• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71 
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75 
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78 
79 #include <trace/events/sched.h>
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
85 #endif
86 
87 struct rq;
88 struct cpuidle_state;
89 
90 #ifdef CONFIG_SCHED_RT_CAS
91 extern unsigned long uclamp_task_util(struct task_struct *p);
92 #endif
93 
94 #ifdef CONFIG_SCHED_WALT
95 extern unsigned int sched_ravg_window;
96 extern unsigned int walt_cpu_util_freq_divisor;
97 
98 struct walt_sched_stats {
99 	u64 cumulative_runnable_avg_scaled;
100 };
101 
102 struct load_subtractions {
103 	u64 window_start;
104 	u64 subs;
105 	u64 new_subs;
106 };
107 
108 #define NUM_TRACKED_WINDOWS 2
109 
110 struct sched_cluster {
111 	raw_spinlock_t load_lock;
112 	struct list_head list;
113 	struct cpumask cpus;
114 	int id;
115 	int max_power_cost;
116 	int min_power_cost;
117 	int max_possible_capacity;
118 	int capacity;
119 	int efficiency; /* Differentiate cpus with different IPC capability */
120 	int load_scale_factor;
121 	unsigned int exec_scale_factor;
122 	/*
123 	 * max_freq = user maximum
124 	 * max_possible_freq = maximum supported by hardware
125 	 */
126 	unsigned int cur_freq, max_freq, min_freq;
127 	unsigned int max_possible_freq;
128 	bool freq_init_done;
129 };
130 
131 extern unsigned int sched_disable_window_stats;
132 #endif /* CONFIG_SCHED_WALT */
133 
134 
135 /* task_struct::on_rq states: */
136 #define TASK_ON_RQ_QUEUED	1
137 #define TASK_ON_RQ_MIGRATING	2
138 
139 extern __read_mostly int scheduler_running;
140 
141 extern unsigned long calc_load_update;
142 extern atomic_long_t calc_load_tasks;
143 
144 extern void calc_global_load_tick(struct rq *this_rq);
145 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
146 
147 #ifdef CONFIG_SMP
148 extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
149 #endif
150 
151 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
152 /*
153  * Helpers for converting nanosecond timing to jiffy resolution
154  */
155 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
156 
157 /*
158  * Increase resolution of nice-level calculations for 64-bit architectures.
159  * The extra resolution improves shares distribution and load balancing of
160  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
161  * hierarchies, especially on larger systems. This is not a user-visible change
162  * and does not change the user-interface for setting shares/weights.
163  *
164  * We increase resolution only if we have enough bits to allow this increased
165  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
166  * are pretty high and the returns do not justify the increased costs.
167  *
168  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
169  * increase coverage and consistency always enable it on 64-bit platforms.
170  */
171 #ifdef CONFIG_64BIT
172 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
173 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
174 # define scale_load_down(w) \
175 ({ \
176 	unsigned long __w = (w); \
177 	if (__w) \
178 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
179 	__w; \
180 })
181 #else
182 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
183 # define scale_load(w)		(w)
184 # define scale_load_down(w)	(w)
185 #endif
186 
187 /*
188  * Task weight (visible to users) and its load (invisible to users) have
189  * independent resolution, but they should be well calibrated. We use
190  * scale_load() and scale_load_down(w) to convert between them. The
191  * following must be true:
192  *
193  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
194  *
195  */
196 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
197 
198 /*
199  * Single value that decides SCHED_DEADLINE internal math precision.
200  * 10 -> just above 1us
201  * 9  -> just above 0.5us
202  */
203 #define DL_SCALE		10
204 
205 /*
206  * Single value that denotes runtime == period, ie unlimited time.
207  */
208 #define RUNTIME_INF		((u64)~0ULL)
209 
idle_policy(int policy)210 static inline int idle_policy(int policy)
211 {
212 	return policy == SCHED_IDLE;
213 }
fair_policy(int policy)214 static inline int fair_policy(int policy)
215 {
216 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
217 }
218 
rt_policy(int policy)219 static inline int rt_policy(int policy)
220 {
221 	return policy == SCHED_FIFO || policy == SCHED_RR;
222 }
223 
dl_policy(int policy)224 static inline int dl_policy(int policy)
225 {
226 	return policy == SCHED_DEADLINE;
227 }
valid_policy(int policy)228 static inline bool valid_policy(int policy)
229 {
230 	return idle_policy(policy) || fair_policy(policy) ||
231 		rt_policy(policy) || dl_policy(policy);
232 }
233 
task_has_idle_policy(struct task_struct * p)234 static inline int task_has_idle_policy(struct task_struct *p)
235 {
236 	return idle_policy(p->policy);
237 }
238 
task_has_rt_policy(struct task_struct * p)239 static inline int task_has_rt_policy(struct task_struct *p)
240 {
241 	return rt_policy(p->policy);
242 }
243 
task_has_dl_policy(struct task_struct * p)244 static inline int task_has_dl_policy(struct task_struct *p)
245 {
246 	return dl_policy(p->policy);
247 }
248 
249 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
250 
update_avg(u64 * avg,u64 sample)251 static inline void update_avg(u64 *avg, u64 sample)
252 {
253 	s64 diff = sample - *avg;
254 	*avg += diff / 8;
255 }
256 
257 /*
258  * Shifting a value by an exponent greater *or equal* to the size of said value
259  * is UB; cap at size-1.
260  */
261 #define shr_bound(val, shift)							\
262 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
263 
264 /*
265  * !! For sched_setattr_nocheck() (kernel) only !!
266  *
267  * This is actually gross. :(
268  *
269  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
270  * tasks, but still be able to sleep. We need this on platforms that cannot
271  * atomically change clock frequency. Remove once fast switching will be
272  * available on such platforms.
273  *
274  * SUGOV stands for SchedUtil GOVernor.
275  */
276 #define SCHED_FLAG_SUGOV	0x10000000
277 
278 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
279 
dl_entity_is_special(struct sched_dl_entity * dl_se)280 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
281 {
282 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
283 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
284 #else
285 	return false;
286 #endif
287 }
288 
289 /*
290  * Tells if entity @a should preempt entity @b.
291  */
292 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)293 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
294 {
295 	return dl_entity_is_special(a) ||
296 	       dl_time_before(a->deadline, b->deadline);
297 }
298 
299 /*
300  * This is the priority-queue data structure of the RT scheduling class:
301  */
302 struct rt_prio_array {
303 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
304 	struct list_head queue[MAX_RT_PRIO];
305 };
306 
307 struct rt_bandwidth {
308 	/* nests inside the rq lock: */
309 	raw_spinlock_t		rt_runtime_lock;
310 	ktime_t			rt_period;
311 	u64			rt_runtime;
312 	struct hrtimer		rt_period_timer;
313 	unsigned int		rt_period_active;
314 };
315 
316 void __dl_clear_params(struct task_struct *p);
317 
318 struct dl_bandwidth {
319 	raw_spinlock_t		dl_runtime_lock;
320 	u64			dl_runtime;
321 	u64			dl_period;
322 };
323 
dl_bandwidth_enabled(void)324 static inline int dl_bandwidth_enabled(void)
325 {
326 	return sysctl_sched_rt_runtime >= 0;
327 }
328 
329 /*
330  * To keep the bandwidth of -deadline tasks under control
331  * we need some place where:
332  *  - store the maximum -deadline bandwidth of each cpu;
333  *  - cache the fraction of bandwidth that is currently allocated in
334  *    each root domain;
335  *
336  * This is all done in the data structure below. It is similar to the
337  * one used for RT-throttling (rt_bandwidth), with the main difference
338  * that, since here we are only interested in admission control, we
339  * do not decrease any runtime while the group "executes", neither we
340  * need a timer to replenish it.
341  *
342  * With respect to SMP, bandwidth is given on a per root domain basis,
343  * meaning that:
344  *  - bw (< 100%) is the deadline bandwidth of each CPU;
345  *  - total_bw is the currently allocated bandwidth in each root domain;
346  */
347 struct dl_bw {
348 	raw_spinlock_t		lock;
349 	u64			bw;
350 	u64			total_bw;
351 };
352 
353 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
354 
355 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)356 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
357 {
358 	dl_b->total_bw -= tsk_bw;
359 	__dl_update(dl_b, (s32)tsk_bw / cpus);
360 }
361 
362 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)363 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
364 {
365 	dl_b->total_bw += tsk_bw;
366 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
367 }
368 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)369 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
370 				 u64 old_bw, u64 new_bw)
371 {
372 	return dl_b->bw != -1 &&
373 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
374 }
375 
376 /*
377  * Verify the fitness of task @p to run on @cpu taking into account the
378  * CPU original capacity and the runtime/deadline ratio of the task.
379  *
380  * The function will return true if the CPU original capacity of the
381  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
382  * task and false otherwise.
383  */
dl_task_fits_capacity(struct task_struct * p,int cpu)384 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
385 {
386 	unsigned long cap = arch_scale_cpu_capacity(cpu);
387 
388 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
389 }
390 
391 extern void init_dl_bw(struct dl_bw *dl_b);
392 extern int  sched_dl_global_validate(void);
393 extern void sched_dl_do_global(void);
394 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
395 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
396 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
397 extern bool __checkparam_dl(const struct sched_attr *attr);
398 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
399 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
400 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
401 extern bool dl_cpu_busy(unsigned int cpu);
402 
403 #ifdef CONFIG_CGROUP_SCHED
404 
405 #include <linux/cgroup.h>
406 #include <linux/psi.h>
407 
408 struct cfs_rq;
409 struct rt_rq;
410 
411 extern struct list_head task_groups;
412 
413 struct cfs_bandwidth {
414 #ifdef CONFIG_CFS_BANDWIDTH
415 	raw_spinlock_t		lock;
416 	ktime_t			period;
417 	u64			quota;
418 	u64			runtime;
419 	s64			hierarchical_quota;
420 
421 	u8			idle;
422 	u8			period_active;
423 	u8			slack_started;
424 	struct hrtimer		period_timer;
425 	struct hrtimer		slack_timer;
426 	struct list_head	throttled_cfs_rq;
427 
428 	/* Statistics: */
429 	int			nr_periods;
430 	int			nr_throttled;
431 	u64			throttled_time;
432 #endif
433 };
434 
435 /* Task group related information */
436 struct task_group {
437 	struct cgroup_subsys_state css;
438 
439 #ifdef CONFIG_FAIR_GROUP_SCHED
440 	/* schedulable entities of this group on each CPU */
441 	struct sched_entity	**se;
442 	/* runqueue "owned" by this group on each CPU */
443 	struct cfs_rq		**cfs_rq;
444 	unsigned long		shares;
445 
446 #ifdef	CONFIG_SMP
447 	/*
448 	 * load_avg can be heavily contended at clock tick time, so put
449 	 * it in its own cacheline separated from the fields above which
450 	 * will also be accessed at each tick.
451 	 */
452 	atomic_long_t		load_avg ____cacheline_aligned;
453 #endif
454 #endif
455 
456 #ifdef CONFIG_RT_GROUP_SCHED
457 	struct sched_rt_entity	**rt_se;
458 	struct rt_rq		**rt_rq;
459 
460 	struct rt_bandwidth	rt_bandwidth;
461 #endif
462 
463 	struct rcu_head		rcu;
464 	struct list_head	list;
465 
466 	struct task_group	*parent;
467 	struct list_head	siblings;
468 	struct list_head	children;
469 
470 #ifdef CONFIG_SCHED_AUTOGROUP
471 	struct autogroup	*autogroup;
472 #endif
473 
474 	struct cfs_bandwidth	cfs_bandwidth;
475 
476 #ifdef CONFIG_UCLAMP_TASK_GROUP
477 	/* The two decimal precision [%] value requested from user-space */
478 	unsigned int		uclamp_pct[UCLAMP_CNT];
479 	/* Clamp values requested for a task group */
480 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
481 	/* Effective clamp values used for a task group */
482 	struct uclamp_se	uclamp[UCLAMP_CNT];
483 #endif
484 
485 #ifdef CONFIG_SCHED_RTG_CGROUP
486 	/*
487 	 * Controls whether tasks of this cgroup should be colocated with each
488 	 * other and tasks of other cgroups that have the same flag turned on.
489 	 */
490 	bool colocate;
491 
492 	/* Controls whether further updates are allowed to the colocate flag */
493 	bool colocate_update_disabled;
494 #endif
495 };
496 
497 #ifdef CONFIG_FAIR_GROUP_SCHED
498 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
499 
500 /*
501  * A weight of 0 or 1 can cause arithmetics problems.
502  * A weight of a cfs_rq is the sum of weights of which entities
503  * are queued on this cfs_rq, so a weight of a entity should not be
504  * too large, so as the shares value of a task group.
505  * (The default weight is 1024 - so there's no practical
506  *  limitation from this.)
507  */
508 #define MIN_SHARES		(1UL <<  1)
509 #define MAX_SHARES		(1UL << 18)
510 #endif
511 
512 typedef int (*tg_visitor)(struct task_group *, void *);
513 
514 extern int walk_tg_tree_from(struct task_group *from,
515 			     tg_visitor down, tg_visitor up, void *data);
516 
517 /*
518  * Iterate the full tree, calling @down when first entering a node and @up when
519  * leaving it for the final time.
520  *
521  * Caller must hold rcu_lock or sufficient equivalent.
522  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
524 {
525 	return walk_tg_tree_from(&root_task_group, down, up, data);
526 }
527 
528 extern int tg_nop(struct task_group *tg, void *data);
529 
530 extern void free_fair_sched_group(struct task_group *tg);
531 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
532 extern void online_fair_sched_group(struct task_group *tg);
533 extern void unregister_fair_sched_group(struct task_group *tg);
534 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
535 			struct sched_entity *se, int cpu,
536 			struct sched_entity *parent);
537 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
538 
539 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
540 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
541 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
542 
543 extern void free_rt_sched_group(struct task_group *tg);
544 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
545 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
546 		struct sched_rt_entity *rt_se, int cpu,
547 		struct sched_rt_entity *parent);
548 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
549 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
550 extern long sched_group_rt_runtime(struct task_group *tg);
551 extern long sched_group_rt_period(struct task_group *tg);
552 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
553 
554 extern struct task_group *sched_create_group(struct task_group *parent);
555 extern void sched_online_group(struct task_group *tg,
556 			       struct task_group *parent);
557 extern void sched_destroy_group(struct task_group *tg);
558 extern void sched_offline_group(struct task_group *tg);
559 
560 extern void sched_move_task(struct task_struct *tsk);
561 
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
564 
565 #ifdef CONFIG_SMP
566 extern void set_task_rq_fair(struct sched_entity *se,
567 			     struct cfs_rq *prev, struct cfs_rq *next);
568 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)569 static inline void set_task_rq_fair(struct sched_entity *se,
570 			     struct cfs_rq *prev, struct cfs_rq *next) { }
571 #endif /* CONFIG_SMP */
572 #endif /* CONFIG_FAIR_GROUP_SCHED */
573 
574 #else /* CONFIG_CGROUP_SCHED */
575 
576 struct cfs_bandwidth { };
577 
578 #endif	/* CONFIG_CGROUP_SCHED */
579 
580 /* CFS-related fields in a runqueue */
581 struct cfs_rq {
582 	struct load_weight	load;
583 	unsigned int		nr_running;
584 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
585 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
586 
587 	u64			exec_clock;
588 	u64			min_vruntime;
589 #ifndef CONFIG_64BIT
590 	u64			min_vruntime_copy;
591 #endif
592 
593 	struct rb_root_cached	tasks_timeline;
594 
595 	/*
596 	 * 'curr' points to currently running entity on this cfs_rq.
597 	 * It is set to NULL otherwise (i.e when none are currently running).
598 	 */
599 	struct sched_entity	*curr;
600 	struct sched_entity	*next;
601 	struct sched_entity	*last;
602 	struct sched_entity	*skip;
603 
604 #ifdef	CONFIG_SCHED_DEBUG
605 	unsigned int		nr_spread_over;
606 #endif
607 
608 #ifdef CONFIG_SMP
609 	/*
610 	 * CFS load tracking
611 	 */
612 	struct sched_avg	avg;
613 #ifndef CONFIG_64BIT
614 	u64			load_last_update_time_copy;
615 #endif
616 	struct {
617 		raw_spinlock_t	lock ____cacheline_aligned;
618 		int		nr;
619 		unsigned long	load_avg;
620 		unsigned long	util_avg;
621 		unsigned long	runnable_avg;
622 	} removed;
623 
624 #ifdef CONFIG_FAIR_GROUP_SCHED
625 	unsigned long		tg_load_avg_contrib;
626 	long			propagate;
627 	long			prop_runnable_sum;
628 
629 	/*
630 	 *   h_load = weight * f(tg)
631 	 *
632 	 * Where f(tg) is the recursive weight fraction assigned to
633 	 * this group.
634 	 */
635 	unsigned long		h_load;
636 	u64			last_h_load_update;
637 	struct sched_entity	*h_load_next;
638 #endif /* CONFIG_FAIR_GROUP_SCHED */
639 #endif /* CONFIG_SMP */
640 
641 #ifdef CONFIG_FAIR_GROUP_SCHED
642 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
643 
644 	/*
645 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
646 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
647 	 * (like users, containers etc.)
648 	 *
649 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
650 	 * This list is used during load balance.
651 	 */
652 	int			on_list;
653 	struct list_head	leaf_cfs_rq_list;
654 	struct task_group	*tg;	/* group that "owns" this runqueue */
655 
656 #ifdef CONFIG_SCHED_WALT
657 	struct walt_sched_stats walt_stats;
658 #endif
659 
660 #ifdef CONFIG_CFS_BANDWIDTH
661 	int			runtime_enabled;
662 	s64			runtime_remaining;
663 
664 	u64			throttled_clock;
665 	u64			throttled_clock_task;
666 	u64			throttled_clock_task_time;
667 	int			throttled;
668 	int			throttle_count;
669 	struct list_head	throttled_list;
670 #ifdef CONFIG_SCHED_WALT
671 	u64 cumulative_runnable_avg;
672 #endif
673 #endif /* CONFIG_CFS_BANDWIDTH */
674 #endif /* CONFIG_FAIR_GROUP_SCHED */
675 };
676 
rt_bandwidth_enabled(void)677 static inline int rt_bandwidth_enabled(void)
678 {
679 	return sysctl_sched_rt_runtime >= 0;
680 }
681 
682 /* RT IPI pull logic requires IRQ_WORK */
683 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
684 # define HAVE_RT_PUSH_IPI
685 #endif
686 
687 /* Real-Time classes' related field in a runqueue: */
688 struct rt_rq {
689 	struct rt_prio_array	active;
690 	unsigned int		rt_nr_running;
691 	unsigned int		rr_nr_running;
692 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
693 	struct {
694 		int		curr; /* highest queued rt task prio */
695 #ifdef CONFIG_SMP
696 		int		next; /* next highest */
697 #endif
698 	} highest_prio;
699 #endif
700 #ifdef CONFIG_SMP
701 	unsigned long		rt_nr_migratory;
702 	unsigned long		rt_nr_total;
703 	int			overloaded;
704 	struct plist_head	pushable_tasks;
705 
706 #endif /* CONFIG_SMP */
707 	int			rt_queued;
708 
709 	int			rt_throttled;
710 	u64			rt_time;
711 	u64			rt_runtime;
712 	/* Nests inside the rq lock: */
713 	raw_spinlock_t		rt_runtime_lock;
714 
715 #ifdef CONFIG_RT_GROUP_SCHED
716 	unsigned long		rt_nr_boosted;
717 
718 	struct rq		*rq;
719 	struct task_group	*tg;
720 #endif
721 };
722 
rt_rq_is_runnable(struct rt_rq * rt_rq)723 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
724 {
725 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
726 }
727 
728 /* Deadline class' related fields in a runqueue */
729 struct dl_rq {
730 	/* runqueue is an rbtree, ordered by deadline */
731 	struct rb_root_cached	root;
732 
733 	unsigned long		dl_nr_running;
734 
735 #ifdef CONFIG_SMP
736 	/*
737 	 * Deadline values of the currently executing and the
738 	 * earliest ready task on this rq. Caching these facilitates
739 	 * the decision whether or not a ready but not running task
740 	 * should migrate somewhere else.
741 	 */
742 	struct {
743 		u64		curr;
744 		u64		next;
745 	} earliest_dl;
746 
747 	unsigned long		dl_nr_migratory;
748 	int			overloaded;
749 
750 	/*
751 	 * Tasks on this rq that can be pushed away. They are kept in
752 	 * an rb-tree, ordered by tasks' deadlines, with caching
753 	 * of the leftmost (earliest deadline) element.
754 	 */
755 	struct rb_root_cached	pushable_dl_tasks_root;
756 #else
757 	struct dl_bw		dl_bw;
758 #endif
759 	/*
760 	 * "Active utilization" for this runqueue: increased when a
761 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
762 	 * task blocks
763 	 */
764 	u64			running_bw;
765 
766 	/*
767 	 * Utilization of the tasks "assigned" to this runqueue (including
768 	 * the tasks that are in runqueue and the tasks that executed on this
769 	 * CPU and blocked). Increased when a task moves to this runqueue, and
770 	 * decreased when the task moves away (migrates, changes scheduling
771 	 * policy, or terminates).
772 	 * This is needed to compute the "inactive utilization" for the
773 	 * runqueue (inactive utilization = this_bw - running_bw).
774 	 */
775 	u64			this_bw;
776 	u64			extra_bw;
777 
778 	/*
779 	 * Inverse of the fraction of CPU utilization that can be reclaimed
780 	 * by the GRUB algorithm.
781 	 */
782 	u64			bw_ratio;
783 };
784 
785 #ifdef CONFIG_FAIR_GROUP_SCHED
786 /* An entity is a task if it doesn't "own" a runqueue */
787 #define entity_is_task(se)	(!se->my_q)
788 
se_update_runnable(struct sched_entity * se)789 static inline void se_update_runnable(struct sched_entity *se)
790 {
791 	if (!entity_is_task(se))
792 		se->runnable_weight = se->my_q->h_nr_running;
793 }
794 
se_runnable(struct sched_entity * se)795 static inline long se_runnable(struct sched_entity *se)
796 {
797 	if (entity_is_task(se))
798 		return !!se->on_rq;
799 	else
800 		return se->runnable_weight;
801 }
802 
803 #else
804 #define entity_is_task(se)	1
805 
se_update_runnable(struct sched_entity * se)806 static inline void se_update_runnable(struct sched_entity *se) {}
807 
se_runnable(struct sched_entity * se)808 static inline long se_runnable(struct sched_entity *se)
809 {
810 	return !!se->on_rq;
811 }
812 #endif
813 
814 #ifdef CONFIG_SMP
815 /*
816  * XXX we want to get rid of these helpers and use the full load resolution.
817  */
se_weight(struct sched_entity * se)818 static inline long se_weight(struct sched_entity *se)
819 {
820 	return scale_load_down(se->load.weight);
821 }
822 
823 
sched_asym_prefer(int a,int b)824 static inline bool sched_asym_prefer(int a, int b)
825 {
826 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
827 }
828 
829 struct perf_domain {
830 	struct em_perf_domain *em_pd;
831 	struct perf_domain *next;
832 	struct rcu_head rcu;
833 };
834 
835 /* Scheduling group status flags */
836 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
837 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
838 
839 /*
840  * We add the notion of a root-domain which will be used to define per-domain
841  * variables. Each exclusive cpuset essentially defines an island domain by
842  * fully partitioning the member CPUs from any other cpuset. Whenever a new
843  * exclusive cpuset is created, we also create and attach a new root-domain
844  * object.
845  *
846  */
847 struct root_domain {
848 	atomic_t		refcount;
849 	atomic_t		rto_count;
850 	struct rcu_head		rcu;
851 	cpumask_var_t		span;
852 	cpumask_var_t		online;
853 
854 	/*
855 	 * Indicate pullable load on at least one CPU, e.g:
856 	 * - More than one runnable task
857 	 * - Running task is misfit
858 	 */
859 	int			overload;
860 
861 	/* Indicate one or more cpus over-utilized (tipping point) */
862 	int			overutilized;
863 
864 	/*
865 	 * The bit corresponding to a CPU gets set here if such CPU has more
866 	 * than one runnable -deadline task (as it is below for RT tasks).
867 	 */
868 	cpumask_var_t		dlo_mask;
869 	atomic_t		dlo_count;
870 	struct dl_bw		dl_bw;
871 	struct cpudl		cpudl;
872 
873 #ifdef HAVE_RT_PUSH_IPI
874 	/*
875 	 * For IPI pull requests, loop across the rto_mask.
876 	 */
877 	struct irq_work		rto_push_work;
878 	raw_spinlock_t		rto_lock;
879 	/* These are only updated and read within rto_lock */
880 	int			rto_loop;
881 	int			rto_cpu;
882 	/* These atomics are updated outside of a lock */
883 	atomic_t		rto_loop_next;
884 	atomic_t		rto_loop_start;
885 #endif
886 	/*
887 	 * The "RT overload" flag: it gets set if a CPU has more than
888 	 * one runnable RT task.
889 	 */
890 	cpumask_var_t		rto_mask;
891 	struct cpupri		cpupri;
892 
893 	unsigned long		max_cpu_capacity;
894 
895 	/*
896 	 * NULL-terminated list of performance domains intersecting with the
897 	 * CPUs of the rd. Protected by RCU.
898 	 */
899 	struct perf_domain __rcu *pd;
900 #ifdef CONFIG_SCHED_RT_CAS
901 	int max_cap_orig_cpu;
902 #endif
903 };
904 
905 extern void init_defrootdomain(void);
906 extern int sched_init_domains(const struct cpumask *cpu_map);
907 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
908 extern void sched_get_rd(struct root_domain *rd);
909 extern void sched_put_rd(struct root_domain *rd);
910 
911 #ifdef HAVE_RT_PUSH_IPI
912 extern void rto_push_irq_work_func(struct irq_work *work);
913 #endif
914 #endif /* CONFIG_SMP */
915 
916 #ifdef CONFIG_UCLAMP_TASK
917 /*
918  * struct uclamp_bucket - Utilization clamp bucket
919  * @value: utilization clamp value for tasks on this clamp bucket
920  * @tasks: number of RUNNABLE tasks on this clamp bucket
921  *
922  * Keep track of how many tasks are RUNNABLE for a given utilization
923  * clamp value.
924  */
925 struct uclamp_bucket {
926 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
927 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
928 };
929 
930 /*
931  * struct uclamp_rq - rq's utilization clamp
932  * @value: currently active clamp values for a rq
933  * @bucket: utilization clamp buckets affecting a rq
934  *
935  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
936  * A clamp value is affecting a rq when there is at least one task RUNNABLE
937  * (or actually running) with that value.
938  *
939  * There are up to UCLAMP_CNT possible different clamp values, currently there
940  * are only two: minimum utilization and maximum utilization.
941  *
942  * All utilization clamping values are MAX aggregated, since:
943  * - for util_min: we want to run the CPU at least at the max of the minimum
944  *   utilization required by its currently RUNNABLE tasks.
945  * - for util_max: we want to allow the CPU to run up to the max of the
946  *   maximum utilization allowed by its currently RUNNABLE tasks.
947  *
948  * Since on each system we expect only a limited number of different
949  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
950  * the metrics required to compute all the per-rq utilization clamp values.
951  */
952 struct uclamp_rq {
953 	unsigned int value;
954 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
955 };
956 
957 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
958 #endif /* CONFIG_UCLAMP_TASK */
959 
960 /*
961  * This is the main, per-CPU runqueue data structure.
962  *
963  * Locking rule: those places that want to lock multiple runqueues
964  * (such as the load balancing or the thread migration code), lock
965  * acquire operations must be ordered by ascending &runqueue.
966  */
967 struct rq {
968 	/* runqueue lock: */
969 	raw_spinlock_t		lock;
970 
971 	/*
972 	 * nr_running and cpu_load should be in the same cacheline because
973 	 * remote CPUs use both these fields when doing load calculation.
974 	 */
975 	unsigned int		nr_running;
976 #ifdef CONFIG_NUMA_BALANCING
977 	unsigned int		nr_numa_running;
978 	unsigned int		nr_preferred_running;
979 	unsigned int		numa_migrate_on;
980 #endif
981 #ifdef CONFIG_NO_HZ_COMMON
982 #ifdef CONFIG_SMP
983 	unsigned long		last_blocked_load_update_tick;
984 	unsigned int		has_blocked_load;
985 	call_single_data_t	nohz_csd;
986 #endif /* CONFIG_SMP */
987 	unsigned int		nohz_tick_stopped;
988 	atomic_t		nohz_flags;
989 #endif /* CONFIG_NO_HZ_COMMON */
990 
991 #ifdef CONFIG_SMP
992 	unsigned int		ttwu_pending;
993 #endif
994 	u64			nr_switches;
995 
996 #ifdef CONFIG_UCLAMP_TASK
997 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
998 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
999 	unsigned int		uclamp_flags;
1000 #define UCLAMP_FLAG_IDLE 0x01
1001 #endif
1002 
1003 	struct cfs_rq		cfs;
1004 	struct rt_rq		rt;
1005 	struct dl_rq		dl;
1006 
1007 #ifdef CONFIG_FAIR_GROUP_SCHED
1008 	/* list of leaf cfs_rq on this CPU: */
1009 	struct list_head	leaf_cfs_rq_list;
1010 	struct list_head	*tmp_alone_branch;
1011 #endif /* CONFIG_FAIR_GROUP_SCHED */
1012 
1013 	/*
1014 	 * This is part of a global counter where only the total sum
1015 	 * over all CPUs matters. A task can increase this counter on
1016 	 * one CPU and if it got migrated afterwards it may decrease
1017 	 * it on another CPU. Always updated under the runqueue lock:
1018 	 */
1019 	unsigned long		nr_uninterruptible;
1020 
1021 	struct task_struct __rcu	*curr;
1022 	struct task_struct	*idle;
1023 	struct task_struct	*stop;
1024 	unsigned long		next_balance;
1025 	struct mm_struct	*prev_mm;
1026 
1027 	unsigned int		clock_update_flags;
1028 	u64			clock;
1029 	/* Ensure that all clocks are in the same cache line */
1030 	u64			clock_task ____cacheline_aligned;
1031 	u64			clock_pelt;
1032 	unsigned long		lost_idle_time;
1033 
1034 	atomic_t		nr_iowait;
1035 
1036 #ifdef CONFIG_MEMBARRIER
1037 	int membarrier_state;
1038 #endif
1039 
1040 #ifdef CONFIG_SMP
1041 	struct root_domain		*rd;
1042 	struct sched_domain __rcu	*sd;
1043 
1044 	unsigned long		cpu_capacity;
1045 	unsigned long		cpu_capacity_orig;
1046 
1047 	struct callback_head	*balance_callback;
1048 
1049 	unsigned char		nohz_idle_balance;
1050 	unsigned char		idle_balance;
1051 
1052 	unsigned long		misfit_task_load;
1053 
1054 	/* For active balancing */
1055 	int			active_balance;
1056 	int			push_cpu;
1057 #ifdef CONFIG_SCHED_EAS
1058 	struct task_struct	*push_task;
1059 #endif
1060 	struct cpu_stop_work	active_balance_work;
1061 
1062 	/* For rt active balancing */
1063 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
1064 	int rt_active_balance;
1065 	struct task_struct *rt_push_task;
1066 	struct cpu_stop_work rt_active_balance_work;
1067 #endif
1068 
1069 	/* CPU of this runqueue: */
1070 	int			cpu;
1071 	int			online;
1072 
1073 	struct list_head cfs_tasks;
1074 
1075 	struct sched_avg	avg_rt;
1076 	struct sched_avg	avg_dl;
1077 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1078 	struct sched_avg	avg_irq;
1079 #endif
1080 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1081 	struct sched_avg	avg_thermal;
1082 #endif
1083 	u64			idle_stamp;
1084 	u64			avg_idle;
1085 
1086 	/* This is used to determine avg_idle's max value */
1087 	u64			max_idle_balance_cost;
1088 #endif /* CONFIG_SMP */
1089 
1090 #ifdef CONFIG_SCHED_WALT
1091 	struct sched_cluster *cluster;
1092 	struct cpumask freq_domain_cpumask;
1093 	struct walt_sched_stats walt_stats;
1094 
1095 	u64 window_start;
1096 	unsigned long walt_flags;
1097 
1098 	u64 cur_irqload;
1099 	u64 avg_irqload;
1100 	u64 irqload_ts;
1101 	u64 curr_runnable_sum;
1102 	u64 prev_runnable_sum;
1103 	u64 nt_curr_runnable_sum;
1104 	u64 nt_prev_runnable_sum;
1105 	u64 cum_window_demand_scaled;
1106 	struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
1107 #ifdef CONFIG_SCHED_RTG
1108 	struct group_cpu_time grp_time;
1109 #endif
1110 #endif /* CONFIG_SCHED_WALT */
1111 
1112 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1113 	u64			prev_irq_time;
1114 #endif
1115 #ifdef CONFIG_PARAVIRT
1116 	u64			prev_steal_time;
1117 #endif
1118 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1119 	u64			prev_steal_time_rq;
1120 #endif
1121 
1122 	/* calc_load related fields */
1123 	unsigned long		calc_load_update;
1124 	long			calc_load_active;
1125 
1126 #ifdef CONFIG_SCHED_HRTICK
1127 #ifdef CONFIG_SMP
1128 	call_single_data_t	hrtick_csd;
1129 #endif
1130 	struct hrtimer		hrtick_timer;
1131 	ktime_t 		hrtick_time;
1132 #endif
1133 
1134 #ifdef CONFIG_SCHEDSTATS
1135 	/* latency stats */
1136 	struct sched_info	rq_sched_info;
1137 	unsigned long long	rq_cpu_time;
1138 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1139 
1140 	/* sys_sched_yield() stats */
1141 	unsigned int		yld_count;
1142 
1143 	/* schedule() stats */
1144 	unsigned int		sched_count;
1145 	unsigned int		sched_goidle;
1146 
1147 	/* try_to_wake_up() stats */
1148 	unsigned int		ttwu_count;
1149 	unsigned int		ttwu_local;
1150 #endif
1151 
1152 #ifdef CONFIG_CPU_IDLE
1153 	/* Must be inspected within a rcu lock section */
1154 	struct cpuidle_state	*idle_state;
1155 #endif
1156 };
1157 
1158 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 
1160 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1161 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1162 {
1163 	return cfs_rq->rq;
1164 }
1165 
1166 #else
1167 
rq_of(struct cfs_rq * cfs_rq)1168 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1169 {
1170 	return container_of(cfs_rq, struct rq, cfs);
1171 }
1172 #endif
1173 
cpu_of(struct rq * rq)1174 static inline int cpu_of(struct rq *rq)
1175 {
1176 #ifdef CONFIG_SMP
1177 	return rq->cpu;
1178 #else
1179 	return 0;
1180 #endif
1181 }
1182 
1183 
1184 #ifdef CONFIG_SCHED_SMT
1185 extern void __update_idle_core(struct rq *rq);
1186 
update_idle_core(struct rq * rq)1187 static inline void update_idle_core(struct rq *rq)
1188 {
1189 	if (static_branch_unlikely(&sched_smt_present))
1190 		__update_idle_core(rq);
1191 }
1192 
1193 #else
update_idle_core(struct rq * rq)1194 static inline void update_idle_core(struct rq *rq) { }
1195 #endif
1196 
1197 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1198 
1199 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1200 #define this_rq()		this_cpu_ptr(&runqueues)
1201 #define task_rq(p)		cpu_rq(task_cpu(p))
1202 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1203 #define raw_rq()		raw_cpu_ptr(&runqueues)
1204 
1205 extern void update_rq_clock(struct rq *rq);
1206 
__rq_clock_broken(struct rq * rq)1207 static inline u64 __rq_clock_broken(struct rq *rq)
1208 {
1209 	return READ_ONCE(rq->clock);
1210 }
1211 
1212 /*
1213  * rq::clock_update_flags bits
1214  *
1215  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1216  *  call to __schedule(). This is an optimisation to avoid
1217  *  neighbouring rq clock updates.
1218  *
1219  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1220  *  in effect and calls to update_rq_clock() are being ignored.
1221  *
1222  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1223  *  made to update_rq_clock() since the last time rq::lock was pinned.
1224  *
1225  * If inside of __schedule(), clock_update_flags will have been
1226  * shifted left (a left shift is a cheap operation for the fast path
1227  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1228  *
1229  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1230  *
1231  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1232  * one position though, because the next rq_unpin_lock() will shift it
1233  * back.
1234  */
1235 #define RQCF_REQ_SKIP		0x01
1236 #define RQCF_ACT_SKIP		0x02
1237 #define RQCF_UPDATED		0x04
1238 
assert_clock_updated(struct rq * rq)1239 static inline void assert_clock_updated(struct rq *rq)
1240 {
1241 	/*
1242 	 * The only reason for not seeing a clock update since the
1243 	 * last rq_pin_lock() is if we're currently skipping updates.
1244 	 */
1245 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1246 }
1247 
rq_clock(struct rq * rq)1248 static inline u64 rq_clock(struct rq *rq)
1249 {
1250 	lockdep_assert_held(&rq->lock);
1251 	assert_clock_updated(rq);
1252 
1253 	return rq->clock;
1254 }
1255 
rq_clock_task(struct rq * rq)1256 static inline u64 rq_clock_task(struct rq *rq)
1257 {
1258 	lockdep_assert_held(&rq->lock);
1259 	assert_clock_updated(rq);
1260 
1261 	return rq->clock_task;
1262 }
1263 
1264 /**
1265  * By default the decay is the default pelt decay period.
1266  * The decay shift can change the decay period in
1267  * multiples of 32.
1268  *  Decay shift		Decay period(ms)
1269  *	0			32
1270  *	1			64
1271  *	2			128
1272  *	3			256
1273  *	4			512
1274  */
1275 extern int sched_thermal_decay_shift;
1276 
rq_clock_thermal(struct rq * rq)1277 static inline u64 rq_clock_thermal(struct rq *rq)
1278 {
1279 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1280 }
1281 
rq_clock_skip_update(struct rq * rq)1282 static inline void rq_clock_skip_update(struct rq *rq)
1283 {
1284 	lockdep_assert_held(&rq->lock);
1285 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1286 }
1287 
1288 /*
1289  * See rt task throttling, which is the only time a skip
1290  * request is cancelled.
1291  */
rq_clock_cancel_skipupdate(struct rq * rq)1292 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1293 {
1294 	lockdep_assert_held(&rq->lock);
1295 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1296 }
1297 
1298 struct rq_flags {
1299 	unsigned long flags;
1300 	struct pin_cookie cookie;
1301 #ifdef CONFIG_SCHED_DEBUG
1302 	/*
1303 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1304 	 * current pin context is stashed here in case it needs to be
1305 	 * restored in rq_repin_lock().
1306 	 */
1307 	unsigned int clock_update_flags;
1308 #endif
1309 };
1310 
1311 /*
1312  * Lockdep annotation that avoids accidental unlocks; it's like a
1313  * sticky/continuous lockdep_assert_held().
1314  *
1315  * This avoids code that has access to 'struct rq *rq' (basically everything in
1316  * the scheduler) from accidentally unlocking the rq if they do not also have a
1317  * copy of the (on-stack) 'struct rq_flags rf'.
1318  *
1319  * Also see Documentation/locking/lockdep-design.rst.
1320  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1321 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1322 {
1323 	rf->cookie = lockdep_pin_lock(&rq->lock);
1324 
1325 #ifdef CONFIG_SCHED_DEBUG
1326 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1327 	rf->clock_update_flags = 0;
1328 #endif
1329 }
1330 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1331 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1332 {
1333 #ifdef CONFIG_SCHED_DEBUG
1334 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1335 		rf->clock_update_flags = RQCF_UPDATED;
1336 #endif
1337 
1338 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1339 }
1340 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1341 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1342 {
1343 	lockdep_repin_lock(&rq->lock, rf->cookie);
1344 
1345 #ifdef CONFIG_SCHED_DEBUG
1346 	/*
1347 	 * Restore the value we stashed in @rf for this pin context.
1348 	 */
1349 	rq->clock_update_flags |= rf->clock_update_flags;
1350 #endif
1351 }
1352 
1353 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1354 	__acquires(rq->lock);
1355 
1356 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1357 	__acquires(p->pi_lock)
1358 	__acquires(rq->lock);
1359 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1360 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1361 	__releases(rq->lock)
1362 {
1363 	rq_unpin_lock(rq, rf);
1364 	raw_spin_unlock(&rq->lock);
1365 }
1366 
1367 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1368 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1369 	__releases(rq->lock)
1370 	__releases(p->pi_lock)
1371 {
1372 	rq_unpin_lock(rq, rf);
1373 	raw_spin_unlock(&rq->lock);
1374 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1375 }
1376 
1377 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1378 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1379 	__acquires(rq->lock)
1380 {
1381 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1382 	rq_pin_lock(rq, rf);
1383 }
1384 
1385 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1386 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1387 	__acquires(rq->lock)
1388 {
1389 	raw_spin_lock_irq(&rq->lock);
1390 	rq_pin_lock(rq, rf);
1391 }
1392 
1393 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1394 rq_lock(struct rq *rq, struct rq_flags *rf)
1395 	__acquires(rq->lock)
1396 {
1397 	raw_spin_lock(&rq->lock);
1398 	rq_pin_lock(rq, rf);
1399 }
1400 
1401 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1402 rq_relock(struct rq *rq, struct rq_flags *rf)
1403 	__acquires(rq->lock)
1404 {
1405 	raw_spin_lock(&rq->lock);
1406 	rq_repin_lock(rq, rf);
1407 }
1408 
1409 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1410 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1411 	__releases(rq->lock)
1412 {
1413 	rq_unpin_lock(rq, rf);
1414 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1415 }
1416 
1417 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1418 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1419 	__releases(rq->lock)
1420 {
1421 	rq_unpin_lock(rq, rf);
1422 	raw_spin_unlock_irq(&rq->lock);
1423 }
1424 
1425 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1426 rq_unlock(struct rq *rq, struct rq_flags *rf)
1427 	__releases(rq->lock)
1428 {
1429 	rq_unpin_lock(rq, rf);
1430 	raw_spin_unlock(&rq->lock);
1431 }
1432 
1433 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1434 this_rq_lock_irq(struct rq_flags *rf)
1435 	__acquires(rq->lock)
1436 {
1437 	struct rq *rq;
1438 
1439 	local_irq_disable();
1440 	rq = this_rq();
1441 	rq_lock(rq, rf);
1442 	return rq;
1443 }
1444 
1445 #ifdef CONFIG_NUMA
1446 enum numa_topology_type {
1447 	NUMA_DIRECT,
1448 	NUMA_GLUELESS_MESH,
1449 	NUMA_BACKPLANE,
1450 };
1451 extern enum numa_topology_type sched_numa_topology_type;
1452 extern int sched_max_numa_distance;
1453 extern bool find_numa_distance(int distance);
1454 extern void sched_init_numa(void);
1455 extern void sched_domains_numa_masks_set(unsigned int cpu);
1456 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1457 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1458 #else
sched_init_numa(void)1459 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1460 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1461 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1462 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1463 {
1464 	return nr_cpu_ids;
1465 }
1466 #endif
1467 
1468 #ifdef CONFIG_NUMA_BALANCING
1469 /* The regions in numa_faults array from task_struct */
1470 enum numa_faults_stats {
1471 	NUMA_MEM = 0,
1472 	NUMA_CPU,
1473 	NUMA_MEMBUF,
1474 	NUMA_CPUBUF
1475 };
1476 extern void sched_setnuma(struct task_struct *p, int node);
1477 extern int migrate_task_to(struct task_struct *p, int cpu);
1478 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1479 			int cpu, int scpu);
1480 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1481 #else
1482 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1483 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1484 {
1485 }
1486 #endif /* CONFIG_NUMA_BALANCING */
1487 
1488 #ifdef CONFIG_SMP
1489 
1490 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1491 queue_balance_callback(struct rq *rq,
1492 		       struct callback_head *head,
1493 		       void (*func)(struct rq *rq))
1494 {
1495 	lockdep_assert_held(&rq->lock);
1496 
1497 	if (unlikely(head->next))
1498 		return;
1499 
1500 	head->func = (void (*)(struct callback_head *))func;
1501 	head->next = rq->balance_callback;
1502 	rq->balance_callback = head;
1503 }
1504 
1505 #define rcu_dereference_check_sched_domain(p) \
1506 	rcu_dereference_check((p), \
1507 			      lockdep_is_held(&sched_domains_mutex))
1508 
1509 /*
1510  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1511  * See destroy_sched_domains: call_rcu for details.
1512  *
1513  * The domain tree of any CPU may only be accessed from within
1514  * preempt-disabled sections.
1515  */
1516 #define for_each_domain(cpu, __sd) \
1517 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1518 			__sd; __sd = __sd->parent)
1519 
1520 /**
1521  * highest_flag_domain - Return highest sched_domain containing flag.
1522  * @cpu:	The CPU whose highest level of sched domain is to
1523  *		be returned.
1524  * @flag:	The flag to check for the highest sched_domain
1525  *		for the given CPU.
1526  *
1527  * Returns the highest sched_domain of a CPU which contains the given flag.
1528  */
highest_flag_domain(int cpu,int flag)1529 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1530 {
1531 	struct sched_domain *sd, *hsd = NULL;
1532 
1533 	for_each_domain(cpu, sd) {
1534 		if (!(sd->flags & flag))
1535 			break;
1536 		hsd = sd;
1537 	}
1538 
1539 	return hsd;
1540 }
1541 
lowest_flag_domain(int cpu,int flag)1542 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1543 {
1544 	struct sched_domain *sd;
1545 
1546 	for_each_domain(cpu, sd) {
1547 		if (sd->flags & flag)
1548 			break;
1549 	}
1550 
1551 	return sd;
1552 }
1553 
1554 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1555 DECLARE_PER_CPU(int, sd_llc_size);
1556 DECLARE_PER_CPU(int, sd_llc_id);
1557 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1558 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1559 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1560 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1561 extern struct static_key_false sched_asym_cpucapacity;
1562 
1563 struct sched_group_capacity {
1564 	atomic_t		ref;
1565 	/*
1566 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1567 	 * for a single CPU.
1568 	 */
1569 	unsigned long		capacity;
1570 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1571 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1572 	unsigned long		next_update;
1573 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1574 
1575 #ifdef CONFIG_SCHED_DEBUG
1576 	int			id;
1577 #endif
1578 
1579 	unsigned long		cpumask[];		/* Balance mask */
1580 };
1581 
1582 struct sched_group {
1583 	struct sched_group	*next;			/* Must be a circular list */
1584 	atomic_t		ref;
1585 
1586 	unsigned int		group_weight;
1587 	struct sched_group_capacity *sgc;
1588 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1589 
1590 	/*
1591 	 * The CPUs this group covers.
1592 	 *
1593 	 * NOTE: this field is variable length. (Allocated dynamically
1594 	 * by attaching extra space to the end of the structure,
1595 	 * depending on how many CPUs the kernel has booted up with)
1596 	 */
1597 	unsigned long		cpumask[];
1598 };
1599 
sched_group_span(struct sched_group * sg)1600 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1601 {
1602 	return to_cpumask(sg->cpumask);
1603 }
1604 
1605 /*
1606  * See build_balance_mask().
1607  */
group_balance_mask(struct sched_group * sg)1608 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1609 {
1610 	return to_cpumask(sg->sgc->cpumask);
1611 }
1612 
1613 /**
1614  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1615  * @group: The group whose first CPU is to be returned.
1616  */
group_first_cpu(struct sched_group * group)1617 static inline unsigned int group_first_cpu(struct sched_group *group)
1618 {
1619 	return cpumask_first(sched_group_span(group));
1620 }
1621 
1622 extern int group_balance_cpu(struct sched_group *sg);
1623 
1624 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1625 void register_sched_domain_sysctl(void);
1626 void dirty_sched_domain_sysctl(int cpu);
1627 void unregister_sched_domain_sysctl(void);
1628 #else
register_sched_domain_sysctl(void)1629 static inline void register_sched_domain_sysctl(void)
1630 {
1631 }
dirty_sched_domain_sysctl(int cpu)1632 static inline void dirty_sched_domain_sysctl(int cpu)
1633 {
1634 }
unregister_sched_domain_sysctl(void)1635 static inline void unregister_sched_domain_sysctl(void)
1636 {
1637 }
1638 #endif
1639 
1640 extern void flush_smp_call_function_from_idle(void);
1641 
1642 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1643 static inline void flush_smp_call_function_from_idle(void) { }
1644 #endif
1645 
1646 #include "stats.h"
1647 #include "autogroup.h"
1648 
1649 #ifdef CONFIG_CGROUP_SCHED
1650 
1651 /*
1652  * Return the group to which this tasks belongs.
1653  *
1654  * We cannot use task_css() and friends because the cgroup subsystem
1655  * changes that value before the cgroup_subsys::attach() method is called,
1656  * therefore we cannot pin it and might observe the wrong value.
1657  *
1658  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1659  * core changes this before calling sched_move_task().
1660  *
1661  * Instead we use a 'copy' which is updated from sched_move_task() while
1662  * holding both task_struct::pi_lock and rq::lock.
1663  */
task_group(struct task_struct * p)1664 static inline struct task_group *task_group(struct task_struct *p)
1665 {
1666 	return p->sched_task_group;
1667 }
1668 
1669 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1670 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1671 {
1672 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1673 	struct task_group *tg = task_group(p);
1674 #endif
1675 
1676 #ifdef CONFIG_FAIR_GROUP_SCHED
1677 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1678 	p->se.cfs_rq = tg->cfs_rq[cpu];
1679 	p->se.parent = tg->se[cpu];
1680 #endif
1681 
1682 #ifdef CONFIG_RT_GROUP_SCHED
1683 	p->rt.rt_rq  = tg->rt_rq[cpu];
1684 	p->rt.parent = tg->rt_se[cpu];
1685 #endif
1686 }
1687 
1688 #else /* CONFIG_CGROUP_SCHED */
1689 
set_task_rq(struct task_struct * p,unsigned int cpu)1690 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1691 static inline struct task_group *task_group(struct task_struct *p)
1692 {
1693 	return NULL;
1694 }
1695 
1696 #endif /* CONFIG_CGROUP_SCHED */
1697 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1698 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1699 {
1700 	set_task_rq(p, cpu);
1701 #ifdef CONFIG_SMP
1702 	/*
1703 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1704 	 * successfully executed on another CPU. We must ensure that updates of
1705 	 * per-task data have been completed by this moment.
1706 	 */
1707 	smp_wmb();
1708 #ifdef CONFIG_THREAD_INFO_IN_TASK
1709 	WRITE_ONCE(p->cpu, cpu);
1710 #else
1711 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1712 #endif
1713 	p->wake_cpu = cpu;
1714 #endif
1715 }
1716 
1717 /*
1718  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1719  */
1720 #ifdef CONFIG_SCHED_DEBUG
1721 # include <linux/static_key.h>
1722 # define const_debug __read_mostly
1723 #else
1724 # define const_debug const
1725 #endif
1726 
1727 #define SCHED_FEAT(name, enabled)	\
1728 	__SCHED_FEAT_##name ,
1729 
1730 enum {
1731 #include "features.h"
1732 	__SCHED_FEAT_NR,
1733 };
1734 
1735 #undef SCHED_FEAT
1736 
1737 #ifdef CONFIG_SCHED_DEBUG
1738 
1739 /*
1740  * To support run-time toggling of sched features, all the translation units
1741  * (but core.c) reference the sysctl_sched_features defined in core.c.
1742  */
1743 extern const_debug unsigned int sysctl_sched_features;
1744 
1745 #ifdef CONFIG_JUMP_LABEL
1746 #define SCHED_FEAT(name, enabled)					\
1747 static __always_inline bool static_branch_##name(struct static_key *key) \
1748 {									\
1749 	return static_key_##enabled(key);				\
1750 }
1751 
1752 #include "features.h"
1753 #undef SCHED_FEAT
1754 
1755 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1756 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1757 
1758 #else /* !CONFIG_JUMP_LABEL */
1759 
1760 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1761 
1762 #endif /* CONFIG_JUMP_LABEL */
1763 
1764 #else /* !SCHED_DEBUG */
1765 
1766 /*
1767  * Each translation unit has its own copy of sysctl_sched_features to allow
1768  * constants propagation at compile time and compiler optimization based on
1769  * features default.
1770  */
1771 #define SCHED_FEAT(name, enabled)	\
1772 	(1UL << __SCHED_FEAT_##name) * enabled |
1773 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1774 #include "features.h"
1775 	0;
1776 #undef SCHED_FEAT
1777 
1778 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1779 
1780 #endif /* SCHED_DEBUG */
1781 
1782 extern struct static_key_false sched_numa_balancing;
1783 extern struct static_key_false sched_schedstats;
1784 
global_rt_period(void)1785 static inline u64 global_rt_period(void)
1786 {
1787 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1788 }
1789 
global_rt_runtime(void)1790 static inline u64 global_rt_runtime(void)
1791 {
1792 	if (sysctl_sched_rt_runtime < 0)
1793 		return RUNTIME_INF;
1794 
1795 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1796 }
1797 
task_current(struct rq * rq,struct task_struct * p)1798 static inline int task_current(struct rq *rq, struct task_struct *p)
1799 {
1800 	return rq->curr == p;
1801 }
1802 
task_running(struct rq * rq,struct task_struct * p)1803 static inline int task_running(struct rq *rq, struct task_struct *p)
1804 {
1805 #ifdef CONFIG_SMP
1806 	return p->on_cpu;
1807 #else
1808 	return task_current(rq, p);
1809 #endif
1810 }
1811 
task_on_rq_queued(struct task_struct * p)1812 static inline int task_on_rq_queued(struct task_struct *p)
1813 {
1814 	return p->on_rq == TASK_ON_RQ_QUEUED;
1815 }
1816 
task_on_rq_migrating(struct task_struct * p)1817 static inline int task_on_rq_migrating(struct task_struct *p)
1818 {
1819 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1820 }
1821 
1822 /*
1823  * wake flags
1824  */
1825 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1826 #define WF_FORK			0x02		/* Child wakeup after fork */
1827 #define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1828 #define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1829 
1830 /*
1831  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1832  * of tasks with abnormal "nice" values across CPUs the contribution that
1833  * each task makes to its run queue's load is weighted according to its
1834  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1835  * scaled version of the new time slice allocation that they receive on time
1836  * slice expiry etc.
1837  */
1838 
1839 #define WEIGHT_IDLEPRIO		3
1840 #define WMULT_IDLEPRIO		1431655765
1841 
1842 extern const int		sched_prio_to_weight[40];
1843 extern const u32		sched_prio_to_wmult[40];
1844 
1845 /*
1846  * {de,en}queue flags:
1847  *
1848  * DEQUEUE_SLEEP  - task is no longer runnable
1849  * ENQUEUE_WAKEUP - task just became runnable
1850  *
1851  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1852  *                are in a known state which allows modification. Such pairs
1853  *                should preserve as much state as possible.
1854  *
1855  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1856  *        in the runqueue.
1857  *
1858  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1859  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1860  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1861  *
1862  */
1863 
1864 #define DEQUEUE_SLEEP		0x01
1865 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1866 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1867 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1868 
1869 #define ENQUEUE_WAKEUP		0x01
1870 #define ENQUEUE_RESTORE		0x02
1871 #define ENQUEUE_MOVE		0x04
1872 #define ENQUEUE_NOCLOCK		0x08
1873 
1874 #define ENQUEUE_HEAD		0x10
1875 #define ENQUEUE_REPLENISH	0x20
1876 #ifdef CONFIG_SMP
1877 #define ENQUEUE_MIGRATED	0x40
1878 #else
1879 #define ENQUEUE_MIGRATED	0x00
1880 #endif
1881 
1882 #define RETRY_TASK		((void *)-1UL)
1883 
1884 struct sched_class {
1885 
1886 #ifdef CONFIG_UCLAMP_TASK
1887 	int uclamp_enabled;
1888 #endif
1889 
1890 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1891 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1892 	void (*yield_task)   (struct rq *rq);
1893 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1894 
1895 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1896 
1897 	struct task_struct *(*pick_next_task)(struct rq *rq);
1898 
1899 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1900 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1901 
1902 #ifdef CONFIG_SMP
1903 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1904 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1905 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1906 
1907 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1908 
1909 	void (*set_cpus_allowed)(struct task_struct *p,
1910 				 const struct cpumask *newmask);
1911 
1912 	void (*rq_online)(struct rq *rq);
1913 	void (*rq_offline)(struct rq *rq);
1914 #endif
1915 
1916 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1917 	void (*task_fork)(struct task_struct *p);
1918 	void (*task_dead)(struct task_struct *p);
1919 
1920 	/*
1921 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1922 	 * cannot assume the switched_from/switched_to pair is serliazed by
1923 	 * rq->lock. They are however serialized by p->pi_lock.
1924 	 */
1925 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1926 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1927 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1928 			      int oldprio);
1929 
1930 	unsigned int (*get_rr_interval)(struct rq *rq,
1931 					struct task_struct *task);
1932 
1933 	void (*update_curr)(struct rq *rq);
1934 
1935 #define TASK_SET_GROUP		0
1936 #define TASK_MOVE_GROUP		1
1937 
1938 #ifdef CONFIG_FAIR_GROUP_SCHED
1939 	void (*task_change_group)(struct task_struct *p, int type);
1940 #endif
1941 #ifdef CONFIG_SCHED_WALT
1942 	void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
1943 					u16 updated_demand_scaled);
1944 #endif
1945 #ifdef CONFIG_SCHED_EAS
1946 	void  (*check_for_migration)(struct rq *rq, struct task_struct *p);
1947 #endif
1948 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1949 
put_prev_task(struct rq * rq,struct task_struct * prev)1950 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1951 {
1952 	WARN_ON_ONCE(rq->curr != prev);
1953 	prev->sched_class->put_prev_task(rq, prev);
1954 }
1955 
set_next_task(struct rq * rq,struct task_struct * next)1956 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1957 {
1958 	WARN_ON_ONCE(rq->curr != next);
1959 	next->sched_class->set_next_task(rq, next, false);
1960 }
1961 
1962 /* Defined in include/asm-generic/vmlinux.lds.h */
1963 extern struct sched_class __begin_sched_classes[];
1964 extern struct sched_class __end_sched_classes[];
1965 
1966 #define sched_class_highest (__end_sched_classes - 1)
1967 #define sched_class_lowest  (__begin_sched_classes - 1)
1968 
1969 #define for_class_range(class, _from, _to) \
1970 	for (class = (_from); class != (_to); class--)
1971 
1972 #define for_each_class(class) \
1973 	for_class_range(class, sched_class_highest, sched_class_lowest)
1974 
1975 extern const struct sched_class stop_sched_class;
1976 extern const struct sched_class dl_sched_class;
1977 extern const struct sched_class rt_sched_class;
1978 extern const struct sched_class fair_sched_class;
1979 extern const struct sched_class idle_sched_class;
1980 
sched_stop_runnable(struct rq * rq)1981 static inline bool sched_stop_runnable(struct rq *rq)
1982 {
1983 	return rq->stop && task_on_rq_queued(rq->stop);
1984 }
1985 
sched_dl_runnable(struct rq * rq)1986 static inline bool sched_dl_runnable(struct rq *rq)
1987 {
1988 	return rq->dl.dl_nr_running > 0;
1989 }
1990 
sched_rt_runnable(struct rq * rq)1991 static inline bool sched_rt_runnable(struct rq *rq)
1992 {
1993 	return rq->rt.rt_queued > 0;
1994 }
1995 
sched_fair_runnable(struct rq * rq)1996 static inline bool sched_fair_runnable(struct rq *rq)
1997 {
1998 	return rq->cfs.nr_running > 0;
1999 }
2000 
2001 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2002 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2003 
2004 #ifdef CONFIG_SMP
2005 
2006 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2007 
2008 extern void trigger_load_balance(struct rq *rq);
2009 
2010 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
2011 
2012 #endif
2013 
2014 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2015 static inline void idle_set_state(struct rq *rq,
2016 				  struct cpuidle_state *idle_state)
2017 {
2018 	rq->idle_state = idle_state;
2019 }
2020 
idle_get_state(struct rq * rq)2021 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2022 {
2023 	SCHED_WARN_ON(!rcu_read_lock_held());
2024 
2025 	return rq->idle_state;
2026 }
2027 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2028 static inline void idle_set_state(struct rq *rq,
2029 				  struct cpuidle_state *idle_state)
2030 {
2031 }
2032 
idle_get_state(struct rq * rq)2033 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2034 {
2035 	return NULL;
2036 }
2037 #endif
2038 
2039 extern void schedule_idle(void);
2040 
2041 extern void sysrq_sched_debug_show(void);
2042 extern void sched_init_granularity(void);
2043 extern void update_max_interval(void);
2044 
2045 extern void init_sched_dl_class(void);
2046 extern void init_sched_rt_class(void);
2047 extern void init_sched_fair_class(void);
2048 
2049 extern void reweight_task(struct task_struct *p, int prio);
2050 
2051 extern void resched_curr(struct rq *rq);
2052 extern void resched_cpu(int cpu);
2053 
2054 extern struct rt_bandwidth def_rt_bandwidth;
2055 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2056 
2057 extern struct dl_bandwidth def_dl_bandwidth;
2058 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2059 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2060 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2061 
2062 #define BW_SHIFT		20
2063 #define BW_UNIT			(1 << BW_SHIFT)
2064 #define RATIO_SHIFT		8
2065 #define MAX_BW_BITS		(64 - BW_SHIFT)
2066 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2067 unsigned long to_ratio(u64 period, u64 runtime);
2068 
2069 extern void init_entity_runnable_average(struct sched_entity *se);
2070 extern void post_init_entity_util_avg(struct task_struct *p);
2071 
2072 #ifdef CONFIG_NO_HZ_FULL
2073 extern bool sched_can_stop_tick(struct rq *rq);
2074 extern int __init sched_tick_offload_init(void);
2075 
2076 /*
2077  * Tick may be needed by tasks in the runqueue depending on their policy and
2078  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2079  * nohz mode if necessary.
2080  */
sched_update_tick_dependency(struct rq * rq)2081 static inline void sched_update_tick_dependency(struct rq *rq)
2082 {
2083 	int cpu = cpu_of(rq);
2084 
2085 	if (!tick_nohz_full_cpu(cpu))
2086 		return;
2087 
2088 	if (sched_can_stop_tick(rq))
2089 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2090 	else
2091 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2092 }
2093 #else
sched_tick_offload_init(void)2094 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2095 static inline void sched_update_tick_dependency(struct rq *rq) { }
2096 #endif
2097 
add_nr_running(struct rq * rq,unsigned count)2098 static inline void add_nr_running(struct rq *rq, unsigned count)
2099 {
2100 	unsigned prev_nr = rq->nr_running;
2101 
2102 	rq->nr_running = prev_nr + count;
2103 	if (trace_sched_update_nr_running_tp_enabled()) {
2104 		call_trace_sched_update_nr_running(rq, count);
2105 	}
2106 
2107 #ifdef CONFIG_SMP
2108 	if (prev_nr < 2 && rq->nr_running >= 2) {
2109 		if (!READ_ONCE(rq->rd->overload))
2110 			WRITE_ONCE(rq->rd->overload, 1);
2111 	}
2112 #endif
2113 
2114 	sched_update_tick_dependency(rq);
2115 }
2116 
sub_nr_running(struct rq * rq,unsigned count)2117 static inline void sub_nr_running(struct rq *rq, unsigned count)
2118 {
2119 	rq->nr_running -= count;
2120 	if (trace_sched_update_nr_running_tp_enabled()) {
2121 		call_trace_sched_update_nr_running(rq, -count);
2122 	}
2123 
2124 	/* Check if we still need preemption */
2125 	sched_update_tick_dependency(rq);
2126 }
2127 
2128 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2129 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2130 
2131 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2132 
2133 extern const_debug unsigned int sysctl_sched_nr_migrate;
2134 extern const_debug unsigned int sysctl_sched_migration_cost;
2135 
2136 #ifdef CONFIG_SCHED_HRTICK
2137 
2138 /*
2139  * Use hrtick when:
2140  *  - enabled by features
2141  *  - hrtimer is actually high res
2142  */
hrtick_enabled(struct rq * rq)2143 static inline int hrtick_enabled(struct rq *rq)
2144 {
2145 	if (!sched_feat(HRTICK))
2146 		return 0;
2147 	if (!cpu_active(cpu_of(rq)))
2148 		return 0;
2149 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2150 }
2151 
2152 void hrtick_start(struct rq *rq, u64 delay);
2153 
2154 #else
2155 
hrtick_enabled(struct rq * rq)2156 static inline int hrtick_enabled(struct rq *rq)
2157 {
2158 	return 0;
2159 }
2160 
2161 #endif /* CONFIG_SCHED_HRTICK */
2162 
2163 #ifdef CONFIG_SCHED_WALT
2164 u64 sched_ktime_clock(void);
2165 #else
sched_ktime_clock(void)2166 static inline u64 sched_ktime_clock(void)
2167 {
2168 	return sched_clock();
2169 }
2170 #endif
2171 
2172 #ifndef arch_scale_freq_tick
2173 static __always_inline
arch_scale_freq_tick(void)2174 void arch_scale_freq_tick(void)
2175 {
2176 }
2177 #endif
2178 
2179 #ifndef arch_scale_freq_capacity
2180 /**
2181  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2182  * @cpu: the CPU in question.
2183  *
2184  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2185  *
2186  *     f_curr
2187  *     ------ * SCHED_CAPACITY_SCALE
2188  *     f_max
2189  */
2190 static __always_inline
arch_scale_freq_capacity(int cpu)2191 unsigned long arch_scale_freq_capacity(int cpu)
2192 {
2193 	return SCHED_CAPACITY_SCALE;
2194 }
2195 #endif
2196 
2197 unsigned long capacity_curr_of(int cpu);
2198 unsigned long cpu_util(int cpu);
2199 
2200 #ifdef CONFIG_SMP
2201 #ifdef CONFIG_SCHED_WALT
2202 extern unsigned int sysctl_sched_use_walt_cpu_util;
2203 extern unsigned int walt_disabled;
2204 #endif
2205 #ifdef CONFIG_PREEMPTION
2206 
2207 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2208 
2209 /*
2210  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2211  * way at the expense of forcing extra atomic operations in all
2212  * invocations.  This assures that the double_lock is acquired using the
2213  * same underlying policy as the spinlock_t on this architecture, which
2214  * reduces latency compared to the unfair variant below.  However, it
2215  * also adds more overhead and therefore may reduce throughput.
2216  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2217 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2218 	__releases(this_rq->lock)
2219 	__acquires(busiest->lock)
2220 	__acquires(this_rq->lock)
2221 {
2222 	raw_spin_unlock(&this_rq->lock);
2223 	double_rq_lock(this_rq, busiest);
2224 
2225 	return 1;
2226 }
2227 
2228 #else
2229 /*
2230  * Unfair double_lock_balance: Optimizes throughput at the expense of
2231  * latency by eliminating extra atomic operations when the locks are
2232  * already in proper order on entry.  This favors lower CPU-ids and will
2233  * grant the double lock to lower CPUs over higher ids under contention,
2234  * regardless of entry order into the function.
2235  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2236 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2237 	__releases(this_rq->lock)
2238 	__acquires(busiest->lock)
2239 	__acquires(this_rq->lock)
2240 {
2241 	int ret = 0;
2242 
2243 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2244 		if (busiest < this_rq) {
2245 			raw_spin_unlock(&this_rq->lock);
2246 			raw_spin_lock(&busiest->lock);
2247 			raw_spin_lock_nested(&this_rq->lock,
2248 					      SINGLE_DEPTH_NESTING);
2249 			ret = 1;
2250 		} else
2251 			raw_spin_lock_nested(&busiest->lock,
2252 					      SINGLE_DEPTH_NESTING);
2253 	}
2254 	return ret;
2255 }
2256 
2257 #endif /* CONFIG_PREEMPTION */
2258 
2259 /*
2260  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2261  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2262 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2263 {
2264 	if (unlikely(!irqs_disabled())) {
2265 		/* printk() doesn't work well under rq->lock */
2266 		raw_spin_unlock(&this_rq->lock);
2267 		BUG_ON(1);
2268 	}
2269 
2270 	return _double_lock_balance(this_rq, busiest);
2271 }
2272 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2273 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2274 	__releases(busiest->lock)
2275 {
2276 	raw_spin_unlock(&busiest->lock);
2277 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2278 }
2279 
double_lock(spinlock_t * l1,spinlock_t * l2)2280 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2281 {
2282 	if (l1 > l2)
2283 		swap(l1, l2);
2284 
2285 	spin_lock(l1);
2286 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2287 }
2288 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2289 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2290 {
2291 	if (l1 > l2)
2292 		swap(l1, l2);
2293 
2294 	spin_lock_irq(l1);
2295 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2296 }
2297 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2298 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2299 {
2300 	if (l1 > l2)
2301 		swap(l1, l2);
2302 
2303 	raw_spin_lock(l1);
2304 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2305 }
2306 
2307 /*
2308  * double_rq_lock - safely lock two runqueues
2309  *
2310  * Note this does not disable interrupts like task_rq_lock,
2311  * you need to do so manually before calling.
2312  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2313 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2314 	__acquires(rq1->lock)
2315 	__acquires(rq2->lock)
2316 {
2317 	BUG_ON(!irqs_disabled());
2318 	if (rq1 == rq2) {
2319 		raw_spin_lock(&rq1->lock);
2320 		__acquire(rq2->lock);	/* Fake it out ;) */
2321 	} else {
2322 		if (rq1 < rq2) {
2323 			raw_spin_lock(&rq1->lock);
2324 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2325 		} else {
2326 			raw_spin_lock(&rq2->lock);
2327 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2328 		}
2329 	}
2330 }
2331 
2332 /*
2333  * double_rq_unlock - safely unlock two runqueues
2334  *
2335  * Note this does not restore interrupts like task_rq_unlock,
2336  * you need to do so manually after calling.
2337  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2338 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2339 	__releases(rq1->lock)
2340 	__releases(rq2->lock)
2341 {
2342 	raw_spin_unlock(&rq1->lock);
2343 	if (rq1 != rq2)
2344 		raw_spin_unlock(&rq2->lock);
2345 	else
2346 		__release(rq2->lock);
2347 }
2348 
2349 extern void set_rq_online (struct rq *rq);
2350 extern void set_rq_offline(struct rq *rq);
2351 extern bool sched_smp_initialized;
2352 
2353 #else /* CONFIG_SMP */
2354 
2355 /*
2356  * double_rq_lock - safely lock two runqueues
2357  *
2358  * Note this does not disable interrupts like task_rq_lock,
2359  * you need to do so manually before calling.
2360  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2361 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2362 	__acquires(rq1->lock)
2363 	__acquires(rq2->lock)
2364 {
2365 	BUG_ON(!irqs_disabled());
2366 	BUG_ON(rq1 != rq2);
2367 	raw_spin_lock(&rq1->lock);
2368 	__acquire(rq2->lock);	/* Fake it out ;) */
2369 }
2370 
2371 /*
2372  * double_rq_unlock - safely unlock two runqueues
2373  *
2374  * Note this does not restore interrupts like task_rq_unlock,
2375  * you need to do so manually after calling.
2376  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2377 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2378 	__releases(rq1->lock)
2379 	__releases(rq2->lock)
2380 {
2381 	BUG_ON(rq1 != rq2);
2382 	raw_spin_unlock(&rq1->lock);
2383 	__release(rq2->lock);
2384 }
2385 
2386 #endif
2387 
2388 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2389 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2390 
2391 #ifdef	CONFIG_SCHED_DEBUG
2392 extern bool sched_debug_enabled;
2393 
2394 extern void print_cfs_stats(struct seq_file *m, int cpu);
2395 extern void print_rt_stats(struct seq_file *m, int cpu);
2396 extern void print_dl_stats(struct seq_file *m, int cpu);
2397 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2398 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2399 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2400 #ifdef CONFIG_NUMA_BALANCING
2401 extern void
2402 show_numa_stats(struct task_struct *p, struct seq_file *m);
2403 extern void
2404 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2405 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2406 #endif /* CONFIG_NUMA_BALANCING */
2407 #endif /* CONFIG_SCHED_DEBUG */
2408 
2409 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2410 extern void init_rt_rq(struct rt_rq *rt_rq);
2411 extern void init_dl_rq(struct dl_rq *dl_rq);
2412 
2413 extern void cfs_bandwidth_usage_inc(void);
2414 extern void cfs_bandwidth_usage_dec(void);
2415 
2416 #ifdef CONFIG_NO_HZ_COMMON
2417 #define NOHZ_BALANCE_KICK_BIT	0
2418 #define NOHZ_STATS_KICK_BIT	1
2419 
2420 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2421 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2422 
2423 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2424 
2425 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2426 
2427 extern void nohz_balance_exit_idle(struct rq *rq);
2428 #else
nohz_balance_exit_idle(struct rq * rq)2429 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2430 #endif
2431 
2432 
2433 #ifdef CONFIG_SMP
2434 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2435 void __dl_update(struct dl_bw *dl_b, s64 bw)
2436 {
2437 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2438 	int i;
2439 
2440 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2441 			 "sched RCU must be held");
2442 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2443 		struct rq *rq = cpu_rq(i);
2444 
2445 		rq->dl.extra_bw += bw;
2446 	}
2447 }
2448 #else
2449 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2450 void __dl_update(struct dl_bw *dl_b, s64 bw)
2451 {
2452 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2453 
2454 	dl->extra_bw += bw;
2455 }
2456 #endif
2457 
2458 
2459 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2460 struct irqtime {
2461 	u64			total;
2462 	u64			tick_delta;
2463 	u64			irq_start_time;
2464 	struct u64_stats_sync	sync;
2465 };
2466 
2467 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2468 
2469 /*
2470  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2471  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2472  * and never move forward.
2473  */
irq_time_read(int cpu)2474 static inline u64 irq_time_read(int cpu)
2475 {
2476 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2477 	unsigned int seq;
2478 	u64 total;
2479 
2480 	do {
2481 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2482 		total = irqtime->total;
2483 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2484 
2485 	return total;
2486 }
2487 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2488 
2489 #ifdef CONFIG_CPU_FREQ
2490 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2491 
2492 /**
2493  * cpufreq_update_util - Take a note about CPU utilization changes.
2494  * @rq: Runqueue to carry out the update for.
2495  * @flags: Update reason flags.
2496  *
2497  * This function is called by the scheduler on the CPU whose utilization is
2498  * being updated.
2499  *
2500  * It can only be called from RCU-sched read-side critical sections.
2501  *
2502  * The way cpufreq is currently arranged requires it to evaluate the CPU
2503  * performance state (frequency/voltage) on a regular basis to prevent it from
2504  * being stuck in a completely inadequate performance level for too long.
2505  * That is not guaranteed to happen if the updates are only triggered from CFS
2506  * and DL, though, because they may not be coming in if only RT tasks are
2507  * active all the time (or there are RT tasks only).
2508  *
2509  * As a workaround for that issue, this function is called periodically by the
2510  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2511  * but that really is a band-aid.  Going forward it should be replaced with
2512  * solutions targeted more specifically at RT tasks.
2513  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2514 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2515 {
2516 	struct update_util_data *data;
2517 	u64 clock;
2518 
2519 #ifdef CONFIG_SCHED_WALT
2520 	if (!(flags & SCHED_CPUFREQ_WALT))
2521 		return;
2522 
2523 	clock = sched_ktime_clock();
2524 #else
2525 	clock = rq_clock(rq);
2526 #endif
2527 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2528 						  cpu_of(rq)));
2529 	if (data)
2530 		data->func(data, clock, flags);
2531 }
2532 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2533 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2534 #endif /* CONFIG_CPU_FREQ */
2535 
2536 #ifdef CONFIG_UCLAMP_TASK
2537 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2538 
2539 /**
2540  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2541  * @rq:		The rq to clamp against. Must not be NULL.
2542  * @util:	The util value to clamp.
2543  * @p:		The task to clamp against. Can be NULL if you want to clamp
2544  *		against @rq only.
2545  *
2546  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2547  *
2548  * If sched_uclamp_used static key is disabled, then just return the util
2549  * without any clamping since uclamp aggregation at the rq level in the fast
2550  * path is disabled, rendering this operation a NOP.
2551  *
2552  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2553  * will return the correct effective uclamp value of the task even if the
2554  * static key is disabled.
2555  */
2556 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2557 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2558 				  struct task_struct *p)
2559 {
2560 	unsigned long min_util = 0;
2561 	unsigned long max_util = 0;
2562 
2563 	if (!static_branch_likely(&sched_uclamp_used))
2564 		return util;
2565 
2566 	if (p) {
2567 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2568 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2569 
2570 		/*
2571 		 * Ignore last runnable task's max clamp, as this task will
2572 		 * reset it. Similarly, no need to read the rq's min clamp.
2573 		 */
2574 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2575 			goto out;
2576 	}
2577 
2578 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2579 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2580 out:
2581 	/*
2582 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2583 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2584 	 * inversion. Fix it now when the clamps are applied.
2585 	 */
2586 	if (unlikely(min_util >= max_util))
2587 		return min_util;
2588 
2589 	return clamp(util, min_util, max_util);
2590 }
2591 
uclamp_boosted(struct task_struct * p)2592 static inline bool uclamp_boosted(struct task_struct *p)
2593 {
2594 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2595 }
2596 
2597 /*
2598  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2599  * by default in the fast path and only gets turned on once userspace performs
2600  * an operation that requires it.
2601  *
2602  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2603  * hence is active.
2604  */
uclamp_is_used(void)2605 static inline bool uclamp_is_used(void)
2606 {
2607 	return static_branch_likely(&sched_uclamp_used);
2608 }
2609 #else /* CONFIG_UCLAMP_TASK */
2610 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2611 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2612 				  struct task_struct *p)
2613 {
2614 	return util;
2615 }
2616 
uclamp_boosted(struct task_struct * p)2617 static inline bool uclamp_boosted(struct task_struct *p)
2618 {
2619 	return false;
2620 }
2621 
uclamp_is_used(void)2622 static inline bool uclamp_is_used(void)
2623 {
2624 	return false;
2625 }
2626 #endif /* CONFIG_UCLAMP_TASK */
2627 
2628 #ifdef arch_scale_freq_capacity
2629 # ifndef arch_scale_freq_invariant
2630 #  define arch_scale_freq_invariant()	true
2631 # endif
2632 #else
2633 # define arch_scale_freq_invariant()	false
2634 #endif
2635 
2636 #ifdef CONFIG_SMP
capacity_of(int cpu)2637 static inline unsigned long capacity_of(int cpu)
2638 {
2639 	return cpu_rq(cpu)->cpu_capacity;
2640 }
2641 
capacity_orig_of(int cpu)2642 static inline unsigned long capacity_orig_of(int cpu)
2643 {
2644 	return cpu_rq(cpu)->cpu_capacity_orig;
2645 }
2646 #endif
2647 
2648 /**
2649  * enum schedutil_type - CPU utilization type
2650  * @FREQUENCY_UTIL:	Utilization used to select frequency
2651  * @ENERGY_UTIL:	Utilization used during energy calculation
2652  *
2653  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2654  * need to be aggregated differently depending on the usage made of them. This
2655  * enum is used within schedutil_freq_util() to differentiate the types of
2656  * utilization expected by the callers, and adjust the aggregation accordingly.
2657  */
2658 enum schedutil_type {
2659 	FREQUENCY_UTIL,
2660 	ENERGY_UTIL,
2661 };
2662 
2663 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2664 
2665 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2666 				 unsigned long max, enum schedutil_type type,
2667 				 struct task_struct *p);
2668 
cpu_bw_dl(struct rq * rq)2669 static inline unsigned long cpu_bw_dl(struct rq *rq)
2670 {
2671 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2672 }
2673 
cpu_util_dl(struct rq * rq)2674 static inline unsigned long cpu_util_dl(struct rq *rq)
2675 {
2676 	return READ_ONCE(rq->avg_dl.util_avg);
2677 }
2678 
cpu_util_cfs(struct rq * rq)2679 static inline unsigned long cpu_util_cfs(struct rq *rq)
2680 {
2681 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2682 
2683 	if (sched_feat(UTIL_EST)) {
2684 		util = max_t(unsigned long, util,
2685 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2686 	}
2687 
2688 	return util;
2689 }
2690 
cpu_util_rt(struct rq * rq)2691 static inline unsigned long cpu_util_rt(struct rq *rq)
2692 {
2693 	return READ_ONCE(rq->avg_rt.util_avg);
2694 }
2695 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2696 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2697 				 unsigned long max, enum schedutil_type type,
2698 				 struct task_struct *p)
2699 {
2700 	return 0;
2701 }
2702 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2703 
2704 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2705 static inline unsigned long cpu_util_irq(struct rq *rq)
2706 {
2707 	return rq->avg_irq.util_avg;
2708 }
2709 
2710 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2711 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2712 {
2713 	util *= (max - irq);
2714 	util /= max;
2715 
2716 	return util;
2717 
2718 }
2719 #else
cpu_util_irq(struct rq * rq)2720 static inline unsigned long cpu_util_irq(struct rq *rq)
2721 {
2722 	return 0;
2723 }
2724 
2725 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2726 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2727 {
2728 	return util;
2729 }
2730 #endif
2731 
2732 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2733 
2734 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2735 
2736 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2737 
sched_energy_enabled(void)2738 static inline bool sched_energy_enabled(void)
2739 {
2740 	return static_branch_unlikely(&sched_energy_present);
2741 }
2742 
2743 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2744 
2745 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2746 static inline bool sched_energy_enabled(void) { return false; }
2747 
2748 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2749 
2750 #ifdef CONFIG_MEMBARRIER
2751 /*
2752  * The scheduler provides memory barriers required by membarrier between:
2753  * - prior user-space memory accesses and store to rq->membarrier_state,
2754  * - store to rq->membarrier_state and following user-space memory accesses.
2755  * In the same way it provides those guarantees around store to rq->curr.
2756  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2757 static inline void membarrier_switch_mm(struct rq *rq,
2758 					struct mm_struct *prev_mm,
2759 					struct mm_struct *next_mm)
2760 {
2761 	int membarrier_state;
2762 
2763 	if (prev_mm == next_mm)
2764 		return;
2765 
2766 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2767 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2768 		return;
2769 
2770 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2771 }
2772 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2773 static inline void membarrier_switch_mm(struct rq *rq,
2774 					struct mm_struct *prev_mm,
2775 					struct mm_struct *next_mm)
2776 {
2777 }
2778 #endif
2779 
2780 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2781 static inline bool is_per_cpu_kthread(struct task_struct *p)
2782 {
2783 	if (!(p->flags & PF_KTHREAD))
2784 		return false;
2785 
2786 	if (p->nr_cpus_allowed != 1)
2787 		return false;
2788 
2789 	return true;
2790 }
2791 #endif
2792 
2793 void swake_up_all_locked(struct swait_queue_head *q);
2794 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2795 
2796 #ifdef CONFIG_SCHED_RTG
2797 extern bool task_fits_max(struct task_struct *p, int cpu);
2798 extern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
2799 extern int update_preferred_cluster(struct related_thread_group *grp,
2800 			struct task_struct *p, u32 old_load, bool from_tick);
2801 extern struct cpumask *find_rtg_target(struct task_struct *p);
2802 #endif
2803 
2804 #ifdef CONFIG_SCHED_WALT
cluster_first_cpu(struct sched_cluster * cluster)2805 static inline int cluster_first_cpu(struct sched_cluster *cluster)
2806 {
2807 	return cpumask_first(&cluster->cpus);
2808 }
2809 
2810 extern struct list_head cluster_head;
2811 extern struct sched_cluster *sched_cluster[NR_CPUS];
2812 
2813 #define for_each_sched_cluster(cluster) \
2814 	list_for_each_entry_rcu(cluster, &cluster_head, list)
2815 
2816 extern struct mutex policy_mutex;
2817 extern unsigned int sched_disable_window_stats;
2818 extern unsigned int max_possible_freq;
2819 extern unsigned int min_max_freq;
2820 extern unsigned int max_possible_efficiency;
2821 extern unsigned int min_possible_efficiency;
2822 extern unsigned int max_capacity;
2823 extern unsigned int min_capacity;
2824 extern unsigned int max_load_scale_factor;
2825 extern unsigned int max_possible_capacity;
2826 extern unsigned int min_max_possible_capacity;
2827 extern unsigned int max_power_cost;
2828 extern unsigned int __read_mostly sched_init_task_load_windows;
2829 extern unsigned int sysctl_sched_restrict_cluster_spill;
2830 extern unsigned int sched_pred_alert_load;
2831 extern struct sched_cluster init_cluster;
2832 
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)2833 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
2834 {
2835 	rq->cum_window_demand_scaled += scaled_delta;
2836 	if (unlikely((s64)rq->cum_window_demand_scaled < 0))
2837 		rq->cum_window_demand_scaled = 0;
2838 }
2839 
2840 /* Is frequency of two cpus synchronized with each other? */
same_freq_domain(int src_cpu,int dst_cpu)2841 static inline int same_freq_domain(int src_cpu, int dst_cpu)
2842 {
2843 	struct rq *rq = cpu_rq(src_cpu);
2844 
2845 	if (src_cpu == dst_cpu)
2846 		return 1;
2847 
2848 	return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
2849 }
2850 
2851 extern void reset_task_stats(struct task_struct *p);
2852 
2853 #define CPU_RESERVED	1
is_reserved(int cpu)2854 static inline int is_reserved(int cpu)
2855 {
2856 	struct rq *rq = cpu_rq(cpu);
2857 
2858 	return test_bit(CPU_RESERVED, &rq->walt_flags);
2859 }
2860 
mark_reserved(int cpu)2861 static inline int mark_reserved(int cpu)
2862 {
2863 	struct rq *rq = cpu_rq(cpu);
2864 
2865 	return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
2866 }
2867 
clear_reserved(int cpu)2868 static inline void clear_reserved(int cpu)
2869 {
2870 	struct rq *rq = cpu_rq(cpu);
2871 
2872 	clear_bit(CPU_RESERVED, &rq->walt_flags);
2873 }
2874 
cpu_capacity(int cpu)2875 static inline int cpu_capacity(int cpu)
2876 {
2877 	return cpu_rq(cpu)->cluster->capacity;
2878 }
2879 
cpu_max_possible_capacity(int cpu)2880 static inline int cpu_max_possible_capacity(int cpu)
2881 {
2882 	return cpu_rq(cpu)->cluster->max_possible_capacity;
2883 }
2884 
cpu_load_scale_factor(int cpu)2885 static inline int cpu_load_scale_factor(int cpu)
2886 {
2887 	return cpu_rq(cpu)->cluster->load_scale_factor;
2888 }
2889 
cluster_max_freq(struct sched_cluster * cluster)2890 static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
2891 {
2892 	/*
2893 	 * Governor and thermal driver don't know the other party's mitigation
2894 	 * voting. So struct cluster saves both and return min() for current
2895 	 * cluster fmax.
2896 	 */
2897 	return cluster->max_freq;
2898 }
2899 
2900 /* Keep track of max/min capacity possible across CPUs "currently" */
__update_min_max_capacity(void)2901 static inline void __update_min_max_capacity(void)
2902 {
2903 	int i;
2904 	int max_cap = 0, min_cap = INT_MAX;
2905 
2906 	for_each_possible_cpu(i) {
2907 		if (!cpu_active(i))
2908 			continue;
2909 
2910 		max_cap = max(max_cap, cpu_capacity(i));
2911 		min_cap = min(min_cap, cpu_capacity(i));
2912 	}
2913 
2914 	max_capacity = max_cap;
2915 	min_capacity = min_cap;
2916 }
2917 
2918 /*
2919  * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
2920  * that "most" efficient cpu gets a load_scale_factor of 1
2921  */
2922 static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster * cluster)2923 load_scale_cpu_efficiency(struct sched_cluster *cluster)
2924 {
2925 	return DIV_ROUND_UP(1024 * max_possible_efficiency,
2926 			    cluster->efficiency);
2927 }
2928 
2929 /*
2930  * Return load_scale_factor of a cpu in reference to cpu with best max_freq
2931  * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
2932  * of 1.
2933  */
load_scale_cpu_freq(struct sched_cluster * cluster)2934 static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
2935 {
2936 	return DIV_ROUND_UP(1024 * max_possible_freq,
2937 			   cluster_max_freq(cluster));
2938 }
2939 
compute_load_scale_factor(struct sched_cluster * cluster)2940 static inline int compute_load_scale_factor(struct sched_cluster *cluster)
2941 {
2942 	int load_scale = 1024;
2943 
2944 	/*
2945 	 * load_scale_factor accounts for the fact that task load
2946 	 * is in reference to "best" performing cpu. Task's load will need to be
2947 	 * scaled (up) by a factor to determine suitability to be placed on a
2948 	 * (little) cpu.
2949 	 */
2950 	load_scale *= load_scale_cpu_efficiency(cluster);
2951 	load_scale >>= 10;
2952 
2953 	load_scale *= load_scale_cpu_freq(cluster);
2954 	load_scale >>= 10;
2955 
2956 	return load_scale;
2957 }
2958 
is_max_capacity_cpu(int cpu)2959 static inline bool is_max_capacity_cpu(int cpu)
2960 {
2961 	return cpu_max_possible_capacity(cpu) == max_possible_capacity;
2962 }
2963 
is_min_capacity_cpu(int cpu)2964 static inline bool is_min_capacity_cpu(int cpu)
2965 {
2966 	return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
2967 }
2968 
2969 /*
2970  * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
2971  * least efficient cpu gets capacity of 1024
2972  */
2973 static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster * cluster)2974 capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
2975 {
2976 	return (1024 * cluster->efficiency) / min_possible_efficiency;
2977 }
2978 
2979 /*
2980  * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
2981  * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
2982  */
capacity_scale_cpu_freq(struct sched_cluster * cluster)2983 static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
2984 {
2985 	return (1024 * cluster_max_freq(cluster)) / min_max_freq;
2986 }
2987 
compute_capacity(struct sched_cluster * cluster)2988 static inline int compute_capacity(struct sched_cluster *cluster)
2989 {
2990 	int capacity = 1024;
2991 
2992 	capacity *= capacity_scale_cpu_efficiency(cluster);
2993 	capacity >>= 10;
2994 
2995 	capacity *= capacity_scale_cpu_freq(cluster);
2996 	capacity >>= 10;
2997 
2998 	return capacity;
2999 }
3000 
power_cost(int cpu,u64 demand)3001 static inline unsigned int power_cost(int cpu, u64 demand)
3002 {
3003 	return cpu_max_possible_capacity(cpu);
3004 }
3005 
cpu_util_freq_walt(int cpu)3006 static inline unsigned long cpu_util_freq_walt(int cpu)
3007 {
3008 	u64 util;
3009 	struct rq *rq = cpu_rq(cpu);
3010 	unsigned long capacity = capacity_orig_of(cpu);
3011 
3012 	if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util))
3013 		return cpu_util(cpu);
3014 
3015 	util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
3016 	util = div_u64(util, sched_ravg_window);
3017 
3018 	return (util >= capacity) ? capacity : util;
3019 }
3020 
hmp_capable(void)3021 static inline bool hmp_capable(void)
3022 {
3023 	return max_possible_capacity != min_max_possible_capacity;
3024 }
3025 #else /* CONFIG_SCHED_WALT */
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)3026 static inline void walt_fixup_cum_window_demand(struct rq *rq,
3027 						s64 scaled_delta) { }
3028 
same_freq_domain(int src_cpu,int dst_cpu)3029 static inline int same_freq_domain(int src_cpu, int dst_cpu)
3030 {
3031 	return 1;
3032 }
3033 
is_reserved(int cpu)3034 static inline int is_reserved(int cpu)
3035 {
3036 	return 0;
3037 }
3038 
clear_reserved(int cpu)3039 static inline void clear_reserved(int cpu) { }
3040 
hmp_capable(void)3041 static inline bool hmp_capable(void)
3042 {
3043 	return false;
3044 }
3045 #endif /* CONFIG_SCHED_WALT */
3046 
3047 struct sched_avg_stats {
3048 	int nr;
3049 	int nr_misfit;
3050 	int nr_max;
3051 	int nr_scaled;
3052 };
3053 #ifdef CONFIG_SCHED_RUNNING_AVG
3054 extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
3055 #else
sched_get_nr_running_avg(struct sched_avg_stats * stats)3056 static inline void sched_get_nr_running_avg(struct sched_avg_stats *stats) { }
3057 #endif
3058 
3059 #ifdef CONFIG_CPU_ISOLATION_OPT
3060 extern int group_balance_cpu_not_isolated(struct sched_group *sg);
3061 #else
group_balance_cpu_not_isolated(struct sched_group * sg)3062 static inline int group_balance_cpu_not_isolated(struct sched_group *sg)
3063 {
3064 	return group_balance_cpu(sg);
3065 }
3066 #endif /* CONFIG_CPU_ISOLATION_OPT */
3067 
3068 #ifdef CONFIG_HOTPLUG_CPU
3069 extern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
3070 					bool migrate_pinned_tasks);
3071 #endif
3072