• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 Red Hat, Inc.
3  * Copyright (c) 2016-2018 Christoph Hellwig.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #include <linux/module.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
21 #include <linux/mm.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
34 
35 #include "internal.h"
36 
37 /*
38  * Execute a iomap write on a segment of the mapping that spans a
39  * contiguous range of pages that have identical block mapping state.
40  *
41  * This avoids the need to map pages individually, do individual allocations
42  * for each page and most importantly avoid the need for filesystem specific
43  * locking per page. Instead, all the operations are amortised over the entire
44  * range of pages. It is assumed that the filesystems will lock whatever
45  * resources they require in the iomap_begin call, and release them in the
46  * iomap_end call.
47  */
48 loff_t
iomap_apply(struct inode * inode,loff_t pos,loff_t length,unsigned flags,const struct iomap_ops * ops,void * data,iomap_actor_t actor)49 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
50 		const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 {
52 	struct iomap iomap = { 0 };
53 	loff_t written = 0, ret;
54 
55 	/*
56 	 * Need to map a range from start position for length bytes. This can
57 	 * span multiple pages - it is only guaranteed to return a range of a
58 	 * single type of pages (e.g. all into a hole, all mapped or all
59 	 * unwritten). Failure at this point has nothing to undo.
60 	 *
61 	 * If allocation is required for this range, reserve the space now so
62 	 * that the allocation is guaranteed to succeed later on. Once we copy
63 	 * the data into the page cache pages, then we cannot fail otherwise we
64 	 * expose transient stale data. If the reserve fails, we can safely
65 	 * back out at this point as there is nothing to undo.
66 	 */
67 	ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
68 	if (ret)
69 		return ret;
70 	if (WARN_ON(iomap.offset > pos))
71 		return -EIO;
72 	if (WARN_ON(iomap.length == 0))
73 		return -EIO;
74 
75 	/*
76 	 * Cut down the length to the one actually provided by the filesystem,
77 	 * as it might not be able to give us the whole size that we requested.
78 	 */
79 	if (iomap.offset + iomap.length < pos + length)
80 		length = iomap.offset + iomap.length - pos;
81 
82 	/*
83 	 * Now that we have guaranteed that the space allocation will succeed.
84 	 * we can do the copy-in page by page without having to worry about
85 	 * failures exposing transient data.
86 	 */
87 	written = actor(inode, pos, length, data, &iomap);
88 
89 	/*
90 	 * Now the data has been copied, commit the range we've copied.  This
91 	 * should not fail unless the filesystem has had a fatal error.
92 	 */
93 	if (ops->iomap_end) {
94 		ret = ops->iomap_end(inode, pos, length,
95 				     written > 0 ? written : 0,
96 				     flags, &iomap);
97 	}
98 
99 	return written ? written : ret;
100 }
101 
102 static sector_t
iomap_sector(struct iomap * iomap,loff_t pos)103 iomap_sector(struct iomap *iomap, loff_t pos)
104 {
105 	return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
106 }
107 
108 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)109 iomap_page_create(struct inode *inode, struct page *page)
110 {
111 	struct iomap_page *iop = to_iomap_page(page);
112 
113 	if (iop || i_blocksize(inode) == PAGE_SIZE)
114 		return iop;
115 
116 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
117 	atomic_set(&iop->read_count, 0);
118 	atomic_set(&iop->write_count, 0);
119 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
120 
121 	/*
122 	 * migrate_page_move_mapping() assumes that pages with private data have
123 	 * their count elevated by 1.
124 	 */
125 	get_page(page);
126 	set_page_private(page, (unsigned long)iop);
127 	SetPagePrivate(page);
128 	return iop;
129 }
130 
131 static void
iomap_page_release(struct page * page)132 iomap_page_release(struct page *page)
133 {
134 	struct iomap_page *iop = to_iomap_page(page);
135 
136 	if (!iop)
137 		return;
138 	WARN_ON_ONCE(atomic_read(&iop->read_count));
139 	WARN_ON_ONCE(atomic_read(&iop->write_count));
140 	ClearPagePrivate(page);
141 	set_page_private(page, 0);
142 	put_page(page);
143 	kfree(iop);
144 }
145 
146 /*
147  * Calculate the range inside the page that we actually need to read.
148  */
149 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)150 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
151 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
152 {
153 	loff_t orig_pos = *pos;
154 	loff_t isize = i_size_read(inode);
155 	unsigned block_bits = inode->i_blkbits;
156 	unsigned block_size = (1 << block_bits);
157 	unsigned poff = offset_in_page(*pos);
158 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
159 	unsigned first = poff >> block_bits;
160 	unsigned last = (poff + plen - 1) >> block_bits;
161 
162 	/*
163 	 * If the block size is smaller than the page size we need to check the
164 	 * per-block uptodate status and adjust the offset and length if needed
165 	 * to avoid reading in already uptodate ranges.
166 	 */
167 	if (iop) {
168 		unsigned int i;
169 
170 		/* move forward for each leading block marked uptodate */
171 		for (i = first; i <= last; i++) {
172 			if (!test_bit(i, iop->uptodate))
173 				break;
174 			*pos += block_size;
175 			poff += block_size;
176 			plen -= block_size;
177 			first++;
178 		}
179 
180 		/* truncate len if we find any trailing uptodate block(s) */
181 		for ( ; i <= last; i++) {
182 			if (test_bit(i, iop->uptodate)) {
183 				plen -= (last - i + 1) * block_size;
184 				last = i - 1;
185 				break;
186 			}
187 		}
188 	}
189 
190 	/*
191 	 * If the extent spans the block that contains the i_size we need to
192 	 * handle both halves separately so that we properly zero data in the
193 	 * page cache for blocks that are entirely outside of i_size.
194 	 */
195 	if (orig_pos <= isize && orig_pos + length > isize) {
196 		unsigned end = offset_in_page(isize - 1) >> block_bits;
197 
198 		if (first <= end && last > end)
199 			plen -= (last - end) * block_size;
200 	}
201 
202 	*offp = poff;
203 	*lenp = plen;
204 }
205 
206 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)207 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
208 {
209 	struct iomap_page *iop = to_iomap_page(page);
210 	struct inode *inode = page->mapping->host;
211 	unsigned first = off >> inode->i_blkbits;
212 	unsigned last = (off + len - 1) >> inode->i_blkbits;
213 	unsigned int i;
214 	bool uptodate = true;
215 
216 	if (iop) {
217 		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
218 			if (i >= first && i <= last)
219 				set_bit(i, iop->uptodate);
220 			else if (!test_bit(i, iop->uptodate))
221 				uptodate = false;
222 		}
223 	}
224 
225 	if (uptodate && !PageError(page))
226 		SetPageUptodate(page);
227 }
228 
229 static void
iomap_read_finish(struct iomap_page * iop,struct page * page)230 iomap_read_finish(struct iomap_page *iop, struct page *page)
231 {
232 	if (!iop || atomic_dec_and_test(&iop->read_count))
233 		unlock_page(page);
234 }
235 
236 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)237 iomap_read_page_end_io(struct bio_vec *bvec, int error)
238 {
239 	struct page *page = bvec->bv_page;
240 	struct iomap_page *iop = to_iomap_page(page);
241 
242 	if (unlikely(error)) {
243 		ClearPageUptodate(page);
244 		SetPageError(page);
245 	} else {
246 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
247 	}
248 
249 	iomap_read_finish(iop, page);
250 }
251 
252 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)253 iomap_read_inline_data(struct inode *inode, struct page *page,
254 		struct iomap *iomap)
255 {
256 	size_t size = i_size_read(inode);
257 	void *addr;
258 
259 	if (PageUptodate(page))
260 		return;
261 
262 	BUG_ON(page->index);
263 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
264 
265 	addr = kmap_atomic(page);
266 	memcpy(addr, iomap->inline_data, size);
267 	memset(addr + size, 0, PAGE_SIZE - size);
268 	kunmap_atomic(addr);
269 	SetPageUptodate(page);
270 }
271 
272 static void
iomap_read_end_io(struct bio * bio)273 iomap_read_end_io(struct bio *bio)
274 {
275 	int error = blk_status_to_errno(bio->bi_status);
276 	struct bio_vec *bvec;
277 	int i;
278 
279 	bio_for_each_segment_all(bvec, bio, i)
280 		iomap_read_page_end_io(bvec, error);
281 	bio_put(bio);
282 }
283 
284 struct iomap_readpage_ctx {
285 	struct page		*cur_page;
286 	bool			cur_page_in_bio;
287 	bool			is_readahead;
288 	struct bio		*bio;
289 	struct list_head	*pages;
290 };
291 
292 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)293 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
294 		struct iomap *iomap)
295 {
296 	struct iomap_readpage_ctx *ctx = data;
297 	struct page *page = ctx->cur_page;
298 	struct iomap_page *iop = iomap_page_create(inode, page);
299 	bool is_contig = false;
300 	loff_t orig_pos = pos;
301 	unsigned poff, plen;
302 	sector_t sector;
303 
304 	if (iomap->type == IOMAP_INLINE) {
305 		WARN_ON_ONCE(pos);
306 		iomap_read_inline_data(inode, page, iomap);
307 		return PAGE_SIZE;
308 	}
309 
310 	/* zero post-eof blocks as the page may be mapped */
311 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
312 	if (plen == 0)
313 		goto done;
314 
315 	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
316 		zero_user(page, poff, plen);
317 		iomap_set_range_uptodate(page, poff, plen);
318 		goto done;
319 	}
320 
321 	ctx->cur_page_in_bio = true;
322 
323 	/*
324 	 * Try to merge into a previous segment if we can.
325 	 */
326 	sector = iomap_sector(iomap, pos);
327 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
328 		if (__bio_try_merge_page(ctx->bio, page, plen, poff))
329 			goto done;
330 		is_contig = true;
331 	}
332 
333 	/*
334 	 * If we start a new segment we need to increase the read count, and we
335 	 * need to do so before submitting any previous full bio to make sure
336 	 * that we don't prematurely unlock the page.
337 	 */
338 	if (iop)
339 		atomic_inc(&iop->read_count);
340 
341 	if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
342 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
343 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
344 
345 		if (ctx->bio)
346 			submit_bio(ctx->bio);
347 
348 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
349 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
350 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
351 		ctx->bio->bi_opf = REQ_OP_READ;
352 		if (ctx->is_readahead)
353 			ctx->bio->bi_opf |= REQ_RAHEAD;
354 		ctx->bio->bi_iter.bi_sector = sector;
355 		bio_set_dev(ctx->bio, iomap->bdev);
356 		ctx->bio->bi_end_io = iomap_read_end_io;
357 	}
358 
359 	__bio_add_page(ctx->bio, page, plen, poff);
360 done:
361 	/*
362 	 * Move the caller beyond our range so that it keeps making progress.
363 	 * For that we have to include any leading non-uptodate ranges, but
364 	 * we can skip trailing ones as they will be handled in the next
365 	 * iteration.
366 	 */
367 	return pos - orig_pos + plen;
368 }
369 
370 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)371 iomap_readpage(struct page *page, const struct iomap_ops *ops)
372 {
373 	struct iomap_readpage_ctx ctx = { .cur_page = page };
374 	struct inode *inode = page->mapping->host;
375 	unsigned poff;
376 	loff_t ret;
377 
378 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
379 		ret = iomap_apply(inode, page_offset(page) + poff,
380 				PAGE_SIZE - poff, 0, ops, &ctx,
381 				iomap_readpage_actor);
382 		if (ret <= 0) {
383 			WARN_ON_ONCE(ret == 0);
384 			SetPageError(page);
385 			break;
386 		}
387 	}
388 
389 	if (ctx.bio) {
390 		submit_bio(ctx.bio);
391 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
392 	} else {
393 		WARN_ON_ONCE(ctx.cur_page_in_bio);
394 		unlock_page(page);
395 	}
396 
397 	/*
398 	 * Just like mpage_readpages and block_read_full_page we always
399 	 * return 0 and just mark the page as PageError on errors.  This
400 	 * should be cleaned up all through the stack eventually.
401 	 */
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(iomap_readpage);
405 
406 static struct page *
iomap_next_page(struct inode * inode,struct list_head * pages,loff_t pos,loff_t length,loff_t * done)407 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
408 		loff_t length, loff_t *done)
409 {
410 	while (!list_empty(pages)) {
411 		struct page *page = lru_to_page(pages);
412 
413 		if (page_offset(page) >= (u64)pos + length)
414 			break;
415 
416 		list_del(&page->lru);
417 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
418 				GFP_NOFS))
419 			return page;
420 
421 		/*
422 		 * If we already have a page in the page cache at index we are
423 		 * done.  Upper layers don't care if it is uptodate after the
424 		 * readpages call itself as every page gets checked again once
425 		 * actually needed.
426 		 */
427 		*done += PAGE_SIZE;
428 		put_page(page);
429 	}
430 
431 	return NULL;
432 }
433 
434 static loff_t
iomap_readpages_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)435 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
436 		void *data, struct iomap *iomap)
437 {
438 	struct iomap_readpage_ctx *ctx = data;
439 	loff_t done, ret;
440 
441 	for (done = 0; done < length; done += ret) {
442 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
443 			if (!ctx->cur_page_in_bio)
444 				unlock_page(ctx->cur_page);
445 			put_page(ctx->cur_page);
446 			ctx->cur_page = NULL;
447 		}
448 		if (!ctx->cur_page) {
449 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
450 					pos, length, &done);
451 			if (!ctx->cur_page)
452 				break;
453 			ctx->cur_page_in_bio = false;
454 		}
455 		ret = iomap_readpage_actor(inode, pos + done, length - done,
456 				ctx, iomap);
457 	}
458 
459 	return done;
460 }
461 
462 int
iomap_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,const struct iomap_ops * ops)463 iomap_readpages(struct address_space *mapping, struct list_head *pages,
464 		unsigned nr_pages, const struct iomap_ops *ops)
465 {
466 	struct iomap_readpage_ctx ctx = {
467 		.pages		= pages,
468 		.is_readahead	= true,
469 	};
470 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
471 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
472 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
473 
474 	while (length > 0) {
475 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
476 				&ctx, iomap_readpages_actor);
477 		if (ret <= 0) {
478 			WARN_ON_ONCE(ret == 0);
479 			goto done;
480 		}
481 		pos += ret;
482 		length -= ret;
483 	}
484 	ret = 0;
485 done:
486 	if (ctx.bio)
487 		submit_bio(ctx.bio);
488 	if (ctx.cur_page) {
489 		if (!ctx.cur_page_in_bio)
490 			unlock_page(ctx.cur_page);
491 		put_page(ctx.cur_page);
492 	}
493 
494 	/*
495 	 * Check that we didn't lose a page due to the arcance calling
496 	 * conventions..
497 	 */
498 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
499 	return ret;
500 }
501 EXPORT_SYMBOL_GPL(iomap_readpages);
502 
503 /*
504  * iomap_is_partially_uptodate checks whether blocks within a page are
505  * uptodate or not.
506  *
507  * Returns true if all blocks which correspond to a file portion
508  * we want to read within the page are uptodate.
509  */
510 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)511 iomap_is_partially_uptodate(struct page *page, unsigned long from,
512 		unsigned long count)
513 {
514 	struct iomap_page *iop = to_iomap_page(page);
515 	struct inode *inode = page->mapping->host;
516 	unsigned len, first, last;
517 	unsigned i;
518 
519 	/* Limit range to one page */
520 	len = min_t(unsigned, PAGE_SIZE - from, count);
521 
522 	/* First and last blocks in range within page */
523 	first = from >> inode->i_blkbits;
524 	last = (from + len - 1) >> inode->i_blkbits;
525 
526 	if (iop) {
527 		for (i = first; i <= last; i++)
528 			if (!test_bit(i, iop->uptodate))
529 				return 0;
530 		return 1;
531 	}
532 
533 	return 0;
534 }
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
536 
537 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)538 iomap_releasepage(struct page *page, gfp_t gfp_mask)
539 {
540 	/*
541 	 * mm accommodates an old ext3 case where clean pages might not have had
542 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
543 	 * ->releasepage() via shrink_active_list(), skip those here.
544 	 */
545 	if (PageDirty(page) || PageWriteback(page))
546 		return 0;
547 	iomap_page_release(page);
548 	return 1;
549 }
550 EXPORT_SYMBOL_GPL(iomap_releasepage);
551 
552 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)553 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
554 {
555 	/*
556 	 * If we are invalidating the entire page, clear the dirty state from it
557 	 * and release it to avoid unnecessary buildup of the LRU.
558 	 */
559 	if (offset == 0 && len == PAGE_SIZE) {
560 		WARN_ON_ONCE(PageWriteback(page));
561 		cancel_dirty_page(page);
562 		iomap_page_release(page);
563 	}
564 }
565 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
566 
567 #ifdef CONFIG_MIGRATION
568 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)569 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
570 		struct page *page, enum migrate_mode mode)
571 {
572 	int ret;
573 
574 	ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
575 	if (ret != MIGRATEPAGE_SUCCESS)
576 		return ret;
577 
578 	if (page_has_private(page)) {
579 		ClearPagePrivate(page);
580 		get_page(newpage);
581 		set_page_private(newpage, page_private(page));
582 		set_page_private(page, 0);
583 		put_page(page);
584 		SetPagePrivate(newpage);
585 	}
586 
587 	if (mode != MIGRATE_SYNC_NO_COPY)
588 		migrate_page_copy(newpage, page);
589 	else
590 		migrate_page_states(newpage, page);
591 	return MIGRATEPAGE_SUCCESS;
592 }
593 EXPORT_SYMBOL_GPL(iomap_migrate_page);
594 #endif /* CONFIG_MIGRATION */
595 
596 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)597 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
598 {
599 	loff_t i_size = i_size_read(inode);
600 
601 	/*
602 	 * Only truncate newly allocated pages beyoned EOF, even if the
603 	 * write started inside the existing inode size.
604 	 */
605 	if (pos + len > i_size)
606 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
607 }
608 
609 static int
iomap_read_page_sync(struct inode * inode,loff_t block_start,struct page * page,unsigned poff,unsigned plen,unsigned from,unsigned to,struct iomap * iomap)610 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
611 		unsigned poff, unsigned plen, unsigned from, unsigned to,
612 		struct iomap *iomap)
613 {
614 	struct bio_vec bvec;
615 	struct bio bio;
616 
617 	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
618 		zero_user_segments(page, poff, from, to, poff + plen);
619 		iomap_set_range_uptodate(page, poff, plen);
620 		return 0;
621 	}
622 
623 	bio_init(&bio, &bvec, 1);
624 	bio.bi_opf = REQ_OP_READ;
625 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626 	bio_set_dev(&bio, iomap->bdev);
627 	__bio_add_page(&bio, page, plen, poff);
628 	return submit_bio_wait(&bio);
629 }
630 
631 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,struct page * page,struct iomap * iomap)632 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
633 		struct page *page, struct iomap *iomap)
634 {
635 	struct iomap_page *iop = iomap_page_create(inode, page);
636 	loff_t block_size = i_blocksize(inode);
637 	loff_t block_start = pos & ~(block_size - 1);
638 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
639 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
640 	int status = 0;
641 
642 	if (PageUptodate(page))
643 		return 0;
644 
645 	do {
646 		iomap_adjust_read_range(inode, iop, &block_start,
647 				block_end - block_start, &poff, &plen);
648 		if (plen == 0)
649 			break;
650 
651 		if ((from > poff && from < poff + plen) ||
652 		    (to > poff && to < poff + plen)) {
653 			status = iomap_read_page_sync(inode, block_start, page,
654 					poff, plen, from, to, iomap);
655 			if (status)
656 				break;
657 		}
658 
659 	} while ((block_start += plen) < block_end);
660 
661 	return status;
662 }
663 
664 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap)665 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
666 		struct page **pagep, struct iomap *iomap)
667 {
668 	pgoff_t index = pos >> PAGE_SHIFT;
669 	struct page *page;
670 	int status = 0;
671 
672 	BUG_ON(pos + len > iomap->offset + iomap->length);
673 
674 	if (fatal_signal_pending(current))
675 		return -EINTR;
676 
677 	page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
678 	if (!page)
679 		return -ENOMEM;
680 
681 	if (iomap->type == IOMAP_INLINE)
682 		iomap_read_inline_data(inode, page, iomap);
683 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
684 		status = __block_write_begin_int(page, pos, len, NULL, iomap);
685 	else
686 		status = __iomap_write_begin(inode, pos, len, page, iomap);
687 	if (unlikely(status)) {
688 		unlock_page(page);
689 		put_page(page);
690 		page = NULL;
691 
692 		iomap_write_failed(inode, pos, len);
693 	}
694 
695 	*pagep = page;
696 	return status;
697 }
698 
699 int
iomap_set_page_dirty(struct page * page)700 iomap_set_page_dirty(struct page *page)
701 {
702 	struct address_space *mapping = page_mapping(page);
703 	int newly_dirty;
704 
705 	if (unlikely(!mapping))
706 		return !TestSetPageDirty(page);
707 
708 	/*
709 	 * Lock out page->mem_cgroup migration to keep PageDirty
710 	 * synchronized with per-memcg dirty page counters.
711 	 */
712 	lock_page_memcg(page);
713 	newly_dirty = !TestSetPageDirty(page);
714 	if (newly_dirty)
715 		__set_page_dirty(page, mapping, 0);
716 	unlock_page_memcg(page);
717 
718 	if (newly_dirty)
719 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720 	return newly_dirty;
721 }
722 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
723 
724 static int
__iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)725 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
726 		unsigned copied, struct page *page, struct iomap *iomap)
727 {
728 	flush_dcache_page(page);
729 
730 	/*
731 	 * The blocks that were entirely written will now be uptodate, so we
732 	 * don't have to worry about a readpage reading them and overwriting a
733 	 * partial write.  However if we have encountered a short write and only
734 	 * partially written into a block, it will not be marked uptodate, so a
735 	 * readpage might come in and destroy our partial write.
736 	 *
737 	 * Do the simplest thing, and just treat any short write to a non
738 	 * uptodate page as a zero-length write, and force the caller to redo
739 	 * the whole thing.
740 	 */
741 	if (unlikely(copied < len && !PageUptodate(page))) {
742 		copied = 0;
743 	} else {
744 		iomap_set_range_uptodate(page, offset_in_page(pos), len);
745 		iomap_set_page_dirty(page);
746 	}
747 	return __generic_write_end(inode, pos, copied, page);
748 }
749 
750 static int
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,unsigned copied)751 iomap_write_end_inline(struct inode *inode, struct page *page,
752 		struct iomap *iomap, loff_t pos, unsigned copied)
753 {
754 	void *addr;
755 
756 	WARN_ON_ONCE(!PageUptodate(page));
757 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
758 
759 	addr = kmap_atomic(page);
760 	memcpy(iomap->inline_data + pos, addr + pos, copied);
761 	kunmap_atomic(addr);
762 
763 	mark_inode_dirty(inode);
764 	__generic_write_end(inode, pos, copied, page);
765 	return copied;
766 }
767 
768 static int
iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)769 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
770 		unsigned copied, struct page *page, struct iomap *iomap)
771 {
772 	int ret;
773 
774 	if (iomap->type == IOMAP_INLINE) {
775 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
776 	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
777 		ret = generic_write_end(NULL, inode->i_mapping, pos, len,
778 				copied, page, NULL);
779 	} else {
780 		ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
781 	}
782 
783 	if (iomap->page_done)
784 		iomap->page_done(inode, pos, copied, page, iomap);
785 
786 	if (ret < len)
787 		iomap_write_failed(inode, pos, len);
788 	return ret;
789 }
790 
791 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)792 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
793 		struct iomap *iomap)
794 {
795 	struct iov_iter *i = data;
796 	long status = 0;
797 	ssize_t written = 0;
798 	unsigned int flags = AOP_FLAG_NOFS;
799 
800 	do {
801 		struct page *page;
802 		unsigned long offset;	/* Offset into pagecache page */
803 		unsigned long bytes;	/* Bytes to write to page */
804 		size_t copied;		/* Bytes copied from user */
805 
806 		offset = offset_in_page(pos);
807 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
808 						iov_iter_count(i));
809 again:
810 		if (bytes > length)
811 			bytes = length;
812 
813 		/*
814 		 * Bring in the user page that we will copy from _first_.
815 		 * Otherwise there's a nasty deadlock on copying from the
816 		 * same page as we're writing to, without it being marked
817 		 * up-to-date.
818 		 *
819 		 * Not only is this an optimisation, but it is also required
820 		 * to check that the address is actually valid, when atomic
821 		 * usercopies are used, below.
822 		 */
823 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
824 			status = -EFAULT;
825 			break;
826 		}
827 
828 		status = iomap_write_begin(inode, pos, bytes, flags, &page,
829 				iomap);
830 		if (unlikely(status))
831 			break;
832 
833 		if (mapping_writably_mapped(inode->i_mapping))
834 			flush_dcache_page(page);
835 
836 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
837 
838 		flush_dcache_page(page);
839 
840 		status = iomap_write_end(inode, pos, bytes, copied, page,
841 				iomap);
842 		if (unlikely(status < 0))
843 			break;
844 		copied = status;
845 
846 		cond_resched();
847 
848 		iov_iter_advance(i, copied);
849 		if (unlikely(copied == 0)) {
850 			/*
851 			 * If we were unable to copy any data at all, we must
852 			 * fall back to a single segment length write.
853 			 *
854 			 * If we didn't fallback here, we could livelock
855 			 * because not all segments in the iov can be copied at
856 			 * once without a pagefault.
857 			 */
858 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
859 						iov_iter_single_seg_count(i));
860 			goto again;
861 		}
862 		pos += copied;
863 		written += copied;
864 		length -= copied;
865 
866 		balance_dirty_pages_ratelimited(inode->i_mapping);
867 	} while (iov_iter_count(i) && length);
868 
869 	return written ? written : status;
870 }
871 
872 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)873 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
874 		const struct iomap_ops *ops)
875 {
876 	struct inode *inode = iocb->ki_filp->f_mapping->host;
877 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
878 
879 	while (iov_iter_count(iter)) {
880 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
881 				IOMAP_WRITE, ops, iter, iomap_write_actor);
882 		if (ret <= 0)
883 			break;
884 		pos += ret;
885 		written += ret;
886 	}
887 
888 	return written ? written : ret;
889 }
890 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
891 
892 static struct page *
__iomap_read_page(struct inode * inode,loff_t offset)893 __iomap_read_page(struct inode *inode, loff_t offset)
894 {
895 	struct address_space *mapping = inode->i_mapping;
896 	struct page *page;
897 
898 	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
899 	if (IS_ERR(page))
900 		return page;
901 	if (!PageUptodate(page)) {
902 		put_page(page);
903 		return ERR_PTR(-EIO);
904 	}
905 	return page;
906 }
907 
908 static loff_t
iomap_dirty_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)909 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
910 		struct iomap *iomap)
911 {
912 	long status = 0;
913 	ssize_t written = 0;
914 
915 	do {
916 		struct page *page, *rpage;
917 		unsigned long offset;	/* Offset into pagecache page */
918 		unsigned long bytes;	/* Bytes to write to page */
919 
920 		offset = offset_in_page(pos);
921 		bytes = min_t(loff_t, PAGE_SIZE - offset, length);
922 
923 		rpage = __iomap_read_page(inode, pos);
924 		if (IS_ERR(rpage))
925 			return PTR_ERR(rpage);
926 
927 		status = iomap_write_begin(inode, pos, bytes,
928 					   AOP_FLAG_NOFS, &page, iomap);
929 		put_page(rpage);
930 		if (unlikely(status))
931 			return status;
932 
933 		WARN_ON_ONCE(!PageUptodate(page));
934 
935 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
936 		if (unlikely(status <= 0)) {
937 			if (WARN_ON_ONCE(status == 0))
938 				return -EIO;
939 			return status;
940 		}
941 
942 		cond_resched();
943 
944 		pos += status;
945 		written += status;
946 		length -= status;
947 
948 		balance_dirty_pages_ratelimited(inode->i_mapping);
949 	} while (length);
950 
951 	return written;
952 }
953 
954 int
iomap_file_dirty(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)955 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
956 		const struct iomap_ops *ops)
957 {
958 	loff_t ret;
959 
960 	while (len) {
961 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
962 				iomap_dirty_actor);
963 		if (ret <= 0)
964 			return ret;
965 		pos += ret;
966 		len -= ret;
967 	}
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(iomap_file_dirty);
972 
iomap_zero(struct inode * inode,loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)973 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
974 		unsigned bytes, struct iomap *iomap)
975 {
976 	struct page *page;
977 	int status;
978 
979 	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
980 				   iomap);
981 	if (status)
982 		return status;
983 
984 	zero_user(page, offset, bytes);
985 	mark_page_accessed(page);
986 
987 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
988 }
989 
iomap_dax_zero(loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)990 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
991 		struct iomap *iomap)
992 {
993 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
994 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
995 }
996 
997 static loff_t
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)998 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
999 		void *data, struct iomap *iomap)
1000 {
1001 	bool *did_zero = data;
1002 	loff_t written = 0;
1003 	int status;
1004 
1005 	/* already zeroed?  we're done. */
1006 	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1007 	    	return count;
1008 
1009 	do {
1010 		unsigned offset, bytes;
1011 
1012 		offset = offset_in_page(pos);
1013 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1014 
1015 		if (IS_DAX(inode))
1016 			status = iomap_dax_zero(pos, offset, bytes, iomap);
1017 		else
1018 			status = iomap_zero(inode, pos, offset, bytes, iomap);
1019 		if (status < 0)
1020 			return status;
1021 
1022 		pos += bytes;
1023 		count -= bytes;
1024 		written += bytes;
1025 		if (did_zero)
1026 			*did_zero = true;
1027 	} while (count > 0);
1028 
1029 	return written;
1030 }
1031 
1032 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1033 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1034 		const struct iomap_ops *ops)
1035 {
1036 	loff_t ret;
1037 
1038 	while (len > 0) {
1039 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1040 				ops, did_zero, iomap_zero_range_actor);
1041 		if (ret <= 0)
1042 			return ret;
1043 
1044 		pos += ret;
1045 		len -= ret;
1046 	}
1047 
1048 	return 0;
1049 }
1050 EXPORT_SYMBOL_GPL(iomap_zero_range);
1051 
1052 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1053 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1054 		const struct iomap_ops *ops)
1055 {
1056 	unsigned int blocksize = i_blocksize(inode);
1057 	unsigned int off = pos & (blocksize - 1);
1058 
1059 	/* Block boundary? Nothing to do */
1060 	if (!off)
1061 		return 0;
1062 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1063 }
1064 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1065 
1066 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1067 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1068 		void *data, struct iomap *iomap)
1069 {
1070 	struct page *page = data;
1071 	int ret;
1072 
1073 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1074 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1075 		if (ret)
1076 			return ret;
1077 		block_commit_write(page, 0, length);
1078 	} else {
1079 		WARN_ON_ONCE(!PageUptodate(page));
1080 		iomap_page_create(inode, page);
1081 		set_page_dirty(page);
1082 	}
1083 
1084 	return length;
1085 }
1086 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1087 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1088 {
1089 	struct page *page = vmf->page;
1090 	struct inode *inode = file_inode(vmf->vma->vm_file);
1091 	unsigned long length;
1092 	loff_t offset, size;
1093 	ssize_t ret;
1094 
1095 	lock_page(page);
1096 	size = i_size_read(inode);
1097 	if ((page->mapping != inode->i_mapping) ||
1098 	    (page_offset(page) > size)) {
1099 		/* We overload EFAULT to mean page got truncated */
1100 		ret = -EFAULT;
1101 		goto out_unlock;
1102 	}
1103 
1104 	/* page is wholly or partially inside EOF */
1105 	if (((page->index + 1) << PAGE_SHIFT) > size)
1106 		length = offset_in_page(size);
1107 	else
1108 		length = PAGE_SIZE;
1109 
1110 	offset = page_offset(page);
1111 	while (length > 0) {
1112 		ret = iomap_apply(inode, offset, length,
1113 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1114 				iomap_page_mkwrite_actor);
1115 		if (unlikely(ret <= 0))
1116 			goto out_unlock;
1117 		offset += ret;
1118 		length -= ret;
1119 	}
1120 
1121 	wait_for_stable_page(page);
1122 	return VM_FAULT_LOCKED;
1123 out_unlock:
1124 	unlock_page(page);
1125 	return block_page_mkwrite_return(ret);
1126 }
1127 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1128 
1129 struct fiemap_ctx {
1130 	struct fiemap_extent_info *fi;
1131 	struct iomap prev;
1132 };
1133 
iomap_to_fiemap(struct fiemap_extent_info * fi,struct iomap * iomap,u32 flags)1134 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1135 		struct iomap *iomap, u32 flags)
1136 {
1137 	switch (iomap->type) {
1138 	case IOMAP_HOLE:
1139 		/* skip holes */
1140 		return 0;
1141 	case IOMAP_DELALLOC:
1142 		flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1143 		break;
1144 	case IOMAP_MAPPED:
1145 		break;
1146 	case IOMAP_UNWRITTEN:
1147 		flags |= FIEMAP_EXTENT_UNWRITTEN;
1148 		break;
1149 	case IOMAP_INLINE:
1150 		flags |= FIEMAP_EXTENT_DATA_INLINE;
1151 		break;
1152 	}
1153 
1154 	if (iomap->flags & IOMAP_F_MERGED)
1155 		flags |= FIEMAP_EXTENT_MERGED;
1156 	if (iomap->flags & IOMAP_F_SHARED)
1157 		flags |= FIEMAP_EXTENT_SHARED;
1158 
1159 	return fiemap_fill_next_extent(fi, iomap->offset,
1160 			iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1161 			iomap->length, flags);
1162 }
1163 
1164 static loff_t
iomap_fiemap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1165 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1166 		struct iomap *iomap)
1167 {
1168 	struct fiemap_ctx *ctx = data;
1169 	loff_t ret = length;
1170 
1171 	if (iomap->type == IOMAP_HOLE)
1172 		return length;
1173 
1174 	ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1175 	ctx->prev = *iomap;
1176 	switch (ret) {
1177 	case 0:		/* success */
1178 		return length;
1179 	case 1:		/* extent array full */
1180 		return 0;
1181 	default:
1182 		return ret;
1183 	}
1184 }
1185 
iomap_fiemap(struct inode * inode,struct fiemap_extent_info * fi,loff_t start,loff_t len,const struct iomap_ops * ops)1186 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1187 		loff_t start, loff_t len, const struct iomap_ops *ops)
1188 {
1189 	struct fiemap_ctx ctx;
1190 	loff_t ret;
1191 
1192 	memset(&ctx, 0, sizeof(ctx));
1193 	ctx.fi = fi;
1194 	ctx.prev.type = IOMAP_HOLE;
1195 
1196 	ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1197 	if (ret)
1198 		return ret;
1199 
1200 	if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1201 		ret = filemap_write_and_wait(inode->i_mapping);
1202 		if (ret)
1203 			return ret;
1204 	}
1205 
1206 	while (len > 0) {
1207 		ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1208 				iomap_fiemap_actor);
1209 		/* inode with no (attribute) mapping will give ENOENT */
1210 		if (ret == -ENOENT)
1211 			break;
1212 		if (ret < 0)
1213 			return ret;
1214 		if (ret == 0)
1215 			break;
1216 
1217 		start += ret;
1218 		len -= ret;
1219 	}
1220 
1221 	if (ctx.prev.type != IOMAP_HOLE) {
1222 		ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1223 		if (ret < 0)
1224 			return ret;
1225 	}
1226 
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(iomap_fiemap);
1230 
1231 /*
1232  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1233  * Returns true if found and updates @lastoff to the offset in file.
1234  */
1235 static bool
page_seek_hole_data(struct inode * inode,struct page * page,loff_t * lastoff,int whence)1236 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1237 		int whence)
1238 {
1239 	const struct address_space_operations *ops = inode->i_mapping->a_ops;
1240 	unsigned int bsize = i_blocksize(inode), off;
1241 	bool seek_data = whence == SEEK_DATA;
1242 	loff_t poff = page_offset(page);
1243 
1244 	if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1245 		return false;
1246 
1247 	if (*lastoff < poff) {
1248 		/*
1249 		 * Last offset smaller than the start of the page means we found
1250 		 * a hole:
1251 		 */
1252 		if (whence == SEEK_HOLE)
1253 			return true;
1254 		*lastoff = poff;
1255 	}
1256 
1257 	/*
1258 	 * Just check the page unless we can and should check block ranges:
1259 	 */
1260 	if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1261 		return PageUptodate(page) == seek_data;
1262 
1263 	lock_page(page);
1264 	if (unlikely(page->mapping != inode->i_mapping))
1265 		goto out_unlock_not_found;
1266 
1267 	for (off = 0; off < PAGE_SIZE; off += bsize) {
1268 		if (offset_in_page(*lastoff) >= off + bsize)
1269 			continue;
1270 		if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1271 			unlock_page(page);
1272 			return true;
1273 		}
1274 		*lastoff = poff + off + bsize;
1275 	}
1276 
1277 out_unlock_not_found:
1278 	unlock_page(page);
1279 	return false;
1280 }
1281 
1282 /*
1283  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1284  *
1285  * Within unwritten extents, the page cache determines which parts are holes
1286  * and which are data: uptodate buffer heads count as data; everything else
1287  * counts as a hole.
1288  *
1289  * Returns the resulting offset on successs, and -ENOENT otherwise.
1290  */
1291 static loff_t
page_cache_seek_hole_data(struct inode * inode,loff_t offset,loff_t length,int whence)1292 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1293 		int whence)
1294 {
1295 	pgoff_t index = offset >> PAGE_SHIFT;
1296 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1297 	loff_t lastoff = offset;
1298 	struct pagevec pvec;
1299 
1300 	if (length <= 0)
1301 		return -ENOENT;
1302 
1303 	pagevec_init(&pvec);
1304 
1305 	do {
1306 		unsigned nr_pages, i;
1307 
1308 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1309 						end - 1);
1310 		if (nr_pages == 0)
1311 			break;
1312 
1313 		for (i = 0; i < nr_pages; i++) {
1314 			struct page *page = pvec.pages[i];
1315 
1316 			if (page_seek_hole_data(inode, page, &lastoff, whence))
1317 				goto check_range;
1318 			lastoff = page_offset(page) + PAGE_SIZE;
1319 		}
1320 		pagevec_release(&pvec);
1321 	} while (index < end);
1322 
1323 	/* When no page at lastoff and we are not done, we found a hole. */
1324 	if (whence != SEEK_HOLE)
1325 		goto not_found;
1326 
1327 check_range:
1328 	if (lastoff < offset + length)
1329 		goto out;
1330 not_found:
1331 	lastoff = -ENOENT;
1332 out:
1333 	pagevec_release(&pvec);
1334 	return lastoff;
1335 }
1336 
1337 
1338 static loff_t
iomap_seek_hole_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1339 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1340 		      void *data, struct iomap *iomap)
1341 {
1342 	switch (iomap->type) {
1343 	case IOMAP_UNWRITTEN:
1344 		offset = page_cache_seek_hole_data(inode, offset, length,
1345 						   SEEK_HOLE);
1346 		if (offset < 0)
1347 			return length;
1348 		/* fall through */
1349 	case IOMAP_HOLE:
1350 		*(loff_t *)data = offset;
1351 		return 0;
1352 	default:
1353 		return length;
1354 	}
1355 }
1356 
1357 loff_t
iomap_seek_hole(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1358 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1359 {
1360 	loff_t size = i_size_read(inode);
1361 	loff_t length = size - offset;
1362 	loff_t ret;
1363 
1364 	/* Nothing to be found before or beyond the end of the file. */
1365 	if (offset < 0 || offset >= size)
1366 		return -ENXIO;
1367 
1368 	while (length > 0) {
1369 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1370 				  &offset, iomap_seek_hole_actor);
1371 		if (ret < 0)
1372 			return ret;
1373 		if (ret == 0)
1374 			break;
1375 
1376 		offset += ret;
1377 		length -= ret;
1378 	}
1379 
1380 	return offset;
1381 }
1382 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1383 
1384 static loff_t
iomap_seek_data_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1385 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1386 		      void *data, struct iomap *iomap)
1387 {
1388 	switch (iomap->type) {
1389 	case IOMAP_HOLE:
1390 		return length;
1391 	case IOMAP_UNWRITTEN:
1392 		offset = page_cache_seek_hole_data(inode, offset, length,
1393 						   SEEK_DATA);
1394 		if (offset < 0)
1395 			return length;
1396 		/*FALLTHRU*/
1397 	default:
1398 		*(loff_t *)data = offset;
1399 		return 0;
1400 	}
1401 }
1402 
1403 loff_t
iomap_seek_data(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1404 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1405 {
1406 	loff_t size = i_size_read(inode);
1407 	loff_t length = size - offset;
1408 	loff_t ret;
1409 
1410 	/* Nothing to be found before or beyond the end of the file. */
1411 	if (offset < 0 || offset >= size)
1412 		return -ENXIO;
1413 
1414 	while (length > 0) {
1415 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1416 				  &offset, iomap_seek_data_actor);
1417 		if (ret < 0)
1418 			return ret;
1419 		if (ret == 0)
1420 			break;
1421 
1422 		offset += ret;
1423 		length -= ret;
1424 	}
1425 
1426 	if (length <= 0)
1427 		return -ENXIO;
1428 	return offset;
1429 }
1430 EXPORT_SYMBOL_GPL(iomap_seek_data);
1431 
1432 /*
1433  * Private flags for iomap_dio, must not overlap with the public ones in
1434  * iomap.h:
1435  */
1436 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
1437 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
1438 #define IOMAP_DIO_WRITE		(1 << 30)
1439 #define IOMAP_DIO_DIRTY		(1 << 31)
1440 
1441 struct iomap_dio {
1442 	struct kiocb		*iocb;
1443 	iomap_dio_end_io_t	*end_io;
1444 	loff_t			i_size;
1445 	loff_t			size;
1446 	atomic_t		ref;
1447 	unsigned		flags;
1448 	int			error;
1449 	bool			wait_for_completion;
1450 
1451 	union {
1452 		/* used during submission and for synchronous completion: */
1453 		struct {
1454 			struct iov_iter		*iter;
1455 			struct task_struct	*waiter;
1456 			struct request_queue	*last_queue;
1457 			blk_qc_t		cookie;
1458 		} submit;
1459 
1460 		/* used for aio completion: */
1461 		struct {
1462 			struct work_struct	work;
1463 		} aio;
1464 	};
1465 };
1466 
iomap_dio_complete(struct iomap_dio * dio)1467 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1468 {
1469 	struct kiocb *iocb = dio->iocb;
1470 	struct inode *inode = file_inode(iocb->ki_filp);
1471 	loff_t offset = iocb->ki_pos;
1472 	ssize_t ret;
1473 
1474 	if (dio->end_io) {
1475 		ret = dio->end_io(iocb,
1476 				dio->error ? dio->error : dio->size,
1477 				dio->flags);
1478 	} else {
1479 		ret = dio->error;
1480 	}
1481 
1482 	if (likely(!ret)) {
1483 		ret = dio->size;
1484 		/* check for short read */
1485 		if (offset + ret > dio->i_size &&
1486 		    !(dio->flags & IOMAP_DIO_WRITE))
1487 			ret = dio->i_size - offset;
1488 		iocb->ki_pos += ret;
1489 	}
1490 
1491 	/*
1492 	 * Try again to invalidate clean pages which might have been cached by
1493 	 * non-direct readahead, or faulted in by get_user_pages() if the source
1494 	 * of the write was an mmap'ed region of the file we're writing.  Either
1495 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
1496 	 * this invalidation fails, tough, the write still worked...
1497 	 *
1498 	 * And this page cache invalidation has to be after dio->end_io(), as
1499 	 * some filesystems convert unwritten extents to real allocations in
1500 	 * end_io() when necessary, otherwise a racing buffer read would cache
1501 	 * zeros from unwritten extents.
1502 	 */
1503 	if (!dio->error &&
1504 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1505 		int err;
1506 		err = invalidate_inode_pages2_range(inode->i_mapping,
1507 				offset >> PAGE_SHIFT,
1508 				(offset + dio->size - 1) >> PAGE_SHIFT);
1509 		if (err)
1510 			dio_warn_stale_pagecache(iocb->ki_filp);
1511 	}
1512 
1513 	/*
1514 	 * If this is a DSYNC write, make sure we push it to stable storage now
1515 	 * that we've written data.
1516 	 */
1517 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1518 		ret = generic_write_sync(iocb, ret);
1519 
1520 	inode_dio_end(file_inode(iocb->ki_filp));
1521 	kfree(dio);
1522 
1523 	return ret;
1524 }
1525 
iomap_dio_complete_work(struct work_struct * work)1526 static void iomap_dio_complete_work(struct work_struct *work)
1527 {
1528 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1529 	struct kiocb *iocb = dio->iocb;
1530 
1531 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1532 }
1533 
1534 /*
1535  * Set an error in the dio if none is set yet.  We have to use cmpxchg
1536  * as the submission context and the completion context(s) can race to
1537  * update the error.
1538  */
iomap_dio_set_error(struct iomap_dio * dio,int ret)1539 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1540 {
1541 	cmpxchg(&dio->error, 0, ret);
1542 }
1543 
iomap_dio_bio_end_io(struct bio * bio)1544 static void iomap_dio_bio_end_io(struct bio *bio)
1545 {
1546 	struct iomap_dio *dio = bio->bi_private;
1547 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1548 
1549 	if (bio->bi_status)
1550 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1551 
1552 	if (atomic_dec_and_test(&dio->ref)) {
1553 		if (dio->wait_for_completion) {
1554 			struct task_struct *waiter = dio->submit.waiter;
1555 			WRITE_ONCE(dio->submit.waiter, NULL);
1556 			wake_up_process(waiter);
1557 		} else if (dio->flags & IOMAP_DIO_WRITE) {
1558 			struct inode *inode = file_inode(dio->iocb->ki_filp);
1559 
1560 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1561 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1562 		} else {
1563 			iomap_dio_complete_work(&dio->aio.work);
1564 		}
1565 	}
1566 
1567 	if (should_dirty) {
1568 		bio_check_pages_dirty(bio);
1569 	} else {
1570 		struct bio_vec *bvec;
1571 		int i;
1572 
1573 		bio_for_each_segment_all(bvec, bio, i)
1574 			put_page(bvec->bv_page);
1575 		bio_put(bio);
1576 	}
1577 }
1578 
1579 static blk_qc_t
iomap_dio_zero(struct iomap_dio * dio,struct iomap * iomap,loff_t pos,unsigned len)1580 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1581 		unsigned len)
1582 {
1583 	struct page *page = ZERO_PAGE(0);
1584 	struct bio *bio;
1585 
1586 	bio = bio_alloc(GFP_KERNEL, 1);
1587 	bio_set_dev(bio, iomap->bdev);
1588 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1589 	bio->bi_private = dio;
1590 	bio->bi_end_io = iomap_dio_bio_end_io;
1591 
1592 	get_page(page);
1593 	__bio_add_page(bio, page, len, 0);
1594 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1595 
1596 	atomic_inc(&dio->ref);
1597 	return submit_bio(bio);
1598 }
1599 
1600 static loff_t
iomap_dio_bio_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1601 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1602 		struct iomap_dio *dio, struct iomap *iomap)
1603 {
1604 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1605 	unsigned int fs_block_size = i_blocksize(inode), pad;
1606 	unsigned int align = iov_iter_alignment(dio->submit.iter);
1607 	struct iov_iter iter;
1608 	struct bio *bio;
1609 	bool need_zeroout = false;
1610 	bool use_fua = false;
1611 	int nr_pages, ret = 0;
1612 	size_t copied = 0;
1613 
1614 	if ((pos | length | align) & ((1 << blkbits) - 1))
1615 		return -EINVAL;
1616 
1617 	if (iomap->type == IOMAP_UNWRITTEN) {
1618 		dio->flags |= IOMAP_DIO_UNWRITTEN;
1619 		need_zeroout = true;
1620 	}
1621 
1622 	if (iomap->flags & IOMAP_F_SHARED)
1623 		dio->flags |= IOMAP_DIO_COW;
1624 
1625 	if (iomap->flags & IOMAP_F_NEW) {
1626 		need_zeroout = true;
1627 	} else if (iomap->type == IOMAP_MAPPED) {
1628 		/*
1629 		 * Use a FUA write if we need datasync semantics, this is a pure
1630 		 * data IO that doesn't require any metadata updates (including
1631 		 * after IO completion such as unwritten extent conversion) and
1632 		 * the underlying device supports FUA. This allows us to avoid
1633 		 * cache flushes on IO completion.
1634 		 */
1635 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1636 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1637 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
1638 			use_fua = true;
1639 	}
1640 
1641 	/*
1642 	 * Operate on a partial iter trimmed to the extent we were called for.
1643 	 * We'll update the iter in the dio once we're done with this extent.
1644 	 */
1645 	iter = *dio->submit.iter;
1646 	iov_iter_truncate(&iter, length);
1647 
1648 	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1649 	if (nr_pages <= 0)
1650 		return nr_pages;
1651 
1652 	if (need_zeroout) {
1653 		/* zero out from the start of the block to the write offset */
1654 		pad = pos & (fs_block_size - 1);
1655 		if (pad)
1656 			iomap_dio_zero(dio, iomap, pos - pad, pad);
1657 	}
1658 
1659 	do {
1660 		size_t n;
1661 		if (dio->error) {
1662 			iov_iter_revert(dio->submit.iter, copied);
1663 			return 0;
1664 		}
1665 
1666 		bio = bio_alloc(GFP_KERNEL, nr_pages);
1667 		bio_set_dev(bio, iomap->bdev);
1668 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1669 		bio->bi_write_hint = dio->iocb->ki_hint;
1670 		bio->bi_ioprio = dio->iocb->ki_ioprio;
1671 		bio->bi_private = dio;
1672 		bio->bi_end_io = iomap_dio_bio_end_io;
1673 
1674 		ret = bio_iov_iter_get_pages(bio, &iter);
1675 		if (unlikely(ret)) {
1676 			/*
1677 			 * We have to stop part way through an IO. We must fall
1678 			 * through to the sub-block tail zeroing here, otherwise
1679 			 * this short IO may expose stale data in the tail of
1680 			 * the block we haven't written data to.
1681 			 */
1682 			bio_put(bio);
1683 			goto zero_tail;
1684 		}
1685 
1686 		n = bio->bi_iter.bi_size;
1687 		if (dio->flags & IOMAP_DIO_WRITE) {
1688 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1689 			if (use_fua)
1690 				bio->bi_opf |= REQ_FUA;
1691 			else
1692 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1693 			task_io_account_write(n);
1694 		} else {
1695 			bio->bi_opf = REQ_OP_READ;
1696 			if (dio->flags & IOMAP_DIO_DIRTY)
1697 				bio_set_pages_dirty(bio);
1698 		}
1699 
1700 		iov_iter_advance(dio->submit.iter, n);
1701 
1702 		dio->size += n;
1703 		pos += n;
1704 		copied += n;
1705 
1706 		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1707 
1708 		atomic_inc(&dio->ref);
1709 
1710 		dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1711 		dio->submit.cookie = submit_bio(bio);
1712 	} while (nr_pages);
1713 
1714 	/*
1715 	 * We need to zeroout the tail of a sub-block write if the extent type
1716 	 * requires zeroing or the write extends beyond EOF. If we don't zero
1717 	 * the block tail in the latter case, we can expose stale data via mmap
1718 	 * reads of the EOF block.
1719 	 */
1720 zero_tail:
1721 	if (need_zeroout ||
1722 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1723 		/* zero out from the end of the write to the end of the block */
1724 		pad = pos & (fs_block_size - 1);
1725 		if (pad)
1726 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1727 	}
1728 	return copied ? copied : ret;
1729 }
1730 
1731 static loff_t
iomap_dio_hole_actor(loff_t length,struct iomap_dio * dio)1732 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1733 {
1734 	length = iov_iter_zero(length, dio->submit.iter);
1735 	dio->size += length;
1736 	return length;
1737 }
1738 
1739 static loff_t
iomap_dio_inline_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1740 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1741 		struct iomap_dio *dio, struct iomap *iomap)
1742 {
1743 	struct iov_iter *iter = dio->submit.iter;
1744 	size_t copied;
1745 
1746 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1747 
1748 	if (dio->flags & IOMAP_DIO_WRITE) {
1749 		loff_t size = inode->i_size;
1750 
1751 		if (pos > size)
1752 			memset(iomap->inline_data + size, 0, pos - size);
1753 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1754 		if (copied) {
1755 			if (pos + copied > size)
1756 				i_size_write(inode, pos + copied);
1757 			mark_inode_dirty(inode);
1758 		}
1759 	} else {
1760 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1761 	}
1762 	dio->size += copied;
1763 	return copied;
1764 }
1765 
1766 static loff_t
iomap_dio_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1767 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1768 		void *data, struct iomap *iomap)
1769 {
1770 	struct iomap_dio *dio = data;
1771 
1772 	switch (iomap->type) {
1773 	case IOMAP_HOLE:
1774 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1775 			return -EIO;
1776 		return iomap_dio_hole_actor(length, dio);
1777 	case IOMAP_UNWRITTEN:
1778 		if (!(dio->flags & IOMAP_DIO_WRITE))
1779 			return iomap_dio_hole_actor(length, dio);
1780 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1781 	case IOMAP_MAPPED:
1782 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1783 	case IOMAP_INLINE:
1784 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1785 	default:
1786 		WARN_ON_ONCE(1);
1787 		return -EIO;
1788 	}
1789 }
1790 
1791 /*
1792  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1793  * is being issued as AIO or not.  This allows us to optimise pure data writes
1794  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1795  * REQ_FLUSH post write. This is slightly tricky because a single request here
1796  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1797  * may be pure data writes. In that case, we still need to do a full data sync
1798  * completion.
1799  */
1800 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,iomap_dio_end_io_t end_io)1801 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1802 		const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1803 {
1804 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1805 	struct inode *inode = file_inode(iocb->ki_filp);
1806 	size_t count = iov_iter_count(iter);
1807 	loff_t pos = iocb->ki_pos, start = pos;
1808 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
1809 	unsigned int flags = IOMAP_DIRECT;
1810 	bool wait_for_completion = is_sync_kiocb(iocb);
1811 	struct blk_plug plug;
1812 	struct iomap_dio *dio;
1813 
1814 	lockdep_assert_held(&inode->i_rwsem);
1815 
1816 	if (!count)
1817 		return 0;
1818 
1819 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1820 	if (!dio)
1821 		return -ENOMEM;
1822 
1823 	dio->iocb = iocb;
1824 	atomic_set(&dio->ref, 1);
1825 	dio->size = 0;
1826 	dio->i_size = i_size_read(inode);
1827 	dio->end_io = end_io;
1828 	dio->error = 0;
1829 	dio->flags = 0;
1830 
1831 	dio->submit.iter = iter;
1832 	dio->submit.waiter = current;
1833 	dio->submit.cookie = BLK_QC_T_NONE;
1834 	dio->submit.last_queue = NULL;
1835 
1836 	if (iov_iter_rw(iter) == READ) {
1837 		if (pos >= dio->i_size)
1838 			goto out_free_dio;
1839 
1840 		if (iter->type == ITER_IOVEC)
1841 			dio->flags |= IOMAP_DIO_DIRTY;
1842 	} else {
1843 		flags |= IOMAP_WRITE;
1844 		dio->flags |= IOMAP_DIO_WRITE;
1845 
1846 		/* for data sync or sync, we need sync completion processing */
1847 		if (iocb->ki_flags & IOCB_DSYNC)
1848 			dio->flags |= IOMAP_DIO_NEED_SYNC;
1849 
1850 		/*
1851 		 * For datasync only writes, we optimistically try using FUA for
1852 		 * this IO.  Any non-FUA write that occurs will clear this flag,
1853 		 * hence we know before completion whether a cache flush is
1854 		 * necessary.
1855 		 */
1856 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1857 			dio->flags |= IOMAP_DIO_WRITE_FUA;
1858 	}
1859 
1860 	if (iocb->ki_flags & IOCB_NOWAIT) {
1861 		if (filemap_range_has_page(mapping, start, end)) {
1862 			ret = -EAGAIN;
1863 			goto out_free_dio;
1864 		}
1865 		flags |= IOMAP_NOWAIT;
1866 	}
1867 
1868 	ret = filemap_write_and_wait_range(mapping, start, end);
1869 	if (ret)
1870 		goto out_free_dio;
1871 
1872 	/*
1873 	 * Try to invalidate cache pages for the range we're direct
1874 	 * writing.  If this invalidation fails, tough, the write will
1875 	 * still work, but racing two incompatible write paths is a
1876 	 * pretty crazy thing to do, so we don't support it 100%.
1877 	 */
1878 	ret = invalidate_inode_pages2_range(mapping,
1879 			start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1880 	if (ret)
1881 		dio_warn_stale_pagecache(iocb->ki_filp);
1882 	ret = 0;
1883 
1884 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1885 	    !inode->i_sb->s_dio_done_wq) {
1886 		ret = sb_init_dio_done_wq(inode->i_sb);
1887 		if (ret < 0)
1888 			goto out_free_dio;
1889 	}
1890 
1891 	inode_dio_begin(inode);
1892 
1893 	blk_start_plug(&plug);
1894 	do {
1895 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
1896 				iomap_dio_actor);
1897 		if (ret <= 0) {
1898 			/* magic error code to fall back to buffered I/O */
1899 			if (ret == -ENOTBLK) {
1900 				wait_for_completion = true;
1901 				ret = 0;
1902 			}
1903 			break;
1904 		}
1905 		pos += ret;
1906 
1907 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
1908 			/*
1909 			 * We only report that we've read data up to i_size.
1910 			 * Revert iter to a state corresponding to that as
1911 			 * some callers (such as splice code) rely on it.
1912 			 */
1913 			iov_iter_revert(iter, pos - dio->i_size);
1914 			break;
1915 		}
1916 	} while ((count = iov_iter_count(iter)) > 0);
1917 	blk_finish_plug(&plug);
1918 
1919 	if (ret < 0)
1920 		iomap_dio_set_error(dio, ret);
1921 
1922 	/*
1923 	 * If all the writes we issued were FUA, we don't need to flush the
1924 	 * cache on IO completion. Clear the sync flag for this case.
1925 	 */
1926 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
1927 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1928 
1929 	/*
1930 	 * We are about to drop our additional submission reference, which
1931 	 * might be the last reference to the dio.  There are three three
1932 	 * different ways we can progress here:
1933 	 *
1934 	 *  (a) If this is the last reference we will always complete and free
1935 	 *	the dio ourselves.
1936 	 *  (b) If this is not the last reference, and we serve an asynchronous
1937 	 *	iocb, we must never touch the dio after the decrement, the
1938 	 *	I/O completion handler will complete and free it.
1939 	 *  (c) If this is not the last reference, but we serve a synchronous
1940 	 *	iocb, the I/O completion handler will wake us up on the drop
1941 	 *	of the final reference, and we will complete and free it here
1942 	 *	after we got woken by the I/O completion handler.
1943 	 */
1944 	dio->wait_for_completion = wait_for_completion;
1945 	if (!atomic_dec_and_test(&dio->ref)) {
1946 		if (!wait_for_completion)
1947 			return -EIOCBQUEUED;
1948 
1949 		for (;;) {
1950 			set_current_state(TASK_UNINTERRUPTIBLE);
1951 			if (!READ_ONCE(dio->submit.waiter))
1952 				break;
1953 
1954 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
1955 			    !dio->submit.last_queue ||
1956 			    !blk_poll(dio->submit.last_queue,
1957 					 dio->submit.cookie))
1958 				io_schedule();
1959 		}
1960 		__set_current_state(TASK_RUNNING);
1961 	}
1962 
1963 	return iomap_dio_complete(dio);
1964 
1965 out_free_dio:
1966 	kfree(dio);
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1970 
1971 /* Swapfile activation */
1972 
1973 #ifdef CONFIG_SWAP
1974 struct iomap_swapfile_info {
1975 	struct iomap iomap;		/* accumulated iomap */
1976 	struct swap_info_struct *sis;
1977 	uint64_t lowest_ppage;		/* lowest physical addr seen (pages) */
1978 	uint64_t highest_ppage;		/* highest physical addr seen (pages) */
1979 	unsigned long nr_pages;		/* number of pages collected */
1980 	int nr_extents;			/* extent count */
1981 };
1982 
1983 /*
1984  * Collect physical extents for this swap file.  Physical extents reported to
1985  * the swap code must be trimmed to align to a page boundary.  The logical
1986  * offset within the file is irrelevant since the swapfile code maps logical
1987  * page numbers of the swap device to the physical page-aligned extents.
1988  */
iomap_swapfile_add_extent(struct iomap_swapfile_info * isi)1989 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1990 {
1991 	struct iomap *iomap = &isi->iomap;
1992 	unsigned long nr_pages;
1993 	uint64_t first_ppage;
1994 	uint64_t first_ppage_reported;
1995 	uint64_t next_ppage;
1996 	int error;
1997 
1998 	/*
1999 	 * Round the start up and the end down so that the physical
2000 	 * extent aligns to a page boundary.
2001 	 */
2002 	first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2003 	next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2004 			PAGE_SHIFT;
2005 
2006 	/* Skip too-short physical extents. */
2007 	if (first_ppage >= next_ppage)
2008 		return 0;
2009 	nr_pages = next_ppage - first_ppage;
2010 
2011 	/*
2012 	 * Calculate how much swap space we're adding; the first page contains
2013 	 * the swap header and doesn't count.  The mm still wants that first
2014 	 * page fed to add_swap_extent, however.
2015 	 */
2016 	first_ppage_reported = first_ppage;
2017 	if (iomap->offset == 0)
2018 		first_ppage_reported++;
2019 	if (isi->lowest_ppage > first_ppage_reported)
2020 		isi->lowest_ppage = first_ppage_reported;
2021 	if (isi->highest_ppage < (next_ppage - 1))
2022 		isi->highest_ppage = next_ppage - 1;
2023 
2024 	/* Add extent, set up for the next call. */
2025 	error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2026 	if (error < 0)
2027 		return error;
2028 	isi->nr_extents += error;
2029 	isi->nr_pages += nr_pages;
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Accumulate iomaps for this swap file.  We have to accumulate iomaps because
2035  * swap only cares about contiguous page-aligned physical extents and makes no
2036  * distinction between written and unwritten extents.
2037  */
iomap_swapfile_activate_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)2038 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2039 		loff_t count, void *data, struct iomap *iomap)
2040 {
2041 	struct iomap_swapfile_info *isi = data;
2042 	int error;
2043 
2044 	switch (iomap->type) {
2045 	case IOMAP_MAPPED:
2046 	case IOMAP_UNWRITTEN:
2047 		/* Only real or unwritten extents. */
2048 		break;
2049 	case IOMAP_INLINE:
2050 		/* No inline data. */
2051 		pr_err("swapon: file is inline\n");
2052 		return -EINVAL;
2053 	default:
2054 		pr_err("swapon: file has unallocated extents\n");
2055 		return -EINVAL;
2056 	}
2057 
2058 	/* No uncommitted metadata or shared blocks. */
2059 	if (iomap->flags & IOMAP_F_DIRTY) {
2060 		pr_err("swapon: file is not committed\n");
2061 		return -EINVAL;
2062 	}
2063 	if (iomap->flags & IOMAP_F_SHARED) {
2064 		pr_err("swapon: file has shared extents\n");
2065 		return -EINVAL;
2066 	}
2067 
2068 	/* Only one bdev per swap file. */
2069 	if (iomap->bdev != isi->sis->bdev) {
2070 		pr_err("swapon: file is on multiple devices\n");
2071 		return -EINVAL;
2072 	}
2073 
2074 	if (isi->iomap.length == 0) {
2075 		/* No accumulated extent, so just store it. */
2076 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2077 	} else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2078 		/* Append this to the accumulated extent. */
2079 		isi->iomap.length += iomap->length;
2080 	} else {
2081 		/* Otherwise, add the retained iomap and store this one. */
2082 		error = iomap_swapfile_add_extent(isi);
2083 		if (error)
2084 			return error;
2085 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2086 	}
2087 	return count;
2088 }
2089 
2090 /*
2091  * Iterate a swap file's iomaps to construct physical extents that can be
2092  * passed to the swapfile subsystem.
2093  */
iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * pagespan,const struct iomap_ops * ops)2094 int iomap_swapfile_activate(struct swap_info_struct *sis,
2095 		struct file *swap_file, sector_t *pagespan,
2096 		const struct iomap_ops *ops)
2097 {
2098 	struct iomap_swapfile_info isi = {
2099 		.sis = sis,
2100 		.lowest_ppage = (sector_t)-1ULL,
2101 	};
2102 	struct address_space *mapping = swap_file->f_mapping;
2103 	struct inode *inode = mapping->host;
2104 	loff_t pos = 0;
2105 	loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2106 	loff_t ret;
2107 
2108 	/*
2109 	 * Persist all file mapping metadata so that we won't have any
2110 	 * IOMAP_F_DIRTY iomaps.
2111 	 */
2112 	ret = vfs_fsync(swap_file, 1);
2113 	if (ret)
2114 		return ret;
2115 
2116 	while (len > 0) {
2117 		ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2118 				ops, &isi, iomap_swapfile_activate_actor);
2119 		if (ret <= 0)
2120 			return ret;
2121 
2122 		pos += ret;
2123 		len -= ret;
2124 	}
2125 
2126 	if (isi.iomap.length) {
2127 		ret = iomap_swapfile_add_extent(&isi);
2128 		if (ret)
2129 			return ret;
2130 	}
2131 
2132 	*pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2133 	sis->max = isi.nr_pages;
2134 	sis->pages = isi.nr_pages - 1;
2135 	sis->highest_bit = isi.nr_pages - 1;
2136 	return isi.nr_extents;
2137 }
2138 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2139 #endif /* CONFIG_SWAP */
2140 
2141 static loff_t
iomap_bmap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)2142 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2143 		void *data, struct iomap *iomap)
2144 {
2145 	sector_t *bno = data, addr;
2146 
2147 	if (iomap->type == IOMAP_MAPPED) {
2148 		addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2149 		if (addr > INT_MAX)
2150 			WARN(1, "would truncate bmap result\n");
2151 		else
2152 			*bno = addr;
2153 	}
2154 	return 0;
2155 }
2156 
2157 /* legacy ->bmap interface.  0 is the error return (!) */
2158 sector_t
iomap_bmap(struct address_space * mapping,sector_t bno,const struct iomap_ops * ops)2159 iomap_bmap(struct address_space *mapping, sector_t bno,
2160 		const struct iomap_ops *ops)
2161 {
2162 	struct inode *inode = mapping->host;
2163 	loff_t pos = bno << inode->i_blkbits;
2164 	unsigned blocksize = i_blocksize(inode);
2165 
2166 	if (filemap_write_and_wait(mapping))
2167 		return 0;
2168 
2169 	bno = 0;
2170 	iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2171 	return bno;
2172 }
2173 EXPORT_SYMBOL_GPL(iomap_bmap);
2174