1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 },
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
65 .devs_max = 3,
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
70 .nparity = 0,
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 },
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 4,
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
83 .nparity = 0,
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 },
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 2,
96 .nparity = 0,
97 .raid_name = "dup",
98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
99 .mindev_error = 0,
100 },
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 0,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 0,
110 .raid_name = "raid0",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
112 .mindev_error = 0,
113 },
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
119 .tolerated_failures = 0,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 0,
123 .raid_name = "single",
124 .bg_flag = 0,
125 .mindev_error = 0,
126 },
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
132 .tolerated_failures = 1,
133 .devs_increment = 1,
134 .ncopies = 1,
135 .nparity = 1,
136 .raid_name = "raid5",
137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 },
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
145 .tolerated_failures = 2,
146 .devs_increment = 1,
147 .ncopies = 1,
148 .nparity = 2,
149 .raid_name = "raid6",
150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 },
153 };
154
btrfs_bg_type_to_raid_name(u64 flags)155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 const int index = btrfs_bg_flags_to_raid_index(flags);
158
159 if (index >= BTRFS_NR_RAID_TYPES)
160 return NULL;
161
162 return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
168 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
176
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
180 }
181
182 #define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
191 } \
192 } while (0)
193
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
207 }
208
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212 /*
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
215 */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
228
229 /*
230 * Device locking
231 * ==============
232 *
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
235 *
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
241 *
242 * the mutex can be very coarse and can cover long-running operations
243 *
244 * protects: updates to fs_devices counters like missing devices, rw devices,
245 * seeding, structure cloning, opening/closing devices at mount/umount time
246 *
247 * global::fs_devs - add, remove, updates to the global list
248 *
249 * does not protect: manipulation of the fs_devices::devices list in general
250 * but in mount context it could be used to exclude list modifications by eg.
251 * scan ioctl
252 *
253 * btrfs_device::name - renames (write side), read is RCU
254 *
255 * fs_devices::device_list_mutex (per-fs, with RCU)
256 * ------------------------------------------------
257 * protects updates to fs_devices::devices, ie. adding and deleting
258 *
259 * simple list traversal with read-only actions can be done with RCU protection
260 *
261 * may be used to exclude some operations from running concurrently without any
262 * modifications to the list (see write_all_supers)
263 *
264 * Is not required at mount and close times, because our device list is
265 * protected by the uuid_mutex at that point.
266 *
267 * balance_mutex
268 * -------------
269 * protects balance structures (status, state) and context accessed from
270 * several places (internally, ioctl)
271 *
272 * chunk_mutex
273 * -----------
274 * protects chunks, adding or removing during allocation, trim or when a new
275 * device is added/removed. Additionally it also protects post_commit_list of
276 * individual devices, since they can be added to the transaction's
277 * post_commit_list only with chunk_mutex held.
278 *
279 * cleaner_mutex
280 * -------------
281 * a big lock that is held by the cleaner thread and prevents running subvolume
282 * cleaning together with relocation or delayed iputs
283 *
284 *
285 * Lock nesting
286 * ============
287 *
288 * uuid_mutex
289 * device_list_mutex
290 * chunk_mutex
291 * balance_mutex
292 *
293 *
294 * Exclusive operations
295 * ====================
296 *
297 * Maintains the exclusivity of the following operations that apply to the
298 * whole filesystem and cannot run in parallel.
299 *
300 * - Balance (*)
301 * - Device add
302 * - Device remove
303 * - Device replace (*)
304 * - Resize
305 *
306 * The device operations (as above) can be in one of the following states:
307 *
308 * - Running state
309 * - Paused state
310 * - Completed state
311 *
312 * Only device operations marked with (*) can go into the Paused state for the
313 * following reasons:
314 *
315 * - ioctl (only Balance can be Paused through ioctl)
316 * - filesystem remounted as read-only
317 * - filesystem unmounted and mounted as read-only
318 * - system power-cycle and filesystem mounted as read-only
319 * - filesystem or device errors leading to forced read-only
320 *
321 * The status of exclusive operation is set and cleared atomically.
322 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 * A device operation in Paused or Running state can be canceled or resumed
324 * either by ioctl (Balance only) or when remounted as read-write.
325 * The exclusive status is cleared when the device operation is canceled or
326 * completed.
327 */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 return &fs_uuids;
334 }
335
336 /*
337 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
340 *
341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342 * The returned struct is not linked onto any lists and can be destroyed with
343 * kfree() right away.
344 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 const u8 *metadata_fsid)
347 {
348 struct btrfs_fs_devices *fs_devs;
349
350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 if (!fs_devs)
352 return ERR_PTR(-ENOMEM);
353
354 mutex_init(&fs_devs->device_list_mutex);
355
356 INIT_LIST_HEAD(&fs_devs->devices);
357 INIT_LIST_HEAD(&fs_devs->alloc_list);
358 INIT_LIST_HEAD(&fs_devs->fs_list);
359 INIT_LIST_HEAD(&fs_devs->seed_list);
360 if (fsid)
361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362
363 if (metadata_fsid)
364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 else if (fsid)
366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367
368 return fs_devs;
369 }
370
btrfs_free_device(struct btrfs_device * device)371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 WARN_ON(!list_empty(&device->post_commit_list));
374 rcu_string_free(device->name);
375 extent_io_tree_release(&device->alloc_state);
376 bio_put(device->flush_bio);
377 kfree(device);
378 }
379
free_fs_devices(struct btrfs_fs_devices * fs_devices)380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 struct btrfs_device *device;
383 WARN_ON(fs_devices->opened);
384 while (!list_empty(&fs_devices->devices)) {
385 device = list_entry(fs_devices->devices.next,
386 struct btrfs_device, dev_list);
387 list_del(&device->dev_list);
388 btrfs_free_device(device);
389 }
390 kfree(fs_devices);
391 }
392
btrfs_cleanup_fs_uuids(void)393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 struct btrfs_fs_devices *fs_devices;
396
397 while (!list_empty(&fs_uuids)) {
398 fs_devices = list_entry(fs_uuids.next,
399 struct btrfs_fs_devices, fs_list);
400 list_del(&fs_devices->fs_list);
401 free_fs_devices(fs_devices);
402 }
403 }
404
405 /*
406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407 * Returned struct is not linked onto any lists and must be destroyed using
408 * btrfs_free_device.
409 */
__alloc_device(struct btrfs_fs_info * fs_info)410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 struct btrfs_device *dev;
413
414 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 if (!dev)
416 return ERR_PTR(-ENOMEM);
417
418 /*
419 * Preallocate a bio that's always going to be used for flushing device
420 * barriers and matches the device lifespan
421 */
422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 if (!dev->flush_bio) {
424 kfree(dev);
425 return ERR_PTR(-ENOMEM);
426 }
427
428 INIT_LIST_HEAD(&dev->dev_list);
429 INIT_LIST_HEAD(&dev->dev_alloc_list);
430 INIT_LIST_HEAD(&dev->post_commit_list);
431
432 atomic_set(&dev->reada_in_flight, 0);
433 atomic_set(&dev->dev_stats_ccnt, 0);
434 btrfs_device_data_ordered_init(dev);
435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 extent_io_tree_init(fs_info, &dev->alloc_state,
438 IO_TREE_DEVICE_ALLOC_STATE, NULL);
439
440 return dev;
441 }
442
find_fsid(const u8 * fsid,const u8 * metadata_fsid)443 static noinline struct btrfs_fs_devices *find_fsid(
444 const u8 *fsid, const u8 *metadata_fsid)
445 {
446 struct btrfs_fs_devices *fs_devices;
447
448 ASSERT(fsid);
449
450 /* Handle non-split brain cases */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (metadata_fsid) {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0)
456 return fs_devices;
457 } else {
458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 return fs_devices;
460 }
461 }
462 return NULL;
463 }
464
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 struct btrfs_super_block *disk_super)
467 {
468
469 struct btrfs_fs_devices *fs_devices;
470
471 /*
472 * Handle scanned device having completed its fsid change but
473 * belonging to a fs_devices that was created by first scanning
474 * a device which didn't have its fsid/metadata_uuid changed
475 * at all and the CHANGING_FSID_V2 flag set.
476 */
477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 if (fs_devices->fsid_change &&
479 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 BTRFS_FSID_SIZE) == 0 &&
481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 BTRFS_FSID_SIZE) == 0) {
483 return fs_devices;
484 }
485 }
486 /*
487 * Handle scanned device having completed its fsid change but
488 * belonging to a fs_devices that was created by a device that
489 * has an outdated pair of fsid/metadata_uuid and
490 * CHANGING_FSID_V2 flag set.
491 */
492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 if (fs_devices->fsid_change &&
494 memcmp(fs_devices->metadata_uuid,
495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 BTRFS_FSID_SIZE) == 0) {
498 return fs_devices;
499 }
500 }
501
502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504
505
506 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 int flush, struct block_device **bdev,
509 struct btrfs_super_block **disk_super)
510 {
511 int ret;
512
513 *bdev = blkdev_get_by_path(device_path, flags, holder);
514
515 if (IS_ERR(*bdev)) {
516 ret = PTR_ERR(*bdev);
517 goto error;
518 }
519
520 if (flush)
521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 if (ret) {
524 blkdev_put(*bdev, flags);
525 goto error;
526 }
527 invalidate_bdev(*bdev);
528 *disk_super = btrfs_read_dev_super(*bdev);
529 if (IS_ERR(*disk_super)) {
530 ret = PTR_ERR(*disk_super);
531 blkdev_put(*bdev, flags);
532 goto error;
533 }
534
535 return 0;
536
537 error:
538 *bdev = NULL;
539 return ret;
540 }
541
device_path_matched(const char * path,struct btrfs_device * device)542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 int found;
545
546 rcu_read_lock();
547 found = strcmp(rcu_str_deref(device->name), path);
548 rcu_read_unlock();
549
550 return found == 0;
551 }
552
553 /*
554 * Search and remove all stale (devices which are not mounted) devices.
555 * When both inputs are NULL, it will search and release all stale devices.
556 * path: Optional. When provided will it release all unmounted devices
557 * matching this path only.
558 * skip_dev: Optional. Will skip this device when searching for the stale
559 * devices.
560 * Return: 0 for success or if @path is NULL.
561 * -EBUSY if @path is a mounted device.
562 * -ENOENT if @path does not match any device in the list.
563 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)564 static int btrfs_free_stale_devices(const char *path,
565 struct btrfs_device *skip_device)
566 {
567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 struct btrfs_device *device, *tmp_device;
569 int ret = 0;
570
571 lockdep_assert_held(&uuid_mutex);
572
573 if (path)
574 ret = -ENOENT;
575
576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578 mutex_lock(&fs_devices->device_list_mutex);
579 list_for_each_entry_safe(device, tmp_device,
580 &fs_devices->devices, dev_list) {
581 if (skip_device && skip_device == device)
582 continue;
583 if (path && !device->name)
584 continue;
585 if (path && !device_path_matched(path, device))
586 continue;
587 if (fs_devices->opened) {
588 /* for an already deleted device return 0 */
589 if (path && ret != 0)
590 ret = -EBUSY;
591 break;
592 }
593
594 /* delete the stale device */
595 fs_devices->num_devices--;
596 list_del(&device->dev_list);
597 btrfs_free_device(device);
598
599 ret = 0;
600 }
601 mutex_unlock(&fs_devices->device_list_mutex);
602
603 if (fs_devices->num_devices == 0) {
604 btrfs_sysfs_remove_fsid(fs_devices);
605 list_del(&fs_devices->fs_list);
606 free_fs_devices(fs_devices);
607 }
608 }
609
610 return ret;
611 }
612
613 /*
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
617 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 struct btrfs_device *device, fmode_t flags,
620 void *holder)
621 {
622 struct request_queue *q;
623 struct block_device *bdev;
624 struct btrfs_super_block *disk_super;
625 u64 devid;
626 int ret;
627
628 if (device->bdev)
629 return -EINVAL;
630 if (!device->name)
631 return -EINVAL;
632
633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 &bdev, &disk_super);
635 if (ret)
636 return ret;
637
638 devid = btrfs_stack_device_id(&disk_super->dev_item);
639 if (devid != device->devid)
640 goto error_free_page;
641
642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 goto error_free_page;
644
645 device->generation = btrfs_super_generation(disk_super);
646
647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 if (btrfs_super_incompat_flags(disk_super) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 pr_err(
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page;
653 }
654
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 fs_devices->seeding = true;
657 } else {
658 if (bdev_read_only(bdev))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 else
661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 }
663
664 q = bdev_get_queue(bdev);
665 if (!blk_queue_nonrot(q))
666 fs_devices->rotating = true;
667
668 device->bdev = bdev;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 device->mode = flags;
671
672 fs_devices->open_devices++;
673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674 device->devid != BTRFS_DEV_REPLACE_DEVID) {
675 fs_devices->rw_devices++;
676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677 }
678 btrfs_release_disk_super(disk_super);
679
680 return 0;
681
682 error_free_page:
683 btrfs_release_disk_super(disk_super);
684 blkdev_put(bdev, flags);
685
686 return -EINVAL;
687 }
688
689 /*
690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691 * being created with a disk that has already completed its fsid change. Such
692 * disk can belong to an fs which has its FSID changed or to one which doesn't.
693 * Handle both cases here.
694 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)695 static struct btrfs_fs_devices *find_fsid_inprogress(
696 struct btrfs_super_block *disk_super)
697 {
698 struct btrfs_fs_devices *fs_devices;
699
700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702 BTRFS_FSID_SIZE) != 0 &&
703 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705 return fs_devices;
706 }
707 }
708
709 return find_fsid(disk_super->fsid, NULL);
710 }
711
712
find_fsid_changed(struct btrfs_super_block * disk_super)713 static struct btrfs_fs_devices *find_fsid_changed(
714 struct btrfs_super_block *disk_super)
715 {
716 struct btrfs_fs_devices *fs_devices;
717
718 /*
719 * Handles the case where scanned device is part of an fs that had
720 * multiple successful changes of FSID but curently device didn't
721 * observe it. Meaning our fsid will be different than theirs. We need
722 * to handle two subcases :
723 * 1 - The fs still continues to have different METADATA/FSID uuids.
724 * 2 - The fs is switched back to its original FSID (METADATA/FSID
725 * are equal).
726 */
727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728 /* Changed UUIDs */
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) != 0 &&
731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0 &&
733 memcmp(fs_devices->fsid, disk_super->fsid,
734 BTRFS_FSID_SIZE) != 0)
735 return fs_devices;
736
737 /* Unchanged UUIDs */
738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739 BTRFS_FSID_SIZE) == 0 &&
740 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741 BTRFS_FSID_SIZE) == 0)
742 return fs_devices;
743 }
744
745 return NULL;
746 }
747
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749 struct btrfs_super_block *disk_super)
750 {
751 struct btrfs_fs_devices *fs_devices;
752
753 /*
754 * Handle the case where the scanned device is part of an fs whose last
755 * metadata UUID change reverted it to the original FSID. At the same
756 * time * fs_devices was first created by another constitutent device
757 * which didn't fully observe the operation. This results in an
758 * btrfs_fs_devices created with metadata/fsid different AND
759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760 * fs_devices equal to the FSID of the disk.
761 */
762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764 BTRFS_FSID_SIZE) != 0 &&
765 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766 BTRFS_FSID_SIZE) == 0 &&
767 fs_devices->fsid_change)
768 return fs_devices;
769 }
770
771 return NULL;
772 }
773 /*
774 * Add new device to list of registered devices
775 *
776 * Returns:
777 * device pointer which was just added or updated when successful
778 * error pointer when failed
779 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)780 static noinline struct btrfs_device *device_list_add(const char *path,
781 struct btrfs_super_block *disk_super,
782 bool *new_device_added)
783 {
784 struct btrfs_device *device;
785 struct btrfs_fs_devices *fs_devices = NULL;
786 struct rcu_string *name;
787 u64 found_transid = btrfs_super_generation(disk_super);
788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793
794 if (fsid_change_in_progress) {
795 if (!has_metadata_uuid)
796 fs_devices = find_fsid_inprogress(disk_super);
797 else
798 fs_devices = find_fsid_changed(disk_super);
799 } else if (has_metadata_uuid) {
800 fs_devices = find_fsid_with_metadata_uuid(disk_super);
801 } else {
802 fs_devices = find_fsid_reverted_metadata(disk_super);
803 if (!fs_devices)
804 fs_devices = find_fsid(disk_super->fsid, NULL);
805 }
806
807
808 if (!fs_devices) {
809 if (has_metadata_uuid)
810 fs_devices = alloc_fs_devices(disk_super->fsid,
811 disk_super->metadata_uuid);
812 else
813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814
815 if (IS_ERR(fs_devices))
816 return ERR_CAST(fs_devices);
817
818 fs_devices->fsid_change = fsid_change_in_progress;
819
820 mutex_lock(&fs_devices->device_list_mutex);
821 list_add(&fs_devices->fs_list, &fs_uuids);
822
823 device = NULL;
824 } else {
825 mutex_lock(&fs_devices->device_list_mutex);
826 device = btrfs_find_device(fs_devices, devid,
827 disk_super->dev_item.uuid, NULL, false);
828
829 /*
830 * If this disk has been pulled into an fs devices created by
831 * a device which had the CHANGING_FSID_V2 flag then replace the
832 * metadata_uuid/fsid values of the fs_devices.
833 */
834 if (fs_devices->fsid_change &&
835 found_transid > fs_devices->latest_generation) {
836 memcpy(fs_devices->fsid, disk_super->fsid,
837 BTRFS_FSID_SIZE);
838
839 if (has_metadata_uuid)
840 memcpy(fs_devices->metadata_uuid,
841 disk_super->metadata_uuid,
842 BTRFS_FSID_SIZE);
843 else
844 memcpy(fs_devices->metadata_uuid,
845 disk_super->fsid, BTRFS_FSID_SIZE);
846
847 fs_devices->fsid_change = false;
848 }
849 }
850
851 if (!device) {
852 if (fs_devices->opened) {
853 mutex_unlock(&fs_devices->device_list_mutex);
854 return ERR_PTR(-EBUSY);
855 }
856
857 device = btrfs_alloc_device(NULL, &devid,
858 disk_super->dev_item.uuid);
859 if (IS_ERR(device)) {
860 mutex_unlock(&fs_devices->device_list_mutex);
861 /* we can safely leave the fs_devices entry around */
862 return device;
863 }
864
865 name = rcu_string_strdup(path, GFP_NOFS);
866 if (!name) {
867 btrfs_free_device(device);
868 mutex_unlock(&fs_devices->device_list_mutex);
869 return ERR_PTR(-ENOMEM);
870 }
871 rcu_assign_pointer(device->name, name);
872
873 list_add_rcu(&device->dev_list, &fs_devices->devices);
874 fs_devices->num_devices++;
875
876 device->fs_devices = fs_devices;
877 *new_device_added = true;
878
879 if (disk_super->label[0])
880 pr_info(
881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->label, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
884 else
885 pr_info(
886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887 disk_super->fsid, devid, found_transid, path,
888 current->comm, task_pid_nr(current));
889
890 } else if (!device->name || strcmp(device->name->str, path)) {
891 /*
892 * When FS is already mounted.
893 * 1. If you are here and if the device->name is NULL that
894 * means this device was missing at time of FS mount.
895 * 2. If you are here and if the device->name is different
896 * from 'path' that means either
897 * a. The same device disappeared and reappeared with
898 * different name. or
899 * b. The missing-disk-which-was-replaced, has
900 * reappeared now.
901 *
902 * We must allow 1 and 2a above. But 2b would be a spurious
903 * and unintentional.
904 *
905 * Further in case of 1 and 2a above, the disk at 'path'
906 * would have missed some transaction when it was away and
907 * in case of 2a the stale bdev has to be updated as well.
908 * 2b must not be allowed at all time.
909 */
910
911 /*
912 * For now, we do allow update to btrfs_fs_device through the
913 * btrfs dev scan cli after FS has been mounted. We're still
914 * tracking a problem where systems fail mount by subvolume id
915 * when we reject replacement on a mounted FS.
916 */
917 if (!fs_devices->opened && found_transid < device->generation) {
918 /*
919 * That is if the FS is _not_ mounted and if you
920 * are here, that means there is more than one
921 * disk with same uuid and devid.We keep the one
922 * with larger generation number or the last-in if
923 * generation are equal.
924 */
925 mutex_unlock(&fs_devices->device_list_mutex);
926 return ERR_PTR(-EEXIST);
927 }
928
929 /*
930 * We are going to replace the device path for a given devid,
931 * make sure it's the same device if the device is mounted
932 */
933 if (device->bdev) {
934 struct block_device *path_bdev;
935
936 path_bdev = lookup_bdev(path);
937 if (IS_ERR(path_bdev)) {
938 mutex_unlock(&fs_devices->device_list_mutex);
939 return ERR_CAST(path_bdev);
940 }
941
942 if (device->bdev != path_bdev) {
943 bdput(path_bdev);
944 mutex_unlock(&fs_devices->device_list_mutex);
945 /*
946 * device->fs_info may not be reliable here, so
947 * pass in a NULL instead. This avoids a
948 * possible use-after-free when the fs_info and
949 * fs_info->sb are already torn down.
950 */
951 btrfs_warn_in_rcu(NULL,
952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953 path, devid, found_transid,
954 current->comm,
955 task_pid_nr(current));
956 return ERR_PTR(-EEXIST);
957 }
958 bdput(path_bdev);
959 btrfs_info_in_rcu(device->fs_info,
960 "devid %llu device path %s changed to %s scanned by %s (%d)",
961 devid, rcu_str_deref(device->name),
962 path, current->comm,
963 task_pid_nr(current));
964 }
965
966 name = rcu_string_strdup(path, GFP_NOFS);
967 if (!name) {
968 mutex_unlock(&fs_devices->device_list_mutex);
969 return ERR_PTR(-ENOMEM);
970 }
971 rcu_string_free(device->name);
972 rcu_assign_pointer(device->name, name);
973 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
974 fs_devices->missing_devices--;
975 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
976 }
977 }
978
979 /*
980 * Unmount does not free the btrfs_device struct but would zero
981 * generation along with most of the other members. So just update
982 * it back. We need it to pick the disk with largest generation
983 * (as above).
984 */
985 if (!fs_devices->opened) {
986 device->generation = found_transid;
987 fs_devices->latest_generation = max_t(u64, found_transid,
988 fs_devices->latest_generation);
989 }
990
991 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
992
993 mutex_unlock(&fs_devices->device_list_mutex);
994 return device;
995 }
996
clone_fs_devices(struct btrfs_fs_devices * orig)997 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
998 {
999 struct btrfs_fs_devices *fs_devices;
1000 struct btrfs_device *device;
1001 struct btrfs_device *orig_dev;
1002 int ret = 0;
1003
1004 lockdep_assert_held(&uuid_mutex);
1005
1006 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1007 if (IS_ERR(fs_devices))
1008 return fs_devices;
1009
1010 fs_devices->total_devices = orig->total_devices;
1011
1012 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1013 struct rcu_string *name;
1014
1015 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1016 orig_dev->uuid);
1017 if (IS_ERR(device)) {
1018 ret = PTR_ERR(device);
1019 goto error;
1020 }
1021
1022 /*
1023 * This is ok to do without rcu read locked because we hold the
1024 * uuid mutex so nothing we touch in here is going to disappear.
1025 */
1026 if (orig_dev->name) {
1027 name = rcu_string_strdup(orig_dev->name->str,
1028 GFP_KERNEL);
1029 if (!name) {
1030 btrfs_free_device(device);
1031 ret = -ENOMEM;
1032 goto error;
1033 }
1034 rcu_assign_pointer(device->name, name);
1035 }
1036
1037 list_add(&device->dev_list, &fs_devices->devices);
1038 device->fs_devices = fs_devices;
1039 fs_devices->num_devices++;
1040 }
1041 return fs_devices;
1042 error:
1043 free_fs_devices(fs_devices);
1044 return ERR_PTR(ret);
1045 }
1046
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step,struct btrfs_device ** latest_dev)1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048 int step, struct btrfs_device **latest_dev)
1049 {
1050 struct btrfs_device *device, *next;
1051
1052 /* This is the initialized path, it is safe to release the devices. */
1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056 &device->dev_state) &&
1057 !test_bit(BTRFS_DEV_STATE_MISSING,
1058 &device->dev_state) &&
1059 (!*latest_dev ||
1060 device->generation > (*latest_dev)->generation)) {
1061 *latest_dev = device;
1062 }
1063 continue;
1064 }
1065
1066 /*
1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068 * in btrfs_init_dev_replace() so just continue.
1069 */
1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071 continue;
1072
1073 if (device->bdev) {
1074 blkdev_put(device->bdev, device->mode);
1075 device->bdev = NULL;
1076 fs_devices->open_devices--;
1077 }
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 list_del_init(&device->dev_alloc_list);
1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081 fs_devices->rw_devices--;
1082 }
1083 list_del_init(&device->dev_list);
1084 fs_devices->num_devices--;
1085 btrfs_free_device(device);
1086 }
1087
1088 }
1089
1090 /*
1091 * After we have read the system tree and know devids belonging to this
1092 * filesystem, remove the device which does not belong there.
1093 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1095 {
1096 struct btrfs_device *latest_dev = NULL;
1097 struct btrfs_fs_devices *seed_dev;
1098
1099 mutex_lock(&uuid_mutex);
1100 __btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1101
1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1103 __btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1104
1105 fs_devices->latest_bdev = latest_dev->bdev;
1106
1107 mutex_unlock(&uuid_mutex);
1108 }
1109
btrfs_close_bdev(struct btrfs_device * device)1110 static void btrfs_close_bdev(struct btrfs_device *device)
1111 {
1112 if (!device->bdev)
1113 return;
1114
1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1116 sync_blockdev(device->bdev);
1117 invalidate_bdev(device->bdev);
1118 }
1119
1120 blkdev_put(device->bdev, device->mode);
1121 }
1122
btrfs_close_one_device(struct btrfs_device * device)1123 static void btrfs_close_one_device(struct btrfs_device *device)
1124 {
1125 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1126
1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1128 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1129 list_del_init(&device->dev_alloc_list);
1130 fs_devices->rw_devices--;
1131 }
1132
1133 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1134 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1135
1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1137 fs_devices->missing_devices--;
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145
1146 device->fs_info = NULL;
1147 atomic_set(&device->dev_stats_ccnt, 0);
1148 extent_io_tree_release(&device->alloc_state);
1149
1150 /*
1151 * Reset the flush error record. We might have a transient flush error
1152 * in this mount, and if so we aborted the current transaction and set
1153 * the fs to an error state, guaranteeing no super blocks can be further
1154 * committed. However that error might be transient and if we unmount the
1155 * filesystem and mount it again, we should allow the mount to succeed
1156 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1157 * filesystem again we still get flush errors, then we will again abort
1158 * any transaction and set the error state, guaranteeing no commits of
1159 * unsafe super blocks.
1160 */
1161 device->last_flush_error = 0;
1162
1163 /* Verify the device is back in a pristine state */
1164 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1165 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1166 ASSERT(list_empty(&device->dev_alloc_list));
1167 ASSERT(list_empty(&device->post_commit_list));
1168 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1169 }
1170
close_fs_devices(struct btrfs_fs_devices * fs_devices)1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 struct btrfs_device *device, *tmp;
1174
1175 lockdep_assert_held(&uuid_mutex);
1176
1177 if (--fs_devices->opened > 0)
1178 return;
1179
1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 btrfs_close_one_device(device);
1182
1183 WARN_ON(fs_devices->open_devices);
1184 WARN_ON(fs_devices->rw_devices);
1185 fs_devices->opened = 0;
1186 fs_devices->seeding = false;
1187 fs_devices->fs_info = NULL;
1188 }
1189
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 LIST_HEAD(list);
1193 struct btrfs_fs_devices *tmp;
1194
1195 mutex_lock(&uuid_mutex);
1196 close_fs_devices(fs_devices);
1197 if (!fs_devices->opened)
1198 list_splice_init(&fs_devices->seed_list, &list);
1199
1200 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1201 close_fs_devices(fs_devices);
1202 list_del(&fs_devices->seed_list);
1203 free_fs_devices(fs_devices);
1204 }
1205 mutex_unlock(&uuid_mutex);
1206 }
1207
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1208 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1209 fmode_t flags, void *holder)
1210 {
1211 struct btrfs_device *device;
1212 struct btrfs_device *latest_dev = NULL;
1213 struct btrfs_device *tmp_device;
1214
1215 flags |= FMODE_EXCL;
1216
1217 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1218 dev_list) {
1219 int ret;
1220
1221 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1222 if (ret == 0 &&
1223 (!latest_dev || device->generation > latest_dev->generation)) {
1224 latest_dev = device;
1225 } else if (ret == -ENODATA) {
1226 fs_devices->num_devices--;
1227 list_del(&device->dev_list);
1228 btrfs_free_device(device);
1229 }
1230 }
1231 if (fs_devices->open_devices == 0)
1232 return -EINVAL;
1233
1234 fs_devices->opened = 1;
1235 fs_devices->latest_bdev = latest_dev->bdev;
1236 fs_devices->total_rw_bytes = 0;
1237 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1238
1239 return 0;
1240 }
1241
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1242 static int devid_cmp(void *priv, const struct list_head *a,
1243 const struct list_head *b)
1244 {
1245 struct btrfs_device *dev1, *dev2;
1246
1247 dev1 = list_entry(a, struct btrfs_device, dev_list);
1248 dev2 = list_entry(b, struct btrfs_device, dev_list);
1249
1250 if (dev1->devid < dev2->devid)
1251 return -1;
1252 else if (dev1->devid > dev2->devid)
1253 return 1;
1254 return 0;
1255 }
1256
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1257 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1258 fmode_t flags, void *holder)
1259 {
1260 int ret;
1261
1262 lockdep_assert_held(&uuid_mutex);
1263 /*
1264 * The device_list_mutex cannot be taken here in case opening the
1265 * underlying device takes further locks like bd_mutex.
1266 *
1267 * We also don't need the lock here as this is called during mount and
1268 * exclusion is provided by uuid_mutex
1269 */
1270
1271 if (fs_devices->opened) {
1272 fs_devices->opened++;
1273 ret = 0;
1274 } else {
1275 list_sort(NULL, &fs_devices->devices, devid_cmp);
1276 ret = open_fs_devices(fs_devices, flags, holder);
1277 }
1278
1279 return ret;
1280 }
1281
btrfs_release_disk_super(struct btrfs_super_block * super)1282 void btrfs_release_disk_super(struct btrfs_super_block *super)
1283 {
1284 struct page *page = virt_to_page(super);
1285
1286 put_page(page);
1287 }
1288
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr)1289 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1290 u64 bytenr)
1291 {
1292 struct btrfs_super_block *disk_super;
1293 struct page *page;
1294 void *p;
1295 pgoff_t index;
1296
1297 /* make sure our super fits in the device */
1298 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1299 return ERR_PTR(-EINVAL);
1300
1301 /* make sure our super fits in the page */
1302 if (sizeof(*disk_super) > PAGE_SIZE)
1303 return ERR_PTR(-EINVAL);
1304
1305 /* make sure our super doesn't straddle pages on disk */
1306 index = bytenr >> PAGE_SHIFT;
1307 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1308 return ERR_PTR(-EINVAL);
1309
1310 /* pull in the page with our super */
1311 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1312
1313 if (IS_ERR(page))
1314 return ERR_CAST(page);
1315
1316 p = page_address(page);
1317
1318 /* align our pointer to the offset of the super block */
1319 disk_super = p + offset_in_page(bytenr);
1320
1321 if (btrfs_super_bytenr(disk_super) != bytenr ||
1322 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1323 btrfs_release_disk_super(p);
1324 return ERR_PTR(-EINVAL);
1325 }
1326
1327 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1328 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1329
1330 return disk_super;
1331 }
1332
btrfs_forget_devices(const char * path)1333 int btrfs_forget_devices(const char *path)
1334 {
1335 int ret;
1336
1337 mutex_lock(&uuid_mutex);
1338 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1339 mutex_unlock(&uuid_mutex);
1340
1341 return ret;
1342 }
1343
1344 /*
1345 * Look for a btrfs signature on a device. This may be called out of the mount path
1346 * and we are not allowed to call set_blocksize during the scan. The superblock
1347 * is read via pagecache
1348 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1349 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1350 void *holder)
1351 {
1352 struct btrfs_super_block *disk_super;
1353 bool new_device_added = false;
1354 struct btrfs_device *device = NULL;
1355 struct block_device *bdev;
1356 u64 bytenr;
1357
1358 lockdep_assert_held(&uuid_mutex);
1359
1360 /*
1361 * we would like to check all the supers, but that would make
1362 * a btrfs mount succeed after a mkfs from a different FS.
1363 * So, we need to add a special mount option to scan for
1364 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1365 */
1366 bytenr = btrfs_sb_offset(0);
1367 flags |= FMODE_EXCL;
1368
1369 bdev = blkdev_get_by_path(path, flags, holder);
1370 if (IS_ERR(bdev))
1371 return ERR_CAST(bdev);
1372
1373 disk_super = btrfs_read_disk_super(bdev, bytenr);
1374 if (IS_ERR(disk_super)) {
1375 device = ERR_CAST(disk_super);
1376 goto error_bdev_put;
1377 }
1378
1379 device = device_list_add(path, disk_super, &new_device_added);
1380 if (!IS_ERR(device)) {
1381 if (new_device_added)
1382 btrfs_free_stale_devices(path, device);
1383 }
1384
1385 btrfs_release_disk_super(disk_super);
1386
1387 error_bdev_put:
1388 blkdev_put(bdev, flags);
1389
1390 return device;
1391 }
1392
1393 /*
1394 * Try to find a chunk that intersects [start, start + len] range and when one
1395 * such is found, record the end of it in *start
1396 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1397 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1398 u64 len)
1399 {
1400 u64 physical_start, physical_end;
1401
1402 lockdep_assert_held(&device->fs_info->chunk_mutex);
1403
1404 if (!find_first_extent_bit(&device->alloc_state, *start,
1405 &physical_start, &physical_end,
1406 CHUNK_ALLOCATED, NULL)) {
1407
1408 if (in_range(physical_start, *start, len) ||
1409 in_range(*start, physical_start,
1410 physical_end - physical_start)) {
1411 *start = physical_end + 1;
1412 return true;
1413 }
1414 }
1415 return false;
1416 }
1417
dev_extent_search_start(struct btrfs_device * device,u64 start)1418 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1419 {
1420 switch (device->fs_devices->chunk_alloc_policy) {
1421 case BTRFS_CHUNK_ALLOC_REGULAR:
1422 /*
1423 * We don't want to overwrite the superblock on the drive nor
1424 * any area used by the boot loader (grub for example), so we
1425 * make sure to start at an offset of at least 1MB.
1426 */
1427 return max_t(u64, start, SZ_1M);
1428 default:
1429 BUG();
1430 }
1431 }
1432
1433 /**
1434 * dev_extent_hole_check - check if specified hole is suitable for allocation
1435 * @device: the device which we have the hole
1436 * @hole_start: starting position of the hole
1437 * @hole_size: the size of the hole
1438 * @num_bytes: the size of the free space that we need
1439 *
1440 * This function may modify @hole_start and @hole_end to reflect the suitable
1441 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1442 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1443 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1444 u64 *hole_size, u64 num_bytes)
1445 {
1446 bool changed = false;
1447 u64 hole_end = *hole_start + *hole_size;
1448
1449 /*
1450 * Check before we set max_hole_start, otherwise we could end up
1451 * sending back this offset anyway.
1452 */
1453 if (contains_pending_extent(device, hole_start, *hole_size)) {
1454 if (hole_end >= *hole_start)
1455 *hole_size = hole_end - *hole_start;
1456 else
1457 *hole_size = 0;
1458 changed = true;
1459 }
1460
1461 switch (device->fs_devices->chunk_alloc_policy) {
1462 case BTRFS_CHUNK_ALLOC_REGULAR:
1463 /* No extra check */
1464 break;
1465 default:
1466 BUG();
1467 }
1468
1469 return changed;
1470 }
1471
1472 /*
1473 * find_free_dev_extent_start - find free space in the specified device
1474 * @device: the device which we search the free space in
1475 * @num_bytes: the size of the free space that we need
1476 * @search_start: the position from which to begin the search
1477 * @start: store the start of the free space.
1478 * @len: the size of the free space. that we find, or the size
1479 * of the max free space if we don't find suitable free space
1480 *
1481 * this uses a pretty simple search, the expectation is that it is
1482 * called very infrequently and that a given device has a small number
1483 * of extents
1484 *
1485 * @start is used to store the start of the free space if we find. But if we
1486 * don't find suitable free space, it will be used to store the start position
1487 * of the max free space.
1488 *
1489 * @len is used to store the size of the free space that we find.
1490 * But if we don't find suitable free space, it is used to store the size of
1491 * the max free space.
1492 *
1493 * NOTE: This function will search *commit* root of device tree, and does extra
1494 * check to ensure dev extents are not double allocated.
1495 * This makes the function safe to allocate dev extents but may not report
1496 * correct usable device space, as device extent freed in current transaction
1497 * is not reported as avaiable.
1498 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1499 static int find_free_dev_extent_start(struct btrfs_device *device,
1500 u64 num_bytes, u64 search_start, u64 *start,
1501 u64 *len)
1502 {
1503 struct btrfs_fs_info *fs_info = device->fs_info;
1504 struct btrfs_root *root = fs_info->dev_root;
1505 struct btrfs_key key;
1506 struct btrfs_dev_extent *dev_extent;
1507 struct btrfs_path *path;
1508 u64 hole_size;
1509 u64 max_hole_start;
1510 u64 max_hole_size;
1511 u64 extent_end;
1512 u64 search_end = device->total_bytes;
1513 int ret;
1514 int slot;
1515 struct extent_buffer *l;
1516
1517 search_start = dev_extent_search_start(device, search_start);
1518
1519 path = btrfs_alloc_path();
1520 if (!path)
1521 return -ENOMEM;
1522
1523 max_hole_start = search_start;
1524 max_hole_size = 0;
1525
1526 again:
1527 if (search_start >= search_end ||
1528 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1529 ret = -ENOSPC;
1530 goto out;
1531 }
1532
1533 path->reada = READA_FORWARD;
1534 path->search_commit_root = 1;
1535 path->skip_locking = 1;
1536
1537 key.objectid = device->devid;
1538 key.offset = search_start;
1539 key.type = BTRFS_DEV_EXTENT_KEY;
1540
1541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1542 if (ret < 0)
1543 goto out;
1544 if (ret > 0) {
1545 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1546 if (ret < 0)
1547 goto out;
1548 }
1549
1550 while (1) {
1551 l = path->nodes[0];
1552 slot = path->slots[0];
1553 if (slot >= btrfs_header_nritems(l)) {
1554 ret = btrfs_next_leaf(root, path);
1555 if (ret == 0)
1556 continue;
1557 if (ret < 0)
1558 goto out;
1559
1560 break;
1561 }
1562 btrfs_item_key_to_cpu(l, &key, slot);
1563
1564 if (key.objectid < device->devid)
1565 goto next;
1566
1567 if (key.objectid > device->devid)
1568 break;
1569
1570 if (key.type != BTRFS_DEV_EXTENT_KEY)
1571 goto next;
1572
1573 if (key.offset > search_start) {
1574 hole_size = key.offset - search_start;
1575 dev_extent_hole_check(device, &search_start, &hole_size,
1576 num_bytes);
1577
1578 if (hole_size > max_hole_size) {
1579 max_hole_start = search_start;
1580 max_hole_size = hole_size;
1581 }
1582
1583 /*
1584 * If this free space is greater than which we need,
1585 * it must be the max free space that we have found
1586 * until now, so max_hole_start must point to the start
1587 * of this free space and the length of this free space
1588 * is stored in max_hole_size. Thus, we return
1589 * max_hole_start and max_hole_size and go back to the
1590 * caller.
1591 */
1592 if (hole_size >= num_bytes) {
1593 ret = 0;
1594 goto out;
1595 }
1596 }
1597
1598 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1599 extent_end = key.offset + btrfs_dev_extent_length(l,
1600 dev_extent);
1601 if (extent_end > search_start)
1602 search_start = extent_end;
1603 next:
1604 path->slots[0]++;
1605 cond_resched();
1606 }
1607
1608 /*
1609 * At this point, search_start should be the end of
1610 * allocated dev extents, and when shrinking the device,
1611 * search_end may be smaller than search_start.
1612 */
1613 if (search_end > search_start) {
1614 hole_size = search_end - search_start;
1615 if (dev_extent_hole_check(device, &search_start, &hole_size,
1616 num_bytes)) {
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620
1621 if (hole_size > max_hole_size) {
1622 max_hole_start = search_start;
1623 max_hole_size = hole_size;
1624 }
1625 }
1626
1627 /* See above. */
1628 if (max_hole_size < num_bytes)
1629 ret = -ENOSPC;
1630 else
1631 ret = 0;
1632
1633 out:
1634 btrfs_free_path(path);
1635 *start = max_hole_start;
1636 if (len)
1637 *len = max_hole_size;
1638 return ret;
1639 }
1640
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1641 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1642 u64 *start, u64 *len)
1643 {
1644 /* FIXME use last free of some kind */
1645 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1646 }
1647
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1648 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1649 struct btrfs_device *device,
1650 u64 start, u64 *dev_extent_len)
1651 {
1652 struct btrfs_fs_info *fs_info = device->fs_info;
1653 struct btrfs_root *root = fs_info->dev_root;
1654 int ret;
1655 struct btrfs_path *path;
1656 struct btrfs_key key;
1657 struct btrfs_key found_key;
1658 struct extent_buffer *leaf = NULL;
1659 struct btrfs_dev_extent *extent = NULL;
1660
1661 path = btrfs_alloc_path();
1662 if (!path)
1663 return -ENOMEM;
1664
1665 key.objectid = device->devid;
1666 key.offset = start;
1667 key.type = BTRFS_DEV_EXTENT_KEY;
1668 again:
1669 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1670 if (ret > 0) {
1671 ret = btrfs_previous_item(root, path, key.objectid,
1672 BTRFS_DEV_EXTENT_KEY);
1673 if (ret)
1674 goto out;
1675 leaf = path->nodes[0];
1676 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1677 extent = btrfs_item_ptr(leaf, path->slots[0],
1678 struct btrfs_dev_extent);
1679 BUG_ON(found_key.offset > start || found_key.offset +
1680 btrfs_dev_extent_length(leaf, extent) < start);
1681 key = found_key;
1682 btrfs_release_path(path);
1683 goto again;
1684 } else if (ret == 0) {
1685 leaf = path->nodes[0];
1686 extent = btrfs_item_ptr(leaf, path->slots[0],
1687 struct btrfs_dev_extent);
1688 } else {
1689 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1690 goto out;
1691 }
1692
1693 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1694
1695 ret = btrfs_del_item(trans, root, path);
1696 if (ret) {
1697 btrfs_handle_fs_error(fs_info, ret,
1698 "Failed to remove dev extent item");
1699 } else {
1700 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1701 }
1702 out:
1703 btrfs_free_path(path);
1704 return ret;
1705 }
1706
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1707 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1708 struct btrfs_device *device,
1709 u64 chunk_offset, u64 start, u64 num_bytes)
1710 {
1711 int ret;
1712 struct btrfs_path *path;
1713 struct btrfs_fs_info *fs_info = device->fs_info;
1714 struct btrfs_root *root = fs_info->dev_root;
1715 struct btrfs_dev_extent *extent;
1716 struct extent_buffer *leaf;
1717 struct btrfs_key key;
1718
1719 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1720 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = device->devid;
1726 key.offset = start;
1727 key.type = BTRFS_DEV_EXTENT_KEY;
1728 ret = btrfs_insert_empty_item(trans, root, path, &key,
1729 sizeof(*extent));
1730 if (ret)
1731 goto out;
1732
1733 leaf = path->nodes[0];
1734 extent = btrfs_item_ptr(leaf, path->slots[0],
1735 struct btrfs_dev_extent);
1736 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1737 BTRFS_CHUNK_TREE_OBJECTID);
1738 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1739 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1740 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1741
1742 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1743 btrfs_mark_buffer_dirty(leaf);
1744 out:
1745 btrfs_free_path(path);
1746 return ret;
1747 }
1748
find_next_chunk(struct btrfs_fs_info * fs_info)1749 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1750 {
1751 struct extent_map_tree *em_tree;
1752 struct extent_map *em;
1753 struct rb_node *n;
1754 u64 ret = 0;
1755
1756 em_tree = &fs_info->mapping_tree;
1757 read_lock(&em_tree->lock);
1758 n = rb_last(&em_tree->map.rb_root);
1759 if (n) {
1760 em = rb_entry(n, struct extent_map, rb_node);
1761 ret = em->start + em->len;
1762 }
1763 read_unlock(&em_tree->lock);
1764
1765 return ret;
1766 }
1767
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1768 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1769 u64 *devid_ret)
1770 {
1771 int ret;
1772 struct btrfs_key key;
1773 struct btrfs_key found_key;
1774 struct btrfs_path *path;
1775
1776 path = btrfs_alloc_path();
1777 if (!path)
1778 return -ENOMEM;
1779
1780 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1781 key.type = BTRFS_DEV_ITEM_KEY;
1782 key.offset = (u64)-1;
1783
1784 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1785 if (ret < 0)
1786 goto error;
1787
1788 if (ret == 0) {
1789 /* Corruption */
1790 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1791 ret = -EUCLEAN;
1792 goto error;
1793 }
1794
1795 ret = btrfs_previous_item(fs_info->chunk_root, path,
1796 BTRFS_DEV_ITEMS_OBJECTID,
1797 BTRFS_DEV_ITEM_KEY);
1798 if (ret) {
1799 *devid_ret = 1;
1800 } else {
1801 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1802 path->slots[0]);
1803 *devid_ret = found_key.offset + 1;
1804 }
1805 ret = 0;
1806 error:
1807 btrfs_free_path(path);
1808 return ret;
1809 }
1810
1811 /*
1812 * the device information is stored in the chunk root
1813 * the btrfs_device struct should be fully filled in
1814 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1815 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1816 struct btrfs_device *device)
1817 {
1818 int ret;
1819 struct btrfs_path *path;
1820 struct btrfs_dev_item *dev_item;
1821 struct extent_buffer *leaf;
1822 struct btrfs_key key;
1823 unsigned long ptr;
1824
1825 path = btrfs_alloc_path();
1826 if (!path)
1827 return -ENOMEM;
1828
1829 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1830 key.type = BTRFS_DEV_ITEM_KEY;
1831 key.offset = device->devid;
1832
1833 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1834 &key, sizeof(*dev_item));
1835 if (ret)
1836 goto out;
1837
1838 leaf = path->nodes[0];
1839 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1840
1841 btrfs_set_device_id(leaf, dev_item, device->devid);
1842 btrfs_set_device_generation(leaf, dev_item, 0);
1843 btrfs_set_device_type(leaf, dev_item, device->type);
1844 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1845 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1846 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1847 btrfs_set_device_total_bytes(leaf, dev_item,
1848 btrfs_device_get_disk_total_bytes(device));
1849 btrfs_set_device_bytes_used(leaf, dev_item,
1850 btrfs_device_get_bytes_used(device));
1851 btrfs_set_device_group(leaf, dev_item, 0);
1852 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1853 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1854 btrfs_set_device_start_offset(leaf, dev_item, 0);
1855
1856 ptr = btrfs_device_uuid(dev_item);
1857 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1858 ptr = btrfs_device_fsid(dev_item);
1859 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1860 ptr, BTRFS_FSID_SIZE);
1861 btrfs_mark_buffer_dirty(leaf);
1862
1863 ret = 0;
1864 out:
1865 btrfs_free_path(path);
1866 return ret;
1867 }
1868
1869 /*
1870 * Function to update ctime/mtime for a given device path.
1871 * Mainly used for ctime/mtime based probe like libblkid.
1872 */
update_dev_time(struct block_device * bdev)1873 static void update_dev_time(struct block_device *bdev)
1874 {
1875 struct inode *inode = bdev->bd_inode;
1876 struct timespec64 now;
1877
1878 /* Shouldn't happen but just in case. */
1879 if (!inode)
1880 return;
1881
1882 now = current_time(inode);
1883 generic_update_time(inode, &now, S_MTIME | S_CTIME);
1884 }
1885
btrfs_rm_dev_item(struct btrfs_device * device)1886 static int btrfs_rm_dev_item(struct btrfs_device *device)
1887 {
1888 struct btrfs_root *root = device->fs_info->chunk_root;
1889 int ret;
1890 struct btrfs_path *path;
1891 struct btrfs_key key;
1892 struct btrfs_trans_handle *trans;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 trans = btrfs_start_transaction(root, 0);
1899 if (IS_ERR(trans)) {
1900 btrfs_free_path(path);
1901 return PTR_ERR(trans);
1902 }
1903 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1904 key.type = BTRFS_DEV_ITEM_KEY;
1905 key.offset = device->devid;
1906
1907 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1908 if (ret) {
1909 if (ret > 0)
1910 ret = -ENOENT;
1911 btrfs_abort_transaction(trans, ret);
1912 btrfs_end_transaction(trans);
1913 goto out;
1914 }
1915
1916 ret = btrfs_del_item(trans, root, path);
1917 if (ret) {
1918 btrfs_abort_transaction(trans, ret);
1919 btrfs_end_transaction(trans);
1920 }
1921
1922 out:
1923 btrfs_free_path(path);
1924 if (!ret)
1925 ret = btrfs_commit_transaction(trans);
1926 return ret;
1927 }
1928
1929 /*
1930 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1931 * filesystem. It's up to the caller to adjust that number regarding eg. device
1932 * replace.
1933 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1934 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1935 u64 num_devices)
1936 {
1937 u64 all_avail;
1938 unsigned seq;
1939 int i;
1940
1941 do {
1942 seq = read_seqbegin(&fs_info->profiles_lock);
1943
1944 all_avail = fs_info->avail_data_alloc_bits |
1945 fs_info->avail_system_alloc_bits |
1946 fs_info->avail_metadata_alloc_bits;
1947 } while (read_seqretry(&fs_info->profiles_lock, seq));
1948
1949 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1950 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1951 continue;
1952
1953 if (num_devices < btrfs_raid_array[i].devs_min) {
1954 int ret = btrfs_raid_array[i].mindev_error;
1955
1956 if (ret)
1957 return ret;
1958 }
1959 }
1960
1961 return 0;
1962 }
1963
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1964 static struct btrfs_device * btrfs_find_next_active_device(
1965 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1966 {
1967 struct btrfs_device *next_device;
1968
1969 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1970 if (next_device != device &&
1971 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1972 && next_device->bdev)
1973 return next_device;
1974 }
1975
1976 return NULL;
1977 }
1978
1979 /*
1980 * Helper function to check if the given device is part of s_bdev / latest_bdev
1981 * and replace it with the provided or the next active device, in the context
1982 * where this function called, there should be always be another device (or
1983 * this_dev) which is active.
1984 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1985 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1986 struct btrfs_device *next_device)
1987 {
1988 struct btrfs_fs_info *fs_info = device->fs_info;
1989
1990 if (!next_device)
1991 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1992 device);
1993 ASSERT(next_device);
1994
1995 if (fs_info->sb->s_bdev &&
1996 (fs_info->sb->s_bdev == device->bdev))
1997 fs_info->sb->s_bdev = next_device->bdev;
1998
1999 if (fs_info->fs_devices->latest_bdev == device->bdev)
2000 fs_info->fs_devices->latest_bdev = next_device->bdev;
2001 }
2002
2003 /*
2004 * Return btrfs_fs_devices::num_devices excluding the device that's being
2005 * currently replaced.
2006 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2007 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2008 {
2009 u64 num_devices = fs_info->fs_devices->num_devices;
2010
2011 down_read(&fs_info->dev_replace.rwsem);
2012 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2013 ASSERT(num_devices > 1);
2014 num_devices--;
2015 }
2016 up_read(&fs_info->dev_replace.rwsem);
2017
2018 return num_devices;
2019 }
2020
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2021 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2022 struct block_device *bdev,
2023 const char *device_path)
2024 {
2025 struct btrfs_super_block *disk_super;
2026 int copy_num;
2027
2028 if (!bdev)
2029 return;
2030
2031 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2032 struct page *page;
2033 int ret;
2034
2035 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2036 if (IS_ERR(disk_super))
2037 continue;
2038
2039 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2040
2041 page = virt_to_page(disk_super);
2042 set_page_dirty(page);
2043 lock_page(page);
2044 /* write_on_page() unlocks the page */
2045 ret = write_one_page(page);
2046 if (ret)
2047 btrfs_warn(fs_info,
2048 "error clearing superblock number %d (%d)",
2049 copy_num, ret);
2050 btrfs_release_disk_super(disk_super);
2051
2052 }
2053
2054 /* Notify udev that device has changed */
2055 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2056
2057 /* Update ctime/mtime for device path for libblkid */
2058 update_dev_time(bdev);
2059 }
2060
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2061 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2062 u64 devid)
2063 {
2064 struct btrfs_device *device;
2065 struct btrfs_fs_devices *cur_devices;
2066 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2067 u64 num_devices;
2068 int ret = 0;
2069
2070 mutex_lock(&uuid_mutex);
2071
2072 num_devices = btrfs_num_devices(fs_info);
2073
2074 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2075 if (ret)
2076 goto out;
2077
2078 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2079
2080 if (IS_ERR(device)) {
2081 if (PTR_ERR(device) == -ENOENT &&
2082 device_path && strcmp(device_path, "missing") == 0)
2083 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2084 else
2085 ret = PTR_ERR(device);
2086 goto out;
2087 }
2088
2089 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2090 btrfs_warn_in_rcu(fs_info,
2091 "cannot remove device %s (devid %llu) due to active swapfile",
2092 rcu_str_deref(device->name), device->devid);
2093 ret = -ETXTBSY;
2094 goto out;
2095 }
2096
2097 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2098 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2099 goto out;
2100 }
2101
2102 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2103 fs_info->fs_devices->rw_devices == 1) {
2104 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2105 goto out;
2106 }
2107
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2113 }
2114
2115 mutex_unlock(&uuid_mutex);
2116 ret = btrfs_shrink_device(device, 0);
2117 if (!ret)
2118 btrfs_reada_remove_dev(device);
2119 mutex_lock(&uuid_mutex);
2120 if (ret)
2121 goto error_undo;
2122
2123 /*
2124 * TODO: the superblock still includes this device in its num_devices
2125 * counter although write_all_supers() is not locked out. This
2126 * could give a filesystem state which requires a degraded mount.
2127 */
2128 ret = btrfs_rm_dev_item(device);
2129 if (ret)
2130 goto error_undo;
2131
2132 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2133 btrfs_scrub_cancel_dev(device);
2134
2135 /*
2136 * the device list mutex makes sure that we don't change
2137 * the device list while someone else is writing out all
2138 * the device supers. Whoever is writing all supers, should
2139 * lock the device list mutex before getting the number of
2140 * devices in the super block (super_copy). Conversely,
2141 * whoever updates the number of devices in the super block
2142 * (super_copy) should hold the device list mutex.
2143 */
2144
2145 /*
2146 * In normal cases the cur_devices == fs_devices. But in case
2147 * of deleting a seed device, the cur_devices should point to
2148 * its own fs_devices listed under the fs_devices->seed.
2149 */
2150 cur_devices = device->fs_devices;
2151 mutex_lock(&fs_devices->device_list_mutex);
2152 list_del_rcu(&device->dev_list);
2153
2154 cur_devices->num_devices--;
2155 cur_devices->total_devices--;
2156 /* Update total_devices of the parent fs_devices if it's seed */
2157 if (cur_devices != fs_devices)
2158 fs_devices->total_devices--;
2159
2160 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2161 cur_devices->missing_devices--;
2162
2163 btrfs_assign_next_active_device(device, NULL);
2164
2165 if (device->bdev) {
2166 cur_devices->open_devices--;
2167 /* remove sysfs entry */
2168 btrfs_sysfs_remove_device(device);
2169 }
2170
2171 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2172 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2173 mutex_unlock(&fs_devices->device_list_mutex);
2174
2175 /*
2176 * at this point, the device is zero sized and detached from
2177 * the devices list. All that's left is to zero out the old
2178 * supers and free the device.
2179 */
2180 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2181 btrfs_scratch_superblocks(fs_info, device->bdev,
2182 device->name->str);
2183
2184 btrfs_close_bdev(device);
2185 synchronize_rcu();
2186 btrfs_free_device(device);
2187
2188 if (cur_devices->open_devices == 0) {
2189 list_del_init(&cur_devices->seed_list);
2190 close_fs_devices(cur_devices);
2191 free_fs_devices(cur_devices);
2192 }
2193
2194 out:
2195 mutex_unlock(&uuid_mutex);
2196 return ret;
2197
2198 error_undo:
2199 btrfs_reada_undo_remove_dev(device);
2200 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2201 mutex_lock(&fs_info->chunk_mutex);
2202 list_add(&device->dev_alloc_list,
2203 &fs_devices->alloc_list);
2204 device->fs_devices->rw_devices++;
2205 mutex_unlock(&fs_info->chunk_mutex);
2206 }
2207 goto out;
2208 }
2209
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2210 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2211 {
2212 struct btrfs_fs_devices *fs_devices;
2213
2214 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2215
2216 /*
2217 * in case of fs with no seed, srcdev->fs_devices will point
2218 * to fs_devices of fs_info. However when the dev being replaced is
2219 * a seed dev it will point to the seed's local fs_devices. In short
2220 * srcdev will have its correct fs_devices in both the cases.
2221 */
2222 fs_devices = srcdev->fs_devices;
2223
2224 list_del_rcu(&srcdev->dev_list);
2225 list_del(&srcdev->dev_alloc_list);
2226 fs_devices->num_devices--;
2227 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2228 fs_devices->missing_devices--;
2229
2230 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2231 fs_devices->rw_devices--;
2232
2233 if (srcdev->bdev)
2234 fs_devices->open_devices--;
2235 }
2236
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2237 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2238 {
2239 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2240
2241 mutex_lock(&uuid_mutex);
2242
2243 btrfs_close_bdev(srcdev);
2244 synchronize_rcu();
2245 btrfs_free_device(srcdev);
2246
2247 /* if this is no devs we rather delete the fs_devices */
2248 if (!fs_devices->num_devices) {
2249 /*
2250 * On a mounted FS, num_devices can't be zero unless it's a
2251 * seed. In case of a seed device being replaced, the replace
2252 * target added to the sprout FS, so there will be no more
2253 * device left under the seed FS.
2254 */
2255 ASSERT(fs_devices->seeding);
2256
2257 list_del_init(&fs_devices->seed_list);
2258 close_fs_devices(fs_devices);
2259 free_fs_devices(fs_devices);
2260 }
2261 mutex_unlock(&uuid_mutex);
2262 }
2263
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2264 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2265 {
2266 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2267
2268 mutex_lock(&fs_devices->device_list_mutex);
2269
2270 btrfs_sysfs_remove_device(tgtdev);
2271
2272 if (tgtdev->bdev)
2273 fs_devices->open_devices--;
2274
2275 fs_devices->num_devices--;
2276
2277 btrfs_assign_next_active_device(tgtdev, NULL);
2278
2279 list_del_rcu(&tgtdev->dev_list);
2280
2281 mutex_unlock(&fs_devices->device_list_mutex);
2282
2283 /*
2284 * The update_dev_time() with in btrfs_scratch_superblocks()
2285 * may lead to a call to btrfs_show_devname() which will try
2286 * to hold device_list_mutex. And here this device
2287 * is already out of device list, so we don't have to hold
2288 * the device_list_mutex lock.
2289 */
2290 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2291 tgtdev->name->str);
2292
2293 btrfs_close_bdev(tgtdev);
2294 synchronize_rcu();
2295 btrfs_free_device(tgtdev);
2296 }
2297
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2298 static struct btrfs_device *btrfs_find_device_by_path(
2299 struct btrfs_fs_info *fs_info, const char *device_path)
2300 {
2301 int ret = 0;
2302 struct btrfs_super_block *disk_super;
2303 u64 devid;
2304 u8 *dev_uuid;
2305 struct block_device *bdev;
2306 struct btrfs_device *device;
2307
2308 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2309 fs_info->bdev_holder, 0, &bdev, &disk_super);
2310 if (ret)
2311 return ERR_PTR(ret);
2312
2313 devid = btrfs_stack_device_id(&disk_super->dev_item);
2314 dev_uuid = disk_super->dev_item.uuid;
2315 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2316 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2317 disk_super->metadata_uuid, true);
2318 else
2319 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2320 disk_super->fsid, true);
2321
2322 btrfs_release_disk_super(disk_super);
2323 if (!device)
2324 device = ERR_PTR(-ENOENT);
2325 blkdev_put(bdev, FMODE_READ);
2326 return device;
2327 }
2328
2329 /*
2330 * Lookup a device given by device id, or the path if the id is 0.
2331 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2332 struct btrfs_device *btrfs_find_device_by_devspec(
2333 struct btrfs_fs_info *fs_info, u64 devid,
2334 const char *device_path)
2335 {
2336 struct btrfs_device *device;
2337
2338 if (devid) {
2339 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2340 NULL, true);
2341 if (!device)
2342 return ERR_PTR(-ENOENT);
2343 return device;
2344 }
2345
2346 if (!device_path || !device_path[0])
2347 return ERR_PTR(-EINVAL);
2348
2349 if (strcmp(device_path, "missing") == 0) {
2350 /* Find first missing device */
2351 list_for_each_entry(device, &fs_info->fs_devices->devices,
2352 dev_list) {
2353 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2354 &device->dev_state) && !device->bdev)
2355 return device;
2356 }
2357 return ERR_PTR(-ENOENT);
2358 }
2359
2360 return btrfs_find_device_by_path(fs_info, device_path);
2361 }
2362
2363 /*
2364 * does all the dirty work required for changing file system's UUID.
2365 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2366 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2367 {
2368 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2369 struct btrfs_fs_devices *old_devices;
2370 struct btrfs_fs_devices *seed_devices;
2371 struct btrfs_super_block *disk_super = fs_info->super_copy;
2372 struct btrfs_device *device;
2373 u64 super_flags;
2374
2375 lockdep_assert_held(&uuid_mutex);
2376 if (!fs_devices->seeding)
2377 return -EINVAL;
2378
2379 /*
2380 * Private copy of the seed devices, anchored at
2381 * fs_info->fs_devices->seed_list
2382 */
2383 seed_devices = alloc_fs_devices(NULL, NULL);
2384 if (IS_ERR(seed_devices))
2385 return PTR_ERR(seed_devices);
2386
2387 /*
2388 * It's necessary to retain a copy of the original seed fs_devices in
2389 * fs_uuids so that filesystems which have been seeded can successfully
2390 * reference the seed device from open_seed_devices. This also supports
2391 * multiple fs seed.
2392 */
2393 old_devices = clone_fs_devices(fs_devices);
2394 if (IS_ERR(old_devices)) {
2395 kfree(seed_devices);
2396 return PTR_ERR(old_devices);
2397 }
2398
2399 list_add(&old_devices->fs_list, &fs_uuids);
2400
2401 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2402 seed_devices->opened = 1;
2403 INIT_LIST_HEAD(&seed_devices->devices);
2404 INIT_LIST_HEAD(&seed_devices->alloc_list);
2405 mutex_init(&seed_devices->device_list_mutex);
2406
2407 mutex_lock(&fs_devices->device_list_mutex);
2408 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2409 synchronize_rcu);
2410 list_for_each_entry(device, &seed_devices->devices, dev_list)
2411 device->fs_devices = seed_devices;
2412
2413 fs_devices->seeding = false;
2414 fs_devices->num_devices = 0;
2415 fs_devices->open_devices = 0;
2416 fs_devices->missing_devices = 0;
2417 fs_devices->rotating = false;
2418 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2419
2420 generate_random_uuid(fs_devices->fsid);
2421 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2422 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2423 mutex_unlock(&fs_devices->device_list_mutex);
2424
2425 super_flags = btrfs_super_flags(disk_super) &
2426 ~BTRFS_SUPER_FLAG_SEEDING;
2427 btrfs_set_super_flags(disk_super, super_flags);
2428
2429 return 0;
2430 }
2431
2432 /*
2433 * Store the expected generation for seed devices in device items.
2434 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2435 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2436 {
2437 struct btrfs_fs_info *fs_info = trans->fs_info;
2438 struct btrfs_root *root = fs_info->chunk_root;
2439 struct btrfs_path *path;
2440 struct extent_buffer *leaf;
2441 struct btrfs_dev_item *dev_item;
2442 struct btrfs_device *device;
2443 struct btrfs_key key;
2444 u8 fs_uuid[BTRFS_FSID_SIZE];
2445 u8 dev_uuid[BTRFS_UUID_SIZE];
2446 u64 devid;
2447 int ret;
2448
2449 path = btrfs_alloc_path();
2450 if (!path)
2451 return -ENOMEM;
2452
2453 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2454 key.offset = 0;
2455 key.type = BTRFS_DEV_ITEM_KEY;
2456
2457 while (1) {
2458 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2459 if (ret < 0)
2460 goto error;
2461
2462 leaf = path->nodes[0];
2463 next_slot:
2464 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2465 ret = btrfs_next_leaf(root, path);
2466 if (ret > 0)
2467 break;
2468 if (ret < 0)
2469 goto error;
2470 leaf = path->nodes[0];
2471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2472 btrfs_release_path(path);
2473 continue;
2474 }
2475
2476 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2477 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2478 key.type != BTRFS_DEV_ITEM_KEY)
2479 break;
2480
2481 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2482 struct btrfs_dev_item);
2483 devid = btrfs_device_id(leaf, dev_item);
2484 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2485 BTRFS_UUID_SIZE);
2486 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2487 BTRFS_FSID_SIZE);
2488 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2489 fs_uuid, true);
2490 BUG_ON(!device); /* Logic error */
2491
2492 if (device->fs_devices->seeding) {
2493 btrfs_set_device_generation(leaf, dev_item,
2494 device->generation);
2495 btrfs_mark_buffer_dirty(leaf);
2496 }
2497
2498 path->slots[0]++;
2499 goto next_slot;
2500 }
2501 ret = 0;
2502 error:
2503 btrfs_free_path(path);
2504 return ret;
2505 }
2506
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2507 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2508 {
2509 struct btrfs_root *root = fs_info->dev_root;
2510 struct request_queue *q;
2511 struct btrfs_trans_handle *trans;
2512 struct btrfs_device *device;
2513 struct block_device *bdev;
2514 struct super_block *sb = fs_info->sb;
2515 struct rcu_string *name;
2516 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2517 u64 orig_super_total_bytes;
2518 u64 orig_super_num_devices;
2519 int seeding_dev = 0;
2520 int ret = 0;
2521 bool locked = false;
2522
2523 if (sb_rdonly(sb) && !fs_devices->seeding)
2524 return -EROFS;
2525
2526 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2527 fs_info->bdev_holder);
2528 if (IS_ERR(bdev))
2529 return PTR_ERR(bdev);
2530
2531 if (fs_devices->seeding) {
2532 seeding_dev = 1;
2533 down_write(&sb->s_umount);
2534 mutex_lock(&uuid_mutex);
2535 locked = true;
2536 }
2537
2538 sync_blockdev(bdev);
2539
2540 rcu_read_lock();
2541 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2542 if (device->bdev == bdev) {
2543 ret = -EEXIST;
2544 rcu_read_unlock();
2545 goto error;
2546 }
2547 }
2548 rcu_read_unlock();
2549
2550 device = btrfs_alloc_device(fs_info, NULL, NULL);
2551 if (IS_ERR(device)) {
2552 /* we can safely leave the fs_devices entry around */
2553 ret = PTR_ERR(device);
2554 goto error;
2555 }
2556
2557 name = rcu_string_strdup(device_path, GFP_KERNEL);
2558 if (!name) {
2559 ret = -ENOMEM;
2560 goto error_free_device;
2561 }
2562 rcu_assign_pointer(device->name, name);
2563
2564 trans = btrfs_start_transaction(root, 0);
2565 if (IS_ERR(trans)) {
2566 ret = PTR_ERR(trans);
2567 goto error_free_device;
2568 }
2569
2570 q = bdev_get_queue(bdev);
2571 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2572 device->generation = trans->transid;
2573 device->io_width = fs_info->sectorsize;
2574 device->io_align = fs_info->sectorsize;
2575 device->sector_size = fs_info->sectorsize;
2576 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2577 fs_info->sectorsize);
2578 device->disk_total_bytes = device->total_bytes;
2579 device->commit_total_bytes = device->total_bytes;
2580 device->fs_info = fs_info;
2581 device->bdev = bdev;
2582 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2583 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2584 device->mode = FMODE_EXCL;
2585 device->dev_stats_valid = 1;
2586 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2587
2588 if (seeding_dev) {
2589 sb->s_flags &= ~SB_RDONLY;
2590 ret = btrfs_prepare_sprout(fs_info);
2591 if (ret) {
2592 btrfs_abort_transaction(trans, ret);
2593 goto error_trans;
2594 }
2595 }
2596
2597 device->fs_devices = fs_devices;
2598
2599 mutex_lock(&fs_devices->device_list_mutex);
2600 mutex_lock(&fs_info->chunk_mutex);
2601 list_add_rcu(&device->dev_list, &fs_devices->devices);
2602 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2603 fs_devices->num_devices++;
2604 fs_devices->open_devices++;
2605 fs_devices->rw_devices++;
2606 fs_devices->total_devices++;
2607 fs_devices->total_rw_bytes += device->total_bytes;
2608
2609 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2610
2611 if (!blk_queue_nonrot(q))
2612 fs_devices->rotating = true;
2613
2614 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2615 btrfs_set_super_total_bytes(fs_info->super_copy,
2616 round_down(orig_super_total_bytes + device->total_bytes,
2617 fs_info->sectorsize));
2618
2619 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2620 btrfs_set_super_num_devices(fs_info->super_copy,
2621 orig_super_num_devices + 1);
2622
2623 /*
2624 * we've got more storage, clear any full flags on the space
2625 * infos
2626 */
2627 btrfs_clear_space_info_full(fs_info);
2628
2629 mutex_unlock(&fs_info->chunk_mutex);
2630
2631 /* Add sysfs device entry */
2632 btrfs_sysfs_add_device(device);
2633
2634 mutex_unlock(&fs_devices->device_list_mutex);
2635
2636 if (seeding_dev) {
2637 mutex_lock(&fs_info->chunk_mutex);
2638 ret = init_first_rw_device(trans);
2639 mutex_unlock(&fs_info->chunk_mutex);
2640 if (ret) {
2641 btrfs_abort_transaction(trans, ret);
2642 goto error_sysfs;
2643 }
2644 }
2645
2646 ret = btrfs_add_dev_item(trans, device);
2647 if (ret) {
2648 btrfs_abort_transaction(trans, ret);
2649 goto error_sysfs;
2650 }
2651
2652 if (seeding_dev) {
2653 ret = btrfs_finish_sprout(trans);
2654 if (ret) {
2655 btrfs_abort_transaction(trans, ret);
2656 goto error_sysfs;
2657 }
2658
2659 /*
2660 * fs_devices now represents the newly sprouted filesystem and
2661 * its fsid has been changed by btrfs_prepare_sprout
2662 */
2663 btrfs_sysfs_update_sprout_fsid(fs_devices);
2664 }
2665
2666 ret = btrfs_commit_transaction(trans);
2667
2668 if (seeding_dev) {
2669 mutex_unlock(&uuid_mutex);
2670 up_write(&sb->s_umount);
2671 locked = false;
2672
2673 if (ret) /* transaction commit */
2674 return ret;
2675
2676 ret = btrfs_relocate_sys_chunks(fs_info);
2677 if (ret < 0)
2678 btrfs_handle_fs_error(fs_info, ret,
2679 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2680 trans = btrfs_attach_transaction(root);
2681 if (IS_ERR(trans)) {
2682 if (PTR_ERR(trans) == -ENOENT)
2683 return 0;
2684 ret = PTR_ERR(trans);
2685 trans = NULL;
2686 goto error_sysfs;
2687 }
2688 ret = btrfs_commit_transaction(trans);
2689 }
2690
2691 /*
2692 * Now that we have written a new super block to this device, check all
2693 * other fs_devices list if device_path alienates any other scanned
2694 * device.
2695 * We can ignore the return value as it typically returns -EINVAL and
2696 * only succeeds if the device was an alien.
2697 */
2698 btrfs_forget_devices(device_path);
2699
2700 /* Update ctime/mtime for blkid or udev */
2701 update_dev_time(bdev);
2702
2703 return ret;
2704
2705 error_sysfs:
2706 btrfs_sysfs_remove_device(device);
2707 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2708 mutex_lock(&fs_info->chunk_mutex);
2709 list_del_rcu(&device->dev_list);
2710 list_del(&device->dev_alloc_list);
2711 fs_info->fs_devices->num_devices--;
2712 fs_info->fs_devices->open_devices--;
2713 fs_info->fs_devices->rw_devices--;
2714 fs_info->fs_devices->total_devices--;
2715 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2716 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2717 btrfs_set_super_total_bytes(fs_info->super_copy,
2718 orig_super_total_bytes);
2719 btrfs_set_super_num_devices(fs_info->super_copy,
2720 orig_super_num_devices);
2721 mutex_unlock(&fs_info->chunk_mutex);
2722 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2723 error_trans:
2724 if (seeding_dev)
2725 sb->s_flags |= SB_RDONLY;
2726 if (trans)
2727 btrfs_end_transaction(trans);
2728 error_free_device:
2729 btrfs_free_device(device);
2730 error:
2731 blkdev_put(bdev, FMODE_EXCL);
2732 if (locked) {
2733 mutex_unlock(&uuid_mutex);
2734 up_write(&sb->s_umount);
2735 }
2736 return ret;
2737 }
2738
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2739 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2740 struct btrfs_device *device)
2741 {
2742 int ret;
2743 struct btrfs_path *path;
2744 struct btrfs_root *root = device->fs_info->chunk_root;
2745 struct btrfs_dev_item *dev_item;
2746 struct extent_buffer *leaf;
2747 struct btrfs_key key;
2748
2749 path = btrfs_alloc_path();
2750 if (!path)
2751 return -ENOMEM;
2752
2753 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2754 key.type = BTRFS_DEV_ITEM_KEY;
2755 key.offset = device->devid;
2756
2757 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2758 if (ret < 0)
2759 goto out;
2760
2761 if (ret > 0) {
2762 ret = -ENOENT;
2763 goto out;
2764 }
2765
2766 leaf = path->nodes[0];
2767 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2768
2769 btrfs_set_device_id(leaf, dev_item, device->devid);
2770 btrfs_set_device_type(leaf, dev_item, device->type);
2771 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2772 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2773 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2774 btrfs_set_device_total_bytes(leaf, dev_item,
2775 btrfs_device_get_disk_total_bytes(device));
2776 btrfs_set_device_bytes_used(leaf, dev_item,
2777 btrfs_device_get_bytes_used(device));
2778 btrfs_mark_buffer_dirty(leaf);
2779
2780 out:
2781 btrfs_free_path(path);
2782 return ret;
2783 }
2784
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2785 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2786 struct btrfs_device *device, u64 new_size)
2787 {
2788 struct btrfs_fs_info *fs_info = device->fs_info;
2789 struct btrfs_super_block *super_copy = fs_info->super_copy;
2790 u64 old_total;
2791 u64 diff;
2792
2793 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2794 return -EACCES;
2795
2796 new_size = round_down(new_size, fs_info->sectorsize);
2797
2798 mutex_lock(&fs_info->chunk_mutex);
2799 old_total = btrfs_super_total_bytes(super_copy);
2800 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2801
2802 if (new_size <= device->total_bytes ||
2803 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2804 mutex_unlock(&fs_info->chunk_mutex);
2805 return -EINVAL;
2806 }
2807
2808 btrfs_set_super_total_bytes(super_copy,
2809 round_down(old_total + diff, fs_info->sectorsize));
2810 device->fs_devices->total_rw_bytes += diff;
2811
2812 btrfs_device_set_total_bytes(device, new_size);
2813 btrfs_device_set_disk_total_bytes(device, new_size);
2814 btrfs_clear_space_info_full(device->fs_info);
2815 if (list_empty(&device->post_commit_list))
2816 list_add_tail(&device->post_commit_list,
2817 &trans->transaction->dev_update_list);
2818 mutex_unlock(&fs_info->chunk_mutex);
2819
2820 return btrfs_update_device(trans, device);
2821 }
2822
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2823 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2824 {
2825 struct btrfs_fs_info *fs_info = trans->fs_info;
2826 struct btrfs_root *root = fs_info->chunk_root;
2827 int ret;
2828 struct btrfs_path *path;
2829 struct btrfs_key key;
2830
2831 path = btrfs_alloc_path();
2832 if (!path)
2833 return -ENOMEM;
2834
2835 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2836 key.offset = chunk_offset;
2837 key.type = BTRFS_CHUNK_ITEM_KEY;
2838
2839 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2840 if (ret < 0)
2841 goto out;
2842 else if (ret > 0) { /* Logic error or corruption */
2843 btrfs_handle_fs_error(fs_info, -ENOENT,
2844 "Failed lookup while freeing chunk.");
2845 ret = -ENOENT;
2846 goto out;
2847 }
2848
2849 ret = btrfs_del_item(trans, root, path);
2850 if (ret < 0)
2851 btrfs_handle_fs_error(fs_info, ret,
2852 "Failed to delete chunk item.");
2853 out:
2854 btrfs_free_path(path);
2855 return ret;
2856 }
2857
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2858 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2859 {
2860 struct btrfs_super_block *super_copy = fs_info->super_copy;
2861 struct btrfs_disk_key *disk_key;
2862 struct btrfs_chunk *chunk;
2863 u8 *ptr;
2864 int ret = 0;
2865 u32 num_stripes;
2866 u32 array_size;
2867 u32 len = 0;
2868 u32 cur;
2869 struct btrfs_key key;
2870
2871 mutex_lock(&fs_info->chunk_mutex);
2872 array_size = btrfs_super_sys_array_size(super_copy);
2873
2874 ptr = super_copy->sys_chunk_array;
2875 cur = 0;
2876
2877 while (cur < array_size) {
2878 disk_key = (struct btrfs_disk_key *)ptr;
2879 btrfs_disk_key_to_cpu(&key, disk_key);
2880
2881 len = sizeof(*disk_key);
2882
2883 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2884 chunk = (struct btrfs_chunk *)(ptr + len);
2885 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2886 len += btrfs_chunk_item_size(num_stripes);
2887 } else {
2888 ret = -EIO;
2889 break;
2890 }
2891 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2892 key.offset == chunk_offset) {
2893 memmove(ptr, ptr + len, array_size - (cur + len));
2894 array_size -= len;
2895 btrfs_set_super_sys_array_size(super_copy, array_size);
2896 } else {
2897 ptr += len;
2898 cur += len;
2899 }
2900 }
2901 mutex_unlock(&fs_info->chunk_mutex);
2902 return ret;
2903 }
2904
2905 /*
2906 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2907 * @logical: Logical block offset in bytes.
2908 * @length: Length of extent in bytes.
2909 *
2910 * Return: Chunk mapping or ERR_PTR.
2911 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2912 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2913 u64 logical, u64 length)
2914 {
2915 struct extent_map_tree *em_tree;
2916 struct extent_map *em;
2917
2918 em_tree = &fs_info->mapping_tree;
2919 read_lock(&em_tree->lock);
2920 em = lookup_extent_mapping(em_tree, logical, length);
2921 read_unlock(&em_tree->lock);
2922
2923 if (!em) {
2924 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2925 logical, length);
2926 return ERR_PTR(-EINVAL);
2927 }
2928
2929 if (em->start > logical || em->start + em->len < logical) {
2930 btrfs_crit(fs_info,
2931 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2932 logical, length, em->start, em->start + em->len);
2933 free_extent_map(em);
2934 return ERR_PTR(-EINVAL);
2935 }
2936
2937 /* callers are responsible for dropping em's ref. */
2938 return em;
2939 }
2940
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2941 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2942 {
2943 struct btrfs_fs_info *fs_info = trans->fs_info;
2944 struct extent_map *em;
2945 struct map_lookup *map;
2946 u64 dev_extent_len = 0;
2947 int i, ret = 0;
2948 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2949
2950 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2951 if (IS_ERR(em)) {
2952 /*
2953 * This is a logic error, but we don't want to just rely on the
2954 * user having built with ASSERT enabled, so if ASSERT doesn't
2955 * do anything we still error out.
2956 */
2957 ASSERT(0);
2958 return PTR_ERR(em);
2959 }
2960 map = em->map_lookup;
2961 mutex_lock(&fs_info->chunk_mutex);
2962 check_system_chunk(trans, map->type);
2963 mutex_unlock(&fs_info->chunk_mutex);
2964
2965 /*
2966 * Take the device list mutex to prevent races with the final phase of
2967 * a device replace operation that replaces the device object associated
2968 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2969 */
2970 mutex_lock(&fs_devices->device_list_mutex);
2971 for (i = 0; i < map->num_stripes; i++) {
2972 struct btrfs_device *device = map->stripes[i].dev;
2973 ret = btrfs_free_dev_extent(trans, device,
2974 map->stripes[i].physical,
2975 &dev_extent_len);
2976 if (ret) {
2977 mutex_unlock(&fs_devices->device_list_mutex);
2978 btrfs_abort_transaction(trans, ret);
2979 goto out;
2980 }
2981
2982 if (device->bytes_used > 0) {
2983 mutex_lock(&fs_info->chunk_mutex);
2984 btrfs_device_set_bytes_used(device,
2985 device->bytes_used - dev_extent_len);
2986 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2987 btrfs_clear_space_info_full(fs_info);
2988 mutex_unlock(&fs_info->chunk_mutex);
2989 }
2990
2991 ret = btrfs_update_device(trans, device);
2992 if (ret) {
2993 mutex_unlock(&fs_devices->device_list_mutex);
2994 btrfs_abort_transaction(trans, ret);
2995 goto out;
2996 }
2997 }
2998 mutex_unlock(&fs_devices->device_list_mutex);
2999
3000 ret = btrfs_free_chunk(trans, chunk_offset);
3001 if (ret) {
3002 btrfs_abort_transaction(trans, ret);
3003 goto out;
3004 }
3005
3006 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3007
3008 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3009 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3010 if (ret) {
3011 btrfs_abort_transaction(trans, ret);
3012 goto out;
3013 }
3014 }
3015
3016 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3017 if (ret) {
3018 btrfs_abort_transaction(trans, ret);
3019 goto out;
3020 }
3021
3022 out:
3023 /* once for us */
3024 free_extent_map(em);
3025 return ret;
3026 }
3027
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3028 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3029 {
3030 struct btrfs_root *root = fs_info->chunk_root;
3031 struct btrfs_trans_handle *trans;
3032 struct btrfs_block_group *block_group;
3033 int ret;
3034
3035 /*
3036 * Prevent races with automatic removal of unused block groups.
3037 * After we relocate and before we remove the chunk with offset
3038 * chunk_offset, automatic removal of the block group can kick in,
3039 * resulting in a failure when calling btrfs_remove_chunk() below.
3040 *
3041 * Make sure to acquire this mutex before doing a tree search (dev
3042 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3043 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3044 * we release the path used to search the chunk/dev tree and before
3045 * the current task acquires this mutex and calls us.
3046 */
3047 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3048
3049 /* step one, relocate all the extents inside this chunk */
3050 btrfs_scrub_pause(fs_info);
3051 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3052 btrfs_scrub_continue(fs_info);
3053 if (ret)
3054 return ret;
3055
3056 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3057 if (!block_group)
3058 return -ENOENT;
3059 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3060 btrfs_put_block_group(block_group);
3061
3062 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3063 chunk_offset);
3064 if (IS_ERR(trans)) {
3065 ret = PTR_ERR(trans);
3066 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3067 return ret;
3068 }
3069
3070 /*
3071 * step two, delete the device extents and the
3072 * chunk tree entries
3073 */
3074 ret = btrfs_remove_chunk(trans, chunk_offset);
3075 btrfs_end_transaction(trans);
3076 return ret;
3077 }
3078
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3079 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3080 {
3081 struct btrfs_root *chunk_root = fs_info->chunk_root;
3082 struct btrfs_path *path;
3083 struct extent_buffer *leaf;
3084 struct btrfs_chunk *chunk;
3085 struct btrfs_key key;
3086 struct btrfs_key found_key;
3087 u64 chunk_type;
3088 bool retried = false;
3089 int failed = 0;
3090 int ret;
3091
3092 path = btrfs_alloc_path();
3093 if (!path)
3094 return -ENOMEM;
3095
3096 again:
3097 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3098 key.offset = (u64)-1;
3099 key.type = BTRFS_CHUNK_ITEM_KEY;
3100
3101 while (1) {
3102 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3103 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3104 if (ret < 0) {
3105 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3106 goto error;
3107 }
3108 BUG_ON(ret == 0); /* Corruption */
3109
3110 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3111 key.type);
3112 if (ret)
3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114 if (ret < 0)
3115 goto error;
3116 if (ret > 0)
3117 break;
3118
3119 leaf = path->nodes[0];
3120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3121
3122 chunk = btrfs_item_ptr(leaf, path->slots[0],
3123 struct btrfs_chunk);
3124 chunk_type = btrfs_chunk_type(leaf, chunk);
3125 btrfs_release_path(path);
3126
3127 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3128 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3129 if (ret == -ENOSPC)
3130 failed++;
3131 else
3132 BUG_ON(ret);
3133 }
3134 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3135
3136 if (found_key.offset == 0)
3137 break;
3138 key.offset = found_key.offset - 1;
3139 }
3140 ret = 0;
3141 if (failed && !retried) {
3142 failed = 0;
3143 retried = true;
3144 goto again;
3145 } else if (WARN_ON(failed && retried)) {
3146 ret = -ENOSPC;
3147 }
3148 error:
3149 btrfs_free_path(path);
3150 return ret;
3151 }
3152
3153 /*
3154 * return 1 : allocate a data chunk successfully,
3155 * return <0: errors during allocating a data chunk,
3156 * return 0 : no need to allocate a data chunk.
3157 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3158 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3159 u64 chunk_offset)
3160 {
3161 struct btrfs_block_group *cache;
3162 u64 bytes_used;
3163 u64 chunk_type;
3164
3165 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3166 ASSERT(cache);
3167 chunk_type = cache->flags;
3168 btrfs_put_block_group(cache);
3169
3170 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3171 return 0;
3172
3173 spin_lock(&fs_info->data_sinfo->lock);
3174 bytes_used = fs_info->data_sinfo->bytes_used;
3175 spin_unlock(&fs_info->data_sinfo->lock);
3176
3177 if (!bytes_used) {
3178 struct btrfs_trans_handle *trans;
3179 int ret;
3180
3181 trans = btrfs_join_transaction(fs_info->tree_root);
3182 if (IS_ERR(trans))
3183 return PTR_ERR(trans);
3184
3185 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3186 btrfs_end_transaction(trans);
3187 if (ret < 0)
3188 return ret;
3189 return 1;
3190 }
3191
3192 return 0;
3193 }
3194
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3195 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3196 struct btrfs_balance_control *bctl)
3197 {
3198 struct btrfs_root *root = fs_info->tree_root;
3199 struct btrfs_trans_handle *trans;
3200 struct btrfs_balance_item *item;
3201 struct btrfs_disk_balance_args disk_bargs;
3202 struct btrfs_path *path;
3203 struct extent_buffer *leaf;
3204 struct btrfs_key key;
3205 int ret, err;
3206
3207 path = btrfs_alloc_path();
3208 if (!path)
3209 return -ENOMEM;
3210
3211 trans = btrfs_start_transaction(root, 0);
3212 if (IS_ERR(trans)) {
3213 btrfs_free_path(path);
3214 return PTR_ERR(trans);
3215 }
3216
3217 key.objectid = BTRFS_BALANCE_OBJECTID;
3218 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3219 key.offset = 0;
3220
3221 ret = btrfs_insert_empty_item(trans, root, path, &key,
3222 sizeof(*item));
3223 if (ret)
3224 goto out;
3225
3226 leaf = path->nodes[0];
3227 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3228
3229 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3230
3231 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3232 btrfs_set_balance_data(leaf, item, &disk_bargs);
3233 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3234 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3235 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3236 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3237
3238 btrfs_set_balance_flags(leaf, item, bctl->flags);
3239
3240 btrfs_mark_buffer_dirty(leaf);
3241 out:
3242 btrfs_free_path(path);
3243 err = btrfs_commit_transaction(trans);
3244 if (err && !ret)
3245 ret = err;
3246 return ret;
3247 }
3248
del_balance_item(struct btrfs_fs_info * fs_info)3249 static int del_balance_item(struct btrfs_fs_info *fs_info)
3250 {
3251 struct btrfs_root *root = fs_info->tree_root;
3252 struct btrfs_trans_handle *trans;
3253 struct btrfs_path *path;
3254 struct btrfs_key key;
3255 int ret, err;
3256
3257 path = btrfs_alloc_path();
3258 if (!path)
3259 return -ENOMEM;
3260
3261 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3262 if (IS_ERR(trans)) {
3263 btrfs_free_path(path);
3264 return PTR_ERR(trans);
3265 }
3266
3267 key.objectid = BTRFS_BALANCE_OBJECTID;
3268 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3269 key.offset = 0;
3270
3271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3272 if (ret < 0)
3273 goto out;
3274 if (ret > 0) {
3275 ret = -ENOENT;
3276 goto out;
3277 }
3278
3279 ret = btrfs_del_item(trans, root, path);
3280 out:
3281 btrfs_free_path(path);
3282 err = btrfs_commit_transaction(trans);
3283 if (err && !ret)
3284 ret = err;
3285 return ret;
3286 }
3287
3288 /*
3289 * This is a heuristic used to reduce the number of chunks balanced on
3290 * resume after balance was interrupted.
3291 */
update_balance_args(struct btrfs_balance_control * bctl)3292 static void update_balance_args(struct btrfs_balance_control *bctl)
3293 {
3294 /*
3295 * Turn on soft mode for chunk types that were being converted.
3296 */
3297 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3298 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3299 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3300 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3301 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3302 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3303
3304 /*
3305 * Turn on usage filter if is not already used. The idea is
3306 * that chunks that we have already balanced should be
3307 * reasonably full. Don't do it for chunks that are being
3308 * converted - that will keep us from relocating unconverted
3309 * (albeit full) chunks.
3310 */
3311 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3312 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3313 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3314 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3315 bctl->data.usage = 90;
3316 }
3317 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3318 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3319 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3320 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3321 bctl->sys.usage = 90;
3322 }
3323 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3324 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3325 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3326 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3327 bctl->meta.usage = 90;
3328 }
3329 }
3330
3331 /*
3332 * Clear the balance status in fs_info and delete the balance item from disk.
3333 */
reset_balance_state(struct btrfs_fs_info * fs_info)3334 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3335 {
3336 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3337 int ret;
3338
3339 BUG_ON(!fs_info->balance_ctl);
3340
3341 spin_lock(&fs_info->balance_lock);
3342 fs_info->balance_ctl = NULL;
3343 spin_unlock(&fs_info->balance_lock);
3344
3345 kfree(bctl);
3346 ret = del_balance_item(fs_info);
3347 if (ret)
3348 btrfs_handle_fs_error(fs_info, ret, NULL);
3349 }
3350
3351 /*
3352 * Balance filters. Return 1 if chunk should be filtered out
3353 * (should not be balanced).
3354 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3355 static int chunk_profiles_filter(u64 chunk_type,
3356 struct btrfs_balance_args *bargs)
3357 {
3358 chunk_type = chunk_to_extended(chunk_type) &
3359 BTRFS_EXTENDED_PROFILE_MASK;
3360
3361 if (bargs->profiles & chunk_type)
3362 return 0;
3363
3364 return 1;
3365 }
3366
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3367 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3368 struct btrfs_balance_args *bargs)
3369 {
3370 struct btrfs_block_group *cache;
3371 u64 chunk_used;
3372 u64 user_thresh_min;
3373 u64 user_thresh_max;
3374 int ret = 1;
3375
3376 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3377 chunk_used = cache->used;
3378
3379 if (bargs->usage_min == 0)
3380 user_thresh_min = 0;
3381 else
3382 user_thresh_min = div_factor_fine(cache->length,
3383 bargs->usage_min);
3384
3385 if (bargs->usage_max == 0)
3386 user_thresh_max = 1;
3387 else if (bargs->usage_max > 100)
3388 user_thresh_max = cache->length;
3389 else
3390 user_thresh_max = div_factor_fine(cache->length,
3391 bargs->usage_max);
3392
3393 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3394 ret = 0;
3395
3396 btrfs_put_block_group(cache);
3397 return ret;
3398 }
3399
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3400 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3401 u64 chunk_offset, struct btrfs_balance_args *bargs)
3402 {
3403 struct btrfs_block_group *cache;
3404 u64 chunk_used, user_thresh;
3405 int ret = 1;
3406
3407 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3408 chunk_used = cache->used;
3409
3410 if (bargs->usage_min == 0)
3411 user_thresh = 1;
3412 else if (bargs->usage > 100)
3413 user_thresh = cache->length;
3414 else
3415 user_thresh = div_factor_fine(cache->length, bargs->usage);
3416
3417 if (chunk_used < user_thresh)
3418 ret = 0;
3419
3420 btrfs_put_block_group(cache);
3421 return ret;
3422 }
3423
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3424 static int chunk_devid_filter(struct extent_buffer *leaf,
3425 struct btrfs_chunk *chunk,
3426 struct btrfs_balance_args *bargs)
3427 {
3428 struct btrfs_stripe *stripe;
3429 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3430 int i;
3431
3432 for (i = 0; i < num_stripes; i++) {
3433 stripe = btrfs_stripe_nr(chunk, i);
3434 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3435 return 0;
3436 }
3437
3438 return 1;
3439 }
3440
calc_data_stripes(u64 type,int num_stripes)3441 static u64 calc_data_stripes(u64 type, int num_stripes)
3442 {
3443 const int index = btrfs_bg_flags_to_raid_index(type);
3444 const int ncopies = btrfs_raid_array[index].ncopies;
3445 const int nparity = btrfs_raid_array[index].nparity;
3446
3447 if (nparity)
3448 return num_stripes - nparity;
3449 else
3450 return num_stripes / ncopies;
3451 }
3452
3453 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3454 static int chunk_drange_filter(struct extent_buffer *leaf,
3455 struct btrfs_chunk *chunk,
3456 struct btrfs_balance_args *bargs)
3457 {
3458 struct btrfs_stripe *stripe;
3459 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3460 u64 stripe_offset;
3461 u64 stripe_length;
3462 u64 type;
3463 int factor;
3464 int i;
3465
3466 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3467 return 0;
3468
3469 type = btrfs_chunk_type(leaf, chunk);
3470 factor = calc_data_stripes(type, num_stripes);
3471
3472 for (i = 0; i < num_stripes; i++) {
3473 stripe = btrfs_stripe_nr(chunk, i);
3474 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3475 continue;
3476
3477 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3478 stripe_length = btrfs_chunk_length(leaf, chunk);
3479 stripe_length = div_u64(stripe_length, factor);
3480
3481 if (stripe_offset < bargs->pend &&
3482 stripe_offset + stripe_length > bargs->pstart)
3483 return 0;
3484 }
3485
3486 return 1;
3487 }
3488
3489 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3490 static int chunk_vrange_filter(struct extent_buffer *leaf,
3491 struct btrfs_chunk *chunk,
3492 u64 chunk_offset,
3493 struct btrfs_balance_args *bargs)
3494 {
3495 if (chunk_offset < bargs->vend &&
3496 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3497 /* at least part of the chunk is inside this vrange */
3498 return 0;
3499
3500 return 1;
3501 }
3502
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3503 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3504 struct btrfs_chunk *chunk,
3505 struct btrfs_balance_args *bargs)
3506 {
3507 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3508
3509 if (bargs->stripes_min <= num_stripes
3510 && num_stripes <= bargs->stripes_max)
3511 return 0;
3512
3513 return 1;
3514 }
3515
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3516 static int chunk_soft_convert_filter(u64 chunk_type,
3517 struct btrfs_balance_args *bargs)
3518 {
3519 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3520 return 0;
3521
3522 chunk_type = chunk_to_extended(chunk_type) &
3523 BTRFS_EXTENDED_PROFILE_MASK;
3524
3525 if (bargs->target == chunk_type)
3526 return 1;
3527
3528 return 0;
3529 }
3530
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3531 static int should_balance_chunk(struct extent_buffer *leaf,
3532 struct btrfs_chunk *chunk, u64 chunk_offset)
3533 {
3534 struct btrfs_fs_info *fs_info = leaf->fs_info;
3535 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3536 struct btrfs_balance_args *bargs = NULL;
3537 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3538
3539 /* type filter */
3540 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3541 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3542 return 0;
3543 }
3544
3545 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3546 bargs = &bctl->data;
3547 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3548 bargs = &bctl->sys;
3549 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3550 bargs = &bctl->meta;
3551
3552 /* profiles filter */
3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3554 chunk_profiles_filter(chunk_type, bargs)) {
3555 return 0;
3556 }
3557
3558 /* usage filter */
3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3560 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3561 return 0;
3562 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3563 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3564 return 0;
3565 }
3566
3567 /* devid filter */
3568 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3569 chunk_devid_filter(leaf, chunk, bargs)) {
3570 return 0;
3571 }
3572
3573 /* drange filter, makes sense only with devid filter */
3574 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3575 chunk_drange_filter(leaf, chunk, bargs)) {
3576 return 0;
3577 }
3578
3579 /* vrange filter */
3580 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3581 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3582 return 0;
3583 }
3584
3585 /* stripes filter */
3586 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3587 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3588 return 0;
3589 }
3590
3591 /* soft profile changing mode */
3592 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3593 chunk_soft_convert_filter(chunk_type, bargs)) {
3594 return 0;
3595 }
3596
3597 /*
3598 * limited by count, must be the last filter
3599 */
3600 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3601 if (bargs->limit == 0)
3602 return 0;
3603 else
3604 bargs->limit--;
3605 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3606 /*
3607 * Same logic as the 'limit' filter; the minimum cannot be
3608 * determined here because we do not have the global information
3609 * about the count of all chunks that satisfy the filters.
3610 */
3611 if (bargs->limit_max == 0)
3612 return 0;
3613 else
3614 bargs->limit_max--;
3615 }
3616
3617 return 1;
3618 }
3619
__btrfs_balance(struct btrfs_fs_info * fs_info)3620 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3621 {
3622 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3623 struct btrfs_root *chunk_root = fs_info->chunk_root;
3624 u64 chunk_type;
3625 struct btrfs_chunk *chunk;
3626 struct btrfs_path *path = NULL;
3627 struct btrfs_key key;
3628 struct btrfs_key found_key;
3629 struct extent_buffer *leaf;
3630 int slot;
3631 int ret;
3632 int enospc_errors = 0;
3633 bool counting = true;
3634 /* The single value limit and min/max limits use the same bytes in the */
3635 u64 limit_data = bctl->data.limit;
3636 u64 limit_meta = bctl->meta.limit;
3637 u64 limit_sys = bctl->sys.limit;
3638 u32 count_data = 0;
3639 u32 count_meta = 0;
3640 u32 count_sys = 0;
3641 int chunk_reserved = 0;
3642
3643 path = btrfs_alloc_path();
3644 if (!path) {
3645 ret = -ENOMEM;
3646 goto error;
3647 }
3648
3649 /* zero out stat counters */
3650 spin_lock(&fs_info->balance_lock);
3651 memset(&bctl->stat, 0, sizeof(bctl->stat));
3652 spin_unlock(&fs_info->balance_lock);
3653 again:
3654 if (!counting) {
3655 /*
3656 * The single value limit and min/max limits use the same bytes
3657 * in the
3658 */
3659 bctl->data.limit = limit_data;
3660 bctl->meta.limit = limit_meta;
3661 bctl->sys.limit = limit_sys;
3662 }
3663 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3664 key.offset = (u64)-1;
3665 key.type = BTRFS_CHUNK_ITEM_KEY;
3666
3667 while (1) {
3668 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3669 atomic_read(&fs_info->balance_cancel_req)) {
3670 ret = -ECANCELED;
3671 goto error;
3672 }
3673
3674 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3675 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3676 if (ret < 0) {
3677 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3678 goto error;
3679 }
3680
3681 /*
3682 * this shouldn't happen, it means the last relocate
3683 * failed
3684 */
3685 if (ret == 0)
3686 BUG(); /* FIXME break ? */
3687
3688 ret = btrfs_previous_item(chunk_root, path, 0,
3689 BTRFS_CHUNK_ITEM_KEY);
3690 if (ret) {
3691 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 ret = 0;
3693 break;
3694 }
3695
3696 leaf = path->nodes[0];
3697 slot = path->slots[0];
3698 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699
3700 if (found_key.objectid != key.objectid) {
3701 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3702 break;
3703 }
3704
3705 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3706 chunk_type = btrfs_chunk_type(leaf, chunk);
3707
3708 if (!counting) {
3709 spin_lock(&fs_info->balance_lock);
3710 bctl->stat.considered++;
3711 spin_unlock(&fs_info->balance_lock);
3712 }
3713
3714 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3715
3716 btrfs_release_path(path);
3717 if (!ret) {
3718 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3719 goto loop;
3720 }
3721
3722 if (counting) {
3723 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3724 spin_lock(&fs_info->balance_lock);
3725 bctl->stat.expected++;
3726 spin_unlock(&fs_info->balance_lock);
3727
3728 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3729 count_data++;
3730 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3731 count_sys++;
3732 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3733 count_meta++;
3734
3735 goto loop;
3736 }
3737
3738 /*
3739 * Apply limit_min filter, no need to check if the LIMITS
3740 * filter is used, limit_min is 0 by default
3741 */
3742 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3743 count_data < bctl->data.limit_min)
3744 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3745 count_meta < bctl->meta.limit_min)
3746 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3747 count_sys < bctl->sys.limit_min)) {
3748 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3749 goto loop;
3750 }
3751
3752 if (!chunk_reserved) {
3753 /*
3754 * We may be relocating the only data chunk we have,
3755 * which could potentially end up with losing data's
3756 * raid profile, so lets allocate an empty one in
3757 * advance.
3758 */
3759 ret = btrfs_may_alloc_data_chunk(fs_info,
3760 found_key.offset);
3761 if (ret < 0) {
3762 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3763 goto error;
3764 } else if (ret == 1) {
3765 chunk_reserved = 1;
3766 }
3767 }
3768
3769 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3770 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771 if (ret == -ENOSPC) {
3772 enospc_errors++;
3773 } else if (ret == -ETXTBSY) {
3774 btrfs_info(fs_info,
3775 "skipping relocation of block group %llu due to active swapfile",
3776 found_key.offset);
3777 ret = 0;
3778 } else if (ret) {
3779 goto error;
3780 } else {
3781 spin_lock(&fs_info->balance_lock);
3782 bctl->stat.completed++;
3783 spin_unlock(&fs_info->balance_lock);
3784 }
3785 loop:
3786 if (found_key.offset == 0)
3787 break;
3788 key.offset = found_key.offset - 1;
3789 }
3790
3791 if (counting) {
3792 btrfs_release_path(path);
3793 counting = false;
3794 goto again;
3795 }
3796 error:
3797 btrfs_free_path(path);
3798 if (enospc_errors) {
3799 btrfs_info(fs_info, "%d enospc errors during balance",
3800 enospc_errors);
3801 if (!ret)
3802 ret = -ENOSPC;
3803 }
3804
3805 return ret;
3806 }
3807
3808 /**
3809 * alloc_profile_is_valid - see if a given profile is valid and reduced
3810 * @flags: profile to validate
3811 * @extended: if true @flags is treated as an extended profile
3812 */
alloc_profile_is_valid(u64 flags,int extended)3813 static int alloc_profile_is_valid(u64 flags, int extended)
3814 {
3815 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3816 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3817
3818 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3819
3820 /* 1) check that all other bits are zeroed */
3821 if (flags & ~mask)
3822 return 0;
3823
3824 /* 2) see if profile is reduced */
3825 if (flags == 0)
3826 return !extended; /* "0" is valid for usual profiles */
3827
3828 return has_single_bit_set(flags);
3829 }
3830
balance_need_close(struct btrfs_fs_info * fs_info)3831 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3832 {
3833 /* cancel requested || normal exit path */
3834 return atomic_read(&fs_info->balance_cancel_req) ||
3835 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3836 atomic_read(&fs_info->balance_cancel_req) == 0);
3837 }
3838
3839 /*
3840 * Validate target profile against allowed profiles and return true if it's OK.
3841 * Otherwise print the error message and return false.
3842 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)3843 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3844 const struct btrfs_balance_args *bargs,
3845 u64 allowed, const char *type)
3846 {
3847 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3848 return true;
3849
3850 /* Profile is valid and does not have bits outside of the allowed set */
3851 if (alloc_profile_is_valid(bargs->target, 1) &&
3852 (bargs->target & ~allowed) == 0)
3853 return true;
3854
3855 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3856 type, btrfs_bg_type_to_raid_name(bargs->target));
3857 return false;
3858 }
3859
3860 /*
3861 * Fill @buf with textual description of balance filter flags @bargs, up to
3862 * @size_buf including the terminating null. The output may be trimmed if it
3863 * does not fit into the provided buffer.
3864 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)3865 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3866 u32 size_buf)
3867 {
3868 int ret;
3869 u32 size_bp = size_buf;
3870 char *bp = buf;
3871 u64 flags = bargs->flags;
3872 char tmp_buf[128] = {'\0'};
3873
3874 if (!flags)
3875 return;
3876
3877 #define CHECK_APPEND_NOARG(a) \
3878 do { \
3879 ret = snprintf(bp, size_bp, (a)); \
3880 if (ret < 0 || ret >= size_bp) \
3881 goto out_overflow; \
3882 size_bp -= ret; \
3883 bp += ret; \
3884 } while (0)
3885
3886 #define CHECK_APPEND_1ARG(a, v1) \
3887 do { \
3888 ret = snprintf(bp, size_bp, (a), (v1)); \
3889 if (ret < 0 || ret >= size_bp) \
3890 goto out_overflow; \
3891 size_bp -= ret; \
3892 bp += ret; \
3893 } while (0)
3894
3895 #define CHECK_APPEND_2ARG(a, v1, v2) \
3896 do { \
3897 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3898 if (ret < 0 || ret >= size_bp) \
3899 goto out_overflow; \
3900 size_bp -= ret; \
3901 bp += ret; \
3902 } while (0)
3903
3904 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3905 CHECK_APPEND_1ARG("convert=%s,",
3906 btrfs_bg_type_to_raid_name(bargs->target));
3907
3908 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3909 CHECK_APPEND_NOARG("soft,");
3910
3911 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3912 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3913 sizeof(tmp_buf));
3914 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3915 }
3916
3917 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3918 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3919
3920 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3921 CHECK_APPEND_2ARG("usage=%u..%u,",
3922 bargs->usage_min, bargs->usage_max);
3923
3924 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3925 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3926
3927 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3928 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3929 bargs->pstart, bargs->pend);
3930
3931 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3932 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3933 bargs->vstart, bargs->vend);
3934
3935 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3936 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3937
3938 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3939 CHECK_APPEND_2ARG("limit=%u..%u,",
3940 bargs->limit_min, bargs->limit_max);
3941
3942 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3943 CHECK_APPEND_2ARG("stripes=%u..%u,",
3944 bargs->stripes_min, bargs->stripes_max);
3945
3946 #undef CHECK_APPEND_2ARG
3947 #undef CHECK_APPEND_1ARG
3948 #undef CHECK_APPEND_NOARG
3949
3950 out_overflow:
3951
3952 if (size_bp < size_buf)
3953 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3954 else
3955 buf[0] = '\0';
3956 }
3957
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)3958 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3959 {
3960 u32 size_buf = 1024;
3961 char tmp_buf[192] = {'\0'};
3962 char *buf;
3963 char *bp;
3964 u32 size_bp = size_buf;
3965 int ret;
3966 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3967
3968 buf = kzalloc(size_buf, GFP_KERNEL);
3969 if (!buf)
3970 return;
3971
3972 bp = buf;
3973
3974 #define CHECK_APPEND_1ARG(a, v1) \
3975 do { \
3976 ret = snprintf(bp, size_bp, (a), (v1)); \
3977 if (ret < 0 || ret >= size_bp) \
3978 goto out_overflow; \
3979 size_bp -= ret; \
3980 bp += ret; \
3981 } while (0)
3982
3983 if (bctl->flags & BTRFS_BALANCE_FORCE)
3984 CHECK_APPEND_1ARG("%s", "-f ");
3985
3986 if (bctl->flags & BTRFS_BALANCE_DATA) {
3987 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3988 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3989 }
3990
3991 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3992 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3993 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3994 }
3995
3996 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3997 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3998 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3999 }
4000
4001 #undef CHECK_APPEND_1ARG
4002
4003 out_overflow:
4004
4005 if (size_bp < size_buf)
4006 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4007 btrfs_info(fs_info, "balance: %s %s",
4008 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4009 "resume" : "start", buf);
4010
4011 kfree(buf);
4012 }
4013
4014 /*
4015 * Should be called with balance mutexe held
4016 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4017 int btrfs_balance(struct btrfs_fs_info *fs_info,
4018 struct btrfs_balance_control *bctl,
4019 struct btrfs_ioctl_balance_args *bargs)
4020 {
4021 u64 meta_target, data_target;
4022 u64 allowed;
4023 int mixed = 0;
4024 int ret;
4025 u64 num_devices;
4026 unsigned seq;
4027 bool reducing_redundancy;
4028 int i;
4029
4030 if (btrfs_fs_closing(fs_info) ||
4031 atomic_read(&fs_info->balance_pause_req) ||
4032 btrfs_should_cancel_balance(fs_info)) {
4033 ret = -EINVAL;
4034 goto out;
4035 }
4036
4037 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4038 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4039 mixed = 1;
4040
4041 /*
4042 * In case of mixed groups both data and meta should be picked,
4043 * and identical options should be given for both of them.
4044 */
4045 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4046 if (mixed && (bctl->flags & allowed)) {
4047 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4048 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4049 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4050 btrfs_err(fs_info,
4051 "balance: mixed groups data and metadata options must be the same");
4052 ret = -EINVAL;
4053 goto out;
4054 }
4055 }
4056
4057 /*
4058 * rw_devices will not change at the moment, device add/delete/replace
4059 * are exclusive
4060 */
4061 num_devices = fs_info->fs_devices->rw_devices;
4062
4063 /*
4064 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4065 * special bit for it, to make it easier to distinguish. Thus we need
4066 * to set it manually, or balance would refuse the profile.
4067 */
4068 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4069 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4070 if (num_devices >= btrfs_raid_array[i].devs_min)
4071 allowed |= btrfs_raid_array[i].bg_flag;
4072
4073 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4074 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4075 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4076 ret = -EINVAL;
4077 goto out;
4078 }
4079
4080 /*
4081 * Allow to reduce metadata or system integrity only if force set for
4082 * profiles with redundancy (copies, parity)
4083 */
4084 allowed = 0;
4085 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4086 if (btrfs_raid_array[i].ncopies >= 2 ||
4087 btrfs_raid_array[i].tolerated_failures >= 1)
4088 allowed |= btrfs_raid_array[i].bg_flag;
4089 }
4090 do {
4091 seq = read_seqbegin(&fs_info->profiles_lock);
4092
4093 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4094 (fs_info->avail_system_alloc_bits & allowed) &&
4095 !(bctl->sys.target & allowed)) ||
4096 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4097 (fs_info->avail_metadata_alloc_bits & allowed) &&
4098 !(bctl->meta.target & allowed)))
4099 reducing_redundancy = true;
4100 else
4101 reducing_redundancy = false;
4102
4103 /* if we're not converting, the target field is uninitialized */
4104 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4105 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4106 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4107 bctl->data.target : fs_info->avail_data_alloc_bits;
4108 } while (read_seqretry(&fs_info->profiles_lock, seq));
4109
4110 if (reducing_redundancy) {
4111 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4112 btrfs_info(fs_info,
4113 "balance: force reducing metadata redundancy");
4114 } else {
4115 btrfs_err(fs_info,
4116 "balance: reduces metadata redundancy, use --force if you want this");
4117 ret = -EINVAL;
4118 goto out;
4119 }
4120 }
4121
4122 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4123 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4124 btrfs_warn(fs_info,
4125 "balance: metadata profile %s has lower redundancy than data profile %s",
4126 btrfs_bg_type_to_raid_name(meta_target),
4127 btrfs_bg_type_to_raid_name(data_target));
4128 }
4129
4130 if (fs_info->send_in_progress) {
4131 btrfs_warn_rl(fs_info,
4132 "cannot run balance while send operations are in progress (%d in progress)",
4133 fs_info->send_in_progress);
4134 ret = -EAGAIN;
4135 goto out;
4136 }
4137
4138 ret = insert_balance_item(fs_info, bctl);
4139 if (ret && ret != -EEXIST)
4140 goto out;
4141
4142 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4143 BUG_ON(ret == -EEXIST);
4144 BUG_ON(fs_info->balance_ctl);
4145 spin_lock(&fs_info->balance_lock);
4146 fs_info->balance_ctl = bctl;
4147 spin_unlock(&fs_info->balance_lock);
4148 } else {
4149 BUG_ON(ret != -EEXIST);
4150 spin_lock(&fs_info->balance_lock);
4151 update_balance_args(bctl);
4152 spin_unlock(&fs_info->balance_lock);
4153 }
4154
4155 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4156 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4157 describe_balance_start_or_resume(fs_info);
4158 mutex_unlock(&fs_info->balance_mutex);
4159
4160 ret = __btrfs_balance(fs_info);
4161
4162 mutex_lock(&fs_info->balance_mutex);
4163 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4164 btrfs_info(fs_info, "balance: paused");
4165 /*
4166 * Balance can be canceled by:
4167 *
4168 * - Regular cancel request
4169 * Then ret == -ECANCELED and balance_cancel_req > 0
4170 *
4171 * - Fatal signal to "btrfs" process
4172 * Either the signal caught by wait_reserve_ticket() and callers
4173 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4174 * got -ECANCELED.
4175 * Either way, in this case balance_cancel_req = 0, and
4176 * ret == -EINTR or ret == -ECANCELED.
4177 *
4178 * So here we only check the return value to catch canceled balance.
4179 */
4180 else if (ret == -ECANCELED || ret == -EINTR)
4181 btrfs_info(fs_info, "balance: canceled");
4182 else
4183 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4184
4185 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4186
4187 if (bargs) {
4188 memset(bargs, 0, sizeof(*bargs));
4189 btrfs_update_ioctl_balance_args(fs_info, bargs);
4190 }
4191
4192 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4193 balance_need_close(fs_info)) {
4194 reset_balance_state(fs_info);
4195 btrfs_exclop_finish(fs_info);
4196 }
4197
4198 wake_up(&fs_info->balance_wait_q);
4199
4200 return ret;
4201 out:
4202 if (bctl->flags & BTRFS_BALANCE_RESUME)
4203 reset_balance_state(fs_info);
4204 else
4205 kfree(bctl);
4206 btrfs_exclop_finish(fs_info);
4207
4208 return ret;
4209 }
4210
balance_kthread(void * data)4211 static int balance_kthread(void *data)
4212 {
4213 struct btrfs_fs_info *fs_info = data;
4214 int ret = 0;
4215
4216 mutex_lock(&fs_info->balance_mutex);
4217 if (fs_info->balance_ctl)
4218 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4219 mutex_unlock(&fs_info->balance_mutex);
4220
4221 return ret;
4222 }
4223
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4224 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4225 {
4226 struct task_struct *tsk;
4227
4228 mutex_lock(&fs_info->balance_mutex);
4229 if (!fs_info->balance_ctl) {
4230 mutex_unlock(&fs_info->balance_mutex);
4231 return 0;
4232 }
4233 mutex_unlock(&fs_info->balance_mutex);
4234
4235 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4236 btrfs_info(fs_info, "balance: resume skipped");
4237 return 0;
4238 }
4239
4240 /*
4241 * A ro->rw remount sequence should continue with the paused balance
4242 * regardless of who pauses it, system or the user as of now, so set
4243 * the resume flag.
4244 */
4245 spin_lock(&fs_info->balance_lock);
4246 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4247 spin_unlock(&fs_info->balance_lock);
4248
4249 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4250 return PTR_ERR_OR_ZERO(tsk);
4251 }
4252
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4253 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4254 {
4255 struct btrfs_balance_control *bctl;
4256 struct btrfs_balance_item *item;
4257 struct btrfs_disk_balance_args disk_bargs;
4258 struct btrfs_path *path;
4259 struct extent_buffer *leaf;
4260 struct btrfs_key key;
4261 int ret;
4262
4263 path = btrfs_alloc_path();
4264 if (!path)
4265 return -ENOMEM;
4266
4267 key.objectid = BTRFS_BALANCE_OBJECTID;
4268 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4269 key.offset = 0;
4270
4271 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4272 if (ret < 0)
4273 goto out;
4274 if (ret > 0) { /* ret = -ENOENT; */
4275 ret = 0;
4276 goto out;
4277 }
4278
4279 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4280 if (!bctl) {
4281 ret = -ENOMEM;
4282 goto out;
4283 }
4284
4285 leaf = path->nodes[0];
4286 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4287
4288 bctl->flags = btrfs_balance_flags(leaf, item);
4289 bctl->flags |= BTRFS_BALANCE_RESUME;
4290
4291 btrfs_balance_data(leaf, item, &disk_bargs);
4292 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4293 btrfs_balance_meta(leaf, item, &disk_bargs);
4294 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4295 btrfs_balance_sys(leaf, item, &disk_bargs);
4296 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4297
4298 /*
4299 * This should never happen, as the paused balance state is recovered
4300 * during mount without any chance of other exclusive ops to collide.
4301 *
4302 * This gives the exclusive op status to balance and keeps in paused
4303 * state until user intervention (cancel or umount). If the ownership
4304 * cannot be assigned, show a message but do not fail. The balance
4305 * is in a paused state and must have fs_info::balance_ctl properly
4306 * set up.
4307 */
4308 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4309 btrfs_warn(fs_info,
4310 "balance: cannot set exclusive op status, resume manually");
4311
4312 btrfs_release_path(path);
4313
4314 mutex_lock(&fs_info->balance_mutex);
4315 BUG_ON(fs_info->balance_ctl);
4316 spin_lock(&fs_info->balance_lock);
4317 fs_info->balance_ctl = bctl;
4318 spin_unlock(&fs_info->balance_lock);
4319 mutex_unlock(&fs_info->balance_mutex);
4320 out:
4321 btrfs_free_path(path);
4322 return ret;
4323 }
4324
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4325 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4326 {
4327 int ret = 0;
4328
4329 mutex_lock(&fs_info->balance_mutex);
4330 if (!fs_info->balance_ctl) {
4331 mutex_unlock(&fs_info->balance_mutex);
4332 return -ENOTCONN;
4333 }
4334
4335 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4336 atomic_inc(&fs_info->balance_pause_req);
4337 mutex_unlock(&fs_info->balance_mutex);
4338
4339 wait_event(fs_info->balance_wait_q,
4340 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4341
4342 mutex_lock(&fs_info->balance_mutex);
4343 /* we are good with balance_ctl ripped off from under us */
4344 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4345 atomic_dec(&fs_info->balance_pause_req);
4346 } else {
4347 ret = -ENOTCONN;
4348 }
4349
4350 mutex_unlock(&fs_info->balance_mutex);
4351 return ret;
4352 }
4353
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4354 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4355 {
4356 mutex_lock(&fs_info->balance_mutex);
4357 if (!fs_info->balance_ctl) {
4358 mutex_unlock(&fs_info->balance_mutex);
4359 return -ENOTCONN;
4360 }
4361
4362 /*
4363 * A paused balance with the item stored on disk can be resumed at
4364 * mount time if the mount is read-write. Otherwise it's still paused
4365 * and we must not allow cancelling as it deletes the item.
4366 */
4367 if (sb_rdonly(fs_info->sb)) {
4368 mutex_unlock(&fs_info->balance_mutex);
4369 return -EROFS;
4370 }
4371
4372 atomic_inc(&fs_info->balance_cancel_req);
4373 /*
4374 * if we are running just wait and return, balance item is
4375 * deleted in btrfs_balance in this case
4376 */
4377 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4378 mutex_unlock(&fs_info->balance_mutex);
4379 wait_event(fs_info->balance_wait_q,
4380 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4381 mutex_lock(&fs_info->balance_mutex);
4382 } else {
4383 mutex_unlock(&fs_info->balance_mutex);
4384 /*
4385 * Lock released to allow other waiters to continue, we'll
4386 * reexamine the status again.
4387 */
4388 mutex_lock(&fs_info->balance_mutex);
4389
4390 if (fs_info->balance_ctl) {
4391 reset_balance_state(fs_info);
4392 btrfs_exclop_finish(fs_info);
4393 btrfs_info(fs_info, "balance: canceled");
4394 }
4395 }
4396
4397 BUG_ON(fs_info->balance_ctl ||
4398 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4399 atomic_dec(&fs_info->balance_cancel_req);
4400 mutex_unlock(&fs_info->balance_mutex);
4401 return 0;
4402 }
4403
btrfs_uuid_scan_kthread(void * data)4404 int btrfs_uuid_scan_kthread(void *data)
4405 {
4406 struct btrfs_fs_info *fs_info = data;
4407 struct btrfs_root *root = fs_info->tree_root;
4408 struct btrfs_key key;
4409 struct btrfs_path *path = NULL;
4410 int ret = 0;
4411 struct extent_buffer *eb;
4412 int slot;
4413 struct btrfs_root_item root_item;
4414 u32 item_size;
4415 struct btrfs_trans_handle *trans = NULL;
4416 bool closing = false;
4417
4418 path = btrfs_alloc_path();
4419 if (!path) {
4420 ret = -ENOMEM;
4421 goto out;
4422 }
4423
4424 key.objectid = 0;
4425 key.type = BTRFS_ROOT_ITEM_KEY;
4426 key.offset = 0;
4427
4428 while (1) {
4429 if (btrfs_fs_closing(fs_info)) {
4430 closing = true;
4431 break;
4432 }
4433 ret = btrfs_search_forward(root, &key, path,
4434 BTRFS_OLDEST_GENERATION);
4435 if (ret) {
4436 if (ret > 0)
4437 ret = 0;
4438 break;
4439 }
4440
4441 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4442 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4443 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4444 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4445 goto skip;
4446
4447 eb = path->nodes[0];
4448 slot = path->slots[0];
4449 item_size = btrfs_item_size_nr(eb, slot);
4450 if (item_size < sizeof(root_item))
4451 goto skip;
4452
4453 read_extent_buffer(eb, &root_item,
4454 btrfs_item_ptr_offset(eb, slot),
4455 (int)sizeof(root_item));
4456 if (btrfs_root_refs(&root_item) == 0)
4457 goto skip;
4458
4459 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4460 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4461 if (trans)
4462 goto update_tree;
4463
4464 btrfs_release_path(path);
4465 /*
4466 * 1 - subvol uuid item
4467 * 1 - received_subvol uuid item
4468 */
4469 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4470 if (IS_ERR(trans)) {
4471 ret = PTR_ERR(trans);
4472 break;
4473 }
4474 continue;
4475 } else {
4476 goto skip;
4477 }
4478 update_tree:
4479 btrfs_release_path(path);
4480 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4481 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4482 BTRFS_UUID_KEY_SUBVOL,
4483 key.objectid);
4484 if (ret < 0) {
4485 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4486 ret);
4487 break;
4488 }
4489 }
4490
4491 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4492 ret = btrfs_uuid_tree_add(trans,
4493 root_item.received_uuid,
4494 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495 key.objectid);
4496 if (ret < 0) {
4497 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498 ret);
4499 break;
4500 }
4501 }
4502
4503 skip:
4504 btrfs_release_path(path);
4505 if (trans) {
4506 ret = btrfs_end_transaction(trans);
4507 trans = NULL;
4508 if (ret)
4509 break;
4510 }
4511
4512 if (key.offset < (u64)-1) {
4513 key.offset++;
4514 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515 key.offset = 0;
4516 key.type = BTRFS_ROOT_ITEM_KEY;
4517 } else if (key.objectid < (u64)-1) {
4518 key.offset = 0;
4519 key.type = BTRFS_ROOT_ITEM_KEY;
4520 key.objectid++;
4521 } else {
4522 break;
4523 }
4524 cond_resched();
4525 }
4526
4527 out:
4528 btrfs_free_path(path);
4529 if (trans && !IS_ERR(trans))
4530 btrfs_end_transaction(trans);
4531 if (ret)
4532 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4533 else if (!closing)
4534 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4535 up(&fs_info->uuid_tree_rescan_sem);
4536 return 0;
4537 }
4538
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4539 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4540 {
4541 struct btrfs_trans_handle *trans;
4542 struct btrfs_root *tree_root = fs_info->tree_root;
4543 struct btrfs_root *uuid_root;
4544 struct task_struct *task;
4545 int ret;
4546
4547 /*
4548 * 1 - root node
4549 * 1 - root item
4550 */
4551 trans = btrfs_start_transaction(tree_root, 2);
4552 if (IS_ERR(trans))
4553 return PTR_ERR(trans);
4554
4555 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4556 if (IS_ERR(uuid_root)) {
4557 ret = PTR_ERR(uuid_root);
4558 btrfs_abort_transaction(trans, ret);
4559 btrfs_end_transaction(trans);
4560 return ret;
4561 }
4562
4563 fs_info->uuid_root = uuid_root;
4564
4565 ret = btrfs_commit_transaction(trans);
4566 if (ret)
4567 return ret;
4568
4569 down(&fs_info->uuid_tree_rescan_sem);
4570 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4571 if (IS_ERR(task)) {
4572 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4573 btrfs_warn(fs_info, "failed to start uuid_scan task");
4574 up(&fs_info->uuid_tree_rescan_sem);
4575 return PTR_ERR(task);
4576 }
4577
4578 return 0;
4579 }
4580
4581 /*
4582 * shrinking a device means finding all of the device extents past
4583 * the new size, and then following the back refs to the chunks.
4584 * The chunk relocation code actually frees the device extent
4585 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4586 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4587 {
4588 struct btrfs_fs_info *fs_info = device->fs_info;
4589 struct btrfs_root *root = fs_info->dev_root;
4590 struct btrfs_trans_handle *trans;
4591 struct btrfs_dev_extent *dev_extent = NULL;
4592 struct btrfs_path *path;
4593 u64 length;
4594 u64 chunk_offset;
4595 int ret;
4596 int slot;
4597 int failed = 0;
4598 bool retried = false;
4599 struct extent_buffer *l;
4600 struct btrfs_key key;
4601 struct btrfs_super_block *super_copy = fs_info->super_copy;
4602 u64 old_total = btrfs_super_total_bytes(super_copy);
4603 u64 old_size = btrfs_device_get_total_bytes(device);
4604 u64 diff;
4605 u64 start;
4606
4607 new_size = round_down(new_size, fs_info->sectorsize);
4608 start = new_size;
4609 diff = round_down(old_size - new_size, fs_info->sectorsize);
4610
4611 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4612 return -EINVAL;
4613
4614 path = btrfs_alloc_path();
4615 if (!path)
4616 return -ENOMEM;
4617
4618 path->reada = READA_BACK;
4619
4620 trans = btrfs_start_transaction(root, 0);
4621 if (IS_ERR(trans)) {
4622 btrfs_free_path(path);
4623 return PTR_ERR(trans);
4624 }
4625
4626 mutex_lock(&fs_info->chunk_mutex);
4627
4628 btrfs_device_set_total_bytes(device, new_size);
4629 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4630 device->fs_devices->total_rw_bytes -= diff;
4631 atomic64_sub(diff, &fs_info->free_chunk_space);
4632 }
4633
4634 /*
4635 * Once the device's size has been set to the new size, ensure all
4636 * in-memory chunks are synced to disk so that the loop below sees them
4637 * and relocates them accordingly.
4638 */
4639 if (contains_pending_extent(device, &start, diff)) {
4640 mutex_unlock(&fs_info->chunk_mutex);
4641 ret = btrfs_commit_transaction(trans);
4642 if (ret)
4643 goto done;
4644 } else {
4645 mutex_unlock(&fs_info->chunk_mutex);
4646 btrfs_end_transaction(trans);
4647 }
4648
4649 again:
4650 key.objectid = device->devid;
4651 key.offset = (u64)-1;
4652 key.type = BTRFS_DEV_EXTENT_KEY;
4653
4654 do {
4655 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4657 if (ret < 0) {
4658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659 goto done;
4660 }
4661
4662 ret = btrfs_previous_item(root, path, 0, key.type);
4663 if (ret)
4664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4665 if (ret < 0)
4666 goto done;
4667 if (ret) {
4668 ret = 0;
4669 btrfs_release_path(path);
4670 break;
4671 }
4672
4673 l = path->nodes[0];
4674 slot = path->slots[0];
4675 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4676
4677 if (key.objectid != device->devid) {
4678 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4679 btrfs_release_path(path);
4680 break;
4681 }
4682
4683 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4684 length = btrfs_dev_extent_length(l, dev_extent);
4685
4686 if (key.offset + length <= new_size) {
4687 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4688 btrfs_release_path(path);
4689 break;
4690 }
4691
4692 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4693 btrfs_release_path(path);
4694
4695 /*
4696 * We may be relocating the only data chunk we have,
4697 * which could potentially end up with losing data's
4698 * raid profile, so lets allocate an empty one in
4699 * advance.
4700 */
4701 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4702 if (ret < 0) {
4703 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4704 goto done;
4705 }
4706
4707 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4708 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4709 if (ret == -ENOSPC) {
4710 failed++;
4711 } else if (ret) {
4712 if (ret == -ETXTBSY) {
4713 btrfs_warn(fs_info,
4714 "could not shrink block group %llu due to active swapfile",
4715 chunk_offset);
4716 }
4717 goto done;
4718 }
4719 } while (key.offset-- > 0);
4720
4721 if (failed && !retried) {
4722 failed = 0;
4723 retried = true;
4724 goto again;
4725 } else if (failed && retried) {
4726 ret = -ENOSPC;
4727 goto done;
4728 }
4729
4730 /* Shrinking succeeded, else we would be at "done". */
4731 trans = btrfs_start_transaction(root, 0);
4732 if (IS_ERR(trans)) {
4733 ret = PTR_ERR(trans);
4734 goto done;
4735 }
4736
4737 mutex_lock(&fs_info->chunk_mutex);
4738 /* Clear all state bits beyond the shrunk device size */
4739 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4740 CHUNK_STATE_MASK);
4741
4742 btrfs_device_set_disk_total_bytes(device, new_size);
4743 if (list_empty(&device->post_commit_list))
4744 list_add_tail(&device->post_commit_list,
4745 &trans->transaction->dev_update_list);
4746
4747 WARN_ON(diff > old_total);
4748 btrfs_set_super_total_bytes(super_copy,
4749 round_down(old_total - diff, fs_info->sectorsize));
4750 mutex_unlock(&fs_info->chunk_mutex);
4751
4752 /* Now btrfs_update_device() will change the on-disk size. */
4753 ret = btrfs_update_device(trans, device);
4754 if (ret < 0) {
4755 btrfs_abort_transaction(trans, ret);
4756 btrfs_end_transaction(trans);
4757 } else {
4758 ret = btrfs_commit_transaction(trans);
4759 }
4760 done:
4761 btrfs_free_path(path);
4762 if (ret) {
4763 mutex_lock(&fs_info->chunk_mutex);
4764 btrfs_device_set_total_bytes(device, old_size);
4765 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4766 device->fs_devices->total_rw_bytes += diff;
4767 atomic64_add(diff, &fs_info->free_chunk_space);
4768 mutex_unlock(&fs_info->chunk_mutex);
4769 }
4770 return ret;
4771 }
4772
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4773 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4774 struct btrfs_key *key,
4775 struct btrfs_chunk *chunk, int item_size)
4776 {
4777 struct btrfs_super_block *super_copy = fs_info->super_copy;
4778 struct btrfs_disk_key disk_key;
4779 u32 array_size;
4780 u8 *ptr;
4781
4782 mutex_lock(&fs_info->chunk_mutex);
4783 array_size = btrfs_super_sys_array_size(super_copy);
4784 if (array_size + item_size + sizeof(disk_key)
4785 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4786 mutex_unlock(&fs_info->chunk_mutex);
4787 return -EFBIG;
4788 }
4789
4790 ptr = super_copy->sys_chunk_array + array_size;
4791 btrfs_cpu_key_to_disk(&disk_key, key);
4792 memcpy(ptr, &disk_key, sizeof(disk_key));
4793 ptr += sizeof(disk_key);
4794 memcpy(ptr, chunk, item_size);
4795 item_size += sizeof(disk_key);
4796 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4797 mutex_unlock(&fs_info->chunk_mutex);
4798
4799 return 0;
4800 }
4801
4802 /*
4803 * sort the devices in descending order by max_avail, total_avail
4804 */
btrfs_cmp_device_info(const void * a,const void * b)4805 static int btrfs_cmp_device_info(const void *a, const void *b)
4806 {
4807 const struct btrfs_device_info *di_a = a;
4808 const struct btrfs_device_info *di_b = b;
4809
4810 if (di_a->max_avail > di_b->max_avail)
4811 return -1;
4812 if (di_a->max_avail < di_b->max_avail)
4813 return 1;
4814 if (di_a->total_avail > di_b->total_avail)
4815 return -1;
4816 if (di_a->total_avail < di_b->total_avail)
4817 return 1;
4818 return 0;
4819 }
4820
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4821 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4822 {
4823 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4824 return;
4825
4826 btrfs_set_fs_incompat(info, RAID56);
4827 }
4828
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)4829 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4830 {
4831 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4832 return;
4833
4834 btrfs_set_fs_incompat(info, RAID1C34);
4835 }
4836
4837 /*
4838 * Structure used internally for __btrfs_alloc_chunk() function.
4839 * Wraps needed parameters.
4840 */
4841 struct alloc_chunk_ctl {
4842 u64 start;
4843 u64 type;
4844 /* Total number of stripes to allocate */
4845 int num_stripes;
4846 /* sub_stripes info for map */
4847 int sub_stripes;
4848 /* Stripes per device */
4849 int dev_stripes;
4850 /* Maximum number of devices to use */
4851 int devs_max;
4852 /* Minimum number of devices to use */
4853 int devs_min;
4854 /* ndevs has to be a multiple of this */
4855 int devs_increment;
4856 /* Number of copies */
4857 int ncopies;
4858 /* Number of stripes worth of bytes to store parity information */
4859 int nparity;
4860 u64 max_stripe_size;
4861 u64 max_chunk_size;
4862 u64 dev_extent_min;
4863 u64 stripe_size;
4864 u64 chunk_size;
4865 int ndevs;
4866 };
4867
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4868 static void init_alloc_chunk_ctl_policy_regular(
4869 struct btrfs_fs_devices *fs_devices,
4870 struct alloc_chunk_ctl *ctl)
4871 {
4872 u64 type = ctl->type;
4873
4874 if (type & BTRFS_BLOCK_GROUP_DATA) {
4875 ctl->max_stripe_size = SZ_1G;
4876 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4877 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4878 /* For larger filesystems, use larger metadata chunks */
4879 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4880 ctl->max_stripe_size = SZ_1G;
4881 else
4882 ctl->max_stripe_size = SZ_256M;
4883 ctl->max_chunk_size = ctl->max_stripe_size;
4884 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4885 ctl->max_stripe_size = SZ_32M;
4886 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4887 ctl->devs_max = min_t(int, ctl->devs_max,
4888 BTRFS_MAX_DEVS_SYS_CHUNK);
4889 } else {
4890 BUG();
4891 }
4892
4893 /* We don't want a chunk larger than 10% of writable space */
4894 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4895 ctl->max_chunk_size);
4896 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4897 }
4898
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4899 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4900 struct alloc_chunk_ctl *ctl)
4901 {
4902 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4903
4904 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4905 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4906 ctl->devs_max = btrfs_raid_array[index].devs_max;
4907 if (!ctl->devs_max)
4908 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4909 ctl->devs_min = btrfs_raid_array[index].devs_min;
4910 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4911 ctl->ncopies = btrfs_raid_array[index].ncopies;
4912 ctl->nparity = btrfs_raid_array[index].nparity;
4913 ctl->ndevs = 0;
4914
4915 switch (fs_devices->chunk_alloc_policy) {
4916 case BTRFS_CHUNK_ALLOC_REGULAR:
4917 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4918 break;
4919 default:
4920 BUG();
4921 }
4922 }
4923
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)4924 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4925 struct alloc_chunk_ctl *ctl,
4926 struct btrfs_device_info *devices_info)
4927 {
4928 struct btrfs_fs_info *info = fs_devices->fs_info;
4929 struct btrfs_device *device;
4930 u64 total_avail;
4931 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4932 int ret;
4933 int ndevs = 0;
4934 u64 max_avail;
4935 u64 dev_offset;
4936
4937 /*
4938 * in the first pass through the devices list, we gather information
4939 * about the available holes on each device.
4940 */
4941 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4942 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4943 WARN(1, KERN_ERR
4944 "BTRFS: read-only device in alloc_list\n");
4945 continue;
4946 }
4947
4948 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4949 &device->dev_state) ||
4950 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4951 continue;
4952
4953 if (device->total_bytes > device->bytes_used)
4954 total_avail = device->total_bytes - device->bytes_used;
4955 else
4956 total_avail = 0;
4957
4958 /* If there is no space on this device, skip it. */
4959 if (total_avail < ctl->dev_extent_min)
4960 continue;
4961
4962 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4963 &max_avail);
4964 if (ret && ret != -ENOSPC)
4965 return ret;
4966
4967 if (ret == 0)
4968 max_avail = dev_extent_want;
4969
4970 if (max_avail < ctl->dev_extent_min) {
4971 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4972 btrfs_debug(info,
4973 "%s: devid %llu has no free space, have=%llu want=%llu",
4974 __func__, device->devid, max_avail,
4975 ctl->dev_extent_min);
4976 continue;
4977 }
4978
4979 if (ndevs == fs_devices->rw_devices) {
4980 WARN(1, "%s: found more than %llu devices\n",
4981 __func__, fs_devices->rw_devices);
4982 break;
4983 }
4984 devices_info[ndevs].dev_offset = dev_offset;
4985 devices_info[ndevs].max_avail = max_avail;
4986 devices_info[ndevs].total_avail = total_avail;
4987 devices_info[ndevs].dev = device;
4988 ++ndevs;
4989 }
4990 ctl->ndevs = ndevs;
4991
4992 /*
4993 * now sort the devices by hole size / available space
4994 */
4995 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4996 btrfs_cmp_device_info, NULL);
4997
4998 return 0;
4999 }
5000
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5001 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5002 struct btrfs_device_info *devices_info)
5003 {
5004 /* Number of stripes that count for block group size */
5005 int data_stripes;
5006
5007 /*
5008 * The primary goal is to maximize the number of stripes, so use as
5009 * many devices as possible, even if the stripes are not maximum sized.
5010 *
5011 * The DUP profile stores more than one stripe per device, the
5012 * max_avail is the total size so we have to adjust.
5013 */
5014 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5015 ctl->dev_stripes);
5016 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5017
5018 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5019 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5020
5021 /*
5022 * Use the number of data stripes to figure out how big this chunk is
5023 * really going to be in terms of logical address space, and compare
5024 * that answer with the max chunk size. If it's higher, we try to
5025 * reduce stripe_size.
5026 */
5027 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5028 /*
5029 * Reduce stripe_size, round it up to a 16MB boundary again and
5030 * then use it, unless it ends up being even bigger than the
5031 * previous value we had already.
5032 */
5033 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5034 data_stripes), SZ_16M),
5035 ctl->stripe_size);
5036 }
5037
5038 /* Align to BTRFS_STRIPE_LEN */
5039 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5040 ctl->chunk_size = ctl->stripe_size * data_stripes;
5041
5042 return 0;
5043 }
5044
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5045 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5046 struct alloc_chunk_ctl *ctl,
5047 struct btrfs_device_info *devices_info)
5048 {
5049 struct btrfs_fs_info *info = fs_devices->fs_info;
5050
5051 /*
5052 * Round down to number of usable stripes, devs_increment can be any
5053 * number so we can't use round_down() that requires power of 2, while
5054 * rounddown is safe.
5055 */
5056 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5057
5058 if (ctl->ndevs < ctl->devs_min) {
5059 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5060 btrfs_debug(info,
5061 "%s: not enough devices with free space: have=%d minimum required=%d",
5062 __func__, ctl->ndevs, ctl->devs_min);
5063 }
5064 return -ENOSPC;
5065 }
5066
5067 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5068
5069 switch (fs_devices->chunk_alloc_policy) {
5070 case BTRFS_CHUNK_ALLOC_REGULAR:
5071 return decide_stripe_size_regular(ctl, devices_info);
5072 default:
5073 BUG();
5074 }
5075 }
5076
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5077 static int create_chunk(struct btrfs_trans_handle *trans,
5078 struct alloc_chunk_ctl *ctl,
5079 struct btrfs_device_info *devices_info)
5080 {
5081 struct btrfs_fs_info *info = trans->fs_info;
5082 struct map_lookup *map = NULL;
5083 struct extent_map_tree *em_tree;
5084 struct extent_map *em;
5085 u64 start = ctl->start;
5086 u64 type = ctl->type;
5087 int ret;
5088 int i;
5089 int j;
5090
5091 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5092 if (!map)
5093 return -ENOMEM;
5094 map->num_stripes = ctl->num_stripes;
5095
5096 for (i = 0; i < ctl->ndevs; ++i) {
5097 for (j = 0; j < ctl->dev_stripes; ++j) {
5098 int s = i * ctl->dev_stripes + j;
5099 map->stripes[s].dev = devices_info[i].dev;
5100 map->stripes[s].physical = devices_info[i].dev_offset +
5101 j * ctl->stripe_size;
5102 }
5103 }
5104 map->stripe_len = BTRFS_STRIPE_LEN;
5105 map->io_align = BTRFS_STRIPE_LEN;
5106 map->io_width = BTRFS_STRIPE_LEN;
5107 map->type = type;
5108 map->sub_stripes = ctl->sub_stripes;
5109
5110 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5111
5112 em = alloc_extent_map();
5113 if (!em) {
5114 kfree(map);
5115 return -ENOMEM;
5116 }
5117 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5118 em->map_lookup = map;
5119 em->start = start;
5120 em->len = ctl->chunk_size;
5121 em->block_start = 0;
5122 em->block_len = em->len;
5123 em->orig_block_len = ctl->stripe_size;
5124
5125 em_tree = &info->mapping_tree;
5126 write_lock(&em_tree->lock);
5127 ret = add_extent_mapping(em_tree, em, 0);
5128 if (ret) {
5129 write_unlock(&em_tree->lock);
5130 free_extent_map(em);
5131 return ret;
5132 }
5133 write_unlock(&em_tree->lock);
5134
5135 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5136 if (ret)
5137 goto error_del_extent;
5138
5139 for (i = 0; i < map->num_stripes; i++) {
5140 struct btrfs_device *dev = map->stripes[i].dev;
5141
5142 btrfs_device_set_bytes_used(dev,
5143 dev->bytes_used + ctl->stripe_size);
5144 if (list_empty(&dev->post_commit_list))
5145 list_add_tail(&dev->post_commit_list,
5146 &trans->transaction->dev_update_list);
5147 }
5148
5149 atomic64_sub(ctl->stripe_size * map->num_stripes,
5150 &info->free_chunk_space);
5151
5152 free_extent_map(em);
5153 check_raid56_incompat_flag(info, type);
5154 check_raid1c34_incompat_flag(info, type);
5155
5156 return 0;
5157
5158 error_del_extent:
5159 write_lock(&em_tree->lock);
5160 remove_extent_mapping(em_tree, em);
5161 write_unlock(&em_tree->lock);
5162
5163 /* One for our allocation */
5164 free_extent_map(em);
5165 /* One for the tree reference */
5166 free_extent_map(em);
5167
5168 return ret;
5169 }
5170
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5171 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5172 {
5173 struct btrfs_fs_info *info = trans->fs_info;
5174 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5175 struct btrfs_device_info *devices_info = NULL;
5176 struct alloc_chunk_ctl ctl;
5177 int ret;
5178
5179 lockdep_assert_held(&info->chunk_mutex);
5180
5181 if (!alloc_profile_is_valid(type, 0)) {
5182 ASSERT(0);
5183 return -EINVAL;
5184 }
5185
5186 if (list_empty(&fs_devices->alloc_list)) {
5187 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5188 btrfs_debug(info, "%s: no writable device", __func__);
5189 return -ENOSPC;
5190 }
5191
5192 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5193 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5194 ASSERT(0);
5195 return -EINVAL;
5196 }
5197
5198 ctl.start = find_next_chunk(info);
5199 ctl.type = type;
5200 init_alloc_chunk_ctl(fs_devices, &ctl);
5201
5202 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5203 GFP_NOFS);
5204 if (!devices_info)
5205 return -ENOMEM;
5206
5207 ret = gather_device_info(fs_devices, &ctl, devices_info);
5208 if (ret < 0)
5209 goto out;
5210
5211 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5212 if (ret < 0)
5213 goto out;
5214
5215 ret = create_chunk(trans, &ctl, devices_info);
5216
5217 out:
5218 kfree(devices_info);
5219 return ret;
5220 }
5221
5222 /*
5223 * Chunk allocation falls into two parts. The first part does work
5224 * that makes the new allocated chunk usable, but does not do any operation
5225 * that modifies the chunk tree. The second part does the work that
5226 * requires modifying the chunk tree. This division is important for the
5227 * bootstrap process of adding storage to a seed btrfs.
5228 */
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5229 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5230 u64 chunk_offset, u64 chunk_size)
5231 {
5232 struct btrfs_fs_info *fs_info = trans->fs_info;
5233 struct btrfs_root *extent_root = fs_info->extent_root;
5234 struct btrfs_root *chunk_root = fs_info->chunk_root;
5235 struct btrfs_key key;
5236 struct btrfs_device *device;
5237 struct btrfs_chunk *chunk;
5238 struct btrfs_stripe *stripe;
5239 struct extent_map *em;
5240 struct map_lookup *map;
5241 size_t item_size;
5242 u64 dev_offset;
5243 u64 stripe_size;
5244 int i = 0;
5245 int ret = 0;
5246
5247 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5248 if (IS_ERR(em))
5249 return PTR_ERR(em);
5250
5251 map = em->map_lookup;
5252 item_size = btrfs_chunk_item_size(map->num_stripes);
5253 stripe_size = em->orig_block_len;
5254
5255 chunk = kzalloc(item_size, GFP_NOFS);
5256 if (!chunk) {
5257 ret = -ENOMEM;
5258 goto out;
5259 }
5260
5261 /*
5262 * Take the device list mutex to prevent races with the final phase of
5263 * a device replace operation that replaces the device object associated
5264 * with the map's stripes, because the device object's id can change
5265 * at any time during that final phase of the device replace operation
5266 * (dev-replace.c:btrfs_dev_replace_finishing()).
5267 */
5268 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5269 for (i = 0; i < map->num_stripes; i++) {
5270 device = map->stripes[i].dev;
5271 dev_offset = map->stripes[i].physical;
5272
5273 ret = btrfs_update_device(trans, device);
5274 if (ret)
5275 break;
5276 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5277 dev_offset, stripe_size);
5278 if (ret)
5279 break;
5280 }
5281 if (ret) {
5282 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5283 goto out;
5284 }
5285
5286 stripe = &chunk->stripe;
5287 for (i = 0; i < map->num_stripes; i++) {
5288 device = map->stripes[i].dev;
5289 dev_offset = map->stripes[i].physical;
5290
5291 btrfs_set_stack_stripe_devid(stripe, device->devid);
5292 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5293 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5294 stripe++;
5295 }
5296 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5297
5298 btrfs_set_stack_chunk_length(chunk, chunk_size);
5299 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5300 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5301 btrfs_set_stack_chunk_type(chunk, map->type);
5302 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5303 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5304 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5305 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5306 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5307
5308 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5309 key.type = BTRFS_CHUNK_ITEM_KEY;
5310 key.offset = chunk_offset;
5311
5312 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5313 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5314 /*
5315 * TODO: Cleanup of inserted chunk root in case of
5316 * failure.
5317 */
5318 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5319 }
5320
5321 out:
5322 kfree(chunk);
5323 free_extent_map(em);
5324 return ret;
5325 }
5326
init_first_rw_device(struct btrfs_trans_handle * trans)5327 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5328 {
5329 struct btrfs_fs_info *fs_info = trans->fs_info;
5330 u64 alloc_profile;
5331 int ret;
5332
5333 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5334 ret = btrfs_alloc_chunk(trans, alloc_profile);
5335 if (ret)
5336 return ret;
5337
5338 alloc_profile = btrfs_system_alloc_profile(fs_info);
5339 ret = btrfs_alloc_chunk(trans, alloc_profile);
5340 return ret;
5341 }
5342
btrfs_chunk_max_errors(struct map_lookup * map)5343 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5344 {
5345 const int index = btrfs_bg_flags_to_raid_index(map->type);
5346
5347 return btrfs_raid_array[index].tolerated_failures;
5348 }
5349
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5350 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5351 {
5352 struct extent_map *em;
5353 struct map_lookup *map;
5354 int readonly = 0;
5355 int miss_ndevs = 0;
5356 int i;
5357
5358 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5359 if (IS_ERR(em))
5360 return 1;
5361
5362 map = em->map_lookup;
5363 for (i = 0; i < map->num_stripes; i++) {
5364 if (test_bit(BTRFS_DEV_STATE_MISSING,
5365 &map->stripes[i].dev->dev_state)) {
5366 miss_ndevs++;
5367 continue;
5368 }
5369 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5370 &map->stripes[i].dev->dev_state)) {
5371 readonly = 1;
5372 goto end;
5373 }
5374 }
5375
5376 /*
5377 * If the number of missing devices is larger than max errors,
5378 * we can not write the data into that chunk successfully, so
5379 * set it readonly.
5380 */
5381 if (miss_ndevs > btrfs_chunk_max_errors(map))
5382 readonly = 1;
5383 end:
5384 free_extent_map(em);
5385 return readonly;
5386 }
5387
btrfs_mapping_tree_free(struct extent_map_tree * tree)5388 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5389 {
5390 struct extent_map *em;
5391
5392 while (1) {
5393 write_lock(&tree->lock);
5394 em = lookup_extent_mapping(tree, 0, (u64)-1);
5395 if (em)
5396 remove_extent_mapping(tree, em);
5397 write_unlock(&tree->lock);
5398 if (!em)
5399 break;
5400 /* once for us */
5401 free_extent_map(em);
5402 /* once for the tree */
5403 free_extent_map(em);
5404 }
5405 }
5406
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5407 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5408 {
5409 struct extent_map *em;
5410 struct map_lookup *map;
5411 int ret;
5412
5413 em = btrfs_get_chunk_map(fs_info, logical, len);
5414 if (IS_ERR(em))
5415 /*
5416 * We could return errors for these cases, but that could get
5417 * ugly and we'd probably do the same thing which is just not do
5418 * anything else and exit, so return 1 so the callers don't try
5419 * to use other copies.
5420 */
5421 return 1;
5422
5423 map = em->map_lookup;
5424 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5425 ret = map->num_stripes;
5426 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5427 ret = map->sub_stripes;
5428 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5429 ret = 2;
5430 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5431 /*
5432 * There could be two corrupted data stripes, we need
5433 * to loop retry in order to rebuild the correct data.
5434 *
5435 * Fail a stripe at a time on every retry except the
5436 * stripe under reconstruction.
5437 */
5438 ret = map->num_stripes;
5439 else
5440 ret = 1;
5441 free_extent_map(em);
5442
5443 down_read(&fs_info->dev_replace.rwsem);
5444 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5445 fs_info->dev_replace.tgtdev)
5446 ret++;
5447 up_read(&fs_info->dev_replace.rwsem);
5448
5449 return ret;
5450 }
5451
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5452 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5453 u64 logical)
5454 {
5455 struct extent_map *em;
5456 struct map_lookup *map;
5457 unsigned long len = fs_info->sectorsize;
5458
5459 em = btrfs_get_chunk_map(fs_info, logical, len);
5460
5461 if (!WARN_ON(IS_ERR(em))) {
5462 map = em->map_lookup;
5463 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5464 len = map->stripe_len * nr_data_stripes(map);
5465 free_extent_map(em);
5466 }
5467 return len;
5468 }
5469
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5470 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5471 {
5472 struct extent_map *em;
5473 struct map_lookup *map;
5474 int ret = 0;
5475
5476 em = btrfs_get_chunk_map(fs_info, logical, len);
5477
5478 if(!WARN_ON(IS_ERR(em))) {
5479 map = em->map_lookup;
5480 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5481 ret = 1;
5482 free_extent_map(em);
5483 }
5484 return ret;
5485 }
5486
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5487 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5488 struct map_lookup *map, int first,
5489 int dev_replace_is_ongoing)
5490 {
5491 int i;
5492 int num_stripes;
5493 int preferred_mirror;
5494 int tolerance;
5495 struct btrfs_device *srcdev;
5496
5497 ASSERT((map->type &
5498 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5499
5500 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5501 num_stripes = map->sub_stripes;
5502 else
5503 num_stripes = map->num_stripes;
5504
5505 preferred_mirror = first + current->pid % num_stripes;
5506
5507 if (dev_replace_is_ongoing &&
5508 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5509 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5510 srcdev = fs_info->dev_replace.srcdev;
5511 else
5512 srcdev = NULL;
5513
5514 /*
5515 * try to avoid the drive that is the source drive for a
5516 * dev-replace procedure, only choose it if no other non-missing
5517 * mirror is available
5518 */
5519 for (tolerance = 0; tolerance < 2; tolerance++) {
5520 if (map->stripes[preferred_mirror].dev->bdev &&
5521 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5522 return preferred_mirror;
5523 for (i = first; i < first + num_stripes; i++) {
5524 if (map->stripes[i].dev->bdev &&
5525 (tolerance || map->stripes[i].dev != srcdev))
5526 return i;
5527 }
5528 }
5529
5530 /* we couldn't find one that doesn't fail. Just return something
5531 * and the io error handling code will clean up eventually
5532 */
5533 return preferred_mirror;
5534 }
5535
5536 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5537 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5538 {
5539 int i;
5540 int again = 1;
5541
5542 while (again) {
5543 again = 0;
5544 for (i = 0; i < num_stripes - 1; i++) {
5545 /* Swap if parity is on a smaller index */
5546 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5547 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5548 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5549 again = 1;
5550 }
5551 }
5552 }
5553 }
5554
alloc_btrfs_bio(int total_stripes,int real_stripes)5555 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5556 {
5557 struct btrfs_bio *bbio = kzalloc(
5558 /* the size of the btrfs_bio */
5559 sizeof(struct btrfs_bio) +
5560 /* plus the variable array for the stripes */
5561 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5562 /* plus the variable array for the tgt dev */
5563 sizeof(int) * (real_stripes) +
5564 /*
5565 * plus the raid_map, which includes both the tgt dev
5566 * and the stripes
5567 */
5568 sizeof(u64) * (total_stripes),
5569 GFP_NOFS|__GFP_NOFAIL);
5570
5571 atomic_set(&bbio->error, 0);
5572 refcount_set(&bbio->refs, 1);
5573
5574 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5575 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5576
5577 return bbio;
5578 }
5579
btrfs_get_bbio(struct btrfs_bio * bbio)5580 void btrfs_get_bbio(struct btrfs_bio *bbio)
5581 {
5582 WARN_ON(!refcount_read(&bbio->refs));
5583 refcount_inc(&bbio->refs);
5584 }
5585
btrfs_put_bbio(struct btrfs_bio * bbio)5586 void btrfs_put_bbio(struct btrfs_bio *bbio)
5587 {
5588 if (!bbio)
5589 return;
5590 if (refcount_dec_and_test(&bbio->refs))
5591 kfree(bbio);
5592 }
5593
5594 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5595 /*
5596 * Please note that, discard won't be sent to target device of device
5597 * replace.
5598 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5599 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5600 u64 logical, u64 *length_ret,
5601 struct btrfs_bio **bbio_ret)
5602 {
5603 struct extent_map *em;
5604 struct map_lookup *map;
5605 struct btrfs_bio *bbio;
5606 u64 length = *length_ret;
5607 u64 offset;
5608 u64 stripe_nr;
5609 u64 stripe_nr_end;
5610 u64 stripe_end_offset;
5611 u64 stripe_cnt;
5612 u64 stripe_len;
5613 u64 stripe_offset;
5614 u64 num_stripes;
5615 u32 stripe_index;
5616 u32 factor = 0;
5617 u32 sub_stripes = 0;
5618 u64 stripes_per_dev = 0;
5619 u32 remaining_stripes = 0;
5620 u32 last_stripe = 0;
5621 int ret = 0;
5622 int i;
5623
5624 /* discard always return a bbio */
5625 ASSERT(bbio_ret);
5626
5627 em = btrfs_get_chunk_map(fs_info, logical, length);
5628 if (IS_ERR(em))
5629 return PTR_ERR(em);
5630
5631 map = em->map_lookup;
5632 /* we don't discard raid56 yet */
5633 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5634 ret = -EOPNOTSUPP;
5635 goto out;
5636 }
5637
5638 offset = logical - em->start;
5639 length = min_t(u64, em->start + em->len - logical, length);
5640 *length_ret = length;
5641
5642 stripe_len = map->stripe_len;
5643 /*
5644 * stripe_nr counts the total number of stripes we have to stride
5645 * to get to this block
5646 */
5647 stripe_nr = div64_u64(offset, stripe_len);
5648
5649 /* stripe_offset is the offset of this block in its stripe */
5650 stripe_offset = offset - stripe_nr * stripe_len;
5651
5652 stripe_nr_end = round_up(offset + length, map->stripe_len);
5653 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5654 stripe_cnt = stripe_nr_end - stripe_nr;
5655 stripe_end_offset = stripe_nr_end * map->stripe_len -
5656 (offset + length);
5657 /*
5658 * after this, stripe_nr is the number of stripes on this
5659 * device we have to walk to find the data, and stripe_index is
5660 * the number of our device in the stripe array
5661 */
5662 num_stripes = 1;
5663 stripe_index = 0;
5664 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5665 BTRFS_BLOCK_GROUP_RAID10)) {
5666 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5667 sub_stripes = 1;
5668 else
5669 sub_stripes = map->sub_stripes;
5670
5671 factor = map->num_stripes / sub_stripes;
5672 num_stripes = min_t(u64, map->num_stripes,
5673 sub_stripes * stripe_cnt);
5674 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5675 stripe_index *= sub_stripes;
5676 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5677 &remaining_stripes);
5678 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5679 last_stripe *= sub_stripes;
5680 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5681 BTRFS_BLOCK_GROUP_DUP)) {
5682 num_stripes = map->num_stripes;
5683 } else {
5684 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5685 &stripe_index);
5686 }
5687
5688 bbio = alloc_btrfs_bio(num_stripes, 0);
5689 if (!bbio) {
5690 ret = -ENOMEM;
5691 goto out;
5692 }
5693
5694 for (i = 0; i < num_stripes; i++) {
5695 bbio->stripes[i].physical =
5696 map->stripes[stripe_index].physical +
5697 stripe_offset + stripe_nr * map->stripe_len;
5698 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5699
5700 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5701 BTRFS_BLOCK_GROUP_RAID10)) {
5702 bbio->stripes[i].length = stripes_per_dev *
5703 map->stripe_len;
5704
5705 if (i / sub_stripes < remaining_stripes)
5706 bbio->stripes[i].length +=
5707 map->stripe_len;
5708
5709 /*
5710 * Special for the first stripe and
5711 * the last stripe:
5712 *
5713 * |-------|...|-------|
5714 * |----------|
5715 * off end_off
5716 */
5717 if (i < sub_stripes)
5718 bbio->stripes[i].length -=
5719 stripe_offset;
5720
5721 if (stripe_index >= last_stripe &&
5722 stripe_index <= (last_stripe +
5723 sub_stripes - 1))
5724 bbio->stripes[i].length -=
5725 stripe_end_offset;
5726
5727 if (i == sub_stripes - 1)
5728 stripe_offset = 0;
5729 } else {
5730 bbio->stripes[i].length = length;
5731 }
5732
5733 stripe_index++;
5734 if (stripe_index == map->num_stripes) {
5735 stripe_index = 0;
5736 stripe_nr++;
5737 }
5738 }
5739
5740 *bbio_ret = bbio;
5741 bbio->map_type = map->type;
5742 bbio->num_stripes = num_stripes;
5743 out:
5744 free_extent_map(em);
5745 return ret;
5746 }
5747
5748 /*
5749 * In dev-replace case, for repair case (that's the only case where the mirror
5750 * is selected explicitly when calling btrfs_map_block), blocks left of the
5751 * left cursor can also be read from the target drive.
5752 *
5753 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5754 * array of stripes.
5755 * For READ, it also needs to be supported using the same mirror number.
5756 *
5757 * If the requested block is not left of the left cursor, EIO is returned. This
5758 * can happen because btrfs_num_copies() returns one more in the dev-replace
5759 * case.
5760 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5761 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5762 u64 logical, u64 length,
5763 u64 srcdev_devid, int *mirror_num,
5764 u64 *physical)
5765 {
5766 struct btrfs_bio *bbio = NULL;
5767 int num_stripes;
5768 int index_srcdev = 0;
5769 int found = 0;
5770 u64 physical_of_found = 0;
5771 int i;
5772 int ret = 0;
5773
5774 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5775 logical, &length, &bbio, 0, 0);
5776 if (ret) {
5777 ASSERT(bbio == NULL);
5778 return ret;
5779 }
5780
5781 num_stripes = bbio->num_stripes;
5782 if (*mirror_num > num_stripes) {
5783 /*
5784 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5785 * that means that the requested area is not left of the left
5786 * cursor
5787 */
5788 btrfs_put_bbio(bbio);
5789 return -EIO;
5790 }
5791
5792 /*
5793 * process the rest of the function using the mirror_num of the source
5794 * drive. Therefore look it up first. At the end, patch the device
5795 * pointer to the one of the target drive.
5796 */
5797 for (i = 0; i < num_stripes; i++) {
5798 if (bbio->stripes[i].dev->devid != srcdev_devid)
5799 continue;
5800
5801 /*
5802 * In case of DUP, in order to keep it simple, only add the
5803 * mirror with the lowest physical address
5804 */
5805 if (found &&
5806 physical_of_found <= bbio->stripes[i].physical)
5807 continue;
5808
5809 index_srcdev = i;
5810 found = 1;
5811 physical_of_found = bbio->stripes[i].physical;
5812 }
5813
5814 btrfs_put_bbio(bbio);
5815
5816 ASSERT(found);
5817 if (!found)
5818 return -EIO;
5819
5820 *mirror_num = index_srcdev + 1;
5821 *physical = physical_of_found;
5822 return ret;
5823 }
5824
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5825 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5826 struct btrfs_bio **bbio_ret,
5827 struct btrfs_dev_replace *dev_replace,
5828 int *num_stripes_ret, int *max_errors_ret)
5829 {
5830 struct btrfs_bio *bbio = *bbio_ret;
5831 u64 srcdev_devid = dev_replace->srcdev->devid;
5832 int tgtdev_indexes = 0;
5833 int num_stripes = *num_stripes_ret;
5834 int max_errors = *max_errors_ret;
5835 int i;
5836
5837 if (op == BTRFS_MAP_WRITE) {
5838 int index_where_to_add;
5839
5840 /*
5841 * duplicate the write operations while the dev replace
5842 * procedure is running. Since the copying of the old disk to
5843 * the new disk takes place at run time while the filesystem is
5844 * mounted writable, the regular write operations to the old
5845 * disk have to be duplicated to go to the new disk as well.
5846 *
5847 * Note that device->missing is handled by the caller, and that
5848 * the write to the old disk is already set up in the stripes
5849 * array.
5850 */
5851 index_where_to_add = num_stripes;
5852 for (i = 0; i < num_stripes; i++) {
5853 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5854 /* write to new disk, too */
5855 struct btrfs_bio_stripe *new =
5856 bbio->stripes + index_where_to_add;
5857 struct btrfs_bio_stripe *old =
5858 bbio->stripes + i;
5859
5860 new->physical = old->physical;
5861 new->length = old->length;
5862 new->dev = dev_replace->tgtdev;
5863 bbio->tgtdev_map[i] = index_where_to_add;
5864 index_where_to_add++;
5865 max_errors++;
5866 tgtdev_indexes++;
5867 }
5868 }
5869 num_stripes = index_where_to_add;
5870 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5871 int index_srcdev = 0;
5872 int found = 0;
5873 u64 physical_of_found = 0;
5874
5875 /*
5876 * During the dev-replace procedure, the target drive can also
5877 * be used to read data in case it is needed to repair a corrupt
5878 * block elsewhere. This is possible if the requested area is
5879 * left of the left cursor. In this area, the target drive is a
5880 * full copy of the source drive.
5881 */
5882 for (i = 0; i < num_stripes; i++) {
5883 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5884 /*
5885 * In case of DUP, in order to keep it simple,
5886 * only add the mirror with the lowest physical
5887 * address
5888 */
5889 if (found &&
5890 physical_of_found <=
5891 bbio->stripes[i].physical)
5892 continue;
5893 index_srcdev = i;
5894 found = 1;
5895 physical_of_found = bbio->stripes[i].physical;
5896 }
5897 }
5898 if (found) {
5899 struct btrfs_bio_stripe *tgtdev_stripe =
5900 bbio->stripes + num_stripes;
5901
5902 tgtdev_stripe->physical = physical_of_found;
5903 tgtdev_stripe->length =
5904 bbio->stripes[index_srcdev].length;
5905 tgtdev_stripe->dev = dev_replace->tgtdev;
5906 bbio->tgtdev_map[index_srcdev] = num_stripes;
5907
5908 tgtdev_indexes++;
5909 num_stripes++;
5910 }
5911 }
5912
5913 *num_stripes_ret = num_stripes;
5914 *max_errors_ret = max_errors;
5915 bbio->num_tgtdevs = tgtdev_indexes;
5916 *bbio_ret = bbio;
5917 }
5918
need_full_stripe(enum btrfs_map_op op)5919 static bool need_full_stripe(enum btrfs_map_op op)
5920 {
5921 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5922 }
5923
5924 /*
5925 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5926 * tuple. This information is used to calculate how big a
5927 * particular bio can get before it straddles a stripe.
5928 *
5929 * @fs_info - the filesystem
5930 * @logical - address that we want to figure out the geometry of
5931 * @len - the length of IO we are going to perform, starting at @logical
5932 * @op - type of operation - write or read
5933 * @io_geom - pointer used to return values
5934 *
5935 * Returns < 0 in case a chunk for the given logical address cannot be found,
5936 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5937 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)5938 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5939 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5940 {
5941 struct extent_map *em;
5942 struct map_lookup *map;
5943 u64 offset;
5944 u64 stripe_offset;
5945 u64 stripe_nr;
5946 u64 stripe_len;
5947 u64 raid56_full_stripe_start = (u64)-1;
5948 int data_stripes;
5949 int ret = 0;
5950
5951 ASSERT(op != BTRFS_MAP_DISCARD);
5952
5953 em = btrfs_get_chunk_map(fs_info, logical, len);
5954 if (IS_ERR(em))
5955 return PTR_ERR(em);
5956
5957 map = em->map_lookup;
5958 /* Offset of this logical address in the chunk */
5959 offset = logical - em->start;
5960 /* Len of a stripe in a chunk */
5961 stripe_len = map->stripe_len;
5962 /* Stripe wher this block falls in */
5963 stripe_nr = div64_u64(offset, stripe_len);
5964 /* Offset of stripe in the chunk */
5965 stripe_offset = stripe_nr * stripe_len;
5966 if (offset < stripe_offset) {
5967 btrfs_crit(fs_info,
5968 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5969 stripe_offset, offset, em->start, logical, stripe_len);
5970 ret = -EINVAL;
5971 goto out;
5972 }
5973
5974 /* stripe_offset is the offset of this block in its stripe */
5975 stripe_offset = offset - stripe_offset;
5976 data_stripes = nr_data_stripes(map);
5977
5978 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5979 u64 max_len = stripe_len - stripe_offset;
5980
5981 /*
5982 * In case of raid56, we need to know the stripe aligned start
5983 */
5984 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5985 unsigned long full_stripe_len = stripe_len * data_stripes;
5986 raid56_full_stripe_start = offset;
5987
5988 /*
5989 * Allow a write of a full stripe, but make sure we
5990 * don't allow straddling of stripes
5991 */
5992 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5993 full_stripe_len);
5994 raid56_full_stripe_start *= full_stripe_len;
5995
5996 /*
5997 * For writes to RAID[56], allow a full stripeset across
5998 * all disks. For other RAID types and for RAID[56]
5999 * reads, just allow a single stripe (on a single disk).
6000 */
6001 if (op == BTRFS_MAP_WRITE) {
6002 max_len = stripe_len * data_stripes -
6003 (offset - raid56_full_stripe_start);
6004 }
6005 }
6006 len = min_t(u64, em->len - offset, max_len);
6007 } else {
6008 len = em->len - offset;
6009 }
6010
6011 io_geom->len = len;
6012 io_geom->offset = offset;
6013 io_geom->stripe_len = stripe_len;
6014 io_geom->stripe_nr = stripe_nr;
6015 io_geom->stripe_offset = stripe_offset;
6016 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6017
6018 out:
6019 /* once for us */
6020 free_extent_map(em);
6021 return ret;
6022 }
6023
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6024 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6025 enum btrfs_map_op op,
6026 u64 logical, u64 *length,
6027 struct btrfs_bio **bbio_ret,
6028 int mirror_num, int need_raid_map)
6029 {
6030 struct extent_map *em;
6031 struct map_lookup *map;
6032 u64 stripe_offset;
6033 u64 stripe_nr;
6034 u64 stripe_len;
6035 u32 stripe_index;
6036 int data_stripes;
6037 int i;
6038 int ret = 0;
6039 int num_stripes;
6040 int max_errors = 0;
6041 int tgtdev_indexes = 0;
6042 struct btrfs_bio *bbio = NULL;
6043 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6044 int dev_replace_is_ongoing = 0;
6045 int num_alloc_stripes;
6046 int patch_the_first_stripe_for_dev_replace = 0;
6047 u64 physical_to_patch_in_first_stripe = 0;
6048 u64 raid56_full_stripe_start = (u64)-1;
6049 struct btrfs_io_geometry geom;
6050
6051 ASSERT(bbio_ret);
6052 ASSERT(op != BTRFS_MAP_DISCARD);
6053
6054 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6055 if (ret < 0)
6056 return ret;
6057
6058 em = btrfs_get_chunk_map(fs_info, logical, *length);
6059 ASSERT(!IS_ERR(em));
6060 map = em->map_lookup;
6061
6062 *length = geom.len;
6063 stripe_len = geom.stripe_len;
6064 stripe_nr = geom.stripe_nr;
6065 stripe_offset = geom.stripe_offset;
6066 raid56_full_stripe_start = geom.raid56_stripe_offset;
6067 data_stripes = nr_data_stripes(map);
6068
6069 down_read(&dev_replace->rwsem);
6070 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6071 /*
6072 * Hold the semaphore for read during the whole operation, write is
6073 * requested at commit time but must wait.
6074 */
6075 if (!dev_replace_is_ongoing)
6076 up_read(&dev_replace->rwsem);
6077
6078 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6079 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6080 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6081 dev_replace->srcdev->devid,
6082 &mirror_num,
6083 &physical_to_patch_in_first_stripe);
6084 if (ret)
6085 goto out;
6086 else
6087 patch_the_first_stripe_for_dev_replace = 1;
6088 } else if (mirror_num > map->num_stripes) {
6089 mirror_num = 0;
6090 }
6091
6092 num_stripes = 1;
6093 stripe_index = 0;
6094 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6095 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6096 &stripe_index);
6097 if (!need_full_stripe(op))
6098 mirror_num = 1;
6099 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6100 if (need_full_stripe(op))
6101 num_stripes = map->num_stripes;
6102 else if (mirror_num)
6103 stripe_index = mirror_num - 1;
6104 else {
6105 stripe_index = find_live_mirror(fs_info, map, 0,
6106 dev_replace_is_ongoing);
6107 mirror_num = stripe_index + 1;
6108 }
6109
6110 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6111 if (need_full_stripe(op)) {
6112 num_stripes = map->num_stripes;
6113 } else if (mirror_num) {
6114 stripe_index = mirror_num - 1;
6115 } else {
6116 mirror_num = 1;
6117 }
6118
6119 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6120 u32 factor = map->num_stripes / map->sub_stripes;
6121
6122 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6123 stripe_index *= map->sub_stripes;
6124
6125 if (need_full_stripe(op))
6126 num_stripes = map->sub_stripes;
6127 else if (mirror_num)
6128 stripe_index += mirror_num - 1;
6129 else {
6130 int old_stripe_index = stripe_index;
6131 stripe_index = find_live_mirror(fs_info, map,
6132 stripe_index,
6133 dev_replace_is_ongoing);
6134 mirror_num = stripe_index - old_stripe_index + 1;
6135 }
6136
6137 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6138 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6139 /* push stripe_nr back to the start of the full stripe */
6140 stripe_nr = div64_u64(raid56_full_stripe_start,
6141 stripe_len * data_stripes);
6142
6143 /* RAID[56] write or recovery. Return all stripes */
6144 num_stripes = map->num_stripes;
6145 max_errors = nr_parity_stripes(map);
6146
6147 *length = map->stripe_len;
6148 stripe_index = 0;
6149 stripe_offset = 0;
6150 } else {
6151 /*
6152 * Mirror #0 or #1 means the original data block.
6153 * Mirror #2 is RAID5 parity block.
6154 * Mirror #3 is RAID6 Q block.
6155 */
6156 stripe_nr = div_u64_rem(stripe_nr,
6157 data_stripes, &stripe_index);
6158 if (mirror_num > 1)
6159 stripe_index = data_stripes + mirror_num - 2;
6160
6161 /* We distribute the parity blocks across stripes */
6162 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6163 &stripe_index);
6164 if (!need_full_stripe(op) && mirror_num <= 1)
6165 mirror_num = 1;
6166 }
6167 } else {
6168 /*
6169 * after this, stripe_nr is the number of stripes on this
6170 * device we have to walk to find the data, and stripe_index is
6171 * the number of our device in the stripe array
6172 */
6173 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6174 &stripe_index);
6175 mirror_num = stripe_index + 1;
6176 }
6177 if (stripe_index >= map->num_stripes) {
6178 btrfs_crit(fs_info,
6179 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6180 stripe_index, map->num_stripes);
6181 ret = -EINVAL;
6182 goto out;
6183 }
6184
6185 num_alloc_stripes = num_stripes;
6186 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6187 if (op == BTRFS_MAP_WRITE)
6188 num_alloc_stripes <<= 1;
6189 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6190 num_alloc_stripes++;
6191 tgtdev_indexes = num_stripes;
6192 }
6193
6194 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6195 if (!bbio) {
6196 ret = -ENOMEM;
6197 goto out;
6198 }
6199
6200 for (i = 0; i < num_stripes; i++) {
6201 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6202 stripe_offset + stripe_nr * map->stripe_len;
6203 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6204 stripe_index++;
6205 }
6206
6207 /* build raid_map */
6208 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6209 (need_full_stripe(op) || mirror_num > 1)) {
6210 u64 tmp;
6211 unsigned rot;
6212
6213 /* Work out the disk rotation on this stripe-set */
6214 div_u64_rem(stripe_nr, num_stripes, &rot);
6215
6216 /* Fill in the logical address of each stripe */
6217 tmp = stripe_nr * data_stripes;
6218 for (i = 0; i < data_stripes; i++)
6219 bbio->raid_map[(i+rot) % num_stripes] =
6220 em->start + (tmp + i) * map->stripe_len;
6221
6222 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6223 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6224 bbio->raid_map[(i+rot+1) % num_stripes] =
6225 RAID6_Q_STRIPE;
6226
6227 sort_parity_stripes(bbio, num_stripes);
6228 }
6229
6230 if (need_full_stripe(op))
6231 max_errors = btrfs_chunk_max_errors(map);
6232
6233 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6234 need_full_stripe(op)) {
6235 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6236 &max_errors);
6237 }
6238
6239 *bbio_ret = bbio;
6240 bbio->map_type = map->type;
6241 bbio->num_stripes = num_stripes;
6242 bbio->max_errors = max_errors;
6243 bbio->mirror_num = mirror_num;
6244
6245 /*
6246 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6247 * mirror_num == num_stripes + 1 && dev_replace target drive is
6248 * available as a mirror
6249 */
6250 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6251 WARN_ON(num_stripes > 1);
6252 bbio->stripes[0].dev = dev_replace->tgtdev;
6253 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6254 bbio->mirror_num = map->num_stripes + 1;
6255 }
6256 out:
6257 if (dev_replace_is_ongoing) {
6258 lockdep_assert_held(&dev_replace->rwsem);
6259 /* Unlock and let waiting writers proceed */
6260 up_read(&dev_replace->rwsem);
6261 }
6262 free_extent_map(em);
6263 return ret;
6264 }
6265
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6266 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6267 u64 logical, u64 *length,
6268 struct btrfs_bio **bbio_ret, int mirror_num)
6269 {
6270 if (op == BTRFS_MAP_DISCARD)
6271 return __btrfs_map_block_for_discard(fs_info, logical,
6272 length, bbio_ret);
6273
6274 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6275 mirror_num, 0);
6276 }
6277
6278 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6279 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6280 u64 logical, u64 *length,
6281 struct btrfs_bio **bbio_ret)
6282 {
6283 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6284 }
6285
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6286 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6287 {
6288 bio->bi_private = bbio->private;
6289 bio->bi_end_io = bbio->end_io;
6290 bio_endio(bio);
6291
6292 btrfs_put_bbio(bbio);
6293 }
6294
btrfs_end_bio(struct bio * bio)6295 static void btrfs_end_bio(struct bio *bio)
6296 {
6297 struct btrfs_bio *bbio = bio->bi_private;
6298 int is_orig_bio = 0;
6299
6300 if (bio->bi_status) {
6301 atomic_inc(&bbio->error);
6302 if (bio->bi_status == BLK_STS_IOERR ||
6303 bio->bi_status == BLK_STS_TARGET) {
6304 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6305
6306 ASSERT(dev->bdev);
6307 if (bio_op(bio) == REQ_OP_WRITE)
6308 btrfs_dev_stat_inc_and_print(dev,
6309 BTRFS_DEV_STAT_WRITE_ERRS);
6310 else if (!(bio->bi_opf & REQ_RAHEAD))
6311 btrfs_dev_stat_inc_and_print(dev,
6312 BTRFS_DEV_STAT_READ_ERRS);
6313 if (bio->bi_opf & REQ_PREFLUSH)
6314 btrfs_dev_stat_inc_and_print(dev,
6315 BTRFS_DEV_STAT_FLUSH_ERRS);
6316 }
6317 }
6318
6319 if (bio == bbio->orig_bio)
6320 is_orig_bio = 1;
6321
6322 btrfs_bio_counter_dec(bbio->fs_info);
6323
6324 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6325 if (!is_orig_bio) {
6326 bio_put(bio);
6327 bio = bbio->orig_bio;
6328 }
6329
6330 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6331 /* only send an error to the higher layers if it is
6332 * beyond the tolerance of the btrfs bio
6333 */
6334 if (atomic_read(&bbio->error) > bbio->max_errors) {
6335 bio->bi_status = BLK_STS_IOERR;
6336 } else {
6337 /*
6338 * this bio is actually up to date, we didn't
6339 * go over the max number of errors
6340 */
6341 bio->bi_status = BLK_STS_OK;
6342 }
6343
6344 btrfs_end_bbio(bbio, bio);
6345 } else if (!is_orig_bio) {
6346 bio_put(bio);
6347 }
6348 }
6349
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,struct btrfs_device * dev)6350 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6351 u64 physical, struct btrfs_device *dev)
6352 {
6353 struct btrfs_fs_info *fs_info = bbio->fs_info;
6354
6355 bio->bi_private = bbio;
6356 btrfs_io_bio(bio)->device = dev;
6357 bio->bi_end_io = btrfs_end_bio;
6358 bio->bi_iter.bi_sector = physical >> 9;
6359 btrfs_debug_in_rcu(fs_info,
6360 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6361 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6362 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6363 dev->devid, bio->bi_iter.bi_size);
6364 bio_set_dev(bio, dev->bdev);
6365
6366 btrfs_bio_counter_inc_noblocked(fs_info);
6367
6368 btrfsic_submit_bio(bio);
6369 }
6370
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6371 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6372 {
6373 atomic_inc(&bbio->error);
6374 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6375 /* Should be the original bio. */
6376 WARN_ON(bio != bbio->orig_bio);
6377
6378 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6379 bio->bi_iter.bi_sector = logical >> 9;
6380 if (atomic_read(&bbio->error) > bbio->max_errors)
6381 bio->bi_status = BLK_STS_IOERR;
6382 else
6383 bio->bi_status = BLK_STS_OK;
6384 btrfs_end_bbio(bbio, bio);
6385 }
6386 }
6387
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6388 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6389 int mirror_num)
6390 {
6391 struct btrfs_device *dev;
6392 struct bio *first_bio = bio;
6393 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6394 u64 length = 0;
6395 u64 map_length;
6396 int ret;
6397 int dev_nr;
6398 int total_devs;
6399 struct btrfs_bio *bbio = NULL;
6400
6401 length = bio->bi_iter.bi_size;
6402 map_length = length;
6403
6404 btrfs_bio_counter_inc_blocked(fs_info);
6405 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6406 &map_length, &bbio, mirror_num, 1);
6407 if (ret) {
6408 btrfs_bio_counter_dec(fs_info);
6409 return errno_to_blk_status(ret);
6410 }
6411
6412 total_devs = bbio->num_stripes;
6413 bbio->orig_bio = first_bio;
6414 bbio->private = first_bio->bi_private;
6415 bbio->end_io = first_bio->bi_end_io;
6416 bbio->fs_info = fs_info;
6417 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6418
6419 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6420 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6421 /* In this case, map_length has been set to the length of
6422 a single stripe; not the whole write */
6423 if (bio_op(bio) == REQ_OP_WRITE) {
6424 ret = raid56_parity_write(fs_info, bio, bbio,
6425 map_length);
6426 } else {
6427 ret = raid56_parity_recover(fs_info, bio, bbio,
6428 map_length, mirror_num, 1);
6429 }
6430
6431 btrfs_bio_counter_dec(fs_info);
6432 return errno_to_blk_status(ret);
6433 }
6434
6435 if (map_length < length) {
6436 btrfs_crit(fs_info,
6437 "mapping failed logical %llu bio len %llu len %llu",
6438 logical, length, map_length);
6439 BUG();
6440 }
6441
6442 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6443 dev = bbio->stripes[dev_nr].dev;
6444 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6445 &dev->dev_state) ||
6446 (bio_op(first_bio) == REQ_OP_WRITE &&
6447 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6448 bbio_error(bbio, first_bio, logical);
6449 continue;
6450 }
6451
6452 if (dev_nr < total_devs - 1)
6453 bio = btrfs_bio_clone(first_bio);
6454 else
6455 bio = first_bio;
6456
6457 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6458 }
6459 btrfs_bio_counter_dec(fs_info);
6460 return BLK_STS_OK;
6461 }
6462
6463 /*
6464 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6465 * return NULL.
6466 *
6467 * If devid and uuid are both specified, the match must be exact, otherwise
6468 * only devid is used.
6469 *
6470 * If @seed is true, traverse through the seed devices.
6471 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6472 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6473 u64 devid, u8 *uuid, u8 *fsid,
6474 bool seed)
6475 {
6476 struct btrfs_device *device;
6477 struct btrfs_fs_devices *seed_devs;
6478
6479 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6480 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6481 if (device->devid == devid &&
6482 (!uuid || memcmp(device->uuid, uuid,
6483 BTRFS_UUID_SIZE) == 0))
6484 return device;
6485 }
6486 }
6487
6488 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6489 if (!fsid ||
6490 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6491 list_for_each_entry(device, &seed_devs->devices,
6492 dev_list) {
6493 if (device->devid == devid &&
6494 (!uuid || memcmp(device->uuid, uuid,
6495 BTRFS_UUID_SIZE) == 0))
6496 return device;
6497 }
6498 }
6499 }
6500
6501 return NULL;
6502 }
6503
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6504 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6505 u64 devid, u8 *dev_uuid)
6506 {
6507 struct btrfs_device *device;
6508 unsigned int nofs_flag;
6509
6510 /*
6511 * We call this under the chunk_mutex, so we want to use NOFS for this
6512 * allocation, however we don't want to change btrfs_alloc_device() to
6513 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6514 * places.
6515 */
6516 nofs_flag = memalloc_nofs_save();
6517 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6518 memalloc_nofs_restore(nofs_flag);
6519 if (IS_ERR(device))
6520 return device;
6521
6522 list_add(&device->dev_list, &fs_devices->devices);
6523 device->fs_devices = fs_devices;
6524 fs_devices->num_devices++;
6525
6526 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6527 fs_devices->missing_devices++;
6528
6529 return device;
6530 }
6531
6532 /**
6533 * btrfs_alloc_device - allocate struct btrfs_device
6534 * @fs_info: used only for generating a new devid, can be NULL if
6535 * devid is provided (i.e. @devid != NULL).
6536 * @devid: a pointer to devid for this device. If NULL a new devid
6537 * is generated.
6538 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6539 * is generated.
6540 *
6541 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6542 * on error. Returned struct is not linked onto any lists and must be
6543 * destroyed with btrfs_free_device.
6544 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6545 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6546 const u64 *devid,
6547 const u8 *uuid)
6548 {
6549 struct btrfs_device *dev;
6550 u64 tmp;
6551
6552 if (WARN_ON(!devid && !fs_info))
6553 return ERR_PTR(-EINVAL);
6554
6555 dev = __alloc_device(fs_info);
6556 if (IS_ERR(dev))
6557 return dev;
6558
6559 if (devid)
6560 tmp = *devid;
6561 else {
6562 int ret;
6563
6564 ret = find_next_devid(fs_info, &tmp);
6565 if (ret) {
6566 btrfs_free_device(dev);
6567 return ERR_PTR(ret);
6568 }
6569 }
6570 dev->devid = tmp;
6571
6572 if (uuid)
6573 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6574 else
6575 generate_random_uuid(dev->uuid);
6576
6577 return dev;
6578 }
6579
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6580 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6581 u64 devid, u8 *uuid, bool error)
6582 {
6583 if (error)
6584 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6585 devid, uuid);
6586 else
6587 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6588 devid, uuid);
6589 }
6590
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6591 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6592 {
6593 int index = btrfs_bg_flags_to_raid_index(type);
6594 int ncopies = btrfs_raid_array[index].ncopies;
6595 const int nparity = btrfs_raid_array[index].nparity;
6596 int data_stripes;
6597
6598 if (nparity)
6599 data_stripes = num_stripes - nparity;
6600 else
6601 data_stripes = num_stripes / ncopies;
6602
6603 return div_u64(chunk_len, data_stripes);
6604 }
6605
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6606 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6607 struct btrfs_chunk *chunk)
6608 {
6609 struct btrfs_fs_info *fs_info = leaf->fs_info;
6610 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6611 struct map_lookup *map;
6612 struct extent_map *em;
6613 u64 logical;
6614 u64 length;
6615 u64 devid;
6616 u8 uuid[BTRFS_UUID_SIZE];
6617 int num_stripes;
6618 int ret;
6619 int i;
6620
6621 logical = key->offset;
6622 length = btrfs_chunk_length(leaf, chunk);
6623 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6624
6625 /*
6626 * Only need to verify chunk item if we're reading from sys chunk array,
6627 * as chunk item in tree block is already verified by tree-checker.
6628 */
6629 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6630 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6631 if (ret)
6632 return ret;
6633 }
6634
6635 read_lock(&map_tree->lock);
6636 em = lookup_extent_mapping(map_tree, logical, 1);
6637 read_unlock(&map_tree->lock);
6638
6639 /* already mapped? */
6640 if (em && em->start <= logical && em->start + em->len > logical) {
6641 free_extent_map(em);
6642 return 0;
6643 } else if (em) {
6644 free_extent_map(em);
6645 }
6646
6647 em = alloc_extent_map();
6648 if (!em)
6649 return -ENOMEM;
6650 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6651 if (!map) {
6652 free_extent_map(em);
6653 return -ENOMEM;
6654 }
6655
6656 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6657 em->map_lookup = map;
6658 em->start = logical;
6659 em->len = length;
6660 em->orig_start = 0;
6661 em->block_start = 0;
6662 em->block_len = em->len;
6663
6664 map->num_stripes = num_stripes;
6665 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6666 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6667 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6668 map->type = btrfs_chunk_type(leaf, chunk);
6669 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6670 map->verified_stripes = 0;
6671 em->orig_block_len = calc_stripe_length(map->type, em->len,
6672 map->num_stripes);
6673 for (i = 0; i < num_stripes; i++) {
6674 map->stripes[i].physical =
6675 btrfs_stripe_offset_nr(leaf, chunk, i);
6676 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6677 read_extent_buffer(leaf, uuid, (unsigned long)
6678 btrfs_stripe_dev_uuid_nr(chunk, i),
6679 BTRFS_UUID_SIZE);
6680 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6681 devid, uuid, NULL, true);
6682 if (!map->stripes[i].dev &&
6683 !btrfs_test_opt(fs_info, DEGRADED)) {
6684 free_extent_map(em);
6685 btrfs_report_missing_device(fs_info, devid, uuid, true);
6686 return -ENOENT;
6687 }
6688 if (!map->stripes[i].dev) {
6689 map->stripes[i].dev =
6690 add_missing_dev(fs_info->fs_devices, devid,
6691 uuid);
6692 if (IS_ERR(map->stripes[i].dev)) {
6693 free_extent_map(em);
6694 btrfs_err(fs_info,
6695 "failed to init missing dev %llu: %ld",
6696 devid, PTR_ERR(map->stripes[i].dev));
6697 return PTR_ERR(map->stripes[i].dev);
6698 }
6699 btrfs_report_missing_device(fs_info, devid, uuid, false);
6700 }
6701 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6702 &(map->stripes[i].dev->dev_state));
6703
6704 }
6705
6706 write_lock(&map_tree->lock);
6707 ret = add_extent_mapping(map_tree, em, 0);
6708 write_unlock(&map_tree->lock);
6709 if (ret < 0) {
6710 btrfs_err(fs_info,
6711 "failed to add chunk map, start=%llu len=%llu: %d",
6712 em->start, em->len, ret);
6713 }
6714 free_extent_map(em);
6715
6716 return ret;
6717 }
6718
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6719 static void fill_device_from_item(struct extent_buffer *leaf,
6720 struct btrfs_dev_item *dev_item,
6721 struct btrfs_device *device)
6722 {
6723 unsigned long ptr;
6724
6725 device->devid = btrfs_device_id(leaf, dev_item);
6726 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6727 device->total_bytes = device->disk_total_bytes;
6728 device->commit_total_bytes = device->disk_total_bytes;
6729 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6730 device->commit_bytes_used = device->bytes_used;
6731 device->type = btrfs_device_type(leaf, dev_item);
6732 device->io_align = btrfs_device_io_align(leaf, dev_item);
6733 device->io_width = btrfs_device_io_width(leaf, dev_item);
6734 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6735 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6736 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6737
6738 ptr = btrfs_device_uuid(dev_item);
6739 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6740 }
6741
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6742 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6743 u8 *fsid)
6744 {
6745 struct btrfs_fs_devices *fs_devices;
6746 int ret;
6747
6748 lockdep_assert_held(&uuid_mutex);
6749 ASSERT(fsid);
6750
6751 /* This will match only for multi-device seed fs */
6752 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6753 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6754 return fs_devices;
6755
6756
6757 fs_devices = find_fsid(fsid, NULL);
6758 if (!fs_devices) {
6759 if (!btrfs_test_opt(fs_info, DEGRADED))
6760 return ERR_PTR(-ENOENT);
6761
6762 fs_devices = alloc_fs_devices(fsid, NULL);
6763 if (IS_ERR(fs_devices))
6764 return fs_devices;
6765
6766 fs_devices->seeding = true;
6767 fs_devices->opened = 1;
6768 return fs_devices;
6769 }
6770
6771 /*
6772 * Upon first call for a seed fs fsid, just create a private copy of the
6773 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6774 */
6775 fs_devices = clone_fs_devices(fs_devices);
6776 if (IS_ERR(fs_devices))
6777 return fs_devices;
6778
6779 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6780 if (ret) {
6781 free_fs_devices(fs_devices);
6782 return ERR_PTR(ret);
6783 }
6784
6785 if (!fs_devices->seeding) {
6786 close_fs_devices(fs_devices);
6787 free_fs_devices(fs_devices);
6788 return ERR_PTR(-EINVAL);
6789 }
6790
6791 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6792
6793 return fs_devices;
6794 }
6795
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6796 static int read_one_dev(struct extent_buffer *leaf,
6797 struct btrfs_dev_item *dev_item)
6798 {
6799 struct btrfs_fs_info *fs_info = leaf->fs_info;
6800 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6801 struct btrfs_device *device;
6802 u64 devid;
6803 int ret;
6804 u8 fs_uuid[BTRFS_FSID_SIZE];
6805 u8 dev_uuid[BTRFS_UUID_SIZE];
6806
6807 devid = btrfs_device_id(leaf, dev_item);
6808 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6809 BTRFS_UUID_SIZE);
6810 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6811 BTRFS_FSID_SIZE);
6812
6813 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6814 fs_devices = open_seed_devices(fs_info, fs_uuid);
6815 if (IS_ERR(fs_devices))
6816 return PTR_ERR(fs_devices);
6817 }
6818
6819 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6820 fs_uuid, true);
6821 if (!device) {
6822 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6823 btrfs_report_missing_device(fs_info, devid,
6824 dev_uuid, true);
6825 return -ENOENT;
6826 }
6827
6828 device = add_missing_dev(fs_devices, devid, dev_uuid);
6829 if (IS_ERR(device)) {
6830 btrfs_err(fs_info,
6831 "failed to add missing dev %llu: %ld",
6832 devid, PTR_ERR(device));
6833 return PTR_ERR(device);
6834 }
6835 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6836 } else {
6837 if (!device->bdev) {
6838 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6839 btrfs_report_missing_device(fs_info,
6840 devid, dev_uuid, true);
6841 return -ENOENT;
6842 }
6843 btrfs_report_missing_device(fs_info, devid,
6844 dev_uuid, false);
6845 }
6846
6847 if (!device->bdev &&
6848 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6849 /*
6850 * this happens when a device that was properly setup
6851 * in the device info lists suddenly goes bad.
6852 * device->bdev is NULL, and so we have to set
6853 * device->missing to one here
6854 */
6855 device->fs_devices->missing_devices++;
6856 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6857 }
6858
6859 /* Move the device to its own fs_devices */
6860 if (device->fs_devices != fs_devices) {
6861 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6862 &device->dev_state));
6863
6864 list_move(&device->dev_list, &fs_devices->devices);
6865 device->fs_devices->num_devices--;
6866 fs_devices->num_devices++;
6867
6868 device->fs_devices->missing_devices--;
6869 fs_devices->missing_devices++;
6870
6871 device->fs_devices = fs_devices;
6872 }
6873 }
6874
6875 if (device->fs_devices != fs_info->fs_devices) {
6876 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6877 if (device->generation !=
6878 btrfs_device_generation(leaf, dev_item))
6879 return -EINVAL;
6880 }
6881
6882 fill_device_from_item(leaf, dev_item, device);
6883 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6884 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6885 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6886 device->fs_devices->total_rw_bytes += device->total_bytes;
6887 atomic64_add(device->total_bytes - device->bytes_used,
6888 &fs_info->free_chunk_space);
6889 }
6890 ret = 0;
6891 return ret;
6892 }
6893
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6894 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6895 {
6896 struct btrfs_root *root = fs_info->tree_root;
6897 struct btrfs_super_block *super_copy = fs_info->super_copy;
6898 struct extent_buffer *sb;
6899 struct btrfs_disk_key *disk_key;
6900 struct btrfs_chunk *chunk;
6901 u8 *array_ptr;
6902 unsigned long sb_array_offset;
6903 int ret = 0;
6904 u32 num_stripes;
6905 u32 array_size;
6906 u32 len = 0;
6907 u32 cur_offset;
6908 u64 type;
6909 struct btrfs_key key;
6910
6911 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6912 /*
6913 * This will create extent buffer of nodesize, superblock size is
6914 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6915 * overallocate but we can keep it as-is, only the first page is used.
6916 */
6917 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6918 if (IS_ERR(sb))
6919 return PTR_ERR(sb);
6920 set_extent_buffer_uptodate(sb);
6921 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6922 /*
6923 * The sb extent buffer is artificial and just used to read the system array.
6924 * set_extent_buffer_uptodate() call does not properly mark all it's
6925 * pages up-to-date when the page is larger: extent does not cover the
6926 * whole page and consequently check_page_uptodate does not find all
6927 * the page's extents up-to-date (the hole beyond sb),
6928 * write_extent_buffer then triggers a WARN_ON.
6929 *
6930 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6931 * but sb spans only this function. Add an explicit SetPageUptodate call
6932 * to silence the warning eg. on PowerPC 64.
6933 */
6934 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6935 SetPageUptodate(sb->pages[0]);
6936
6937 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6938 array_size = btrfs_super_sys_array_size(super_copy);
6939
6940 array_ptr = super_copy->sys_chunk_array;
6941 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6942 cur_offset = 0;
6943
6944 while (cur_offset < array_size) {
6945 disk_key = (struct btrfs_disk_key *)array_ptr;
6946 len = sizeof(*disk_key);
6947 if (cur_offset + len > array_size)
6948 goto out_short_read;
6949
6950 btrfs_disk_key_to_cpu(&key, disk_key);
6951
6952 array_ptr += len;
6953 sb_array_offset += len;
6954 cur_offset += len;
6955
6956 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6957 btrfs_err(fs_info,
6958 "unexpected item type %u in sys_array at offset %u",
6959 (u32)key.type, cur_offset);
6960 ret = -EIO;
6961 break;
6962 }
6963
6964 chunk = (struct btrfs_chunk *)sb_array_offset;
6965 /*
6966 * At least one btrfs_chunk with one stripe must be present,
6967 * exact stripe count check comes afterwards
6968 */
6969 len = btrfs_chunk_item_size(1);
6970 if (cur_offset + len > array_size)
6971 goto out_short_read;
6972
6973 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6974 if (!num_stripes) {
6975 btrfs_err(fs_info,
6976 "invalid number of stripes %u in sys_array at offset %u",
6977 num_stripes, cur_offset);
6978 ret = -EIO;
6979 break;
6980 }
6981
6982 type = btrfs_chunk_type(sb, chunk);
6983 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6984 btrfs_err(fs_info,
6985 "invalid chunk type %llu in sys_array at offset %u",
6986 type, cur_offset);
6987 ret = -EIO;
6988 break;
6989 }
6990
6991 len = btrfs_chunk_item_size(num_stripes);
6992 if (cur_offset + len > array_size)
6993 goto out_short_read;
6994
6995 ret = read_one_chunk(&key, sb, chunk);
6996 if (ret)
6997 break;
6998
6999 array_ptr += len;
7000 sb_array_offset += len;
7001 cur_offset += len;
7002 }
7003 clear_extent_buffer_uptodate(sb);
7004 free_extent_buffer_stale(sb);
7005 return ret;
7006
7007 out_short_read:
7008 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7009 len, cur_offset);
7010 clear_extent_buffer_uptodate(sb);
7011 free_extent_buffer_stale(sb);
7012 return -EIO;
7013 }
7014
7015 /*
7016 * Check if all chunks in the fs are OK for read-write degraded mount
7017 *
7018 * If the @failing_dev is specified, it's accounted as missing.
7019 *
7020 * Return true if all chunks meet the minimal RW mount requirements.
7021 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7022 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7023 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7024 struct btrfs_device *failing_dev)
7025 {
7026 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7027 struct extent_map *em;
7028 u64 next_start = 0;
7029 bool ret = true;
7030
7031 read_lock(&map_tree->lock);
7032 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7033 read_unlock(&map_tree->lock);
7034 /* No chunk at all? Return false anyway */
7035 if (!em) {
7036 ret = false;
7037 goto out;
7038 }
7039 while (em) {
7040 struct map_lookup *map;
7041 int missing = 0;
7042 int max_tolerated;
7043 int i;
7044
7045 map = em->map_lookup;
7046 max_tolerated =
7047 btrfs_get_num_tolerated_disk_barrier_failures(
7048 map->type);
7049 for (i = 0; i < map->num_stripes; i++) {
7050 struct btrfs_device *dev = map->stripes[i].dev;
7051
7052 if (!dev || !dev->bdev ||
7053 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7054 dev->last_flush_error)
7055 missing++;
7056 else if (failing_dev && failing_dev == dev)
7057 missing++;
7058 }
7059 if (missing > max_tolerated) {
7060 if (!failing_dev)
7061 btrfs_warn(fs_info,
7062 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7063 em->start, missing, max_tolerated);
7064 free_extent_map(em);
7065 ret = false;
7066 goto out;
7067 }
7068 next_start = extent_map_end(em);
7069 free_extent_map(em);
7070
7071 read_lock(&map_tree->lock);
7072 em = lookup_extent_mapping(map_tree, next_start,
7073 (u64)(-1) - next_start);
7074 read_unlock(&map_tree->lock);
7075 }
7076 out:
7077 return ret;
7078 }
7079
readahead_tree_node_children(struct extent_buffer * node)7080 static void readahead_tree_node_children(struct extent_buffer *node)
7081 {
7082 int i;
7083 const int nr_items = btrfs_header_nritems(node);
7084
7085 for (i = 0; i < nr_items; i++) {
7086 u64 start;
7087
7088 start = btrfs_node_blockptr(node, i);
7089 readahead_tree_block(node->fs_info, start);
7090 }
7091 }
7092
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7093 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7094 {
7095 struct btrfs_root *root = fs_info->chunk_root;
7096 struct btrfs_path *path;
7097 struct extent_buffer *leaf;
7098 struct btrfs_key key;
7099 struct btrfs_key found_key;
7100 int ret;
7101 int slot;
7102 u64 total_dev = 0;
7103 u64 last_ra_node = 0;
7104
7105 path = btrfs_alloc_path();
7106 if (!path)
7107 return -ENOMEM;
7108
7109 /*
7110 * uuid_mutex is needed only if we are mounting a sprout FS
7111 * otherwise we don't need it.
7112 */
7113 mutex_lock(&uuid_mutex);
7114
7115 /*
7116 * It is possible for mount and umount to race in such a way that
7117 * we execute this code path, but open_fs_devices failed to clear
7118 * total_rw_bytes. We certainly want it cleared before reading the
7119 * device items, so clear it here.
7120 */
7121 fs_info->fs_devices->total_rw_bytes = 0;
7122
7123 /*
7124 * Read all device items, and then all the chunk items. All
7125 * device items are found before any chunk item (their object id
7126 * is smaller than the lowest possible object id for a chunk
7127 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7128 */
7129 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7130 key.offset = 0;
7131 key.type = 0;
7132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7133 if (ret < 0)
7134 goto error;
7135 while (1) {
7136 struct extent_buffer *node;
7137
7138 leaf = path->nodes[0];
7139 slot = path->slots[0];
7140 if (slot >= btrfs_header_nritems(leaf)) {
7141 ret = btrfs_next_leaf(root, path);
7142 if (ret == 0)
7143 continue;
7144 if (ret < 0)
7145 goto error;
7146 break;
7147 }
7148 /*
7149 * The nodes on level 1 are not locked but we don't need to do
7150 * that during mount time as nothing else can access the tree
7151 */
7152 node = path->nodes[1];
7153 if (node) {
7154 if (last_ra_node != node->start) {
7155 readahead_tree_node_children(node);
7156 last_ra_node = node->start;
7157 }
7158 }
7159 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7160 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7161 struct btrfs_dev_item *dev_item;
7162 dev_item = btrfs_item_ptr(leaf, slot,
7163 struct btrfs_dev_item);
7164 ret = read_one_dev(leaf, dev_item);
7165 if (ret)
7166 goto error;
7167 total_dev++;
7168 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7169 struct btrfs_chunk *chunk;
7170 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7171 mutex_lock(&fs_info->chunk_mutex);
7172 ret = read_one_chunk(&found_key, leaf, chunk);
7173 mutex_unlock(&fs_info->chunk_mutex);
7174 if (ret)
7175 goto error;
7176 }
7177 path->slots[0]++;
7178 }
7179
7180 /*
7181 * After loading chunk tree, we've got all device information,
7182 * do another round of validation checks.
7183 */
7184 if (total_dev != fs_info->fs_devices->total_devices) {
7185 btrfs_err(fs_info,
7186 "super_num_devices %llu mismatch with num_devices %llu found here",
7187 btrfs_super_num_devices(fs_info->super_copy),
7188 total_dev);
7189 ret = -EINVAL;
7190 goto error;
7191 }
7192 if (btrfs_super_total_bytes(fs_info->super_copy) <
7193 fs_info->fs_devices->total_rw_bytes) {
7194 btrfs_err(fs_info,
7195 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7196 btrfs_super_total_bytes(fs_info->super_copy),
7197 fs_info->fs_devices->total_rw_bytes);
7198 ret = -EINVAL;
7199 goto error;
7200 }
7201 ret = 0;
7202 error:
7203 mutex_unlock(&uuid_mutex);
7204
7205 btrfs_free_path(path);
7206 return ret;
7207 }
7208
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7209 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7210 {
7211 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7212 struct btrfs_device *device;
7213
7214 fs_devices->fs_info = fs_info;
7215
7216 mutex_lock(&fs_devices->device_list_mutex);
7217 list_for_each_entry(device, &fs_devices->devices, dev_list)
7218 device->fs_info = fs_info;
7219
7220 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7221 list_for_each_entry(device, &seed_devs->devices, dev_list)
7222 device->fs_info = fs_info;
7223
7224 seed_devs->fs_info = fs_info;
7225 }
7226 mutex_unlock(&fs_devices->device_list_mutex);
7227 }
7228
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7229 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7230 const struct btrfs_dev_stats_item *ptr,
7231 int index)
7232 {
7233 u64 val;
7234
7235 read_extent_buffer(eb, &val,
7236 offsetof(struct btrfs_dev_stats_item, values) +
7237 ((unsigned long)ptr) + (index * sizeof(u64)),
7238 sizeof(val));
7239 return val;
7240 }
7241
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7242 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7243 struct btrfs_dev_stats_item *ptr,
7244 int index, u64 val)
7245 {
7246 write_extent_buffer(eb, &val,
7247 offsetof(struct btrfs_dev_stats_item, values) +
7248 ((unsigned long)ptr) + (index * sizeof(u64)),
7249 sizeof(val));
7250 }
7251
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7252 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7253 struct btrfs_path *path)
7254 {
7255 struct btrfs_dev_stats_item *ptr;
7256 struct extent_buffer *eb;
7257 struct btrfs_key key;
7258 int item_size;
7259 int i, ret, slot;
7260
7261 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7262 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7263 key.offset = device->devid;
7264 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7265 if (ret) {
7266 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7267 btrfs_dev_stat_set(device, i, 0);
7268 device->dev_stats_valid = 1;
7269 btrfs_release_path(path);
7270 return ret < 0 ? ret : 0;
7271 }
7272 slot = path->slots[0];
7273 eb = path->nodes[0];
7274 item_size = btrfs_item_size_nr(eb, slot);
7275
7276 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7277
7278 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7279 if (item_size >= (1 + i) * sizeof(__le64))
7280 btrfs_dev_stat_set(device, i,
7281 btrfs_dev_stats_value(eb, ptr, i));
7282 else
7283 btrfs_dev_stat_set(device, i, 0);
7284 }
7285
7286 device->dev_stats_valid = 1;
7287 btrfs_dev_stat_print_on_load(device);
7288 btrfs_release_path(path);
7289
7290 return 0;
7291 }
7292
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7293 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7294 {
7295 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7296 struct btrfs_device *device;
7297 struct btrfs_path *path = NULL;
7298 int ret = 0;
7299
7300 path = btrfs_alloc_path();
7301 if (!path)
7302 return -ENOMEM;
7303
7304 mutex_lock(&fs_devices->device_list_mutex);
7305 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7306 ret = btrfs_device_init_dev_stats(device, path);
7307 if (ret)
7308 goto out;
7309 }
7310 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7311 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7312 ret = btrfs_device_init_dev_stats(device, path);
7313 if (ret)
7314 goto out;
7315 }
7316 }
7317 out:
7318 mutex_unlock(&fs_devices->device_list_mutex);
7319
7320 btrfs_free_path(path);
7321 return ret;
7322 }
7323
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7324 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7325 struct btrfs_device *device)
7326 {
7327 struct btrfs_fs_info *fs_info = trans->fs_info;
7328 struct btrfs_root *dev_root = fs_info->dev_root;
7329 struct btrfs_path *path;
7330 struct btrfs_key key;
7331 struct extent_buffer *eb;
7332 struct btrfs_dev_stats_item *ptr;
7333 int ret;
7334 int i;
7335
7336 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7337 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7338 key.offset = device->devid;
7339
7340 path = btrfs_alloc_path();
7341 if (!path)
7342 return -ENOMEM;
7343 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7344 if (ret < 0) {
7345 btrfs_warn_in_rcu(fs_info,
7346 "error %d while searching for dev_stats item for device %s",
7347 ret, rcu_str_deref(device->name));
7348 goto out;
7349 }
7350
7351 if (ret == 0 &&
7352 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7353 /* need to delete old one and insert a new one */
7354 ret = btrfs_del_item(trans, dev_root, path);
7355 if (ret != 0) {
7356 btrfs_warn_in_rcu(fs_info,
7357 "delete too small dev_stats item for device %s failed %d",
7358 rcu_str_deref(device->name), ret);
7359 goto out;
7360 }
7361 ret = 1;
7362 }
7363
7364 if (ret == 1) {
7365 /* need to insert a new item */
7366 btrfs_release_path(path);
7367 ret = btrfs_insert_empty_item(trans, dev_root, path,
7368 &key, sizeof(*ptr));
7369 if (ret < 0) {
7370 btrfs_warn_in_rcu(fs_info,
7371 "insert dev_stats item for device %s failed %d",
7372 rcu_str_deref(device->name), ret);
7373 goto out;
7374 }
7375 }
7376
7377 eb = path->nodes[0];
7378 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7379 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7380 btrfs_set_dev_stats_value(eb, ptr, i,
7381 btrfs_dev_stat_read(device, i));
7382 btrfs_mark_buffer_dirty(eb);
7383
7384 out:
7385 btrfs_free_path(path);
7386 return ret;
7387 }
7388
7389 /*
7390 * called from commit_transaction. Writes all changed device stats to disk.
7391 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7392 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7393 {
7394 struct btrfs_fs_info *fs_info = trans->fs_info;
7395 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7396 struct btrfs_device *device;
7397 int stats_cnt;
7398 int ret = 0;
7399
7400 mutex_lock(&fs_devices->device_list_mutex);
7401 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7402 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7403 if (!device->dev_stats_valid || stats_cnt == 0)
7404 continue;
7405
7406
7407 /*
7408 * There is a LOAD-LOAD control dependency between the value of
7409 * dev_stats_ccnt and updating the on-disk values which requires
7410 * reading the in-memory counters. Such control dependencies
7411 * require explicit read memory barriers.
7412 *
7413 * This memory barriers pairs with smp_mb__before_atomic in
7414 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7415 * barrier implied by atomic_xchg in
7416 * btrfs_dev_stats_read_and_reset
7417 */
7418 smp_rmb();
7419
7420 ret = update_dev_stat_item(trans, device);
7421 if (!ret)
7422 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7423 }
7424 mutex_unlock(&fs_devices->device_list_mutex);
7425
7426 return ret;
7427 }
7428
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7429 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7430 {
7431 btrfs_dev_stat_inc(dev, index);
7432 btrfs_dev_stat_print_on_error(dev);
7433 }
7434
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7435 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7436 {
7437 if (!dev->dev_stats_valid)
7438 return;
7439 btrfs_err_rl_in_rcu(dev->fs_info,
7440 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7441 rcu_str_deref(dev->name),
7442 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7443 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7444 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7445 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7446 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7447 }
7448
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7449 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7450 {
7451 int i;
7452
7453 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7454 if (btrfs_dev_stat_read(dev, i) != 0)
7455 break;
7456 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7457 return; /* all values == 0, suppress message */
7458
7459 btrfs_info_in_rcu(dev->fs_info,
7460 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7461 rcu_str_deref(dev->name),
7462 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7463 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7464 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7465 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7466 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7467 }
7468
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7469 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7470 struct btrfs_ioctl_get_dev_stats *stats)
7471 {
7472 struct btrfs_device *dev;
7473 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7474 int i;
7475
7476 mutex_lock(&fs_devices->device_list_mutex);
7477 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7478 true);
7479 mutex_unlock(&fs_devices->device_list_mutex);
7480
7481 if (!dev) {
7482 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7483 return -ENODEV;
7484 } else if (!dev->dev_stats_valid) {
7485 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7486 return -ENODEV;
7487 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7488 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7489 if (stats->nr_items > i)
7490 stats->values[i] =
7491 btrfs_dev_stat_read_and_reset(dev, i);
7492 else
7493 btrfs_dev_stat_set(dev, i, 0);
7494 }
7495 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7496 current->comm, task_pid_nr(current));
7497 } else {
7498 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7499 if (stats->nr_items > i)
7500 stats->values[i] = btrfs_dev_stat_read(dev, i);
7501 }
7502 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7503 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7504 return 0;
7505 }
7506
7507 /*
7508 * Update the size and bytes used for each device where it changed. This is
7509 * delayed since we would otherwise get errors while writing out the
7510 * superblocks.
7511 *
7512 * Must be invoked during transaction commit.
7513 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7514 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7515 {
7516 struct btrfs_device *curr, *next;
7517
7518 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7519
7520 if (list_empty(&trans->dev_update_list))
7521 return;
7522
7523 /*
7524 * We don't need the device_list_mutex here. This list is owned by the
7525 * transaction and the transaction must complete before the device is
7526 * released.
7527 */
7528 mutex_lock(&trans->fs_info->chunk_mutex);
7529 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7530 post_commit_list) {
7531 list_del_init(&curr->post_commit_list);
7532 curr->commit_total_bytes = curr->disk_total_bytes;
7533 curr->commit_bytes_used = curr->bytes_used;
7534 }
7535 mutex_unlock(&trans->fs_info->chunk_mutex);
7536 }
7537
7538 /*
7539 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7540 */
btrfs_bg_type_to_factor(u64 flags)7541 int btrfs_bg_type_to_factor(u64 flags)
7542 {
7543 const int index = btrfs_bg_flags_to_raid_index(flags);
7544
7545 return btrfs_raid_array[index].ncopies;
7546 }
7547
7548
7549
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7550 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7551 u64 chunk_offset, u64 devid,
7552 u64 physical_offset, u64 physical_len)
7553 {
7554 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7555 struct extent_map *em;
7556 struct map_lookup *map;
7557 struct btrfs_device *dev;
7558 u64 stripe_len;
7559 bool found = false;
7560 int ret = 0;
7561 int i;
7562
7563 read_lock(&em_tree->lock);
7564 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7565 read_unlock(&em_tree->lock);
7566
7567 if (!em) {
7568 btrfs_err(fs_info,
7569 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7570 physical_offset, devid);
7571 ret = -EUCLEAN;
7572 goto out;
7573 }
7574
7575 map = em->map_lookup;
7576 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7577 if (physical_len != stripe_len) {
7578 btrfs_err(fs_info,
7579 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7580 physical_offset, devid, em->start, physical_len,
7581 stripe_len);
7582 ret = -EUCLEAN;
7583 goto out;
7584 }
7585
7586 for (i = 0; i < map->num_stripes; i++) {
7587 if (map->stripes[i].dev->devid == devid &&
7588 map->stripes[i].physical == physical_offset) {
7589 found = true;
7590 if (map->verified_stripes >= map->num_stripes) {
7591 btrfs_err(fs_info,
7592 "too many dev extents for chunk %llu found",
7593 em->start);
7594 ret = -EUCLEAN;
7595 goto out;
7596 }
7597 map->verified_stripes++;
7598 break;
7599 }
7600 }
7601 if (!found) {
7602 btrfs_err(fs_info,
7603 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7604 physical_offset, devid);
7605 ret = -EUCLEAN;
7606 }
7607
7608 /* Make sure no dev extent is beyond device bondary */
7609 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7610 if (!dev) {
7611 btrfs_err(fs_info, "failed to find devid %llu", devid);
7612 ret = -EUCLEAN;
7613 goto out;
7614 }
7615
7616 /* It's possible this device is a dummy for seed device */
7617 if (dev->disk_total_bytes == 0) {
7618 struct btrfs_fs_devices *devs;
7619
7620 devs = list_first_entry(&fs_info->fs_devices->seed_list,
7621 struct btrfs_fs_devices, seed_list);
7622 dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7623 if (!dev) {
7624 btrfs_err(fs_info, "failed to find seed devid %llu",
7625 devid);
7626 ret = -EUCLEAN;
7627 goto out;
7628 }
7629 }
7630
7631 if (physical_offset + physical_len > dev->disk_total_bytes) {
7632 btrfs_err(fs_info,
7633 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7634 devid, physical_offset, physical_len,
7635 dev->disk_total_bytes);
7636 ret = -EUCLEAN;
7637 goto out;
7638 }
7639 out:
7640 free_extent_map(em);
7641 return ret;
7642 }
7643
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7644 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7645 {
7646 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7647 struct extent_map *em;
7648 struct rb_node *node;
7649 int ret = 0;
7650
7651 read_lock(&em_tree->lock);
7652 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7653 em = rb_entry(node, struct extent_map, rb_node);
7654 if (em->map_lookup->num_stripes !=
7655 em->map_lookup->verified_stripes) {
7656 btrfs_err(fs_info,
7657 "chunk %llu has missing dev extent, have %d expect %d",
7658 em->start, em->map_lookup->verified_stripes,
7659 em->map_lookup->num_stripes);
7660 ret = -EUCLEAN;
7661 goto out;
7662 }
7663 }
7664 out:
7665 read_unlock(&em_tree->lock);
7666 return ret;
7667 }
7668
7669 /*
7670 * Ensure that all dev extents are mapped to correct chunk, otherwise
7671 * later chunk allocation/free would cause unexpected behavior.
7672 *
7673 * NOTE: This will iterate through the whole device tree, which should be of
7674 * the same size level as the chunk tree. This slightly increases mount time.
7675 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7676 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7677 {
7678 struct btrfs_path *path;
7679 struct btrfs_root *root = fs_info->dev_root;
7680 struct btrfs_key key;
7681 u64 prev_devid = 0;
7682 u64 prev_dev_ext_end = 0;
7683 int ret = 0;
7684
7685 key.objectid = 1;
7686 key.type = BTRFS_DEV_EXTENT_KEY;
7687 key.offset = 0;
7688
7689 path = btrfs_alloc_path();
7690 if (!path)
7691 return -ENOMEM;
7692
7693 path->reada = READA_FORWARD;
7694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7695 if (ret < 0)
7696 goto out;
7697
7698 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7699 ret = btrfs_next_item(root, path);
7700 if (ret < 0)
7701 goto out;
7702 /* No dev extents at all? Not good */
7703 if (ret > 0) {
7704 ret = -EUCLEAN;
7705 goto out;
7706 }
7707 }
7708 while (1) {
7709 struct extent_buffer *leaf = path->nodes[0];
7710 struct btrfs_dev_extent *dext;
7711 int slot = path->slots[0];
7712 u64 chunk_offset;
7713 u64 physical_offset;
7714 u64 physical_len;
7715 u64 devid;
7716
7717 btrfs_item_key_to_cpu(leaf, &key, slot);
7718 if (key.type != BTRFS_DEV_EXTENT_KEY)
7719 break;
7720 devid = key.objectid;
7721 physical_offset = key.offset;
7722
7723 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7724 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7725 physical_len = btrfs_dev_extent_length(leaf, dext);
7726
7727 /* Check if this dev extent overlaps with the previous one */
7728 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7729 btrfs_err(fs_info,
7730 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7731 devid, physical_offset, prev_dev_ext_end);
7732 ret = -EUCLEAN;
7733 goto out;
7734 }
7735
7736 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7737 physical_offset, physical_len);
7738 if (ret < 0)
7739 goto out;
7740 prev_devid = devid;
7741 prev_dev_ext_end = physical_offset + physical_len;
7742
7743 ret = btrfs_next_item(root, path);
7744 if (ret < 0)
7745 goto out;
7746 if (ret > 0) {
7747 ret = 0;
7748 break;
7749 }
7750 }
7751
7752 /* Ensure all chunks have corresponding dev extents */
7753 ret = verify_chunk_dev_extent_mapping(fs_info);
7754 out:
7755 btrfs_free_path(path);
7756 return ret;
7757 }
7758
7759 /*
7760 * Check whether the given block group or device is pinned by any inode being
7761 * used as a swapfile.
7762 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7763 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7764 {
7765 struct btrfs_swapfile_pin *sp;
7766 struct rb_node *node;
7767
7768 spin_lock(&fs_info->swapfile_pins_lock);
7769 node = fs_info->swapfile_pins.rb_node;
7770 while (node) {
7771 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7772 if (ptr < sp->ptr)
7773 node = node->rb_left;
7774 else if (ptr > sp->ptr)
7775 node = node->rb_right;
7776 else
7777 break;
7778 }
7779 spin_unlock(&fs_info->swapfile_pins_lock);
7780 return node != NULL;
7781 }
7782