1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44
45 #include <asm/page.h>
46 #include <asm/pat.h>
47 #include <asm/cmpxchg.h>
48 #include <asm/io.h>
49 #include <asm/vmx.h>
50 #include <asm/kvm_page_track.h>
51 #include "trace.h"
52
53 extern bool itlb_multihit_kvm_mitigation;
54
55 static int __read_mostly nx_huge_pages = -1;
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
57
58 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
59 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
60
61 static struct kernel_param_ops nx_huge_pages_ops = {
62 .set = set_nx_huge_pages,
63 .get = param_get_bool,
64 };
65
66 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
67 .set = set_nx_huge_pages_recovery_ratio,
68 .get = param_get_uint,
69 };
70
71 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
72 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
73 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
74 &nx_huge_pages_recovery_ratio, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
76
77 /*
78 * When setting this variable to true it enables Two-Dimensional-Paging
79 * where the hardware walks 2 page tables:
80 * 1. the guest-virtual to guest-physical
81 * 2. while doing 1. it walks guest-physical to host-physical
82 * If the hardware supports that we don't need to do shadow paging.
83 */
84 bool tdp_enabled = false;
85
86 enum {
87 AUDIT_PRE_PAGE_FAULT,
88 AUDIT_POST_PAGE_FAULT,
89 AUDIT_PRE_PTE_WRITE,
90 AUDIT_POST_PTE_WRITE,
91 AUDIT_PRE_SYNC,
92 AUDIT_POST_SYNC
93 };
94
95 #undef MMU_DEBUG
96
97 #ifdef MMU_DEBUG
98 static bool dbg = 0;
99 module_param(dbg, bool, 0644);
100
101 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
102 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
103 #define MMU_WARN_ON(x) WARN_ON(x)
104 #else
105 #define pgprintk(x...) do { } while (0)
106 #define rmap_printk(x...) do { } while (0)
107 #define MMU_WARN_ON(x) do { } while (0)
108 #endif
109
110 #define PTE_PREFETCH_NUM 8
111
112 #define PT_FIRST_AVAIL_BITS_SHIFT 10
113 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
114
115 #define PT64_LEVEL_BITS 9
116
117 #define PT64_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
119
120 #define PT64_INDEX(address, level)\
121 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
122
123
124 #define PT32_LEVEL_BITS 10
125
126 #define PT32_LEVEL_SHIFT(level) \
127 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
128
129 #define PT32_LVL_OFFSET_MASK(level) \
130 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
131 * PT32_LEVEL_BITS))) - 1))
132
133 #define PT32_INDEX(address, level)\
134 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
135
136
137 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
138 #define PT64_DIR_BASE_ADDR_MASK \
139 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
140 #define PT64_LVL_ADDR_MASK(level) \
141 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
142 * PT64_LEVEL_BITS))) - 1))
143 #define PT64_LVL_OFFSET_MASK(level) \
144 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT64_LEVEL_BITS))) - 1))
146
147 #define PT32_BASE_ADDR_MASK PAGE_MASK
148 #define PT32_DIR_BASE_ADDR_MASK \
149 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
150 #define PT32_LVL_ADDR_MASK(level) \
151 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
152 * PT32_LEVEL_BITS))) - 1))
153
154 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
155 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
156
157 #define ACC_EXEC_MASK 1
158 #define ACC_WRITE_MASK PT_WRITABLE_MASK
159 #define ACC_USER_MASK PT_USER_MASK
160 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 /* The mask for the R/X bits in EPT PTEs */
163 #define PT64_EPT_READABLE_MASK 0x1ull
164 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
165
166 #include <trace/events/kvm.h>
167
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
170
171 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
172
173 /* make pte_list_desc fit well in cache line */
174 #define PTE_LIST_EXT 3
175
176 /*
177 * Return values of handle_mmio_page_fault and mmu.page_fault:
178 * RET_PF_RETRY: let CPU fault again on the address.
179 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
180 *
181 * For handle_mmio_page_fault only:
182 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
183 */
184 enum {
185 RET_PF_RETRY = 0,
186 RET_PF_EMULATE = 1,
187 RET_PF_INVALID = 2,
188 };
189
190 struct pte_list_desc {
191 u64 *sptes[PTE_LIST_EXT];
192 struct pte_list_desc *more;
193 };
194
195 struct kvm_shadow_walk_iterator {
196 u64 addr;
197 hpa_t shadow_addr;
198 u64 *sptep;
199 int level;
200 unsigned index;
201 };
202
203 static const union kvm_mmu_page_role mmu_base_role_mask = {
204 .cr0_wp = 1,
205 .cr4_pae = 1,
206 .nxe = 1,
207 .smep_andnot_wp = 1,
208 .smap_andnot_wp = 1,
209 .smm = 1,
210 .guest_mode = 1,
211 .ad_disabled = 1,
212 };
213
214 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
215 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
216 (_root), (_addr)); \
217 shadow_walk_okay(&(_walker)); \
218 shadow_walk_next(&(_walker)))
219
220 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
221 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
222 shadow_walk_okay(&(_walker)); \
223 shadow_walk_next(&(_walker)))
224
225 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
226 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
227 shadow_walk_okay(&(_walker)) && \
228 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
229 __shadow_walk_next(&(_walker), spte))
230
231 static struct kmem_cache *pte_list_desc_cache;
232 static struct kmem_cache *mmu_page_header_cache;
233 static struct percpu_counter kvm_total_used_mmu_pages;
234
235 static u64 __read_mostly shadow_nx_mask;
236 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
237 static u64 __read_mostly shadow_user_mask;
238 static u64 __read_mostly shadow_accessed_mask;
239 static u64 __read_mostly shadow_dirty_mask;
240 static u64 __read_mostly shadow_mmio_mask;
241 static u64 __read_mostly shadow_mmio_value;
242 static u64 __read_mostly shadow_present_mask;
243 static u64 __read_mostly shadow_me_mask;
244
245 /*
246 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
247 * Non-present SPTEs with shadow_acc_track_value set are in place for access
248 * tracking.
249 */
250 static u64 __read_mostly shadow_acc_track_mask;
251 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
252
253 /*
254 * The mask/shift to use for saving the original R/X bits when marking the PTE
255 * as not-present for access tracking purposes. We do not save the W bit as the
256 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
257 * restored only when a write is attempted to the page.
258 */
259 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
260 PT64_EPT_EXECUTABLE_MASK;
261 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
262
263 /*
264 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
265 * to guard against L1TF attacks.
266 */
267 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
268
269 /*
270 * The number of high-order 1 bits to use in the mask above.
271 */
272 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
273
274 /*
275 * In some cases, we need to preserve the GFN of a non-present or reserved
276 * SPTE when we usurp the upper five bits of the physical address space to
277 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
278 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
279 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
280 * high and low parts. This mask covers the lower bits of the GFN.
281 */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
283
284 /*
285 * The number of non-reserved physical address bits irrespective of features
286 * that repurpose legal bits, e.g. MKTME.
287 */
288 static u8 __read_mostly shadow_phys_bits;
289
290 static void mmu_spte_set(u64 *sptep, u64 spte);
291 static bool is_executable_pte(u64 spte);
292 static union kvm_mmu_page_role
293 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
294
295 #define CREATE_TRACE_POINTS
296 #include "mmutrace.h"
297
298
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask,u64 mmio_value)299 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
300 {
301 BUG_ON((mmio_mask & mmio_value) != mmio_value);
302 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
303 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
304 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
305 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
306 }
307 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
308
is_mmio_spte(u64 spte)309 static bool is_mmio_spte(u64 spte)
310 {
311 return (spte & shadow_mmio_mask) == shadow_mmio_value;
312 }
313
sp_ad_disabled(struct kvm_mmu_page * sp)314 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
315 {
316 return sp->role.ad_disabled;
317 }
318
spte_ad_enabled(u64 spte)319 static inline bool spte_ad_enabled(u64 spte)
320 {
321 MMU_WARN_ON(is_mmio_spte(spte));
322 return !(spte & shadow_acc_track_value);
323 }
324
is_nx_huge_page_enabled(void)325 static bool is_nx_huge_page_enabled(void)
326 {
327 return READ_ONCE(nx_huge_pages);
328 }
329
spte_shadow_accessed_mask(u64 spte)330 static inline u64 spte_shadow_accessed_mask(u64 spte)
331 {
332 MMU_WARN_ON(is_mmio_spte(spte));
333 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
334 }
335
spte_shadow_dirty_mask(u64 spte)336 static inline u64 spte_shadow_dirty_mask(u64 spte)
337 {
338 MMU_WARN_ON(is_mmio_spte(spte));
339 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
340 }
341
is_access_track_spte(u64 spte)342 static inline bool is_access_track_spte(u64 spte)
343 {
344 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
345 }
346
347 /*
348 * the low bit of the generation number is always presumed to be zero.
349 * This disables mmio caching during memslot updates. The concept is
350 * similar to a seqcount but instead of retrying the access we just punt
351 * and ignore the cache.
352 *
353 * spte bits 3-11 are used as bits 1-9 of the generation number,
354 * the bits 52-61 are used as bits 10-19 of the generation number.
355 */
356 #define MMIO_SPTE_GEN_LOW_SHIFT 2
357 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
358
359 #define MMIO_GEN_SHIFT 20
360 #define MMIO_GEN_LOW_SHIFT 10
361 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
362 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
363
generation_mmio_spte_mask(unsigned int gen)364 static u64 generation_mmio_spte_mask(unsigned int gen)
365 {
366 u64 mask;
367
368 WARN_ON(gen & ~MMIO_GEN_MASK);
369
370 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
371 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
372 return mask;
373 }
374
get_mmio_spte_generation(u64 spte)375 static unsigned int get_mmio_spte_generation(u64 spte)
376 {
377 unsigned int gen;
378
379 spte &= ~shadow_mmio_mask;
380
381 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
382 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
383 return gen;
384 }
385
kvm_current_mmio_generation(struct kvm_vcpu * vcpu)386 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
387 {
388 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
389 }
390
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned access)391 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
392 unsigned access)
393 {
394 unsigned int gen = kvm_current_mmio_generation(vcpu);
395 u64 mask = generation_mmio_spte_mask(gen);
396 u64 gpa = gfn << PAGE_SHIFT;
397
398 access &= ACC_WRITE_MASK | ACC_USER_MASK;
399 mask |= shadow_mmio_value | access;
400 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
401 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
402 << shadow_nonpresent_or_rsvd_mask_len;
403
404 trace_mark_mmio_spte(sptep, gfn, access, gen);
405 mmu_spte_set(sptep, mask);
406 }
407
get_mmio_spte_gfn(u64 spte)408 static gfn_t get_mmio_spte_gfn(u64 spte)
409 {
410 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
411
412 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
413 & shadow_nonpresent_or_rsvd_mask;
414
415 return gpa >> PAGE_SHIFT;
416 }
417
get_mmio_spte_access(u64 spte)418 static unsigned get_mmio_spte_access(u64 spte)
419 {
420 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
421 return (spte & ~mask) & ~PAGE_MASK;
422 }
423
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned access)424 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
425 kvm_pfn_t pfn, unsigned access)
426 {
427 if (unlikely(is_noslot_pfn(pfn))) {
428 mark_mmio_spte(vcpu, sptep, gfn, access);
429 return true;
430 }
431
432 return false;
433 }
434
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)435 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
436 {
437 unsigned int kvm_gen, spte_gen;
438
439 kvm_gen = kvm_current_mmio_generation(vcpu);
440 spte_gen = get_mmio_spte_generation(spte);
441
442 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
443 return likely(kvm_gen == spte_gen);
444 }
445
446 /*
447 * Sets the shadow PTE masks used by the MMU.
448 *
449 * Assumptions:
450 * - Setting either @accessed_mask or @dirty_mask requires setting both
451 * - At least one of @accessed_mask or @acc_track_mask must be set
452 */
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask,u64 p_mask,u64 acc_track_mask,u64 me_mask)453 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
454 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
455 u64 acc_track_mask, u64 me_mask)
456 {
457 BUG_ON(!dirty_mask != !accessed_mask);
458 BUG_ON(!accessed_mask && !acc_track_mask);
459 BUG_ON(acc_track_mask & shadow_acc_track_value);
460
461 shadow_user_mask = user_mask;
462 shadow_accessed_mask = accessed_mask;
463 shadow_dirty_mask = dirty_mask;
464 shadow_nx_mask = nx_mask;
465 shadow_x_mask = x_mask;
466 shadow_present_mask = p_mask;
467 shadow_acc_track_mask = acc_track_mask;
468 shadow_me_mask = me_mask;
469 }
470 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
471
kvm_get_shadow_phys_bits(void)472 static u8 kvm_get_shadow_phys_bits(void)
473 {
474 /*
475 * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
476 * in CPU detection code, but MKTME treats those reduced bits as
477 * 'keyID' thus they are not reserved bits. Therefore for MKTME
478 * we should still return physical address bits reported by CPUID.
479 */
480 if (!boot_cpu_has(X86_FEATURE_TME) ||
481 WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
482 return boot_cpu_data.x86_phys_bits;
483
484 return cpuid_eax(0x80000008) & 0xff;
485 }
486
kvm_mmu_reset_all_pte_masks(void)487 static void kvm_mmu_reset_all_pte_masks(void)
488 {
489 u8 low_phys_bits;
490
491 shadow_user_mask = 0;
492 shadow_accessed_mask = 0;
493 shadow_dirty_mask = 0;
494 shadow_nx_mask = 0;
495 shadow_x_mask = 0;
496 shadow_mmio_mask = 0;
497 shadow_present_mask = 0;
498 shadow_acc_track_mask = 0;
499
500 shadow_phys_bits = kvm_get_shadow_phys_bits();
501
502 /*
503 * If the CPU has 46 or less physical address bits, then set an
504 * appropriate mask to guard against L1TF attacks. Otherwise, it is
505 * assumed that the CPU is not vulnerable to L1TF.
506 *
507 * Some Intel CPUs address the L1 cache using more PA bits than are
508 * reported by CPUID. Use the PA width of the L1 cache when possible
509 * to achieve more effective mitigation, e.g. if system RAM overlaps
510 * the most significant bits of legal physical address space.
511 */
512 shadow_nonpresent_or_rsvd_mask = 0;
513 low_phys_bits = boot_cpu_data.x86_phys_bits;
514 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
515 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
516 52 - shadow_nonpresent_or_rsvd_mask_len)) {
517 low_phys_bits = boot_cpu_data.x86_cache_bits
518 - shadow_nonpresent_or_rsvd_mask_len;
519 shadow_nonpresent_or_rsvd_mask =
520 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
521 }
522
523 shadow_nonpresent_or_rsvd_lower_gfn_mask =
524 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
525 }
526
is_cpuid_PSE36(void)527 static int is_cpuid_PSE36(void)
528 {
529 return 1;
530 }
531
is_nx(struct kvm_vcpu * vcpu)532 static int is_nx(struct kvm_vcpu *vcpu)
533 {
534 return vcpu->arch.efer & EFER_NX;
535 }
536
is_shadow_present_pte(u64 pte)537 static int is_shadow_present_pte(u64 pte)
538 {
539 return (pte != 0) && !is_mmio_spte(pte);
540 }
541
is_large_pte(u64 pte)542 static int is_large_pte(u64 pte)
543 {
544 return pte & PT_PAGE_SIZE_MASK;
545 }
546
is_last_spte(u64 pte,int level)547 static int is_last_spte(u64 pte, int level)
548 {
549 if (level == PT_PAGE_TABLE_LEVEL)
550 return 1;
551 if (is_large_pte(pte))
552 return 1;
553 return 0;
554 }
555
is_executable_pte(u64 spte)556 static bool is_executable_pte(u64 spte)
557 {
558 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
559 }
560
spte_to_pfn(u64 pte)561 static kvm_pfn_t spte_to_pfn(u64 pte)
562 {
563 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
564 }
565
pse36_gfn_delta(u32 gpte)566 static gfn_t pse36_gfn_delta(u32 gpte)
567 {
568 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
569
570 return (gpte & PT32_DIR_PSE36_MASK) << shift;
571 }
572
573 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)574 static void __set_spte(u64 *sptep, u64 spte)
575 {
576 WRITE_ONCE(*sptep, spte);
577 }
578
__update_clear_spte_fast(u64 * sptep,u64 spte)579 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
580 {
581 WRITE_ONCE(*sptep, spte);
582 }
583
__update_clear_spte_slow(u64 * sptep,u64 spte)584 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
585 {
586 return xchg(sptep, spte);
587 }
588
__get_spte_lockless(u64 * sptep)589 static u64 __get_spte_lockless(u64 *sptep)
590 {
591 return READ_ONCE(*sptep);
592 }
593 #else
594 union split_spte {
595 struct {
596 u32 spte_low;
597 u32 spte_high;
598 };
599 u64 spte;
600 };
601
count_spte_clear(u64 * sptep,u64 spte)602 static void count_spte_clear(u64 *sptep, u64 spte)
603 {
604 struct kvm_mmu_page *sp = page_header(__pa(sptep));
605
606 if (is_shadow_present_pte(spte))
607 return;
608
609 /* Ensure the spte is completely set before we increase the count */
610 smp_wmb();
611 sp->clear_spte_count++;
612 }
613
__set_spte(u64 * sptep,u64 spte)614 static void __set_spte(u64 *sptep, u64 spte)
615 {
616 union split_spte *ssptep, sspte;
617
618 ssptep = (union split_spte *)sptep;
619 sspte = (union split_spte)spte;
620
621 ssptep->spte_high = sspte.spte_high;
622
623 /*
624 * If we map the spte from nonpresent to present, We should store
625 * the high bits firstly, then set present bit, so cpu can not
626 * fetch this spte while we are setting the spte.
627 */
628 smp_wmb();
629
630 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
631 }
632
__update_clear_spte_fast(u64 * sptep,u64 spte)633 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
634 {
635 union split_spte *ssptep, sspte;
636
637 ssptep = (union split_spte *)sptep;
638 sspte = (union split_spte)spte;
639
640 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
641
642 /*
643 * If we map the spte from present to nonpresent, we should clear
644 * present bit firstly to avoid vcpu fetch the old high bits.
645 */
646 smp_wmb();
647
648 ssptep->spte_high = sspte.spte_high;
649 count_spte_clear(sptep, spte);
650 }
651
__update_clear_spte_slow(u64 * sptep,u64 spte)652 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
653 {
654 union split_spte *ssptep, sspte, orig;
655
656 ssptep = (union split_spte *)sptep;
657 sspte = (union split_spte)spte;
658
659 /* xchg acts as a barrier before the setting of the high bits */
660 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
661 orig.spte_high = ssptep->spte_high;
662 ssptep->spte_high = sspte.spte_high;
663 count_spte_clear(sptep, spte);
664
665 return orig.spte;
666 }
667
668 /*
669 * The idea using the light way get the spte on x86_32 guest is from
670 * gup_get_pte(arch/x86/mm/gup.c).
671 *
672 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
673 * coalesces them and we are running out of the MMU lock. Therefore
674 * we need to protect against in-progress updates of the spte.
675 *
676 * Reading the spte while an update is in progress may get the old value
677 * for the high part of the spte. The race is fine for a present->non-present
678 * change (because the high part of the spte is ignored for non-present spte),
679 * but for a present->present change we must reread the spte.
680 *
681 * All such changes are done in two steps (present->non-present and
682 * non-present->present), hence it is enough to count the number of
683 * present->non-present updates: if it changed while reading the spte,
684 * we might have hit the race. This is done using clear_spte_count.
685 */
__get_spte_lockless(u64 * sptep)686 static u64 __get_spte_lockless(u64 *sptep)
687 {
688 struct kvm_mmu_page *sp = page_header(__pa(sptep));
689 union split_spte spte, *orig = (union split_spte *)sptep;
690 int count;
691
692 retry:
693 count = sp->clear_spte_count;
694 smp_rmb();
695
696 spte.spte_low = orig->spte_low;
697 smp_rmb();
698
699 spte.spte_high = orig->spte_high;
700 smp_rmb();
701
702 if (unlikely(spte.spte_low != orig->spte_low ||
703 count != sp->clear_spte_count))
704 goto retry;
705
706 return spte.spte;
707 }
708 #endif
709
spte_can_locklessly_be_made_writable(u64 spte)710 static bool spte_can_locklessly_be_made_writable(u64 spte)
711 {
712 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
713 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
714 }
715
spte_has_volatile_bits(u64 spte)716 static bool spte_has_volatile_bits(u64 spte)
717 {
718 if (!is_shadow_present_pte(spte))
719 return false;
720
721 /*
722 * Always atomically update spte if it can be updated
723 * out of mmu-lock, it can ensure dirty bit is not lost,
724 * also, it can help us to get a stable is_writable_pte()
725 * to ensure tlb flush is not missed.
726 */
727 if (spte_can_locklessly_be_made_writable(spte) ||
728 is_access_track_spte(spte))
729 return true;
730
731 if (spte_ad_enabled(spte)) {
732 if ((spte & shadow_accessed_mask) == 0 ||
733 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
734 return true;
735 }
736
737 return false;
738 }
739
is_accessed_spte(u64 spte)740 static bool is_accessed_spte(u64 spte)
741 {
742 u64 accessed_mask = spte_shadow_accessed_mask(spte);
743
744 return accessed_mask ? spte & accessed_mask
745 : !is_access_track_spte(spte);
746 }
747
is_dirty_spte(u64 spte)748 static bool is_dirty_spte(u64 spte)
749 {
750 u64 dirty_mask = spte_shadow_dirty_mask(spte);
751
752 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
753 }
754
755 /* Rules for using mmu_spte_set:
756 * Set the sptep from nonpresent to present.
757 * Note: the sptep being assigned *must* be either not present
758 * or in a state where the hardware will not attempt to update
759 * the spte.
760 */
mmu_spte_set(u64 * sptep,u64 new_spte)761 static void mmu_spte_set(u64 *sptep, u64 new_spte)
762 {
763 WARN_ON(is_shadow_present_pte(*sptep));
764 __set_spte(sptep, new_spte);
765 }
766
767 /*
768 * Update the SPTE (excluding the PFN), but do not track changes in its
769 * accessed/dirty status.
770 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)771 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
772 {
773 u64 old_spte = *sptep;
774
775 WARN_ON(!is_shadow_present_pte(new_spte));
776
777 if (!is_shadow_present_pte(old_spte)) {
778 mmu_spte_set(sptep, new_spte);
779 return old_spte;
780 }
781
782 if (!spte_has_volatile_bits(old_spte))
783 __update_clear_spte_fast(sptep, new_spte);
784 else
785 old_spte = __update_clear_spte_slow(sptep, new_spte);
786
787 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
788
789 return old_spte;
790 }
791
792 /* Rules for using mmu_spte_update:
793 * Update the state bits, it means the mapped pfn is not changed.
794 *
795 * Whenever we overwrite a writable spte with a read-only one we
796 * should flush remote TLBs. Otherwise rmap_write_protect
797 * will find a read-only spte, even though the writable spte
798 * might be cached on a CPU's TLB, the return value indicates this
799 * case.
800 *
801 * Returns true if the TLB needs to be flushed
802 */
mmu_spte_update(u64 * sptep,u64 new_spte)803 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
804 {
805 bool flush = false;
806 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
807
808 if (!is_shadow_present_pte(old_spte))
809 return false;
810
811 /*
812 * For the spte updated out of mmu-lock is safe, since
813 * we always atomically update it, see the comments in
814 * spte_has_volatile_bits().
815 */
816 if (spte_can_locklessly_be_made_writable(old_spte) &&
817 !is_writable_pte(new_spte))
818 flush = true;
819
820 /*
821 * Flush TLB when accessed/dirty states are changed in the page tables,
822 * to guarantee consistency between TLB and page tables.
823 */
824
825 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
826 flush = true;
827 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
828 }
829
830 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
831 flush = true;
832 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
833 }
834
835 return flush;
836 }
837
838 /*
839 * Rules for using mmu_spte_clear_track_bits:
840 * It sets the sptep from present to nonpresent, and track the
841 * state bits, it is used to clear the last level sptep.
842 * Returns non-zero if the PTE was previously valid.
843 */
mmu_spte_clear_track_bits(u64 * sptep)844 static int mmu_spte_clear_track_bits(u64 *sptep)
845 {
846 kvm_pfn_t pfn;
847 u64 old_spte = *sptep;
848
849 if (!spte_has_volatile_bits(old_spte))
850 __update_clear_spte_fast(sptep, 0ull);
851 else
852 old_spte = __update_clear_spte_slow(sptep, 0ull);
853
854 if (!is_shadow_present_pte(old_spte))
855 return 0;
856
857 pfn = spte_to_pfn(old_spte);
858
859 /*
860 * KVM does not hold the refcount of the page used by
861 * kvm mmu, before reclaiming the page, we should
862 * unmap it from mmu first.
863 */
864 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
865
866 if (is_accessed_spte(old_spte))
867 kvm_set_pfn_accessed(pfn);
868
869 if (is_dirty_spte(old_spte))
870 kvm_set_pfn_dirty(pfn);
871
872 return 1;
873 }
874
875 /*
876 * Rules for using mmu_spte_clear_no_track:
877 * Directly clear spte without caring the state bits of sptep,
878 * it is used to set the upper level spte.
879 */
mmu_spte_clear_no_track(u64 * sptep)880 static void mmu_spte_clear_no_track(u64 *sptep)
881 {
882 __update_clear_spte_fast(sptep, 0ull);
883 }
884
mmu_spte_get_lockless(u64 * sptep)885 static u64 mmu_spte_get_lockless(u64 *sptep)
886 {
887 return __get_spte_lockless(sptep);
888 }
889
mark_spte_for_access_track(u64 spte)890 static u64 mark_spte_for_access_track(u64 spte)
891 {
892 if (spte_ad_enabled(spte))
893 return spte & ~shadow_accessed_mask;
894
895 if (is_access_track_spte(spte))
896 return spte;
897
898 /*
899 * Making an Access Tracking PTE will result in removal of write access
900 * from the PTE. So, verify that we will be able to restore the write
901 * access in the fast page fault path later on.
902 */
903 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
904 !spte_can_locklessly_be_made_writable(spte),
905 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
906
907 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
908 shadow_acc_track_saved_bits_shift),
909 "kvm: Access Tracking saved bit locations are not zero\n");
910
911 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
912 shadow_acc_track_saved_bits_shift;
913 spte &= ~shadow_acc_track_mask;
914
915 return spte;
916 }
917
918 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)919 static u64 restore_acc_track_spte(u64 spte)
920 {
921 u64 new_spte = spte;
922 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
923 & shadow_acc_track_saved_bits_mask;
924
925 WARN_ON_ONCE(spte_ad_enabled(spte));
926 WARN_ON_ONCE(!is_access_track_spte(spte));
927
928 new_spte &= ~shadow_acc_track_mask;
929 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
930 shadow_acc_track_saved_bits_shift);
931 new_spte |= saved_bits;
932
933 return new_spte;
934 }
935
936 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)937 static bool mmu_spte_age(u64 *sptep)
938 {
939 u64 spte = mmu_spte_get_lockless(sptep);
940
941 if (!is_accessed_spte(spte))
942 return false;
943
944 if (spte_ad_enabled(spte)) {
945 clear_bit((ffs(shadow_accessed_mask) - 1),
946 (unsigned long *)sptep);
947 } else {
948 /*
949 * Capture the dirty status of the page, so that it doesn't get
950 * lost when the SPTE is marked for access tracking.
951 */
952 if (is_writable_pte(spte))
953 kvm_set_pfn_dirty(spte_to_pfn(spte));
954
955 spte = mark_spte_for_access_track(spte);
956 mmu_spte_update_no_track(sptep, spte);
957 }
958
959 return true;
960 }
961
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)962 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
963 {
964 /*
965 * Prevent page table teardown by making any free-er wait during
966 * kvm_flush_remote_tlbs() IPI to all active vcpus.
967 */
968 local_irq_disable();
969
970 /*
971 * Make sure a following spte read is not reordered ahead of the write
972 * to vcpu->mode.
973 */
974 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
975 }
976
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)977 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
978 {
979 /*
980 * Make sure the write to vcpu->mode is not reordered in front of
981 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
982 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
983 */
984 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
985 local_irq_enable();
986 }
987
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)988 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
989 struct kmem_cache *base_cache, int min)
990 {
991 void *obj;
992
993 if (cache->nobjs >= min)
994 return 0;
995 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
996 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
997 if (!obj)
998 return -ENOMEM;
999 cache->objects[cache->nobjs++] = obj;
1000 }
1001 return 0;
1002 }
1003
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)1004 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1005 {
1006 return cache->nobjs;
1007 }
1008
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)1009 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1010 struct kmem_cache *cache)
1011 {
1012 while (mc->nobjs)
1013 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1014 }
1015
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)1016 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1017 int min)
1018 {
1019 void *page;
1020
1021 if (cache->nobjs >= min)
1022 return 0;
1023 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1024 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1025 if (!page)
1026 return -ENOMEM;
1027 cache->objects[cache->nobjs++] = page;
1028 }
1029 return 0;
1030 }
1031
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)1032 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1033 {
1034 while (mc->nobjs)
1035 free_page((unsigned long)mc->objects[--mc->nobjs]);
1036 }
1037
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)1038 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1039 {
1040 int r;
1041
1042 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1043 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1044 if (r)
1045 goto out;
1046 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1047 if (r)
1048 goto out;
1049 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1050 mmu_page_header_cache, 4);
1051 out:
1052 return r;
1053 }
1054
mmu_free_memory_caches(struct kvm_vcpu * vcpu)1055 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1056 {
1057 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1058 pte_list_desc_cache);
1059 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1060 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1061 mmu_page_header_cache);
1062 }
1063
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)1064 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1065 {
1066 void *p;
1067
1068 BUG_ON(!mc->nobjs);
1069 p = mc->objects[--mc->nobjs];
1070 return p;
1071 }
1072
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)1073 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1074 {
1075 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1076 }
1077
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)1078 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1079 {
1080 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1081 }
1082
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)1083 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1084 {
1085 if (!sp->role.direct)
1086 return sp->gfns[index];
1087
1088 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1089 }
1090
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)1091 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1092 {
1093 if (!sp->role.direct) {
1094 sp->gfns[index] = gfn;
1095 return;
1096 }
1097
1098 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1099 pr_err_ratelimited("gfn mismatch under direct page %llx "
1100 "(expected %llx, got %llx)\n",
1101 sp->gfn,
1102 kvm_mmu_page_get_gfn(sp, index), gfn);
1103 }
1104
1105 /*
1106 * Return the pointer to the large page information for a given gfn,
1107 * handling slots that are not large page aligned.
1108 */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)1109 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1110 struct kvm_memory_slot *slot,
1111 int level)
1112 {
1113 unsigned long idx;
1114
1115 idx = gfn_to_index(gfn, slot->base_gfn, level);
1116 return &slot->arch.lpage_info[level - 2][idx];
1117 }
1118
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)1119 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1120 gfn_t gfn, int count)
1121 {
1122 struct kvm_lpage_info *linfo;
1123 int i;
1124
1125 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1126 linfo = lpage_info_slot(gfn, slot, i);
1127 linfo->disallow_lpage += count;
1128 WARN_ON(linfo->disallow_lpage < 0);
1129 }
1130 }
1131
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1132 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1133 {
1134 update_gfn_disallow_lpage_count(slot, gfn, 1);
1135 }
1136
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1137 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1138 {
1139 update_gfn_disallow_lpage_count(slot, gfn, -1);
1140 }
1141
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1142 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1143 {
1144 struct kvm_memslots *slots;
1145 struct kvm_memory_slot *slot;
1146 gfn_t gfn;
1147
1148 kvm->arch.indirect_shadow_pages++;
1149 gfn = sp->gfn;
1150 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1151 slot = __gfn_to_memslot(slots, gfn);
1152
1153 /* the non-leaf shadow pages are keeping readonly. */
1154 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1155 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1156 KVM_PAGE_TRACK_WRITE);
1157
1158 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1159 }
1160
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1161 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1162 {
1163 if (sp->lpage_disallowed)
1164 return;
1165
1166 ++kvm->stat.nx_lpage_splits;
1167 list_add_tail(&sp->lpage_disallowed_link,
1168 &kvm->arch.lpage_disallowed_mmu_pages);
1169 sp->lpage_disallowed = true;
1170 }
1171
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1172 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1173 {
1174 struct kvm_memslots *slots;
1175 struct kvm_memory_slot *slot;
1176 gfn_t gfn;
1177
1178 kvm->arch.indirect_shadow_pages--;
1179 gfn = sp->gfn;
1180 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1181 slot = __gfn_to_memslot(slots, gfn);
1182 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1183 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1184 KVM_PAGE_TRACK_WRITE);
1185
1186 kvm_mmu_gfn_allow_lpage(slot, gfn);
1187 }
1188
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1189 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1190 {
1191 --kvm->stat.nx_lpage_splits;
1192 sp->lpage_disallowed = false;
1193 list_del(&sp->lpage_disallowed_link);
1194 }
1195
__mmu_gfn_lpage_is_disallowed(gfn_t gfn,int level,struct kvm_memory_slot * slot)1196 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1197 struct kvm_memory_slot *slot)
1198 {
1199 struct kvm_lpage_info *linfo;
1200
1201 if (slot) {
1202 linfo = lpage_info_slot(gfn, slot, level);
1203 return !!linfo->disallow_lpage;
1204 }
1205
1206 return true;
1207 }
1208
mmu_gfn_lpage_is_disallowed(struct kvm_vcpu * vcpu,gfn_t gfn,int level)1209 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1210 int level)
1211 {
1212 struct kvm_memory_slot *slot;
1213
1214 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1215 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1216 }
1217
host_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn)1218 static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
1219 {
1220 unsigned long page_size;
1221 int i, ret = 0;
1222
1223 page_size = kvm_host_page_size(vcpu, gfn);
1224
1225 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1226 if (page_size >= KVM_HPAGE_SIZE(i))
1227 ret = i;
1228 else
1229 break;
1230 }
1231
1232 return ret;
1233 }
1234
memslot_valid_for_gpte(struct kvm_memory_slot * slot,bool no_dirty_log)1235 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1236 bool no_dirty_log)
1237 {
1238 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1239 return false;
1240 if (no_dirty_log && slot->dirty_bitmap)
1241 return false;
1242
1243 return true;
1244 }
1245
1246 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)1247 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1248 bool no_dirty_log)
1249 {
1250 struct kvm_memory_slot *slot;
1251
1252 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1253 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1254 slot = NULL;
1255
1256 return slot;
1257 }
1258
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn,bool * force_pt_level)1259 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1260 bool *force_pt_level)
1261 {
1262 int host_level, level, max_level;
1263 struct kvm_memory_slot *slot;
1264
1265 if (unlikely(*force_pt_level))
1266 return PT_PAGE_TABLE_LEVEL;
1267
1268 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1269 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1270 if (unlikely(*force_pt_level))
1271 return PT_PAGE_TABLE_LEVEL;
1272
1273 host_level = host_mapping_level(vcpu, large_gfn);
1274
1275 if (host_level == PT_PAGE_TABLE_LEVEL)
1276 return host_level;
1277
1278 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1279
1280 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1281 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1282 break;
1283
1284 return level - 1;
1285 }
1286
1287 /*
1288 * About rmap_head encoding:
1289 *
1290 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1291 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1292 * pte_list_desc containing more mappings.
1293 */
1294
1295 /*
1296 * Returns the number of pointers in the rmap chain, not counting the new one.
1297 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)1298 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1299 struct kvm_rmap_head *rmap_head)
1300 {
1301 struct pte_list_desc *desc;
1302 int i, count = 0;
1303
1304 if (!rmap_head->val) {
1305 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1306 rmap_head->val = (unsigned long)spte;
1307 } else if (!(rmap_head->val & 1)) {
1308 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1309 desc = mmu_alloc_pte_list_desc(vcpu);
1310 desc->sptes[0] = (u64 *)rmap_head->val;
1311 desc->sptes[1] = spte;
1312 rmap_head->val = (unsigned long)desc | 1;
1313 ++count;
1314 } else {
1315 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1316 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1317 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1318 desc = desc->more;
1319 count += PTE_LIST_EXT;
1320 }
1321 if (desc->sptes[PTE_LIST_EXT-1]) {
1322 desc->more = mmu_alloc_pte_list_desc(vcpu);
1323 desc = desc->more;
1324 }
1325 for (i = 0; desc->sptes[i]; ++i)
1326 ++count;
1327 desc->sptes[i] = spte;
1328 }
1329 return count;
1330 }
1331
1332 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)1333 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1334 struct pte_list_desc *desc, int i,
1335 struct pte_list_desc *prev_desc)
1336 {
1337 int j;
1338
1339 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1340 ;
1341 desc->sptes[i] = desc->sptes[j];
1342 desc->sptes[j] = NULL;
1343 if (j != 0)
1344 return;
1345 if (!prev_desc && !desc->more)
1346 rmap_head->val = (unsigned long)desc->sptes[0];
1347 else
1348 if (prev_desc)
1349 prev_desc->more = desc->more;
1350 else
1351 rmap_head->val = (unsigned long)desc->more | 1;
1352 mmu_free_pte_list_desc(desc);
1353 }
1354
pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)1355 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1356 {
1357 struct pte_list_desc *desc;
1358 struct pte_list_desc *prev_desc;
1359 int i;
1360
1361 if (!rmap_head->val) {
1362 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1363 BUG();
1364 } else if (!(rmap_head->val & 1)) {
1365 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1366 if ((u64 *)rmap_head->val != spte) {
1367 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1368 BUG();
1369 }
1370 rmap_head->val = 0;
1371 } else {
1372 rmap_printk("pte_list_remove: %p many->many\n", spte);
1373 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1374 prev_desc = NULL;
1375 while (desc) {
1376 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1377 if (desc->sptes[i] == spte) {
1378 pte_list_desc_remove_entry(rmap_head,
1379 desc, i, prev_desc);
1380 return;
1381 }
1382 }
1383 prev_desc = desc;
1384 desc = desc->more;
1385 }
1386 pr_err("pte_list_remove: %p many->many\n", spte);
1387 BUG();
1388 }
1389 }
1390
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1391 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1392 struct kvm_memory_slot *slot)
1393 {
1394 unsigned long idx;
1395
1396 idx = gfn_to_index(gfn, slot->base_gfn, level);
1397 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1398 }
1399
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)1400 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1401 struct kvm_mmu_page *sp)
1402 {
1403 struct kvm_memslots *slots;
1404 struct kvm_memory_slot *slot;
1405
1406 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1407 slot = __gfn_to_memslot(slots, gfn);
1408 return __gfn_to_rmap(gfn, sp->role.level, slot);
1409 }
1410
rmap_can_add(struct kvm_vcpu * vcpu)1411 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1412 {
1413 struct kvm_mmu_memory_cache *cache;
1414
1415 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1416 return mmu_memory_cache_free_objects(cache);
1417 }
1418
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1419 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1420 {
1421 struct kvm_mmu_page *sp;
1422 struct kvm_rmap_head *rmap_head;
1423
1424 sp = page_header(__pa(spte));
1425 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1426 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1427 return pte_list_add(vcpu, spte, rmap_head);
1428 }
1429
rmap_remove(struct kvm * kvm,u64 * spte)1430 static void rmap_remove(struct kvm *kvm, u64 *spte)
1431 {
1432 struct kvm_mmu_page *sp;
1433 gfn_t gfn;
1434 struct kvm_rmap_head *rmap_head;
1435
1436 sp = page_header(__pa(spte));
1437 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1438 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1439 pte_list_remove(spte, rmap_head);
1440 }
1441
1442 /*
1443 * Used by the following functions to iterate through the sptes linked by a
1444 * rmap. All fields are private and not assumed to be used outside.
1445 */
1446 struct rmap_iterator {
1447 /* private fields */
1448 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1449 int pos; /* index of the sptep */
1450 };
1451
1452 /*
1453 * Iteration must be started by this function. This should also be used after
1454 * removing/dropping sptes from the rmap link because in such cases the
1455 * information in the itererator may not be valid.
1456 *
1457 * Returns sptep if found, NULL otherwise.
1458 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1459 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1460 struct rmap_iterator *iter)
1461 {
1462 u64 *sptep;
1463
1464 if (!rmap_head->val)
1465 return NULL;
1466
1467 if (!(rmap_head->val & 1)) {
1468 iter->desc = NULL;
1469 sptep = (u64 *)rmap_head->val;
1470 goto out;
1471 }
1472
1473 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1474 iter->pos = 0;
1475 sptep = iter->desc->sptes[iter->pos];
1476 out:
1477 BUG_ON(!is_shadow_present_pte(*sptep));
1478 return sptep;
1479 }
1480
1481 /*
1482 * Must be used with a valid iterator: e.g. after rmap_get_first().
1483 *
1484 * Returns sptep if found, NULL otherwise.
1485 */
rmap_get_next(struct rmap_iterator * iter)1486 static u64 *rmap_get_next(struct rmap_iterator *iter)
1487 {
1488 u64 *sptep;
1489
1490 if (iter->desc) {
1491 if (iter->pos < PTE_LIST_EXT - 1) {
1492 ++iter->pos;
1493 sptep = iter->desc->sptes[iter->pos];
1494 if (sptep)
1495 goto out;
1496 }
1497
1498 iter->desc = iter->desc->more;
1499
1500 if (iter->desc) {
1501 iter->pos = 0;
1502 /* desc->sptes[0] cannot be NULL */
1503 sptep = iter->desc->sptes[iter->pos];
1504 goto out;
1505 }
1506 }
1507
1508 return NULL;
1509 out:
1510 BUG_ON(!is_shadow_present_pte(*sptep));
1511 return sptep;
1512 }
1513
1514 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1515 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1516 _spte_; _spte_ = rmap_get_next(_iter_))
1517
drop_spte(struct kvm * kvm,u64 * sptep)1518 static void drop_spte(struct kvm *kvm, u64 *sptep)
1519 {
1520 if (mmu_spte_clear_track_bits(sptep))
1521 rmap_remove(kvm, sptep);
1522 }
1523
1524
__drop_large_spte(struct kvm * kvm,u64 * sptep)1525 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1526 {
1527 if (is_large_pte(*sptep)) {
1528 WARN_ON(page_header(__pa(sptep))->role.level ==
1529 PT_PAGE_TABLE_LEVEL);
1530 drop_spte(kvm, sptep);
1531 --kvm->stat.lpages;
1532 return true;
1533 }
1534
1535 return false;
1536 }
1537
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1538 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1539 {
1540 if (__drop_large_spte(vcpu->kvm, sptep))
1541 kvm_flush_remote_tlbs(vcpu->kvm);
1542 }
1543
1544 /*
1545 * Write-protect on the specified @sptep, @pt_protect indicates whether
1546 * spte write-protection is caused by protecting shadow page table.
1547 *
1548 * Note: write protection is difference between dirty logging and spte
1549 * protection:
1550 * - for dirty logging, the spte can be set to writable at anytime if
1551 * its dirty bitmap is properly set.
1552 * - for spte protection, the spte can be writable only after unsync-ing
1553 * shadow page.
1554 *
1555 * Return true if tlb need be flushed.
1556 */
spte_write_protect(u64 * sptep,bool pt_protect)1557 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1558 {
1559 u64 spte = *sptep;
1560
1561 if (!is_writable_pte(spte) &&
1562 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1563 return false;
1564
1565 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1566
1567 if (pt_protect)
1568 spte &= ~SPTE_MMU_WRITEABLE;
1569 spte = spte & ~PT_WRITABLE_MASK;
1570
1571 return mmu_spte_update(sptep, spte);
1572 }
1573
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1574 static bool __rmap_write_protect(struct kvm *kvm,
1575 struct kvm_rmap_head *rmap_head,
1576 bool pt_protect)
1577 {
1578 u64 *sptep;
1579 struct rmap_iterator iter;
1580 bool flush = false;
1581
1582 for_each_rmap_spte(rmap_head, &iter, sptep)
1583 flush |= spte_write_protect(sptep, pt_protect);
1584
1585 return flush;
1586 }
1587
spte_clear_dirty(u64 * sptep)1588 static bool spte_clear_dirty(u64 *sptep)
1589 {
1590 u64 spte = *sptep;
1591
1592 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1593
1594 spte &= ~shadow_dirty_mask;
1595
1596 return mmu_spte_update(sptep, spte);
1597 }
1598
wrprot_ad_disabled_spte(u64 * sptep)1599 static bool wrprot_ad_disabled_spte(u64 *sptep)
1600 {
1601 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1602 (unsigned long *)sptep);
1603 if (was_writable)
1604 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1605
1606 return was_writable;
1607 }
1608
1609 /*
1610 * Gets the GFN ready for another round of dirty logging by clearing the
1611 * - D bit on ad-enabled SPTEs, and
1612 * - W bit on ad-disabled SPTEs.
1613 * Returns true iff any D or W bits were cleared.
1614 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1615 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1616 {
1617 u64 *sptep;
1618 struct rmap_iterator iter;
1619 bool flush = false;
1620
1621 for_each_rmap_spte(rmap_head, &iter, sptep)
1622 if (spte_ad_enabled(*sptep))
1623 flush |= spte_clear_dirty(sptep);
1624 else
1625 flush |= wrprot_ad_disabled_spte(sptep);
1626
1627 return flush;
1628 }
1629
spte_set_dirty(u64 * sptep)1630 static bool spte_set_dirty(u64 *sptep)
1631 {
1632 u64 spte = *sptep;
1633
1634 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1635
1636 spte |= shadow_dirty_mask;
1637
1638 return mmu_spte_update(sptep, spte);
1639 }
1640
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1641 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1642 {
1643 u64 *sptep;
1644 struct rmap_iterator iter;
1645 bool flush = false;
1646
1647 for_each_rmap_spte(rmap_head, &iter, sptep)
1648 if (spte_ad_enabled(*sptep))
1649 flush |= spte_set_dirty(sptep);
1650
1651 return flush;
1652 }
1653
1654 /**
1655 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1656 * @kvm: kvm instance
1657 * @slot: slot to protect
1658 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1659 * @mask: indicates which pages we should protect
1660 *
1661 * Used when we do not need to care about huge page mappings: e.g. during dirty
1662 * logging we do not have any such mappings.
1663 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1664 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1665 struct kvm_memory_slot *slot,
1666 gfn_t gfn_offset, unsigned long mask)
1667 {
1668 struct kvm_rmap_head *rmap_head;
1669
1670 while (mask) {
1671 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1672 PT_PAGE_TABLE_LEVEL, slot);
1673 __rmap_write_protect(kvm, rmap_head, false);
1674
1675 /* clear the first set bit */
1676 mask &= mask - 1;
1677 }
1678 }
1679
1680 /**
1681 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1682 * protect the page if the D-bit isn't supported.
1683 * @kvm: kvm instance
1684 * @slot: slot to clear D-bit
1685 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1686 * @mask: indicates which pages we should clear D-bit
1687 *
1688 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1689 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1690 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1691 struct kvm_memory_slot *slot,
1692 gfn_t gfn_offset, unsigned long mask)
1693 {
1694 struct kvm_rmap_head *rmap_head;
1695
1696 while (mask) {
1697 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1698 PT_PAGE_TABLE_LEVEL, slot);
1699 __rmap_clear_dirty(kvm, rmap_head);
1700
1701 /* clear the first set bit */
1702 mask &= mask - 1;
1703 }
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1706
1707 /**
1708 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1709 * PT level pages.
1710 *
1711 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1712 * enable dirty logging for them.
1713 *
1714 * Used when we do not need to care about huge page mappings: e.g. during dirty
1715 * logging we do not have any such mappings.
1716 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1717 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1718 struct kvm_memory_slot *slot,
1719 gfn_t gfn_offset, unsigned long mask)
1720 {
1721 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1722 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1723 mask);
1724 else
1725 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1726 }
1727
1728 /**
1729 * kvm_arch_write_log_dirty - emulate dirty page logging
1730 * @vcpu: Guest mode vcpu
1731 *
1732 * Emulate arch specific page modification logging for the
1733 * nested hypervisor
1734 */
kvm_arch_write_log_dirty(struct kvm_vcpu * vcpu,gpa_t l2_gpa)1735 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu, gpa_t l2_gpa)
1736 {
1737 if (kvm_x86_ops->write_log_dirty)
1738 return kvm_x86_ops->write_log_dirty(vcpu, l2_gpa);
1739
1740 return 0;
1741 }
1742
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1743 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1744 struct kvm_memory_slot *slot, u64 gfn)
1745 {
1746 struct kvm_rmap_head *rmap_head;
1747 int i;
1748 bool write_protected = false;
1749
1750 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1751 rmap_head = __gfn_to_rmap(gfn, i, slot);
1752 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1753 }
1754
1755 return write_protected;
1756 }
1757
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1758 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1759 {
1760 struct kvm_memory_slot *slot;
1761
1762 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1764 }
1765
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1766 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1767 {
1768 u64 *sptep;
1769 struct rmap_iterator iter;
1770 bool flush = false;
1771
1772 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1773 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1774
1775 drop_spte(kvm, sptep);
1776 flush = true;
1777 }
1778
1779 return flush;
1780 }
1781
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1782 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1783 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1784 unsigned long data)
1785 {
1786 return kvm_zap_rmapp(kvm, rmap_head);
1787 }
1788
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1789 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1790 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1791 unsigned long data)
1792 {
1793 u64 *sptep;
1794 struct rmap_iterator iter;
1795 int need_flush = 0;
1796 u64 new_spte;
1797 pte_t *ptep = (pte_t *)data;
1798 kvm_pfn_t new_pfn;
1799
1800 WARN_ON(pte_huge(*ptep));
1801 new_pfn = pte_pfn(*ptep);
1802
1803 restart:
1804 for_each_rmap_spte(rmap_head, &iter, sptep) {
1805 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1806 sptep, *sptep, gfn, level);
1807
1808 need_flush = 1;
1809
1810 if (pte_write(*ptep)) {
1811 drop_spte(kvm, sptep);
1812 goto restart;
1813 } else {
1814 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1815 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1816
1817 new_spte &= ~PT_WRITABLE_MASK;
1818 new_spte &= ~SPTE_HOST_WRITEABLE;
1819
1820 new_spte = mark_spte_for_access_track(new_spte);
1821
1822 mmu_spte_clear_track_bits(sptep);
1823 mmu_spte_set(sptep, new_spte);
1824 }
1825 }
1826
1827 if (need_flush)
1828 kvm_flush_remote_tlbs(kvm);
1829
1830 return 0;
1831 }
1832
1833 struct slot_rmap_walk_iterator {
1834 /* input fields. */
1835 struct kvm_memory_slot *slot;
1836 gfn_t start_gfn;
1837 gfn_t end_gfn;
1838 int start_level;
1839 int end_level;
1840
1841 /* output fields. */
1842 gfn_t gfn;
1843 struct kvm_rmap_head *rmap;
1844 int level;
1845
1846 /* private field. */
1847 struct kvm_rmap_head *end_rmap;
1848 };
1849
1850 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1851 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1852 {
1853 iterator->level = level;
1854 iterator->gfn = iterator->start_gfn;
1855 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1856 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1857 iterator->slot);
1858 }
1859
1860 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1861 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1862 struct kvm_memory_slot *slot, int start_level,
1863 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1864 {
1865 iterator->slot = slot;
1866 iterator->start_level = start_level;
1867 iterator->end_level = end_level;
1868 iterator->start_gfn = start_gfn;
1869 iterator->end_gfn = end_gfn;
1870
1871 rmap_walk_init_level(iterator, iterator->start_level);
1872 }
1873
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1874 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1875 {
1876 return !!iterator->rmap;
1877 }
1878
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1879 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1880 {
1881 if (++iterator->rmap <= iterator->end_rmap) {
1882 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1883 return;
1884 }
1885
1886 if (++iterator->level > iterator->end_level) {
1887 iterator->rmap = NULL;
1888 return;
1889 }
1890
1891 rmap_walk_init_level(iterator, iterator->level);
1892 }
1893
1894 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1895 _start_gfn, _end_gfn, _iter_) \
1896 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1897 _end_level_, _start_gfn, _end_gfn); \
1898 slot_rmap_walk_okay(_iter_); \
1899 slot_rmap_walk_next(_iter_))
1900
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1901 static int kvm_handle_hva_range(struct kvm *kvm,
1902 unsigned long start,
1903 unsigned long end,
1904 unsigned long data,
1905 int (*handler)(struct kvm *kvm,
1906 struct kvm_rmap_head *rmap_head,
1907 struct kvm_memory_slot *slot,
1908 gfn_t gfn,
1909 int level,
1910 unsigned long data))
1911 {
1912 struct kvm_memslots *slots;
1913 struct kvm_memory_slot *memslot;
1914 struct slot_rmap_walk_iterator iterator;
1915 int ret = 0;
1916 int i;
1917
1918 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1919 slots = __kvm_memslots(kvm, i);
1920 kvm_for_each_memslot(memslot, slots) {
1921 unsigned long hva_start, hva_end;
1922 gfn_t gfn_start, gfn_end;
1923
1924 hva_start = max(start, memslot->userspace_addr);
1925 hva_end = min(end, memslot->userspace_addr +
1926 (memslot->npages << PAGE_SHIFT));
1927 if (hva_start >= hva_end)
1928 continue;
1929 /*
1930 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1931 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1932 */
1933 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1934 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1935
1936 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1937 PT_MAX_HUGEPAGE_LEVEL,
1938 gfn_start, gfn_end - 1,
1939 &iterator)
1940 ret |= handler(kvm, iterator.rmap, memslot,
1941 iterator.gfn, iterator.level, data);
1942 }
1943 }
1944
1945 return ret;
1946 }
1947
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1948 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1949 unsigned long data,
1950 int (*handler)(struct kvm *kvm,
1951 struct kvm_rmap_head *rmap_head,
1952 struct kvm_memory_slot *slot,
1953 gfn_t gfn, int level,
1954 unsigned long data))
1955 {
1956 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1957 }
1958
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)1959 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1960 bool blockable)
1961 {
1962 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1963 }
1964
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1965 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1966 {
1967 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1968 }
1969
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1970 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1971 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1972 unsigned long data)
1973 {
1974 u64 *sptep;
1975 struct rmap_iterator uninitialized_var(iter);
1976 int young = 0;
1977
1978 for_each_rmap_spte(rmap_head, &iter, sptep)
1979 young |= mmu_spte_age(sptep);
1980
1981 trace_kvm_age_page(gfn, level, slot, young);
1982 return young;
1983 }
1984
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1985 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1986 struct kvm_memory_slot *slot, gfn_t gfn,
1987 int level, unsigned long data)
1988 {
1989 u64 *sptep;
1990 struct rmap_iterator iter;
1991
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 if (is_accessed_spte(*sptep))
1994 return 1;
1995 return 0;
1996 }
1997
1998 #define RMAP_RECYCLE_THRESHOLD 1000
1999
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)2000 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2001 {
2002 struct kvm_rmap_head *rmap_head;
2003 struct kvm_mmu_page *sp;
2004
2005 sp = page_header(__pa(spte));
2006
2007 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2008
2009 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2010 kvm_flush_remote_tlbs(vcpu->kvm);
2011 }
2012
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)2013 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2014 {
2015 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2016 }
2017
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)2018 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2019 {
2020 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2021 }
2022
2023 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)2024 static int is_empty_shadow_page(u64 *spt)
2025 {
2026 u64 *pos;
2027 u64 *end;
2028
2029 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2030 if (is_shadow_present_pte(*pos)) {
2031 printk(KERN_ERR "%s: %p %llx\n", __func__,
2032 pos, *pos);
2033 return 0;
2034 }
2035 return 1;
2036 }
2037 #endif
2038
2039 /*
2040 * This value is the sum of all of the kvm instances's
2041 * kvm->arch.n_used_mmu_pages values. We need a global,
2042 * aggregate version in order to make the slab shrinker
2043 * faster
2044 */
kvm_mod_used_mmu_pages(struct kvm * kvm,unsigned long nr)2045 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2046 {
2047 kvm->arch.n_used_mmu_pages += nr;
2048 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2049 }
2050
kvm_mmu_free_page(struct kvm_mmu_page * sp)2051 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2052 {
2053 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2054 hlist_del(&sp->hash_link);
2055 list_del(&sp->link);
2056 free_page((unsigned long)sp->spt);
2057 if (!sp->role.direct)
2058 free_page((unsigned long)sp->gfns);
2059 kmem_cache_free(mmu_page_header_cache, sp);
2060 }
2061
kvm_page_table_hashfn(gfn_t gfn)2062 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2063 {
2064 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2065 }
2066
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)2067 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2068 struct kvm_mmu_page *sp, u64 *parent_pte)
2069 {
2070 if (!parent_pte)
2071 return;
2072
2073 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2074 }
2075
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2076 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2077 u64 *parent_pte)
2078 {
2079 pte_list_remove(parent_pte, &sp->parent_ptes);
2080 }
2081
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2082 static void drop_parent_pte(struct kvm_mmu_page *sp,
2083 u64 *parent_pte)
2084 {
2085 mmu_page_remove_parent_pte(sp, parent_pte);
2086 mmu_spte_clear_no_track(parent_pte);
2087 }
2088
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)2089 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2090 {
2091 struct kvm_mmu_page *sp;
2092
2093 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2094 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2095 if (!direct)
2096 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2097 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2098
2099 /*
2100 * The active_mmu_pages list is the FIFO list, do not move the
2101 * page until it is zapped. kvm_zap_obsolete_pages depends on
2102 * this feature. See the comments in kvm_zap_obsolete_pages().
2103 */
2104 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2105 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2106 return sp;
2107 }
2108
2109 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)2110 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2111 {
2112 u64 *sptep;
2113 struct rmap_iterator iter;
2114
2115 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2116 mark_unsync(sptep);
2117 }
2118 }
2119
mark_unsync(u64 * spte)2120 static void mark_unsync(u64 *spte)
2121 {
2122 struct kvm_mmu_page *sp;
2123 unsigned int index;
2124
2125 sp = page_header(__pa(spte));
2126 index = spte - sp->spt;
2127 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2128 return;
2129 if (sp->unsync_children++)
2130 return;
2131 kvm_mmu_mark_parents_unsync(sp);
2132 }
2133
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2134 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2135 struct kvm_mmu_page *sp)
2136 {
2137 return 0;
2138 }
2139
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva,hpa_t root)2140 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2141 {
2142 }
2143
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)2144 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2145 struct kvm_mmu_page *sp, u64 *spte,
2146 const void *pte)
2147 {
2148 WARN_ON(1);
2149 }
2150
2151 #define KVM_PAGE_ARRAY_NR 16
2152
2153 struct kvm_mmu_pages {
2154 struct mmu_page_and_offset {
2155 struct kvm_mmu_page *sp;
2156 unsigned int idx;
2157 } page[KVM_PAGE_ARRAY_NR];
2158 unsigned int nr;
2159 };
2160
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)2161 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2162 int idx)
2163 {
2164 int i;
2165
2166 if (sp->unsync)
2167 for (i=0; i < pvec->nr; i++)
2168 if (pvec->page[i].sp == sp)
2169 return 0;
2170
2171 pvec->page[pvec->nr].sp = sp;
2172 pvec->page[pvec->nr].idx = idx;
2173 pvec->nr++;
2174 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2175 }
2176
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)2177 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2178 {
2179 --sp->unsync_children;
2180 WARN_ON((int)sp->unsync_children < 0);
2181 __clear_bit(idx, sp->unsync_child_bitmap);
2182 }
2183
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2184 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2185 struct kvm_mmu_pages *pvec)
2186 {
2187 int i, ret, nr_unsync_leaf = 0;
2188
2189 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2190 struct kvm_mmu_page *child;
2191 u64 ent = sp->spt[i];
2192
2193 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2194 clear_unsync_child_bit(sp, i);
2195 continue;
2196 }
2197
2198 child = page_header(ent & PT64_BASE_ADDR_MASK);
2199
2200 if (child->unsync_children) {
2201 if (mmu_pages_add(pvec, child, i))
2202 return -ENOSPC;
2203
2204 ret = __mmu_unsync_walk(child, pvec);
2205 if (!ret) {
2206 clear_unsync_child_bit(sp, i);
2207 continue;
2208 } else if (ret > 0) {
2209 nr_unsync_leaf += ret;
2210 } else
2211 return ret;
2212 } else if (child->unsync) {
2213 nr_unsync_leaf++;
2214 if (mmu_pages_add(pvec, child, i))
2215 return -ENOSPC;
2216 } else
2217 clear_unsync_child_bit(sp, i);
2218 }
2219
2220 return nr_unsync_leaf;
2221 }
2222
2223 #define INVALID_INDEX (-1)
2224
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2225 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2226 struct kvm_mmu_pages *pvec)
2227 {
2228 pvec->nr = 0;
2229 if (!sp->unsync_children)
2230 return 0;
2231
2232 mmu_pages_add(pvec, sp, INVALID_INDEX);
2233 return __mmu_unsync_walk(sp, pvec);
2234 }
2235
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2236 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2237 {
2238 WARN_ON(!sp->unsync);
2239 trace_kvm_mmu_sync_page(sp);
2240 sp->unsync = 0;
2241 --kvm->stat.mmu_unsync;
2242 }
2243
2244 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2245 struct list_head *invalid_list);
2246 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2247 struct list_head *invalid_list);
2248
2249 /*
2250 * NOTE: we should pay more attention on the zapped-obsolete page
2251 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2252 * since it has been deleted from active_mmu_pages but still can be found
2253 * at hast list.
2254 *
2255 * for_each_valid_sp() has skipped that kind of pages.
2256 */
2257 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2258 hlist_for_each_entry(_sp, \
2259 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2260 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2261 } else
2262
2263 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2264 for_each_valid_sp(_kvm, _sp, _gfn) \
2265 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2266
2267 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2268 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2269 struct list_head *invalid_list)
2270 {
2271 if (sp->role.cr4_pae != !!is_pae(vcpu)
2272 || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2273 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2274 return false;
2275 }
2276
2277 return true;
2278 }
2279
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)2280 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2281 struct list_head *invalid_list,
2282 bool remote_flush, bool local_flush)
2283 {
2284 if (!list_empty(invalid_list)) {
2285 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2286 return;
2287 }
2288
2289 if (remote_flush)
2290 kvm_flush_remote_tlbs(vcpu->kvm);
2291 else if (local_flush)
2292 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2293 }
2294
2295 #ifdef CONFIG_KVM_MMU_AUDIT
2296 #include "mmu_audit.c"
2297 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)2298 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)2299 static void mmu_audit_disable(void) { }
2300 #endif
2301
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2302 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2303 {
2304 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2305 }
2306
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2307 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2308 struct list_head *invalid_list)
2309 {
2310 kvm_unlink_unsync_page(vcpu->kvm, sp);
2311 return __kvm_sync_page(vcpu, sp, invalid_list);
2312 }
2313
2314 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)2315 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2316 struct list_head *invalid_list)
2317 {
2318 struct kvm_mmu_page *s;
2319 bool ret = false;
2320
2321 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2322 if (!s->unsync)
2323 continue;
2324
2325 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2326 ret |= kvm_sync_page(vcpu, s, invalid_list);
2327 }
2328
2329 return ret;
2330 }
2331
2332 struct mmu_page_path {
2333 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2334 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2335 };
2336
2337 #define for_each_sp(pvec, sp, parents, i) \
2338 for (i = mmu_pages_first(&pvec, &parents); \
2339 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2340 i = mmu_pages_next(&pvec, &parents, i))
2341
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2342 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2343 struct mmu_page_path *parents,
2344 int i)
2345 {
2346 int n;
2347
2348 for (n = i+1; n < pvec->nr; n++) {
2349 struct kvm_mmu_page *sp = pvec->page[n].sp;
2350 unsigned idx = pvec->page[n].idx;
2351 int level = sp->role.level;
2352
2353 parents->idx[level-1] = idx;
2354 if (level == PT_PAGE_TABLE_LEVEL)
2355 break;
2356
2357 parents->parent[level-2] = sp;
2358 }
2359
2360 return n;
2361 }
2362
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2363 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2364 struct mmu_page_path *parents)
2365 {
2366 struct kvm_mmu_page *sp;
2367 int level;
2368
2369 if (pvec->nr == 0)
2370 return 0;
2371
2372 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2373
2374 sp = pvec->page[0].sp;
2375 level = sp->role.level;
2376 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2377
2378 parents->parent[level-2] = sp;
2379
2380 /* Also set up a sentinel. Further entries in pvec are all
2381 * children of sp, so this element is never overwritten.
2382 */
2383 parents->parent[level-1] = NULL;
2384 return mmu_pages_next(pvec, parents, 0);
2385 }
2386
mmu_pages_clear_parents(struct mmu_page_path * parents)2387 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2388 {
2389 struct kvm_mmu_page *sp;
2390 unsigned int level = 0;
2391
2392 do {
2393 unsigned int idx = parents->idx[level];
2394 sp = parents->parent[level];
2395 if (!sp)
2396 return;
2397
2398 WARN_ON(idx == INVALID_INDEX);
2399 clear_unsync_child_bit(sp, idx);
2400 level++;
2401 } while (!sp->unsync_children);
2402 }
2403
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)2404 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2405 struct kvm_mmu_page *parent)
2406 {
2407 int i;
2408 struct kvm_mmu_page *sp;
2409 struct mmu_page_path parents;
2410 struct kvm_mmu_pages pages;
2411 LIST_HEAD(invalid_list);
2412 bool flush = false;
2413
2414 while (mmu_unsync_walk(parent, &pages)) {
2415 bool protected = false;
2416
2417 for_each_sp(pages, sp, parents, i)
2418 protected |= rmap_write_protect(vcpu, sp->gfn);
2419
2420 if (protected) {
2421 kvm_flush_remote_tlbs(vcpu->kvm);
2422 flush = false;
2423 }
2424
2425 for_each_sp(pages, sp, parents, i) {
2426 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2427 mmu_pages_clear_parents(&parents);
2428 }
2429 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2430 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2431 cond_resched_lock(&vcpu->kvm->mmu_lock);
2432 flush = false;
2433 }
2434 }
2435
2436 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2437 }
2438
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2439 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2440 {
2441 atomic_set(&sp->write_flooding_count, 0);
2442 }
2443
clear_sp_write_flooding_count(u64 * spte)2444 static void clear_sp_write_flooding_count(u64 *spte)
2445 {
2446 struct kvm_mmu_page *sp = page_header(__pa(spte));
2447
2448 __clear_sp_write_flooding_count(sp);
2449 }
2450
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access)2451 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2452 gfn_t gfn,
2453 gva_t gaddr,
2454 unsigned level,
2455 int direct,
2456 unsigned access)
2457 {
2458 union kvm_mmu_page_role role;
2459 unsigned quadrant;
2460 struct kvm_mmu_page *sp;
2461 bool need_sync = false;
2462 bool flush = false;
2463 int collisions = 0;
2464 LIST_HEAD(invalid_list);
2465
2466 role = vcpu->arch.mmu.base_role;
2467 role.level = level;
2468 role.direct = direct;
2469 if (role.direct)
2470 role.cr4_pae = 0;
2471 role.access = access;
2472 if (!vcpu->arch.mmu.direct_map
2473 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2474 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2475 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2476 role.quadrant = quadrant;
2477 }
2478 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2479 if (sp->gfn != gfn) {
2480 collisions++;
2481 continue;
2482 }
2483
2484 if (!need_sync && sp->unsync)
2485 need_sync = true;
2486
2487 if (sp->role.word != role.word)
2488 continue;
2489
2490 if (sp->unsync) {
2491 /* The page is good, but __kvm_sync_page might still end
2492 * up zapping it. If so, break in order to rebuild it.
2493 */
2494 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2495 break;
2496
2497 WARN_ON(!list_empty(&invalid_list));
2498 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2499 }
2500
2501 if (sp->unsync_children)
2502 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2503
2504 __clear_sp_write_flooding_count(sp);
2505 trace_kvm_mmu_get_page(sp, false);
2506 goto out;
2507 }
2508
2509 ++vcpu->kvm->stat.mmu_cache_miss;
2510
2511 sp = kvm_mmu_alloc_page(vcpu, direct);
2512
2513 sp->gfn = gfn;
2514 sp->role = role;
2515 hlist_add_head(&sp->hash_link,
2516 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2517 if (!direct) {
2518 /*
2519 * we should do write protection before syncing pages
2520 * otherwise the content of the synced shadow page may
2521 * be inconsistent with guest page table.
2522 */
2523 account_shadowed(vcpu->kvm, sp);
2524 if (level == PT_PAGE_TABLE_LEVEL &&
2525 rmap_write_protect(vcpu, gfn))
2526 kvm_flush_remote_tlbs(vcpu->kvm);
2527
2528 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2529 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2530 }
2531 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2532 clear_page(sp->spt);
2533 trace_kvm_mmu_get_page(sp, true);
2534
2535 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2536 out:
2537 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2538 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2539 return sp;
2540 }
2541
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2542 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2543 struct kvm_vcpu *vcpu, hpa_t root,
2544 u64 addr)
2545 {
2546 iterator->addr = addr;
2547 iterator->shadow_addr = root;
2548 iterator->level = vcpu->arch.mmu.shadow_root_level;
2549
2550 if (iterator->level == PT64_ROOT_4LEVEL &&
2551 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2552 !vcpu->arch.mmu.direct_map)
2553 --iterator->level;
2554
2555 if (iterator->level == PT32E_ROOT_LEVEL) {
2556 /*
2557 * prev_root is currently only used for 64-bit hosts. So only
2558 * the active root_hpa is valid here.
2559 */
2560 BUG_ON(root != vcpu->arch.mmu.root_hpa);
2561
2562 iterator->shadow_addr
2563 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2564 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2565 --iterator->level;
2566 if (!iterator->shadow_addr)
2567 iterator->level = 0;
2568 }
2569 }
2570
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2571 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2572 struct kvm_vcpu *vcpu, u64 addr)
2573 {
2574 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
2575 addr);
2576 }
2577
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2578 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2579 {
2580 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2581 return false;
2582
2583 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2584 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2585 return true;
2586 }
2587
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2588 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2589 u64 spte)
2590 {
2591 if (is_last_spte(spte, iterator->level)) {
2592 iterator->level = 0;
2593 return;
2594 }
2595
2596 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2597 --iterator->level;
2598 }
2599
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2600 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2601 {
2602 __shadow_walk_next(iterator, *iterator->sptep);
2603 }
2604
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2605 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2606 struct kvm_mmu_page *sp)
2607 {
2608 u64 spte;
2609
2610 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2611
2612 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2613 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2614
2615 if (sp_ad_disabled(sp))
2616 spte |= shadow_acc_track_value;
2617 else
2618 spte |= shadow_accessed_mask;
2619
2620 mmu_spte_set(sptep, spte);
2621
2622 mmu_page_add_parent_pte(vcpu, sp, sptep);
2623
2624 if (sp->unsync_children || sp->unsync)
2625 mark_unsync(sptep);
2626 }
2627
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2628 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2629 unsigned direct_access)
2630 {
2631 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2632 struct kvm_mmu_page *child;
2633
2634 /*
2635 * For the direct sp, if the guest pte's dirty bit
2636 * changed form clean to dirty, it will corrupt the
2637 * sp's access: allow writable in the read-only sp,
2638 * so we should update the spte at this point to get
2639 * a new sp with the correct access.
2640 */
2641 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2642 if (child->role.access == direct_access)
2643 return;
2644
2645 drop_parent_pte(child, sptep);
2646 kvm_flush_remote_tlbs(vcpu->kvm);
2647 }
2648 }
2649
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2650 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2651 u64 *spte)
2652 {
2653 u64 pte;
2654 struct kvm_mmu_page *child;
2655
2656 pte = *spte;
2657 if (is_shadow_present_pte(pte)) {
2658 if (is_last_spte(pte, sp->role.level)) {
2659 drop_spte(kvm, spte);
2660 if (is_large_pte(pte))
2661 --kvm->stat.lpages;
2662 } else {
2663 child = page_header(pte & PT64_BASE_ADDR_MASK);
2664 drop_parent_pte(child, spte);
2665 }
2666 return true;
2667 }
2668
2669 if (is_mmio_spte(pte))
2670 mmu_spte_clear_no_track(spte);
2671
2672 return false;
2673 }
2674
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2675 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2676 struct kvm_mmu_page *sp)
2677 {
2678 unsigned i;
2679
2680 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2681 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2682 }
2683
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2684 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2685 {
2686 u64 *sptep;
2687 struct rmap_iterator iter;
2688
2689 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2690 drop_parent_pte(sp, sptep);
2691 }
2692
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2693 static int mmu_zap_unsync_children(struct kvm *kvm,
2694 struct kvm_mmu_page *parent,
2695 struct list_head *invalid_list)
2696 {
2697 int i, zapped = 0;
2698 struct mmu_page_path parents;
2699 struct kvm_mmu_pages pages;
2700
2701 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2702 return 0;
2703
2704 while (mmu_unsync_walk(parent, &pages)) {
2705 struct kvm_mmu_page *sp;
2706
2707 for_each_sp(pages, sp, parents, i) {
2708 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2709 mmu_pages_clear_parents(&parents);
2710 zapped++;
2711 }
2712 }
2713
2714 return zapped;
2715 }
2716
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2717 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2718 struct list_head *invalid_list)
2719 {
2720 int ret;
2721
2722 trace_kvm_mmu_prepare_zap_page(sp);
2723 ++kvm->stat.mmu_shadow_zapped;
2724 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2725 kvm_mmu_page_unlink_children(kvm, sp);
2726 kvm_mmu_unlink_parents(kvm, sp);
2727
2728 if (!sp->role.invalid && !sp->role.direct)
2729 unaccount_shadowed(kvm, sp);
2730
2731 if (sp->unsync)
2732 kvm_unlink_unsync_page(kvm, sp);
2733 if (!sp->root_count) {
2734 /* Count self */
2735 ret++;
2736 list_move(&sp->link, invalid_list);
2737 kvm_mod_used_mmu_pages(kvm, -1);
2738 } else {
2739 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2740
2741 /*
2742 * The obsolete pages can not be used on any vcpus.
2743 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2744 */
2745 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2746 kvm_reload_remote_mmus(kvm);
2747 }
2748
2749 if (sp->lpage_disallowed)
2750 unaccount_huge_nx_page(kvm, sp);
2751
2752 sp->role.invalid = 1;
2753 return ret;
2754 }
2755
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2756 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2757 struct list_head *invalid_list)
2758 {
2759 struct kvm_mmu_page *sp, *nsp;
2760
2761 if (list_empty(invalid_list))
2762 return;
2763
2764 /*
2765 * We need to make sure everyone sees our modifications to
2766 * the page tables and see changes to vcpu->mode here. The barrier
2767 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2768 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2769 *
2770 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2771 * guest mode and/or lockless shadow page table walks.
2772 */
2773 kvm_flush_remote_tlbs(kvm);
2774
2775 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2776 WARN_ON(!sp->role.invalid || sp->root_count);
2777 kvm_mmu_free_page(sp);
2778 }
2779 }
2780
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2781 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2782 struct list_head *invalid_list)
2783 {
2784 struct kvm_mmu_page *sp;
2785
2786 if (list_empty(&kvm->arch.active_mmu_pages))
2787 return false;
2788
2789 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2790 struct kvm_mmu_page, link);
2791 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2792 }
2793
2794 /*
2795 * Changing the number of mmu pages allocated to the vm
2796 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2797 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2798 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2799 {
2800 LIST_HEAD(invalid_list);
2801
2802 spin_lock(&kvm->mmu_lock);
2803
2804 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2805 /* Need to free some mmu pages to achieve the goal. */
2806 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2807 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2808 break;
2809
2810 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2811 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2812 }
2813
2814 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2815
2816 spin_unlock(&kvm->mmu_lock);
2817 }
2818
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2819 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2820 {
2821 struct kvm_mmu_page *sp;
2822 LIST_HEAD(invalid_list);
2823 int r;
2824
2825 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2826 r = 0;
2827 spin_lock(&kvm->mmu_lock);
2828 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2829 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2830 sp->role.word);
2831 r = 1;
2832 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2833 }
2834 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2835 spin_unlock(&kvm->mmu_lock);
2836
2837 return r;
2838 }
2839 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2840
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2841 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2842 {
2843 trace_kvm_mmu_unsync_page(sp);
2844 ++vcpu->kvm->stat.mmu_unsync;
2845 sp->unsync = 1;
2846
2847 kvm_mmu_mark_parents_unsync(sp);
2848 }
2849
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2850 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2851 bool can_unsync)
2852 {
2853 struct kvm_mmu_page *sp;
2854
2855 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2856 return true;
2857
2858 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2859 if (!can_unsync)
2860 return true;
2861
2862 if (sp->unsync)
2863 continue;
2864
2865 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2866 kvm_unsync_page(vcpu, sp);
2867 }
2868
2869 /*
2870 * We need to ensure that the marking of unsync pages is visible
2871 * before the SPTE is updated to allow writes because
2872 * kvm_mmu_sync_roots() checks the unsync flags without holding
2873 * the MMU lock and so can race with this. If the SPTE was updated
2874 * before the page had been marked as unsync-ed, something like the
2875 * following could happen:
2876 *
2877 * CPU 1 CPU 2
2878 * ---------------------------------------------------------------------
2879 * 1.2 Host updates SPTE
2880 * to be writable
2881 * 2.1 Guest writes a GPTE for GVA X.
2882 * (GPTE being in the guest page table shadowed
2883 * by the SP from CPU 1.)
2884 * This reads SPTE during the page table walk.
2885 * Since SPTE.W is read as 1, there is no
2886 * fault.
2887 *
2888 * 2.2 Guest issues TLB flush.
2889 * That causes a VM Exit.
2890 *
2891 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2892 * Since it is false, so it just returns.
2893 *
2894 * 2.4 Guest accesses GVA X.
2895 * Since the mapping in the SP was not updated,
2896 * so the old mapping for GVA X incorrectly
2897 * gets used.
2898 * 1.1 Host marks SP
2899 * as unsync
2900 * (sp->unsync = true)
2901 *
2902 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2903 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2904 * pairs with this write barrier.
2905 */
2906 smp_wmb();
2907
2908 return false;
2909 }
2910
kvm_is_mmio_pfn(kvm_pfn_t pfn)2911 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2912 {
2913 if (pfn_valid(pfn))
2914 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2915 /*
2916 * Some reserved pages, such as those from NVDIMM
2917 * DAX devices, are not for MMIO, and can be mapped
2918 * with cached memory type for better performance.
2919 * However, the above check misconceives those pages
2920 * as MMIO, and results in KVM mapping them with UC
2921 * memory type, which would hurt the performance.
2922 * Therefore, we check the host memory type in addition
2923 * and only treat UC/UC-/WC pages as MMIO.
2924 */
2925 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2926
2927 return true;
2928 }
2929
2930 /* Bits which may be returned by set_spte() */
2931 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2932 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2933
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2934 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2935 unsigned pte_access, int level,
2936 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2937 bool can_unsync, bool host_writable)
2938 {
2939 u64 spte = 0;
2940 int ret = 0;
2941 struct kvm_mmu_page *sp;
2942
2943 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2944 return 0;
2945
2946 sp = page_header(__pa(sptep));
2947 if (sp_ad_disabled(sp))
2948 spte |= shadow_acc_track_value;
2949
2950 /*
2951 * For the EPT case, shadow_present_mask is 0 if hardware
2952 * supports exec-only page table entries. In that case,
2953 * ACC_USER_MASK and shadow_user_mask are used to represent
2954 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2955 */
2956 spte |= shadow_present_mask;
2957 if (!speculative)
2958 spte |= spte_shadow_accessed_mask(spte);
2959
2960 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
2961 is_nx_huge_page_enabled()) {
2962 pte_access &= ~ACC_EXEC_MASK;
2963 }
2964
2965 if (pte_access & ACC_EXEC_MASK)
2966 spte |= shadow_x_mask;
2967 else
2968 spte |= shadow_nx_mask;
2969
2970 if (pte_access & ACC_USER_MASK)
2971 spte |= shadow_user_mask;
2972
2973 if (level > PT_PAGE_TABLE_LEVEL)
2974 spte |= PT_PAGE_SIZE_MASK;
2975 if (tdp_enabled)
2976 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2977 kvm_is_mmio_pfn(pfn));
2978
2979 if (host_writable)
2980 spte |= SPTE_HOST_WRITEABLE;
2981 else
2982 pte_access &= ~ACC_WRITE_MASK;
2983
2984 if (!kvm_is_mmio_pfn(pfn))
2985 spte |= shadow_me_mask;
2986
2987 spte |= (u64)pfn << PAGE_SHIFT;
2988
2989 if (pte_access & ACC_WRITE_MASK) {
2990
2991 /*
2992 * Other vcpu creates new sp in the window between
2993 * mapping_level() and acquiring mmu-lock. We can
2994 * allow guest to retry the access, the mapping can
2995 * be fixed if guest refault.
2996 */
2997 if (level > PT_PAGE_TABLE_LEVEL &&
2998 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2999 goto done;
3000
3001 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3002
3003 /*
3004 * Optimization: for pte sync, if spte was writable the hash
3005 * lookup is unnecessary (and expensive). Write protection
3006 * is responsibility of mmu_get_page / kvm_sync_page.
3007 * Same reasoning can be applied to dirty page accounting.
3008 */
3009 if (!can_unsync && is_writable_pte(*sptep))
3010 goto set_pte;
3011
3012 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3013 pgprintk("%s: found shadow page for %llx, marking ro\n",
3014 __func__, gfn);
3015 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3016 pte_access &= ~ACC_WRITE_MASK;
3017 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3018 }
3019 }
3020
3021 if (pte_access & ACC_WRITE_MASK) {
3022 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023 spte |= spte_shadow_dirty_mask(spte);
3024 }
3025
3026 if (speculative)
3027 spte = mark_spte_for_access_track(spte);
3028
3029 set_pte:
3030 if (mmu_spte_update(sptep, spte))
3031 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3032 done:
3033 return ret;
3034 }
3035
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)3036 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3037 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3038 bool speculative, bool host_writable)
3039 {
3040 int was_rmapped = 0;
3041 int rmap_count;
3042 int set_spte_ret;
3043 int ret = RET_PF_RETRY;
3044 bool flush = false;
3045
3046 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3047 *sptep, write_fault, gfn);
3048
3049 if (is_shadow_present_pte(*sptep)) {
3050 /*
3051 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3052 * the parent of the now unreachable PTE.
3053 */
3054 if (level > PT_PAGE_TABLE_LEVEL &&
3055 !is_large_pte(*sptep)) {
3056 struct kvm_mmu_page *child;
3057 u64 pte = *sptep;
3058
3059 child = page_header(pte & PT64_BASE_ADDR_MASK);
3060 drop_parent_pte(child, sptep);
3061 flush = true;
3062 } else if (pfn != spte_to_pfn(*sptep)) {
3063 pgprintk("hfn old %llx new %llx\n",
3064 spte_to_pfn(*sptep), pfn);
3065 drop_spte(vcpu->kvm, sptep);
3066 flush = true;
3067 } else
3068 was_rmapped = 1;
3069 }
3070
3071 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3072 speculative, true, host_writable);
3073 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3074 if (write_fault)
3075 ret = RET_PF_EMULATE;
3076 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3077 }
3078 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3079 kvm_flush_remote_tlbs(vcpu->kvm);
3080
3081 if (unlikely(is_mmio_spte(*sptep)))
3082 ret = RET_PF_EMULATE;
3083
3084 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3085 trace_kvm_mmu_set_spte(level, gfn, sptep);
3086 if (!was_rmapped && is_large_pte(*sptep))
3087 ++vcpu->kvm->stat.lpages;
3088
3089 if (is_shadow_present_pte(*sptep)) {
3090 if (!was_rmapped) {
3091 rmap_count = rmap_add(vcpu, sptep, gfn);
3092 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3093 rmap_recycle(vcpu, sptep, gfn);
3094 }
3095 }
3096
3097 return ret;
3098 }
3099
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)3100 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3101 bool no_dirty_log)
3102 {
3103 struct kvm_memory_slot *slot;
3104
3105 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3106 if (!slot)
3107 return KVM_PFN_ERR_FAULT;
3108
3109 return gfn_to_pfn_memslot_atomic(slot, gfn);
3110 }
3111
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)3112 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3113 struct kvm_mmu_page *sp,
3114 u64 *start, u64 *end)
3115 {
3116 struct page *pages[PTE_PREFETCH_NUM];
3117 struct kvm_memory_slot *slot;
3118 unsigned access = sp->role.access;
3119 int i, ret;
3120 gfn_t gfn;
3121
3122 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3123 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3124 if (!slot)
3125 return -1;
3126
3127 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3128 if (ret <= 0)
3129 return -1;
3130
3131 for (i = 0; i < ret; i++, gfn++, start++) {
3132 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3133 page_to_pfn(pages[i]), true, true);
3134 put_page(pages[i]);
3135 }
3136
3137 return 0;
3138 }
3139
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3140 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3141 struct kvm_mmu_page *sp, u64 *sptep)
3142 {
3143 u64 *spte, *start = NULL;
3144 int i;
3145
3146 WARN_ON(!sp->role.direct);
3147
3148 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3149 spte = sp->spt + i;
3150
3151 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3152 if (is_shadow_present_pte(*spte) || spte == sptep) {
3153 if (!start)
3154 continue;
3155 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3156 break;
3157 start = NULL;
3158 } else if (!start)
3159 start = spte;
3160 }
3161 }
3162
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3163 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3164 {
3165 struct kvm_mmu_page *sp;
3166
3167 sp = page_header(__pa(sptep));
3168
3169 /*
3170 * Without accessed bits, there's no way to distinguish between
3171 * actually accessed translations and prefetched, so disable pte
3172 * prefetch if accessed bits aren't available.
3173 */
3174 if (sp_ad_disabled(sp))
3175 return;
3176
3177 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3178 return;
3179
3180 __direct_pte_prefetch(vcpu, sp, sptep);
3181 }
3182
disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3183 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3184 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3185 {
3186 int level = *levelp;
3187 u64 spte = *it.sptep;
3188
3189 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3190 is_nx_huge_page_enabled() &&
3191 is_shadow_present_pte(spte) &&
3192 !is_large_pte(spte)) {
3193 /*
3194 * A small SPTE exists for this pfn, but FNAME(fetch)
3195 * and __direct_map would like to create a large PTE
3196 * instead: just force them to go down another level,
3197 * patching back for them into pfn the next 9 bits of
3198 * the address.
3199 */
3200 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3201 *pfnp |= gfn & page_mask;
3202 (*levelp)--;
3203 }
3204 }
3205
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,int write,int map_writable,int level,kvm_pfn_t pfn,bool prefault,bool lpage_disallowed)3206 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3207 int map_writable, int level, kvm_pfn_t pfn,
3208 bool prefault, bool lpage_disallowed)
3209 {
3210 struct kvm_shadow_walk_iterator it;
3211 struct kvm_mmu_page *sp;
3212 int ret;
3213 gfn_t gfn = gpa >> PAGE_SHIFT;
3214 gfn_t base_gfn = gfn;
3215
3216 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3217 return RET_PF_RETRY;
3218
3219 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3220 for_each_shadow_entry(vcpu, gpa, it) {
3221 /*
3222 * We cannot overwrite existing page tables with an NX
3223 * large page, as the leaf could be executable.
3224 */
3225 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3226
3227 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3228 if (it.level == level)
3229 break;
3230
3231 drop_large_spte(vcpu, it.sptep);
3232 if (!is_shadow_present_pte(*it.sptep)) {
3233 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3234 it.level - 1, true, ACC_ALL);
3235
3236 link_shadow_page(vcpu, it.sptep, sp);
3237 if (lpage_disallowed)
3238 account_huge_nx_page(vcpu->kvm, sp);
3239 }
3240 }
3241
3242 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3243 write, level, base_gfn, pfn, prefault,
3244 map_writable);
3245 direct_pte_prefetch(vcpu, it.sptep);
3246 ++vcpu->stat.pf_fixed;
3247 return ret;
3248 }
3249
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3250 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3251 {
3252 siginfo_t info;
3253
3254 clear_siginfo(&info);
3255 info.si_signo = SIGBUS;
3256 info.si_errno = 0;
3257 info.si_code = BUS_MCEERR_AR;
3258 info.si_addr = (void __user *)address;
3259 info.si_addr_lsb = PAGE_SHIFT;
3260
3261 send_sig_info(SIGBUS, &info, tsk);
3262 }
3263
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3264 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3265 {
3266 /*
3267 * Do not cache the mmio info caused by writing the readonly gfn
3268 * into the spte otherwise read access on readonly gfn also can
3269 * caused mmio page fault and treat it as mmio access.
3270 */
3271 if (pfn == KVM_PFN_ERR_RO_FAULT)
3272 return RET_PF_EMULATE;
3273
3274 if (pfn == KVM_PFN_ERR_HWPOISON) {
3275 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3276 return RET_PF_RETRY;
3277 }
3278
3279 return -EFAULT;
3280 }
3281
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3282 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3283 gfn_t gfn, kvm_pfn_t *pfnp,
3284 int *levelp)
3285 {
3286 kvm_pfn_t pfn = *pfnp;
3287 int level = *levelp;
3288
3289 /*
3290 * Check if it's a transparent hugepage. If this would be an
3291 * hugetlbfs page, level wouldn't be set to
3292 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3293 * here.
3294 */
3295 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3296 !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3297 PageTransCompoundMap(pfn_to_page(pfn)) &&
3298 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3299 unsigned long mask;
3300 /*
3301 * mmu_notifier_retry was successful and we hold the
3302 * mmu_lock here, so the pmd can't become splitting
3303 * from under us, and in turn
3304 * __split_huge_page_refcount() can't run from under
3305 * us and we can safely transfer the refcount from
3306 * PG_tail to PG_head as we switch the pfn to tail to
3307 * head.
3308 */
3309 *levelp = level = PT_DIRECTORY_LEVEL;
3310 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3311 VM_BUG_ON((gfn & mask) != (pfn & mask));
3312 if (pfn & mask) {
3313 kvm_release_pfn_clean(pfn);
3314 pfn &= ~mask;
3315 kvm_get_pfn(pfn);
3316 *pfnp = pfn;
3317 }
3318 }
3319 }
3320
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned access,int * ret_val)3321 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3322 kvm_pfn_t pfn, unsigned access, int *ret_val)
3323 {
3324 /* The pfn is invalid, report the error! */
3325 if (unlikely(is_error_pfn(pfn))) {
3326 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3327 return true;
3328 }
3329
3330 if (unlikely(is_noslot_pfn(pfn)))
3331 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3332
3333 return false;
3334 }
3335
page_fault_can_be_fast(u32 error_code)3336 static bool page_fault_can_be_fast(u32 error_code)
3337 {
3338 /*
3339 * Do not fix the mmio spte with invalid generation number which
3340 * need to be updated by slow page fault path.
3341 */
3342 if (unlikely(error_code & PFERR_RSVD_MASK))
3343 return false;
3344
3345 /* See if the page fault is due to an NX violation */
3346 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3347 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3348 return false;
3349
3350 /*
3351 * #PF can be fast if:
3352 * 1. The shadow page table entry is not present, which could mean that
3353 * the fault is potentially caused by access tracking (if enabled).
3354 * 2. The shadow page table entry is present and the fault
3355 * is caused by write-protect, that means we just need change the W
3356 * bit of the spte which can be done out of mmu-lock.
3357 *
3358 * However, if access tracking is disabled we know that a non-present
3359 * page must be a genuine page fault where we have to create a new SPTE.
3360 * So, if access tracking is disabled, we return true only for write
3361 * accesses to a present page.
3362 */
3363
3364 return shadow_acc_track_mask != 0 ||
3365 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3366 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3367 }
3368
3369 /*
3370 * Returns true if the SPTE was fixed successfully. Otherwise,
3371 * someone else modified the SPTE from its original value.
3372 */
3373 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3374 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3375 u64 *sptep, u64 old_spte, u64 new_spte)
3376 {
3377 gfn_t gfn;
3378
3379 WARN_ON(!sp->role.direct);
3380
3381 /*
3382 * Theoretically we could also set dirty bit (and flush TLB) here in
3383 * order to eliminate unnecessary PML logging. See comments in
3384 * set_spte. But fast_page_fault is very unlikely to happen with PML
3385 * enabled, so we do not do this. This might result in the same GPA
3386 * to be logged in PML buffer again when the write really happens, and
3387 * eventually to be called by mark_page_dirty twice. But it's also no
3388 * harm. This also avoids the TLB flush needed after setting dirty bit
3389 * so non-PML cases won't be impacted.
3390 *
3391 * Compare with set_spte where instead shadow_dirty_mask is set.
3392 */
3393 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3394 return false;
3395
3396 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3397 /*
3398 * The gfn of direct spte is stable since it is
3399 * calculated by sp->gfn.
3400 */
3401 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3402 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3403 }
3404
3405 return true;
3406 }
3407
is_access_allowed(u32 fault_err_code,u64 spte)3408 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3409 {
3410 if (fault_err_code & PFERR_FETCH_MASK)
3411 return is_executable_pte(spte);
3412
3413 if (fault_err_code & PFERR_WRITE_MASK)
3414 return is_writable_pte(spte);
3415
3416 /* Fault was on Read access */
3417 return spte & PT_PRESENT_MASK;
3418 }
3419
3420 /*
3421 * Return value:
3422 * - true: let the vcpu to access on the same address again.
3423 * - false: let the real page fault path to fix it.
3424 */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int level,u32 error_code)3425 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3426 u32 error_code)
3427 {
3428 struct kvm_shadow_walk_iterator iterator;
3429 struct kvm_mmu_page *sp;
3430 bool fault_handled = false;
3431 u64 spte = 0ull;
3432 uint retry_count = 0;
3433
3434 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3435 return false;
3436
3437 if (!page_fault_can_be_fast(error_code))
3438 return false;
3439
3440 walk_shadow_page_lockless_begin(vcpu);
3441
3442 do {
3443 u64 new_spte;
3444
3445 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3446 if (!is_shadow_present_pte(spte) ||
3447 iterator.level < level)
3448 break;
3449
3450 sp = page_header(__pa(iterator.sptep));
3451 if (!is_last_spte(spte, sp->role.level))
3452 break;
3453
3454 /*
3455 * Check whether the memory access that caused the fault would
3456 * still cause it if it were to be performed right now. If not,
3457 * then this is a spurious fault caused by TLB lazily flushed,
3458 * or some other CPU has already fixed the PTE after the
3459 * current CPU took the fault.
3460 *
3461 * Need not check the access of upper level table entries since
3462 * they are always ACC_ALL.
3463 */
3464 if (is_access_allowed(error_code, spte)) {
3465 fault_handled = true;
3466 break;
3467 }
3468
3469 new_spte = spte;
3470
3471 if (is_access_track_spte(spte))
3472 new_spte = restore_acc_track_spte(new_spte);
3473
3474 /*
3475 * Currently, to simplify the code, write-protection can
3476 * be removed in the fast path only if the SPTE was
3477 * write-protected for dirty-logging or access tracking.
3478 */
3479 if ((error_code & PFERR_WRITE_MASK) &&
3480 spte_can_locklessly_be_made_writable(spte))
3481 {
3482 new_spte |= PT_WRITABLE_MASK;
3483
3484 /*
3485 * Do not fix write-permission on the large spte. Since
3486 * we only dirty the first page into the dirty-bitmap in
3487 * fast_pf_fix_direct_spte(), other pages are missed
3488 * if its slot has dirty logging enabled.
3489 *
3490 * Instead, we let the slow page fault path create a
3491 * normal spte to fix the access.
3492 *
3493 * See the comments in kvm_arch_commit_memory_region().
3494 */
3495 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3496 break;
3497 }
3498
3499 /* Verify that the fault can be handled in the fast path */
3500 if (new_spte == spte ||
3501 !is_access_allowed(error_code, new_spte))
3502 break;
3503
3504 /*
3505 * Currently, fast page fault only works for direct mapping
3506 * since the gfn is not stable for indirect shadow page. See
3507 * Documentation/virtual/kvm/locking.txt to get more detail.
3508 */
3509 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3510 iterator.sptep, spte,
3511 new_spte);
3512 if (fault_handled)
3513 break;
3514
3515 if (++retry_count > 4) {
3516 printk_once(KERN_WARNING
3517 "kvm: Fast #PF retrying more than 4 times.\n");
3518 break;
3519 }
3520
3521 } while (true);
3522
3523 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3524 spte, fault_handled);
3525 walk_shadow_page_lockless_end(vcpu);
3526
3527 return fault_handled;
3528 }
3529
3530 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3531 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3532 bool *writable);
3533 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3534
nonpaging_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,gfn_t gfn,bool prefault)3535 static int nonpaging_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3536 gfn_t gfn, bool prefault)
3537 {
3538 int r;
3539 int level;
3540 bool force_pt_level;
3541 kvm_pfn_t pfn;
3542 unsigned long mmu_seq;
3543 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3544 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3545 is_nx_huge_page_enabled();
3546
3547 force_pt_level = lpage_disallowed;
3548 level = mapping_level(vcpu, gfn, &force_pt_level);
3549 if (likely(!force_pt_level)) {
3550 /*
3551 * This path builds a PAE pagetable - so we can map
3552 * 2mb pages at maximum. Therefore check if the level
3553 * is larger than that.
3554 */
3555 if (level > PT_DIRECTORY_LEVEL)
3556 level = PT_DIRECTORY_LEVEL;
3557
3558 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3559 }
3560
3561 if (fast_page_fault(vcpu, gpa, level, error_code))
3562 return RET_PF_RETRY;
3563
3564 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3565 smp_rmb();
3566
3567 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3568 return RET_PF_RETRY;
3569
3570 if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
3571 return r;
3572
3573 r = RET_PF_RETRY;
3574 spin_lock(&vcpu->kvm->mmu_lock);
3575 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3576 goto out_unlock;
3577 if (make_mmu_pages_available(vcpu) < 0)
3578 goto out_unlock;
3579 if (likely(!force_pt_level))
3580 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3581 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
3582 prefault, false);
3583 out_unlock:
3584 spin_unlock(&vcpu->kvm->mmu_lock);
3585 kvm_release_pfn_clean(pfn);
3586 return r;
3587 }
3588
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3589 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3590 struct list_head *invalid_list)
3591 {
3592 struct kvm_mmu_page *sp;
3593
3594 if (!VALID_PAGE(*root_hpa))
3595 return;
3596
3597 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3598 --sp->root_count;
3599 if (!sp->root_count && sp->role.invalid)
3600 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3601
3602 *root_hpa = INVALID_PAGE;
3603 }
3604
3605 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,ulong roots_to_free)3606 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3607 {
3608 int i;
3609 LIST_HEAD(invalid_list);
3610 struct kvm_mmu *mmu = &vcpu->arch.mmu;
3611 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3612
3613 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3614
3615 /* Before acquiring the MMU lock, see if we need to do any real work. */
3616 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3617 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3618 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3619 VALID_PAGE(mmu->prev_roots[i].hpa))
3620 break;
3621
3622 if (i == KVM_MMU_NUM_PREV_ROOTS)
3623 return;
3624 }
3625
3626 spin_lock(&vcpu->kvm->mmu_lock);
3627
3628 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3629 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3630 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3631 &invalid_list);
3632
3633 if (free_active_root) {
3634 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3635 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3636 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3637 &invalid_list);
3638 } else {
3639 for (i = 0; i < 4; ++i)
3640 if (mmu->pae_root[i] != 0)
3641 mmu_free_root_page(vcpu->kvm,
3642 &mmu->pae_root[i],
3643 &invalid_list);
3644 mmu->root_hpa = INVALID_PAGE;
3645 }
3646 }
3647
3648 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3649 spin_unlock(&vcpu->kvm->mmu_lock);
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3652
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3653 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3654 {
3655 int ret = 0;
3656
3657 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3658 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3659 ret = 1;
3660 }
3661
3662 return ret;
3663 }
3664
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3665 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3666 {
3667 struct kvm_mmu_page *sp;
3668 unsigned i;
3669
3670 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3671 spin_lock(&vcpu->kvm->mmu_lock);
3672 if(make_mmu_pages_available(vcpu) < 0) {
3673 spin_unlock(&vcpu->kvm->mmu_lock);
3674 return -ENOSPC;
3675 }
3676 sp = kvm_mmu_get_page(vcpu, 0, 0,
3677 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3678 ++sp->root_count;
3679 spin_unlock(&vcpu->kvm->mmu_lock);
3680 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3681 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3682 for (i = 0; i < 4; ++i) {
3683 hpa_t root = vcpu->arch.mmu.pae_root[i];
3684
3685 MMU_WARN_ON(VALID_PAGE(root));
3686 spin_lock(&vcpu->kvm->mmu_lock);
3687 if (make_mmu_pages_available(vcpu) < 0) {
3688 spin_unlock(&vcpu->kvm->mmu_lock);
3689 return -ENOSPC;
3690 }
3691 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3692 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3693 root = __pa(sp->spt);
3694 ++sp->root_count;
3695 spin_unlock(&vcpu->kvm->mmu_lock);
3696 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3697 }
3698 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3699 } else
3700 BUG();
3701
3702 return 0;
3703 }
3704
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3705 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3706 {
3707 struct kvm_mmu_page *sp;
3708 u64 pdptr, pm_mask;
3709 gfn_t root_gfn;
3710 int i;
3711
3712 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3713
3714 if (mmu_check_root(vcpu, root_gfn))
3715 return 1;
3716
3717 /*
3718 * Do we shadow a long mode page table? If so we need to
3719 * write-protect the guests page table root.
3720 */
3721 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3722 hpa_t root = vcpu->arch.mmu.root_hpa;
3723
3724 MMU_WARN_ON(VALID_PAGE(root));
3725
3726 spin_lock(&vcpu->kvm->mmu_lock);
3727 if (make_mmu_pages_available(vcpu) < 0) {
3728 spin_unlock(&vcpu->kvm->mmu_lock);
3729 return -ENOSPC;
3730 }
3731 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3732 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3733 root = __pa(sp->spt);
3734 ++sp->root_count;
3735 spin_unlock(&vcpu->kvm->mmu_lock);
3736 vcpu->arch.mmu.root_hpa = root;
3737 return 0;
3738 }
3739
3740 /*
3741 * We shadow a 32 bit page table. This may be a legacy 2-level
3742 * or a PAE 3-level page table. In either case we need to be aware that
3743 * the shadow page table may be a PAE or a long mode page table.
3744 */
3745 pm_mask = PT_PRESENT_MASK;
3746 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3747 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3748
3749 for (i = 0; i < 4; ++i) {
3750 hpa_t root = vcpu->arch.mmu.pae_root[i];
3751
3752 MMU_WARN_ON(VALID_PAGE(root));
3753 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3754 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3755 if (!(pdptr & PT_PRESENT_MASK)) {
3756 vcpu->arch.mmu.pae_root[i] = 0;
3757 continue;
3758 }
3759 root_gfn = pdptr >> PAGE_SHIFT;
3760 if (mmu_check_root(vcpu, root_gfn))
3761 return 1;
3762 }
3763 spin_lock(&vcpu->kvm->mmu_lock);
3764 if (make_mmu_pages_available(vcpu) < 0) {
3765 spin_unlock(&vcpu->kvm->mmu_lock);
3766 return -ENOSPC;
3767 }
3768 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3769 0, ACC_ALL);
3770 root = __pa(sp->spt);
3771 ++sp->root_count;
3772 spin_unlock(&vcpu->kvm->mmu_lock);
3773
3774 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3775 }
3776 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3777
3778 /*
3779 * If we shadow a 32 bit page table with a long mode page
3780 * table we enter this path.
3781 */
3782 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3783 if (vcpu->arch.mmu.lm_root == NULL) {
3784 /*
3785 * The additional page necessary for this is only
3786 * allocated on demand.
3787 */
3788
3789 u64 *lm_root;
3790
3791 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3792 if (lm_root == NULL)
3793 return 1;
3794
3795 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3796
3797 vcpu->arch.mmu.lm_root = lm_root;
3798 }
3799
3800 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3801 }
3802
3803 return 0;
3804 }
3805
mmu_alloc_roots(struct kvm_vcpu * vcpu)3806 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3807 {
3808 if (vcpu->arch.mmu.direct_map)
3809 return mmu_alloc_direct_roots(vcpu);
3810 else
3811 return mmu_alloc_shadow_roots(vcpu);
3812 }
3813
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3814 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3815 {
3816 int i;
3817 struct kvm_mmu_page *sp;
3818
3819 if (vcpu->arch.mmu.direct_map)
3820 return;
3821
3822 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3823 return;
3824
3825 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3826
3827 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3828 hpa_t root = vcpu->arch.mmu.root_hpa;
3829
3830 sp = page_header(root);
3831
3832 /*
3833 * Even if another CPU was marking the SP as unsync-ed
3834 * simultaneously, any guest page table changes are not
3835 * guaranteed to be visible anyway until this VCPU issues a TLB
3836 * flush strictly after those changes are made. We only need to
3837 * ensure that the other CPU sets these flags before any actual
3838 * changes to the page tables are made. The comments in
3839 * mmu_need_write_protect() describe what could go wrong if this
3840 * requirement isn't satisfied.
3841 */
3842 if (!smp_load_acquire(&sp->unsync) &&
3843 !smp_load_acquire(&sp->unsync_children))
3844 return;
3845
3846 spin_lock(&vcpu->kvm->mmu_lock);
3847 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3848
3849 mmu_sync_children(vcpu, sp);
3850
3851 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3852 spin_unlock(&vcpu->kvm->mmu_lock);
3853 return;
3854 }
3855
3856 spin_lock(&vcpu->kvm->mmu_lock);
3857 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3858
3859 for (i = 0; i < 4; ++i) {
3860 hpa_t root = vcpu->arch.mmu.pae_root[i];
3861
3862 if (root && VALID_PAGE(root)) {
3863 root &= PT64_BASE_ADDR_MASK;
3864 sp = page_header(root);
3865 mmu_sync_children(vcpu, sp);
3866 }
3867 }
3868
3869 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3870 spin_unlock(&vcpu->kvm->mmu_lock);
3871 }
3872 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3873
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3874 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3875 u32 access, struct x86_exception *exception)
3876 {
3877 if (exception)
3878 exception->error_code = 0;
3879 return vaddr;
3880 }
3881
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3882 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3883 u32 access,
3884 struct x86_exception *exception)
3885 {
3886 if (exception)
3887 exception->error_code = 0;
3888 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3889 }
3890
3891 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3892 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3893 {
3894 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3895
3896 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3897 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3898 }
3899
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3900 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3901 {
3902 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3903 }
3904
is_shadow_zero_bits_set(struct kvm_mmu * mmu,u64 spte,int level)3905 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3906 {
3907 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3908 }
3909
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3910 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3911 {
3912 /*
3913 * A nested guest cannot use the MMIO cache if it is using nested
3914 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3915 */
3916 if (mmu_is_nested(vcpu))
3917 return false;
3918
3919 if (direct)
3920 return vcpu_match_mmio_gpa(vcpu, addr);
3921
3922 return vcpu_match_mmio_gva(vcpu, addr);
3923 }
3924
3925 /* return true if reserved bit is detected on spte. */
3926 static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3927 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3928 {
3929 struct kvm_shadow_walk_iterator iterator;
3930 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3931 int root, leaf;
3932 bool reserved = false;
3933
3934 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3935 goto exit;
3936
3937 walk_shadow_page_lockless_begin(vcpu);
3938
3939 for (shadow_walk_init(&iterator, vcpu, addr),
3940 leaf = root = iterator.level;
3941 shadow_walk_okay(&iterator);
3942 __shadow_walk_next(&iterator, spte)) {
3943 spte = mmu_spte_get_lockless(iterator.sptep);
3944
3945 sptes[leaf - 1] = spte;
3946 leaf--;
3947
3948 if (!is_shadow_present_pte(spte))
3949 break;
3950
3951 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3952 iterator.level);
3953 }
3954
3955 walk_shadow_page_lockless_end(vcpu);
3956
3957 if (reserved) {
3958 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3959 __func__, addr);
3960 while (root > leaf) {
3961 pr_err("------ spte 0x%llx level %d.\n",
3962 sptes[root - 1], root);
3963 root--;
3964 }
3965 }
3966 exit:
3967 *sptep = spte;
3968 return reserved;
3969 }
3970
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3971 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3972 {
3973 u64 spte;
3974 bool reserved;
3975
3976 if (mmio_info_in_cache(vcpu, addr, direct))
3977 return RET_PF_EMULATE;
3978
3979 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3980 if (WARN_ON(reserved))
3981 return -EINVAL;
3982
3983 if (is_mmio_spte(spte)) {
3984 gfn_t gfn = get_mmio_spte_gfn(spte);
3985 unsigned access = get_mmio_spte_access(spte);
3986
3987 if (!check_mmio_spte(vcpu, spte))
3988 return RET_PF_INVALID;
3989
3990 if (direct)
3991 addr = 0;
3992
3993 trace_handle_mmio_page_fault(addr, gfn, access);
3994 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3995 return RET_PF_EMULATE;
3996 }
3997
3998 /*
3999 * If the page table is zapped by other cpus, let CPU fault again on
4000 * the address.
4001 */
4002 return RET_PF_RETRY;
4003 }
4004
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)4005 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4006 u32 error_code, gfn_t gfn)
4007 {
4008 if (unlikely(error_code & PFERR_RSVD_MASK))
4009 return false;
4010
4011 if (!(error_code & PFERR_PRESENT_MASK) ||
4012 !(error_code & PFERR_WRITE_MASK))
4013 return false;
4014
4015 /*
4016 * guest is writing the page which is write tracked which can
4017 * not be fixed by page fault handler.
4018 */
4019 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4020 return true;
4021
4022 return false;
4023 }
4024
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4025 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4026 {
4027 struct kvm_shadow_walk_iterator iterator;
4028 u64 spte;
4029
4030 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4031 return;
4032
4033 walk_shadow_page_lockless_begin(vcpu);
4034 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4035 clear_sp_write_flooding_count(iterator.sptep);
4036 if (!is_shadow_present_pte(spte))
4037 break;
4038 }
4039 walk_shadow_page_lockless_end(vcpu);
4040 }
4041
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4042 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4043 u32 error_code, bool prefault)
4044 {
4045 gfn_t gfn = gpa >> PAGE_SHIFT;
4046 int r;
4047
4048 /* Note, paging is disabled, ergo gva == gpa. */
4049 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4050
4051 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4052 return RET_PF_EMULATE;
4053
4054 r = mmu_topup_memory_caches(vcpu);
4055 if (r)
4056 return r;
4057
4058 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4059
4060
4061 return nonpaging_map(vcpu, gpa & PAGE_MASK,
4062 error_code, gfn, prefault);
4063 }
4064
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)4065 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4066 gfn_t gfn)
4067 {
4068 struct kvm_arch_async_pf arch;
4069
4070 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4071 arch.gfn = gfn;
4072 arch.direct_map = vcpu->arch.mmu.direct_map;
4073 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
4074
4075 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4076 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4077 }
4078
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)4079 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
4080 {
4081 if (unlikely(!lapic_in_kernel(vcpu) ||
4082 kvm_event_needs_reinjection(vcpu) ||
4083 vcpu->arch.exception.pending))
4084 return false;
4085
4086 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
4087 return false;
4088
4089 return kvm_x86_ops->interrupt_allowed(vcpu);
4090 }
4091
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,bool write,bool * writable)4092 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4093 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4094 bool *writable)
4095 {
4096 struct kvm_memory_slot *slot;
4097 bool async;
4098
4099 /*
4100 * Don't expose private memslots to L2.
4101 */
4102 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4103 *pfn = KVM_PFN_NOSLOT;
4104 return false;
4105 }
4106
4107 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4108 async = false;
4109 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4110 if (!async)
4111 return false; /* *pfn has correct page already */
4112
4113 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4114 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4115 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4116 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4117 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4118 return true;
4119 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4120 return true;
4121 }
4122
4123 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4124 return false;
4125 }
4126
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4127 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4128 u64 fault_address, char *insn, int insn_len)
4129 {
4130 int r = 1;
4131
4132 #ifndef CONFIG_X86_64
4133 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4134 if (WARN_ON_ONCE(fault_address >> 32))
4135 return -EFAULT;
4136 #endif
4137
4138 vcpu->arch.l1tf_flush_l1d = true;
4139 switch (vcpu->arch.apf.host_apf_reason) {
4140 default:
4141 trace_kvm_page_fault(fault_address, error_code);
4142
4143 if (kvm_event_needs_reinjection(vcpu))
4144 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4145 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4146 insn_len);
4147 break;
4148 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4149 vcpu->arch.apf.host_apf_reason = 0;
4150 local_irq_disable();
4151 kvm_async_pf_task_wait(fault_address, 0);
4152 local_irq_enable();
4153 break;
4154 case KVM_PV_REASON_PAGE_READY:
4155 vcpu->arch.apf.host_apf_reason = 0;
4156 local_irq_disable();
4157 kvm_async_pf_task_wake(fault_address);
4158 local_irq_enable();
4159 break;
4160 }
4161 return r;
4162 }
4163 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4164
4165 static bool
check_hugepage_cache_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int level)4166 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4167 {
4168 int page_num = KVM_PAGES_PER_HPAGE(level);
4169
4170 gfn &= ~(page_num - 1);
4171
4172 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4173 }
4174
tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4175 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4176 bool prefault)
4177 {
4178 kvm_pfn_t pfn;
4179 int r;
4180 int level;
4181 bool force_pt_level;
4182 gfn_t gfn = gpa >> PAGE_SHIFT;
4183 unsigned long mmu_seq;
4184 int write = error_code & PFERR_WRITE_MASK;
4185 bool map_writable;
4186 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4187 is_nx_huge_page_enabled();
4188
4189 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4190
4191 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4192 return RET_PF_EMULATE;
4193
4194 r = mmu_topup_memory_caches(vcpu);
4195 if (r)
4196 return r;
4197
4198 force_pt_level =
4199 lpage_disallowed ||
4200 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4201 level = mapping_level(vcpu, gfn, &force_pt_level);
4202 if (likely(!force_pt_level)) {
4203 if (level > PT_DIRECTORY_LEVEL &&
4204 !check_hugepage_cache_consistency(vcpu, gfn, level))
4205 level = PT_DIRECTORY_LEVEL;
4206 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4207 }
4208
4209 if (fast_page_fault(vcpu, gpa, level, error_code))
4210 return RET_PF_RETRY;
4211
4212 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4213 smp_rmb();
4214
4215 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4216 return RET_PF_RETRY;
4217
4218 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4219 return r;
4220
4221 r = RET_PF_RETRY;
4222 spin_lock(&vcpu->kvm->mmu_lock);
4223 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4224 goto out_unlock;
4225 if (make_mmu_pages_available(vcpu) < 0)
4226 goto out_unlock;
4227 if (likely(!force_pt_level))
4228 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4229 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4230 prefault, lpage_disallowed);
4231 out_unlock:
4232 spin_unlock(&vcpu->kvm->mmu_lock);
4233 kvm_release_pfn_clean(pfn);
4234 return r;
4235 }
4236
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4237 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4238 struct kvm_mmu *context)
4239 {
4240 context->page_fault = nonpaging_page_fault;
4241 context->gva_to_gpa = nonpaging_gva_to_gpa;
4242 context->sync_page = nonpaging_sync_page;
4243 context->invlpg = nonpaging_invlpg;
4244 context->update_pte = nonpaging_update_pte;
4245 context->root_level = 0;
4246 context->shadow_root_level = PT32E_ROOT_LEVEL;
4247 context->direct_map = true;
4248 context->nx = false;
4249 }
4250
4251 /*
4252 * Find out if a previously cached root matching the new CR3/role is available.
4253 * The current root is also inserted into the cache.
4254 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4255 * returned.
4256 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4257 * false is returned. This root should now be freed by the caller.
4258 */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role)4259 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4260 union kvm_mmu_page_role new_role)
4261 {
4262 uint i;
4263 struct kvm_mmu_root_info root;
4264 struct kvm_mmu *mmu = &vcpu->arch.mmu;
4265
4266 root.cr3 = mmu->get_cr3(vcpu);
4267 root.hpa = mmu->root_hpa;
4268
4269 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4270 swap(root, mmu->prev_roots[i]);
4271
4272 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4273 page_header(root.hpa) != NULL &&
4274 new_role.word == page_header(root.hpa)->role.word)
4275 break;
4276 }
4277
4278 mmu->root_hpa = root.hpa;
4279
4280 return i < KVM_MMU_NUM_PREV_ROOTS;
4281 }
4282
fast_cr3_switch(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role,bool skip_tlb_flush)4283 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4284 union kvm_mmu_page_role new_role,
4285 bool skip_tlb_flush)
4286 {
4287 struct kvm_mmu *mmu = &vcpu->arch.mmu;
4288
4289 /*
4290 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4291 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4292 * later if necessary.
4293 */
4294 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4295 mmu->root_level >= PT64_ROOT_4LEVEL) {
4296 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4297 return false;
4298
4299 if (cached_root_available(vcpu, new_cr3, new_role)) {
4300 /*
4301 * It is possible that the cached previous root page is
4302 * obsolete because of a change in the MMU
4303 * generation number. However, that is accompanied by
4304 * KVM_REQ_MMU_RELOAD, which will free the root that we
4305 * have set here and allocate a new one.
4306 */
4307
4308 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4309 if (!skip_tlb_flush) {
4310 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4311 kvm_x86_ops->tlb_flush(vcpu, true);
4312 }
4313
4314 /*
4315 * The last MMIO access's GVA and GPA are cached in the
4316 * VCPU. When switching to a new CR3, that GVA->GPA
4317 * mapping may no longer be valid. So clear any cached
4318 * MMIO info even when we don't need to sync the shadow
4319 * page tables.
4320 */
4321 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4322
4323 __clear_sp_write_flooding_count(
4324 page_header(mmu->root_hpa));
4325
4326 return true;
4327 }
4328 }
4329
4330 return false;
4331 }
4332
__kvm_mmu_new_cr3(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role,bool skip_tlb_flush)4333 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4334 union kvm_mmu_page_role new_role,
4335 bool skip_tlb_flush)
4336 {
4337 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4338 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
4339 }
4340
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu,gpa_t new_cr3,bool skip_tlb_flush)4341 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4342 {
4343 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4344 skip_tlb_flush);
4345 }
4346 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4347
get_cr3(struct kvm_vcpu * vcpu)4348 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4349 {
4350 return kvm_read_cr3(vcpu);
4351 }
4352
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)4353 static void inject_page_fault(struct kvm_vcpu *vcpu,
4354 struct x86_exception *fault)
4355 {
4356 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4357 }
4358
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)4359 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4360 unsigned access, int *nr_present)
4361 {
4362 if (unlikely(is_mmio_spte(*sptep))) {
4363 if (gfn != get_mmio_spte_gfn(*sptep)) {
4364 mmu_spte_clear_no_track(sptep);
4365 return true;
4366 }
4367
4368 (*nr_present)++;
4369 mark_mmio_spte(vcpu, sptep, gfn, access);
4370 return true;
4371 }
4372
4373 return false;
4374 }
4375
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)4376 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4377 unsigned level, unsigned gpte)
4378 {
4379 /*
4380 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4381 * If it is clear, there are no large pages at this level, so clear
4382 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4383 */
4384 gpte &= level - mmu->last_nonleaf_level;
4385
4386 /*
4387 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4388 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4389 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4390 */
4391 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4392
4393 return gpte & PT_PAGE_SIZE_MASK;
4394 }
4395
4396 #define PTTYPE_EPT 18 /* arbitrary */
4397 #define PTTYPE PTTYPE_EPT
4398 #include "paging_tmpl.h"
4399 #undef PTTYPE
4400
4401 #define PTTYPE 64
4402 #include "paging_tmpl.h"
4403 #undef PTTYPE
4404
4405 #define PTTYPE 32
4406 #include "paging_tmpl.h"
4407 #undef PTTYPE
4408
4409 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)4410 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4411 struct rsvd_bits_validate *rsvd_check,
4412 int maxphyaddr, int level, bool nx, bool gbpages,
4413 bool pse, bool amd)
4414 {
4415 u64 exb_bit_rsvd = 0;
4416 u64 gbpages_bit_rsvd = 0;
4417 u64 nonleaf_bit8_rsvd = 0;
4418
4419 rsvd_check->bad_mt_xwr = 0;
4420
4421 if (!nx)
4422 exb_bit_rsvd = rsvd_bits(63, 63);
4423 if (!gbpages)
4424 gbpages_bit_rsvd = rsvd_bits(7, 7);
4425
4426 /*
4427 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4428 * leaf entries) on AMD CPUs only.
4429 */
4430 if (amd)
4431 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4432
4433 switch (level) {
4434 case PT32_ROOT_LEVEL:
4435 /* no rsvd bits for 2 level 4K page table entries */
4436 rsvd_check->rsvd_bits_mask[0][1] = 0;
4437 rsvd_check->rsvd_bits_mask[0][0] = 0;
4438 rsvd_check->rsvd_bits_mask[1][0] =
4439 rsvd_check->rsvd_bits_mask[0][0];
4440
4441 if (!pse) {
4442 rsvd_check->rsvd_bits_mask[1][1] = 0;
4443 break;
4444 }
4445
4446 if (is_cpuid_PSE36())
4447 /* 36bits PSE 4MB page */
4448 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4449 else
4450 /* 32 bits PSE 4MB page */
4451 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4452 break;
4453 case PT32E_ROOT_LEVEL:
4454 rsvd_check->rsvd_bits_mask[0][2] =
4455 rsvd_bits(maxphyaddr, 63) |
4456 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4457 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4458 rsvd_bits(maxphyaddr, 62); /* PDE */
4459 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4460 rsvd_bits(maxphyaddr, 62); /* PTE */
4461 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4462 rsvd_bits(maxphyaddr, 62) |
4463 rsvd_bits(13, 20); /* large page */
4464 rsvd_check->rsvd_bits_mask[1][0] =
4465 rsvd_check->rsvd_bits_mask[0][0];
4466 break;
4467 case PT64_ROOT_5LEVEL:
4468 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4469 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4470 rsvd_bits(maxphyaddr, 51);
4471 rsvd_check->rsvd_bits_mask[1][4] =
4472 rsvd_check->rsvd_bits_mask[0][4];
4473 case PT64_ROOT_4LEVEL:
4474 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4475 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4476 rsvd_bits(maxphyaddr, 51);
4477 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4478 gbpages_bit_rsvd |
4479 rsvd_bits(maxphyaddr, 51);
4480 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4481 rsvd_bits(maxphyaddr, 51);
4482 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4483 rsvd_bits(maxphyaddr, 51);
4484 rsvd_check->rsvd_bits_mask[1][3] =
4485 rsvd_check->rsvd_bits_mask[0][3];
4486 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4487 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4488 rsvd_bits(13, 29);
4489 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4490 rsvd_bits(maxphyaddr, 51) |
4491 rsvd_bits(13, 20); /* large page */
4492 rsvd_check->rsvd_bits_mask[1][0] =
4493 rsvd_check->rsvd_bits_mask[0][0];
4494 break;
4495 }
4496 }
4497
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4498 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4499 struct kvm_mmu *context)
4500 {
4501 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4502 cpuid_maxphyaddr(vcpu), context->root_level,
4503 context->nx,
4504 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4505 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4506 }
4507
4508 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4509 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4510 int maxphyaddr, bool execonly)
4511 {
4512 u64 bad_mt_xwr;
4513
4514 rsvd_check->rsvd_bits_mask[0][4] =
4515 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4516 rsvd_check->rsvd_bits_mask[0][3] =
4517 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4518 rsvd_check->rsvd_bits_mask[0][2] =
4519 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4520 rsvd_check->rsvd_bits_mask[0][1] =
4521 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4522 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4523
4524 /* large page */
4525 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4526 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4527 rsvd_check->rsvd_bits_mask[1][2] =
4528 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4529 rsvd_check->rsvd_bits_mask[1][1] =
4530 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4531 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4532
4533 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4534 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4535 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4536 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4537 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4538 if (!execonly) {
4539 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4540 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4541 }
4542 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4543 }
4544
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4545 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4546 struct kvm_mmu *context, bool execonly)
4547 {
4548 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4549 cpuid_maxphyaddr(vcpu), execonly);
4550 }
4551
4552 /*
4553 * the page table on host is the shadow page table for the page
4554 * table in guest or amd nested guest, its mmu features completely
4555 * follow the features in guest.
4556 */
4557 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4558 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4559 {
4560 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4561 struct rsvd_bits_validate *shadow_zero_check;
4562 int i;
4563
4564 /*
4565 * Passing "true" to the last argument is okay; it adds a check
4566 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4567 */
4568 shadow_zero_check = &context->shadow_zero_check;
4569 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4570 shadow_phys_bits,
4571 context->shadow_root_level, uses_nx,
4572 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4573 is_pse(vcpu), true);
4574
4575 if (!shadow_me_mask)
4576 return;
4577
4578 for (i = context->shadow_root_level; --i >= 0;) {
4579 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4580 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4581 }
4582
4583 }
4584 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4585
boot_cpu_is_amd(void)4586 static inline bool boot_cpu_is_amd(void)
4587 {
4588 WARN_ON_ONCE(!tdp_enabled);
4589 return shadow_x_mask == 0;
4590 }
4591
4592 /*
4593 * the direct page table on host, use as much mmu features as
4594 * possible, however, kvm currently does not do execution-protection.
4595 */
4596 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4597 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4598 struct kvm_mmu *context)
4599 {
4600 struct rsvd_bits_validate *shadow_zero_check;
4601 int i;
4602
4603 shadow_zero_check = &context->shadow_zero_check;
4604
4605 if (boot_cpu_is_amd())
4606 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4607 shadow_phys_bits,
4608 context->shadow_root_level, false,
4609 boot_cpu_has(X86_FEATURE_GBPAGES),
4610 true, true);
4611 else
4612 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4613 shadow_phys_bits,
4614 false);
4615
4616 if (!shadow_me_mask)
4617 return;
4618
4619 for (i = context->shadow_root_level; --i >= 0;) {
4620 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4621 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4622 }
4623 }
4624
4625 /*
4626 * as the comments in reset_shadow_zero_bits_mask() except it
4627 * is the shadow page table for intel nested guest.
4628 */
4629 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4630 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4631 struct kvm_mmu *context, bool execonly)
4632 {
4633 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4634 shadow_phys_bits, execonly);
4635 }
4636
4637 #define BYTE_MASK(access) \
4638 ((1 & (access) ? 2 : 0) | \
4639 (2 & (access) ? 4 : 0) | \
4640 (3 & (access) ? 8 : 0) | \
4641 (4 & (access) ? 16 : 0) | \
4642 (5 & (access) ? 32 : 0) | \
4643 (6 & (access) ? 64 : 0) | \
4644 (7 & (access) ? 128 : 0))
4645
4646
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4647 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4648 struct kvm_mmu *mmu, bool ept)
4649 {
4650 unsigned byte;
4651
4652 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4653 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4654 const u8 u = BYTE_MASK(ACC_USER_MASK);
4655
4656 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4657 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4658 bool cr0_wp = is_write_protection(vcpu);
4659
4660 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4661 unsigned pfec = byte << 1;
4662
4663 /*
4664 * Each "*f" variable has a 1 bit for each UWX value
4665 * that causes a fault with the given PFEC.
4666 */
4667
4668 /* Faults from writes to non-writable pages */
4669 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4670 /* Faults from user mode accesses to supervisor pages */
4671 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4672 /* Faults from fetches of non-executable pages*/
4673 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4674 /* Faults from kernel mode fetches of user pages */
4675 u8 smepf = 0;
4676 /* Faults from kernel mode accesses of user pages */
4677 u8 smapf = 0;
4678
4679 if (!ept) {
4680 /* Faults from kernel mode accesses to user pages */
4681 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4682
4683 /* Not really needed: !nx will cause pte.nx to fault */
4684 if (!mmu->nx)
4685 ff = 0;
4686
4687 /* Allow supervisor writes if !cr0.wp */
4688 if (!cr0_wp)
4689 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4690
4691 /* Disallow supervisor fetches of user code if cr4.smep */
4692 if (cr4_smep)
4693 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4694
4695 /*
4696 * SMAP:kernel-mode data accesses from user-mode
4697 * mappings should fault. A fault is considered
4698 * as a SMAP violation if all of the following
4699 * conditions are ture:
4700 * - X86_CR4_SMAP is set in CR4
4701 * - A user page is accessed
4702 * - The access is not a fetch
4703 * - Page fault in kernel mode
4704 * - if CPL = 3 or X86_EFLAGS_AC is clear
4705 *
4706 * Here, we cover the first three conditions.
4707 * The fourth is computed dynamically in permission_fault();
4708 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4709 * *not* subject to SMAP restrictions.
4710 */
4711 if (cr4_smap)
4712 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4713 }
4714
4715 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4716 }
4717 }
4718
4719 /*
4720 * PKU is an additional mechanism by which the paging controls access to
4721 * user-mode addresses based on the value in the PKRU register. Protection
4722 * key violations are reported through a bit in the page fault error code.
4723 * Unlike other bits of the error code, the PK bit is not known at the
4724 * call site of e.g. gva_to_gpa; it must be computed directly in
4725 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4726 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4727 *
4728 * In particular the following conditions come from the error code, the
4729 * page tables and the machine state:
4730 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4731 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4732 * - PK is always zero if U=0 in the page tables
4733 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4734 *
4735 * The PKRU bitmask caches the result of these four conditions. The error
4736 * code (minus the P bit) and the page table's U bit form an index into the
4737 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4738 * with the two bits of the PKRU register corresponding to the protection key.
4739 * For the first three conditions above the bits will be 00, thus masking
4740 * away both AD and WD. For all reads or if the last condition holds, WD
4741 * only will be masked away.
4742 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4743 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4744 bool ept)
4745 {
4746 unsigned bit;
4747 bool wp;
4748
4749 if (ept) {
4750 mmu->pkru_mask = 0;
4751 return;
4752 }
4753
4754 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4755 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4756 mmu->pkru_mask = 0;
4757 return;
4758 }
4759
4760 wp = is_write_protection(vcpu);
4761
4762 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4763 unsigned pfec, pkey_bits;
4764 bool check_pkey, check_write, ff, uf, wf, pte_user;
4765
4766 pfec = bit << 1;
4767 ff = pfec & PFERR_FETCH_MASK;
4768 uf = pfec & PFERR_USER_MASK;
4769 wf = pfec & PFERR_WRITE_MASK;
4770
4771 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4772 pte_user = pfec & PFERR_RSVD_MASK;
4773
4774 /*
4775 * Only need to check the access which is not an
4776 * instruction fetch and is to a user page.
4777 */
4778 check_pkey = (!ff && pte_user);
4779 /*
4780 * write access is controlled by PKRU if it is a
4781 * user access or CR0.WP = 1.
4782 */
4783 check_write = check_pkey && wf && (uf || wp);
4784
4785 /* PKRU.AD stops both read and write access. */
4786 pkey_bits = !!check_pkey;
4787 /* PKRU.WD stops write access. */
4788 pkey_bits |= (!!check_write) << 1;
4789
4790 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4791 }
4792 }
4793
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4794 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4795 {
4796 unsigned root_level = mmu->root_level;
4797
4798 mmu->last_nonleaf_level = root_level;
4799 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4800 mmu->last_nonleaf_level++;
4801 }
4802
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4803 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4804 struct kvm_mmu *context,
4805 int level)
4806 {
4807 context->nx = is_nx(vcpu);
4808 context->root_level = level;
4809
4810 reset_rsvds_bits_mask(vcpu, context);
4811 update_permission_bitmask(vcpu, context, false);
4812 update_pkru_bitmask(vcpu, context, false);
4813 update_last_nonleaf_level(vcpu, context);
4814
4815 MMU_WARN_ON(!is_pae(vcpu));
4816 context->page_fault = paging64_page_fault;
4817 context->gva_to_gpa = paging64_gva_to_gpa;
4818 context->sync_page = paging64_sync_page;
4819 context->invlpg = paging64_invlpg;
4820 context->update_pte = paging64_update_pte;
4821 context->shadow_root_level = level;
4822 context->direct_map = false;
4823 }
4824
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4825 static void paging64_init_context(struct kvm_vcpu *vcpu,
4826 struct kvm_mmu *context)
4827 {
4828 int root_level = is_la57_mode(vcpu) ?
4829 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4830
4831 paging64_init_context_common(vcpu, context, root_level);
4832 }
4833
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4834 static void paging32_init_context(struct kvm_vcpu *vcpu,
4835 struct kvm_mmu *context)
4836 {
4837 context->nx = false;
4838 context->root_level = PT32_ROOT_LEVEL;
4839
4840 reset_rsvds_bits_mask(vcpu, context);
4841 update_permission_bitmask(vcpu, context, false);
4842 update_pkru_bitmask(vcpu, context, false);
4843 update_last_nonleaf_level(vcpu, context);
4844
4845 context->page_fault = paging32_page_fault;
4846 context->gva_to_gpa = paging32_gva_to_gpa;
4847 context->sync_page = paging32_sync_page;
4848 context->invlpg = paging32_invlpg;
4849 context->update_pte = paging32_update_pte;
4850 context->shadow_root_level = PT32E_ROOT_LEVEL;
4851 context->direct_map = false;
4852 }
4853
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4854 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4855 struct kvm_mmu *context)
4856 {
4857 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4858 }
4859
4860 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu)4861 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4862 {
4863 union kvm_mmu_page_role role = {0};
4864
4865 role.guest_mode = is_guest_mode(vcpu);
4866 role.smm = is_smm(vcpu);
4867 role.ad_disabled = (shadow_accessed_mask == 0);
4868 role.level = kvm_x86_ops->get_tdp_level(vcpu);
4869 role.direct = true;
4870 role.access = ACC_ALL;
4871
4872 return role;
4873 }
4874
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4875 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4876 {
4877 struct kvm_mmu *context = &vcpu->arch.mmu;
4878
4879 context->base_role.word = mmu_base_role_mask.word &
4880 kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4881 context->page_fault = tdp_page_fault;
4882 context->sync_page = nonpaging_sync_page;
4883 context->invlpg = nonpaging_invlpg;
4884 context->update_pte = nonpaging_update_pte;
4885 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4886 context->direct_map = true;
4887 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4888 context->get_cr3 = get_cr3;
4889 context->get_pdptr = kvm_pdptr_read;
4890 context->inject_page_fault = kvm_inject_page_fault;
4891
4892 if (!is_paging(vcpu)) {
4893 context->nx = false;
4894 context->gva_to_gpa = nonpaging_gva_to_gpa;
4895 context->root_level = 0;
4896 } else if (is_long_mode(vcpu)) {
4897 context->nx = is_nx(vcpu);
4898 context->root_level = is_la57_mode(vcpu) ?
4899 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4900 reset_rsvds_bits_mask(vcpu, context);
4901 context->gva_to_gpa = paging64_gva_to_gpa;
4902 } else if (is_pae(vcpu)) {
4903 context->nx = is_nx(vcpu);
4904 context->root_level = PT32E_ROOT_LEVEL;
4905 reset_rsvds_bits_mask(vcpu, context);
4906 context->gva_to_gpa = paging64_gva_to_gpa;
4907 } else {
4908 context->nx = false;
4909 context->root_level = PT32_ROOT_LEVEL;
4910 reset_rsvds_bits_mask(vcpu, context);
4911 context->gva_to_gpa = paging32_gva_to_gpa;
4912 }
4913
4914 update_permission_bitmask(vcpu, context, false);
4915 update_pkru_bitmask(vcpu, context, false);
4916 update_last_nonleaf_level(vcpu, context);
4917 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4918 }
4919
4920 static union kvm_mmu_page_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu)4921 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
4922 {
4923 union kvm_mmu_page_role role = {0};
4924 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4925 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4926
4927 role.nxe = is_nx(vcpu);
4928 role.cr4_pae = !!is_pae(vcpu);
4929 role.cr0_wp = is_write_protection(vcpu);
4930 role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4931 role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4932 role.guest_mode = is_guest_mode(vcpu);
4933 role.smm = is_smm(vcpu);
4934 role.direct = !is_paging(vcpu);
4935 role.access = ACC_ALL;
4936
4937 if (!is_long_mode(vcpu))
4938 role.level = PT32E_ROOT_LEVEL;
4939 else if (is_la57_mode(vcpu))
4940 role.level = PT64_ROOT_5LEVEL;
4941 else
4942 role.level = PT64_ROOT_4LEVEL;
4943
4944 return role;
4945 }
4946
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)4947 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4948 {
4949 struct kvm_mmu *context = &vcpu->arch.mmu;
4950
4951 if (!is_paging(vcpu))
4952 nonpaging_init_context(vcpu, context);
4953 else if (is_long_mode(vcpu))
4954 paging64_init_context(vcpu, context);
4955 else if (is_pae(vcpu))
4956 paging32E_init_context(vcpu, context);
4957 else
4958 paging32_init_context(vcpu, context);
4959
4960 context->base_role.word = mmu_base_role_mask.word &
4961 kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4962 reset_shadow_zero_bits_mask(vcpu, context);
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4965
4966 static union kvm_mmu_page_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty)4967 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
4968 {
4969 union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
4970
4971 role.level = PT64_ROOT_4LEVEL;
4972 role.direct = false;
4973 role.ad_disabled = !accessed_dirty;
4974 role.guest_mode = true;
4975 role.access = ACC_ALL;
4976
4977 return role;
4978 }
4979
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4980 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4981 bool accessed_dirty, gpa_t new_eptp)
4982 {
4983 struct kvm_mmu *context = &vcpu->arch.mmu;
4984 union kvm_mmu_page_role root_page_role =
4985 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4986
4987 __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4988 context->shadow_root_level = PT64_ROOT_4LEVEL;
4989
4990 context->nx = true;
4991 context->ept_ad = accessed_dirty;
4992 context->page_fault = ept_page_fault;
4993 context->gva_to_gpa = ept_gva_to_gpa;
4994 context->sync_page = ept_sync_page;
4995 context->invlpg = ept_invlpg;
4996 context->update_pte = ept_update_pte;
4997 context->root_level = PT64_ROOT_4LEVEL;
4998 context->direct_map = false;
4999 context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
5000 update_permission_bitmask(vcpu, context, true);
5001 update_pkru_bitmask(vcpu, context, true);
5002 update_last_nonleaf_level(vcpu, context);
5003 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5004 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5005 }
5006 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5007
init_kvm_softmmu(struct kvm_vcpu * vcpu)5008 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5009 {
5010 struct kvm_mmu *context = &vcpu->arch.mmu;
5011
5012 kvm_init_shadow_mmu(vcpu);
5013 context->set_cr3 = kvm_x86_ops->set_cr3;
5014 context->get_cr3 = get_cr3;
5015 context->get_pdptr = kvm_pdptr_read;
5016 context->inject_page_fault = kvm_inject_page_fault;
5017 }
5018
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)5019 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5020 {
5021 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5022
5023 g_context->get_cr3 = get_cr3;
5024 g_context->get_pdptr = kvm_pdptr_read;
5025 g_context->inject_page_fault = kvm_inject_page_fault;
5026
5027 /*
5028 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
5029 * L1's nested page tables (e.g. EPT12). The nested translation
5030 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5031 * L2's page tables as the first level of translation and L1's
5032 * nested page tables as the second level of translation. Basically
5033 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5034 */
5035 if (!is_paging(vcpu)) {
5036 g_context->nx = false;
5037 g_context->root_level = 0;
5038 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5039 } else if (is_long_mode(vcpu)) {
5040 g_context->nx = is_nx(vcpu);
5041 g_context->root_level = is_la57_mode(vcpu) ?
5042 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5043 reset_rsvds_bits_mask(vcpu, g_context);
5044 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5045 } else if (is_pae(vcpu)) {
5046 g_context->nx = is_nx(vcpu);
5047 g_context->root_level = PT32E_ROOT_LEVEL;
5048 reset_rsvds_bits_mask(vcpu, g_context);
5049 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5050 } else {
5051 g_context->nx = false;
5052 g_context->root_level = PT32_ROOT_LEVEL;
5053 reset_rsvds_bits_mask(vcpu, g_context);
5054 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5055 }
5056
5057 update_permission_bitmask(vcpu, g_context, false);
5058 update_pkru_bitmask(vcpu, g_context, false);
5059 update_last_nonleaf_level(vcpu, g_context);
5060 }
5061
kvm_init_mmu(struct kvm_vcpu * vcpu,bool reset_roots)5062 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5063 {
5064 if (reset_roots) {
5065 uint i;
5066
5067 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5068
5069 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5070 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5071 }
5072
5073 if (mmu_is_nested(vcpu))
5074 init_kvm_nested_mmu(vcpu);
5075 else if (tdp_enabled)
5076 init_kvm_tdp_mmu(vcpu);
5077 else
5078 init_kvm_softmmu(vcpu);
5079 }
5080 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5081
5082 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)5083 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5084 {
5085 if (tdp_enabled)
5086 return kvm_calc_tdp_mmu_root_page_role(vcpu);
5087 else
5088 return kvm_calc_shadow_mmu_root_page_role(vcpu);
5089 }
5090
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5091 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5092 {
5093 kvm_mmu_unload(vcpu);
5094 kvm_init_mmu(vcpu, true);
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5097
kvm_mmu_load(struct kvm_vcpu * vcpu)5098 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5099 {
5100 int r;
5101
5102 r = mmu_topup_memory_caches(vcpu);
5103 if (r)
5104 goto out;
5105 r = mmu_alloc_roots(vcpu);
5106 kvm_mmu_sync_roots(vcpu);
5107 if (r)
5108 goto out;
5109 kvm_mmu_load_cr3(vcpu);
5110 kvm_x86_ops->tlb_flush(vcpu, true);
5111 out:
5112 return r;
5113 }
5114 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5115
kvm_mmu_unload(struct kvm_vcpu * vcpu)5116 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5117 {
5118 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
5119 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5120 }
5121 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5122
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)5123 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5124 struct kvm_mmu_page *sp, u64 *spte,
5125 const void *new)
5126 {
5127 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5128 ++vcpu->kvm->stat.mmu_pde_zapped;
5129 return;
5130 }
5131
5132 ++vcpu->kvm->stat.mmu_pte_updated;
5133 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
5134 }
5135
need_remote_flush(u64 old,u64 new)5136 static bool need_remote_flush(u64 old, u64 new)
5137 {
5138 if (!is_shadow_present_pte(old))
5139 return false;
5140 if (!is_shadow_present_pte(new))
5141 return true;
5142 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5143 return true;
5144 old ^= shadow_nx_mask;
5145 new ^= shadow_nx_mask;
5146 return (old & ~new & PT64_PERM_MASK) != 0;
5147 }
5148
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5149 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5150 int *bytes)
5151 {
5152 u64 gentry = 0;
5153 int r;
5154
5155 /*
5156 * Assume that the pte write on a page table of the same type
5157 * as the current vcpu paging mode since we update the sptes only
5158 * when they have the same mode.
5159 */
5160 if (is_pae(vcpu) && *bytes == 4) {
5161 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5162 *gpa &= ~(gpa_t)7;
5163 *bytes = 8;
5164 }
5165
5166 if (*bytes == 4 || *bytes == 8) {
5167 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5168 if (r)
5169 gentry = 0;
5170 }
5171
5172 return gentry;
5173 }
5174
5175 /*
5176 * If we're seeing too many writes to a page, it may no longer be a page table,
5177 * or we may be forking, in which case it is better to unmap the page.
5178 */
detect_write_flooding(struct kvm_mmu_page * sp)5179 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5180 {
5181 /*
5182 * Skip write-flooding detected for the sp whose level is 1, because
5183 * it can become unsync, then the guest page is not write-protected.
5184 */
5185 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5186 return false;
5187
5188 atomic_inc(&sp->write_flooding_count);
5189 return atomic_read(&sp->write_flooding_count) >= 3;
5190 }
5191
5192 /*
5193 * Misaligned accesses are too much trouble to fix up; also, they usually
5194 * indicate a page is not used as a page table.
5195 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5196 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5197 int bytes)
5198 {
5199 unsigned offset, pte_size, misaligned;
5200
5201 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5202 gpa, bytes, sp->role.word);
5203
5204 offset = offset_in_page(gpa);
5205 pte_size = sp->role.cr4_pae ? 8 : 4;
5206
5207 /*
5208 * Sometimes, the OS only writes the last one bytes to update status
5209 * bits, for example, in linux, andb instruction is used in clear_bit().
5210 */
5211 if (!(offset & (pte_size - 1)) && bytes == 1)
5212 return false;
5213
5214 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5215 misaligned |= bytes < 4;
5216
5217 return misaligned;
5218 }
5219
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5220 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5221 {
5222 unsigned page_offset, quadrant;
5223 u64 *spte;
5224 int level;
5225
5226 page_offset = offset_in_page(gpa);
5227 level = sp->role.level;
5228 *nspte = 1;
5229 if (!sp->role.cr4_pae) {
5230 page_offset <<= 1; /* 32->64 */
5231 /*
5232 * A 32-bit pde maps 4MB while the shadow pdes map
5233 * only 2MB. So we need to double the offset again
5234 * and zap two pdes instead of one.
5235 */
5236 if (level == PT32_ROOT_LEVEL) {
5237 page_offset &= ~7; /* kill rounding error */
5238 page_offset <<= 1;
5239 *nspte = 2;
5240 }
5241 quadrant = page_offset >> PAGE_SHIFT;
5242 page_offset &= ~PAGE_MASK;
5243 if (quadrant != sp->role.quadrant)
5244 return NULL;
5245 }
5246
5247 spte = &sp->spt[page_offset / sizeof(*spte)];
5248 return spte;
5249 }
5250
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5251 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5252 const u8 *new, int bytes,
5253 struct kvm_page_track_notifier_node *node)
5254 {
5255 gfn_t gfn = gpa >> PAGE_SHIFT;
5256 struct kvm_mmu_page *sp;
5257 LIST_HEAD(invalid_list);
5258 u64 entry, gentry, *spte;
5259 int npte;
5260 bool remote_flush, local_flush;
5261
5262 /*
5263 * If we don't have indirect shadow pages, it means no page is
5264 * write-protected, so we can exit simply.
5265 */
5266 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5267 return;
5268
5269 remote_flush = local_flush = false;
5270
5271 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5272
5273 /*
5274 * No need to care whether allocation memory is successful
5275 * or not since pte prefetch is skiped if it does not have
5276 * enough objects in the cache.
5277 */
5278 mmu_topup_memory_caches(vcpu);
5279
5280 spin_lock(&vcpu->kvm->mmu_lock);
5281
5282 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5283
5284 ++vcpu->kvm->stat.mmu_pte_write;
5285 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5286
5287 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5288 if (detect_write_misaligned(sp, gpa, bytes) ||
5289 detect_write_flooding(sp)) {
5290 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5291 ++vcpu->kvm->stat.mmu_flooded;
5292 continue;
5293 }
5294
5295 spte = get_written_sptes(sp, gpa, &npte);
5296 if (!spte)
5297 continue;
5298
5299 local_flush = true;
5300 while (npte--) {
5301 entry = *spte;
5302 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5303 if (gentry &&
5304 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5305 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5306 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5307 if (need_remote_flush(entry, *spte))
5308 remote_flush = true;
5309 ++spte;
5310 }
5311 }
5312 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5313 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5314 spin_unlock(&vcpu->kvm->mmu_lock);
5315 }
5316
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5317 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5318 {
5319 gpa_t gpa;
5320 int r;
5321
5322 if (vcpu->arch.mmu.direct_map)
5323 return 0;
5324
5325 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5326
5327 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5328
5329 return r;
5330 }
5331 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5332
make_mmu_pages_available(struct kvm_vcpu * vcpu)5333 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5334 {
5335 LIST_HEAD(invalid_list);
5336
5337 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5338 return 0;
5339
5340 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5341 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5342 break;
5343
5344 ++vcpu->kvm->stat.mmu_recycled;
5345 }
5346 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5347
5348 if (!kvm_mmu_available_pages(vcpu->kvm))
5349 return -ENOSPC;
5350 return 0;
5351 }
5352
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5353 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5354 void *insn, int insn_len)
5355 {
5356 int r, emulation_type = 0;
5357 enum emulation_result er;
5358 bool direct = vcpu->arch.mmu.direct_map;
5359
5360 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5361 if (vcpu->arch.mmu.direct_map) {
5362 vcpu->arch.gpa_available = true;
5363 vcpu->arch.gpa_val = cr2_or_gpa;
5364 }
5365
5366 r = RET_PF_INVALID;
5367 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5368 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5369 if (r == RET_PF_EMULATE)
5370 goto emulate;
5371 }
5372
5373 if (r == RET_PF_INVALID) {
5374 r = vcpu->arch.mmu.page_fault(vcpu, cr2_or_gpa,
5375 lower_32_bits(error_code),
5376 false);
5377 WARN_ON(r == RET_PF_INVALID);
5378 }
5379
5380 if (r == RET_PF_RETRY)
5381 return 1;
5382 if (r < 0)
5383 return r;
5384
5385 /*
5386 * Before emulating the instruction, check if the error code
5387 * was due to a RO violation while translating the guest page.
5388 * This can occur when using nested virtualization with nested
5389 * paging in both guests. If true, we simply unprotect the page
5390 * and resume the guest.
5391 */
5392 if (vcpu->arch.mmu.direct_map &&
5393 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5394 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5395 return 1;
5396 }
5397
5398 /*
5399 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5400 * optimistically try to just unprotect the page and let the processor
5401 * re-execute the instruction that caused the page fault. Do not allow
5402 * retrying MMIO emulation, as it's not only pointless but could also
5403 * cause us to enter an infinite loop because the processor will keep
5404 * faulting on the non-existent MMIO address. Retrying an instruction
5405 * from a nested guest is also pointless and dangerous as we are only
5406 * explicitly shadowing L1's page tables, i.e. unprotecting something
5407 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5408 */
5409 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5410 emulation_type = EMULTYPE_ALLOW_RETRY;
5411 emulate:
5412 /*
5413 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5414 * This can happen if a guest gets a page-fault on data access but the HW
5415 * table walker is not able to read the instruction page (e.g instruction
5416 * page is not present in memory). In those cases we simply restart the
5417 * guest.
5418 */
5419 if (unlikely(insn && !insn_len))
5420 return 1;
5421
5422 er = x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, insn_len);
5423
5424 switch (er) {
5425 case EMULATE_DONE:
5426 return 1;
5427 case EMULATE_USER_EXIT:
5428 ++vcpu->stat.mmio_exits;
5429 /* fall through */
5430 case EMULATE_FAIL:
5431 return 0;
5432 default:
5433 BUG();
5434 }
5435 }
5436 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5437
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5438 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5439 {
5440 struct kvm_mmu *mmu = &vcpu->arch.mmu;
5441 int i;
5442
5443 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5444 if (is_noncanonical_address(gva, vcpu))
5445 return;
5446
5447 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5448
5449 /*
5450 * INVLPG is required to invalidate any global mappings for the VA,
5451 * irrespective of PCID. Since it would take us roughly similar amount
5452 * of work to determine whether any of the prev_root mappings of the VA
5453 * is marked global, or to just sync it blindly, so we might as well
5454 * just always sync it.
5455 *
5456 * Mappings not reachable via the current cr3 or the prev_roots will be
5457 * synced when switching to that cr3, so nothing needs to be done here
5458 * for them.
5459 */
5460 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5461 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5462 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5463
5464 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5465 ++vcpu->stat.invlpg;
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5468
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5469 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5470 {
5471 struct kvm_mmu *mmu = &vcpu->arch.mmu;
5472 bool tlb_flush = false;
5473 uint i;
5474
5475 if (pcid == kvm_get_active_pcid(vcpu)) {
5476 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5477 tlb_flush = true;
5478 }
5479
5480 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5481 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5482 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5483 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5484 tlb_flush = true;
5485 }
5486 }
5487
5488 if (tlb_flush)
5489 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5490
5491 ++vcpu->stat.invlpg;
5492
5493 /*
5494 * Mappings not reachable via the current cr3 or the prev_roots will be
5495 * synced when switching to that cr3, so nothing needs to be done here
5496 * for them.
5497 */
5498 }
5499 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5500
kvm_enable_tdp(void)5501 void kvm_enable_tdp(void)
5502 {
5503 tdp_enabled = true;
5504 }
5505 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5506
kvm_disable_tdp(void)5507 void kvm_disable_tdp(void)
5508 {
5509 tdp_enabled = false;
5510 }
5511 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5512
free_mmu_pages(struct kvm_vcpu * vcpu)5513 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5514 {
5515 free_page((unsigned long)vcpu->arch.mmu.pae_root);
5516 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5517 }
5518
alloc_mmu_pages(struct kvm_vcpu * vcpu)5519 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5520 {
5521 struct page *page;
5522 int i;
5523
5524 /*
5525 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5526 * while the PDP table is a per-vCPU construct that's allocated at MMU
5527 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5528 * x86_64. Therefore we need to allocate the PDP table in the first
5529 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5530 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5531 * skip allocating the PDP table.
5532 */
5533 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5534 return 0;
5535
5536 /*
5537 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5538 * Therefore we need to allocate shadow page tables in the first
5539 * 4GB of memory, which happens to fit the DMA32 zone.
5540 */
5541 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5542 if (!page)
5543 return -ENOMEM;
5544
5545 vcpu->arch.mmu.pae_root = page_address(page);
5546 for (i = 0; i < 4; ++i)
5547 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5548
5549 return 0;
5550 }
5551
kvm_mmu_create(struct kvm_vcpu * vcpu)5552 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5553 {
5554 uint i;
5555
5556 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5557 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5558 vcpu->arch.mmu.translate_gpa = translate_gpa;
5559 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5560
5561 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5562 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5563
5564 return alloc_mmu_pages(vcpu);
5565 }
5566
kvm_mmu_setup(struct kvm_vcpu * vcpu)5567 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5568 {
5569 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5570
5571 /*
5572 * kvm_mmu_setup() is called only on vCPU initialization.
5573 * Therefore, no need to reset mmu roots as they are not yet
5574 * initialized.
5575 */
5576 kvm_init_mmu(vcpu, false);
5577 }
5578
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5579 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5580 struct kvm_memory_slot *slot,
5581 struct kvm_page_track_notifier_node *node)
5582 {
5583 kvm_mmu_invalidate_zap_all_pages(kvm);
5584 }
5585
kvm_mmu_init_vm(struct kvm * kvm)5586 void kvm_mmu_init_vm(struct kvm *kvm)
5587 {
5588 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5589
5590 node->track_write = kvm_mmu_pte_write;
5591 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5592 kvm_page_track_register_notifier(kvm, node);
5593 }
5594
kvm_mmu_uninit_vm(struct kvm * kvm)5595 void kvm_mmu_uninit_vm(struct kvm *kvm)
5596 {
5597 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5598
5599 kvm_page_track_unregister_notifier(kvm, node);
5600 }
5601
5602 /* The return value indicates if tlb flush on all vcpus is needed. */
5603 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5604
5605 /* The caller should hold mmu-lock before calling this function. */
5606 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5607 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5608 slot_level_handler fn, int start_level, int end_level,
5609 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5610 {
5611 struct slot_rmap_walk_iterator iterator;
5612 bool flush = false;
5613
5614 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5615 end_gfn, &iterator) {
5616 if (iterator.rmap)
5617 flush |= fn(kvm, iterator.rmap);
5618
5619 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5620 if (flush && lock_flush_tlb) {
5621 kvm_flush_remote_tlbs(kvm);
5622 flush = false;
5623 }
5624 cond_resched_lock(&kvm->mmu_lock);
5625 }
5626 }
5627
5628 if (flush && lock_flush_tlb) {
5629 kvm_flush_remote_tlbs(kvm);
5630 flush = false;
5631 }
5632
5633 return flush;
5634 }
5635
5636 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5637 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5638 slot_level_handler fn, int start_level, int end_level,
5639 bool lock_flush_tlb)
5640 {
5641 return slot_handle_level_range(kvm, memslot, fn, start_level,
5642 end_level, memslot->base_gfn,
5643 memslot->base_gfn + memslot->npages - 1,
5644 lock_flush_tlb);
5645 }
5646
5647 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5648 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5649 slot_level_handler fn, bool lock_flush_tlb)
5650 {
5651 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5652 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5653 }
5654
5655 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5656 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5657 slot_level_handler fn, bool lock_flush_tlb)
5658 {
5659 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5660 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5661 }
5662
5663 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5664 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5665 slot_level_handler fn, bool lock_flush_tlb)
5666 {
5667 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5668 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5669 }
5670
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5671 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5672 {
5673 struct kvm_memslots *slots;
5674 struct kvm_memory_slot *memslot;
5675 int i;
5676
5677 spin_lock(&kvm->mmu_lock);
5678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5679 slots = __kvm_memslots(kvm, i);
5680 kvm_for_each_memslot(memslot, slots) {
5681 gfn_t start, end;
5682
5683 start = max(gfn_start, memslot->base_gfn);
5684 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5685 if (start >= end)
5686 continue;
5687
5688 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5689 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5690 start, end - 1, true);
5691 }
5692 }
5693
5694 spin_unlock(&kvm->mmu_lock);
5695 }
5696
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5697 static bool slot_rmap_write_protect(struct kvm *kvm,
5698 struct kvm_rmap_head *rmap_head)
5699 {
5700 return __rmap_write_protect(kvm, rmap_head, false);
5701 }
5702
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5703 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5704 struct kvm_memory_slot *memslot)
5705 {
5706 bool flush;
5707
5708 spin_lock(&kvm->mmu_lock);
5709 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5710 false);
5711 spin_unlock(&kvm->mmu_lock);
5712
5713 /*
5714 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5715 * which do tlb flush out of mmu-lock should be serialized by
5716 * kvm->slots_lock otherwise tlb flush would be missed.
5717 */
5718 lockdep_assert_held(&kvm->slots_lock);
5719
5720 /*
5721 * We can flush all the TLBs out of the mmu lock without TLB
5722 * corruption since we just change the spte from writable to
5723 * readonly so that we only need to care the case of changing
5724 * spte from present to present (changing the spte from present
5725 * to nonpresent will flush all the TLBs immediately), in other
5726 * words, the only case we care is mmu_spte_update() where we
5727 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5728 * instead of PT_WRITABLE_MASK, that means it does not depend
5729 * on PT_WRITABLE_MASK anymore.
5730 */
5731 if (flush)
5732 kvm_flush_remote_tlbs(kvm);
5733 }
5734
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5735 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5736 struct kvm_rmap_head *rmap_head)
5737 {
5738 u64 *sptep;
5739 struct rmap_iterator iter;
5740 int need_tlb_flush = 0;
5741 kvm_pfn_t pfn;
5742 struct kvm_mmu_page *sp;
5743
5744 restart:
5745 for_each_rmap_spte(rmap_head, &iter, sptep) {
5746 sp = page_header(__pa(sptep));
5747 pfn = spte_to_pfn(*sptep);
5748
5749 /*
5750 * We cannot do huge page mapping for indirect shadow pages,
5751 * which are found on the last rmap (level = 1) when not using
5752 * tdp; such shadow pages are synced with the page table in
5753 * the guest, and the guest page table is using 4K page size
5754 * mapping if the indirect sp has level = 1.
5755 */
5756 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5757 !kvm_is_zone_device_pfn(pfn) &&
5758 PageTransCompoundMap(pfn_to_page(pfn))) {
5759 drop_spte(kvm, sptep);
5760 need_tlb_flush = 1;
5761 goto restart;
5762 }
5763 }
5764
5765 return need_tlb_flush;
5766 }
5767
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)5768 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5769 const struct kvm_memory_slot *memslot)
5770 {
5771 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5772 spin_lock(&kvm->mmu_lock);
5773 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5774 kvm_mmu_zap_collapsible_spte, true);
5775 spin_unlock(&kvm->mmu_lock);
5776 }
5777
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5778 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5779 struct kvm_memory_slot *memslot)
5780 {
5781 bool flush;
5782
5783 spin_lock(&kvm->mmu_lock);
5784 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5785 spin_unlock(&kvm->mmu_lock);
5786
5787 lockdep_assert_held(&kvm->slots_lock);
5788
5789 /*
5790 * It's also safe to flush TLBs out of mmu lock here as currently this
5791 * function is only used for dirty logging, in which case flushing TLB
5792 * out of mmu lock also guarantees no dirty pages will be lost in
5793 * dirty_bitmap.
5794 */
5795 if (flush)
5796 kvm_flush_remote_tlbs(kvm);
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5799
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5800 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5801 struct kvm_memory_slot *memslot)
5802 {
5803 bool flush;
5804
5805 spin_lock(&kvm->mmu_lock);
5806 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5807 false);
5808 spin_unlock(&kvm->mmu_lock);
5809
5810 /* see kvm_mmu_slot_remove_write_access */
5811 lockdep_assert_held(&kvm->slots_lock);
5812
5813 if (flush)
5814 kvm_flush_remote_tlbs(kvm);
5815 }
5816 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5817
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5818 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5819 struct kvm_memory_slot *memslot)
5820 {
5821 bool flush;
5822
5823 spin_lock(&kvm->mmu_lock);
5824 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5825 spin_unlock(&kvm->mmu_lock);
5826
5827 lockdep_assert_held(&kvm->slots_lock);
5828
5829 /* see kvm_mmu_slot_leaf_clear_dirty */
5830 if (flush)
5831 kvm_flush_remote_tlbs(kvm);
5832 }
5833 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5834
5835 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5836 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5837 {
5838 struct kvm_mmu_page *sp, *node;
5839 int batch = 0;
5840
5841 restart:
5842 list_for_each_entry_safe_reverse(sp, node,
5843 &kvm->arch.active_mmu_pages, link) {
5844 int ret;
5845
5846 /*
5847 * No obsolete page exists before new created page since
5848 * active_mmu_pages is the FIFO list.
5849 */
5850 if (!is_obsolete_sp(kvm, sp))
5851 break;
5852
5853 /*
5854 * Since we are reversely walking the list and the invalid
5855 * list will be moved to the head, skip the invalid page
5856 * can help us to avoid the infinity list walking.
5857 */
5858 if (sp->role.invalid)
5859 continue;
5860
5861 /*
5862 * Need not flush tlb since we only zap the sp with invalid
5863 * generation number.
5864 */
5865 if (batch >= BATCH_ZAP_PAGES &&
5866 cond_resched_lock(&kvm->mmu_lock)) {
5867 batch = 0;
5868 goto restart;
5869 }
5870
5871 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5872 &kvm->arch.zapped_obsolete_pages);
5873 batch += ret;
5874
5875 if (ret)
5876 goto restart;
5877 }
5878
5879 /*
5880 * Should flush tlb before free page tables since lockless-walking
5881 * may use the pages.
5882 */
5883 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5884 }
5885
5886 /*
5887 * Fast invalidate all shadow pages and use lock-break technique
5888 * to zap obsolete pages.
5889 *
5890 * It's required when memslot is being deleted or VM is being
5891 * destroyed, in these cases, we should ensure that KVM MMU does
5892 * not use any resource of the being-deleted slot or all slots
5893 * after calling the function.
5894 */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)5895 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5896 {
5897 spin_lock(&kvm->mmu_lock);
5898 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5899 kvm->arch.mmu_valid_gen++;
5900
5901 /*
5902 * Notify all vcpus to reload its shadow page table
5903 * and flush TLB. Then all vcpus will switch to new
5904 * shadow page table with the new mmu_valid_gen.
5905 *
5906 * Note: we should do this under the protection of
5907 * mmu-lock, otherwise, vcpu would purge shadow page
5908 * but miss tlb flush.
5909 */
5910 kvm_reload_remote_mmus(kvm);
5911
5912 kvm_zap_obsolete_pages(kvm);
5913 spin_unlock(&kvm->mmu_lock);
5914 }
5915
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5916 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5917 {
5918 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5919 }
5920
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5921 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5922 {
5923 gen &= MMIO_GEN_MASK;
5924
5925 /*
5926 * Shift to eliminate the "update in-progress" flag, which isn't
5927 * included in the spte's generation number.
5928 */
5929 gen >>= 1;
5930
5931 /*
5932 * Generation numbers are incremented in multiples of the number of
5933 * address spaces in order to provide unique generations across all
5934 * address spaces. Strip what is effectively the address space
5935 * modifier prior to checking for a wrap of the MMIO generation so
5936 * that a wrap in any address space is detected.
5937 */
5938 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5939
5940 /*
5941 * The very rare case: if the MMIO generation number has wrapped,
5942 * zap all shadow pages.
5943 */
5944 if (unlikely(gen == 0)) {
5945 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5946 kvm_mmu_invalidate_zap_all_pages(kvm);
5947 }
5948 }
5949
5950 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5951 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5952 {
5953 struct kvm *kvm;
5954 int nr_to_scan = sc->nr_to_scan;
5955 unsigned long freed = 0;
5956
5957 mutex_lock(&kvm_lock);
5958
5959 list_for_each_entry(kvm, &vm_list, vm_list) {
5960 int idx;
5961 LIST_HEAD(invalid_list);
5962
5963 /*
5964 * Never scan more than sc->nr_to_scan VM instances.
5965 * Will not hit this condition practically since we do not try
5966 * to shrink more than one VM and it is very unlikely to see
5967 * !n_used_mmu_pages so many times.
5968 */
5969 if (!nr_to_scan--)
5970 break;
5971 /*
5972 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5973 * here. We may skip a VM instance errorneosly, but we do not
5974 * want to shrink a VM that only started to populate its MMU
5975 * anyway.
5976 */
5977 if (!kvm->arch.n_used_mmu_pages &&
5978 !kvm_has_zapped_obsolete_pages(kvm))
5979 continue;
5980
5981 idx = srcu_read_lock(&kvm->srcu);
5982 spin_lock(&kvm->mmu_lock);
5983
5984 if (kvm_has_zapped_obsolete_pages(kvm)) {
5985 kvm_mmu_commit_zap_page(kvm,
5986 &kvm->arch.zapped_obsolete_pages);
5987 goto unlock;
5988 }
5989
5990 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5991 freed++;
5992 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5993
5994 unlock:
5995 spin_unlock(&kvm->mmu_lock);
5996 srcu_read_unlock(&kvm->srcu, idx);
5997
5998 /*
5999 * unfair on small ones
6000 * per-vm shrinkers cry out
6001 * sadness comes quickly
6002 */
6003 list_move_tail(&kvm->vm_list, &vm_list);
6004 break;
6005 }
6006
6007 mutex_unlock(&kvm_lock);
6008 return freed;
6009 }
6010
6011 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6012 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6013 {
6014 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6015 }
6016
6017 static struct shrinker mmu_shrinker = {
6018 .count_objects = mmu_shrink_count,
6019 .scan_objects = mmu_shrink_scan,
6020 .seeks = DEFAULT_SEEKS * 10,
6021 };
6022
mmu_destroy_caches(void)6023 static void mmu_destroy_caches(void)
6024 {
6025 kmem_cache_destroy(pte_list_desc_cache);
6026 kmem_cache_destroy(mmu_page_header_cache);
6027 }
6028
get_nx_auto_mode(void)6029 static bool get_nx_auto_mode(void)
6030 {
6031 /* Return true when CPU has the bug, and mitigations are ON */
6032 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6033 }
6034
__set_nx_huge_pages(bool val)6035 static void __set_nx_huge_pages(bool val)
6036 {
6037 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6038 }
6039
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6040 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6041 {
6042 bool old_val = nx_huge_pages;
6043 bool new_val;
6044
6045 /* In "auto" mode deploy workaround only if CPU has the bug. */
6046 if (sysfs_streq(val, "off"))
6047 new_val = 0;
6048 else if (sysfs_streq(val, "force"))
6049 new_val = 1;
6050 else if (sysfs_streq(val, "auto"))
6051 new_val = get_nx_auto_mode();
6052 else if (strtobool(val, &new_val) < 0)
6053 return -EINVAL;
6054
6055 __set_nx_huge_pages(new_val);
6056
6057 if (new_val != old_val) {
6058 struct kvm *kvm;
6059 int idx;
6060
6061 mutex_lock(&kvm_lock);
6062
6063 list_for_each_entry(kvm, &vm_list, vm_list) {
6064 idx = srcu_read_lock(&kvm->srcu);
6065 kvm_mmu_invalidate_zap_all_pages(kvm);
6066 srcu_read_unlock(&kvm->srcu, idx);
6067
6068 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6069 }
6070 mutex_unlock(&kvm_lock);
6071 }
6072
6073 return 0;
6074 }
6075
kvm_set_mmio_spte_mask(void)6076 static void kvm_set_mmio_spte_mask(void)
6077 {
6078 u64 mask;
6079
6080 /*
6081 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6082 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6083 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6084 * 52-bit physical addresses then there are no reserved PA bits in the
6085 * PTEs and so the reserved PA approach must be disabled.
6086 */
6087 if (shadow_phys_bits < 52)
6088 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6089 else
6090 mask = 0;
6091
6092 kvm_mmu_set_mmio_spte_mask(mask, mask);
6093 }
6094
kvm_mmu_module_init(void)6095 int kvm_mmu_module_init(void)
6096 {
6097 int ret = -ENOMEM;
6098
6099 if (nx_huge_pages == -1)
6100 __set_nx_huge_pages(get_nx_auto_mode());
6101
6102 kvm_mmu_reset_all_pte_masks();
6103
6104 kvm_set_mmio_spte_mask();
6105
6106 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6107 sizeof(struct pte_list_desc),
6108 0, SLAB_ACCOUNT, NULL);
6109 if (!pte_list_desc_cache)
6110 goto out;
6111
6112 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6113 sizeof(struct kvm_mmu_page),
6114 0, SLAB_ACCOUNT, NULL);
6115 if (!mmu_page_header_cache)
6116 goto out;
6117
6118 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6119 goto out;
6120
6121 ret = register_shrinker(&mmu_shrinker);
6122 if (ret)
6123 goto out;
6124
6125 return 0;
6126
6127 out:
6128 mmu_destroy_caches();
6129 return ret;
6130 }
6131
6132 /*
6133 * Caculate mmu pages needed for kvm.
6134 */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)6135 unsigned long kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6136 {
6137 unsigned long nr_mmu_pages;
6138 unsigned long nr_pages = 0;
6139 struct kvm_memslots *slots;
6140 struct kvm_memory_slot *memslot;
6141 int i;
6142
6143 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6144 slots = __kvm_memslots(kvm, i);
6145
6146 kvm_for_each_memslot(memslot, slots)
6147 nr_pages += memslot->npages;
6148 }
6149
6150 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6151 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6152
6153 return nr_mmu_pages;
6154 }
6155
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6156 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6157 {
6158 kvm_mmu_unload(vcpu);
6159 free_mmu_pages(vcpu);
6160 mmu_free_memory_caches(vcpu);
6161 }
6162
kvm_mmu_module_exit(void)6163 void kvm_mmu_module_exit(void)
6164 {
6165 mmu_destroy_caches();
6166 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6167 unregister_shrinker(&mmu_shrinker);
6168 mmu_audit_disable();
6169 }
6170
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)6171 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6172 {
6173 unsigned int old_val;
6174 int err;
6175
6176 old_val = nx_huge_pages_recovery_ratio;
6177 err = param_set_uint(val, kp);
6178 if (err)
6179 return err;
6180
6181 if (READ_ONCE(nx_huge_pages) &&
6182 !old_val && nx_huge_pages_recovery_ratio) {
6183 struct kvm *kvm;
6184
6185 mutex_lock(&kvm_lock);
6186
6187 list_for_each_entry(kvm, &vm_list, vm_list)
6188 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6189
6190 mutex_unlock(&kvm_lock);
6191 }
6192
6193 return err;
6194 }
6195
kvm_recover_nx_lpages(struct kvm * kvm)6196 static void kvm_recover_nx_lpages(struct kvm *kvm)
6197 {
6198 int rcu_idx;
6199 struct kvm_mmu_page *sp;
6200 unsigned int ratio;
6201 LIST_HEAD(invalid_list);
6202 ulong to_zap;
6203
6204 rcu_idx = srcu_read_lock(&kvm->srcu);
6205 spin_lock(&kvm->mmu_lock);
6206
6207 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6208 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6209 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6210 /*
6211 * We use a separate list instead of just using active_mmu_pages
6212 * because the number of lpage_disallowed pages is expected to
6213 * be relatively small compared to the total.
6214 */
6215 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6216 struct kvm_mmu_page,
6217 lpage_disallowed_link);
6218 WARN_ON_ONCE(!sp->lpage_disallowed);
6219 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6220 WARN_ON_ONCE(sp->lpage_disallowed);
6221
6222 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6223 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6224 if (to_zap)
6225 cond_resched_lock(&kvm->mmu_lock);
6226 }
6227 }
6228 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6229
6230 spin_unlock(&kvm->mmu_lock);
6231 srcu_read_unlock(&kvm->srcu, rcu_idx);
6232 }
6233
get_nx_lpage_recovery_timeout(u64 start_time)6234 static long get_nx_lpage_recovery_timeout(u64 start_time)
6235 {
6236 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6237 ? start_time + 60 * HZ - get_jiffies_64()
6238 : MAX_SCHEDULE_TIMEOUT;
6239 }
6240
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6241 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6242 {
6243 u64 start_time;
6244 long remaining_time;
6245
6246 while (true) {
6247 start_time = get_jiffies_64();
6248 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6249
6250 set_current_state(TASK_INTERRUPTIBLE);
6251 while (!kthread_should_stop() && remaining_time > 0) {
6252 schedule_timeout(remaining_time);
6253 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6254 set_current_state(TASK_INTERRUPTIBLE);
6255 }
6256
6257 set_current_state(TASK_RUNNING);
6258
6259 if (kthread_should_stop())
6260 return 0;
6261
6262 kvm_recover_nx_lpages(kvm);
6263 }
6264 }
6265
kvm_mmu_post_init_vm(struct kvm * kvm)6266 int kvm_mmu_post_init_vm(struct kvm *kvm)
6267 {
6268 int err;
6269
6270 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6271 "kvm-nx-lpage-recovery",
6272 &kvm->arch.nx_lpage_recovery_thread);
6273 if (!err)
6274 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6275
6276 return err;
6277 }
6278
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6279 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6280 {
6281 if (kvm->arch.nx_lpage_recovery_thread)
6282 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6283 }
6284