the queue to steer
7228  * traffic.
7229  */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7230 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7231 				      const u8 *addr, const u8 flags)
7232 {
7233 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7234 		return true;
7235 
7236 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7237 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7238 		return false;
7239 
7240 	if (!ether_addr_equal(addr, entry->addr))
7241 		return false;
7242 
7243 	return true;
7244 }
7245 
7246 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7247  * 'flags' is used to indicate what kind of match is made, match is by
7248  * default for the destination address, if matching by source address
7249  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7250  */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7251 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7252 				    const u8 *addr, const u8 queue,
7253 				    const u8 flags)
7254 {
7255 	struct e1000_hw *hw = &adapter->hw;
7256 	int rar_entries = hw->mac.rar_entry_count -
7257 			  adapter->vfs_allocated_count;
7258 	int i;
7259 
7260 	if (is_zero_ether_addr(addr))
7261 		return -EINVAL;
7262 
7263 	/* Search for the first empty entry in the MAC table.
7264 	 * Do not touch entries at the end of the table reserved for the VF MAC
7265 	 * addresses.
7266 	 */
7267 	for (i = 0; i < rar_entries; i++) {
7268 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7269 					       addr, flags))
7270 			continue;
7271 
7272 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7273 		adapter->mac_table[i].queue = queue;
7274 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7275 
7276 		igb_rar_set_index(adapter, i);
7277 		return i;
7278 	}
7279 
7280 	return -ENOSPC;
7281 }
7282 
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7283 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7284 			      const u8 queue)
7285 {
7286 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7287 }
7288 
7289 /* Remove a MAC filter for 'addr' directing matching traffic to
7290  * 'queue', 'flags' is used to indicate what kind of match need to be
7291  * removed, match is by default for the destination address, if
7292  * matching by source address is to be removed the flag
7293  * IGB_MAC_STATE_SRC_ADDR can be used.
7294  */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7295 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7296 				    const u8 *addr, const u8 queue,
7297 				    const u8 flags)
7298 {
7299 	struct e1000_hw *hw = &adapter->hw;
7300 	int rar_entries = hw->mac.rar_entry_count -
7301 			  adapter->vfs_allocated_count;
7302 	int i;
7303 
7304 	if (is_zero_ether_addr(addr))
7305 		return -EINVAL;
7306 
7307 	/* Search for matching entry in the MAC table based on given address
7308 	 * and queue. Do not touch entries at the end of the table reserved
7309 	 * for the VF MAC addresses.
7310 	 */
7311 	for (i = 0; i < rar_entries; i++) {
7312 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7313 			continue;
7314 		if ((adapter->mac_table[i].state & flags) != flags)
7315 			continue;
7316 		if (adapter->mac_table[i].queue != queue)
7317 			continue;
7318 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7319 			continue;
7320 
7321 		/* When a filter for the default address is "deleted",
7322 		 * we return it to its initial configuration
7323 		 */
7324 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7325 			adapter->mac_table[i].state =
7326 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7327 			adapter->mac_table[i].queue =
7328 				adapter->vfs_allocated_count;
7329 		} else {
7330 			adapter->mac_table[i].state = 0;
7331 			adapter->mac_table[i].queue = 0;
7332 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7333 		}
7334 
7335 		igb_rar_set_index(adapter, i);
7336 		return 0;
7337 	}
7338 
7339 	return -ENOENT;
7340 }
7341 
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7342 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7343 			      const u8 queue)
7344 {
7345 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7346 }
7347 
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7348 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7349 				const u8 *addr, u8 queue, u8 flags)
7350 {
7351 	struct e1000_hw *hw = &adapter->hw;
7352 
7353 	/* In theory, this should be supported on 82575 as well, but
7354 	 * that part wasn't easily accessible during development.
7355 	 */
7356 	if (hw->mac.type != e1000_i210)
7357 		return -EOPNOTSUPP;
7358 
7359 	return igb_add_mac_filter_flags(adapter, addr, queue,
7360 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7361 }
7362 
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7363 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7364 				const u8 *addr, u8 queue, u8 flags)
7365 {
7366 	return igb_del_mac_filter_flags(adapter, addr, queue,
7367 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7368 }
7369 
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7370 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7371 {
7372 	struct igb_adapter *adapter = netdev_priv(netdev);
7373 	int ret;
7374 
7375 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7376 
7377 	return min_t(int, ret, 0);
7378 }
7379 
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7380 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7381 {
7382 	struct igb_adapter *adapter = netdev_priv(netdev);
7383 
7384 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7385 
7386 	return 0;
7387 }
7388 
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7389 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7390 				 const u32 info, const u8 *addr)
7391 {
7392 	struct pci_dev *pdev = adapter->pdev;
7393 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7394 	struct list_head *pos;
7395 	struct vf_mac_filter *entry = NULL;
7396 	int ret = 0;
7397 
7398 	switch (info) {
7399 	case E1000_VF_MAC_FILTER_CLR:
7400 		/* remove all unicast MAC filters related to the current VF */
7401 		list_for_each(pos, &adapter->vf_macs.l) {
7402 			entry = list_entry(pos, struct vf_mac_filter, l);
7403 			if (entry->vf == vf) {
7404 				entry->vf = -1;
7405 				entry->free = true;
7406 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7407 			}
7408 		}
7409 		break;
7410 	case E1000_VF_MAC_FILTER_ADD:
7411 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7412 		    !vf_data->trusted) {
7413 			dev_warn(&pdev->dev,
7414 				 "VF %d requested MAC filter but is administratively denied\n",
7415 				 vf);
7416 			return -EINVAL;
7417 		}
7418 		if (!is_valid_ether_addr(addr)) {
7419 			dev_warn(&pdev->dev,
7420 				 "VF %d attempted to set invalid MAC filter\n",
7421 				 vf);
7422 			return -EINVAL;
7423 		}
7424 
7425 		/* try to find empty slot in the list */
7426 		list_for_each(pos, &adapter->vf_macs.l) {
7427 			entry = list_entry(pos, struct vf_mac_filter, l);
7428 			if (entry->free)
7429 				break;
7430 		}
7431 
7432 		if (entry && entry->free) {
7433 			entry->free = false;
7434 			entry->vf = vf;
7435 			ether_addr_copy(entry->vf_mac, addr);
7436 
7437 			ret = igb_add_mac_filter(adapter, addr, vf);
7438 			ret = min_t(int, ret, 0);
7439 		} else {
7440 			ret = -ENOSPC;
7441 		}
7442 
7443 		if (ret == -ENOSPC)
7444 			dev_warn(&pdev->dev,
7445 				 "VF %d has requested MAC filter but there is no space for it\n",
7446 				 vf);
7447 		break;
7448 	default:
7449 		ret = -EINVAL;
7450 		break;
7451 	}
7452 
7453 	return ret;
7454 }
7455 
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7456 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7457 {
7458 	struct pci_dev *pdev = adapter->pdev;
7459 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7460 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7461 
7462 	/* The VF MAC Address is stored in a packed array of bytes
7463 	 * starting at the second 32 bit word of the msg array
7464 	 */
7465 	unsigned char *addr = (unsigned char *)&msg[1];
7466 	int ret = 0;
7467 
7468 	if (!info) {
7469 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7470 		    !vf_data->trusted) {
7471 			dev_warn(&pdev->dev,
7472 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7473 				 vf);
7474 			return -EINVAL;
7475 		}
7476 
7477 		if (!is_valid_ether_addr(addr)) {
7478 			dev_warn(&pdev->dev,
7479 				 "VF %d attempted to set invalid MAC\n",
7480 				 vf);
7481 			return -EINVAL;
7482 		}
7483 
7484 		ret = igb_set_vf_mac(adapter, vf, addr);
7485 	} else {
7486 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7487 	}
7488 
7489 	return ret;
7490 }
7491 
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7492 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7493 {
7494 	struct e1000_hw *hw = &adapter->hw;
7495 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7496 	u32 msg = E1000_VT_MSGTYPE_NACK;
7497 
7498 	/* if device isn't clear to send it shouldn't be reading either */
7499 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7500 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7501 		igb_write_mbx(hw, &msg, 1, vf);
7502 		vf_data->last_nack = jiffies;
7503 	}
7504 }
7505 
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7506 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7507 {
7508 	struct pci_dev *pdev = adapter->pdev;
7509 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7510 	struct e1000_hw *hw = &adapter->hw;
7511 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7512 	s32 retval;
7513 
7514 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7515 
7516 	if (retval) {
7517 		/* if receive failed revoke VF CTS stats and restart init */
7518 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7519 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7520 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7521 			goto unlock;
7522 		goto out;
7523 	}
7524 
7525 	/* this is a message we already processed, do nothing */
7526 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7527 		goto unlock;
7528 
7529 	/* until the vf completes a reset it should not be
7530 	 * allowed to start any configuration.
7531 	 */
7532 	if (msgbuf[0] == E1000_VF_RESET) {
7533 		/* unlocks mailbox */
7534 		igb_vf_reset_msg(adapter, vf);
7535 		return;
7536 	}
7537 
7538 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7539 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7540 			goto unlock;
7541 		retval = -1;
7542 		goto out;
7543 	}
7544 
7545 	switch ((msgbuf[0] & 0xFFFF)) {
7546 	case E1000_VF_SET_MAC_ADDR:
7547 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7548 		break;
7549 	case E1000_VF_SET_PROMISC:
7550 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7551 		break;
7552 	case E1000_VF_SET_MULTICAST:
7553 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7554 		break;
7555 	case E1000_VF_SET_LPE:
7556 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7557 		break;
7558 	case E1000_VF_SET_VLAN:
7559 		retval = -1;
7560 		if (vf_data->pf_vlan)
7561 			dev_warn(&pdev->dev,
7562 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7563 				 vf);
7564 		else
7565 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7566 		break;
7567 	default:
7568 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7569 		retval = -1;
7570 		break;
7571 	}
7572 
7573 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7574 out:
7575 	/* notify the VF of the results of what it sent us */
7576 	if (retval)
7577 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7578 	else
7579 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7580 
7581 	/* unlocks mailbox */
7582 	igb_write_mbx(hw, msgbuf, 1, vf);
7583 	return;
7584 
7585 unlock:
7586 	igb_unlock_mbx(hw, vf);
7587 }
7588 
igb_msg_task(struct igb_adapter * adapter)7589 static void igb_msg_task(struct igb_adapter *adapter)
7590 {
7591 	struct e1000_hw *hw = &adapter->hw;
7592 	u32 vf;
7593 
7594 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7595 		/* process any reset requests */
7596 		if (!igb_check_for_rst(hw, vf))
7597 			igb_vf_reset_event(adapter, vf);
7598 
7599 		/* process any messages pending */
7600 		if (!igb_check_for_msg(hw, vf))
7601 			igb_rcv_msg_from_vf(adapter, vf);
7602 
7603 		/* process any acks */
7604 		if (!igb_check_for_ack(hw, vf))
7605 			igb_rcv_ack_from_vf(adapter, vf);
7606 	}
7607 }
7608 
7609 /**
7610  *  igb_set_uta - Set unicast filter table address
7611  *  @adapter: board private structure
7612  *  @set: boolean indicating if we are setting or clearing bits
7613  *
7614  *  The unicast table address is a register array of 32-bit registers.
7615  *  The table is meant to be used in a way similar to how the MTA is used
7616  *  however due to certain limitations in the hardware it is necessary to
7617  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7618  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7619  **/
igb_set_uta(struct igb_adapter * adapter,bool set)7620 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7621 {
7622 	struct e1000_hw *hw = &adapter->hw;
7623 	u32 uta = set ? ~0 : 0;
7624 	int i;
7625 
7626 	/* we only need to do this if VMDq is enabled */
7627 	if (!adapter->vfs_allocated_count)
7628 		return;
7629 
7630 	for (i = hw->mac.uta_reg_count; i--;)
7631 		array_wr32(E1000_UTA, i, uta);
7632 }
7633 
7634 /**
7635  *  igb_intr_msi - Interrupt Handler
7636  *  @irq: interrupt number
7637  *  @data: pointer to a network interface device structure
7638  **/
igb_intr_msi(int irq,void * data)7639 static irqreturn_t igb_intr_msi(int irq, void *data)
7640 {
7641 	struct igb_adapter *adapter = data;
7642 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7643 	struct e1000_hw *hw = &adapter->hw;
7644 	/* read ICR disables interrupts using IAM */
7645 	u32 icr = rd32(E1000_ICR);
7646 
7647 	igb_write_itr(q_vector);
7648 
7649 	if (icr & E1000_ICR_DRSTA)
7650 		schedule_work(&adapter->reset_task);
7651 
7652 	if (icr & E1000_ICR_DOUTSYNC) {
7653 		/* HW is reporting DMA is out of sync */
7654 		adapter->stats.doosync++;
7655 	}
7656 
7657 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7658 		hw->mac.get_link_status = 1;
7659 		if (!test_bit(__IGB_DOWN, &adapter->state))
7660 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7661 	}
7662 
7663 	if (icr & E1000_ICR_TS)
7664 		igb_tsync_interrupt(adapter);
7665 
7666 	napi_schedule(&q_vector->napi);
7667 
7668 	return IRQ_HANDLED;
7669 }
7670 
7671 /**
7672  *  igb_intr - Legacy Interrupt Handler
7673  *  @irq: interrupt number
7674  *  @data: pointer to a network interface device structure
7675  **/
igb_intr(int irq,void * data)7676 static irqreturn_t igb_intr(int irq, void *data)
7677 {
7678 	struct igb_adapter *adapter = data;
7679 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7680 	struct e1000_hw *hw = &adapter->hw;
7681 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7682 	 * need for the IMC write
7683 	 */
7684 	u32 icr = rd32(E1000_ICR);
7685 
7686 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7687 	 * not set, then the adapter didn't send an interrupt
7688 	 */
7689 	if (!(icr & E1000_ICR_INT_ASSERTED))
7690 		return IRQ_NONE;
7691 
7692 	igb_write_itr(q_vector);
7693 
7694 	if (icr & E1000_ICR_DRSTA)
7695 		schedule_work(&adapter->reset_task);
7696 
7697 	if (icr & E1000_ICR_DOUTSYNC) {
7698 		/* HW is reporting DMA is out of sync */
7699 		adapter->stats.doosync++;
7700 	}
7701 
7702 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7703 		hw->mac.get_link_status = 1;
7704 		/* guard against interrupt when we're going down */
7705 		if (!test_bit(__IGB_DOWN, &adapter->state))
7706 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7707 	}
7708 
7709 	if (icr & E1000_ICR_TS)
7710 		igb_tsync_interrupt(adapter);
7711 
7712 	napi_schedule(&q_vector->napi);
7713 
7714 	return IRQ_HANDLED;
7715 }
7716 
igb_ring_irq_enable(struct igb_q_vector * q_vector)7717 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7718 {
7719 	struct igb_adapter *adapter = q_vector->adapter;
7720 	struct e1000_hw *hw = &adapter->hw;
7721 
7722 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7723 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7724 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7725 			igb_set_itr(q_vector);
7726 		else
7727 			igb_update_ring_itr(q_vector);
7728 	}
7729 
7730 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7731 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7732 			wr32(E1000_EIMS, q_vector->eims_value);
7733 		else
7734 			igb_irq_enable(adapter);
7735 	}
7736 }
7737 
7738 /**
7739  *  igb_poll - NAPI Rx polling callback
7740  *  @napi: napi polling structure
7741  *  @budget: count of how many packets we should handle
7742  **/
igb_poll(struct napi_struct * napi,int budget)7743 static int igb_poll(struct napi_struct *napi, int budget)
7744 {
7745 	struct igb_q_vector *q_vector = container_of(napi,
7746 						     struct igb_q_vector,
7747 						     napi);
7748 	bool clean_complete = true;
7749 	int work_done = 0;
7750 
7751 #ifdef CONFIG_IGB_DCA
7752 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7753 		igb_update_dca(q_vector);
7754 #endif
7755 	if (q_vector->tx.ring)
7756 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7757 
7758 	if (q_vector->rx.ring) {
7759 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7760 
7761 		work_done += cleaned;
7762 		if (cleaned >= budget)
7763 			clean_complete = false;
7764 	}
7765 
7766 	/* If all work not completed, return budget and keep polling */
7767 	if (!clean_complete)
7768 		return budget;
7769 
7770 	/* If not enough Rx work done, exit the polling mode */
7771 	napi_complete_done(napi, work_done);
7772 	igb_ring_irq_enable(q_vector);
7773 
7774 	return 0;
7775 }
7776 
7777 /**
7778  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7779  *  @q_vector: pointer to q_vector containing needed info
7780  *  @napi_budget: Used to determine if we are in netpoll
7781  *
7782  *  returns true if ring is completely cleaned
7783  **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)7784 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7785 {
7786 	struct igb_adapter *adapter = q_vector->adapter;
7787 	struct igb_ring *tx_ring = q_vector->tx.ring;
7788 	struct igb_tx_buffer *tx_buffer;
7789 	union e1000_adv_tx_desc *tx_desc;
7790 	unsigned int total_bytes = 0, total_packets = 0;
7791 	unsigned int budget = q_vector->tx.work_limit;
7792 	unsigned int i = tx_ring->next_to_clean;
7793 
7794 	if (test_bit(__IGB_DOWN, &adapter->state))
7795 		return true;
7796 
7797 	tx_buffer = &tx_ring->tx_buffer_info[i];
7798 	tx_desc = IGB_TX_DESC(tx_ring, i);
7799 	i -= tx_ring->count;
7800 
7801 	do {
7802 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7803 
7804 		/* if next_to_watch is not set then there is no work pending */
7805 		if (!eop_desc)
7806 			break;
7807 
7808 		/* prevent any other reads prior to eop_desc */
7809 		smp_rmb();
7810 
7811 		/* if DD is not set pending work has not been completed */
7812 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7813 			break;
7814 
7815 		/* clear next_to_watch to prevent false hangs */
7816 		tx_buffer->next_to_watch = NULL;
7817 
7818 		/* update the statistics for this packet */
7819 		total_bytes += tx_buffer->bytecount;
7820 		total_packets += tx_buffer->gso_segs;
7821 
7822 		/* free the skb */
7823 		napi_consume_skb(tx_buffer->skb, napi_budget);
7824 
7825 		/* unmap skb header data */
7826 		dma_unmap_single(tx_ring->dev,
7827 				 dma_unmap_addr(tx_buffer, dma),
7828 				 dma_unmap_len(tx_buffer, len),
7829 				 DMA_TO_DEVICE);
7830 
7831 		/* clear tx_buffer data */
7832 		dma_unmap_len_set(tx_buffer, len, 0);
7833 
7834 		/* clear last DMA location and unmap remaining buffers */
7835 		while (tx_desc != eop_desc) {
7836 			tx_buffer++;
7837 			tx_desc++;
7838 			i++;
7839 			if (unlikely(!i)) {
7840 				i -= tx_ring->count;
7841 				tx_buffer = tx_ring->tx_buffer_info;
7842 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7843 			}
7844 
7845 			/* unmap any remaining paged data */
7846 			if (dma_unmap_len(tx_buffer, len)) {
7847 				dma_unmap_page(tx_ring->dev,
7848 					       dma_unmap_addr(tx_buffer, dma),
7849 					       dma_unmap_len(tx_buffer, len),
7850 					       DMA_TO_DEVICE);
7851 				dma_unmap_len_set(tx_buffer, len, 0);
7852 			}
7853 		}
7854 
7855 		/* move us one more past the eop_desc for start of next pkt */
7856 		tx_buffer++;
7857 		tx_desc++;
7858 		i++;
7859 		if (unlikely(!i)) {
7860 			i -= tx_ring->count;
7861 			tx_buffer = tx_ring->tx_buffer_info;
7862 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7863 		}
7864 
7865 		/* issue prefetch for next Tx descriptor */
7866 		prefetch(tx_desc);
7867 
7868 		/* update budget accounting */
7869 		budget--;
7870 	} while (likely(budget));
7871 
7872 	netdev_tx_completed_queue(txring_txq(tx_ring),
7873 				  total_packets, total_bytes);
7874 	i += tx_ring->count;
7875 	tx_ring->next_to_clean = i;
7876 	u64_stats_update_begin(&tx_ring->tx_syncp);
7877 	tx_ring->tx_stats.bytes += total_bytes;
7878 	tx_ring->tx_stats.packets += total_packets;
7879 	u64_stats_update_end(&tx_ring->tx_syncp);
7880 	q_vector->tx.total_bytes += total_bytes;
7881 	q_vector->tx.total_packets += total_packets;
7882 
7883 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7884 		struct e1000_hw *hw = &adapter->hw;
7885 
7886 		/* Detect a transmit hang in hardware, this serializes the
7887 		 * check with the clearing of time_stamp and movement of i
7888 		 */
7889 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7890 		if (tx_buffer->next_to_watch &&
7891 		    time_after(jiffies, tx_buffer->time_stamp +
7892 			       (adapter->tx_timeout_factor * HZ)) &&
7893 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7894 
7895 			/* detected Tx unit hang */
7896 			dev_err(tx_ring->dev,
7897 				"Detected Tx Unit Hang\n"
7898 				"  Tx Queue             <%d>\n"
7899 				"  TDH                  <%x>\n"
7900 				"  TDT                  <%x>\n"
7901 				"  next_to_use          <%x>\n"
7902 				"  next_to_clean        <%x>\n"
7903 				"buffer_info[next_to_clean]\n"
7904 				"  time_stamp           <%lx>\n"
7905 				"  next_to_watch        <%p>\n"
7906 				"  jiffies              <%lx>\n"
7907 				"  desc.status          <%x>\n",
7908 				tx_ring->queue_index,
7909 				rd32(E1000_TDH(tx_ring->reg_idx)),
7910 				readl(tx_ring->tail),
7911 				tx_ring->next_to_use,
7912 				tx_ring->next_to_clean,
7913 				tx_buffer->time_stamp,
7914 				tx_buffer->next_to_watch,
7915 				jiffies,
7916 				tx_buffer->next_to_watch->wb.status);
7917 			netif_stop_subqueue(tx_ring->netdev,
7918 					    tx_ring->queue_index);
7919 
7920 			/* we are about to reset, no point in enabling stuff */
7921 			return true;
7922 		}
7923 	}
7924 
7925 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7926 	if (unlikely(total_packets &&
7927 	    netif_carrier_ok(tx_ring->netdev) &&
7928 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7929 		/* Make sure that anybody stopping the queue after this
7930 		 * sees the new next_to_clean.
7931 		 */
7932 		smp_mb();
7933 		if (__netif_subqueue_stopped(tx_ring->netdev,
7934 					     tx_ring->queue_index) &&
7935 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7936 			netif_wake_subqueue(tx_ring->netdev,
7937 					    tx_ring->queue_index);
7938 
7939 			u64_stats_update_begin(&tx_ring->tx_syncp);
7940 			tx_ring->tx_stats.restart_queue++;
7941 			u64_stats_update_end(&tx_ring->tx_syncp);
7942 		}
7943 	}
7944 
7945 	return !!budget;
7946 }
7947 
7948 /**
7949  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7950  *  @rx_ring: rx descriptor ring to store buffers on
7951  *  @old_buff: donor buffer to have page reused
7952  *
7953  *  Synchronizes page for reuse by the adapter
7954  **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)7955 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7956 			      struct igb_rx_buffer *old_buff)
7957 {
7958 	struct igb_rx_buffer *new_buff;
7959 	u16 nta = rx_ring->next_to_alloc;
7960 
7961 	new_buff = &rx_ring->rx_buffer_info[nta];
7962 
7963 	/* update, and store next to alloc */
7964 	nta++;
7965 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7966 
7967 	/* Transfer page from old buffer to new buffer.
7968 	 * Move each member individually to avoid possible store
7969 	 * forwarding stalls.
7970 	 */
7971 	new_buff->dma		= old_buff->dma;
7972 	new_buff->page		= old_buff->page;
7973 	new_buff->page_offset	= old_buff->page_offset;
7974 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7975 }
7976 
igb_page_is_reserved(struct page * page)7977 static inline bool igb_page_is_reserved(struct page *page)
7978 {
7979 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7980 }
7981 
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)7982 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7983 {
7984 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7985 	struct page *page = rx_buffer->page;
7986 
7987 	/* avoid re-using remote pages */
7988 	if (unlikely(igb_page_is_reserved(page)))
7989 		return false;
7990 
7991 #if (PAGE_SIZE < 8192)
7992 	/* if we are only owner of page we can reuse it */
7993 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7994 		return false;
7995 #else
7996 #define IGB_LAST_OFFSET \
7997 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7998 
7999 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8000 		return false;
8001 #endif
8002 
8003 	/* If we have drained the page fragment pool we need to update
8004 	 * the pagecnt_bias and page count so that we fully restock the
8005 	 * number of references the driver holds.
8006 	 */
8007 	if (unlikely(!pagecnt_bias)) {
8008 		page_ref_add(page, USHRT_MAX);
8009 		rx_buffer->pagecnt_bias = USHRT_MAX;
8010 	}
8011 
8012 	return true;
8013 }
8014 
8015 /**
8016  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8017  *  @rx_ring: rx descriptor ring to transact packets on
8018  *  @rx_buffer: buffer containing page to add
8019  *  @skb: sk_buff to place the data into
8020  *  @size: size of buffer to be added
8021  *
8022  *  This function will add the data contained in rx_buffer->page to the skb.
8023  **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8024 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8025 			    struct igb_rx_buffer *rx_buffer,
8026 			    struct sk_buff *skb,
8027 			    unsigned int size)
8028 {
8029 #if (PAGE_SIZE < 8192)
8030 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8031 #else
8032 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8033 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8034 				SKB_DATA_ALIGN(size);
8035 #endif
8036 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8037 			rx_buffer->page_offset, size, truesize);
8038 #if (PAGE_SIZE < 8192)
8039 	rx_buffer->page_offset ^= truesize;
8040 #else
8041 	rx_buffer->page_offset += truesize;
8042 #endif
8043 }
8044 
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8045 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8046 					 struct igb_rx_buffer *rx_buffer,
8047 					 union e1000_adv_rx_desc *rx_desc,
8048 					 unsigned int size)
8049 {
8050 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8051 #if (PAGE_SIZE < 8192)
8052 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8053 #else
8054 	unsigned int truesize = SKB_DATA_ALIGN(size);
8055 #endif
8056 	unsigned int headlen;
8057 	struct sk_buff *skb;
8058 
8059 	/* prefetch first cache line of first page */
8060 	prefetch(va);
8061 #if L1_CACHE_BYTES < 128
8062 	prefetch(va + L1_CACHE_BYTES);
8063 #endif
8064 
8065 	/* allocate a skb to store the frags */
8066 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8067 	if (unlikely(!skb))
8068 		return NULL;
8069 
8070 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8071 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8072 		va += IGB_TS_HDR_LEN;
8073 		size -= IGB_TS_HDR_LEN;
8074 	}
8075 
8076 	/* Determine available headroom for copy */
8077 	headlen = size;
8078 	if (headlen > IGB_RX_HDR_LEN)
8079 		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8080 
8081 	/* align pull length to size of long to optimize memcpy performance */
8082 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8083 
8084 	/* update all of the pointers */
8085 	size -= headlen;
8086 	if (size) {
8087 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8088 				(va + headlen) - page_address(rx_buffer->page),
8089 				size, truesize);
8090 #if (PAGE_SIZE < 8192)
8091 		rx_buffer->page_offset ^= truesize;
8092 #else
8093 		rx_buffer->page_offset += truesize;
8094 #endif
8095 	} else {
8096 		rx_buffer->pagecnt_bias++;
8097 	}
8098 
8099 	return skb;
8100 }
8101 
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8102 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8103 				     struct igb_rx_buffer *rx_buffer,
8104 				     union e1000_adv_rx_desc *rx_desc,
8105 				     unsigned int size)
8106 {
8107 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8108 #if (PAGE_SIZE < 8192)
8109 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8110 #else
8111 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8112 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8113 #endif
8114 	struct sk_buff *skb;
8115 
8116 	/* prefetch first cache line of first page */
8117 	prefetch(va);
8118 #if L1_CACHE_BYTES < 128
8119 	prefetch(va + L1_CACHE_BYTES);
8120 #endif
8121 
8122 	/* build an skb around the page buffer */
8123 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8124 	if (unlikely(!skb))
8125 		return NULL;
8126 
8127 	/* update pointers within the skb to store the data */
8128 	skb_reserve(skb, IGB_SKB_PAD);
8129 	__skb_put(skb, size);
8130 
8131 	/* pull timestamp out of packet data */
8132 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8133 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8134 		__skb_pull(skb, IGB_TS_HDR_LEN);
8135 	}
8136 
8137 	/* update buffer offset */
8138 #if (PAGE_SIZE < 8192)
8139 	rx_buffer->page_offset ^= truesize;
8140 #else
8141 	rx_buffer->page_offset += truesize;
8142 #endif
8143 
8144 	return skb;
8145 }
8146 
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8147 static inline void igb_rx_checksum(struct igb_ring *ring,
8148 				   union e1000_adv_rx_desc *rx_desc,
8149 				   struct sk_buff *skb)
8150 {
8151 	skb_checksum_none_assert(skb);
8152 
8153 	/* Ignore Checksum bit is set */
8154 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8155 		return;
8156 
8157 	/* Rx checksum disabled via ethtool */
8158 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8159 		return;
8160 
8161 	/* TCP/UDP checksum error bit is set */
8162 	if (igb_test_staterr(rx_desc,
8163 			     E1000_RXDEXT_STATERR_TCPE |
8164 			     E1000_RXDEXT_STATERR_IPE)) {
8165 		/* work around errata with sctp packets where the TCPE aka
8166 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8167 		 * packets, (aka let the stack check the crc32c)
8168 		 */
8169 		if (!((skb->len == 60) &&
8170 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8171 			u64_stats_update_begin(&ring->rx_syncp);
8172 			ring->rx_stats.csum_err++;
8173 			u64_stats_update_end(&ring->rx_syncp);
8174 		}
8175 		/* let the stack verify checksum errors */
8176 		return;
8177 	}
8178 	/* It must be a TCP or UDP packet with a valid checksum */
8179 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8180 				      E1000_RXD_STAT_UDPCS))
8181 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8182 
8183 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8184 		le32_to_cpu(rx_desc->wb.upper.status_error));
8185 }
8186 
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8187 static inline void igb_rx_hash(struct igb_ring *ring,
8188 			       union e1000_adv_rx_desc *rx_desc,
8189 			       struct sk_buff *skb)
8190 {
8191 	if (ring->netdev->features & NETIF_F_RXHASH)
8192 		skb_set_hash(skb,
8193 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8194 			     PKT_HASH_TYPE_L3);
8195 }
8196 
8197 /**
8198  *  igb_is_non_eop - process handling of non-EOP buffers
8199  *  @rx_ring: Rx ring being processed
8200  *  @rx_desc: Rx descriptor for current buffer
8201  *  @skb: current socket buffer containing buffer in progress
8202  *
8203  *  This function updates next to clean.  If the buffer is an EOP buffer
8204  *  this function exits returning false, otherwise it will place the
8205  *  sk_buff in the next buffer to be chained and return true indicating
8206  *  that this is in fact a non-EOP buffer.
8207  **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8208 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8209 			   union e1000_adv_rx_desc *rx_desc)
8210 {
8211 	u32 ntc = rx_ring->next_to_clean + 1;
8212 
8213 	/* fetch, update, and store next to clean */
8214 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8215 	rx_ring->next_to_clean = ntc;
8216 
8217 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8218 
8219 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8220 		return false;
8221 
8222 	return true;
8223 }
8224 
8225 /**
8226  *  igb_cleanup_headers - Correct corrupted or empty headers
8227  *  @rx_ring: rx descriptor ring packet is being transacted on
8228  *  @rx_desc: pointer to the EOP Rx descriptor
8229  *  @skb: pointer to current skb being fixed
8230  *
8231  *  Address the case where we are pulling data in on pages only
8232  *  and as such no data is present in the skb header.
8233  *
8234  *  In addition if skb is not at least 60 bytes we need to pad it so that
8235  *  it is large enough to qualify as a valid Ethernet frame.
8236  *
8237  *  Returns true if an error was encountered and skb was freed.
8238  **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8239 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8240 				union e1000_adv_rx_desc *rx_desc,
8241 				struct sk_buff *skb)
8242 {
8243 	if (unlikely((igb_test_staterr(rx_desc,
8244 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8245 		struct net_device *netdev = rx_ring->netdev;
8246 		if (!(netdev->features & NETIF_F_RXALL)) {
8247 			dev_kfree_skb_any(skb);
8248 			return true;
8249 		}
8250 	}
8251 
8252 	/* if eth_skb_pad returns an error the skb was freed */
8253 	if (eth_skb_pad(skb))
8254 		return true;
8255 
8256 	return false;
8257 }
8258 
8259 /**
8260  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8261  *  @rx_ring: rx descriptor ring packet is being transacted on
8262  *  @rx_desc: pointer to the EOP Rx descriptor
8263  *  @skb: pointer to current skb being populated
8264  *
8265  *  This function checks the ring, descriptor, and packet information in
8266  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8267  *  other fields within the skb.
8268  **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8269 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8270 				   union e1000_adv_rx_desc *rx_desc,
8271 				   struct sk_buff *skb)
8272 {
8273 	struct net_device *dev = rx_ring->netdev;
8274 
8275 	igb_rx_hash(rx_ring, rx_desc, skb);
8276 
8277 	igb_rx_checksum(rx_ring, rx_desc, skb);
8278 
8279 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8280 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8281 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8282 
8283 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8284 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8285 		u16 vid;
8286 
8287 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8288 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8289 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8290 		else
8291 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8292 
8293 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8294 	}
8295 
8296 	skb_record_rx_queue(skb, rx_ring->queue_index);
8297 
8298 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8299 }
8300 
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8301 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8302 					       const unsigned int size)
8303 {
8304 	struct igb_rx_buffer *rx_buffer;
8305 
8306 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8307 	prefetchw(rx_buffer->page);
8308 
8309 	/* we are reusing so sync this buffer for CPU use */
8310 	dma_sync_single_range_for_cpu(rx_ring->dev,
8311 				      rx_buffer->dma,
8312 				      rx_buffer->page_offset,
8313 				      size,
8314 				      DMA_FROM_DEVICE);
8315 
8316 	rx_buffer->pagecnt_bias--;
8317 
8318 	return rx_buffer;
8319 }
8320 
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8321 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8322 			      struct igb_rx_buffer *rx_buffer)
8323 {
8324 	if (igb_can_reuse_rx_page(rx_buffer)) {
8325 		/* hand second half of page back to the ring */
8326 		igb_reuse_rx_page(rx_ring, rx_buffer);
8327 	} else {
8328 		/* We are not reusing the buffer so unmap it and free
8329 		 * any references we are holding to it
8330 		 */
8331 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8332 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8333 				     IGB_RX_DMA_ATTR);
8334 		__page_frag_cache_drain(rx_buffer->page,
8335 					rx_buffer->pagecnt_bias);
8336 	}
8337 
8338 	/* clear contents of rx_buffer */
8339 	rx_buffer->page = NULL;
8340 }
8341 
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8342 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8343 {
8344 	struct igb_ring *rx_ring = q_vector->rx.ring;
8345 	struct sk_buff *skb = rx_ring->skb;
8346 	unsigned int total_bytes = 0, total_packets = 0;
8347 	u16 cleaned_count = igb_desc_unused(rx_ring);
8348 
8349 	while (likely(total_packets < budget)) {
8350 		union e1000_adv_rx_desc *rx_desc;
8351 		struct igb_rx_buffer *rx_buffer;
8352 		unsigned int size;
8353 
8354 		/* return some buffers to hardware, one at a time is too slow */
8355 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8356 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8357 			cleaned_count = 0;
8358 		}
8359 
8360 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8361 		size = le16_to_cpu(rx_desc->wb.upper.length);
8362 		if (!size)
8363 			break;
8364 
8365 		/* This memory barrier is needed to keep us from reading
8366 		 * any other fields out of the rx_desc until we know the
8367 		 * descriptor has been written back
8368 		 */
8369 		dma_rmb();
8370 
8371 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8372 
8373 		/* retrieve a buffer from the ring */
8374 		if (skb)
8375 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8376 		else if (ring_uses_build_skb(rx_ring))
8377 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8378 		else
8379 			skb = igb_construct_skb(rx_ring, rx_buffer,
8380 						rx_desc, size);
8381 
8382 		/* exit if we failed to retrieve a buffer */
8383 		if (!skb) {
8384 			rx_ring->rx_stats.alloc_failed++;
8385 			rx_buffer->pagecnt_bias++;
8386 			break;
8387 		}
8388 
8389 		igb_put_rx_buffer(rx_ring, rx_buffer);
8390 		cleaned_count++;
8391 
8392 		/* fetch next buffer in frame if non-eop */
8393 		if (igb_is_non_eop(rx_ring, rx_desc))
8394 			continue;
8395 
8396 		/* verify the packet layout is correct */
8397 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8398 			skb = NULL;
8399 			continue;
8400 		}
8401 
8402 		/* probably a little skewed due to removing CRC */
8403 		total_bytes += skb->len;
8404 
8405 		/* populate checksum, timestamp, VLAN, and protocol */
8406 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8407 
8408 		napi_gro_receive(&q_vector->napi, skb);
8409 
8410 		/* reset skb pointer */
8411 		skb = NULL;
8412 
8413 		/* update budget accounting */
8414 		total_packets++;
8415 	}
8416 
8417 	/* place incomplete frames back on ring for completion */
8418 	rx_ring->skb = skb;
8419 
8420 	u64_stats_update_begin(&rx_ring->rx_syncp);
8421 	rx_ring->rx_stats.packets += total_packets;
8422 	rx_ring->rx_stats.bytes += total_bytes;
8423 	u64_stats_update_end(&rx_ring->rx_syncp);
8424 	q_vector->rx.total_packets += total_packets;
8425 	q_vector->rx.total_bytes += total_bytes;
8426 
8427 	if (cleaned_count)
8428 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8429 
8430 	return total_packets;
8431 }
8432 
igb_rx_offset(struct igb_ring * rx_ring)8433 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8434 {
8435 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8436 }
8437 
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8438 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8439 				  struct igb_rx_buffer *bi)
8440 {
8441 	struct page *page = bi->page;
8442 	dma_addr_t dma;
8443 
8444 	/* since we are recycling buffers we should seldom need to alloc */
8445 	if (likely(page))
8446 		return true;
8447 
8448 	/* alloc new page for storage */
8449 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8450 	if (unlikely(!page)) {
8451 		rx_ring->rx_stats.alloc_failed++;
8452 		return false;
8453 	}
8454 
8455 	/* map page for use */
8456 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8457 				 igb_rx_pg_size(rx_ring),
8458 				 DMA_FROM_DEVICE,
8459 				 IGB_RX_DMA_ATTR);
8460 
8461 	/* if mapping failed free memory back to system since
8462 	 * there isn't much point in holding memory we can't use
8463 	 */
8464 	if (dma_mapping_error(rx_ring->dev, dma)) {
8465 		__free_pages(page, igb_rx_pg_order(rx_ring));
8466 
8467 		rx_ring->rx_stats.alloc_failed++;
8468 		return false;
8469 	}
8470 
8471 	bi->dma = dma;
8472 	bi->page = page;
8473 	bi->page_offset = igb_rx_offset(rx_ring);
8474 	bi->pagecnt_bias = 1;
8475 
8476 	return true;
8477 }
8478 
8479 /**
8480  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8481  *  @adapter: address of board private structure
8482  **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8483 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8484 {
8485 	union e1000_adv_rx_desc *rx_desc;
8486 	struct igb_rx_buffer *bi;
8487 	u16 i = rx_ring->next_to_use;
8488 	u16 bufsz;
8489 
8490 	/* nothing to do */
8491 	if (!cleaned_count)
8492 		return;
8493 
8494 	rx_desc = IGB_RX_DESC(rx_ring, i);
8495 	bi = &rx_ring->rx_buffer_info[i];
8496 	i -= rx_ring->count;
8497 
8498 	bufsz = igb_rx_bufsz(rx_ring);
8499 
8500 	do {
8501 		if (!igb_alloc_mapped_page(rx_ring, bi))
8502 			break;
8503 
8504 		/* sync the buffer for use by the device */
8505 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8506 						 bi->page_offset, bufsz,
8507 						 DMA_FROM_DEVICE);
8508 
8509 		/* Refresh the desc even if buffer_addrs didn't change
8510 		 * because each write-back erases this info.
8511 		 */
8512 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8513 
8514 		rx_desc++;
8515 		bi++;
8516 		i++;
8517 		if (unlikely(!i)) {
8518 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8519 			bi = rx_ring->rx_buffer_info;
8520 			i -= rx_ring->count;
8521 		}
8522 
8523 		/* clear the length for the next_to_use descriptor */
8524 		rx_desc->wb.upper.length = 0;
8525 
8526 		cleaned_count--;
8527 	} while (cleaned_count);
8528 
8529 	i += rx_ring->count;
8530 
8531 	if (rx_ring->next_to_use != i) {
8532 		/* record the next descriptor to use */
8533 		rx_ring->next_to_use = i;
8534 
8535 		/* update next to alloc since we have filled the ring */
8536 		rx_ring->next_to_alloc = i;
8537 
8538 		/* Force memory writes to complete before letting h/w
8539 		 * know there are new descriptors to fetch.  (Only
8540 		 * applicable for weak-ordered memory model archs,
8541 		 * such as IA-64).
8542 		 */
8543 		dma_wmb();
8544 		writel(i, rx_ring->tail);
8545 	}
8546 }
8547 
8548 /**
8549  * igb_mii_ioctl -
8550  * @netdev:
8551  * @ifreq:
8552  * @cmd:
8553  **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8554 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8555 {
8556 	struct igb_adapter *adapter = netdev_priv(netdev);
8557 	struct mii_ioctl_data *data = if_mii(ifr);
8558 
8559 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8560 		return -EOPNOTSUPP;
8561 
8562 	switch (cmd) {
8563 	case SIOCGMIIPHY:
8564 		data->phy_id = adapter->hw.phy.addr;
8565 		break;
8566 	case SIOCGMIIREG:
8567 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8568 				     &data->val_out))
8569 			return -EIO;
8570 		break;
8571 	case SIOCSMIIREG:
8572 	default:
8573 		return -EOPNOTSUPP;
8574 	}
8575 	return 0;
8576 }
8577 
8578 /**
8579  * igb_ioctl -
8580  * @netdev:
8581  * @ifreq:
8582  * @cmd:
8583  **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8584 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8585 {
8586 	switch (cmd) {
8587 	case SIOCGMIIPHY:
8588 	case SIOCGMIIREG:
8589 	case SIOCSMIIREG:
8590 		return igb_mii_ioctl(netdev, ifr, cmd);
8591 	case SIOCGHWTSTAMP:
8592 		return igb_ptp_get_ts_config(netdev, ifr);
8593 	case SIOCSHWTSTAMP:
8594 		return igb_ptp_set_ts_config(netdev, ifr);
8595 	default:
8596 		return -EOPNOTSUPP;
8597 	}
8598 }
8599 
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8600 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8601 {
8602 	struct igb_adapter *adapter = hw->back;
8603 
8604 	pci_read_config_word(adapter->pdev, reg, value);
8605 }
8606 
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8607 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8608 {
8609 	struct igb_adapter *adapter = hw->back;
8610 
8611 	pci_write_config_word(adapter->pdev, reg, *value);
8612 }
8613 
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8614 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8615 {
8616 	struct igb_adapter *adapter = hw->back;
8617 
8618 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8619 		return -E1000_ERR_CONFIG;
8620 
8621 	return 0;
8622 }
8623 
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8624 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8625 {
8626 	struct igb_adapter *adapter = hw->back;
8627 
8628 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8629 		return -E1000_ERR_CONFIG;
8630 
8631 	return 0;
8632 }
8633 
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)8634 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8635 {
8636 	struct igb_adapter *adapter = netdev_priv(netdev);
8637 	struct e1000_hw *hw = &adapter->hw;
8638 	u32 ctrl, rctl;
8639 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8640 
8641 	if (enable) {
8642 		/* enable VLAN tag insert/strip */
8643 		ctrl = rd32(E1000_CTRL);
8644 		ctrl |= E1000_CTRL_VME;
8645 		wr32(E1000_CTRL, ctrl);
8646 
8647 		/* Disable CFI check */
8648 		rctl = rd32(E1000_RCTL);
8649 		rctl &= ~E1000_RCTL_CFIEN;
8650 		wr32(E1000_RCTL, rctl);
8651 	} else {
8652 		/* disable VLAN tag insert/strip */
8653 		ctrl = rd32(E1000_CTRL);
8654 		ctrl &= ~E1000_CTRL_VME;
8655 		wr32(E1000_CTRL, ctrl);
8656 	}
8657 
8658 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8659 }
8660 
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)8661 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8662 			       __be16 proto, u16 vid)
8663 {
8664 	struct igb_adapter *adapter = netdev_priv(netdev);
8665 	struct e1000_hw *hw = &adapter->hw;
8666 	int pf_id = adapter->vfs_allocated_count;
8667 
8668 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8669 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8670 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8671 
8672 	set_bit(vid, adapter->active_vlans);
8673 
8674 	return 0;
8675 }
8676 
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)8677 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8678 				__be16 proto, u16 vid)
8679 {
8680 	struct igb_adapter *adapter = netdev_priv(netdev);
8681 	int pf_id = adapter->vfs_allocated_count;
8682 	struct e1000_hw *hw = &adapter->hw;
8683 
8684 	/* remove VID from filter table */
8685 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8686 		igb_vfta_set(hw, vid, pf_id, false, true);
8687 
8688 	clear_bit(vid, adapter->active_vlans);
8689 
8690 	return 0;
8691 }
8692 
igb_restore_vlan(struct igb_adapter * adapter)8693 static void igb_restore_vlan(struct igb_adapter *adapter)
8694 {
8695 	u16 vid = 1;
8696 
8697 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8698 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8699 
8700 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8701 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8702 }
8703 
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)8704 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8705 {
8706 	struct pci_dev *pdev = adapter->pdev;
8707 	struct e1000_mac_info *mac = &adapter->hw.mac;
8708 
8709 	mac->autoneg = 0;
8710 
8711 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8712 	 * for the switch() below to work
8713 	 */
8714 	if ((spd & 1) || (dplx & ~1))
8715 		goto err_inval;
8716 
8717 	/* Fiber NIC's only allow 1000 gbps Full duplex
8718 	 * and 100Mbps Full duplex for 100baseFx sfp
8719 	 */
8720 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8721 		switch (spd + dplx) {
8722 		case SPEED_10 + DUPLEX_HALF:
8723 		case SPEED_10 + DUPLEX_FULL:
8724 		case SPEED_100 + DUPLEX_HALF:
8725 			goto err_inval;
8726 		default:
8727 			break;
8728 		}
8729 	}
8730 
8731 	switch (spd + dplx) {
8732 	case SPEED_10 + DUPLEX_HALF:
8733 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8734 		break;
8735 	case SPEED_10 + DUPLEX_FULL:
8736 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8737 		break;
8738 	case SPEED_100 + DUPLEX_HALF:
8739 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8740 		break;
8741 	case SPEED_100 + DUPLEX_FULL:
8742 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8743 		break;
8744 	case SPEED_1000 + DUPLEX_FULL:
8745 		mac->autoneg = 1;
8746 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8747 		break;
8748 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8749 	default:
8750 		goto err_inval;
8751 	}
8752 
8753 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8754 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8755 
8756 	return 0;
8757 
8758 err_inval:
8759 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8760 	return -EINVAL;
8761 }
8762 
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)8763 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8764 			  bool runtime)
8765 {
8766 	struct net_device *netdev = pci_get_drvdata(pdev);
8767 	struct igb_adapter *adapter = netdev_priv(netdev);
8768 	struct e1000_hw *hw = &adapter->hw;
8769 	u32 ctrl, rctl, status;
8770 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8771 	bool wake;
8772 
8773 	rtnl_lock();
8774 	netif_device_detach(netdev);
8775 
8776 	if (netif_running(netdev))
8777 		__igb_close(netdev, true);
8778 
8779 	igb_ptp_suspend(adapter);
8780 
8781 	igb_clear_interrupt_scheme(adapter);
8782 	rtnl_unlock();
8783 
8784 	status = rd32(E1000_STATUS);
8785 	if (status & E1000_STATUS_LU)
8786 		wufc &= ~E1000_WUFC_LNKC;
8787 
8788 	if (wufc) {
8789 		igb_setup_rctl(adapter);
8790 		igb_set_rx_mode(netdev);
8791 
8792 		/* turn on all-multi mode if wake on multicast is enabled */
8793 		if (wufc & E1000_WUFC_MC) {
8794 			rctl = rd32(E1000_RCTL);
8795 			rctl |= E1000_RCTL_MPE;
8796 			wr32(E1000_RCTL, rctl);
8797 		}
8798 
8799 		ctrl = rd32(E1000_CTRL);
8800 		ctrl |= E1000_CTRL_ADVD3WUC;
8801 		wr32(E1000_CTRL, ctrl);
8802 
8803 		/* Allow time for pending master requests to run */
8804 		igb_disable_pcie_master(hw);
8805 
8806 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8807 		wr32(E1000_WUFC, wufc);
8808 	} else {
8809 		wr32(E1000_WUC, 0);
8810 		wr32(E1000_WUFC, 0);
8811 	}
8812 
8813 	wake = wufc || adapter->en_mng_pt;
8814 	if (!wake)
8815 		igb_power_down_link(adapter);
8816 	else
8817 		igb_power_up_link(adapter);
8818 
8819 	if (enable_wake)
8820 		*enable_wake = wake;
8821 
8822 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8823 	 * would have already happened in close and is redundant.
8824 	 */
8825 	igb_release_hw_control(adapter);
8826 
8827 	pci_disable_device(pdev);
8828 
8829 	return 0;
8830 }
8831 
igb_deliver_wake_packet(struct net_device * netdev)8832 static void igb_deliver_wake_packet(struct net_device *netdev)
8833 {
8834 	struct igb_adapter *adapter = netdev_priv(netdev);
8835 	struct e1000_hw *hw = &adapter->hw;
8836 	struct sk_buff *skb;
8837 	u32 wupl;
8838 
8839 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8840 
8841 	/* WUPM stores only the first 128 bytes of the wake packet.
8842 	 * Read the packet only if we have the whole thing.
8843 	 */
8844 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8845 		return;
8846 
8847 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8848 	if (!skb)
8849 		return;
8850 
8851 	skb_put(skb, wupl);
8852 
8853 	/* Ensure reads are 32-bit aligned */
8854 	wupl = roundup(wupl, 4);
8855 
8856 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8857 
8858 	skb->protocol = eth_type_trans(skb, netdev);
8859 	netif_rx(skb);
8860 }
8861 
igb_suspend(struct device * dev)8862 static int __maybe_unused igb_suspend(struct device *dev)
8863 {
8864 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8865 }
8866 
igb_resume(struct device * dev)8867 static int __maybe_unused igb_resume(struct device *dev)
8868 {
8869 	struct pci_dev *pdev = to_pci_dev(dev);
8870 	struct net_device *netdev = pci_get_drvdata(pdev);
8871 	struct igb_adapter *adapter = netdev_priv(netdev);
8872 	struct e1000_hw *hw = &adapter->hw;
8873 	u32 err, val;
8874 
8875 	pci_set_power_state(pdev, PCI_D0);
8876 	pci_restore_state(pdev);
8877 	pci_save_state(pdev);
8878 
8879 	if (!pci_device_is_present(pdev))
8880 		return -ENODEV;
8881 	err = pci_enable_device_mem(pdev);
8882 	if (err) {
8883 		dev_err(&pdev->dev,
8884 			"igb: Cannot enable PCI device from suspend\n");
8885 		return err;
8886 	}
8887 	pci_set_master(pdev);
8888 
8889 	pci_enable_wake(pdev, PCI_D3hot, 0);
8890 	pci_enable_wake(pdev, PCI_D3cold, 0);
8891 
8892 	if (igb_init_interrupt_scheme(adapter, true)) {
8893 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8894 		return -ENOMEM;
8895 	}
8896 
8897 	igb_reset(adapter);
8898 
8899 	/* let the f/w know that the h/w is now under the control of the
8900 	 * driver.
8901 	 */
8902 	igb_get_hw_control(adapter);
8903 
8904 	val = rd32(E1000_WUS);
8905 	if (val & WAKE_PKT_WUS)
8906 		igb_deliver_wake_packet(netdev);
8907 
8908 	wr32(E1000_WUS, ~0);
8909 
8910 	rtnl_lock();
8911 	if (!err && netif_running(netdev))
8912 		err = __igb_open(netdev, true);
8913 
8914 	if (!err)
8915 		netif_device_attach(netdev);
8916 	rtnl_unlock();
8917 
8918 	return err;
8919 }
8920 
igb_runtime_idle(struct device * dev)8921 static int __maybe_unused igb_runtime_idle(struct device *dev)
8922 {
8923 	struct pci_dev *pdev = to_pci_dev(dev);
8924 	struct net_device *netdev = pci_get_drvdata(pdev);
8925 	struct igb_adapter *adapter = netdev_priv(netdev);
8926 
8927 	if (!igb_has_link(adapter))
8928 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8929 
8930 	return -EBUSY;
8931 }
8932 
igb_runtime_suspend(struct device * dev)8933 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8934 {
8935 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8936 }
8937 
igb_runtime_resume(struct device * dev)8938 static int __maybe_unused igb_runtime_resume(struct device *dev)
8939 {
8940 	return igb_resume(dev);
8941 }
8942 
igb_shutdown(struct pci_dev * pdev)8943 static void igb_shutdown(struct pci_dev *pdev)
8944 {
8945 	bool wake;
8946 
8947 	__igb_shutdown(pdev, &wake, 0);
8948 
8949 	if (system_state == SYSTEM_POWER_OFF) {
8950 		pci_wake_from_d3(pdev, wake);
8951 		pci_set_power_state(pdev, PCI_D3hot);
8952 	}
8953 }
8954 
8955 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)8956 static int igb_sriov_reinit(struct pci_dev *dev)
8957 {
8958 	struct net_device *netdev = pci_get_drvdata(dev);
8959 	struct igb_adapter *adapter = netdev_priv(netdev);
8960 	struct pci_dev *pdev = adapter->pdev;
8961 
8962 	rtnl_lock();
8963 
8964 	if (netif_running(netdev))
8965 		igb_close(netdev);
8966 	else
8967 		igb_reset(adapter);
8968 
8969 	igb_clear_interrupt_scheme(adapter);
8970 
8971 	igb_init_queue_configuration(adapter);
8972 
8973 	if (igb_init_interrupt_scheme(adapter, true)) {
8974 		rtnl_unlock();
8975 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8976 		return -ENOMEM;
8977 	}
8978 
8979 	if (netif_running(netdev))
8980 		igb_open(netdev);
8981 
8982 	rtnl_unlock();
8983 
8984 	return 0;
8985 }
8986 
igb_pci_disable_sriov(struct pci_dev * dev)8987 static int igb_pci_disable_sriov(struct pci_dev *dev)
8988 {
8989 	int err = igb_disable_sriov(dev);
8990 
8991 	if (!err)
8992 		err = igb_sriov_reinit(dev);
8993 
8994 	return err;
8995 }
8996 
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)8997 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8998 {
8999 	int err = igb_enable_sriov(dev, num_vfs);
9000 
9001 	if (err)
9002 		goto out;
9003 
9004 	err = igb_sriov_reinit(dev);
9005 	if (!err)
9006 		return num_vfs;
9007 
9008 out:
9009 	return err;
9010 }
9011 
9012 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9013 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9014 {
9015 #ifdef CONFIG_PCI_IOV
9016 	if (num_vfs == 0)
9017 		return igb_pci_disable_sriov(dev);
9018 	else
9019 		return igb_pci_enable_sriov(dev, num_vfs);
9020 #endif
9021 	return 0;
9022 }
9023 
9024 /**
9025  *  igb_io_error_detected - called when PCI error is detected
9026  *  @pdev: Pointer to PCI device
9027  *  @state: The current pci connection state
9028  *
9029  *  This function is called after a PCI bus error affecting
9030  *  this device has been detected.
9031  **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9032 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9033 					      pci_channel_state_t state)
9034 {
9035 	struct net_device *netdev = pci_get_drvdata(pdev);
9036 	struct igb_adapter *adapter = netdev_priv(netdev);
9037 
9038 	netif_device_detach(netdev);
9039 
9040 	if (state == pci_channel_io_perm_failure)
9041 		return PCI_ERS_RESULT_DISCONNECT;
9042 
9043 	if (netif_running(netdev))
9044 		igb_down(adapter);
9045 	pci_disable_device(pdev);
9046 
9047 	/* Request a slot slot reset. */
9048 	return PCI_ERS_RESULT_NEED_RESET;
9049 }
9050 
9051 /**
9052  *  igb_io_slot_reset - called after the pci bus has been reset.
9053  *  @pdev: Pointer to PCI device
9054  *
9055  *  Restart the card from scratch, as if from a cold-boot. Implementation
9056  *  resembles the first-half of the igb_resume routine.
9057  **/
igb_io_slot_reset(struct pci_dev * pdev)9058 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9059 {
9060 	struct net_device *netdev = pci_get_drvdata(pdev);
9061 	struct igb_adapter *adapter = netdev_priv(netdev);
9062 	struct e1000_hw *hw = &adapter->hw;
9063 	pci_ers_result_t result;
9064 	int err;
9065 
9066 	if (pci_enable_device_mem(pdev)) {
9067 		dev_err(&pdev->dev,
9068 			"Cannot re-enable PCI device after reset.\n");
9069 		result = PCI_ERS_RESULT_DISCONNECT;
9070 	} else {
9071 		pci_set_master(pdev);
9072 		pci_restore_state(pdev);
9073 		pci_save_state(pdev);
9074 
9075 		pci_enable_wake(pdev, PCI_D3hot, 0);
9076 		pci_enable_wake(pdev, PCI_D3cold, 0);
9077 
9078 		/* In case of PCI error, adapter lose its HW address
9079 		 * so we should re-assign it here.
9080 		 */
9081 		hw->hw_addr = adapter->io_addr;
9082 
9083 		igb_reset(adapter);
9084 		wr32(E1000_WUS, ~0);
9085 		result = PCI_ERS_RESULT_RECOVERED;
9086 	}
9087 
9088 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
9089 	if (err) {
9090 		dev_err(&pdev->dev,
9091 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9092 			err);
9093 		/* non-fatal, continue */
9094 	}
9095 
9096 	return result;
9097 }
9098 
9099 /**
9100  *  igb_io_resume - called when traffic can start flowing again.
9101  *  @pdev: Pointer to PCI device
9102  *
9103  *  This callback is called when the error recovery driver tells us that
9104  *  its OK to resume normal operation. Implementation resembles the
9105  *  second-half of the igb_resume routine.
9106  */
igb_io_resume(struct pci_dev * pdev)9107 static void igb_io_resume(struct pci_dev *pdev)
9108 {
9109 	struct net_device *netdev = pci_get_drvdata(pdev);
9110 	struct igb_adapter *adapter = netdev_priv(netdev);
9111 
9112 	if (netif_running(netdev)) {
9113 		if (igb_up(adapter)) {
9114 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9115 			return;
9116 		}
9117 	}
9118 
9119 	netif_device_attach(netdev);
9120 
9121 	/* let the f/w know that the h/w is now under the control of the
9122 	 * driver.
9123 	 */
9124 	igb_get_hw_control(adapter);
9125 }
9126 
9127 /**
9128  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9129  *  @adapter: Pointer to adapter structure
9130  *  @index: Index of the RAR entry which need to be synced with MAC table
9131  **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9132 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9133 {
9134 	struct e1000_hw *hw = &adapter->hw;
9135 	u32 rar_low, rar_high;
9136 	u8 *addr = adapter->mac_table[index].addr;
9137 
9138 	/* HW expects these to be in network order when they are plugged
9139 	 * into the registers which are little endian.  In order to guarantee
9140 	 * that ordering we need to do an leXX_to_cpup here in order to be
9141 	 * ready for the byteswap that occurs with writel
9142 	 */
9143 	rar_low = le32_to_cpup((__le32 *)(addr));
9144 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9145 
9146 	/* Indicate to hardware the Address is Valid. */
9147 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9148 		if (is_valid_ether_addr(addr))
9149 			rar_high |= E1000_RAH_AV;
9150 
9151 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9152 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9153 
9154 		switch (hw->mac.type) {
9155 		case e1000_82575:
9156 		case e1000_i210:
9157 			if (adapter->mac_table[index].state &
9158 			    IGB_MAC_STATE_QUEUE_STEERING)
9159 				rar_high |= E1000_RAH_QSEL_ENABLE;
9160 
9161 			rar_high |= E1000_RAH_POOL_1 *
9162 				    adapter->mac_table[index].queue;
9163 			break;
9164 		default:
9165 			rar_high |= E1000_RAH_POOL_1 <<
9166 				    adapter->mac_table[index].queue;
9167 			break;
9168 		}
9169 	}
9170 
9171 	wr32(E1000_RAL(index), rar_low);
9172 	wrfl();
9173 	wr32(E1000_RAH(index), rar_high);
9174 	wrfl();
9175 }
9176 
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9177 static int igb_set_vf_mac(struct igb_adapter *adapter,
9178 			  int vf, unsigned char *mac_addr)
9179 {
9180 	struct e1000_hw *hw = &adapter->hw;
9181 	/* VF MAC addresses start at end of receive addresses and moves
9182 	 * towards the first, as a result a collision should not be possible
9183 	 */
9184 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9185 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9186 
9187 	ether_addr_copy(vf_mac_addr, mac_addr);
9188 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9189 	adapter->mac_table[rar_entry].queue = vf;
9190 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9191 	igb_rar_set_index(adapter, rar_entry);
9192 
9193 	return 0;
9194 }
9195 
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9196 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9197 {
9198 	struct igb_adapter *adapter = netdev_priv(netdev);
9199 
9200 	if (vf >= adapter->vfs_allocated_count)
9201 		return -EINVAL;
9202 
9203 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9204 	 * flag and allows to overwrite the MAC via VF netdev.  This
9205 	 * is necessary to allow libvirt a way to restore the original
9206 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9207 	 * down a VM.
9208 	 */
9209 	if (is_zero_ether_addr(mac)) {
9210 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9211 		dev_info(&adapter->pdev->dev,
9212 			 "remove administratively set MAC on VF %d\n",
9213 			 vf);
9214 	} else if (is_valid_ether_addr(mac)) {
9215 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9216 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9217 			 mac, vf);
9218 		dev_info(&adapter->pdev->dev,
9219 			 "Reload the VF driver to make this change effective.");
9220 		/* Generate additional warning if PF is down */
9221 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9222 			dev_warn(&adapter->pdev->dev,
9223 				 "The VF MAC address has been set, but the PF device is not up.\n");
9224 			dev_warn(&adapter->pdev->dev,
9225 				 "Bring the PF device up before attempting to use the VF device.\n");
9226 		}
9227 	} else {
9228 		return -EINVAL;
9229 	}
9230 	return igb_set_vf_mac(adapter, vf, mac);
9231 }
9232 
igb_link_mbps(int internal_link_speed)9233 static int igb_link_mbps(int internal_link_speed)
9234 {
9235 	switch (internal_link_speed) {
9236 	case SPEED_100:
9237 		return 100;
9238 	case SPEED_1000:
9239 		return 1000;
9240 	default:
9241 		return 0;
9242 	}
9243 }
9244 
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9245 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9246 				  int link_speed)
9247 {
9248 	int rf_dec, rf_int;
9249 	u32 bcnrc_val;
9250 
9251 	if (tx_rate != 0) {
9252 		/* Calculate the rate factor values to set */
9253 		rf_int = link_speed / tx_rate;
9254 		rf_dec = (link_speed - (rf_int * tx_rate));
9255 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9256 			 tx_rate;
9257 
9258 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9259 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9260 			      E1000_RTTBCNRC_RF_INT_MASK);
9261 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9262 	} else {
9263 		bcnrc_val = 0;
9264 	}
9265 
9266 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9267 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9268 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9269 	 */
9270 	wr32(E1000_RTTBCNRM, 0x14);
9271 	wr32(E1000_RTTBCNRC, bcnrc_val);
9272 }
9273 
igb_check_vf_rate_limit(struct igb_adapter * adapter)9274 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9275 {
9276 	int actual_link_speed, i;
9277 	bool reset_rate = false;
9278 
9279 	/* VF TX rate limit was not set or not supported */
9280 	if ((adapter->vf_rate_link_speed == 0) ||
9281 	    (adapter->hw.mac.type != e1000_82576))
9282 		return;
9283 
9284 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9285 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9286 		reset_rate = true;
9287 		adapter->vf_rate_link_speed = 0;
9288 		dev_info(&adapter->pdev->dev,
9289 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9290 	}
9291 
9292 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9293 		if (reset_rate)
9294 			adapter->vf_data[i].tx_rate = 0;
9295 
9296 		igb_set_vf_rate_limit(&adapter->hw, i,
9297 				      adapter->vf_data[i].tx_rate,
9298 				      actual_link_speed);
9299 	}
9300 }
9301 
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9302 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9303 			     int min_tx_rate, int max_tx_rate)
9304 {
9305 	struct igb_adapter *adapter = netdev_priv(netdev);
9306 	struct e1000_hw *hw = &adapter->hw;
9307 	int actual_link_speed;
9308 
9309 	if (hw->mac.type != e1000_82576)
9310 		return -EOPNOTSUPP;
9311 
9312 	if (min_tx_rate)
9313 		return -EINVAL;
9314 
9315 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9316 	if ((vf >= adapter->vfs_allocated_count) ||
9317 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9318 	    (max_tx_rate < 0) ||
9319 	    (max_tx_rate > actual_link_speed))
9320 		return -EINVAL;
9321 
9322 	adapter->vf_rate_link_speed = actual_link_speed;
9323 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9324 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9325 
9326 	return 0;
9327 }
9328 
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9329 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9330 				   bool setting)
9331 {
9332 	struct igb_adapter *adapter = netdev_priv(netdev);
9333 	struct e1000_hw *hw = &adapter->hw;
9334 	u32 reg_val, reg_offset;
9335 
9336 	if (!adapter->vfs_allocated_count)
9337 		return -EOPNOTSUPP;
9338 
9339 	if (vf >= adapter->vfs_allocated_count)
9340 		return -EINVAL;
9341 
9342 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9343 	reg_val = rd32(reg_offset);
9344 	if (setting)
9345 		reg_val |= (BIT(vf) |
9346 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9347 	else
9348 		reg_val &= ~(BIT(vf) |
9349 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9350 	wr32(reg_offset, reg_val);
9351 
9352 	adapter->vf_data[vf].spoofchk_enabled = setting;
9353 	return 0;
9354 }
9355 
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9356 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9357 {
9358 	struct igb_adapter *adapter = netdev_priv(netdev);
9359 
9360 	if (vf >= adapter->vfs_allocated_count)
9361 		return -EINVAL;
9362 	if (adapter->vf_data[vf].trusted == setting)
9363 		return 0;
9364 
9365 	adapter->vf_data[vf].trusted = setting;
9366 
9367 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9368 		 vf, setting ? "" : "not ");
9369 	return 0;
9370 }
9371 
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9372 static int igb_ndo_get_vf_config(struct net_device *netdev,
9373 				 int vf, struct ifla_vf_info *ivi)
9374 {
9375 	struct igb_adapter *adapter = netdev_priv(netdev);
9376 	if (vf >= adapter->vfs_allocated_count)
9377 		return -EINVAL;
9378 	ivi->vf = vf;
9379 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9380 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9381 	ivi->min_tx_rate = 0;
9382 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9383 	ivi->qos = adapter->vf_data[vf].pf_qos;
9384 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9385 	ivi->trusted = adapter->vf_data[vf].trusted;
9386 	return 0;
9387 }
9388 
igb_vmm_control(struct igb_adapter * adapter)9389 static void igb_vmm_control(struct igb_adapter *adapter)
9390 {
9391 	struct e1000_hw *hw = &adapter->hw;
9392 	u32 reg;
9393 
9394 	switch (hw->mac.type) {
9395 	case e1000_82575:
9396 	case e1000_i210:
9397 	case e1000_i211:
9398 	case e1000_i354:
9399 	default:
9400 		/* replication is not supported for 82575 */
9401 		return;
9402 	case e1000_82576:
9403 		/* notify HW that the MAC is adding vlan tags */
9404 		reg = rd32(E1000_DTXCTL);
9405 		reg |= E1000_DTXCTL_VLAN_ADDED;
9406 		wr32(E1000_DTXCTL, reg);
9407 		/* Fall through */
9408 	case e1000_82580:
9409 		/* enable replication vlan tag stripping */
9410 		reg = rd32(E1000_RPLOLR);
9411 		reg |= E1000_RPLOLR_STRVLAN;
9412 		wr32(E1000_RPLOLR, reg);
9413 		/* Fall through */
9414 	case e1000_i350:
9415 		/* none of the above registers are supported by i350 */
9416 		break;
9417 	}
9418 
9419 	if (adapter->vfs_allocated_count) {
9420 		igb_vmdq_set_loopback_pf(hw, true);
9421 		igb_vmdq_set_replication_pf(hw, true);
9422 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9423 					      adapter->vfs_allocated_count);
9424 	} else {
9425 		igb_vmdq_set_loopback_pf(hw, false);
9426 		igb_vmdq_set_replication_pf(hw, false);
9427 	}
9428 }
9429 
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9430 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9431 {
9432 	struct e1000_hw *hw = &adapter->hw;
9433 	u32 dmac_thr;
9434 	u16 hwm;
9435 
9436 	if (hw->mac.type > e1000_82580) {
9437 		if (adapter->flags & IGB_FLAG_DMAC) {
9438 			u32 reg;
9439 
9440 			/* force threshold to 0. */
9441 			wr32(E1000_DMCTXTH, 0);
9442 
9443 			/* DMA Coalescing high water mark needs to be greater
9444 			 * than the Rx threshold. Set hwm to PBA - max frame
9445 			 * size in 16B units, capping it at PBA - 6KB.
9446 			 */
9447 			hwm = 64 * (pba - 6);
9448 			reg = rd32(E1000_FCRTC);
9449 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9450 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9451 				& E1000_FCRTC_RTH_COAL_MASK);
9452 			wr32(E1000_FCRTC, reg);
9453 
9454 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9455 			 * frame size, capping it at PBA - 10KB.
9456 			 */
9457 			dmac_thr = pba - 10;
9458 			reg = rd32(E1000_DMACR);
9459 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9460 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9461 				& E1000_DMACR_DMACTHR_MASK);
9462 
9463 			/* transition to L0x or L1 if available..*/
9464 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9465 
9466 			/* watchdog timer= +-1000 usec in 32usec intervals */
9467 			reg |= (1000 >> 5);
9468 
9469 			/* Disable BMC-to-OS Watchdog Enable */
9470 			if (hw->mac.type != e1000_i354)
9471 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9472 
9473 			wr32(E1000_DMACR, reg);
9474 
9475 			/* no lower threshold to disable
9476 			 * coalescing(smart fifb)-UTRESH=0
9477 			 */
9478 			wr32(E1000_DMCRTRH, 0);
9479 
9480 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9481 
9482 			wr32(E1000_DMCTLX, reg);
9483 
9484 			/* free space in tx packet buffer to wake from
9485 			 * DMA coal
9486 			 */
9487 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9488 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9489 
9490 			/* make low power state decision controlled
9491 			 * by DMA coal
9492 			 */
9493 			reg = rd32(E1000_PCIEMISC);
9494 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9495 			wr32(E1000_PCIEMISC, reg);
9496 		} /* endif adapter->dmac is not disabled */
9497 	} else if (hw->mac.type == e1000_82580) {
9498 		u32 reg = rd32(E1000_PCIEMISC);
9499 
9500 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9501 		wr32(E1000_DMACR, 0);
9502 	}
9503 }
9504 
9505 /**
9506  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9507  *  @hw: pointer to hardware structure
9508  *  @byte_offset: byte offset to read
9509  *  @dev_addr: device address
9510  *  @data: value read
9511  *
9512  *  Performs byte read operation over I2C interface at
9513  *  a specified device address.
9514  **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9515 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9516 		      u8 dev_addr, u8 *data)
9517 {
9518 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9519 	struct i2c_client *this_client = adapter->i2c_client;
9520 	s32 status;
9521 	u16 swfw_mask = 0;
9522 
9523 	if (!this_client)
9524 		return E1000_ERR_I2C;
9525 
9526 	swfw_mask = E1000_SWFW_PHY0_SM;
9527 
9528 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9529 		return E1000_ERR_SWFW_SYNC;
9530 
9531 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9532 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9533 
9534 	if (status < 0)
9535 		return E1000_ERR_I2C;
9536 	else {
9537 		*data = status;
9538 		return 0;
9539 	}
9540 }
9541 
9542 /**
9543  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9544  *  @hw: pointer to hardware structure
9545  *  @byte_offset: byte offset to write
9546  *  @dev_addr: device address
9547  *  @data: value to write
9548  *
9549  *  Performs byte write operation over I2C interface at
9550  *  a specified device address.
9551  **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9552 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9553 		       u8 dev_addr, u8 data)
9554 {
9555 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9556 	struct i2c_client *this_client = adapter->i2c_client;
9557 	s32 status;
9558 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9559 
9560 	if (!this_client)
9561 		return E1000_ERR_I2C;
9562 
9563 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9564 		return E1000_ERR_SWFW_SYNC;
9565 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9566 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9567 
9568 	if (status)
9569 		return E1000_ERR_I2C;
9570 	else
9571 		return 0;
9572 
9573 }
9574 
igb_reinit_queues(struct igb_adapter * adapter)9575 int igb_reinit_queues(struct igb_adapter *adapter)
9576 {
9577 	struct net_device *netdev = adapter->netdev;
9578 	struct pci_dev *pdev = adapter->pdev;
9579 	int err = 0;
9580 
9581 	if (netif_running(netdev))
9582 		igb_close(netdev);
9583 
9584 	igb_reset_interrupt_capability(adapter);
9585 
9586 	if (igb_init_interrupt_scheme(adapter, true)) {
9587 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9588 		return -ENOMEM;
9589 	}
9590 
9591 	if (netif_running(netdev))
9592 		err = igb_open(netdev);
9593 
9594 	return err;
9595 }
9596 
igb_nfc_filter_exit(struct igb_adapter * adapter)9597 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9598 {
9599 	struct igb_nfc_filter *rule;
9600 
9601 	spin_lock(&adapter->nfc_lock);
9602 
9603 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9604 		igb_erase_filter(adapter, rule);
9605 
9606 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9607 		igb_erase_filter(adapter, rule);
9608 
9609 	spin_unlock(&adapter->nfc_lock);
9610 }
9611 
igb_nfc_filter_restore(struct igb_adapter * adapter)9612 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9613 {
9614 	struct igb_nfc_filter *rule;
9615 
9616 	spin_lock(&adapter->nfc_lock);
9617 
9618 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9619 		igb_add_filter(adapter, rule);
9620 
9621 	spin_unlock(&adapter->nfc_lock);
9622 }
9623 /* igb_main.c */
9624