1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 static int max_threads; /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)143 int lockdep_tasklist_lock_is_held(void)
144 {
145 return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
nr_processes(void)150 int nr_processes(void)
151 {
152 int cpu;
153 int total = 0;
154
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159 }
160
arch_release_task_struct(struct task_struct * tsk)161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
alloc_task_struct_node(int node)168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
free_task_struct(struct task_struct * tsk)173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
free_vm_stack_cache(unsigned int cpu)195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211 }
212 #endif
213
alloc_thread_stack_node(struct task_struct * tsk,int node)214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 void *stack;
218 int i;
219
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225 if (!s)
226 continue;
227
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
233
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
236 return s->addr;
237 }
238
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
255 if (stack) {
256 tsk->stack_vm_area = find_vm_area(stack);
257 tsk->stack = stack;
258 }
259 return stack;
260 #else
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
263
264 if (likely(page)) {
265 tsk->stack = kasan_reset_tag(page_address(page));
266 return tsk->stack;
267 }
268 return NULL;
269 #endif
270 }
271
free_thread_stack(struct task_struct * tsk)272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
278 int i;
279
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
286 continue;
287
288 return;
289 }
290
291 vfree_atomic(tsk->stack);
292 return;
293 }
294 #endif
295
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300
alloc_thread_stack_node(struct task_struct * tsk,int node)301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 int node)
303 {
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
307 tsk->stack = stack;
308 return stack;
309 }
310
free_thread_stack(struct task_struct * tsk)311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
thread_stack_cache_init(void)316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
vm_area_alloc(struct mm_struct * mm)344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
vm_area_dup(struct vm_area_struct * orig)354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 /*
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
364 */
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
368 dup_vma_anon_name(orig, new);
369 }
370 return new;
371 }
372
vm_area_free(struct vm_area_struct * vma)373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 free_vma_anon_name(vma);
376 kmem_cache_free(vm_area_cachep, vma);
377 }
378
account_kernel_stack(struct task_struct * tsk,int account)379 static void account_kernel_stack(struct task_struct *tsk, int account)
380 {
381 void *stack = task_stack_page(tsk);
382 struct vm_struct *vm = task_stack_vm_area(tsk);
383
384
385 /* All stack pages are in the same node. */
386 if (vm)
387 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
388 account * (THREAD_SIZE / 1024));
389 else
390 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
391 account * (THREAD_SIZE / 1024));
392 }
393
memcg_charge_kernel_stack(struct task_struct * tsk)394 static int memcg_charge_kernel_stack(struct task_struct *tsk)
395 {
396 #ifdef CONFIG_VMAP_STACK
397 struct vm_struct *vm = task_stack_vm_area(tsk);
398 int ret;
399
400 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
401
402 if (vm) {
403 int i;
404
405 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
406
407 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
408 /*
409 * If memcg_kmem_charge_page() fails, page->mem_cgroup
410 * pointer is NULL, and memcg_kmem_uncharge_page() in
411 * free_thread_stack() will ignore this page.
412 */
413 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
414 0);
415 if (ret)
416 return ret;
417 }
418 }
419 #endif
420 return 0;
421 }
422
release_task_stack(struct task_struct * tsk)423 static void release_task_stack(struct task_struct *tsk)
424 {
425 if (WARN_ON(tsk->state != TASK_DEAD))
426 return; /* Better to leak the stack than to free prematurely */
427
428 account_kernel_stack(tsk, -1);
429 free_thread_stack(tsk);
430 tsk->stack = NULL;
431 #ifdef CONFIG_VMAP_STACK
432 tsk->stack_vm_area = NULL;
433 #endif
434 }
435
436 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)437 void put_task_stack(struct task_struct *tsk)
438 {
439 if (refcount_dec_and_test(&tsk->stack_refcount))
440 release_task_stack(tsk);
441 }
442 #endif
443
free_task(struct task_struct * tsk)444 void free_task(struct task_struct *tsk)
445 {
446 scs_release(tsk);
447
448 #ifndef CONFIG_THREAD_INFO_IN_TASK
449 /*
450 * The task is finally done with both the stack and thread_info,
451 * so free both.
452 */
453 release_task_stack(tsk);
454 #else
455 /*
456 * If the task had a separate stack allocation, it should be gone
457 * by now.
458 */
459 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
460 #endif
461 rt_mutex_debug_task_free(tsk);
462 ftrace_graph_exit_task(tsk);
463 arch_release_task_struct(tsk);
464 if (tsk->flags & PF_KTHREAD)
465 free_kthread_struct(tsk);
466 free_task_struct(tsk);
467 }
468 EXPORT_SYMBOL(free_task);
469
470 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)471 static __latent_entropy int dup_mmap(struct mm_struct *mm,
472 struct mm_struct *oldmm)
473 {
474 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
475 struct rb_node **rb_link, *rb_parent;
476 int retval;
477 unsigned long charge;
478 LIST_HEAD(uf);
479
480 uprobe_start_dup_mmap();
481 if (mmap_write_lock_killable(oldmm)) {
482 retval = -EINTR;
483 goto fail_uprobe_end;
484 }
485 flush_cache_dup_mm(oldmm);
486 uprobe_dup_mmap(oldmm, mm);
487 /*
488 * Not linked in yet - no deadlock potential:
489 */
490 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
491
492 /* No ordering required: file already has been exposed. */
493 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
494
495 mm->total_vm = oldmm->total_vm;
496 mm->data_vm = oldmm->data_vm;
497 mm->exec_vm = oldmm->exec_vm;
498 mm->stack_vm = oldmm->stack_vm;
499
500 rb_link = &mm->mm_rb.rb_node;
501 rb_parent = NULL;
502 pprev = &mm->mmap;
503 retval = ksm_fork(mm, oldmm);
504 if (retval)
505 goto out;
506 retval = khugepaged_fork(mm, oldmm);
507 if (retval)
508 goto out;
509
510 prev = NULL;
511 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512 struct file *file;
513
514 if (mpnt->vm_flags & VM_DONTCOPY) {
515 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
516 continue;
517 }
518 charge = 0;
519 /*
520 * Don't duplicate many vmas if we've been oom-killed (for
521 * example)
522 */
523 if (fatal_signal_pending(current)) {
524 retval = -EINTR;
525 goto out;
526 }
527 if (mpnt->vm_flags & VM_ACCOUNT) {
528 unsigned long len = vma_pages(mpnt);
529
530 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
531 goto fail_nomem;
532 charge = len;
533 }
534 tmp = vm_area_dup(mpnt);
535 if (!tmp)
536 goto fail_nomem;
537 retval = vma_dup_policy(mpnt, tmp);
538 if (retval)
539 goto fail_nomem_policy;
540 tmp->vm_mm = mm;
541 retval = dup_userfaultfd(tmp, &uf);
542 if (retval)
543 goto fail_nomem_anon_vma_fork;
544 if (tmp->vm_flags & VM_WIPEONFORK) {
545 /*
546 * VM_WIPEONFORK gets a clean slate in the child.
547 * Don't prepare anon_vma until fault since we don't
548 * copy page for current vma.
549 */
550 tmp->anon_vma = NULL;
551 } else if (anon_vma_fork(tmp, mpnt))
552 goto fail_nomem_anon_vma_fork;
553 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554 file = tmp->vm_file;
555 if (file) {
556 struct inode *inode = file_inode(file);
557 struct address_space *mapping = file->f_mapping;
558
559 get_file(file);
560 if (tmp->vm_flags & VM_DENYWRITE)
561 put_write_access(inode);
562 i_mmap_lock_write(mapping);
563 if (tmp->vm_flags & VM_SHARED)
564 mapping_allow_writable(mapping);
565 flush_dcache_mmap_lock(mapping);
566 /* insert tmp into the share list, just after mpnt */
567 vma_interval_tree_insert_after(tmp, mpnt,
568 &mapping->i_mmap);
569 flush_dcache_mmap_unlock(mapping);
570 i_mmap_unlock_write(mapping);
571 }
572
573 /*
574 * Clear hugetlb-related page reserves for children. This only
575 * affects MAP_PRIVATE mappings. Faults generated by the child
576 * are not guaranteed to succeed, even if read-only
577 */
578 if (is_vm_hugetlb_page(tmp))
579 reset_vma_resv_huge_pages(tmp);
580
581 /*
582 * Link in the new vma and copy the page table entries.
583 */
584 *pprev = tmp;
585 pprev = &tmp->vm_next;
586 tmp->vm_prev = prev;
587 prev = tmp;
588
589 __vma_link_rb(mm, tmp, rb_link, rb_parent);
590 rb_link = &tmp->vm_rb.rb_right;
591 rb_parent = &tmp->vm_rb;
592
593 mm->map_count++;
594 if (!(tmp->vm_flags & VM_WIPEONFORK))
595 retval = copy_page_range(tmp, mpnt);
596
597 if (tmp->vm_ops && tmp->vm_ops->open)
598 tmp->vm_ops->open(tmp);
599
600 if (retval)
601 goto out;
602 }
603 /* a new mm has just been created */
604 retval = arch_dup_mmap(oldmm, mm);
605 out:
606 mmap_write_unlock(mm);
607 flush_tlb_mm(oldmm);
608 mmap_write_unlock(oldmm);
609 dup_userfaultfd_complete(&uf);
610 fail_uprobe_end:
611 uprobe_end_dup_mmap();
612 return retval;
613 fail_nomem_anon_vma_fork:
614 mpol_put(vma_policy(tmp));
615 fail_nomem_policy:
616 vm_area_free(tmp);
617 fail_nomem:
618 retval = -ENOMEM;
619 vm_unacct_memory(charge);
620 goto out;
621 }
622
mm_alloc_pgd(struct mm_struct * mm)623 static inline int mm_alloc_pgd(struct mm_struct *mm)
624 {
625 mm->pgd = pgd_alloc(mm);
626 if (unlikely(!mm->pgd))
627 return -ENOMEM;
628 return 0;
629 }
630
mm_free_pgd(struct mm_struct * mm)631 static inline void mm_free_pgd(struct mm_struct *mm)
632 {
633 pgd_free(mm, mm->pgd);
634 }
635 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638 mmap_write_lock(oldmm);
639 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
640 mmap_write_unlock(oldmm);
641 return 0;
642 }
643 #define mm_alloc_pgd(mm) (0)
644 #define mm_free_pgd(mm)
645 #endif /* CONFIG_MMU */
646
check_mm(struct mm_struct * mm)647 static void check_mm(struct mm_struct *mm)
648 {
649 int i;
650
651 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
652 "Please make sure 'struct resident_page_types[]' is updated as well");
653
654 for (i = 0; i < NR_MM_COUNTERS; i++) {
655 long x = atomic_long_read(&mm->rss_stat.count[i]);
656
657 if (unlikely(x))
658 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
659 mm, resident_page_types[i], x);
660 }
661
662 if (mm_pgtables_bytes(mm))
663 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
664 mm_pgtables_bytes(mm));
665
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670
671 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
672 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
673
674 /*
675 * Called when the last reference to the mm
676 * is dropped: either by a lazy thread or by
677 * mmput. Free the page directory and the mm.
678 */
__mmdrop(struct mm_struct * mm)679 void __mmdrop(struct mm_struct *mm)
680 {
681 BUG_ON(mm == &init_mm);
682 WARN_ON_ONCE(mm == current->mm);
683 WARN_ON_ONCE(mm == current->active_mm);
684 mm_free_pgd(mm);
685 destroy_context(mm);
686 mmu_notifier_subscriptions_destroy(mm);
687 check_mm(mm);
688 put_user_ns(mm->user_ns);
689 free_mm(mm);
690 }
691 EXPORT_SYMBOL_GPL(__mmdrop);
692
mmdrop_async_fn(struct work_struct * work)693 static void mmdrop_async_fn(struct work_struct *work)
694 {
695 struct mm_struct *mm;
696
697 mm = container_of(work, struct mm_struct, async_put_work);
698 __mmdrop(mm);
699 }
700
mmdrop_async(struct mm_struct * mm)701 static void mmdrop_async(struct mm_struct *mm)
702 {
703 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
704 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
705 schedule_work(&mm->async_put_work);
706 }
707 }
708
free_signal_struct(struct signal_struct * sig)709 static inline void free_signal_struct(struct signal_struct *sig)
710 {
711 taskstats_tgid_free(sig);
712 sched_autogroup_exit(sig);
713 /*
714 * __mmdrop is not safe to call from softirq context on x86 due to
715 * pgd_dtor so postpone it to the async context
716 */
717 if (sig->oom_mm)
718 mmdrop_async(sig->oom_mm);
719 kmem_cache_free(signal_cachep, sig);
720 }
721
put_signal_struct(struct signal_struct * sig)722 static inline void put_signal_struct(struct signal_struct *sig)
723 {
724 if (refcount_dec_and_test(&sig->sigcnt))
725 free_signal_struct(sig);
726 }
727
__put_task_struct(struct task_struct * tsk)728 void __put_task_struct(struct task_struct *tsk)
729 {
730 WARN_ON(!tsk->exit_state);
731 WARN_ON(refcount_read(&tsk->usage));
732 WARN_ON(tsk == current);
733
734 io_uring_free(tsk);
735 cgroup_free(tsk);
736 task_numa_free(tsk, true);
737 security_task_free(tsk);
738 exit_creds(tsk);
739 delayacct_tsk_free(tsk);
740 put_signal_struct(tsk->signal);
741
742 if (!profile_handoff_task(tsk))
743 free_task(tsk);
744 }
745 EXPORT_SYMBOL_GPL(__put_task_struct);
746
arch_task_cache_init(void)747 void __init __weak arch_task_cache_init(void) { }
748
749 /*
750 * set_max_threads
751 */
set_max_threads(unsigned int max_threads_suggested)752 static void set_max_threads(unsigned int max_threads_suggested)
753 {
754 u64 threads;
755 unsigned long nr_pages = totalram_pages();
756
757 /*
758 * The number of threads shall be limited such that the thread
759 * structures may only consume a small part of the available memory.
760 */
761 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
762 threads = MAX_THREADS;
763 else
764 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
765 (u64) THREAD_SIZE * 8UL);
766
767 if (threads > max_threads_suggested)
768 threads = max_threads_suggested;
769
770 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
771 }
772
773 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
774 /* Initialized by the architecture: */
775 int arch_task_struct_size __read_mostly;
776 #endif
777
778 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)779 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
780 {
781 /* Fetch thread_struct whitelist for the architecture. */
782 arch_thread_struct_whitelist(offset, size);
783
784 /*
785 * Handle zero-sized whitelist or empty thread_struct, otherwise
786 * adjust offset to position of thread_struct in task_struct.
787 */
788 if (unlikely(*size == 0))
789 *offset = 0;
790 else
791 *offset += offsetof(struct task_struct, thread);
792 }
793 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
794
fork_init(void)795 void __init fork_init(void)
796 {
797 int i;
798 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
799 #ifndef ARCH_MIN_TASKALIGN
800 #define ARCH_MIN_TASKALIGN 0
801 #endif
802 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
803 unsigned long useroffset, usersize;
804
805 /* create a slab on which task_structs can be allocated */
806 task_struct_whitelist(&useroffset, &usersize);
807 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
808 arch_task_struct_size, align,
809 SLAB_PANIC|SLAB_ACCOUNT,
810 useroffset, usersize, NULL);
811 #endif
812
813 /* do the arch specific task caches init */
814 arch_task_cache_init();
815
816 set_max_threads(MAX_THREADS);
817
818 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
819 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
820 init_task.signal->rlim[RLIMIT_SIGPENDING] =
821 init_task.signal->rlim[RLIMIT_NPROC];
822
823 for (i = 0; i < UCOUNT_COUNTS; i++) {
824 init_user_ns.ucount_max[i] = max_threads/2;
825 }
826
827 #ifdef CONFIG_VMAP_STACK
828 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
829 NULL, free_vm_stack_cache);
830 #endif
831
832 scs_init();
833
834 lockdep_init_task(&init_task);
835 uprobes_init();
836 }
837
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)838 int __weak arch_dup_task_struct(struct task_struct *dst,
839 struct task_struct *src)
840 {
841 *dst = *src;
842 return 0;
843 }
844
set_task_stack_end_magic(struct task_struct * tsk)845 void set_task_stack_end_magic(struct task_struct *tsk)
846 {
847 unsigned long *stackend;
848
849 stackend = end_of_stack(tsk);
850 *stackend = STACK_END_MAGIC; /* for overflow detection */
851 }
852
dup_task_struct(struct task_struct * orig,int node)853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
854 {
855 struct task_struct *tsk;
856 unsigned long *stack;
857 struct vm_struct *stack_vm_area __maybe_unused;
858 int err;
859
860 if (node == NUMA_NO_NODE)
861 node = tsk_fork_get_node(orig);
862 tsk = alloc_task_struct_node(node);
863 if (!tsk)
864 return NULL;
865
866 stack = alloc_thread_stack_node(tsk, node);
867 if (!stack)
868 goto free_tsk;
869
870 if (memcg_charge_kernel_stack(tsk))
871 goto free_stack;
872
873 stack_vm_area = task_stack_vm_area(tsk);
874
875 err = arch_dup_task_struct(tsk, orig);
876
877 #ifdef CONFIG_ACCESS_TOKENID
878 tsk->token = orig->token;
879 tsk->ftoken = 0;
880 #endif
881 /*
882 * arch_dup_task_struct() clobbers the stack-related fields. Make
883 * sure they're properly initialized before using any stack-related
884 * functions again.
885 */
886 tsk->stack = stack;
887 #ifdef CONFIG_VMAP_STACK
888 tsk->stack_vm_area = stack_vm_area;
889 #endif
890 #ifdef CONFIG_THREAD_INFO_IN_TASK
891 refcount_set(&tsk->stack_refcount, 1);
892 #endif
893
894 if (err)
895 goto free_stack;
896
897 err = scs_prepare(tsk, node);
898 if (err)
899 goto free_stack;
900
901 #ifdef CONFIG_SECCOMP
902 /*
903 * We must handle setting up seccomp filters once we're under
904 * the sighand lock in case orig has changed between now and
905 * then. Until then, filter must be NULL to avoid messing up
906 * the usage counts on the error path calling free_task.
907 */
908 tsk->seccomp.filter = NULL;
909 #endif
910
911 setup_thread_stack(tsk, orig);
912 clear_user_return_notifier(tsk);
913 clear_tsk_need_resched(tsk);
914 set_task_stack_end_magic(tsk);
915
916 #ifdef CONFIG_STACKPROTECTOR
917 tsk->stack_canary = get_random_canary();
918 #endif
919 if (orig->cpus_ptr == &orig->cpus_mask)
920 tsk->cpus_ptr = &tsk->cpus_mask;
921
922 /*
923 * One for the user space visible state that goes away when reaped.
924 * One for the scheduler.
925 */
926 refcount_set(&tsk->rcu_users, 2);
927 /* One for the rcu users */
928 refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 tsk->btrace_seq = 0;
931 #endif
932 tsk->splice_pipe = NULL;
933 tsk->task_frag.page = NULL;
934 tsk->wake_q.next = NULL;
935
936 account_kernel_stack(tsk, 1);
937
938 kcov_task_init(tsk);
939
940 #ifdef CONFIG_FAULT_INJECTION
941 tsk->fail_nth = 0;
942 #endif
943
944 #ifdef CONFIG_BLK_CGROUP
945 tsk->throttle_queue = NULL;
946 tsk->use_memdelay = 0;
947 #endif
948
949 #ifdef CONFIG_MEMCG
950 tsk->active_memcg = NULL;
951 #endif
952 return tsk;
953
954 free_stack:
955 free_thread_stack(tsk);
956 free_tsk:
957 free_task_struct(tsk);
958 return NULL;
959 }
960
961 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
962
963 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
964
coredump_filter_setup(char * s)965 static int __init coredump_filter_setup(char *s)
966 {
967 default_dump_filter =
968 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
969 MMF_DUMP_FILTER_MASK;
970 return 1;
971 }
972
973 __setup("coredump_filter=", coredump_filter_setup);
974
975 #include <linux/init_task.h>
976
mm_init_aio(struct mm_struct * mm)977 static void mm_init_aio(struct mm_struct *mm)
978 {
979 #ifdef CONFIG_AIO
980 spin_lock_init(&mm->ioctx_lock);
981 mm->ioctx_table = NULL;
982 #endif
983 }
984
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)985 static __always_inline void mm_clear_owner(struct mm_struct *mm,
986 struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 if (mm->owner == p)
990 WRITE_ONCE(mm->owner, NULL);
991 #endif
992 }
993
mm_init_owner(struct mm_struct * mm,struct task_struct * p)994 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 mm->owner = p;
998 #endif
999 }
1000
mm_init_pasid(struct mm_struct * mm)1001 static void mm_init_pasid(struct mm_struct *mm)
1002 {
1003 #ifdef CONFIG_IOMMU_SUPPORT
1004 mm->pasid = INIT_PASID;
1005 #endif
1006 }
1007
mm_init_uprobes_state(struct mm_struct * mm)1008 static void mm_init_uprobes_state(struct mm_struct *mm)
1009 {
1010 #ifdef CONFIG_UPROBES
1011 mm->uprobes_state.xol_area = NULL;
1012 #endif
1013 }
1014
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1015 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1016 struct user_namespace *user_ns)
1017 {
1018 mm->mmap = NULL;
1019 mm->mm_rb = RB_ROOT;
1020 mm->vmacache_seqnum = 0;
1021 atomic_set(&mm->mm_users, 1);
1022 atomic_set(&mm->mm_count, 1);
1023 seqcount_init(&mm->write_protect_seq);
1024 mmap_init_lock(mm);
1025 INIT_LIST_HEAD(&mm->mmlist);
1026 mm->core_state = NULL;
1027 mm_pgtables_bytes_init(mm);
1028 mm->map_count = 0;
1029 mm->locked_vm = 0;
1030 atomic_set(&mm->has_pinned, 0);
1031 atomic64_set(&mm->pinned_vm, 0);
1032 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1033 spin_lock_init(&mm->page_table_lock);
1034 spin_lock_init(&mm->arg_lock);
1035 mm_init_cpumask(mm);
1036 mm_init_aio(mm);
1037 mm_init_owner(mm, p);
1038 mm_init_pasid(mm);
1039 RCU_INIT_POINTER(mm->exe_file, NULL);
1040 mmu_notifier_subscriptions_init(mm);
1041 init_tlb_flush_pending(mm);
1042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1043 mm->pmd_huge_pte = NULL;
1044 #endif
1045 mm_init_uprobes_state(mm);
1046 hugetlb_count_init(mm);
1047
1048 if (current->mm) {
1049 mm->flags = current->mm->flags & MMF_INIT_MASK;
1050 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1051 } else {
1052 mm->flags = default_dump_filter;
1053 mm->def_flags = 0;
1054 }
1055
1056 if (mm_alloc_pgd(mm))
1057 goto fail_nopgd;
1058
1059 if (init_new_context(p, mm))
1060 goto fail_nocontext;
1061
1062 mm->user_ns = get_user_ns(user_ns);
1063 return mm;
1064
1065 fail_nocontext:
1066 mm_free_pgd(mm);
1067 fail_nopgd:
1068 free_mm(mm);
1069 return NULL;
1070 }
1071
1072 /*
1073 * Allocate and initialize an mm_struct.
1074 */
mm_alloc(void)1075 struct mm_struct *mm_alloc(void)
1076 {
1077 struct mm_struct *mm;
1078
1079 mm = allocate_mm();
1080 if (!mm)
1081 return NULL;
1082
1083 memset(mm, 0, sizeof(*mm));
1084 return mm_init(mm, current, current_user_ns());
1085 }
1086
__mmput(struct mm_struct * mm)1087 static inline void __mmput(struct mm_struct *mm)
1088 {
1089 VM_BUG_ON(atomic_read(&mm->mm_users));
1090
1091 uprobe_clear_state(mm);
1092 exit_aio(mm);
1093 ksm_exit(mm);
1094 khugepaged_exit(mm); /* must run before exit_mmap */
1095 exit_mmap(mm);
1096 mm_put_huge_zero_page(mm);
1097 set_mm_exe_file(mm, NULL);
1098 if (!list_empty(&mm->mmlist)) {
1099 spin_lock(&mmlist_lock);
1100 list_del(&mm->mmlist);
1101 spin_unlock(&mmlist_lock);
1102 }
1103 if (mm->binfmt)
1104 module_put(mm->binfmt->module);
1105 mmdrop(mm);
1106 }
1107
1108 /*
1109 * Decrement the use count and release all resources for an mm.
1110 */
mmput(struct mm_struct * mm)1111 void mmput(struct mm_struct *mm)
1112 {
1113 might_sleep();
1114
1115 if (atomic_dec_and_test(&mm->mm_users))
1116 __mmput(mm);
1117 }
1118 EXPORT_SYMBOL_GPL(mmput);
1119
1120 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1121 static void mmput_async_fn(struct work_struct *work)
1122 {
1123 struct mm_struct *mm = container_of(work, struct mm_struct,
1124 async_put_work);
1125
1126 __mmput(mm);
1127 }
1128
mmput_async(struct mm_struct * mm)1129 void mmput_async(struct mm_struct *mm)
1130 {
1131 if (atomic_dec_and_test(&mm->mm_users)) {
1132 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1133 schedule_work(&mm->async_put_work);
1134 }
1135 }
1136 #endif
1137
1138 /**
1139 * set_mm_exe_file - change a reference to the mm's executable file
1140 *
1141 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1142 *
1143 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1144 * invocations: in mmput() nobody alive left, in execve task is single
1145 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1146 * mm->exe_file, but does so without using set_mm_exe_file() in order
1147 * to do avoid the need for any locks.
1148 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1149 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1150 {
1151 struct file *old_exe_file;
1152
1153 /*
1154 * It is safe to dereference the exe_file without RCU as
1155 * this function is only called if nobody else can access
1156 * this mm -- see comment above for justification.
1157 */
1158 old_exe_file = rcu_dereference_raw(mm->exe_file);
1159
1160 if (new_exe_file)
1161 get_file(new_exe_file);
1162 rcu_assign_pointer(mm->exe_file, new_exe_file);
1163 if (old_exe_file)
1164 fput(old_exe_file);
1165 }
1166
1167 /**
1168 * get_mm_exe_file - acquire a reference to the mm's executable file
1169 *
1170 * Returns %NULL if mm has no associated executable file.
1171 * User must release file via fput().
1172 */
get_mm_exe_file(struct mm_struct * mm)1173 struct file *get_mm_exe_file(struct mm_struct *mm)
1174 {
1175 struct file *exe_file;
1176
1177 rcu_read_lock();
1178 exe_file = rcu_dereference(mm->exe_file);
1179 if (exe_file && !get_file_rcu(exe_file))
1180 exe_file = NULL;
1181 rcu_read_unlock();
1182 return exe_file;
1183 }
1184 EXPORT_SYMBOL(get_mm_exe_file);
1185
1186 /**
1187 * get_task_exe_file - acquire a reference to the task's executable file
1188 *
1189 * Returns %NULL if task's mm (if any) has no associated executable file or
1190 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1191 * User must release file via fput().
1192 */
get_task_exe_file(struct task_struct * task)1193 struct file *get_task_exe_file(struct task_struct *task)
1194 {
1195 struct file *exe_file = NULL;
1196 struct mm_struct *mm;
1197
1198 task_lock(task);
1199 mm = task->mm;
1200 if (mm) {
1201 if (!(task->flags & PF_KTHREAD))
1202 exe_file = get_mm_exe_file(mm);
1203 }
1204 task_unlock(task);
1205 return exe_file;
1206 }
1207 EXPORT_SYMBOL(get_task_exe_file);
1208
1209 /**
1210 * get_task_mm - acquire a reference to the task's mm
1211 *
1212 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1213 * this kernel workthread has transiently adopted a user mm with use_mm,
1214 * to do its AIO) is not set and if so returns a reference to it, after
1215 * bumping up the use count. User must release the mm via mmput()
1216 * after use. Typically used by /proc and ptrace.
1217 */
get_task_mm(struct task_struct * task)1218 struct mm_struct *get_task_mm(struct task_struct *task)
1219 {
1220 struct mm_struct *mm;
1221
1222 task_lock(task);
1223 mm = task->mm;
1224 if (mm) {
1225 if (task->flags & PF_KTHREAD)
1226 mm = NULL;
1227 else
1228 mmget(mm);
1229 }
1230 task_unlock(task);
1231 return mm;
1232 }
1233 EXPORT_SYMBOL_GPL(get_task_mm);
1234
mm_access(struct task_struct * task,unsigned int mode)1235 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1236 {
1237 struct mm_struct *mm;
1238 int err;
1239
1240 err = down_read_killable(&task->signal->exec_update_lock);
1241 if (err)
1242 return ERR_PTR(err);
1243
1244 mm = get_task_mm(task);
1245 if (mm && mm != current->mm &&
1246 !ptrace_may_access(task, mode)) {
1247 mmput(mm);
1248 mm = ERR_PTR(-EACCES);
1249 }
1250 up_read(&task->signal->exec_update_lock);
1251
1252 return mm;
1253 }
1254
complete_vfork_done(struct task_struct * tsk)1255 static void complete_vfork_done(struct task_struct *tsk)
1256 {
1257 struct completion *vfork;
1258
1259 task_lock(tsk);
1260 vfork = tsk->vfork_done;
1261 if (likely(vfork)) {
1262 tsk->vfork_done = NULL;
1263 complete(vfork);
1264 }
1265 task_unlock(tsk);
1266 }
1267
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1268 static int wait_for_vfork_done(struct task_struct *child,
1269 struct completion *vfork)
1270 {
1271 int killed;
1272
1273 freezer_do_not_count();
1274 cgroup_enter_frozen();
1275 killed = wait_for_completion_killable(vfork);
1276 cgroup_leave_frozen(false);
1277 freezer_count();
1278
1279 if (killed) {
1280 task_lock(child);
1281 child->vfork_done = NULL;
1282 task_unlock(child);
1283 }
1284
1285 put_task_struct(child);
1286 return killed;
1287 }
1288
1289 /* Please note the differences between mmput and mm_release.
1290 * mmput is called whenever we stop holding onto a mm_struct,
1291 * error success whatever.
1292 *
1293 * mm_release is called after a mm_struct has been removed
1294 * from the current process.
1295 *
1296 * This difference is important for error handling, when we
1297 * only half set up a mm_struct for a new process and need to restore
1298 * the old one. Because we mmput the new mm_struct before
1299 * restoring the old one. . .
1300 * Eric Biederman 10 January 1998
1301 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1302 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1303 {
1304 uprobe_free_utask(tsk);
1305
1306 /* Get rid of any cached register state */
1307 deactivate_mm(tsk, mm);
1308
1309 /*
1310 * Signal userspace if we're not exiting with a core dump
1311 * because we want to leave the value intact for debugging
1312 * purposes.
1313 */
1314 if (tsk->clear_child_tid) {
1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316 atomic_read(&mm->mm_users) > 1) {
1317 /*
1318 * We don't check the error code - if userspace has
1319 * not set up a proper pointer then tough luck.
1320 */
1321 put_user(0, tsk->clear_child_tid);
1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323 1, NULL, NULL, 0, 0);
1324 }
1325 tsk->clear_child_tid = NULL;
1326 }
1327
1328 /*
1329 * All done, finally we can wake up parent and return this mm to him.
1330 * Also kthread_stop() uses this completion for synchronization.
1331 */
1332 if (tsk->vfork_done)
1333 complete_vfork_done(tsk);
1334 }
1335
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1336 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1337 {
1338 futex_exit_release(tsk);
1339 mm_release(tsk, mm);
1340 }
1341
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1342 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1343 {
1344 futex_exec_release(tsk);
1345 mm_release(tsk, mm);
1346 }
1347
1348 /**
1349 * dup_mm() - duplicates an existing mm structure
1350 * @tsk: the task_struct with which the new mm will be associated.
1351 * @oldmm: the mm to duplicate.
1352 *
1353 * Allocates a new mm structure and duplicates the provided @oldmm structure
1354 * content into it.
1355 *
1356 * Return: the duplicated mm or NULL on failure.
1357 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1358 static struct mm_struct *dup_mm(struct task_struct *tsk,
1359 struct mm_struct *oldmm)
1360 {
1361 struct mm_struct *mm;
1362 int err;
1363
1364 mm = allocate_mm();
1365 if (!mm)
1366 goto fail_nomem;
1367
1368 memcpy(mm, oldmm, sizeof(*mm));
1369
1370 if (!mm_init(mm, tsk, mm->user_ns))
1371 goto fail_nomem;
1372
1373 err = dup_mmap(mm, oldmm);
1374 if (err)
1375 goto free_pt;
1376
1377 mm->hiwater_rss = get_mm_rss(mm);
1378 mm->hiwater_vm = mm->total_vm;
1379
1380 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1381 goto free_pt;
1382
1383 return mm;
1384
1385 free_pt:
1386 /* don't put binfmt in mmput, we haven't got module yet */
1387 mm->binfmt = NULL;
1388 mm_init_owner(mm, NULL);
1389 mmput(mm);
1390
1391 fail_nomem:
1392 return NULL;
1393 }
1394
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1395 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1396 {
1397 struct mm_struct *mm, *oldmm;
1398 int retval;
1399
1400 tsk->min_flt = tsk->maj_flt = 0;
1401 tsk->nvcsw = tsk->nivcsw = 0;
1402 #ifdef CONFIG_DETECT_HUNG_TASK
1403 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1404 tsk->last_switch_time = 0;
1405 #endif
1406
1407 tsk->mm = NULL;
1408 tsk->active_mm = NULL;
1409
1410 /*
1411 * Are we cloning a kernel thread?
1412 *
1413 * We need to steal a active VM for that..
1414 */
1415 oldmm = current->mm;
1416 if (!oldmm)
1417 return 0;
1418
1419 /* initialize the new vmacache entries */
1420 vmacache_flush(tsk);
1421
1422 if (clone_flags & CLONE_VM) {
1423 mmget(oldmm);
1424 mm = oldmm;
1425 goto good_mm;
1426 }
1427
1428 retval = -ENOMEM;
1429 mm = dup_mm(tsk, current->mm);
1430 if (!mm)
1431 goto fail_nomem;
1432
1433 good_mm:
1434 tsk->mm = mm;
1435 tsk->active_mm = mm;
1436 return 0;
1437
1438 fail_nomem:
1439 return retval;
1440 }
1441
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1442 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443 {
1444 struct fs_struct *fs = current->fs;
1445 if (clone_flags & CLONE_FS) {
1446 /* tsk->fs is already what we want */
1447 spin_lock(&fs->lock);
1448 if (fs->in_exec) {
1449 spin_unlock(&fs->lock);
1450 return -EAGAIN;
1451 }
1452 fs->users++;
1453 spin_unlock(&fs->lock);
1454 return 0;
1455 }
1456 tsk->fs = copy_fs_struct(fs);
1457 if (!tsk->fs)
1458 return -ENOMEM;
1459 return 0;
1460 }
1461
copy_files(unsigned long clone_flags,struct task_struct * tsk)1462 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464 struct files_struct *oldf, *newf;
1465 int error = 0;
1466
1467 /*
1468 * A background process may not have any files ...
1469 */
1470 oldf = current->files;
1471 if (!oldf)
1472 goto out;
1473
1474 if (clone_flags & CLONE_FILES) {
1475 atomic_inc(&oldf->count);
1476 goto out;
1477 }
1478
1479 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480 if (!newf)
1481 goto out;
1482
1483 tsk->files = newf;
1484 error = 0;
1485 out:
1486 return error;
1487 }
1488
copy_io(unsigned long clone_flags,struct task_struct * tsk)1489 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490 {
1491 #ifdef CONFIG_BLOCK
1492 struct io_context *ioc = current->io_context;
1493 struct io_context *new_ioc;
1494
1495 if (!ioc)
1496 return 0;
1497 /*
1498 * Share io context with parent, if CLONE_IO is set
1499 */
1500 if (clone_flags & CLONE_IO) {
1501 ioc_task_link(ioc);
1502 tsk->io_context = ioc;
1503 } else if (ioprio_valid(ioc->ioprio)) {
1504 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505 if (unlikely(!new_ioc))
1506 return -ENOMEM;
1507
1508 new_ioc->ioprio = ioc->ioprio;
1509 put_io_context(new_ioc);
1510 }
1511 #endif
1512 return 0;
1513 }
1514
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1515 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 struct sighand_struct *sig;
1518
1519 if (clone_flags & CLONE_SIGHAND) {
1520 refcount_inc(¤t->sighand->count);
1521 return 0;
1522 }
1523 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524 RCU_INIT_POINTER(tsk->sighand, sig);
1525 if (!sig)
1526 return -ENOMEM;
1527
1528 refcount_set(&sig->count, 1);
1529 spin_lock_irq(¤t->sighand->siglock);
1530 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531 spin_unlock_irq(¤t->sighand->siglock);
1532
1533 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534 if (clone_flags & CLONE_CLEAR_SIGHAND)
1535 flush_signal_handlers(tsk, 0);
1536
1537 return 0;
1538 }
1539
__cleanup_sighand(struct sighand_struct * sighand)1540 void __cleanup_sighand(struct sighand_struct *sighand)
1541 {
1542 if (refcount_dec_and_test(&sighand->count)) {
1543 signalfd_cleanup(sighand);
1544 /*
1545 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546 * without an RCU grace period, see __lock_task_sighand().
1547 */
1548 kmem_cache_free(sighand_cachep, sighand);
1549 }
1550 }
1551
1552 /*
1553 * Initialize POSIX timer handling for a thread group.
1554 */
posix_cpu_timers_init_group(struct signal_struct * sig)1555 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556 {
1557 struct posix_cputimers *pct = &sig->posix_cputimers;
1558 unsigned long cpu_limit;
1559
1560 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561 posix_cputimers_group_init(pct, cpu_limit);
1562 }
1563
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1564 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565 {
1566 struct signal_struct *sig;
1567
1568 if (clone_flags & CLONE_THREAD)
1569 return 0;
1570
1571 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572 tsk->signal = sig;
1573 if (!sig)
1574 return -ENOMEM;
1575
1576 sig->nr_threads = 1;
1577 atomic_set(&sig->live, 1);
1578 refcount_set(&sig->sigcnt, 1);
1579
1580 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583
1584 init_waitqueue_head(&sig->wait_chldexit);
1585 sig->curr_target = tsk;
1586 init_sigpending(&sig->shared_pending);
1587 INIT_HLIST_HEAD(&sig->multiprocess);
1588 seqlock_init(&sig->stats_lock);
1589 prev_cputime_init(&sig->prev_cputime);
1590
1591 #ifdef CONFIG_POSIX_TIMERS
1592 INIT_LIST_HEAD(&sig->posix_timers);
1593 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594 sig->real_timer.function = it_real_fn;
1595 #endif
1596
1597 task_lock(current->group_leader);
1598 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599 task_unlock(current->group_leader);
1600
1601 posix_cpu_timers_init_group(sig);
1602
1603 tty_audit_fork(sig);
1604 sched_autogroup_fork(sig);
1605
1606 sig->oom_score_adj = current->signal->oom_score_adj;
1607 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608
1609 mutex_init(&sig->cred_guard_mutex);
1610 init_rwsem(&sig->exec_update_lock);
1611
1612 return 0;
1613 }
1614
copy_seccomp(struct task_struct * p)1615 static void copy_seccomp(struct task_struct *p)
1616 {
1617 #ifdef CONFIG_SECCOMP
1618 /*
1619 * Must be called with sighand->lock held, which is common to
1620 * all threads in the group. Holding cred_guard_mutex is not
1621 * needed because this new task is not yet running and cannot
1622 * be racing exec.
1623 */
1624 assert_spin_locked(¤t->sighand->siglock);
1625
1626 /* Ref-count the new filter user, and assign it. */
1627 get_seccomp_filter(current);
1628 p->seccomp = current->seccomp;
1629
1630 /*
1631 * Explicitly enable no_new_privs here in case it got set
1632 * between the task_struct being duplicated and holding the
1633 * sighand lock. The seccomp state and nnp must be in sync.
1634 */
1635 if (task_no_new_privs(current))
1636 task_set_no_new_privs(p);
1637
1638 /*
1639 * If the parent gained a seccomp mode after copying thread
1640 * flags and between before we held the sighand lock, we have
1641 * to manually enable the seccomp thread flag here.
1642 */
1643 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644 set_tsk_thread_flag(p, TIF_SECCOMP);
1645 #endif
1646 }
1647
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1648 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649 {
1650 current->clear_child_tid = tidptr;
1651
1652 return task_pid_vnr(current);
1653 }
1654
rt_mutex_init_task(struct task_struct * p)1655 static void rt_mutex_init_task(struct task_struct *p)
1656 {
1657 raw_spin_lock_init(&p->pi_lock);
1658 #ifdef CONFIG_RT_MUTEXES
1659 p->pi_waiters = RB_ROOT_CACHED;
1660 p->pi_top_task = NULL;
1661 p->pi_blocked_on = NULL;
1662 #endif
1663 }
1664
init_task_pid_links(struct task_struct * task)1665 static inline void init_task_pid_links(struct task_struct *task)
1666 {
1667 enum pid_type type;
1668
1669 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1670 INIT_HLIST_NODE(&task->pid_links[type]);
1671 }
1672 }
1673
1674 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1675 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1676 {
1677 if (type == PIDTYPE_PID)
1678 task->thread_pid = pid;
1679 else
1680 task->signal->pids[type] = pid;
1681 }
1682
rcu_copy_process(struct task_struct * p)1683 static inline void rcu_copy_process(struct task_struct *p)
1684 {
1685 #ifdef CONFIG_PREEMPT_RCU
1686 p->rcu_read_lock_nesting = 0;
1687 p->rcu_read_unlock_special.s = 0;
1688 p->rcu_blocked_node = NULL;
1689 INIT_LIST_HEAD(&p->rcu_node_entry);
1690 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1691 #ifdef CONFIG_TASKS_RCU
1692 p->rcu_tasks_holdout = false;
1693 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1694 p->rcu_tasks_idle_cpu = -1;
1695 #endif /* #ifdef CONFIG_TASKS_RCU */
1696 #ifdef CONFIG_TASKS_TRACE_RCU
1697 p->trc_reader_nesting = 0;
1698 p->trc_reader_special.s = 0;
1699 INIT_LIST_HEAD(&p->trc_holdout_list);
1700 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1701 }
1702
pidfd_pid(const struct file * file)1703 struct pid *pidfd_pid(const struct file *file)
1704 {
1705 if (file->f_op == &pidfd_fops)
1706 return file->private_data;
1707
1708 return ERR_PTR(-EBADF);
1709 }
1710
pidfd_release(struct inode * inode,struct file * file)1711 static int pidfd_release(struct inode *inode, struct file *file)
1712 {
1713 struct pid *pid = file->private_data;
1714
1715 file->private_data = NULL;
1716 put_pid(pid);
1717 return 0;
1718 }
1719
1720 #ifdef CONFIG_PROC_FS
1721 /**
1722 * pidfd_show_fdinfo - print information about a pidfd
1723 * @m: proc fdinfo file
1724 * @f: file referencing a pidfd
1725 *
1726 * Pid:
1727 * This function will print the pid that a given pidfd refers to in the
1728 * pid namespace of the procfs instance.
1729 * If the pid namespace of the process is not a descendant of the pid
1730 * namespace of the procfs instance 0 will be shown as its pid. This is
1731 * similar to calling getppid() on a process whose parent is outside of
1732 * its pid namespace.
1733 *
1734 * NSpid:
1735 * If pid namespaces are supported then this function will also print
1736 * the pid of a given pidfd refers to for all descendant pid namespaces
1737 * starting from the current pid namespace of the instance, i.e. the
1738 * Pid field and the first entry in the NSpid field will be identical.
1739 * If the pid namespace of the process is not a descendant of the pid
1740 * namespace of the procfs instance 0 will be shown as its first NSpid
1741 * entry and no others will be shown.
1742 * Note that this differs from the Pid and NSpid fields in
1743 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1744 * the pid namespace of the procfs instance. The difference becomes
1745 * obvious when sending around a pidfd between pid namespaces from a
1746 * different branch of the tree, i.e. where no ancestoral relation is
1747 * present between the pid namespaces:
1748 * - create two new pid namespaces ns1 and ns2 in the initial pid
1749 * namespace (also take care to create new mount namespaces in the
1750 * new pid namespace and mount procfs)
1751 * - create a process with a pidfd in ns1
1752 * - send pidfd from ns1 to ns2
1753 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1754 * have exactly one entry, which is 0
1755 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1756 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1757 {
1758 struct pid *pid = f->private_data;
1759 struct pid_namespace *ns;
1760 pid_t nr = -1;
1761
1762 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1763 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1764 nr = pid_nr_ns(pid, ns);
1765 }
1766
1767 seq_put_decimal_ll(m, "Pid:\t", nr);
1768
1769 #ifdef CONFIG_PID_NS
1770 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1771 if (nr > 0) {
1772 int i;
1773
1774 /* If nr is non-zero it means that 'pid' is valid and that
1775 * ns, i.e. the pid namespace associated with the procfs
1776 * instance, is in the pid namespace hierarchy of pid.
1777 * Start at one below the already printed level.
1778 */
1779 for (i = ns->level + 1; i <= pid->level; i++)
1780 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1781 }
1782 #endif
1783 seq_putc(m, '\n');
1784 }
1785 #endif
1786
1787 /*
1788 * Poll support for process exit notification.
1789 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1790 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1791 {
1792 struct pid *pid = file->private_data;
1793 __poll_t poll_flags = 0;
1794
1795 poll_wait(file, &pid->wait_pidfd, pts);
1796
1797 /*
1798 * Inform pollers only when the whole thread group exits.
1799 * If the thread group leader exits before all other threads in the
1800 * group, then poll(2) should block, similar to the wait(2) family.
1801 */
1802 if (thread_group_exited(pid))
1803 poll_flags = EPOLLIN | EPOLLRDNORM;
1804
1805 return poll_flags;
1806 }
1807
1808 const struct file_operations pidfd_fops = {
1809 .release = pidfd_release,
1810 .poll = pidfd_poll,
1811 #ifdef CONFIG_PROC_FS
1812 .show_fdinfo = pidfd_show_fdinfo,
1813 #endif
1814 };
1815
__delayed_free_task(struct rcu_head * rhp)1816 static void __delayed_free_task(struct rcu_head *rhp)
1817 {
1818 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1819
1820 free_task(tsk);
1821 }
1822
delayed_free_task(struct task_struct * tsk)1823 static __always_inline void delayed_free_task(struct task_struct *tsk)
1824 {
1825 if (IS_ENABLED(CONFIG_MEMCG))
1826 call_rcu(&tsk->rcu, __delayed_free_task);
1827 else
1828 free_task(tsk);
1829 }
1830
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1831 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1832 {
1833 /* Skip if kernel thread */
1834 if (!tsk->mm)
1835 return;
1836
1837 /* Skip if spawning a thread or using vfork */
1838 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1839 return;
1840
1841 /* We need to synchronize with __set_oom_adj */
1842 mutex_lock(&oom_adj_mutex);
1843 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1844 /* Update the values in case they were changed after copy_signal */
1845 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1846 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1847 mutex_unlock(&oom_adj_mutex);
1848 }
1849
1850 /*
1851 * This creates a new process as a copy of the old one,
1852 * but does not actually start it yet.
1853 *
1854 * It copies the registers, and all the appropriate
1855 * parts of the process environment (as per the clone
1856 * flags). The actual kick-off is left to the caller.
1857 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1858 static __latent_entropy struct task_struct *copy_process(
1859 struct pid *pid,
1860 int trace,
1861 int node,
1862 struct kernel_clone_args *args)
1863 {
1864 int pidfd = -1, retval;
1865 struct task_struct *p;
1866 struct multiprocess_signals delayed;
1867 struct file *pidfile = NULL;
1868 u64 clone_flags = args->flags;
1869 struct nsproxy *nsp = current->nsproxy;
1870
1871 /*
1872 * Don't allow sharing the root directory with processes in a different
1873 * namespace
1874 */
1875 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1876 return ERR_PTR(-EINVAL);
1877
1878 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1879 return ERR_PTR(-EINVAL);
1880
1881 /*
1882 * Thread groups must share signals as well, and detached threads
1883 * can only be started up within the thread group.
1884 */
1885 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1886 return ERR_PTR(-EINVAL);
1887
1888 /*
1889 * Shared signal handlers imply shared VM. By way of the above,
1890 * thread groups also imply shared VM. Blocking this case allows
1891 * for various simplifications in other code.
1892 */
1893 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1894 return ERR_PTR(-EINVAL);
1895
1896 /*
1897 * Siblings of global init remain as zombies on exit since they are
1898 * not reaped by their parent (swapper). To solve this and to avoid
1899 * multi-rooted process trees, prevent global and container-inits
1900 * from creating siblings.
1901 */
1902 if ((clone_flags & CLONE_PARENT) &&
1903 current->signal->flags & SIGNAL_UNKILLABLE)
1904 return ERR_PTR(-EINVAL);
1905
1906 /*
1907 * If the new process will be in a different pid or user namespace
1908 * do not allow it to share a thread group with the forking task.
1909 */
1910 if (clone_flags & CLONE_THREAD) {
1911 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1912 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1913 return ERR_PTR(-EINVAL);
1914 }
1915
1916 /*
1917 * If the new process will be in a different time namespace
1918 * do not allow it to share VM or a thread group with the forking task.
1919 */
1920 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1921 if (nsp->time_ns != nsp->time_ns_for_children)
1922 return ERR_PTR(-EINVAL);
1923 }
1924
1925 if (clone_flags & CLONE_PIDFD) {
1926 /*
1927 * - CLONE_DETACHED is blocked so that we can potentially
1928 * reuse it later for CLONE_PIDFD.
1929 * - CLONE_THREAD is blocked until someone really needs it.
1930 */
1931 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1932 return ERR_PTR(-EINVAL);
1933 }
1934
1935 /*
1936 * Force any signals received before this point to be delivered
1937 * before the fork happens. Collect up signals sent to multiple
1938 * processes that happen during the fork and delay them so that
1939 * they appear to happen after the fork.
1940 */
1941 sigemptyset(&delayed.signal);
1942 INIT_HLIST_NODE(&delayed.node);
1943
1944 spin_lock_irq(¤t->sighand->siglock);
1945 if (!(clone_flags & CLONE_THREAD))
1946 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1947 recalc_sigpending();
1948 spin_unlock_irq(¤t->sighand->siglock);
1949 retval = -ERESTARTNOINTR;
1950 if (signal_pending(current))
1951 goto fork_out;
1952
1953 retval = -ENOMEM;
1954 p = dup_task_struct(current, node);
1955 if (!p)
1956 goto fork_out;
1957
1958 /*
1959 * This _must_ happen before we call free_task(), i.e. before we jump
1960 * to any of the bad_fork_* labels. This is to avoid freeing
1961 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1962 * kernel threads (PF_KTHREAD).
1963 */
1964 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1965 /*
1966 * Clear TID on mm_release()?
1967 */
1968 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1969
1970 ftrace_graph_init_task(p);
1971
1972 rt_mutex_init_task(p);
1973
1974 lockdep_assert_irqs_enabled();
1975 #ifdef CONFIG_PROVE_LOCKING
1976 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1977 #endif
1978 retval = -EAGAIN;
1979 if (atomic_read(&p->real_cred->user->processes) >=
1980 task_rlimit(p, RLIMIT_NPROC)) {
1981 if (p->real_cred->user != INIT_USER &&
1982 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1983 goto bad_fork_free;
1984 }
1985 current->flags &= ~PF_NPROC_EXCEEDED;
1986
1987 retval = copy_creds(p, clone_flags);
1988 if (retval < 0)
1989 goto bad_fork_free;
1990
1991 /*
1992 * If multiple threads are within copy_process(), then this check
1993 * triggers too late. This doesn't hurt, the check is only there
1994 * to stop root fork bombs.
1995 */
1996 retval = -EAGAIN;
1997 if (data_race(nr_threads >= max_threads))
1998 goto bad_fork_cleanup_count;
1999
2000 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2001 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2002 p->flags |= PF_FORKNOEXEC;
2003 INIT_LIST_HEAD(&p->children);
2004 INIT_LIST_HEAD(&p->sibling);
2005 rcu_copy_process(p);
2006 p->vfork_done = NULL;
2007 spin_lock_init(&p->alloc_lock);
2008
2009 init_sigpending(&p->pending);
2010
2011 p->utime = p->stime = p->gtime = 0;
2012 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2013 p->utimescaled = p->stimescaled = 0;
2014 #endif
2015 prev_cputime_init(&p->prev_cputime);
2016
2017 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2018 seqcount_init(&p->vtime.seqcount);
2019 p->vtime.starttime = 0;
2020 p->vtime.state = VTIME_INACTIVE;
2021 #endif
2022
2023 #ifdef CONFIG_IO_URING
2024 p->io_uring = NULL;
2025 #endif
2026
2027 #if defined(SPLIT_RSS_COUNTING)
2028 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2029 #endif
2030
2031 p->default_timer_slack_ns = current->timer_slack_ns;
2032
2033 #ifdef CONFIG_PSI
2034 p->psi_flags = 0;
2035 #endif
2036
2037 task_io_accounting_init(&p->ioac);
2038 acct_clear_integrals(p);
2039
2040 posix_cputimers_init(&p->posix_cputimers);
2041
2042 p->io_context = NULL;
2043 audit_set_context(p, NULL);
2044 cgroup_fork(p);
2045 #ifdef CONFIG_NUMA
2046 p->mempolicy = mpol_dup(p->mempolicy);
2047 if (IS_ERR(p->mempolicy)) {
2048 retval = PTR_ERR(p->mempolicy);
2049 p->mempolicy = NULL;
2050 goto bad_fork_cleanup_threadgroup_lock;
2051 }
2052 #endif
2053 #ifdef CONFIG_CPUSETS
2054 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2055 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2056 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2057 #endif
2058 #ifdef CONFIG_TRACE_IRQFLAGS
2059 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2060 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2061 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2062 p->softirqs_enabled = 1;
2063 p->softirq_context = 0;
2064 #endif
2065
2066 p->pagefault_disabled = 0;
2067
2068 #ifdef CONFIG_LOCKDEP
2069 lockdep_init_task(p);
2070 #endif
2071
2072 #ifdef CONFIG_DEBUG_MUTEXES
2073 p->blocked_on = NULL; /* not blocked yet */
2074 #endif
2075 #ifdef CONFIG_BCACHE
2076 p->sequential_io = 0;
2077 p->sequential_io_avg = 0;
2078 #endif
2079 #ifdef CONFIG_BPF_SYSCALL
2080 p->bpf_ctx = NULL;
2081 #endif
2082
2083 /* Perform scheduler related setup. Assign this task to a CPU. */
2084 retval = sched_fork(clone_flags, p);
2085 if (retval)
2086 goto bad_fork_cleanup_policy;
2087
2088 retval = perf_event_init_task(p);
2089 if (retval)
2090 goto bad_fork_cleanup_policy;
2091 retval = audit_alloc(p);
2092 if (retval)
2093 goto bad_fork_cleanup_perf;
2094 /* copy all the process information */
2095 shm_init_task(p);
2096 retval = security_task_alloc(p, clone_flags);
2097 if (retval)
2098 goto bad_fork_cleanup_audit;
2099 retval = copy_semundo(clone_flags, p);
2100 if (retval)
2101 goto bad_fork_cleanup_security;
2102 retval = copy_files(clone_flags, p);
2103 if (retval)
2104 goto bad_fork_cleanup_semundo;
2105 retval = copy_fs(clone_flags, p);
2106 if (retval)
2107 goto bad_fork_cleanup_files;
2108 retval = copy_sighand(clone_flags, p);
2109 if (retval)
2110 goto bad_fork_cleanup_fs;
2111 retval = copy_signal(clone_flags, p);
2112 if (retval)
2113 goto bad_fork_cleanup_sighand;
2114 retval = copy_mm(clone_flags, p);
2115 if (retval)
2116 goto bad_fork_cleanup_signal;
2117 retval = copy_namespaces(clone_flags, p);
2118 if (retval)
2119 goto bad_fork_cleanup_mm;
2120 retval = copy_io(clone_flags, p);
2121 if (retval)
2122 goto bad_fork_cleanup_namespaces;
2123 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2124 if (retval)
2125 goto bad_fork_cleanup_io;
2126
2127 stackleak_task_init(p);
2128
2129 if (pid != &init_struct_pid) {
2130 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2131 args->set_tid_size);
2132 if (IS_ERR(pid)) {
2133 retval = PTR_ERR(pid);
2134 goto bad_fork_cleanup_thread;
2135 }
2136 }
2137
2138 /*
2139 * This has to happen after we've potentially unshared the file
2140 * descriptor table (so that the pidfd doesn't leak into the child
2141 * if the fd table isn't shared).
2142 */
2143 if (clone_flags & CLONE_PIDFD) {
2144 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2145 if (retval < 0)
2146 goto bad_fork_free_pid;
2147
2148 pidfd = retval;
2149
2150 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2151 O_RDWR | O_CLOEXEC);
2152 if (IS_ERR(pidfile)) {
2153 put_unused_fd(pidfd);
2154 retval = PTR_ERR(pidfile);
2155 goto bad_fork_free_pid;
2156 }
2157 get_pid(pid); /* held by pidfile now */
2158
2159 retval = put_user(pidfd, args->pidfd);
2160 if (retval)
2161 goto bad_fork_put_pidfd;
2162 }
2163
2164 #ifdef CONFIG_BLOCK
2165 p->plug = NULL;
2166 #endif
2167 futex_init_task(p);
2168
2169 /*
2170 * sigaltstack should be cleared when sharing the same VM
2171 */
2172 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2173 sas_ss_reset(p);
2174
2175 /*
2176 * Syscall tracing and stepping should be turned off in the
2177 * child regardless of CLONE_PTRACE.
2178 */
2179 user_disable_single_step(p);
2180 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2181 #ifdef TIF_SYSCALL_EMU
2182 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2183 #endif
2184 clear_tsk_latency_tracing(p);
2185
2186 /* ok, now we should be set up.. */
2187 p->pid = pid_nr(pid);
2188 if (clone_flags & CLONE_THREAD) {
2189 p->group_leader = current->group_leader;
2190 p->tgid = current->tgid;
2191 } else {
2192 p->group_leader = p;
2193 p->tgid = p->pid;
2194 }
2195
2196 p->nr_dirtied = 0;
2197 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2198 p->dirty_paused_when = 0;
2199
2200 p->pdeath_signal = 0;
2201 INIT_LIST_HEAD(&p->thread_group);
2202 p->task_works = NULL;
2203
2204 /*
2205 * Ensure that the cgroup subsystem policies allow the new process to be
2206 * forked. It should be noted that the new process's css_set can be changed
2207 * between here and cgroup_post_fork() if an organisation operation is in
2208 * progress.
2209 */
2210 retval = cgroup_can_fork(p, args);
2211 if (retval)
2212 goto bad_fork_put_pidfd;
2213
2214 /*
2215 * From this point on we must avoid any synchronous user-space
2216 * communication until we take the tasklist-lock. In particular, we do
2217 * not want user-space to be able to predict the process start-time by
2218 * stalling fork(2) after we recorded the start_time but before it is
2219 * visible to the system.
2220 */
2221
2222 p->start_time = ktime_get_ns();
2223 p->start_boottime = ktime_get_boottime_ns();
2224
2225 /*
2226 * Make it visible to the rest of the system, but dont wake it up yet.
2227 * Need tasklist lock for parent etc handling!
2228 */
2229 write_lock_irq(&tasklist_lock);
2230
2231 /* CLONE_PARENT re-uses the old parent */
2232 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2233 p->real_parent = current->real_parent;
2234 p->parent_exec_id = current->parent_exec_id;
2235 if (clone_flags & CLONE_THREAD)
2236 p->exit_signal = -1;
2237 else
2238 p->exit_signal = current->group_leader->exit_signal;
2239 } else {
2240 p->real_parent = current;
2241 p->parent_exec_id = current->self_exec_id;
2242 p->exit_signal = args->exit_signal;
2243 }
2244
2245 klp_copy_process(p);
2246
2247 spin_lock(¤t->sighand->siglock);
2248
2249 /*
2250 * Copy seccomp details explicitly here, in case they were changed
2251 * before holding sighand lock.
2252 */
2253 copy_seccomp(p);
2254
2255 rseq_fork(p, clone_flags);
2256
2257 /* Don't start children in a dying pid namespace */
2258 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2259 retval = -ENOMEM;
2260 goto bad_fork_cancel_cgroup;
2261 }
2262
2263 /* Let kill terminate clone/fork in the middle */
2264 if (fatal_signal_pending(current)) {
2265 retval = -EINTR;
2266 goto bad_fork_cancel_cgroup;
2267 }
2268
2269 /* past the last point of failure */
2270 if (pidfile)
2271 fd_install(pidfd, pidfile);
2272
2273 init_task_pid_links(p);
2274 if (likely(p->pid)) {
2275 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2276
2277 init_task_pid(p, PIDTYPE_PID, pid);
2278 if (thread_group_leader(p)) {
2279 init_task_pid(p, PIDTYPE_TGID, pid);
2280 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2281 init_task_pid(p, PIDTYPE_SID, task_session(current));
2282
2283 if (is_child_reaper(pid)) {
2284 ns_of_pid(pid)->child_reaper = p;
2285 p->signal->flags |= SIGNAL_UNKILLABLE;
2286 }
2287 p->signal->shared_pending.signal = delayed.signal;
2288 p->signal->tty = tty_kref_get(current->signal->tty);
2289 /*
2290 * Inherit has_child_subreaper flag under the same
2291 * tasklist_lock with adding child to the process tree
2292 * for propagate_has_child_subreaper optimization.
2293 */
2294 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2295 p->real_parent->signal->is_child_subreaper;
2296 list_add_tail(&p->sibling, &p->real_parent->children);
2297 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2298 attach_pid(p, PIDTYPE_TGID);
2299 attach_pid(p, PIDTYPE_PGID);
2300 attach_pid(p, PIDTYPE_SID);
2301 __this_cpu_inc(process_counts);
2302 } else {
2303 current->signal->nr_threads++;
2304 atomic_inc(¤t->signal->live);
2305 refcount_inc(¤t->signal->sigcnt);
2306 task_join_group_stop(p);
2307 list_add_tail_rcu(&p->thread_group,
2308 &p->group_leader->thread_group);
2309 list_add_tail_rcu(&p->thread_node,
2310 &p->signal->thread_head);
2311 }
2312 attach_pid(p, PIDTYPE_PID);
2313 nr_threads++;
2314 }
2315 total_forks++;
2316 hlist_del_init(&delayed.node);
2317 spin_unlock(¤t->sighand->siglock);
2318 syscall_tracepoint_update(p);
2319 write_unlock_irq(&tasklist_lock);
2320
2321 proc_fork_connector(p);
2322 sched_post_fork(p);
2323 cgroup_post_fork(p, args);
2324 perf_event_fork(p);
2325
2326 trace_task_newtask(p, clone_flags);
2327 uprobe_copy_process(p, clone_flags);
2328
2329 copy_oom_score_adj(clone_flags, p);
2330
2331 return p;
2332
2333 bad_fork_cancel_cgroup:
2334 spin_unlock(¤t->sighand->siglock);
2335 write_unlock_irq(&tasklist_lock);
2336 cgroup_cancel_fork(p, args);
2337 bad_fork_put_pidfd:
2338 if (clone_flags & CLONE_PIDFD) {
2339 fput(pidfile);
2340 put_unused_fd(pidfd);
2341 }
2342 bad_fork_free_pid:
2343 if (pid != &init_struct_pid)
2344 free_pid(pid);
2345 bad_fork_cleanup_thread:
2346 exit_thread(p);
2347 bad_fork_cleanup_io:
2348 if (p->io_context)
2349 exit_io_context(p);
2350 bad_fork_cleanup_namespaces:
2351 exit_task_namespaces(p);
2352 bad_fork_cleanup_mm:
2353 if (p->mm) {
2354 mm_clear_owner(p->mm, p);
2355 mmput(p->mm);
2356 }
2357 bad_fork_cleanup_signal:
2358 if (!(clone_flags & CLONE_THREAD))
2359 free_signal_struct(p->signal);
2360 bad_fork_cleanup_sighand:
2361 __cleanup_sighand(p->sighand);
2362 bad_fork_cleanup_fs:
2363 exit_fs(p); /* blocking */
2364 bad_fork_cleanup_files:
2365 exit_files(p); /* blocking */
2366 bad_fork_cleanup_semundo:
2367 exit_sem(p);
2368 bad_fork_cleanup_security:
2369 security_task_free(p);
2370 bad_fork_cleanup_audit:
2371 audit_free(p);
2372 bad_fork_cleanup_perf:
2373 perf_event_free_task(p);
2374 bad_fork_cleanup_policy:
2375 lockdep_free_task(p);
2376 free_task_load_ptrs(p);
2377 #ifdef CONFIG_NUMA
2378 mpol_put(p->mempolicy);
2379 bad_fork_cleanup_threadgroup_lock:
2380 #endif
2381 delayacct_tsk_free(p);
2382 bad_fork_cleanup_count:
2383 atomic_dec(&p->cred->user->processes);
2384 exit_creds(p);
2385 bad_fork_free:
2386 p->state = TASK_DEAD;
2387 put_task_stack(p);
2388 delayed_free_task(p);
2389 fork_out:
2390 spin_lock_irq(¤t->sighand->siglock);
2391 hlist_del_init(&delayed.node);
2392 spin_unlock_irq(¤t->sighand->siglock);
2393 return ERR_PTR(retval);
2394 }
2395
init_idle_pids(struct task_struct * idle)2396 static inline void init_idle_pids(struct task_struct *idle)
2397 {
2398 enum pid_type type;
2399
2400 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2401 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2402 init_task_pid(idle, type, &init_struct_pid);
2403 }
2404 }
2405
fork_idle(int cpu)2406 struct task_struct * __init fork_idle(int cpu)
2407 {
2408 struct task_struct *task;
2409 struct kernel_clone_args args = {
2410 .flags = CLONE_VM,
2411 };
2412
2413 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2414 if (!IS_ERR(task)) {
2415 init_idle_pids(task);
2416 init_idle(task, cpu);
2417 }
2418
2419 return task;
2420 }
2421
copy_init_mm(void)2422 struct mm_struct *copy_init_mm(void)
2423 {
2424 return dup_mm(NULL, &init_mm);
2425 }
2426
2427 /*
2428 * Ok, this is the main fork-routine.
2429 *
2430 * It copies the process, and if successful kick-starts
2431 * it and waits for it to finish using the VM if required.
2432 *
2433 * args->exit_signal is expected to be checked for sanity by the caller.
2434 */
kernel_clone(struct kernel_clone_args * args)2435 pid_t kernel_clone(struct kernel_clone_args *args)
2436 {
2437 u64 clone_flags = args->flags;
2438 struct completion vfork;
2439 struct pid *pid;
2440 struct task_struct *p;
2441 int trace = 0;
2442 pid_t nr;
2443
2444 /*
2445 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2446 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2447 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2448 * field in struct clone_args and it still doesn't make sense to have
2449 * them both point at the same memory location. Performing this check
2450 * here has the advantage that we don't need to have a separate helper
2451 * to check for legacy clone().
2452 */
2453 if ((args->flags & CLONE_PIDFD) &&
2454 (args->flags & CLONE_PARENT_SETTID) &&
2455 (args->pidfd == args->parent_tid))
2456 return -EINVAL;
2457
2458 /*
2459 * Determine whether and which event to report to ptracer. When
2460 * called from kernel_thread or CLONE_UNTRACED is explicitly
2461 * requested, no event is reported; otherwise, report if the event
2462 * for the type of forking is enabled.
2463 */
2464 if (!(clone_flags & CLONE_UNTRACED)) {
2465 if (clone_flags & CLONE_VFORK)
2466 trace = PTRACE_EVENT_VFORK;
2467 else if (args->exit_signal != SIGCHLD)
2468 trace = PTRACE_EVENT_CLONE;
2469 else
2470 trace = PTRACE_EVENT_FORK;
2471
2472 if (likely(!ptrace_event_enabled(current, trace)))
2473 trace = 0;
2474 }
2475
2476 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2477 add_latent_entropy();
2478
2479 if (IS_ERR(p))
2480 return PTR_ERR(p);
2481
2482 /*
2483 * Do this prior waking up the new thread - the thread pointer
2484 * might get invalid after that point, if the thread exits quickly.
2485 */
2486 trace_sched_process_fork(current, p);
2487
2488 pid = get_task_pid(p, PIDTYPE_PID);
2489 nr = pid_vnr(pid);
2490
2491 if (clone_flags & CLONE_PARENT_SETTID)
2492 put_user(nr, args->parent_tid);
2493
2494 if (clone_flags & CLONE_VFORK) {
2495 p->vfork_done = &vfork;
2496 init_completion(&vfork);
2497 get_task_struct(p);
2498 }
2499
2500 wake_up_new_task(p);
2501
2502 /* forking complete and child started to run, tell ptracer */
2503 if (unlikely(trace))
2504 ptrace_event_pid(trace, pid);
2505
2506 if (clone_flags & CLONE_VFORK) {
2507 if (!wait_for_vfork_done(p, &vfork))
2508 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2509 }
2510
2511 put_pid(pid);
2512 return nr;
2513 }
2514
2515 /*
2516 * Create a kernel thread.
2517 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2518 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2519 {
2520 struct kernel_clone_args args = {
2521 .flags = ((lower_32_bits(flags) | CLONE_VM |
2522 CLONE_UNTRACED) & ~CSIGNAL),
2523 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2524 .stack = (unsigned long)fn,
2525 .stack_size = (unsigned long)arg,
2526 };
2527
2528 return kernel_clone(&args);
2529 }
2530
2531 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2532 SYSCALL_DEFINE0(fork)
2533 {
2534 #ifdef CONFIG_MMU
2535 struct kernel_clone_args args = {
2536 .exit_signal = SIGCHLD,
2537 };
2538
2539 return kernel_clone(&args);
2540 #else
2541 /* can not support in nommu mode */
2542 return -EINVAL;
2543 #endif
2544 }
2545 #endif
2546
2547 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2548 SYSCALL_DEFINE0(vfork)
2549 {
2550 struct kernel_clone_args args = {
2551 .flags = CLONE_VFORK | CLONE_VM,
2552 .exit_signal = SIGCHLD,
2553 };
2554
2555 return kernel_clone(&args);
2556 }
2557 #endif
2558
2559 #ifdef __ARCH_WANT_SYS_CLONE
2560 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2561 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2562 int __user *, parent_tidptr,
2563 unsigned long, tls,
2564 int __user *, child_tidptr)
2565 #elif defined(CONFIG_CLONE_BACKWARDS2)
2566 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2567 int __user *, parent_tidptr,
2568 int __user *, child_tidptr,
2569 unsigned long, tls)
2570 #elif defined(CONFIG_CLONE_BACKWARDS3)
2571 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2572 int, stack_size,
2573 int __user *, parent_tidptr,
2574 int __user *, child_tidptr,
2575 unsigned long, tls)
2576 #else
2577 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2578 int __user *, parent_tidptr,
2579 int __user *, child_tidptr,
2580 unsigned long, tls)
2581 #endif
2582 {
2583 struct kernel_clone_args args = {
2584 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2585 .pidfd = parent_tidptr,
2586 .child_tid = child_tidptr,
2587 .parent_tid = parent_tidptr,
2588 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2589 .stack = newsp,
2590 .tls = tls,
2591 };
2592
2593 return kernel_clone(&args);
2594 }
2595 #endif
2596
2597 #ifdef __ARCH_WANT_SYS_CLONE3
2598
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2599 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2600 struct clone_args __user *uargs,
2601 size_t usize)
2602 {
2603 int err;
2604 struct clone_args args;
2605 pid_t *kset_tid = kargs->set_tid;
2606
2607 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2608 CLONE_ARGS_SIZE_VER0);
2609 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2610 CLONE_ARGS_SIZE_VER1);
2611 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2612 CLONE_ARGS_SIZE_VER2);
2613 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2614
2615 if (unlikely(usize > PAGE_SIZE))
2616 return -E2BIG;
2617 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2618 return -EINVAL;
2619
2620 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2621 if (err)
2622 return err;
2623
2624 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2625 return -EINVAL;
2626
2627 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2628 return -EINVAL;
2629
2630 if (unlikely(args.set_tid && args.set_tid_size == 0))
2631 return -EINVAL;
2632
2633 /*
2634 * Verify that higher 32bits of exit_signal are unset and that
2635 * it is a valid signal
2636 */
2637 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2638 !valid_signal(args.exit_signal)))
2639 return -EINVAL;
2640
2641 if ((args.flags & CLONE_INTO_CGROUP) &&
2642 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2643 return -EINVAL;
2644
2645 *kargs = (struct kernel_clone_args){
2646 .flags = args.flags,
2647 .pidfd = u64_to_user_ptr(args.pidfd),
2648 .child_tid = u64_to_user_ptr(args.child_tid),
2649 .parent_tid = u64_to_user_ptr(args.parent_tid),
2650 .exit_signal = args.exit_signal,
2651 .stack = args.stack,
2652 .stack_size = args.stack_size,
2653 .tls = args.tls,
2654 .set_tid_size = args.set_tid_size,
2655 .cgroup = args.cgroup,
2656 };
2657
2658 if (args.set_tid &&
2659 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2660 (kargs->set_tid_size * sizeof(pid_t))))
2661 return -EFAULT;
2662
2663 kargs->set_tid = kset_tid;
2664
2665 return 0;
2666 }
2667
2668 /**
2669 * clone3_stack_valid - check and prepare stack
2670 * @kargs: kernel clone args
2671 *
2672 * Verify that the stack arguments userspace gave us are sane.
2673 * In addition, set the stack direction for userspace since it's easy for us to
2674 * determine.
2675 */
clone3_stack_valid(struct kernel_clone_args * kargs)2676 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2677 {
2678 if (kargs->stack == 0) {
2679 if (kargs->stack_size > 0)
2680 return false;
2681 } else {
2682 if (kargs->stack_size == 0)
2683 return false;
2684
2685 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2686 return false;
2687
2688 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2689 kargs->stack += kargs->stack_size;
2690 #endif
2691 }
2692
2693 return true;
2694 }
2695
clone3_args_valid(struct kernel_clone_args * kargs)2696 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2697 {
2698 /* Verify that no unknown flags are passed along. */
2699 if (kargs->flags &
2700 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2701 return false;
2702
2703 /*
2704 * - make the CLONE_DETACHED bit reuseable for clone3
2705 * - make the CSIGNAL bits reuseable for clone3
2706 */
2707 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2708 return false;
2709
2710 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2711 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2712 return false;
2713
2714 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2715 kargs->exit_signal)
2716 return false;
2717
2718 if (!clone3_stack_valid(kargs))
2719 return false;
2720
2721 return true;
2722 }
2723
2724 /**
2725 * clone3 - create a new process with specific properties
2726 * @uargs: argument structure
2727 * @size: size of @uargs
2728 *
2729 * clone3() is the extensible successor to clone()/clone2().
2730 * It takes a struct as argument that is versioned by its size.
2731 *
2732 * Return: On success, a positive PID for the child process.
2733 * On error, a negative errno number.
2734 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2735 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2736 {
2737 int err;
2738
2739 struct kernel_clone_args kargs;
2740 pid_t set_tid[MAX_PID_NS_LEVEL];
2741
2742 kargs.set_tid = set_tid;
2743
2744 err = copy_clone_args_from_user(&kargs, uargs, size);
2745 if (err)
2746 return err;
2747
2748 if (!clone3_args_valid(&kargs))
2749 return -EINVAL;
2750
2751 return kernel_clone(&kargs);
2752 }
2753 #endif
2754
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2755 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2756 {
2757 struct task_struct *leader, *parent, *child;
2758 int res;
2759
2760 read_lock(&tasklist_lock);
2761 leader = top = top->group_leader;
2762 down:
2763 for_each_thread(leader, parent) {
2764 list_for_each_entry(child, &parent->children, sibling) {
2765 res = visitor(child, data);
2766 if (res) {
2767 if (res < 0)
2768 goto out;
2769 leader = child;
2770 goto down;
2771 }
2772 up:
2773 ;
2774 }
2775 }
2776
2777 if (leader != top) {
2778 child = leader;
2779 parent = child->real_parent;
2780 leader = parent->group_leader;
2781 goto up;
2782 }
2783 out:
2784 read_unlock(&tasklist_lock);
2785 }
2786
2787 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2788 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2789 #endif
2790
sighand_ctor(void * data)2791 static void sighand_ctor(void *data)
2792 {
2793 struct sighand_struct *sighand = data;
2794
2795 spin_lock_init(&sighand->siglock);
2796 init_waitqueue_head(&sighand->signalfd_wqh);
2797 }
2798
proc_caches_init(void)2799 void __init proc_caches_init(void)
2800 {
2801 unsigned int mm_size;
2802
2803 sighand_cachep = kmem_cache_create("sighand_cache",
2804 sizeof(struct sighand_struct), 0,
2805 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2806 SLAB_ACCOUNT, sighand_ctor);
2807 signal_cachep = kmem_cache_create("signal_cache",
2808 sizeof(struct signal_struct), 0,
2809 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2810 NULL);
2811 files_cachep = kmem_cache_create("files_cache",
2812 sizeof(struct files_struct), 0,
2813 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2814 NULL);
2815 fs_cachep = kmem_cache_create("fs_cache",
2816 sizeof(struct fs_struct), 0,
2817 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2818 NULL);
2819
2820 /*
2821 * The mm_cpumask is located at the end of mm_struct, and is
2822 * dynamically sized based on the maximum CPU number this system
2823 * can have, taking hotplug into account (nr_cpu_ids).
2824 */
2825 mm_size = sizeof(struct mm_struct) + cpumask_size();
2826
2827 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2828 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2829 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2830 offsetof(struct mm_struct, saved_auxv),
2831 sizeof_field(struct mm_struct, saved_auxv),
2832 NULL);
2833 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2834 mmap_init();
2835 nsproxy_cache_init();
2836 }
2837
2838 /*
2839 * Check constraints on flags passed to the unshare system call.
2840 */
check_unshare_flags(unsigned long unshare_flags)2841 static int check_unshare_flags(unsigned long unshare_flags)
2842 {
2843 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2844 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2845 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2846 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2847 CLONE_NEWTIME))
2848 return -EINVAL;
2849 /*
2850 * Not implemented, but pretend it works if there is nothing
2851 * to unshare. Note that unsharing the address space or the
2852 * signal handlers also need to unshare the signal queues (aka
2853 * CLONE_THREAD).
2854 */
2855 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2856 if (!thread_group_empty(current))
2857 return -EINVAL;
2858 }
2859 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2860 if (refcount_read(¤t->sighand->count) > 1)
2861 return -EINVAL;
2862 }
2863 if (unshare_flags & CLONE_VM) {
2864 if (!current_is_single_threaded())
2865 return -EINVAL;
2866 }
2867
2868 return 0;
2869 }
2870
2871 /*
2872 * Unshare the filesystem structure if it is being shared
2873 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2874 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2875 {
2876 struct fs_struct *fs = current->fs;
2877
2878 if (!(unshare_flags & CLONE_FS) || !fs)
2879 return 0;
2880
2881 /* don't need lock here; in the worst case we'll do useless copy */
2882 if (fs->users == 1)
2883 return 0;
2884
2885 *new_fsp = copy_fs_struct(fs);
2886 if (!*new_fsp)
2887 return -ENOMEM;
2888
2889 return 0;
2890 }
2891
2892 /*
2893 * Unshare file descriptor table if it is being shared
2894 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2895 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2896 struct files_struct **new_fdp)
2897 {
2898 struct files_struct *fd = current->files;
2899 int error = 0;
2900
2901 if ((unshare_flags & CLONE_FILES) &&
2902 (fd && atomic_read(&fd->count) > 1)) {
2903 *new_fdp = dup_fd(fd, max_fds, &error);
2904 if (!*new_fdp)
2905 return error;
2906 }
2907
2908 return 0;
2909 }
2910
2911 /*
2912 * unshare allows a process to 'unshare' part of the process
2913 * context which was originally shared using clone. copy_*
2914 * functions used by kernel_clone() cannot be used here directly
2915 * because they modify an inactive task_struct that is being
2916 * constructed. Here we are modifying the current, active,
2917 * task_struct.
2918 */
ksys_unshare(unsigned long unshare_flags)2919 int ksys_unshare(unsigned long unshare_flags)
2920 {
2921 struct fs_struct *fs, *new_fs = NULL;
2922 struct files_struct *fd, *new_fd = NULL;
2923 struct cred *new_cred = NULL;
2924 struct nsproxy *new_nsproxy = NULL;
2925 int do_sysvsem = 0;
2926 int err;
2927
2928 /*
2929 * If unsharing a user namespace must also unshare the thread group
2930 * and unshare the filesystem root and working directories.
2931 */
2932 if (unshare_flags & CLONE_NEWUSER)
2933 unshare_flags |= CLONE_THREAD | CLONE_FS;
2934 /*
2935 * If unsharing vm, must also unshare signal handlers.
2936 */
2937 if (unshare_flags & CLONE_VM)
2938 unshare_flags |= CLONE_SIGHAND;
2939 /*
2940 * If unsharing a signal handlers, must also unshare the signal queues.
2941 */
2942 if (unshare_flags & CLONE_SIGHAND)
2943 unshare_flags |= CLONE_THREAD;
2944 /*
2945 * If unsharing namespace, must also unshare filesystem information.
2946 */
2947 if (unshare_flags & CLONE_NEWNS)
2948 unshare_flags |= CLONE_FS;
2949
2950 err = check_unshare_flags(unshare_flags);
2951 if (err)
2952 goto bad_unshare_out;
2953 /*
2954 * CLONE_NEWIPC must also detach from the undolist: after switching
2955 * to a new ipc namespace, the semaphore arrays from the old
2956 * namespace are unreachable.
2957 */
2958 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2959 do_sysvsem = 1;
2960 err = unshare_fs(unshare_flags, &new_fs);
2961 if (err)
2962 goto bad_unshare_out;
2963 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2964 if (err)
2965 goto bad_unshare_cleanup_fs;
2966 err = unshare_userns(unshare_flags, &new_cred);
2967 if (err)
2968 goto bad_unshare_cleanup_fd;
2969 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2970 new_cred, new_fs);
2971 if (err)
2972 goto bad_unshare_cleanup_cred;
2973
2974 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2975 if (do_sysvsem) {
2976 /*
2977 * CLONE_SYSVSEM is equivalent to sys_exit().
2978 */
2979 exit_sem(current);
2980 }
2981 if (unshare_flags & CLONE_NEWIPC) {
2982 /* Orphan segments in old ns (see sem above). */
2983 exit_shm(current);
2984 shm_init_task(current);
2985 }
2986
2987 if (new_nsproxy)
2988 switch_task_namespaces(current, new_nsproxy);
2989
2990 task_lock(current);
2991
2992 if (new_fs) {
2993 fs = current->fs;
2994 spin_lock(&fs->lock);
2995 current->fs = new_fs;
2996 if (--fs->users)
2997 new_fs = NULL;
2998 else
2999 new_fs = fs;
3000 spin_unlock(&fs->lock);
3001 }
3002
3003 if (new_fd) {
3004 fd = current->files;
3005 current->files = new_fd;
3006 new_fd = fd;
3007 }
3008
3009 task_unlock(current);
3010
3011 if (new_cred) {
3012 /* Install the new user namespace */
3013 commit_creds(new_cred);
3014 new_cred = NULL;
3015 }
3016 }
3017
3018 perf_event_namespaces(current);
3019
3020 bad_unshare_cleanup_cred:
3021 if (new_cred)
3022 put_cred(new_cred);
3023 bad_unshare_cleanup_fd:
3024 if (new_fd)
3025 put_files_struct(new_fd);
3026
3027 bad_unshare_cleanup_fs:
3028 if (new_fs)
3029 free_fs_struct(new_fs);
3030
3031 bad_unshare_out:
3032 return err;
3033 }
3034
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3035 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3036 {
3037 return ksys_unshare(unshare_flags);
3038 }
3039
3040 /*
3041 * Helper to unshare the files of the current task.
3042 * We don't want to expose copy_files internals to
3043 * the exec layer of the kernel.
3044 */
3045
unshare_files(struct files_struct ** displaced)3046 int unshare_files(struct files_struct **displaced)
3047 {
3048 struct task_struct *task = current;
3049 struct files_struct *copy = NULL;
3050 int error;
3051
3052 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3053 if (error || !copy) {
3054 *displaced = NULL;
3055 return error;
3056 }
3057 *displaced = task->files;
3058 task_lock(task);
3059 task->files = copy;
3060 task_unlock(task);
3061 return 0;
3062 }
3063
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3064 int sysctl_max_threads(struct ctl_table *table, int write,
3065 void *buffer, size_t *lenp, loff_t *ppos)
3066 {
3067 struct ctl_table t;
3068 int ret;
3069 int threads = max_threads;
3070 int min = 1;
3071 int max = MAX_THREADS;
3072
3073 t = *table;
3074 t.data = &threads;
3075 t.extra1 = &min;
3076 t.extra2 = &max;
3077
3078 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3079 if (ret || !write)
3080 return ret;
3081
3082 max_threads = threads;
3083
3084 return 0;
3085 }
3086