1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
43 */
44 #define LEGACY_REQUEST_SIZE 200
45
__intel_ring_space(unsigned int head,unsigned int tail,unsigned int size)46 static unsigned int __intel_ring_space(unsigned int head,
47 unsigned int tail,
48 unsigned int size)
49 {
50 /*
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
53 * Pointer."
54 */
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
intel_ring_update_space(struct intel_ring * ring)59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61 unsigned int space;
62
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65 ring->space = space;
66 return space;
67 }
68
69 static int
gen2_render_ring_flush(struct i915_request * rq,u32 mode)70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72 u32 cmd, *cs;
73
74 cmd = MI_FLUSH;
75
76 if (mode & EMIT_INVALIDATE)
77 cmd |= MI_READ_FLUSH;
78
79 cs = intel_ring_begin(rq, 2);
80 if (IS_ERR(cs))
81 return PTR_ERR(cs);
82
83 *cs++ = cmd;
84 *cs++ = MI_NOOP;
85 intel_ring_advance(rq, cs);
86
87 return 0;
88 }
89
90 static int
gen4_render_ring_flush(struct i915_request * rq,u32 mode)91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92 {
93 u32 cmd, *cs;
94 int i;
95
96 /*
97 * read/write caches:
98 *
99 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
100 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
101 * also flushed at 2d versus 3d pipeline switches.
102 *
103 * read-only caches:
104 *
105 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
106 * MI_READ_FLUSH is set, and is always flushed on 965.
107 *
108 * I915_GEM_DOMAIN_COMMAND may not exist?
109 *
110 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
111 * invalidated when MI_EXE_FLUSH is set.
112 *
113 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
114 * invalidated with every MI_FLUSH.
115 *
116 * TLBs:
117 *
118 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
119 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
120 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
121 * are flushed at any MI_FLUSH.
122 */
123
124 cmd = MI_FLUSH;
125 if (mode & EMIT_INVALIDATE) {
126 cmd |= MI_EXE_FLUSH;
127 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
128 cmd |= MI_INVALIDATE_ISP;
129 }
130
131 i = 2;
132 if (mode & EMIT_INVALIDATE)
133 i += 20;
134
135 cs = intel_ring_begin(rq, i);
136 if (IS_ERR(cs))
137 return PTR_ERR(cs);
138
139 *cs++ = cmd;
140
141 /*
142 * A random delay to let the CS invalidate take effect? Without this
143 * delay, the GPU relocation path fails as the CS does not see
144 * the updated contents. Just as important, if we apply the flushes
145 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
146 * write and before the invalidate on the next batch), the relocations
147 * still fail. This implies that is a delay following invalidation
148 * that is required to reset the caches as opposed to a delay to
149 * ensure the memory is written.
150 */
151 if (mode & EMIT_INVALIDATE) {
152 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
153 *cs++ = i915_ggtt_offset(rq->engine->scratch) |
154 PIPE_CONTROL_GLOBAL_GTT;
155 *cs++ = 0;
156 *cs++ = 0;
157
158 for (i = 0; i < 12; i++)
159 *cs++ = MI_FLUSH;
160
161 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
162 *cs++ = i915_ggtt_offset(rq->engine->scratch) |
163 PIPE_CONTROL_GLOBAL_GTT;
164 *cs++ = 0;
165 *cs++ = 0;
166 }
167
168 *cs++ = cmd;
169
170 intel_ring_advance(rq, cs);
171
172 return 0;
173 }
174
175 /*
176 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
177 * implementing two workarounds on gen6. From section 1.4.7.1
178 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
179 *
180 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
181 * produced by non-pipelined state commands), software needs to first
182 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
183 * 0.
184 *
185 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
186 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
187 *
188 * And the workaround for these two requires this workaround first:
189 *
190 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
191 * BEFORE the pipe-control with a post-sync op and no write-cache
192 * flushes.
193 *
194 * And this last workaround is tricky because of the requirements on
195 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
196 * volume 2 part 1:
197 *
198 * "1 of the following must also be set:
199 * - Render Target Cache Flush Enable ([12] of DW1)
200 * - Depth Cache Flush Enable ([0] of DW1)
201 * - Stall at Pixel Scoreboard ([1] of DW1)
202 * - Depth Stall ([13] of DW1)
203 * - Post-Sync Operation ([13] of DW1)
204 * - Notify Enable ([8] of DW1)"
205 *
206 * The cache flushes require the workaround flush that triggered this
207 * one, so we can't use it. Depth stall would trigger the same.
208 * Post-sync nonzero is what triggered this second workaround, so we
209 * can't use that one either. Notify enable is IRQs, which aren't
210 * really our business. That leaves only stall at scoreboard.
211 */
212 static int
intel_emit_post_sync_nonzero_flush(struct i915_request * rq)213 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
214 {
215 u32 scratch_addr =
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
217 u32 *cs;
218
219 cs = intel_ring_begin(rq, 6);
220 if (IS_ERR(cs))
221 return PTR_ERR(cs);
222
223 *cs++ = GFX_OP_PIPE_CONTROL(5);
224 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
225 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
226 *cs++ = 0; /* low dword */
227 *cs++ = 0; /* high dword */
228 *cs++ = MI_NOOP;
229 intel_ring_advance(rq, cs);
230
231 cs = intel_ring_begin(rq, 6);
232 if (IS_ERR(cs))
233 return PTR_ERR(cs);
234
235 *cs++ = GFX_OP_PIPE_CONTROL(5);
236 *cs++ = PIPE_CONTROL_QW_WRITE;
237 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
238 *cs++ = 0;
239 *cs++ = 0;
240 *cs++ = MI_NOOP;
241 intel_ring_advance(rq, cs);
242
243 return 0;
244 }
245
246 static int
gen6_render_ring_flush(struct i915_request * rq,u32 mode)247 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
248 {
249 u32 scratch_addr =
250 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
251 u32 *cs, flags = 0;
252 int ret;
253
254 /* Force SNB workarounds for PIPE_CONTROL flushes */
255 ret = intel_emit_post_sync_nonzero_flush(rq);
256 if (ret)
257 return ret;
258
259 /* Just flush everything. Experiments have shown that reducing the
260 * number of bits based on the write domains has little performance
261 * impact.
262 */
263 if (mode & EMIT_FLUSH) {
264 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
265 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
266 /*
267 * Ensure that any following seqno writes only happen
268 * when the render cache is indeed flushed.
269 */
270 flags |= PIPE_CONTROL_CS_STALL;
271 }
272 if (mode & EMIT_INVALIDATE) {
273 flags |= PIPE_CONTROL_TLB_INVALIDATE;
274 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
275 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
276 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
277 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
279 /*
280 * TLB invalidate requires a post-sync write.
281 */
282 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
283 }
284
285 cs = intel_ring_begin(rq, 4);
286 if (IS_ERR(cs))
287 return PTR_ERR(cs);
288
289 *cs++ = GFX_OP_PIPE_CONTROL(4);
290 *cs++ = flags;
291 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
292 *cs++ = 0;
293 intel_ring_advance(rq, cs);
294
295 return 0;
296 }
297
298 static int
gen7_render_ring_cs_stall_wa(struct i915_request * rq)299 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
300 {
301 u32 *cs;
302
303 cs = intel_ring_begin(rq, 4);
304 if (IS_ERR(cs))
305 return PTR_ERR(cs);
306
307 *cs++ = GFX_OP_PIPE_CONTROL(4);
308 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
309 *cs++ = 0;
310 *cs++ = 0;
311 intel_ring_advance(rq, cs);
312
313 return 0;
314 }
315
316 static int
gen7_render_ring_flush(struct i915_request * rq,u32 mode)317 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
318 {
319 u32 scratch_addr =
320 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
321 u32 *cs, flags = 0;
322
323 /*
324 * Ensure that any following seqno writes only happen when the render
325 * cache is indeed flushed.
326 *
327 * Workaround: 4th PIPE_CONTROL command (except the ones with only
328 * read-cache invalidate bits set) must have the CS_STALL bit set. We
329 * don't try to be clever and just set it unconditionally.
330 */
331 flags |= PIPE_CONTROL_CS_STALL;
332
333 /* Just flush everything. Experiments have shown that reducing the
334 * number of bits based on the write domains has little performance
335 * impact.
336 */
337 if (mode & EMIT_FLUSH) {
338 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
341 flags |= PIPE_CONTROL_FLUSH_ENABLE;
342 }
343 if (mode & EMIT_INVALIDATE) {
344 flags |= PIPE_CONTROL_TLB_INVALIDATE;
345 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
346 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
347 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
348 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
351 /*
352 * TLB invalidate requires a post-sync write.
353 */
354 flags |= PIPE_CONTROL_QW_WRITE;
355 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
356
357 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
358
359 /* Workaround: we must issue a pipe_control with CS-stall bit
360 * set before a pipe_control command that has the state cache
361 * invalidate bit set. */
362 gen7_render_ring_cs_stall_wa(rq);
363 }
364
365 cs = intel_ring_begin(rq, 4);
366 if (IS_ERR(cs))
367 return PTR_ERR(cs);
368
369 *cs++ = GFX_OP_PIPE_CONTROL(4);
370 *cs++ = flags;
371 *cs++ = scratch_addr;
372 *cs++ = 0;
373 intel_ring_advance(rq, cs);
374
375 return 0;
376 }
377
ring_setup_phys_status_page(struct intel_engine_cs * engine)378 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
379 {
380 struct drm_i915_private *dev_priv = engine->i915;
381 u32 addr;
382
383 addr = dev_priv->status_page_dmah->busaddr;
384 if (INTEL_GEN(dev_priv) >= 4)
385 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
386 I915_WRITE(HWS_PGA, addr);
387 }
388
intel_ring_setup_status_page(struct intel_engine_cs * engine)389 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
390 {
391 struct drm_i915_private *dev_priv = engine->i915;
392 i915_reg_t mmio;
393
394 /* The ring status page addresses are no longer next to the rest of
395 * the ring registers as of gen7.
396 */
397 if (IS_GEN7(dev_priv)) {
398 switch (engine->id) {
399 /*
400 * No more rings exist on Gen7. Default case is only to shut up
401 * gcc switch check warning.
402 */
403 default:
404 GEM_BUG_ON(engine->id);
405 case RCS:
406 mmio = RENDER_HWS_PGA_GEN7;
407 break;
408 case BCS:
409 mmio = BLT_HWS_PGA_GEN7;
410 break;
411 case VCS:
412 mmio = BSD_HWS_PGA_GEN7;
413 break;
414 case VECS:
415 mmio = VEBOX_HWS_PGA_GEN7;
416 break;
417 }
418 } else if (IS_GEN6(dev_priv)) {
419 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
420 } else {
421 mmio = RING_HWS_PGA(engine->mmio_base);
422 }
423
424 if (INTEL_GEN(dev_priv) >= 6) {
425 u32 mask = ~0u;
426
427 /*
428 * Keep the render interrupt unmasked as this papers over
429 * lost interrupts following a reset.
430 */
431 if (engine->id == RCS)
432 mask &= ~BIT(0);
433
434 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
435 }
436
437 I915_WRITE(mmio, engine->status_page.ggtt_offset);
438 POSTING_READ(mmio);
439
440 /* Flush the TLB for this page */
441 if (IS_GEN(dev_priv, 6, 7)) {
442 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
443
444 /* ring should be idle before issuing a sync flush*/
445 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
446
447 I915_WRITE(reg,
448 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
449 INSTPM_SYNC_FLUSH));
450 if (intel_wait_for_register(dev_priv,
451 reg, INSTPM_SYNC_FLUSH, 0,
452 1000))
453 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
454 engine->name);
455 }
456 }
457
stop_ring(struct intel_engine_cs * engine)458 static bool stop_ring(struct intel_engine_cs *engine)
459 {
460 struct drm_i915_private *dev_priv = engine->i915;
461
462 if (INTEL_GEN(dev_priv) > 2) {
463 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
464 if (intel_wait_for_register(dev_priv,
465 RING_MI_MODE(engine->mmio_base),
466 MODE_IDLE,
467 MODE_IDLE,
468 1000)) {
469 DRM_ERROR("%s : timed out trying to stop ring\n",
470 engine->name);
471 /* Sometimes we observe that the idle flag is not
472 * set even though the ring is empty. So double
473 * check before giving up.
474 */
475 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
476 return false;
477 }
478 }
479
480 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
481
482 I915_WRITE_HEAD(engine, 0);
483 I915_WRITE_TAIL(engine, 0);
484
485 /* The ring must be empty before it is disabled */
486 I915_WRITE_CTL(engine, 0);
487
488 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
489 }
490
init_ring_common(struct intel_engine_cs * engine)491 static int init_ring_common(struct intel_engine_cs *engine)
492 {
493 struct drm_i915_private *dev_priv = engine->i915;
494 struct intel_ring *ring = engine->buffer;
495 int ret = 0;
496
497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
498
499 if (!stop_ring(engine)) {
500 /* G45 ring initialization often fails to reset head to zero */
501 DRM_DEBUG_DRIVER("%s head not reset to zero "
502 "ctl %08x head %08x tail %08x start %08x\n",
503 engine->name,
504 I915_READ_CTL(engine),
505 I915_READ_HEAD(engine),
506 I915_READ_TAIL(engine),
507 I915_READ_START(engine));
508
509 if (!stop_ring(engine)) {
510 DRM_ERROR("failed to set %s head to zero "
511 "ctl %08x head %08x tail %08x start %08x\n",
512 engine->name,
513 I915_READ_CTL(engine),
514 I915_READ_HEAD(engine),
515 I915_READ_TAIL(engine),
516 I915_READ_START(engine));
517 ret = -EIO;
518 goto out;
519 }
520 }
521
522 if (HWS_NEEDS_PHYSICAL(dev_priv))
523 ring_setup_phys_status_page(engine);
524 else
525 intel_ring_setup_status_page(engine);
526
527 intel_engine_reset_breadcrumbs(engine);
528
529 /* Enforce ordering by reading HEAD register back */
530 I915_READ_HEAD(engine);
531
532 /* Initialize the ring. This must happen _after_ we've cleared the ring
533 * registers with the above sequence (the readback of the HEAD registers
534 * also enforces ordering), otherwise the hw might lose the new ring
535 * register values. */
536 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
537
538 /* WaClearRingBufHeadRegAtInit:ctg,elk */
539 if (I915_READ_HEAD(engine))
540 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
541 engine->name, I915_READ_HEAD(engine));
542
543 /* Check that the ring offsets point within the ring! */
544 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
545 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
546
547 intel_ring_update_space(ring);
548 I915_WRITE_HEAD(engine, ring->head);
549 I915_WRITE_TAIL(engine, ring->tail);
550 (void)I915_READ_TAIL(engine);
551
552 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
553
554 /* If the head is still not zero, the ring is dead */
555 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
556 RING_VALID, RING_VALID,
557 50)) {
558 DRM_ERROR("%s initialization failed "
559 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
560 engine->name,
561 I915_READ_CTL(engine),
562 I915_READ_CTL(engine) & RING_VALID,
563 I915_READ_HEAD(engine), ring->head,
564 I915_READ_TAIL(engine), ring->tail,
565 I915_READ_START(engine),
566 i915_ggtt_offset(ring->vma));
567 ret = -EIO;
568 goto out;
569 }
570
571 if (INTEL_GEN(dev_priv) > 2)
572 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
573
574 out:
575 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
576
577 return ret;
578 }
579
reset_prepare(struct intel_engine_cs * engine)580 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
581 {
582 intel_engine_stop_cs(engine);
583
584 if (engine->irq_seqno_barrier)
585 engine->irq_seqno_barrier(engine);
586
587 return i915_gem_find_active_request(engine);
588 }
589
skip_request(struct i915_request * rq)590 static void skip_request(struct i915_request *rq)
591 {
592 void *vaddr = rq->ring->vaddr;
593 u32 head;
594
595 head = rq->infix;
596 if (rq->postfix < head) {
597 memset32(vaddr + head, MI_NOOP,
598 (rq->ring->size - head) / sizeof(u32));
599 head = 0;
600 }
601 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
602 }
603
reset_ring(struct intel_engine_cs * engine,struct i915_request * rq)604 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
605 {
606 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
607
608 /*
609 * Try to restore the logical GPU state to match the continuation
610 * of the request queue. If we skip the context/PD restore, then
611 * the next request may try to execute assuming that its context
612 * is valid and loaded on the GPU and so may try to access invalid
613 * memory, prompting repeated GPU hangs.
614 *
615 * If the request was guilty, we still restore the logical state
616 * in case the next request requires it (e.g. the aliasing ppgtt),
617 * but skip over the hung batch.
618 *
619 * If the request was innocent, we try to replay the request with
620 * the restored context.
621 */
622 if (rq) {
623 /* If the rq hung, jump to its breadcrumb and skip the batch */
624 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
625 if (rq->fence.error == -EIO)
626 skip_request(rq);
627 }
628 }
629
reset_finish(struct intel_engine_cs * engine)630 static void reset_finish(struct intel_engine_cs *engine)
631 {
632 }
633
intel_rcs_ctx_init(struct i915_request * rq)634 static int intel_rcs_ctx_init(struct i915_request *rq)
635 {
636 int ret;
637
638 ret = intel_ctx_workarounds_emit(rq);
639 if (ret != 0)
640 return ret;
641
642 ret = i915_gem_render_state_emit(rq);
643 if (ret)
644 return ret;
645
646 return 0;
647 }
648
init_render_ring(struct intel_engine_cs * engine)649 static int init_render_ring(struct intel_engine_cs *engine)
650 {
651 struct drm_i915_private *dev_priv = engine->i915;
652 int ret = init_ring_common(engine);
653 if (ret)
654 return ret;
655
656 intel_whitelist_workarounds_apply(engine);
657
658 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
659 if (IS_GEN(dev_priv, 4, 6))
660 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
661
662 /* We need to disable the AsyncFlip performance optimisations in order
663 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
664 * programmed to '1' on all products.
665 *
666 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
667 */
668 if (IS_GEN(dev_priv, 6, 7))
669 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
670
671 /* Required for the hardware to program scanline values for waiting */
672 /* WaEnableFlushTlbInvalidationMode:snb */
673 if (IS_GEN6(dev_priv))
674 I915_WRITE(GFX_MODE,
675 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
676
677 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
678 if (IS_GEN7(dev_priv))
679 I915_WRITE(GFX_MODE_GEN7,
680 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
681 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
682
683 if (IS_GEN6(dev_priv)) {
684 /* From the Sandybridge PRM, volume 1 part 3, page 24:
685 * "If this bit is set, STCunit will have LRA as replacement
686 * policy. [...] This bit must be reset. LRA replacement
687 * policy is not supported."
688 */
689 I915_WRITE(CACHE_MODE_0,
690 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
691 }
692
693 if (IS_GEN(dev_priv, 6, 7))
694 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
695
696 if (INTEL_GEN(dev_priv) >= 6)
697 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
698
699 return 0;
700 }
701
gen6_signal(struct i915_request * rq,u32 * cs)702 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
703 {
704 struct drm_i915_private *dev_priv = rq->i915;
705 struct intel_engine_cs *engine;
706 enum intel_engine_id id;
707 int num_rings = 0;
708
709 for_each_engine(engine, dev_priv, id) {
710 i915_reg_t mbox_reg;
711
712 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
713 continue;
714
715 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
716 if (i915_mmio_reg_valid(mbox_reg)) {
717 *cs++ = MI_LOAD_REGISTER_IMM(1);
718 *cs++ = i915_mmio_reg_offset(mbox_reg);
719 *cs++ = rq->global_seqno;
720 num_rings++;
721 }
722 }
723 if (num_rings & 1)
724 *cs++ = MI_NOOP;
725
726 return cs;
727 }
728
cancel_requests(struct intel_engine_cs * engine)729 static void cancel_requests(struct intel_engine_cs *engine)
730 {
731 struct i915_request *request;
732 unsigned long flags;
733
734 spin_lock_irqsave(&engine->timeline.lock, flags);
735
736 /* Mark all submitted requests as skipped. */
737 list_for_each_entry(request, &engine->timeline.requests, link) {
738 GEM_BUG_ON(!request->global_seqno);
739 if (!i915_request_completed(request))
740 dma_fence_set_error(&request->fence, -EIO);
741 }
742 /* Remaining _unready_ requests will be nop'ed when submitted */
743
744 spin_unlock_irqrestore(&engine->timeline.lock, flags);
745 }
746
i9xx_submit_request(struct i915_request * request)747 static void i9xx_submit_request(struct i915_request *request)
748 {
749 struct drm_i915_private *dev_priv = request->i915;
750
751 i915_request_submit(request);
752
753 I915_WRITE_TAIL(request->engine,
754 intel_ring_set_tail(request->ring, request->tail));
755 }
756
i9xx_emit_breadcrumb(struct i915_request * rq,u32 * cs)757 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
758 {
759 *cs++ = MI_STORE_DWORD_INDEX;
760 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
761 *cs++ = rq->global_seqno;
762 *cs++ = MI_USER_INTERRUPT;
763
764 rq->tail = intel_ring_offset(rq, cs);
765 assert_ring_tail_valid(rq->ring, rq->tail);
766 }
767
768 static const int i9xx_emit_breadcrumb_sz = 4;
769
gen6_sema_emit_breadcrumb(struct i915_request * rq,u32 * cs)770 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
771 {
772 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
773 }
774
775 static int
gen6_ring_sync_to(struct i915_request * rq,struct i915_request * signal)776 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
777 {
778 u32 dw1 = MI_SEMAPHORE_MBOX |
779 MI_SEMAPHORE_COMPARE |
780 MI_SEMAPHORE_REGISTER;
781 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
782 u32 *cs;
783
784 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
785
786 cs = intel_ring_begin(rq, 4);
787 if (IS_ERR(cs))
788 return PTR_ERR(cs);
789
790 *cs++ = dw1 | wait_mbox;
791 /* Throughout all of the GEM code, seqno passed implies our current
792 * seqno is >= the last seqno executed. However for hardware the
793 * comparison is strictly greater than.
794 */
795 *cs++ = signal->global_seqno - 1;
796 *cs++ = 0;
797 *cs++ = MI_NOOP;
798 intel_ring_advance(rq, cs);
799
800 return 0;
801 }
802
803 static void
gen5_seqno_barrier(struct intel_engine_cs * engine)804 gen5_seqno_barrier(struct intel_engine_cs *engine)
805 {
806 /* MI_STORE are internally buffered by the GPU and not flushed
807 * either by MI_FLUSH or SyncFlush or any other combination of
808 * MI commands.
809 *
810 * "Only the submission of the store operation is guaranteed.
811 * The write result will be complete (coherent) some time later
812 * (this is practically a finite period but there is no guaranteed
813 * latency)."
814 *
815 * Empirically, we observe that we need a delay of at least 75us to
816 * be sure that the seqno write is visible by the CPU.
817 */
818 usleep_range(125, 250);
819 }
820
821 static void
gen6_seqno_barrier(struct intel_engine_cs * engine)822 gen6_seqno_barrier(struct intel_engine_cs *engine)
823 {
824 struct drm_i915_private *dev_priv = engine->i915;
825
826 /* Workaround to force correct ordering between irq and seqno writes on
827 * ivb (and maybe also on snb) by reading from a CS register (like
828 * ACTHD) before reading the status page.
829 *
830 * Note that this effectively stalls the read by the time it takes to
831 * do a memory transaction, which more or less ensures that the write
832 * from the GPU has sufficient time to invalidate the CPU cacheline.
833 * Alternatively we could delay the interrupt from the CS ring to give
834 * the write time to land, but that would incur a delay after every
835 * batch i.e. much more frequent than a delay when waiting for the
836 * interrupt (with the same net latency).
837 *
838 * Also note that to prevent whole machine hangs on gen7, we have to
839 * take the spinlock to guard against concurrent cacheline access.
840 */
841 spin_lock_irq(&dev_priv->uncore.lock);
842 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
843 spin_unlock_irq(&dev_priv->uncore.lock);
844 }
845
846 static void
gen5_irq_enable(struct intel_engine_cs * engine)847 gen5_irq_enable(struct intel_engine_cs *engine)
848 {
849 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
850 }
851
852 static void
gen5_irq_disable(struct intel_engine_cs * engine)853 gen5_irq_disable(struct intel_engine_cs *engine)
854 {
855 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
856 }
857
858 static void
i9xx_irq_enable(struct intel_engine_cs * engine)859 i9xx_irq_enable(struct intel_engine_cs *engine)
860 {
861 struct drm_i915_private *dev_priv = engine->i915;
862
863 dev_priv->irq_mask &= ~engine->irq_enable_mask;
864 I915_WRITE(IMR, dev_priv->irq_mask);
865 POSTING_READ_FW(RING_IMR(engine->mmio_base));
866 }
867
868 static void
i9xx_irq_disable(struct intel_engine_cs * engine)869 i9xx_irq_disable(struct intel_engine_cs *engine)
870 {
871 struct drm_i915_private *dev_priv = engine->i915;
872
873 dev_priv->irq_mask |= engine->irq_enable_mask;
874 I915_WRITE(IMR, dev_priv->irq_mask);
875 }
876
877 static void
i8xx_irq_enable(struct intel_engine_cs * engine)878 i8xx_irq_enable(struct intel_engine_cs *engine)
879 {
880 struct drm_i915_private *dev_priv = engine->i915;
881
882 dev_priv->irq_mask &= ~engine->irq_enable_mask;
883 I915_WRITE16(IMR, dev_priv->irq_mask);
884 POSTING_READ16(RING_IMR(engine->mmio_base));
885 }
886
887 static void
i8xx_irq_disable(struct intel_engine_cs * engine)888 i8xx_irq_disable(struct intel_engine_cs *engine)
889 {
890 struct drm_i915_private *dev_priv = engine->i915;
891
892 dev_priv->irq_mask |= engine->irq_enable_mask;
893 I915_WRITE16(IMR, dev_priv->irq_mask);
894 }
895
896 static int
bsd_ring_flush(struct i915_request * rq,u32 mode)897 bsd_ring_flush(struct i915_request *rq, u32 mode)
898 {
899 u32 *cs;
900
901 cs = intel_ring_begin(rq, 2);
902 if (IS_ERR(cs))
903 return PTR_ERR(cs);
904
905 *cs++ = MI_FLUSH;
906 *cs++ = MI_NOOP;
907 intel_ring_advance(rq, cs);
908 return 0;
909 }
910
911 static void
gen6_irq_enable(struct intel_engine_cs * engine)912 gen6_irq_enable(struct intel_engine_cs *engine)
913 {
914 struct drm_i915_private *dev_priv = engine->i915;
915
916 I915_WRITE_IMR(engine,
917 ~(engine->irq_enable_mask |
918 engine->irq_keep_mask));
919 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
920 }
921
922 static void
gen6_irq_disable(struct intel_engine_cs * engine)923 gen6_irq_disable(struct intel_engine_cs *engine)
924 {
925 struct drm_i915_private *dev_priv = engine->i915;
926
927 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
928 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
929 }
930
931 static void
hsw_vebox_irq_enable(struct intel_engine_cs * engine)932 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
933 {
934 struct drm_i915_private *dev_priv = engine->i915;
935
936 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
937 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
938 }
939
940 static void
hsw_vebox_irq_disable(struct intel_engine_cs * engine)941 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
942 {
943 struct drm_i915_private *dev_priv = engine->i915;
944
945 I915_WRITE_IMR(engine, ~0);
946 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
947 }
948
949 static int
i965_emit_bb_start(struct i915_request * rq,u64 offset,u32 length,unsigned int dispatch_flags)950 i965_emit_bb_start(struct i915_request *rq,
951 u64 offset, u32 length,
952 unsigned int dispatch_flags)
953 {
954 u32 *cs;
955
956 cs = intel_ring_begin(rq, 2);
957 if (IS_ERR(cs))
958 return PTR_ERR(cs);
959
960 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
961 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
962 *cs++ = offset;
963 intel_ring_advance(rq, cs);
964
965 return 0;
966 }
967
968 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
969 #define I830_BATCH_LIMIT (256*1024)
970 #define I830_TLB_ENTRIES (2)
971 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
972 static int
i830_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)973 i830_emit_bb_start(struct i915_request *rq,
974 u64 offset, u32 len,
975 unsigned int dispatch_flags)
976 {
977 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
978
979 cs = intel_ring_begin(rq, 6);
980 if (IS_ERR(cs))
981 return PTR_ERR(cs);
982
983 /* Evict the invalid PTE TLBs */
984 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
985 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
986 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
987 *cs++ = cs_offset;
988 *cs++ = 0xdeadbeef;
989 *cs++ = MI_NOOP;
990 intel_ring_advance(rq, cs);
991
992 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
993 if (len > I830_BATCH_LIMIT)
994 return -ENOSPC;
995
996 cs = intel_ring_begin(rq, 6 + 2);
997 if (IS_ERR(cs))
998 return PTR_ERR(cs);
999
1000 /* Blit the batch (which has now all relocs applied) to the
1001 * stable batch scratch bo area (so that the CS never
1002 * stumbles over its tlb invalidation bug) ...
1003 */
1004 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1005 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1006 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1007 *cs++ = cs_offset;
1008 *cs++ = 4096;
1009 *cs++ = offset;
1010
1011 *cs++ = MI_FLUSH;
1012 *cs++ = MI_NOOP;
1013 intel_ring_advance(rq, cs);
1014
1015 /* ... and execute it. */
1016 offset = cs_offset;
1017 }
1018
1019 cs = intel_ring_begin(rq, 2);
1020 if (IS_ERR(cs))
1021 return PTR_ERR(cs);
1022
1023 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1024 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1025 MI_BATCH_NON_SECURE);
1026 intel_ring_advance(rq, cs);
1027
1028 return 0;
1029 }
1030
1031 static int
i915_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1032 i915_emit_bb_start(struct i915_request *rq,
1033 u64 offset, u32 len,
1034 unsigned int dispatch_flags)
1035 {
1036 u32 *cs;
1037
1038 cs = intel_ring_begin(rq, 2);
1039 if (IS_ERR(cs))
1040 return PTR_ERR(cs);
1041
1042 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1043 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1044 MI_BATCH_NON_SECURE);
1045 intel_ring_advance(rq, cs);
1046
1047 return 0;
1048 }
1049
1050
1051
intel_ring_pin(struct intel_ring * ring,struct drm_i915_private * i915,unsigned int offset_bias)1052 int intel_ring_pin(struct intel_ring *ring,
1053 struct drm_i915_private *i915,
1054 unsigned int offset_bias)
1055 {
1056 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1057 struct i915_vma *vma = ring->vma;
1058 unsigned int flags;
1059 void *addr;
1060 int ret;
1061
1062 GEM_BUG_ON(ring->vaddr);
1063
1064
1065 flags = PIN_GLOBAL;
1066 if (offset_bias)
1067 flags |= PIN_OFFSET_BIAS | offset_bias;
1068 if (vma->obj->stolen)
1069 flags |= PIN_MAPPABLE;
1070 else
1071 flags |= PIN_HIGH;
1072
1073 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1074 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1075 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1076 else
1077 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1078 if (unlikely(ret))
1079 return ret;
1080 }
1081
1082 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1083 if (unlikely(ret))
1084 return ret;
1085
1086 if (i915_vma_is_map_and_fenceable(vma))
1087 addr = (void __force *)i915_vma_pin_iomap(vma);
1088 else
1089 addr = i915_gem_object_pin_map(vma->obj, map);
1090 if (IS_ERR(addr))
1091 goto err;
1092
1093 vma->obj->pin_global++;
1094
1095 ring->vaddr = addr;
1096 return 0;
1097
1098 err:
1099 i915_vma_unpin(vma);
1100 return PTR_ERR(addr);
1101 }
1102
intel_ring_reset(struct intel_ring * ring,u32 tail)1103 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1104 {
1105 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1106
1107 ring->tail = tail;
1108 ring->head = tail;
1109 ring->emit = tail;
1110 intel_ring_update_space(ring);
1111 }
1112
intel_ring_unpin(struct intel_ring * ring)1113 void intel_ring_unpin(struct intel_ring *ring)
1114 {
1115 GEM_BUG_ON(!ring->vma);
1116 GEM_BUG_ON(!ring->vaddr);
1117
1118 /* Discard any unused bytes beyond that submitted to hw. */
1119 intel_ring_reset(ring, ring->tail);
1120
1121 if (i915_vma_is_map_and_fenceable(ring->vma))
1122 i915_vma_unpin_iomap(ring->vma);
1123 else
1124 i915_gem_object_unpin_map(ring->vma->obj);
1125 ring->vaddr = NULL;
1126
1127 ring->vma->obj->pin_global--;
1128 i915_vma_unpin(ring->vma);
1129 }
1130
1131 static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private * dev_priv,int size)1132 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1133 {
1134 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1135 struct drm_i915_gem_object *obj;
1136 struct i915_vma *vma;
1137
1138 obj = i915_gem_object_create_stolen(dev_priv, size);
1139 if (!obj)
1140 obj = i915_gem_object_create_internal(dev_priv, size);
1141 if (IS_ERR(obj))
1142 return ERR_CAST(obj);
1143
1144 /*
1145 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1146 * if supported by the platform's GGTT.
1147 */
1148 if (vm->has_read_only)
1149 i915_gem_object_set_readonly(obj);
1150
1151 vma = i915_vma_instance(obj, vm, NULL);
1152 if (IS_ERR(vma))
1153 goto err;
1154
1155 return vma;
1156
1157 err:
1158 i915_gem_object_put(obj);
1159 return vma;
1160 }
1161
1162 struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs * engine,struct i915_timeline * timeline,int size)1163 intel_engine_create_ring(struct intel_engine_cs *engine,
1164 struct i915_timeline *timeline,
1165 int size)
1166 {
1167 struct intel_ring *ring;
1168 struct i915_vma *vma;
1169
1170 GEM_BUG_ON(!is_power_of_2(size));
1171 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1172 GEM_BUG_ON(timeline == &engine->timeline);
1173 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1174
1175 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1176 if (!ring)
1177 return ERR_PTR(-ENOMEM);
1178
1179 INIT_LIST_HEAD(&ring->request_list);
1180 ring->timeline = i915_timeline_get(timeline);
1181
1182 ring->size = size;
1183 /* Workaround an erratum on the i830 which causes a hang if
1184 * the TAIL pointer points to within the last 2 cachelines
1185 * of the buffer.
1186 */
1187 ring->effective_size = size;
1188 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1189 ring->effective_size -= 2 * CACHELINE_BYTES;
1190
1191 intel_ring_update_space(ring);
1192
1193 vma = intel_ring_create_vma(engine->i915, size);
1194 if (IS_ERR(vma)) {
1195 kfree(ring);
1196 return ERR_CAST(vma);
1197 }
1198 ring->vma = vma;
1199
1200 return ring;
1201 }
1202
1203 void
intel_ring_free(struct intel_ring * ring)1204 intel_ring_free(struct intel_ring *ring)
1205 {
1206 struct drm_i915_gem_object *obj = ring->vma->obj;
1207
1208 i915_vma_close(ring->vma);
1209 __i915_gem_object_release_unless_active(obj);
1210
1211 i915_timeline_put(ring->timeline);
1212 kfree(ring);
1213 }
1214
intel_ring_context_destroy(struct intel_context * ce)1215 static void intel_ring_context_destroy(struct intel_context *ce)
1216 {
1217 GEM_BUG_ON(ce->pin_count);
1218
1219 if (!ce->state)
1220 return;
1221
1222 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1223 i915_gem_object_put(ce->state->obj);
1224 }
1225
__context_pin_ppgtt(struct i915_gem_context * ctx)1226 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1227 {
1228 struct i915_hw_ppgtt *ppgtt;
1229 int err = 0;
1230
1231 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1232 if (ppgtt)
1233 err = gen6_ppgtt_pin(ppgtt);
1234
1235 return err;
1236 }
1237
__context_unpin_ppgtt(struct i915_gem_context * ctx)1238 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1239 {
1240 struct i915_hw_ppgtt *ppgtt;
1241
1242 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1243 if (ppgtt)
1244 gen6_ppgtt_unpin(ppgtt);
1245 }
1246
__context_pin(struct intel_context * ce)1247 static int __context_pin(struct intel_context *ce)
1248 {
1249 struct i915_vma *vma;
1250 int err;
1251
1252 vma = ce->state;
1253 if (!vma)
1254 return 0;
1255
1256 /*
1257 * Clear this page out of any CPU caches for coherent swap-in/out.
1258 * We only want to do this on the first bind so that we do not stall
1259 * on an active context (which by nature is already on the GPU).
1260 */
1261 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1262 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1263 if (err)
1264 return err;
1265 }
1266
1267 err = i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1268 PIN_GLOBAL | PIN_HIGH);
1269 if (err)
1270 return err;
1271
1272 /*
1273 * And mark is as a globally pinned object to let the shrinker know
1274 * it cannot reclaim the object until we release it.
1275 */
1276 vma->obj->pin_global++;
1277
1278 return 0;
1279 }
1280
__context_unpin(struct intel_context * ce)1281 static void __context_unpin(struct intel_context *ce)
1282 {
1283 struct i915_vma *vma;
1284
1285 vma = ce->state;
1286 if (!vma)
1287 return;
1288
1289 vma->obj->pin_global--;
1290 i915_vma_unpin(vma);
1291 }
1292
intel_ring_context_unpin(struct intel_context * ce)1293 static void intel_ring_context_unpin(struct intel_context *ce)
1294 {
1295 __context_unpin_ppgtt(ce->gem_context);
1296 __context_unpin(ce);
1297
1298 i915_gem_context_put(ce->gem_context);
1299 }
1300
1301 static struct i915_vma *
alloc_context_vma(struct intel_engine_cs * engine)1302 alloc_context_vma(struct intel_engine_cs *engine)
1303 {
1304 struct drm_i915_private *i915 = engine->i915;
1305 struct drm_i915_gem_object *obj;
1306 struct i915_vma *vma;
1307 int err;
1308
1309 obj = i915_gem_object_create(i915, engine->context_size);
1310 if (IS_ERR(obj))
1311 return ERR_CAST(obj);
1312
1313 if (engine->default_state) {
1314 void *defaults, *vaddr;
1315
1316 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1317 if (IS_ERR(vaddr)) {
1318 err = PTR_ERR(vaddr);
1319 goto err_obj;
1320 }
1321
1322 defaults = i915_gem_object_pin_map(engine->default_state,
1323 I915_MAP_WB);
1324 if (IS_ERR(defaults)) {
1325 err = PTR_ERR(defaults);
1326 goto err_map;
1327 }
1328
1329 memcpy(vaddr, defaults, engine->context_size);
1330
1331 i915_gem_object_unpin_map(engine->default_state);
1332 i915_gem_object_unpin_map(obj);
1333 }
1334
1335 /*
1336 * Try to make the context utilize L3 as well as LLC.
1337 *
1338 * On VLV we don't have L3 controls in the PTEs so we
1339 * shouldn't touch the cache level, especially as that
1340 * would make the object snooped which might have a
1341 * negative performance impact.
1342 *
1343 * Snooping is required on non-llc platforms in execlist
1344 * mode, but since all GGTT accesses use PAT entry 0 we
1345 * get snooping anyway regardless of cache_level.
1346 *
1347 * This is only applicable for Ivy Bridge devices since
1348 * later platforms don't have L3 control bits in the PTE.
1349 */
1350 if (IS_IVYBRIDGE(i915)) {
1351 /* Ignore any error, regard it as a simple optimisation */
1352 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1353 }
1354
1355 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1356 if (IS_ERR(vma)) {
1357 err = PTR_ERR(vma);
1358 goto err_obj;
1359 }
1360
1361 return vma;
1362
1363 err_map:
1364 i915_gem_object_unpin_map(obj);
1365 err_obj:
1366 i915_gem_object_put(obj);
1367 return ERR_PTR(err);
1368 }
1369
1370 static struct intel_context *
__ring_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx,struct intel_context * ce)1371 __ring_context_pin(struct intel_engine_cs *engine,
1372 struct i915_gem_context *ctx,
1373 struct intel_context *ce)
1374 {
1375 int err;
1376
1377 if (!ce->state && engine->context_size) {
1378 struct i915_vma *vma;
1379
1380 vma = alloc_context_vma(engine);
1381 if (IS_ERR(vma)) {
1382 err = PTR_ERR(vma);
1383 goto err;
1384 }
1385
1386 ce->state = vma;
1387 }
1388
1389 err = __context_pin(ce);
1390 if (err)
1391 goto err;
1392
1393 err = __context_pin_ppgtt(ce->gem_context);
1394 if (err)
1395 goto err_unpin;
1396
1397 i915_gem_context_get(ctx);
1398
1399 /* One ringbuffer to rule them all */
1400 GEM_BUG_ON(!engine->buffer);
1401 ce->ring = engine->buffer;
1402
1403 return ce;
1404
1405 err_unpin:
1406 __context_unpin(ce);
1407 err:
1408 ce->pin_count = 0;
1409 return ERR_PTR(err);
1410 }
1411
1412 static const struct intel_context_ops ring_context_ops = {
1413 .unpin = intel_ring_context_unpin,
1414 .destroy = intel_ring_context_destroy,
1415 };
1416
1417 static struct intel_context *
intel_ring_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1418 intel_ring_context_pin(struct intel_engine_cs *engine,
1419 struct i915_gem_context *ctx)
1420 {
1421 struct intel_context *ce = to_intel_context(ctx, engine);
1422
1423 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1424
1425 if (likely(ce->pin_count++))
1426 return ce;
1427 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1428
1429 ce->ops = &ring_context_ops;
1430
1431 return __ring_context_pin(engine, ctx, ce);
1432 }
1433
intel_init_ring_buffer(struct intel_engine_cs * engine)1434 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1435 {
1436 struct i915_timeline *timeline;
1437 struct intel_ring *ring;
1438 unsigned int size;
1439 int err;
1440
1441 intel_engine_setup_common(engine);
1442
1443 timeline = i915_timeline_create(engine->i915, engine->name);
1444 if (IS_ERR(timeline)) {
1445 err = PTR_ERR(timeline);
1446 goto err;
1447 }
1448
1449 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1450 i915_timeline_put(timeline);
1451 if (IS_ERR(ring)) {
1452 err = PTR_ERR(ring);
1453 goto err;
1454 }
1455
1456 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1457 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1458 if (err)
1459 goto err_ring;
1460
1461 GEM_BUG_ON(engine->buffer);
1462 engine->buffer = ring;
1463
1464 size = PAGE_SIZE;
1465 if (HAS_BROKEN_CS_TLB(engine->i915))
1466 size = I830_WA_SIZE;
1467 err = intel_engine_create_scratch(engine, size);
1468 if (err)
1469 goto err_unpin;
1470
1471 err = intel_engine_init_common(engine);
1472 if (err)
1473 goto err_scratch;
1474
1475 return 0;
1476
1477 err_scratch:
1478 intel_engine_cleanup_scratch(engine);
1479 err_unpin:
1480 intel_ring_unpin(ring);
1481 err_ring:
1482 intel_ring_free(ring);
1483 err:
1484 intel_engine_cleanup_common(engine);
1485 return err;
1486 }
1487
intel_engine_cleanup(struct intel_engine_cs * engine)1488 void intel_engine_cleanup(struct intel_engine_cs *engine)
1489 {
1490 struct drm_i915_private *dev_priv = engine->i915;
1491
1492 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1493 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1494
1495 intel_ring_unpin(engine->buffer);
1496 intel_ring_free(engine->buffer);
1497
1498 if (engine->cleanup)
1499 engine->cleanup(engine);
1500
1501 intel_engine_cleanup_common(engine);
1502
1503 dev_priv->engine[engine->id] = NULL;
1504 kfree(engine);
1505 }
1506
intel_legacy_submission_resume(struct drm_i915_private * dev_priv)1507 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1508 {
1509 struct intel_engine_cs *engine;
1510 enum intel_engine_id id;
1511
1512 /* Restart from the beginning of the rings for convenience */
1513 for_each_engine(engine, dev_priv, id)
1514 intel_ring_reset(engine->buffer, 0);
1515 }
1516
load_pd_dir(struct i915_request * rq,const struct i915_hw_ppgtt * ppgtt)1517 static int load_pd_dir(struct i915_request *rq,
1518 const struct i915_hw_ppgtt *ppgtt)
1519 {
1520 const struct intel_engine_cs * const engine = rq->engine;
1521 u32 *cs;
1522
1523 cs = intel_ring_begin(rq, 6);
1524 if (IS_ERR(cs))
1525 return PTR_ERR(cs);
1526
1527 *cs++ = MI_LOAD_REGISTER_IMM(1);
1528 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1529 *cs++ = PP_DIR_DCLV_2G;
1530
1531 *cs++ = MI_LOAD_REGISTER_IMM(1);
1532 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1533 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1534
1535 intel_ring_advance(rq, cs);
1536
1537 return 0;
1538 }
1539
flush_pd_dir(struct i915_request * rq)1540 static int flush_pd_dir(struct i915_request *rq)
1541 {
1542 const struct intel_engine_cs * const engine = rq->engine;
1543 u32 *cs;
1544
1545 cs = intel_ring_begin(rq, 4);
1546 if (IS_ERR(cs))
1547 return PTR_ERR(cs);
1548
1549 /* Stall until the page table load is complete */
1550 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1551 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1552 *cs++ = i915_ggtt_offset(engine->scratch);
1553 *cs++ = MI_NOOP;
1554
1555 intel_ring_advance(rq, cs);
1556 return 0;
1557 }
1558
mi_set_context(struct i915_request * rq,u32 flags)1559 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1560 {
1561 struct drm_i915_private *i915 = rq->i915;
1562 struct intel_engine_cs *engine = rq->engine;
1563 enum intel_engine_id id;
1564 const int num_rings =
1565 /* Use an extended w/a on gen7 if signalling from other rings */
1566 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1567 INTEL_INFO(i915)->num_rings - 1 :
1568 0;
1569 bool force_restore = false;
1570 int len;
1571 u32 *cs;
1572
1573 flags |= MI_MM_SPACE_GTT;
1574 if (IS_HASWELL(i915))
1575 /* These flags are for resource streamer on HSW+ */
1576 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1577 else
1578 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1579
1580 len = 4;
1581 if (IS_GEN7(i915))
1582 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1583 if (flags & MI_FORCE_RESTORE) {
1584 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1585 flags &= ~MI_FORCE_RESTORE;
1586 force_restore = true;
1587 len += 2;
1588 }
1589
1590 cs = intel_ring_begin(rq, len);
1591 if (IS_ERR(cs))
1592 return PTR_ERR(cs);
1593
1594 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1595 if (IS_GEN7(i915)) {
1596 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1597 if (num_rings) {
1598 struct intel_engine_cs *signaller;
1599
1600 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1601 for_each_engine(signaller, i915, id) {
1602 if (signaller == engine)
1603 continue;
1604
1605 *cs++ = i915_mmio_reg_offset(
1606 RING_PSMI_CTL(signaller->mmio_base));
1607 *cs++ = _MASKED_BIT_ENABLE(
1608 GEN6_PSMI_SLEEP_MSG_DISABLE);
1609 }
1610 }
1611 }
1612
1613 if (force_restore) {
1614 /*
1615 * The HW doesn't handle being told to restore the current
1616 * context very well. Quite often it likes goes to go off and
1617 * sulk, especially when it is meant to be reloading PP_DIR.
1618 * A very simple fix to force the reload is to simply switch
1619 * away from the current context and back again.
1620 *
1621 * Note that the kernel_context will contain random state
1622 * following the INHIBIT_RESTORE. We accept this since we
1623 * never use the kernel_context state; it is merely a
1624 * placeholder we use to flush other contexts.
1625 */
1626 *cs++ = MI_SET_CONTEXT;
1627 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1628 engine)->state) |
1629 MI_MM_SPACE_GTT |
1630 MI_RESTORE_INHIBIT;
1631 }
1632
1633 *cs++ = MI_NOOP;
1634 *cs++ = MI_SET_CONTEXT;
1635 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1636 /*
1637 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1638 * WaMiSetContext_Hang:snb,ivb,vlv
1639 */
1640 *cs++ = MI_NOOP;
1641
1642 if (IS_GEN7(i915)) {
1643 if (num_rings) {
1644 struct intel_engine_cs *signaller;
1645 i915_reg_t last_reg = {}; /* keep gcc quiet */
1646
1647 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1648 for_each_engine(signaller, i915, id) {
1649 if (signaller == engine)
1650 continue;
1651
1652 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1653 *cs++ = i915_mmio_reg_offset(last_reg);
1654 *cs++ = _MASKED_BIT_DISABLE(
1655 GEN6_PSMI_SLEEP_MSG_DISABLE);
1656 }
1657
1658 /* Insert a delay before the next switch! */
1659 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1660 *cs++ = i915_mmio_reg_offset(last_reg);
1661 *cs++ = i915_ggtt_offset(engine->scratch);
1662 *cs++ = MI_NOOP;
1663 }
1664 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1665 }
1666
1667 intel_ring_advance(rq, cs);
1668
1669 return 0;
1670 }
1671
remap_l3(struct i915_request * rq,int slice)1672 static int remap_l3(struct i915_request *rq, int slice)
1673 {
1674 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1675 int i;
1676
1677 if (!remap_info)
1678 return 0;
1679
1680 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1681 if (IS_ERR(cs))
1682 return PTR_ERR(cs);
1683
1684 /*
1685 * Note: We do not worry about the concurrent register cacheline hang
1686 * here because no other code should access these registers other than
1687 * at initialization time.
1688 */
1689 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1690 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1691 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1692 *cs++ = remap_info[i];
1693 }
1694 *cs++ = MI_NOOP;
1695 intel_ring_advance(rq, cs);
1696
1697 return 0;
1698 }
1699
switch_context(struct i915_request * rq)1700 static int switch_context(struct i915_request *rq)
1701 {
1702 struct intel_engine_cs *engine = rq->engine;
1703 struct i915_gem_context *ctx = rq->gem_context;
1704 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1705 unsigned int unwind_mm = 0;
1706 u32 hw_flags = 0;
1707 int ret, i;
1708
1709 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1710 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1711
1712 if (ppgtt) {
1713 ret = load_pd_dir(rq, ppgtt);
1714 if (ret)
1715 goto err;
1716
1717 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1718 unwind_mm = intel_engine_flag(engine);
1719 ppgtt->pd_dirty_rings &= ~unwind_mm;
1720 hw_flags = MI_FORCE_RESTORE;
1721 }
1722 }
1723
1724 if (rq->hw_context->state) {
1725 GEM_BUG_ON(engine->id != RCS);
1726
1727 /*
1728 * The kernel context(s) is treated as pure scratch and is not
1729 * expected to retain any state (as we sacrifice it during
1730 * suspend and on resume it may be corrupted). This is ok,
1731 * as nothing actually executes using the kernel context; it
1732 * is purely used for flushing user contexts.
1733 */
1734 if (i915_gem_context_is_kernel(ctx))
1735 hw_flags = MI_RESTORE_INHIBIT;
1736
1737 ret = mi_set_context(rq, hw_flags);
1738 if (ret)
1739 goto err_mm;
1740 }
1741
1742 if (ppgtt) {
1743 ret = flush_pd_dir(rq);
1744 if (ret)
1745 goto err_mm;
1746 }
1747
1748 if (ctx->remap_slice) {
1749 for (i = 0; i < MAX_L3_SLICES; i++) {
1750 if (!(ctx->remap_slice & BIT(i)))
1751 continue;
1752
1753 ret = remap_l3(rq, i);
1754 if (ret)
1755 goto err_mm;
1756 }
1757
1758 ctx->remap_slice = 0;
1759 }
1760
1761 return 0;
1762
1763 err_mm:
1764 if (unwind_mm)
1765 ppgtt->pd_dirty_rings |= unwind_mm;
1766 err:
1767 return ret;
1768 }
1769
ring_request_alloc(struct i915_request * request)1770 static int ring_request_alloc(struct i915_request *request)
1771 {
1772 int ret;
1773
1774 GEM_BUG_ON(!request->hw_context->pin_count);
1775
1776 /* Flush enough space to reduce the likelihood of waiting after
1777 * we start building the request - in which case we will just
1778 * have to repeat work.
1779 */
1780 request->reserved_space += LEGACY_REQUEST_SIZE;
1781
1782 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1783 if (ret)
1784 return ret;
1785
1786 ret = switch_context(request);
1787 if (ret)
1788 return ret;
1789
1790 request->reserved_space -= LEGACY_REQUEST_SIZE;
1791 return 0;
1792 }
1793
wait_for_space(struct intel_ring * ring,unsigned int bytes)1794 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1795 {
1796 struct i915_request *target;
1797 long timeout;
1798
1799 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1800
1801 if (intel_ring_update_space(ring) >= bytes)
1802 return 0;
1803
1804 GEM_BUG_ON(list_empty(&ring->request_list));
1805 list_for_each_entry(target, &ring->request_list, ring_link) {
1806 /* Would completion of this request free enough space? */
1807 if (bytes <= __intel_ring_space(target->postfix,
1808 ring->emit, ring->size))
1809 break;
1810 }
1811
1812 if (WARN_ON(&target->ring_link == &ring->request_list))
1813 return -ENOSPC;
1814
1815 timeout = i915_request_wait(target,
1816 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1817 MAX_SCHEDULE_TIMEOUT);
1818 if (timeout < 0)
1819 return timeout;
1820
1821 i915_request_retire_upto(target);
1822
1823 intel_ring_update_space(ring);
1824 GEM_BUG_ON(ring->space < bytes);
1825 return 0;
1826 }
1827
intel_ring_wait_for_space(struct intel_ring * ring,unsigned int bytes)1828 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1829 {
1830 GEM_BUG_ON(bytes > ring->effective_size);
1831 if (unlikely(bytes > ring->effective_size - ring->emit))
1832 bytes += ring->size - ring->emit;
1833
1834 if (unlikely(bytes > ring->space)) {
1835 int ret = wait_for_space(ring, bytes);
1836 if (unlikely(ret))
1837 return ret;
1838 }
1839
1840 GEM_BUG_ON(ring->space < bytes);
1841 return 0;
1842 }
1843
intel_ring_begin(struct i915_request * rq,unsigned int num_dwords)1844 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1845 {
1846 struct intel_ring *ring = rq->ring;
1847 const unsigned int remain_usable = ring->effective_size - ring->emit;
1848 const unsigned int bytes = num_dwords * sizeof(u32);
1849 unsigned int need_wrap = 0;
1850 unsigned int total_bytes;
1851 u32 *cs;
1852
1853 /* Packets must be qword aligned. */
1854 GEM_BUG_ON(num_dwords & 1);
1855
1856 total_bytes = bytes + rq->reserved_space;
1857 GEM_BUG_ON(total_bytes > ring->effective_size);
1858
1859 if (unlikely(total_bytes > remain_usable)) {
1860 const int remain_actual = ring->size - ring->emit;
1861
1862 if (bytes > remain_usable) {
1863 /*
1864 * Not enough space for the basic request. So need to
1865 * flush out the remainder and then wait for
1866 * base + reserved.
1867 */
1868 total_bytes += remain_actual;
1869 need_wrap = remain_actual | 1;
1870 } else {
1871 /*
1872 * The base request will fit but the reserved space
1873 * falls off the end. So we don't need an immediate
1874 * wrap and only need to effectively wait for the
1875 * reserved size from the start of ringbuffer.
1876 */
1877 total_bytes = rq->reserved_space + remain_actual;
1878 }
1879 }
1880
1881 if (unlikely(total_bytes > ring->space)) {
1882 int ret;
1883
1884 /*
1885 * Space is reserved in the ringbuffer for finalising the
1886 * request, as that cannot be allowed to fail. During request
1887 * finalisation, reserved_space is set to 0 to stop the
1888 * overallocation and the assumption is that then we never need
1889 * to wait (which has the risk of failing with EINTR).
1890 *
1891 * See also i915_request_alloc() and i915_request_add().
1892 */
1893 GEM_BUG_ON(!rq->reserved_space);
1894
1895 ret = wait_for_space(ring, total_bytes);
1896 if (unlikely(ret))
1897 return ERR_PTR(ret);
1898 }
1899
1900 if (unlikely(need_wrap)) {
1901 need_wrap &= ~1;
1902 GEM_BUG_ON(need_wrap > ring->space);
1903 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1904 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1905
1906 /* Fill the tail with MI_NOOP */
1907 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1908 ring->space -= need_wrap;
1909 ring->emit = 0;
1910 }
1911
1912 GEM_BUG_ON(ring->emit > ring->size - bytes);
1913 GEM_BUG_ON(ring->space < bytes);
1914 cs = ring->vaddr + ring->emit;
1915 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1916 ring->emit += bytes;
1917 ring->space -= bytes;
1918
1919 return cs;
1920 }
1921
1922 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct i915_request * rq)1923 int intel_ring_cacheline_align(struct i915_request *rq)
1924 {
1925 int num_dwords;
1926 void *cs;
1927
1928 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1929 if (num_dwords == 0)
1930 return 0;
1931
1932 num_dwords = CACHELINE_DWORDS - num_dwords;
1933 GEM_BUG_ON(num_dwords & 1);
1934
1935 cs = intel_ring_begin(rq, num_dwords);
1936 if (IS_ERR(cs))
1937 return PTR_ERR(cs);
1938
1939 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1940 intel_ring_advance(rq, cs);
1941
1942 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1943 return 0;
1944 }
1945
gen6_bsd_submit_request(struct i915_request * request)1946 static void gen6_bsd_submit_request(struct i915_request *request)
1947 {
1948 struct drm_i915_private *dev_priv = request->i915;
1949
1950 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1951
1952 /* Every tail move must follow the sequence below */
1953
1954 /* Disable notification that the ring is IDLE. The GT
1955 * will then assume that it is busy and bring it out of rc6.
1956 */
1957 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1958 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1959
1960 /* Clear the context id. Here be magic! */
1961 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1962
1963 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1964 if (__intel_wait_for_register_fw(dev_priv,
1965 GEN6_BSD_SLEEP_PSMI_CONTROL,
1966 GEN6_BSD_SLEEP_INDICATOR,
1967 0,
1968 1000, 0, NULL))
1969 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1970
1971 /* Now that the ring is fully powered up, update the tail */
1972 i9xx_submit_request(request);
1973
1974 /* Let the ring send IDLE messages to the GT again,
1975 * and so let it sleep to conserve power when idle.
1976 */
1977 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1978 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1979
1980 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1981 }
1982
gen6_bsd_ring_flush(struct i915_request * rq,u32 mode)1983 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1984 {
1985 u32 cmd, *cs;
1986
1987 cs = intel_ring_begin(rq, 4);
1988 if (IS_ERR(cs))
1989 return PTR_ERR(cs);
1990
1991 cmd = MI_FLUSH_DW;
1992
1993 /* We always require a command barrier so that subsequent
1994 * commands, such as breadcrumb interrupts, are strictly ordered
1995 * wrt the contents of the write cache being flushed to memory
1996 * (and thus being coherent from the CPU).
1997 */
1998 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1999
2000 /*
2001 * Bspec vol 1c.5 - video engine command streamer:
2002 * "If ENABLED, all TLBs will be invalidated once the flush
2003 * operation is complete. This bit is only valid when the
2004 * Post-Sync Operation field is a value of 1h or 3h."
2005 */
2006 if (mode & EMIT_INVALIDATE)
2007 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2008
2009 *cs++ = cmd;
2010 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2011 *cs++ = 0;
2012 *cs++ = MI_NOOP;
2013 intel_ring_advance(rq, cs);
2014 return 0;
2015 }
2016
2017 static int
hsw_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)2018 hsw_emit_bb_start(struct i915_request *rq,
2019 u64 offset, u32 len,
2020 unsigned int dispatch_flags)
2021 {
2022 u32 *cs;
2023
2024 cs = intel_ring_begin(rq, 2);
2025 if (IS_ERR(cs))
2026 return PTR_ERR(cs);
2027
2028 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2029 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2030 (dispatch_flags & I915_DISPATCH_RS ?
2031 MI_BATCH_RESOURCE_STREAMER : 0);
2032 /* bit0-7 is the length on GEN6+ */
2033 *cs++ = offset;
2034 intel_ring_advance(rq, cs);
2035
2036 return 0;
2037 }
2038
2039 static int
gen6_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)2040 gen6_emit_bb_start(struct i915_request *rq,
2041 u64 offset, u32 len,
2042 unsigned int dispatch_flags)
2043 {
2044 u32 *cs;
2045
2046 cs = intel_ring_begin(rq, 2);
2047 if (IS_ERR(cs))
2048 return PTR_ERR(cs);
2049
2050 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2051 0 : MI_BATCH_NON_SECURE_I965);
2052 /* bit0-7 is the length on GEN6+ */
2053 *cs++ = offset;
2054 intel_ring_advance(rq, cs);
2055
2056 return 0;
2057 }
2058
2059 /* Blitter support (SandyBridge+) */
2060
gen6_ring_flush(struct i915_request * rq,u32 mode)2061 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2062 {
2063 u32 cmd, *cs;
2064
2065 cs = intel_ring_begin(rq, 4);
2066 if (IS_ERR(cs))
2067 return PTR_ERR(cs);
2068
2069 cmd = MI_FLUSH_DW;
2070
2071 /* We always require a command barrier so that subsequent
2072 * commands, such as breadcrumb interrupts, are strictly ordered
2073 * wrt the contents of the write cache being flushed to memory
2074 * (and thus being coherent from the CPU).
2075 */
2076 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2077
2078 /*
2079 * Bspec vol 1c.3 - blitter engine command streamer:
2080 * "If ENABLED, all TLBs will be invalidated once the flush
2081 * operation is complete. This bit is only valid when the
2082 * Post-Sync Operation field is a value of 1h or 3h."
2083 */
2084 if (mode & EMIT_INVALIDATE)
2085 cmd |= MI_INVALIDATE_TLB;
2086 *cs++ = cmd;
2087 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2088 *cs++ = 0;
2089 *cs++ = MI_NOOP;
2090 intel_ring_advance(rq, cs);
2091
2092 return 0;
2093 }
2094
intel_ring_init_semaphores(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2095 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2096 struct intel_engine_cs *engine)
2097 {
2098 int i;
2099
2100 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2101 return;
2102
2103 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2104 engine->semaphore.sync_to = gen6_ring_sync_to;
2105 engine->semaphore.signal = gen6_signal;
2106
2107 /*
2108 * The current semaphore is only applied on pre-gen8
2109 * platform. And there is no VCS2 ring on the pre-gen8
2110 * platform. So the semaphore between RCS and VCS2 is
2111 * initialized as INVALID.
2112 */
2113 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2114 static const struct {
2115 u32 wait_mbox;
2116 i915_reg_t mbox_reg;
2117 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2118 [RCS_HW] = {
2119 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2120 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2121 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2122 },
2123 [VCS_HW] = {
2124 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2125 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2126 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2127 },
2128 [BCS_HW] = {
2129 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2130 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2131 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2132 },
2133 [VECS_HW] = {
2134 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2135 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2136 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2137 },
2138 };
2139 u32 wait_mbox;
2140 i915_reg_t mbox_reg;
2141
2142 if (i == engine->hw_id) {
2143 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2144 mbox_reg = GEN6_NOSYNC;
2145 } else {
2146 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2147 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2148 }
2149
2150 engine->semaphore.mbox.wait[i] = wait_mbox;
2151 engine->semaphore.mbox.signal[i] = mbox_reg;
2152 }
2153 }
2154
intel_ring_init_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2155 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2156 struct intel_engine_cs *engine)
2157 {
2158 if (INTEL_GEN(dev_priv) >= 6) {
2159 engine->irq_enable = gen6_irq_enable;
2160 engine->irq_disable = gen6_irq_disable;
2161 engine->irq_seqno_barrier = gen6_seqno_barrier;
2162 } else if (INTEL_GEN(dev_priv) >= 5) {
2163 engine->irq_enable = gen5_irq_enable;
2164 engine->irq_disable = gen5_irq_disable;
2165 engine->irq_seqno_barrier = gen5_seqno_barrier;
2166 } else if (INTEL_GEN(dev_priv) >= 3) {
2167 engine->irq_enable = i9xx_irq_enable;
2168 engine->irq_disable = i9xx_irq_disable;
2169 } else {
2170 engine->irq_enable = i8xx_irq_enable;
2171 engine->irq_disable = i8xx_irq_disable;
2172 }
2173 }
2174
i9xx_set_default_submission(struct intel_engine_cs * engine)2175 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2176 {
2177 engine->submit_request = i9xx_submit_request;
2178 engine->cancel_requests = cancel_requests;
2179
2180 engine->park = NULL;
2181 engine->unpark = NULL;
2182 }
2183
gen6_bsd_set_default_submission(struct intel_engine_cs * engine)2184 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2185 {
2186 i9xx_set_default_submission(engine);
2187 engine->submit_request = gen6_bsd_submit_request;
2188 }
2189
intel_ring_default_vfuncs(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2190 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2191 struct intel_engine_cs *engine)
2192 {
2193 /* gen8+ are only supported with execlists */
2194 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2195
2196 intel_ring_init_irq(dev_priv, engine);
2197 intel_ring_init_semaphores(dev_priv, engine);
2198
2199 engine->init_hw = init_ring_common;
2200 engine->reset.prepare = reset_prepare;
2201 engine->reset.reset = reset_ring;
2202 engine->reset.finish = reset_finish;
2203
2204 engine->context_pin = intel_ring_context_pin;
2205 engine->request_alloc = ring_request_alloc;
2206
2207 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2208 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2209 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2210 int num_rings;
2211
2212 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2213
2214 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2215 engine->emit_breadcrumb_sz += num_rings * 3;
2216 if (num_rings & 1)
2217 engine->emit_breadcrumb_sz++;
2218 }
2219
2220 engine->set_default_submission = i9xx_set_default_submission;
2221
2222 if (INTEL_GEN(dev_priv) >= 6)
2223 engine->emit_bb_start = gen6_emit_bb_start;
2224 else if (INTEL_GEN(dev_priv) >= 4)
2225 engine->emit_bb_start = i965_emit_bb_start;
2226 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2227 engine->emit_bb_start = i830_emit_bb_start;
2228 else
2229 engine->emit_bb_start = i915_emit_bb_start;
2230 }
2231
intel_init_render_ring_buffer(struct intel_engine_cs * engine)2232 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2233 {
2234 struct drm_i915_private *dev_priv = engine->i915;
2235 int ret;
2236
2237 intel_ring_default_vfuncs(dev_priv, engine);
2238
2239 if (HAS_L3_DPF(dev_priv))
2240 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2241
2242 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2243
2244 if (INTEL_GEN(dev_priv) >= 6) {
2245 engine->init_context = intel_rcs_ctx_init;
2246 engine->emit_flush = gen7_render_ring_flush;
2247 if (IS_GEN6(dev_priv))
2248 engine->emit_flush = gen6_render_ring_flush;
2249 } else if (IS_GEN5(dev_priv)) {
2250 engine->emit_flush = gen4_render_ring_flush;
2251 } else {
2252 if (INTEL_GEN(dev_priv) < 4)
2253 engine->emit_flush = gen2_render_ring_flush;
2254 else
2255 engine->emit_flush = gen4_render_ring_flush;
2256 engine->irq_enable_mask = I915_USER_INTERRUPT;
2257 }
2258
2259 if (IS_HASWELL(dev_priv))
2260 engine->emit_bb_start = hsw_emit_bb_start;
2261
2262 engine->init_hw = init_render_ring;
2263
2264 ret = intel_init_ring_buffer(engine);
2265 if (ret)
2266 return ret;
2267
2268 return 0;
2269 }
2270
intel_init_bsd_ring_buffer(struct intel_engine_cs * engine)2271 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2272 {
2273 struct drm_i915_private *dev_priv = engine->i915;
2274
2275 intel_ring_default_vfuncs(dev_priv, engine);
2276
2277 if (INTEL_GEN(dev_priv) >= 6) {
2278 /* gen6 bsd needs a special wa for tail updates */
2279 if (IS_GEN6(dev_priv))
2280 engine->set_default_submission = gen6_bsd_set_default_submission;
2281 engine->emit_flush = gen6_bsd_ring_flush;
2282 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2283 } else {
2284 engine->emit_flush = bsd_ring_flush;
2285 if (IS_GEN5(dev_priv))
2286 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2287 else
2288 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2289 }
2290
2291 return intel_init_ring_buffer(engine);
2292 }
2293
intel_init_blt_ring_buffer(struct intel_engine_cs * engine)2294 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2295 {
2296 struct drm_i915_private *dev_priv = engine->i915;
2297
2298 intel_ring_default_vfuncs(dev_priv, engine);
2299
2300 engine->emit_flush = gen6_ring_flush;
2301 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2302
2303 return intel_init_ring_buffer(engine);
2304 }
2305
intel_init_vebox_ring_buffer(struct intel_engine_cs * engine)2306 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2307 {
2308 struct drm_i915_private *dev_priv = engine->i915;
2309
2310 intel_ring_default_vfuncs(dev_priv, engine);
2311
2312 engine->emit_flush = gen6_ring_flush;
2313 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2314 engine->irq_enable = hsw_vebox_irq_enable;
2315 engine->irq_disable = hsw_vebox_irq_disable;
2316
2317 return intel_init_ring_buffer(engine);
2318 }
2319