1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/kthread.h>
55 #include <linux/io.h>
56
57 #include <asm/processor.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* Default resets per-vcpu halt_poll_ns . */
86 unsigned int halt_poll_ns_shrink;
87 module_param(halt_poll_ns_shrink, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
89
90 /*
91 * Ordering of locks:
92 *
93 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
94 */
95
96 DEFINE_MUTEX(kvm_lock);
97 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
98 LIST_HEAD(vm_list);
99
100 static cpumask_var_t cpus_hardware_enabled;
101 static int kvm_usage_count;
102 static atomic_t hardware_enable_failed;
103
104 struct kmem_cache *kvm_vcpu_cache;
105 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108
109 struct dentry *kvm_debugfs_dir;
110 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111
112 static int kvm_debugfs_num_entries;
113 static const struct file_operations *stat_fops_per_vm[];
114
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #define KVM_COMPAT(c) .compat_ioctl = (c)
121 #else
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)122 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg) { return -EINVAL; }
124 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
125 #endif
126 static int hardware_enable_all(void);
127 static void hardware_disable_all(void);
128
129 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
130
131 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
132
133 __visible bool kvm_rebooting;
134 EXPORT_SYMBOL_GPL(kvm_rebooting);
135
136 static bool largepages_enabled = true;
137
138 #define KVM_EVENT_CREATE_VM 0
139 #define KVM_EVENT_DESTROY_VM 1
140 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
141 static unsigned long long kvm_createvm_count;
142 static unsigned long long kvm_active_vms;
143
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)144 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
145 unsigned long start, unsigned long end)
146 {
147 }
148
kvm_is_zone_device_pfn(kvm_pfn_t pfn)149 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
150 {
151 /*
152 * The metadata used by is_zone_device_page() to determine whether or
153 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
154 * the device has been pinned, e.g. by get_user_pages(). WARN if the
155 * page_count() is zero to help detect bad usage of this helper.
156 */
157 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
158 return false;
159
160 return is_zone_device_page(pfn_to_page(pfn));
161 }
162
kvm_is_reserved_pfn(kvm_pfn_t pfn)163 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
164 {
165 /*
166 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
167 * perspective they are "normal" pages, albeit with slightly different
168 * usage rules.
169 */
170 if (pfn_valid(pfn))
171 return PageReserved(pfn_to_page(pfn)) &&
172 !is_zero_pfn(pfn) &&
173 !kvm_is_zone_device_pfn(pfn);
174
175 return true;
176 }
177
178 /*
179 * Switches to specified vcpu, until a matching vcpu_put()
180 */
vcpu_load(struct kvm_vcpu * vcpu)181 void vcpu_load(struct kvm_vcpu *vcpu)
182 {
183 int cpu = get_cpu();
184 preempt_notifier_register(&vcpu->preempt_notifier);
185 kvm_arch_vcpu_load(vcpu, cpu);
186 put_cpu();
187 }
188 EXPORT_SYMBOL_GPL(vcpu_load);
189
vcpu_put(struct kvm_vcpu * vcpu)190 void vcpu_put(struct kvm_vcpu *vcpu)
191 {
192 preempt_disable();
193 kvm_arch_vcpu_put(vcpu);
194 preempt_notifier_unregister(&vcpu->preempt_notifier);
195 preempt_enable();
196 }
197 EXPORT_SYMBOL_GPL(vcpu_put);
198
199 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)200 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
201 {
202 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
203
204 /*
205 * We need to wait for the VCPU to reenable interrupts and get out of
206 * READING_SHADOW_PAGE_TABLES mode.
207 */
208 if (req & KVM_REQUEST_WAIT)
209 return mode != OUTSIDE_GUEST_MODE;
210
211 /*
212 * Need to kick a running VCPU, but otherwise there is nothing to do.
213 */
214 return mode == IN_GUEST_MODE;
215 }
216
ack_flush(void * _completed)217 static void ack_flush(void *_completed)
218 {
219 }
220
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)221 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
222 {
223 if (unlikely(!cpus))
224 cpus = cpu_online_mask;
225
226 if (cpumask_empty(cpus))
227 return false;
228
229 smp_call_function_many(cpus, ack_flush, NULL, wait);
230 return true;
231 }
232
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap,cpumask_var_t tmp)233 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
234 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
235 {
236 int i, cpu, me;
237 struct kvm_vcpu *vcpu;
238 bool called;
239
240 me = get_cpu();
241
242 kvm_for_each_vcpu(i, vcpu, kvm) {
243 if (!test_bit(i, vcpu_bitmap))
244 continue;
245
246 kvm_make_request(req, vcpu);
247 cpu = vcpu->cpu;
248
249 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
250 continue;
251
252 if (tmp != NULL && cpu != -1 && cpu != me &&
253 kvm_request_needs_ipi(vcpu, req))
254 __cpumask_set_cpu(cpu, tmp);
255 }
256
257 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
258 put_cpu();
259
260 return called;
261 }
262
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)263 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
264 {
265 cpumask_var_t cpus;
266 bool called;
267 static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
268 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
269
270 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
271
272 called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
273
274 free_cpumask_var(cpus);
275 return called;
276 }
277
278 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)279 void kvm_flush_remote_tlbs(struct kvm *kvm)
280 {
281 /*
282 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
283 * kvm_make_all_cpus_request.
284 */
285 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
286
287 /*
288 * We want to publish modifications to the page tables before reading
289 * mode. Pairs with a memory barrier in arch-specific code.
290 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
291 * and smp_mb in walk_shadow_page_lockless_begin/end.
292 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
293 *
294 * There is already an smp_mb__after_atomic() before
295 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
296 * barrier here.
297 */
298 if (!kvm_arch_flush_remote_tlb(kvm)
299 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
300 ++kvm->stat.remote_tlb_flush;
301 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
302 }
303 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
304 #endif
305
kvm_reload_remote_mmus(struct kvm * kvm)306 void kvm_reload_remote_mmus(struct kvm *kvm)
307 {
308 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
309 }
310
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)311 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
312 {
313 struct page *page;
314 int r;
315
316 mutex_init(&vcpu->mutex);
317 vcpu->cpu = -1;
318 vcpu->kvm = kvm;
319 vcpu->vcpu_id = id;
320 vcpu->pid = NULL;
321 init_swait_queue_head(&vcpu->wq);
322 kvm_async_pf_vcpu_init(vcpu);
323
324 vcpu->pre_pcpu = -1;
325 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
326
327 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
328 if (!page) {
329 r = -ENOMEM;
330 goto fail;
331 }
332 vcpu->run = page_address(page);
333
334 kvm_vcpu_set_in_spin_loop(vcpu, false);
335 kvm_vcpu_set_dy_eligible(vcpu, false);
336 vcpu->preempted = false;
337
338 r = kvm_arch_vcpu_init(vcpu);
339 if (r < 0)
340 goto fail_free_run;
341 return 0;
342
343 fail_free_run:
344 free_page((unsigned long)vcpu->run);
345 fail:
346 return r;
347 }
348 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
349
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)350 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
351 {
352 /*
353 * no need for rcu_read_lock as VCPU_RUN is the only place that
354 * will change the vcpu->pid pointer and on uninit all file
355 * descriptors are already gone.
356 */
357 put_pid(rcu_dereference_protected(vcpu->pid, 1));
358 kvm_arch_vcpu_uninit(vcpu);
359 free_page((unsigned long)vcpu->run);
360 }
361 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
362
363 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)364 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
365 {
366 return container_of(mn, struct kvm, mmu_notifier);
367 }
368
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)369 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long start, unsigned long end)
372 {
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 int idx;
375
376 idx = srcu_read_lock(&kvm->srcu);
377 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
378 srcu_read_unlock(&kvm->srcu, idx);
379 }
380
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)381 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address,
384 pte_t pte)
385 {
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 int idx;
388
389 idx = srcu_read_lock(&kvm->srcu);
390 spin_lock(&kvm->mmu_lock);
391 kvm->mmu_notifier_seq++;
392 kvm_set_spte_hva(kvm, address, pte);
393 spin_unlock(&kvm->mmu_lock);
394 srcu_read_unlock(&kvm->srcu, idx);
395 }
396
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)397 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
398 struct mm_struct *mm,
399 unsigned long start,
400 unsigned long end,
401 bool blockable)
402 {
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 int need_tlb_flush = 0, idx;
405
406 idx = srcu_read_lock(&kvm->srcu);
407 spin_lock(&kvm->mmu_lock);
408 /*
409 * The count increase must become visible at unlock time as no
410 * spte can be established without taking the mmu_lock and
411 * count is also read inside the mmu_lock critical section.
412 */
413 kvm->mmu_notifier_count++;
414 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end, blockable);
415 need_tlb_flush |= kvm->tlbs_dirty;
416 /* we've to flush the tlb before the pages can be freed */
417 if (need_tlb_flush)
418 kvm_flush_remote_tlbs(kvm);
419
420 spin_unlock(&kvm->mmu_lock);
421 srcu_read_unlock(&kvm->srcu, idx);
422
423 return 0;
424 }
425
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)426 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
427 struct mm_struct *mm,
428 unsigned long start,
429 unsigned long end)
430 {
431 struct kvm *kvm = mmu_notifier_to_kvm(mn);
432
433 spin_lock(&kvm->mmu_lock);
434 /*
435 * This sequence increase will notify the kvm page fault that
436 * the page that is going to be mapped in the spte could have
437 * been freed.
438 */
439 kvm->mmu_notifier_seq++;
440 smp_wmb();
441 /*
442 * The above sequence increase must be visible before the
443 * below count decrease, which is ensured by the smp_wmb above
444 * in conjunction with the smp_rmb in mmu_notifier_retry().
445 */
446 kvm->mmu_notifier_count--;
447 spin_unlock(&kvm->mmu_lock);
448
449 BUG_ON(kvm->mmu_notifier_count < 0);
450 }
451
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)452 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long start,
455 unsigned long end)
456 {
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 int young, idx;
459
460 idx = srcu_read_lock(&kvm->srcu);
461 spin_lock(&kvm->mmu_lock);
462
463 young = kvm_age_hva(kvm, start, end);
464 if (young)
465 kvm_flush_remote_tlbs(kvm);
466
467 spin_unlock(&kvm->mmu_lock);
468 srcu_read_unlock(&kvm->srcu, idx);
469
470 return young;
471 }
472
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)473 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
474 struct mm_struct *mm,
475 unsigned long start,
476 unsigned long end)
477 {
478 struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 int young, idx;
480
481 idx = srcu_read_lock(&kvm->srcu);
482 spin_lock(&kvm->mmu_lock);
483 /*
484 * Even though we do not flush TLB, this will still adversely
485 * affect performance on pre-Haswell Intel EPT, where there is
486 * no EPT Access Bit to clear so that we have to tear down EPT
487 * tables instead. If we find this unacceptable, we can always
488 * add a parameter to kvm_age_hva so that it effectively doesn't
489 * do anything on clear_young.
490 *
491 * Also note that currently we never issue secondary TLB flushes
492 * from clear_young, leaving this job up to the regular system
493 * cadence. If we find this inaccurate, we might come up with a
494 * more sophisticated heuristic later.
495 */
496 young = kvm_age_hva(kvm, start, end);
497 spin_unlock(&kvm->mmu_lock);
498 srcu_read_unlock(&kvm->srcu, idx);
499
500 return young;
501 }
502
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)503 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
504 struct mm_struct *mm,
505 unsigned long address)
506 {
507 struct kvm *kvm = mmu_notifier_to_kvm(mn);
508 int young, idx;
509
510 idx = srcu_read_lock(&kvm->srcu);
511 spin_lock(&kvm->mmu_lock);
512 young = kvm_test_age_hva(kvm, address);
513 spin_unlock(&kvm->mmu_lock);
514 srcu_read_unlock(&kvm->srcu, idx);
515
516 return young;
517 }
518
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)519 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
520 struct mm_struct *mm)
521 {
522 struct kvm *kvm = mmu_notifier_to_kvm(mn);
523 int idx;
524
525 idx = srcu_read_lock(&kvm->srcu);
526 kvm_arch_flush_shadow_all(kvm);
527 srcu_read_unlock(&kvm->srcu, idx);
528 }
529
530 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
531 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
532 .invalidate_range = kvm_mmu_notifier_invalidate_range,
533 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
535 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
536 .clear_young = kvm_mmu_notifier_clear_young,
537 .test_young = kvm_mmu_notifier_test_young,
538 .change_pte = kvm_mmu_notifier_change_pte,
539 .release = kvm_mmu_notifier_release,
540 };
541
kvm_init_mmu_notifier(struct kvm * kvm)542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547
548 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
kvm_init_mmu_notifier(struct kvm * kvm)550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 return 0;
553 }
554
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
kvm_alloc_memslots(void)557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559 int i;
560 struct kvm_memslots *slots;
561
562 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
563 if (!slots)
564 return NULL;
565
566 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567 slots->id_to_index[i] = slots->memslots[i].id = i;
568
569 return slots;
570 }
571
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574 if (!memslot->dirty_bitmap)
575 return;
576
577 kvfree(memslot->dirty_bitmap);
578 memslot->dirty_bitmap = NULL;
579 }
580
581 /*
582 * Free any memory in @free but not in @dont.
583 */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)584 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
585 struct kvm_memory_slot *dont)
586 {
587 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
588 kvm_destroy_dirty_bitmap(free);
589
590 kvm_arch_free_memslot(kvm, free, dont);
591
592 free->npages = 0;
593 }
594
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)595 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
596 {
597 struct kvm_memory_slot *memslot;
598
599 if (!slots)
600 return;
601
602 kvm_for_each_memslot(memslot, slots)
603 kvm_free_memslot(kvm, memslot, NULL);
604
605 kvfree(slots);
606 }
607
kvm_destroy_vm_debugfs(struct kvm * kvm)608 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
609 {
610 int i;
611
612 if (!kvm->debugfs_dentry)
613 return;
614
615 debugfs_remove_recursive(kvm->debugfs_dentry);
616
617 if (kvm->debugfs_stat_data) {
618 for (i = 0; i < kvm_debugfs_num_entries; i++)
619 kfree(kvm->debugfs_stat_data[i]);
620 kfree(kvm->debugfs_stat_data);
621 }
622 }
623
kvm_create_vm_debugfs(struct kvm * kvm,int fd)624 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
625 {
626 char dir_name[ITOA_MAX_LEN * 2];
627 struct kvm_stat_data *stat_data;
628 struct kvm_stats_debugfs_item *p;
629
630 if (!debugfs_initialized())
631 return 0;
632
633 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
634 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
635
636 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
637 sizeof(*kvm->debugfs_stat_data),
638 GFP_KERNEL);
639 if (!kvm->debugfs_stat_data)
640 return -ENOMEM;
641
642 for (p = debugfs_entries; p->name; p++) {
643 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
644 if (!stat_data)
645 return -ENOMEM;
646
647 stat_data->kvm = kvm;
648 stat_data->offset = p->offset;
649 stat_data->mode = p->mode ? p->mode : 0644;
650 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
651 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
652 stat_data, stat_fops_per_vm[p->kind]);
653 }
654 return 0;
655 }
656
657 /*
658 * Called after the VM is otherwise initialized, but just before adding it to
659 * the vm_list.
660 */
kvm_arch_post_init_vm(struct kvm * kvm)661 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
662 {
663 return 0;
664 }
665
666 /*
667 * Called just after removing the VM from the vm_list, but before doing any
668 * other destruction.
669 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)670 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
671 {
672 }
673
kvm_create_vm(unsigned long type)674 static struct kvm *kvm_create_vm(unsigned long type)
675 {
676 int r, i;
677 struct kvm *kvm = kvm_arch_alloc_vm();
678
679 if (!kvm)
680 return ERR_PTR(-ENOMEM);
681
682 spin_lock_init(&kvm->mmu_lock);
683 mmgrab(current->mm);
684 kvm->mm = current->mm;
685 kvm_eventfd_init(kvm);
686 mutex_init(&kvm->lock);
687 mutex_init(&kvm->irq_lock);
688 mutex_init(&kvm->slots_lock);
689 refcount_set(&kvm->users_count, 1);
690 INIT_LIST_HEAD(&kvm->devices);
691
692 r = kvm_arch_init_vm(kvm, type);
693 if (r)
694 goto out_err_no_disable;
695
696 r = hardware_enable_all();
697 if (r)
698 goto out_err_no_disable;
699
700 #ifdef CONFIG_HAVE_KVM_IRQFD
701 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
702 #endif
703
704 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
705
706 r = -ENOMEM;
707 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
708 struct kvm_memslots *slots = kvm_alloc_memslots();
709 if (!slots)
710 goto out_err_no_srcu;
711 /*
712 * Generations must be different for each address space.
713 * Init kvm generation close to the maximum to easily test the
714 * code of handling generation number wrap-around.
715 */
716 slots->generation = i * 2 - 150;
717 rcu_assign_pointer(kvm->memslots[i], slots);
718 }
719
720 if (init_srcu_struct(&kvm->srcu))
721 goto out_err_no_srcu;
722 if (init_srcu_struct(&kvm->irq_srcu))
723 goto out_err_no_irq_srcu;
724 for (i = 0; i < KVM_NR_BUSES; i++) {
725 rcu_assign_pointer(kvm->buses[i],
726 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
727 if (!kvm->buses[i])
728 goto out_err_no_mmu_notifier;
729 }
730
731 r = kvm_init_mmu_notifier(kvm);
732 if (r)
733 goto out_err_no_mmu_notifier;
734
735 r = kvm_arch_post_init_vm(kvm);
736 if (r)
737 goto out_err;
738
739 mutex_lock(&kvm_lock);
740 list_add(&kvm->vm_list, &vm_list);
741 mutex_unlock(&kvm_lock);
742
743 preempt_notifier_inc();
744
745 return kvm;
746
747 out_err:
748 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
749 if (kvm->mmu_notifier.ops)
750 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
751 #endif
752 out_err_no_mmu_notifier:
753 cleanup_srcu_struct(&kvm->irq_srcu);
754 out_err_no_irq_srcu:
755 cleanup_srcu_struct(&kvm->srcu);
756 out_err_no_srcu:
757 hardware_disable_all();
758 out_err_no_disable:
759 refcount_set(&kvm->users_count, 0);
760 for (i = 0; i < KVM_NR_BUSES; i++)
761 kfree(kvm_get_bus(kvm, i));
762 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
763 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
764 kvm_arch_free_vm(kvm);
765 mmdrop(current->mm);
766 return ERR_PTR(r);
767 }
768
kvm_destroy_devices(struct kvm * kvm)769 static void kvm_destroy_devices(struct kvm *kvm)
770 {
771 struct kvm_device *dev, *tmp;
772
773 /*
774 * We do not need to take the kvm->lock here, because nobody else
775 * has a reference to the struct kvm at this point and therefore
776 * cannot access the devices list anyhow.
777 */
778 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
779 list_del(&dev->vm_node);
780 dev->ops->destroy(dev);
781 }
782 }
783
kvm_destroy_vm(struct kvm * kvm)784 static void kvm_destroy_vm(struct kvm *kvm)
785 {
786 int i;
787 struct mm_struct *mm = kvm->mm;
788
789 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
790 kvm_destroy_vm_debugfs(kvm);
791 kvm_arch_sync_events(kvm);
792 mutex_lock(&kvm_lock);
793 list_del(&kvm->vm_list);
794 mutex_unlock(&kvm_lock);
795 kvm_arch_pre_destroy_vm(kvm);
796
797 kvm_free_irq_routing(kvm);
798 for (i = 0; i < KVM_NR_BUSES; i++) {
799 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
800
801 if (bus)
802 kvm_io_bus_destroy(bus);
803 kvm->buses[i] = NULL;
804 }
805 kvm_coalesced_mmio_free(kvm);
806 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
807 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
808 #else
809 kvm_arch_flush_shadow_all(kvm);
810 #endif
811 kvm_arch_destroy_vm(kvm);
812 kvm_destroy_devices(kvm);
813 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
814 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
815 cleanup_srcu_struct(&kvm->irq_srcu);
816 cleanup_srcu_struct(&kvm->srcu);
817 kvm_arch_free_vm(kvm);
818 preempt_notifier_dec();
819 hardware_disable_all();
820 mmdrop(mm);
821 }
822
kvm_get_kvm(struct kvm * kvm)823 void kvm_get_kvm(struct kvm *kvm)
824 {
825 refcount_inc(&kvm->users_count);
826 }
827 EXPORT_SYMBOL_GPL(kvm_get_kvm);
828
kvm_put_kvm(struct kvm * kvm)829 void kvm_put_kvm(struct kvm *kvm)
830 {
831 if (refcount_dec_and_test(&kvm->users_count))
832 kvm_destroy_vm(kvm);
833 }
834 EXPORT_SYMBOL_GPL(kvm_put_kvm);
835
836
kvm_vm_release(struct inode * inode,struct file * filp)837 static int kvm_vm_release(struct inode *inode, struct file *filp)
838 {
839 struct kvm *kvm = filp->private_data;
840
841 kvm_irqfd_release(kvm);
842
843 kvm_put_kvm(kvm);
844 return 0;
845 }
846
847 /*
848 * Allocation size is twice as large as the actual dirty bitmap size.
849 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
850 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)851 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
852 {
853 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
854
855 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
856 if (!memslot->dirty_bitmap)
857 return -ENOMEM;
858
859 return 0;
860 }
861
862 /*
863 * Insert memslot and re-sort memslots based on their GFN,
864 * so binary search could be used to lookup GFN.
865 * Sorting algorithm takes advantage of having initially
866 * sorted array and known changed memslot position.
867 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)868 static void update_memslots(struct kvm_memslots *slots,
869 struct kvm_memory_slot *new)
870 {
871 int id = new->id;
872 int i = slots->id_to_index[id];
873 struct kvm_memory_slot *mslots = slots->memslots;
874
875 WARN_ON(mslots[i].id != id);
876 if (!new->npages) {
877 WARN_ON(!mslots[i].npages);
878 if (mslots[i].npages)
879 slots->used_slots--;
880 } else {
881 if (!mslots[i].npages)
882 slots->used_slots++;
883 }
884
885 while (i < KVM_MEM_SLOTS_NUM - 1 &&
886 new->base_gfn <= mslots[i + 1].base_gfn) {
887 if (!mslots[i + 1].npages)
888 break;
889 mslots[i] = mslots[i + 1];
890 slots->id_to_index[mslots[i].id] = i;
891 i++;
892 }
893
894 /*
895 * The ">=" is needed when creating a slot with base_gfn == 0,
896 * so that it moves before all those with base_gfn == npages == 0.
897 *
898 * On the other hand, if new->npages is zero, the above loop has
899 * already left i pointing to the beginning of the empty part of
900 * mslots, and the ">=" would move the hole backwards in this
901 * case---which is wrong. So skip the loop when deleting a slot.
902 */
903 if (new->npages) {
904 while (i > 0 &&
905 new->base_gfn >= mslots[i - 1].base_gfn) {
906 mslots[i] = mslots[i - 1];
907 slots->id_to_index[mslots[i].id] = i;
908 i--;
909 }
910 } else
911 WARN_ON_ONCE(i != slots->used_slots);
912
913 mslots[i] = *new;
914 slots->id_to_index[mslots[i].id] = i;
915 }
916
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)917 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
918 {
919 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
920
921 #ifdef __KVM_HAVE_READONLY_MEM
922 valid_flags |= KVM_MEM_READONLY;
923 #endif
924
925 if (mem->flags & ~valid_flags)
926 return -EINVAL;
927
928 return 0;
929 }
930
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)931 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
932 int as_id, struct kvm_memslots *slots)
933 {
934 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
935 u64 gen;
936
937 /*
938 * Set the low bit in the generation, which disables SPTE caching
939 * until the end of synchronize_srcu_expedited.
940 */
941 WARN_ON(old_memslots->generation & 1);
942 slots->generation = old_memslots->generation + 1;
943
944 rcu_assign_pointer(kvm->memslots[as_id], slots);
945 synchronize_srcu_expedited(&kvm->srcu);
946
947 /*
948 * Increment the new memslot generation a second time. This prevents
949 * vm exits that race with memslot updates from caching a memslot
950 * generation that will (potentially) be valid forever.
951 *
952 * Generations must be unique even across address spaces. We do not need
953 * a global counter for that, instead the generation space is evenly split
954 * across address spaces. For example, with two address spaces, address
955 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
956 * use generations 2, 6, 10, 14, ...
957 */
958 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
959
960 kvm_arch_memslots_updated(kvm, gen);
961
962 slots->generation = gen;
963
964 return old_memslots;
965 }
966
967 /*
968 * Allocate some memory and give it an address in the guest physical address
969 * space.
970 *
971 * Discontiguous memory is allowed, mostly for framebuffers.
972 *
973 * Must be called holding kvm->slots_lock for write.
974 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)975 int __kvm_set_memory_region(struct kvm *kvm,
976 const struct kvm_userspace_memory_region *mem)
977 {
978 int r;
979 gfn_t base_gfn;
980 unsigned long npages;
981 struct kvm_memory_slot *slot;
982 struct kvm_memory_slot old, new;
983 struct kvm_memslots *slots = NULL, *old_memslots;
984 int as_id, id;
985 enum kvm_mr_change change;
986
987 r = check_memory_region_flags(mem);
988 if (r)
989 goto out;
990
991 r = -EINVAL;
992 as_id = mem->slot >> 16;
993 id = (u16)mem->slot;
994
995 /* General sanity checks */
996 if (mem->memory_size & (PAGE_SIZE - 1))
997 goto out;
998 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
999 goto out;
1000 /* We can read the guest memory with __xxx_user() later on. */
1001 if ((id < KVM_USER_MEM_SLOTS) &&
1002 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1003 !access_ok(VERIFY_WRITE,
1004 (void __user *)(unsigned long)mem->userspace_addr,
1005 mem->memory_size)))
1006 goto out;
1007 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1008 goto out;
1009 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1010 goto out;
1011
1012 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1013 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1014 npages = mem->memory_size >> PAGE_SHIFT;
1015
1016 if (npages > KVM_MEM_MAX_NR_PAGES)
1017 goto out;
1018
1019 new = old = *slot;
1020
1021 new.id = id;
1022 new.base_gfn = base_gfn;
1023 new.npages = npages;
1024 new.flags = mem->flags;
1025
1026 if (npages) {
1027 if (!old.npages)
1028 change = KVM_MR_CREATE;
1029 else { /* Modify an existing slot. */
1030 if ((mem->userspace_addr != old.userspace_addr) ||
1031 (npages != old.npages) ||
1032 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1033 goto out;
1034
1035 if (base_gfn != old.base_gfn)
1036 change = KVM_MR_MOVE;
1037 else if (new.flags != old.flags)
1038 change = KVM_MR_FLAGS_ONLY;
1039 else { /* Nothing to change. */
1040 r = 0;
1041 goto out;
1042 }
1043 }
1044 } else {
1045 if (!old.npages)
1046 goto out;
1047
1048 change = KVM_MR_DELETE;
1049 new.base_gfn = 0;
1050 new.flags = 0;
1051 }
1052
1053 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1054 /* Check for overlaps */
1055 r = -EEXIST;
1056 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1057 if (slot->id == id)
1058 continue;
1059 if (!((base_gfn + npages <= slot->base_gfn) ||
1060 (base_gfn >= slot->base_gfn + slot->npages)))
1061 goto out;
1062 }
1063 }
1064
1065 /* Free page dirty bitmap if unneeded */
1066 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1067 new.dirty_bitmap = NULL;
1068
1069 r = -ENOMEM;
1070 if (change == KVM_MR_CREATE) {
1071 new.userspace_addr = mem->userspace_addr;
1072
1073 if (kvm_arch_create_memslot(kvm, &new, npages))
1074 goto out_free;
1075 }
1076
1077 /* Allocate page dirty bitmap if needed */
1078 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1079 if (kvm_create_dirty_bitmap(&new) < 0)
1080 goto out_free;
1081 }
1082
1083 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1084 if (!slots)
1085 goto out_free;
1086 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1087
1088 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1089 slot = id_to_memslot(slots, id);
1090 slot->flags |= KVM_MEMSLOT_INVALID;
1091
1092 old_memslots = install_new_memslots(kvm, as_id, slots);
1093
1094 /* From this point no new shadow pages pointing to a deleted,
1095 * or moved, memslot will be created.
1096 *
1097 * validation of sp->gfn happens in:
1098 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1099 * - kvm_is_visible_gfn (mmu_check_roots)
1100 */
1101 kvm_arch_flush_shadow_memslot(kvm, slot);
1102
1103 /*
1104 * We can re-use the old_memslots from above, the only difference
1105 * from the currently installed memslots is the invalid flag. This
1106 * will get overwritten by update_memslots anyway.
1107 */
1108 slots = old_memslots;
1109 }
1110
1111 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1112 if (r)
1113 goto out_slots;
1114
1115 /* actual memory is freed via old in kvm_free_memslot below */
1116 if (change == KVM_MR_DELETE) {
1117 new.dirty_bitmap = NULL;
1118 memset(&new.arch, 0, sizeof(new.arch));
1119 }
1120
1121 update_memslots(slots, &new);
1122 old_memslots = install_new_memslots(kvm, as_id, slots);
1123
1124 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1125
1126 kvm_free_memslot(kvm, &old, &new);
1127 kvfree(old_memslots);
1128 return 0;
1129
1130 out_slots:
1131 kvfree(slots);
1132 out_free:
1133 kvm_free_memslot(kvm, &new, &old);
1134 out:
1135 return r;
1136 }
1137 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1138
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1139 int kvm_set_memory_region(struct kvm *kvm,
1140 const struct kvm_userspace_memory_region *mem)
1141 {
1142 int r;
1143
1144 mutex_lock(&kvm->slots_lock);
1145 r = __kvm_set_memory_region(kvm, mem);
1146 mutex_unlock(&kvm->slots_lock);
1147 return r;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1150
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1151 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1152 struct kvm_userspace_memory_region *mem)
1153 {
1154 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1155 return -EINVAL;
1156
1157 return kvm_set_memory_region(kvm, mem);
1158 }
1159
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1160 int kvm_get_dirty_log(struct kvm *kvm,
1161 struct kvm_dirty_log *log, int *is_dirty)
1162 {
1163 struct kvm_memslots *slots;
1164 struct kvm_memory_slot *memslot;
1165 int i, as_id, id;
1166 unsigned long n;
1167 unsigned long any = 0;
1168
1169 as_id = log->slot >> 16;
1170 id = (u16)log->slot;
1171 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172 return -EINVAL;
1173
1174 slots = __kvm_memslots(kvm, as_id);
1175 memslot = id_to_memslot(slots, id);
1176 if (!memslot->dirty_bitmap)
1177 return -ENOENT;
1178
1179 n = kvm_dirty_bitmap_bytes(memslot);
1180
1181 for (i = 0; !any && i < n/sizeof(long); ++i)
1182 any = memslot->dirty_bitmap[i];
1183
1184 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1185 return -EFAULT;
1186
1187 if (any)
1188 *is_dirty = 1;
1189 return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1192
1193 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1194 /**
1195 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1196 * are dirty write protect them for next write.
1197 * @kvm: pointer to kvm instance
1198 * @log: slot id and address to which we copy the log
1199 * @is_dirty: flag set if any page is dirty
1200 *
1201 * We need to keep it in mind that VCPU threads can write to the bitmap
1202 * concurrently. So, to avoid losing track of dirty pages we keep the
1203 * following order:
1204 *
1205 * 1. Take a snapshot of the bit and clear it if needed.
1206 * 2. Write protect the corresponding page.
1207 * 3. Copy the snapshot to the userspace.
1208 * 4. Upon return caller flushes TLB's if needed.
1209 *
1210 * Between 2 and 4, the guest may write to the page using the remaining TLB
1211 * entry. This is not a problem because the page is reported dirty using
1212 * the snapshot taken before and step 4 ensures that writes done after
1213 * exiting to userspace will be logged for the next call.
1214 *
1215 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1216 int kvm_get_dirty_log_protect(struct kvm *kvm,
1217 struct kvm_dirty_log *log, bool *is_dirty)
1218 {
1219 struct kvm_memslots *slots;
1220 struct kvm_memory_slot *memslot;
1221 int i, as_id, id;
1222 unsigned long n;
1223 unsigned long *dirty_bitmap;
1224 unsigned long *dirty_bitmap_buffer;
1225
1226 as_id = log->slot >> 16;
1227 id = (u16)log->slot;
1228 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1229 return -EINVAL;
1230
1231 slots = __kvm_memslots(kvm, as_id);
1232 memslot = id_to_memslot(slots, id);
1233
1234 dirty_bitmap = memslot->dirty_bitmap;
1235 if (!dirty_bitmap)
1236 return -ENOENT;
1237
1238 n = kvm_dirty_bitmap_bytes(memslot);
1239
1240 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1241 memset(dirty_bitmap_buffer, 0, n);
1242
1243 spin_lock(&kvm->mmu_lock);
1244 *is_dirty = false;
1245 for (i = 0; i < n / sizeof(long); i++) {
1246 unsigned long mask;
1247 gfn_t offset;
1248
1249 if (!dirty_bitmap[i])
1250 continue;
1251
1252 *is_dirty = true;
1253
1254 mask = xchg(&dirty_bitmap[i], 0);
1255 dirty_bitmap_buffer[i] = mask;
1256
1257 if (mask) {
1258 offset = i * BITS_PER_LONG;
1259 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1260 offset, mask);
1261 }
1262 }
1263
1264 spin_unlock(&kvm->mmu_lock);
1265 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1266 return -EFAULT;
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1270 #endif
1271
kvm_largepages_enabled(void)1272 bool kvm_largepages_enabled(void)
1273 {
1274 return largepages_enabled;
1275 }
1276
kvm_disable_largepages(void)1277 void kvm_disable_largepages(void)
1278 {
1279 largepages_enabled = false;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1282
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1283 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1284 {
1285 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1286 }
1287 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1288
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1289 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1290 {
1291 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1292 }
1293
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1294 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1295 {
1296 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1297
1298 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1299 memslot->flags & KVM_MEMSLOT_INVALID)
1300 return false;
1301
1302 return true;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1305
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)1306 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1307 {
1308 struct vm_area_struct *vma;
1309 unsigned long addr, size;
1310
1311 size = PAGE_SIZE;
1312
1313 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1314 if (kvm_is_error_hva(addr))
1315 return PAGE_SIZE;
1316
1317 down_read(¤t->mm->mmap_sem);
1318 vma = find_vma(current->mm, addr);
1319 if (!vma)
1320 goto out;
1321
1322 size = vma_kernel_pagesize(vma);
1323
1324 out:
1325 up_read(¤t->mm->mmap_sem);
1326
1327 return size;
1328 }
1329
memslot_is_readonly(struct kvm_memory_slot * slot)1330 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1331 {
1332 return slot->flags & KVM_MEM_READONLY;
1333 }
1334
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1335 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1336 gfn_t *nr_pages, bool write)
1337 {
1338 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1339 return KVM_HVA_ERR_BAD;
1340
1341 if (memslot_is_readonly(slot) && write)
1342 return KVM_HVA_ERR_RO_BAD;
1343
1344 if (nr_pages)
1345 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1346
1347 return __gfn_to_hva_memslot(slot, gfn);
1348 }
1349
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1350 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1351 gfn_t *nr_pages)
1352 {
1353 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1354 }
1355
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1356 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1357 gfn_t gfn)
1358 {
1359 return gfn_to_hva_many(slot, gfn, NULL);
1360 }
1361 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1362
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1363 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1364 {
1365 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1366 }
1367 EXPORT_SYMBOL_GPL(gfn_to_hva);
1368
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1369 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1370 {
1371 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1374
1375 /*
1376 * If writable is set to false, the hva returned by this function is only
1377 * allowed to be read.
1378 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1379 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1380 gfn_t gfn, bool *writable)
1381 {
1382 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1383
1384 if (!kvm_is_error_hva(hva) && writable)
1385 *writable = !memslot_is_readonly(slot);
1386
1387 return hva;
1388 }
1389
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1390 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1391 {
1392 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1393
1394 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1395 }
1396
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1397 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1398 {
1399 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1400
1401 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1402 }
1403
check_user_page_hwpoison(unsigned long addr)1404 static inline int check_user_page_hwpoison(unsigned long addr)
1405 {
1406 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1407
1408 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1409 return rc == -EHWPOISON;
1410 }
1411
1412 /*
1413 * The fast path to get the writable pfn which will be stored in @pfn,
1414 * true indicates success, otherwise false is returned. It's also the
1415 * only part that runs if we can are in atomic context.
1416 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1417 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1418 bool *writable, kvm_pfn_t *pfn)
1419 {
1420 struct page *page[1];
1421 int npages;
1422
1423 /*
1424 * Fast pin a writable pfn only if it is a write fault request
1425 * or the caller allows to map a writable pfn for a read fault
1426 * request.
1427 */
1428 if (!(write_fault || writable))
1429 return false;
1430
1431 npages = __get_user_pages_fast(addr, 1, 1, page);
1432 if (npages == 1) {
1433 *pfn = page_to_pfn(page[0]);
1434
1435 if (writable)
1436 *writable = true;
1437 return true;
1438 }
1439
1440 return false;
1441 }
1442
1443 /*
1444 * The slow path to get the pfn of the specified host virtual address,
1445 * 1 indicates success, -errno is returned if error is detected.
1446 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1447 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1448 bool *writable, kvm_pfn_t *pfn)
1449 {
1450 unsigned int flags = FOLL_HWPOISON;
1451 struct page *page;
1452 int npages = 0;
1453
1454 might_sleep();
1455
1456 if (writable)
1457 *writable = write_fault;
1458
1459 if (write_fault)
1460 flags |= FOLL_WRITE;
1461 if (async)
1462 flags |= FOLL_NOWAIT;
1463
1464 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1465 if (npages != 1)
1466 return npages;
1467
1468 /* map read fault as writable if possible */
1469 if (unlikely(!write_fault) && writable) {
1470 struct page *wpage;
1471
1472 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1473 *writable = true;
1474 put_page(page);
1475 page = wpage;
1476 }
1477 }
1478 *pfn = page_to_pfn(page);
1479 return npages;
1480 }
1481
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1482 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1483 {
1484 if (unlikely(!(vma->vm_flags & VM_READ)))
1485 return false;
1486
1487 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1488 return false;
1489
1490 return true;
1491 }
1492
kvm_try_get_pfn(kvm_pfn_t pfn)1493 static int kvm_try_get_pfn(kvm_pfn_t pfn)
1494 {
1495 if (kvm_is_reserved_pfn(pfn))
1496 return 1;
1497 return get_page_unless_zero(pfn_to_page(pfn));
1498 }
1499
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1500 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1501 unsigned long addr, bool *async,
1502 bool write_fault, bool *writable,
1503 kvm_pfn_t *p_pfn)
1504 {
1505 unsigned long pfn;
1506 int r;
1507
1508 r = follow_pfn(vma, addr, &pfn);
1509 if (r) {
1510 /*
1511 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1512 * not call the fault handler, so do it here.
1513 */
1514 bool unlocked = false;
1515 r = fixup_user_fault(current, current->mm, addr,
1516 (write_fault ? FAULT_FLAG_WRITE : 0),
1517 &unlocked);
1518 if (unlocked)
1519 return -EAGAIN;
1520 if (r)
1521 return r;
1522
1523 r = follow_pfn(vma, addr, &pfn);
1524 if (r)
1525 return r;
1526
1527 }
1528
1529 if (writable)
1530 *writable = true;
1531
1532 /*
1533 * Get a reference here because callers of *hva_to_pfn* and
1534 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1535 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1536 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1537 * simply do nothing for reserved pfns.
1538 *
1539 * Whoever called remap_pfn_range is also going to call e.g.
1540 * unmap_mapping_range before the underlying pages are freed,
1541 * causing a call to our MMU notifier.
1542 *
1543 * Certain IO or PFNMAP mappings can be backed with valid
1544 * struct pages, but be allocated without refcounting e.g.,
1545 * tail pages of non-compound higher order allocations, which
1546 * would then underflow the refcount when the caller does the
1547 * required put_page. Don't allow those pages here.
1548 */
1549 if (!kvm_try_get_pfn(pfn))
1550 r = -EFAULT;
1551
1552 *p_pfn = pfn;
1553
1554 return r;
1555 }
1556
1557 /*
1558 * Pin guest page in memory and return its pfn.
1559 * @addr: host virtual address which maps memory to the guest
1560 * @atomic: whether this function can sleep
1561 * @async: whether this function need to wait IO complete if the
1562 * host page is not in the memory
1563 * @write_fault: whether we should get a writable host page
1564 * @writable: whether it allows to map a writable host page for !@write_fault
1565 *
1566 * The function will map a writable host page for these two cases:
1567 * 1): @write_fault = true
1568 * 2): @write_fault = false && @writable, @writable will tell the caller
1569 * whether the mapping is writable.
1570 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1571 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1572 bool write_fault, bool *writable)
1573 {
1574 struct vm_area_struct *vma;
1575 kvm_pfn_t pfn = 0;
1576 int npages, r;
1577
1578 /* we can do it either atomically or asynchronously, not both */
1579 BUG_ON(atomic && async);
1580
1581 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1582 return pfn;
1583
1584 if (atomic)
1585 return KVM_PFN_ERR_FAULT;
1586
1587 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1588 if (npages == 1)
1589 return pfn;
1590
1591 down_read(¤t->mm->mmap_sem);
1592 if (npages == -EHWPOISON ||
1593 (!async && check_user_page_hwpoison(addr))) {
1594 pfn = KVM_PFN_ERR_HWPOISON;
1595 goto exit;
1596 }
1597
1598 retry:
1599 vma = find_vma_intersection(current->mm, addr, addr + 1);
1600
1601 if (vma == NULL)
1602 pfn = KVM_PFN_ERR_FAULT;
1603 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1604 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1605 if (r == -EAGAIN)
1606 goto retry;
1607 if (r < 0)
1608 pfn = KVM_PFN_ERR_FAULT;
1609 } else {
1610 if (async && vma_is_valid(vma, write_fault))
1611 *async = true;
1612 pfn = KVM_PFN_ERR_FAULT;
1613 }
1614 exit:
1615 up_read(¤t->mm->mmap_sem);
1616 return pfn;
1617 }
1618
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1619 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1620 bool atomic, bool *async, bool write_fault,
1621 bool *writable)
1622 {
1623 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1624
1625 if (addr == KVM_HVA_ERR_RO_BAD) {
1626 if (writable)
1627 *writable = false;
1628 return KVM_PFN_ERR_RO_FAULT;
1629 }
1630
1631 if (kvm_is_error_hva(addr)) {
1632 if (writable)
1633 *writable = false;
1634 return KVM_PFN_NOSLOT;
1635 }
1636
1637 /* Do not map writable pfn in the readonly memslot. */
1638 if (writable && memslot_is_readonly(slot)) {
1639 *writable = false;
1640 writable = NULL;
1641 }
1642
1643 return hva_to_pfn(addr, atomic, async, write_fault,
1644 writable);
1645 }
1646 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1647
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1648 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1649 bool *writable)
1650 {
1651 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1652 write_fault, writable);
1653 }
1654 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1655
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1656 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1657 {
1658 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1659 }
1660 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1661
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1662 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1663 {
1664 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1667
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1668 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1669 {
1670 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1673
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1674 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1675 {
1676 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1679
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1680 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1681 {
1682 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1685
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1691
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1692 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1693 struct page **pages, int nr_pages)
1694 {
1695 unsigned long addr;
1696 gfn_t entry = 0;
1697
1698 addr = gfn_to_hva_many(slot, gfn, &entry);
1699 if (kvm_is_error_hva(addr))
1700 return -1;
1701
1702 if (entry < nr_pages)
1703 return 0;
1704
1705 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1706 }
1707 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1708
kvm_pfn_to_page(kvm_pfn_t pfn)1709 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1710 {
1711 if (is_error_noslot_pfn(pfn))
1712 return KVM_ERR_PTR_BAD_PAGE;
1713
1714 if (kvm_is_reserved_pfn(pfn)) {
1715 WARN_ON(1);
1716 return KVM_ERR_PTR_BAD_PAGE;
1717 }
1718
1719 return pfn_to_page(pfn);
1720 }
1721
gfn_to_page(struct kvm * kvm,gfn_t gfn)1722 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1723 {
1724 kvm_pfn_t pfn;
1725
1726 pfn = gfn_to_pfn(kvm, gfn);
1727
1728 return kvm_pfn_to_page(pfn);
1729 }
1730 EXPORT_SYMBOL_GPL(gfn_to_page);
1731
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)1732 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1733 {
1734 if (pfn == 0)
1735 return;
1736
1737 if (cache)
1738 cache->pfn = cache->gfn = 0;
1739
1740 if (dirty)
1741 kvm_release_pfn_dirty(pfn);
1742 else
1743 kvm_release_pfn_clean(pfn);
1744 }
1745
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)1746 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1747 struct gfn_to_pfn_cache *cache, u64 gen)
1748 {
1749 kvm_release_pfn(cache->pfn, cache->dirty, cache);
1750
1751 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1752 cache->gfn = gfn;
1753 cache->dirty = false;
1754 cache->generation = gen;
1755 }
1756
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)1757 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1758 struct kvm_host_map *map,
1759 struct gfn_to_pfn_cache *cache,
1760 bool atomic)
1761 {
1762 kvm_pfn_t pfn;
1763 void *hva = NULL;
1764 struct page *page = KVM_UNMAPPED_PAGE;
1765 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1766 u64 gen = slots->generation;
1767
1768 if (!map)
1769 return -EINVAL;
1770
1771 if (cache) {
1772 if (!cache->pfn || cache->gfn != gfn ||
1773 cache->generation != gen) {
1774 if (atomic)
1775 return -EAGAIN;
1776 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1777 }
1778 pfn = cache->pfn;
1779 } else {
1780 if (atomic)
1781 return -EAGAIN;
1782 pfn = gfn_to_pfn_memslot(slot, gfn);
1783 }
1784 if (is_error_noslot_pfn(pfn))
1785 return -EINVAL;
1786
1787 if (pfn_valid(pfn)) {
1788 page = pfn_to_page(pfn);
1789 if (atomic)
1790 hva = kmap_atomic(page);
1791 else
1792 hva = kmap(page);
1793 #ifdef CONFIG_HAS_IOMEM
1794 } else if (!atomic) {
1795 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1796 } else {
1797 return -EINVAL;
1798 #endif
1799 }
1800
1801 if (!hva)
1802 return -EFAULT;
1803
1804 map->page = page;
1805 map->hva = hva;
1806 map->pfn = pfn;
1807 map->gfn = gfn;
1808
1809 return 0;
1810 }
1811
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)1812 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1813 struct gfn_to_pfn_cache *cache, bool atomic)
1814 {
1815 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1816 cache, atomic);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1819
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)1820 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1821 {
1822 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1823 NULL, false);
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1826
__kvm_unmap_gfn(struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)1827 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1828 struct kvm_host_map *map,
1829 struct gfn_to_pfn_cache *cache,
1830 bool dirty, bool atomic)
1831 {
1832 if (!map)
1833 return;
1834
1835 if (!map->hva)
1836 return;
1837
1838 if (map->page != KVM_UNMAPPED_PAGE) {
1839 if (atomic)
1840 kunmap_atomic(map->hva);
1841 else
1842 kunmap(map->page);
1843 }
1844 #ifdef CONFIG_HAS_IOMEM
1845 else if (!atomic)
1846 memunmap(map->hva);
1847 else
1848 WARN_ONCE(1, "Unexpected unmapping in atomic context");
1849 #endif
1850
1851 if (dirty)
1852 mark_page_dirty_in_slot(memslot, map->gfn);
1853
1854 if (cache)
1855 cache->dirty |= dirty;
1856 else
1857 kvm_release_pfn(map->pfn, dirty, NULL);
1858
1859 map->hva = NULL;
1860 map->page = NULL;
1861 }
1862
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)1863 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1864 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1865 {
1866 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1867 cache, dirty, atomic);
1868 return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1871
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)1872 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1873 {
1874 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1875 dirty, false);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1878
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1879 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1880 {
1881 kvm_pfn_t pfn;
1882
1883 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1884
1885 return kvm_pfn_to_page(pfn);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1888
kvm_release_page_clean(struct page * page)1889 void kvm_release_page_clean(struct page *page)
1890 {
1891 WARN_ON(is_error_page(page));
1892
1893 kvm_release_pfn_clean(page_to_pfn(page));
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1896
kvm_release_pfn_clean(kvm_pfn_t pfn)1897 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1898 {
1899 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1900 put_page(pfn_to_page(pfn));
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1903
kvm_release_page_dirty(struct page * page)1904 void kvm_release_page_dirty(struct page *page)
1905 {
1906 WARN_ON(is_error_page(page));
1907
1908 kvm_release_pfn_dirty(page_to_pfn(page));
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1911
kvm_release_pfn_dirty(kvm_pfn_t pfn)1912 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1913 {
1914 kvm_set_pfn_dirty(pfn);
1915 kvm_release_pfn_clean(pfn);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1918
kvm_set_pfn_dirty(kvm_pfn_t pfn)1919 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1920 {
1921 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1922 struct page *page = pfn_to_page(pfn);
1923
1924 if (!PageReserved(page))
1925 SetPageDirty(page);
1926 }
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1929
kvm_set_pfn_accessed(kvm_pfn_t pfn)1930 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1931 {
1932 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1933 mark_page_accessed(pfn_to_page(pfn));
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1936
kvm_get_pfn(kvm_pfn_t pfn)1937 void kvm_get_pfn(kvm_pfn_t pfn)
1938 {
1939 if (!kvm_is_reserved_pfn(pfn))
1940 get_page(pfn_to_page(pfn));
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1943
next_segment(unsigned long len,int offset)1944 static int next_segment(unsigned long len, int offset)
1945 {
1946 if (len > PAGE_SIZE - offset)
1947 return PAGE_SIZE - offset;
1948 else
1949 return len;
1950 }
1951
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1952 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1953 void *data, int offset, int len)
1954 {
1955 int r;
1956 unsigned long addr;
1957
1958 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1959 if (kvm_is_error_hva(addr))
1960 return -EFAULT;
1961 r = __copy_from_user(data, (void __user *)addr + offset, len);
1962 if (r)
1963 return -EFAULT;
1964 return 0;
1965 }
1966
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1967 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1968 int len)
1969 {
1970 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1971
1972 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1975
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1976 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1977 int offset, int len)
1978 {
1979 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1980
1981 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1984
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1985 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1986 {
1987 gfn_t gfn = gpa >> PAGE_SHIFT;
1988 int seg;
1989 int offset = offset_in_page(gpa);
1990 int ret;
1991
1992 while ((seg = next_segment(len, offset)) != 0) {
1993 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1994 if (ret < 0)
1995 return ret;
1996 offset = 0;
1997 len -= seg;
1998 data += seg;
1999 ++gfn;
2000 }
2001 return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_read_guest);
2004
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2005 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2006 {
2007 gfn_t gfn = gpa >> PAGE_SHIFT;
2008 int seg;
2009 int offset = offset_in_page(gpa);
2010 int ret;
2011
2012 while ((seg = next_segment(len, offset)) != 0) {
2013 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2014 if (ret < 0)
2015 return ret;
2016 offset = 0;
2017 len -= seg;
2018 data += seg;
2019 ++gfn;
2020 }
2021 return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2024
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2025 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2026 void *data, int offset, unsigned long len)
2027 {
2028 int r;
2029 unsigned long addr;
2030
2031 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2032 if (kvm_is_error_hva(addr))
2033 return -EFAULT;
2034 pagefault_disable();
2035 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2036 pagefault_enable();
2037 if (r)
2038 return -EFAULT;
2039 return 0;
2040 }
2041
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2042 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2043 unsigned long len)
2044 {
2045 gfn_t gfn = gpa >> PAGE_SHIFT;
2046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2047 int offset = offset_in_page(gpa);
2048
2049 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2052
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2053 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2054 void *data, unsigned long len)
2055 {
2056 gfn_t gfn = gpa >> PAGE_SHIFT;
2057 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2058 int offset = offset_in_page(gpa);
2059
2060 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2063
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2064 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2065 const void *data, int offset, int len)
2066 {
2067 int r;
2068 unsigned long addr;
2069
2070 addr = gfn_to_hva_memslot(memslot, gfn);
2071 if (kvm_is_error_hva(addr))
2072 return -EFAULT;
2073 r = __copy_to_user((void __user *)addr + offset, data, len);
2074 if (r)
2075 return -EFAULT;
2076 mark_page_dirty_in_slot(memslot, gfn);
2077 return 0;
2078 }
2079
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2080 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2081 const void *data, int offset, int len)
2082 {
2083 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2084
2085 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2088
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2089 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2090 const void *data, int offset, int len)
2091 {
2092 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2093
2094 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2097
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2098 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2099 unsigned long len)
2100 {
2101 gfn_t gfn = gpa >> PAGE_SHIFT;
2102 int seg;
2103 int offset = offset_in_page(gpa);
2104 int ret;
2105
2106 while ((seg = next_segment(len, offset)) != 0) {
2107 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2108 if (ret < 0)
2109 return ret;
2110 offset = 0;
2111 len -= seg;
2112 data += seg;
2113 ++gfn;
2114 }
2115 return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_write_guest);
2118
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2119 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2120 unsigned long len)
2121 {
2122 gfn_t gfn = gpa >> PAGE_SHIFT;
2123 int seg;
2124 int offset = offset_in_page(gpa);
2125 int ret;
2126
2127 while ((seg = next_segment(len, offset)) != 0) {
2128 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2129 if (ret < 0)
2130 return ret;
2131 offset = 0;
2132 len -= seg;
2133 data += seg;
2134 ++gfn;
2135 }
2136 return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2139
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2140 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2141 struct gfn_to_hva_cache *ghc,
2142 gpa_t gpa, unsigned long len)
2143 {
2144 int offset = offset_in_page(gpa);
2145 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2146 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2147 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2148 gfn_t nr_pages_avail;
2149
2150 ghc->gpa = gpa;
2151 ghc->generation = slots->generation;
2152 ghc->len = len;
2153 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2154 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
2155 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
2156 ghc->hva += offset;
2157 } else {
2158 /*
2159 * If the requested region crosses two memslots, we still
2160 * verify that the entire region is valid here.
2161 */
2162 while (start_gfn <= end_gfn) {
2163 nr_pages_avail = 0;
2164 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2165 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2166 &nr_pages_avail);
2167 if (kvm_is_error_hva(ghc->hva))
2168 return -EFAULT;
2169 start_gfn += nr_pages_avail;
2170 }
2171 /* Use the slow path for cross page reads and writes. */
2172 ghc->memslot = NULL;
2173 }
2174 return 0;
2175 }
2176
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2177 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2178 gpa_t gpa, unsigned long len)
2179 {
2180 struct kvm_memslots *slots = kvm_memslots(kvm);
2181 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2184
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2185 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2186 void *data, unsigned int offset,
2187 unsigned long len)
2188 {
2189 struct kvm_memslots *slots = kvm_memslots(kvm);
2190 int r;
2191 gpa_t gpa = ghc->gpa + offset;
2192
2193 BUG_ON(len + offset > ghc->len);
2194
2195 if (slots->generation != ghc->generation)
2196 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2197
2198 if (kvm_is_error_hva(ghc->hva))
2199 return -EFAULT;
2200
2201 if (unlikely(!ghc->memslot))
2202 return kvm_write_guest(kvm, gpa, data, len);
2203
2204 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2205 if (r)
2206 return -EFAULT;
2207 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2208
2209 return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2212
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2213 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2214 void *data, unsigned long len)
2215 {
2216 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2219
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2220 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2221 void *data, unsigned long len)
2222 {
2223 struct kvm_memslots *slots = kvm_memslots(kvm);
2224 int r;
2225
2226 BUG_ON(len > ghc->len);
2227
2228 if (slots->generation != ghc->generation)
2229 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2230
2231 if (kvm_is_error_hva(ghc->hva))
2232 return -EFAULT;
2233
2234 if (unlikely(!ghc->memslot))
2235 return kvm_read_guest(kvm, ghc->gpa, data, len);
2236
2237 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2238 if (r)
2239 return -EFAULT;
2240
2241 return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2244
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2245 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2246 {
2247 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2248
2249 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2252
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2253 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2254 {
2255 gfn_t gfn = gpa >> PAGE_SHIFT;
2256 int seg;
2257 int offset = offset_in_page(gpa);
2258 int ret;
2259
2260 while ((seg = next_segment(len, offset)) != 0) {
2261 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2262 if (ret < 0)
2263 return ret;
2264 offset = 0;
2265 len -= seg;
2266 ++gfn;
2267 }
2268 return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2271
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2272 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2273 gfn_t gfn)
2274 {
2275 if (memslot && memslot->dirty_bitmap) {
2276 unsigned long rel_gfn = gfn - memslot->base_gfn;
2277
2278 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2279 }
2280 }
2281
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2282 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2283 {
2284 struct kvm_memory_slot *memslot;
2285
2286 memslot = gfn_to_memslot(kvm, gfn);
2287 mark_page_dirty_in_slot(memslot, gfn);
2288 }
2289 EXPORT_SYMBOL_GPL(mark_page_dirty);
2290
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2291 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2292 {
2293 struct kvm_memory_slot *memslot;
2294
2295 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2296 mark_page_dirty_in_slot(memslot, gfn);
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2299
kvm_sigset_activate(struct kvm_vcpu * vcpu)2300 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2301 {
2302 if (!vcpu->sigset_active)
2303 return;
2304
2305 /*
2306 * This does a lockless modification of ->real_blocked, which is fine
2307 * because, only current can change ->real_blocked and all readers of
2308 * ->real_blocked don't care as long ->real_blocked is always a subset
2309 * of ->blocked.
2310 */
2311 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2312 }
2313
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2314 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2315 {
2316 if (!vcpu->sigset_active)
2317 return;
2318
2319 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2320 sigemptyset(¤t->real_blocked);
2321 }
2322
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2323 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2324 {
2325 unsigned int old, val, grow;
2326
2327 old = val = vcpu->halt_poll_ns;
2328 grow = READ_ONCE(halt_poll_ns_grow);
2329 /* 10us base */
2330 if (val == 0 && grow)
2331 val = 10000;
2332 else
2333 val *= grow;
2334
2335 if (val > halt_poll_ns)
2336 val = halt_poll_ns;
2337
2338 vcpu->halt_poll_ns = val;
2339 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2340 }
2341
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2342 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2343 {
2344 unsigned int old, val, shrink;
2345
2346 old = val = vcpu->halt_poll_ns;
2347 shrink = READ_ONCE(halt_poll_ns_shrink);
2348 if (shrink == 0)
2349 val = 0;
2350 else
2351 val /= shrink;
2352
2353 vcpu->halt_poll_ns = val;
2354 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2355 }
2356
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2357 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2358 {
2359 int ret = -EINTR;
2360 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2361
2362 if (kvm_arch_vcpu_runnable(vcpu)) {
2363 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2364 goto out;
2365 }
2366 if (kvm_cpu_has_pending_timer(vcpu))
2367 goto out;
2368 if (signal_pending(current))
2369 goto out;
2370
2371 ret = 0;
2372 out:
2373 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2374 return ret;
2375 }
2376
2377 /*
2378 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2379 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2380 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2381 {
2382 ktime_t start, cur;
2383 DECLARE_SWAITQUEUE(wait);
2384 bool waited = false;
2385 u64 block_ns;
2386
2387 start = cur = ktime_get();
2388 if (vcpu->halt_poll_ns) {
2389 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2390
2391 ++vcpu->stat.halt_attempted_poll;
2392 do {
2393 /*
2394 * This sets KVM_REQ_UNHALT if an interrupt
2395 * arrives.
2396 */
2397 if (kvm_vcpu_check_block(vcpu) < 0) {
2398 ++vcpu->stat.halt_successful_poll;
2399 if (!vcpu_valid_wakeup(vcpu))
2400 ++vcpu->stat.halt_poll_invalid;
2401 goto out;
2402 }
2403 cur = ktime_get();
2404 } while (single_task_running() && ktime_before(cur, stop));
2405 }
2406
2407 kvm_arch_vcpu_blocking(vcpu);
2408
2409 for (;;) {
2410 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2411
2412 if (kvm_vcpu_check_block(vcpu) < 0)
2413 break;
2414
2415 waited = true;
2416 schedule();
2417 }
2418
2419 finish_swait(&vcpu->wq, &wait);
2420 cur = ktime_get();
2421
2422 kvm_arch_vcpu_unblocking(vcpu);
2423 out:
2424 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2425
2426 if (!vcpu_valid_wakeup(vcpu))
2427 shrink_halt_poll_ns(vcpu);
2428 else if (halt_poll_ns) {
2429 if (block_ns <= vcpu->halt_poll_ns)
2430 ;
2431 /* we had a long block, shrink polling */
2432 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2433 shrink_halt_poll_ns(vcpu);
2434 /* we had a short halt and our poll time is too small */
2435 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2436 block_ns < halt_poll_ns)
2437 grow_halt_poll_ns(vcpu);
2438 } else
2439 vcpu->halt_poll_ns = 0;
2440
2441 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2442 kvm_arch_vcpu_block_finish(vcpu);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2445
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2446 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2447 {
2448 struct swait_queue_head *wqp;
2449
2450 wqp = kvm_arch_vcpu_wq(vcpu);
2451 if (swq_has_sleeper(wqp)) {
2452 swake_up_one(wqp);
2453 ++vcpu->stat.halt_wakeup;
2454 return true;
2455 }
2456
2457 return false;
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2460
2461 #ifndef CONFIG_S390
2462 /*
2463 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2464 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2465 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2466 {
2467 int me;
2468 int cpu = vcpu->cpu;
2469
2470 if (kvm_vcpu_wake_up(vcpu))
2471 return;
2472
2473 me = get_cpu();
2474 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2475 if (kvm_arch_vcpu_should_kick(vcpu))
2476 smp_send_reschedule(cpu);
2477 put_cpu();
2478 }
2479 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2480 #endif /* !CONFIG_S390 */
2481
kvm_vcpu_yield_to(struct kvm_vcpu * target)2482 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2483 {
2484 struct pid *pid;
2485 struct task_struct *task = NULL;
2486 int ret = 0;
2487
2488 rcu_read_lock();
2489 pid = rcu_dereference(target->pid);
2490 if (pid)
2491 task = get_pid_task(pid, PIDTYPE_PID);
2492 rcu_read_unlock();
2493 if (!task)
2494 return ret;
2495 ret = yield_to(task, 1);
2496 put_task_struct(task);
2497
2498 return ret;
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2501
2502 /*
2503 * Helper that checks whether a VCPU is eligible for directed yield.
2504 * Most eligible candidate to yield is decided by following heuristics:
2505 *
2506 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2507 * (preempted lock holder), indicated by @in_spin_loop.
2508 * Set at the beiginning and cleared at the end of interception/PLE handler.
2509 *
2510 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2511 * chance last time (mostly it has become eligible now since we have probably
2512 * yielded to lockholder in last iteration. This is done by toggling
2513 * @dy_eligible each time a VCPU checked for eligibility.)
2514 *
2515 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2516 * to preempted lock-holder could result in wrong VCPU selection and CPU
2517 * burning. Giving priority for a potential lock-holder increases lock
2518 * progress.
2519 *
2520 * Since algorithm is based on heuristics, accessing another VCPU data without
2521 * locking does not harm. It may result in trying to yield to same VCPU, fail
2522 * and continue with next VCPU and so on.
2523 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2524 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2525 {
2526 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2527 bool eligible;
2528
2529 eligible = !vcpu->spin_loop.in_spin_loop ||
2530 vcpu->spin_loop.dy_eligible;
2531
2532 if (vcpu->spin_loop.in_spin_loop)
2533 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2534
2535 return eligible;
2536 #else
2537 return true;
2538 #endif
2539 }
2540
2541 /*
2542 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2543 * a vcpu_load/vcpu_put pair. However, for most architectures
2544 * kvm_arch_vcpu_runnable does not require vcpu_load.
2545 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)2546 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2547 {
2548 return kvm_arch_vcpu_runnable(vcpu);
2549 }
2550
vcpu_dy_runnable(struct kvm_vcpu * vcpu)2551 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2552 {
2553 if (kvm_arch_dy_runnable(vcpu))
2554 return true;
2555
2556 #ifdef CONFIG_KVM_ASYNC_PF
2557 if (!list_empty_careful(&vcpu->async_pf.done))
2558 return true;
2559 #endif
2560
2561 return false;
2562 }
2563
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)2564 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2565 {
2566 struct kvm *kvm = me->kvm;
2567 struct kvm_vcpu *vcpu;
2568 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2569 int yielded = 0;
2570 int try = 3;
2571 int pass;
2572 int i;
2573
2574 kvm_vcpu_set_in_spin_loop(me, true);
2575 /*
2576 * We boost the priority of a VCPU that is runnable but not
2577 * currently running, because it got preempted by something
2578 * else and called schedule in __vcpu_run. Hopefully that
2579 * VCPU is holding the lock that we need and will release it.
2580 * We approximate round-robin by starting at the last boosted VCPU.
2581 */
2582 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2583 kvm_for_each_vcpu(i, vcpu, kvm) {
2584 if (!pass && i <= last_boosted_vcpu) {
2585 i = last_boosted_vcpu;
2586 continue;
2587 } else if (pass && i > last_boosted_vcpu)
2588 break;
2589 if (!READ_ONCE(vcpu->preempted))
2590 continue;
2591 if (vcpu == me)
2592 continue;
2593 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2594 continue;
2595 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2596 continue;
2597 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2598 continue;
2599
2600 yielded = kvm_vcpu_yield_to(vcpu);
2601 if (yielded > 0) {
2602 kvm->last_boosted_vcpu = i;
2603 break;
2604 } else if (yielded < 0) {
2605 try--;
2606 if (!try)
2607 break;
2608 }
2609 }
2610 }
2611 kvm_vcpu_set_in_spin_loop(me, false);
2612
2613 /* Ensure vcpu is not eligible during next spinloop */
2614 kvm_vcpu_set_dy_eligible(me, false);
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2617
kvm_vcpu_fault(struct vm_fault * vmf)2618 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2619 {
2620 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2621 struct page *page;
2622
2623 if (vmf->pgoff == 0)
2624 page = virt_to_page(vcpu->run);
2625 #ifdef CONFIG_X86
2626 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2627 page = virt_to_page(vcpu->arch.pio_data);
2628 #endif
2629 #ifdef CONFIG_KVM_MMIO
2630 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2631 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2632 #endif
2633 else
2634 return kvm_arch_vcpu_fault(vcpu, vmf);
2635 get_page(page);
2636 vmf->page = page;
2637 return 0;
2638 }
2639
2640 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2641 .fault = kvm_vcpu_fault,
2642 };
2643
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2644 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2645 {
2646 vma->vm_ops = &kvm_vcpu_vm_ops;
2647 return 0;
2648 }
2649
kvm_vcpu_release(struct inode * inode,struct file * filp)2650 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2651 {
2652 struct kvm_vcpu *vcpu = filp->private_data;
2653
2654 debugfs_remove_recursive(vcpu->debugfs_dentry);
2655 kvm_put_kvm(vcpu->kvm);
2656 return 0;
2657 }
2658
2659 static struct file_operations kvm_vcpu_fops = {
2660 .release = kvm_vcpu_release,
2661 .unlocked_ioctl = kvm_vcpu_ioctl,
2662 .mmap = kvm_vcpu_mmap,
2663 .llseek = noop_llseek,
2664 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2665 };
2666
2667 /*
2668 * Allocates an inode for the vcpu.
2669 */
create_vcpu_fd(struct kvm_vcpu * vcpu)2670 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2671 {
2672 char name[8 + 1 + ITOA_MAX_LEN + 1];
2673
2674 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2675 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2676 }
2677
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)2678 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2679 {
2680 char dir_name[ITOA_MAX_LEN * 2];
2681 int ret;
2682
2683 if (!kvm_arch_has_vcpu_debugfs())
2684 return 0;
2685
2686 if (!debugfs_initialized())
2687 return 0;
2688
2689 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2690 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2691 vcpu->kvm->debugfs_dentry);
2692 if (!vcpu->debugfs_dentry)
2693 return -ENOMEM;
2694
2695 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2696 if (ret < 0) {
2697 debugfs_remove_recursive(vcpu->debugfs_dentry);
2698 return ret;
2699 }
2700
2701 return 0;
2702 }
2703
2704 /*
2705 * Creates some virtual cpus. Good luck creating more than one.
2706 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2707 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2708 {
2709 int r;
2710 struct kvm_vcpu *vcpu;
2711
2712 if (id >= KVM_MAX_VCPU_ID)
2713 return -EINVAL;
2714
2715 mutex_lock(&kvm->lock);
2716 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2717 mutex_unlock(&kvm->lock);
2718 return -EINVAL;
2719 }
2720
2721 kvm->created_vcpus++;
2722 mutex_unlock(&kvm->lock);
2723
2724 vcpu = kvm_arch_vcpu_create(kvm, id);
2725 if (IS_ERR(vcpu)) {
2726 r = PTR_ERR(vcpu);
2727 goto vcpu_decrement;
2728 }
2729
2730 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2731
2732 r = kvm_arch_vcpu_setup(vcpu);
2733 if (r)
2734 goto vcpu_destroy;
2735
2736 r = kvm_create_vcpu_debugfs(vcpu);
2737 if (r)
2738 goto vcpu_destroy;
2739
2740 mutex_lock(&kvm->lock);
2741 if (kvm_get_vcpu_by_id(kvm, id)) {
2742 r = -EEXIST;
2743 goto unlock_vcpu_destroy;
2744 }
2745
2746 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2747
2748 /* Now it's all set up, let userspace reach it */
2749 kvm_get_kvm(kvm);
2750 r = create_vcpu_fd(vcpu);
2751 if (r < 0) {
2752 kvm_put_kvm(kvm);
2753 goto unlock_vcpu_destroy;
2754 }
2755
2756 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2757
2758 /*
2759 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2760 * before kvm->online_vcpu's incremented value.
2761 */
2762 smp_wmb();
2763 atomic_inc(&kvm->online_vcpus);
2764
2765 mutex_unlock(&kvm->lock);
2766 kvm_arch_vcpu_postcreate(vcpu);
2767 return r;
2768
2769 unlock_vcpu_destroy:
2770 mutex_unlock(&kvm->lock);
2771 debugfs_remove_recursive(vcpu->debugfs_dentry);
2772 vcpu_destroy:
2773 kvm_arch_vcpu_destroy(vcpu);
2774 vcpu_decrement:
2775 mutex_lock(&kvm->lock);
2776 kvm->created_vcpus--;
2777 mutex_unlock(&kvm->lock);
2778 return r;
2779 }
2780
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2781 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2782 {
2783 if (sigset) {
2784 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2785 vcpu->sigset_active = 1;
2786 vcpu->sigset = *sigset;
2787 } else
2788 vcpu->sigset_active = 0;
2789 return 0;
2790 }
2791
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2792 static long kvm_vcpu_ioctl(struct file *filp,
2793 unsigned int ioctl, unsigned long arg)
2794 {
2795 struct kvm_vcpu *vcpu = filp->private_data;
2796 void __user *argp = (void __user *)arg;
2797 int r;
2798 struct kvm_fpu *fpu = NULL;
2799 struct kvm_sregs *kvm_sregs = NULL;
2800
2801 if (vcpu->kvm->mm != current->mm)
2802 return -EIO;
2803
2804 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2805 return -EINVAL;
2806
2807 /*
2808 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2809 * execution; mutex_lock() would break them.
2810 */
2811 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2812 if (r != -ENOIOCTLCMD)
2813 return r;
2814
2815 if (mutex_lock_killable(&vcpu->mutex))
2816 return -EINTR;
2817 switch (ioctl) {
2818 case KVM_RUN: {
2819 struct pid *oldpid;
2820 r = -EINVAL;
2821 if (arg)
2822 goto out;
2823 oldpid = rcu_access_pointer(vcpu->pid);
2824 if (unlikely(oldpid != task_pid(current))) {
2825 /* The thread running this VCPU changed. */
2826 struct pid *newpid;
2827
2828 r = kvm_arch_vcpu_run_pid_change(vcpu);
2829 if (r)
2830 break;
2831
2832 newpid = get_task_pid(current, PIDTYPE_PID);
2833 rcu_assign_pointer(vcpu->pid, newpid);
2834 if (oldpid)
2835 synchronize_rcu();
2836 put_pid(oldpid);
2837 }
2838 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2839 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2840 break;
2841 }
2842 case KVM_GET_REGS: {
2843 struct kvm_regs *kvm_regs;
2844
2845 r = -ENOMEM;
2846 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2847 if (!kvm_regs)
2848 goto out;
2849 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2850 if (r)
2851 goto out_free1;
2852 r = -EFAULT;
2853 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2854 goto out_free1;
2855 r = 0;
2856 out_free1:
2857 kfree(kvm_regs);
2858 break;
2859 }
2860 case KVM_SET_REGS: {
2861 struct kvm_regs *kvm_regs;
2862
2863 r = -ENOMEM;
2864 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2865 if (IS_ERR(kvm_regs)) {
2866 r = PTR_ERR(kvm_regs);
2867 goto out;
2868 }
2869 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2870 kfree(kvm_regs);
2871 break;
2872 }
2873 case KVM_GET_SREGS: {
2874 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2875 r = -ENOMEM;
2876 if (!kvm_sregs)
2877 goto out;
2878 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2879 if (r)
2880 goto out;
2881 r = -EFAULT;
2882 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2883 goto out;
2884 r = 0;
2885 break;
2886 }
2887 case KVM_SET_SREGS: {
2888 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2889 if (IS_ERR(kvm_sregs)) {
2890 r = PTR_ERR(kvm_sregs);
2891 kvm_sregs = NULL;
2892 goto out;
2893 }
2894 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2895 break;
2896 }
2897 case KVM_GET_MP_STATE: {
2898 struct kvm_mp_state mp_state;
2899
2900 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2901 if (r)
2902 goto out;
2903 r = -EFAULT;
2904 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2905 goto out;
2906 r = 0;
2907 break;
2908 }
2909 case KVM_SET_MP_STATE: {
2910 struct kvm_mp_state mp_state;
2911
2912 r = -EFAULT;
2913 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2914 goto out;
2915 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2916 break;
2917 }
2918 case KVM_TRANSLATE: {
2919 struct kvm_translation tr;
2920
2921 r = -EFAULT;
2922 if (copy_from_user(&tr, argp, sizeof(tr)))
2923 goto out;
2924 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2925 if (r)
2926 goto out;
2927 r = -EFAULT;
2928 if (copy_to_user(argp, &tr, sizeof(tr)))
2929 goto out;
2930 r = 0;
2931 break;
2932 }
2933 case KVM_SET_GUEST_DEBUG: {
2934 struct kvm_guest_debug dbg;
2935
2936 r = -EFAULT;
2937 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2938 goto out;
2939 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2940 break;
2941 }
2942 case KVM_SET_SIGNAL_MASK: {
2943 struct kvm_signal_mask __user *sigmask_arg = argp;
2944 struct kvm_signal_mask kvm_sigmask;
2945 sigset_t sigset, *p;
2946
2947 p = NULL;
2948 if (argp) {
2949 r = -EFAULT;
2950 if (copy_from_user(&kvm_sigmask, argp,
2951 sizeof(kvm_sigmask)))
2952 goto out;
2953 r = -EINVAL;
2954 if (kvm_sigmask.len != sizeof(sigset))
2955 goto out;
2956 r = -EFAULT;
2957 if (copy_from_user(&sigset, sigmask_arg->sigset,
2958 sizeof(sigset)))
2959 goto out;
2960 p = &sigset;
2961 }
2962 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2963 break;
2964 }
2965 case KVM_GET_FPU: {
2966 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2967 r = -ENOMEM;
2968 if (!fpu)
2969 goto out;
2970 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2971 if (r)
2972 goto out;
2973 r = -EFAULT;
2974 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2975 goto out;
2976 r = 0;
2977 break;
2978 }
2979 case KVM_SET_FPU: {
2980 fpu = memdup_user(argp, sizeof(*fpu));
2981 if (IS_ERR(fpu)) {
2982 r = PTR_ERR(fpu);
2983 fpu = NULL;
2984 goto out;
2985 }
2986 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2987 break;
2988 }
2989 default:
2990 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2991 }
2992 out:
2993 mutex_unlock(&vcpu->mutex);
2994 kfree(fpu);
2995 kfree(kvm_sregs);
2996 return r;
2997 }
2998
2999 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3000 static long kvm_vcpu_compat_ioctl(struct file *filp,
3001 unsigned int ioctl, unsigned long arg)
3002 {
3003 struct kvm_vcpu *vcpu = filp->private_data;
3004 void __user *argp = compat_ptr(arg);
3005 int r;
3006
3007 if (vcpu->kvm->mm != current->mm)
3008 return -EIO;
3009
3010 switch (ioctl) {
3011 case KVM_SET_SIGNAL_MASK: {
3012 struct kvm_signal_mask __user *sigmask_arg = argp;
3013 struct kvm_signal_mask kvm_sigmask;
3014 sigset_t sigset;
3015
3016 if (argp) {
3017 r = -EFAULT;
3018 if (copy_from_user(&kvm_sigmask, argp,
3019 sizeof(kvm_sigmask)))
3020 goto out;
3021 r = -EINVAL;
3022 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3023 goto out;
3024 r = -EFAULT;
3025 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3026 goto out;
3027 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3028 } else
3029 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3030 break;
3031 }
3032 default:
3033 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3034 }
3035
3036 out:
3037 return r;
3038 }
3039 #endif
3040
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3041 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3042 int (*accessor)(struct kvm_device *dev,
3043 struct kvm_device_attr *attr),
3044 unsigned long arg)
3045 {
3046 struct kvm_device_attr attr;
3047
3048 if (!accessor)
3049 return -EPERM;
3050
3051 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3052 return -EFAULT;
3053
3054 return accessor(dev, &attr);
3055 }
3056
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3057 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3058 unsigned long arg)
3059 {
3060 struct kvm_device *dev = filp->private_data;
3061
3062 if (dev->kvm->mm != current->mm)
3063 return -EIO;
3064
3065 switch (ioctl) {
3066 case KVM_SET_DEVICE_ATTR:
3067 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3068 case KVM_GET_DEVICE_ATTR:
3069 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3070 case KVM_HAS_DEVICE_ATTR:
3071 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3072 default:
3073 if (dev->ops->ioctl)
3074 return dev->ops->ioctl(dev, ioctl, arg);
3075
3076 return -ENOTTY;
3077 }
3078 }
3079
kvm_device_release(struct inode * inode,struct file * filp)3080 static int kvm_device_release(struct inode *inode, struct file *filp)
3081 {
3082 struct kvm_device *dev = filp->private_data;
3083 struct kvm *kvm = dev->kvm;
3084
3085 kvm_put_kvm(kvm);
3086 return 0;
3087 }
3088
3089 static const struct file_operations kvm_device_fops = {
3090 .unlocked_ioctl = kvm_device_ioctl,
3091 .release = kvm_device_release,
3092 KVM_COMPAT(kvm_device_ioctl),
3093 };
3094
kvm_device_from_filp(struct file * filp)3095 struct kvm_device *kvm_device_from_filp(struct file *filp)
3096 {
3097 if (filp->f_op != &kvm_device_fops)
3098 return NULL;
3099
3100 return filp->private_data;
3101 }
3102
3103 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3104 #ifdef CONFIG_KVM_MPIC
3105 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3106 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3107 #endif
3108 };
3109
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)3110 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3111 {
3112 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3113 return -ENOSPC;
3114
3115 if (kvm_device_ops_table[type] != NULL)
3116 return -EEXIST;
3117
3118 kvm_device_ops_table[type] = ops;
3119 return 0;
3120 }
3121
kvm_unregister_device_ops(u32 type)3122 void kvm_unregister_device_ops(u32 type)
3123 {
3124 if (kvm_device_ops_table[type] != NULL)
3125 kvm_device_ops_table[type] = NULL;
3126 }
3127
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3128 static int kvm_ioctl_create_device(struct kvm *kvm,
3129 struct kvm_create_device *cd)
3130 {
3131 struct kvm_device_ops *ops = NULL;
3132 struct kvm_device *dev;
3133 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3134 int type;
3135 int ret;
3136
3137 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3138 return -ENODEV;
3139
3140 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3141 ops = kvm_device_ops_table[type];
3142 if (ops == NULL)
3143 return -ENODEV;
3144
3145 if (test)
3146 return 0;
3147
3148 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3149 if (!dev)
3150 return -ENOMEM;
3151
3152 dev->ops = ops;
3153 dev->kvm = kvm;
3154
3155 mutex_lock(&kvm->lock);
3156 ret = ops->create(dev, type);
3157 if (ret < 0) {
3158 mutex_unlock(&kvm->lock);
3159 kfree(dev);
3160 return ret;
3161 }
3162 list_add(&dev->vm_node, &kvm->devices);
3163 mutex_unlock(&kvm->lock);
3164
3165 if (ops->init)
3166 ops->init(dev);
3167
3168 kvm_get_kvm(kvm);
3169 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3170 if (ret < 0) {
3171 kvm_put_kvm(kvm);
3172 mutex_lock(&kvm->lock);
3173 list_del(&dev->vm_node);
3174 mutex_unlock(&kvm->lock);
3175 ops->destroy(dev);
3176 return ret;
3177 }
3178
3179 cd->fd = ret;
3180 return 0;
3181 }
3182
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3183 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3184 {
3185 switch (arg) {
3186 case KVM_CAP_USER_MEMORY:
3187 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3188 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3189 case KVM_CAP_INTERNAL_ERROR_DATA:
3190 #ifdef CONFIG_HAVE_KVM_MSI
3191 case KVM_CAP_SIGNAL_MSI:
3192 #endif
3193 #ifdef CONFIG_HAVE_KVM_IRQFD
3194 case KVM_CAP_IRQFD:
3195 case KVM_CAP_IRQFD_RESAMPLE:
3196 #endif
3197 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3198 case KVM_CAP_CHECK_EXTENSION_VM:
3199 return 1;
3200 #ifdef CONFIG_KVM_MMIO
3201 case KVM_CAP_COALESCED_MMIO:
3202 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3203 #endif
3204 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3205 case KVM_CAP_IRQ_ROUTING:
3206 return KVM_MAX_IRQ_ROUTES;
3207 #endif
3208 #if KVM_ADDRESS_SPACE_NUM > 1
3209 case KVM_CAP_MULTI_ADDRESS_SPACE:
3210 return KVM_ADDRESS_SPACE_NUM;
3211 #endif
3212 default:
3213 break;
3214 }
3215 return kvm_vm_ioctl_check_extension(kvm, arg);
3216 }
3217
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3218 static long kvm_vm_ioctl(struct file *filp,
3219 unsigned int ioctl, unsigned long arg)
3220 {
3221 struct kvm *kvm = filp->private_data;
3222 void __user *argp = (void __user *)arg;
3223 int r;
3224
3225 if (kvm->mm != current->mm)
3226 return -EIO;
3227 switch (ioctl) {
3228 case KVM_CREATE_VCPU:
3229 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3230 break;
3231 case KVM_SET_USER_MEMORY_REGION: {
3232 struct kvm_userspace_memory_region kvm_userspace_mem;
3233
3234 r = -EFAULT;
3235 if (copy_from_user(&kvm_userspace_mem, argp,
3236 sizeof(kvm_userspace_mem)))
3237 goto out;
3238
3239 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3240 break;
3241 }
3242 case KVM_GET_DIRTY_LOG: {
3243 struct kvm_dirty_log log;
3244
3245 r = -EFAULT;
3246 if (copy_from_user(&log, argp, sizeof(log)))
3247 goto out;
3248 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3249 break;
3250 }
3251 #ifdef CONFIG_KVM_MMIO
3252 case KVM_REGISTER_COALESCED_MMIO: {
3253 struct kvm_coalesced_mmio_zone zone;
3254
3255 r = -EFAULT;
3256 if (copy_from_user(&zone, argp, sizeof(zone)))
3257 goto out;
3258 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3259 break;
3260 }
3261 case KVM_UNREGISTER_COALESCED_MMIO: {
3262 struct kvm_coalesced_mmio_zone zone;
3263
3264 r = -EFAULT;
3265 if (copy_from_user(&zone, argp, sizeof(zone)))
3266 goto out;
3267 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3268 break;
3269 }
3270 #endif
3271 case KVM_IRQFD: {
3272 struct kvm_irqfd data;
3273
3274 r = -EFAULT;
3275 if (copy_from_user(&data, argp, sizeof(data)))
3276 goto out;
3277 r = kvm_irqfd(kvm, &data);
3278 break;
3279 }
3280 case KVM_IOEVENTFD: {
3281 struct kvm_ioeventfd data;
3282
3283 r = -EFAULT;
3284 if (copy_from_user(&data, argp, sizeof(data)))
3285 goto out;
3286 r = kvm_ioeventfd(kvm, &data);
3287 break;
3288 }
3289 #ifdef CONFIG_HAVE_KVM_MSI
3290 case KVM_SIGNAL_MSI: {
3291 struct kvm_msi msi;
3292
3293 r = -EFAULT;
3294 if (copy_from_user(&msi, argp, sizeof(msi)))
3295 goto out;
3296 r = kvm_send_userspace_msi(kvm, &msi);
3297 break;
3298 }
3299 #endif
3300 #ifdef __KVM_HAVE_IRQ_LINE
3301 case KVM_IRQ_LINE_STATUS:
3302 case KVM_IRQ_LINE: {
3303 struct kvm_irq_level irq_event;
3304
3305 r = -EFAULT;
3306 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3307 goto out;
3308
3309 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3310 ioctl == KVM_IRQ_LINE_STATUS);
3311 if (r)
3312 goto out;
3313
3314 r = -EFAULT;
3315 if (ioctl == KVM_IRQ_LINE_STATUS) {
3316 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3317 goto out;
3318 }
3319
3320 r = 0;
3321 break;
3322 }
3323 #endif
3324 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3325 case KVM_SET_GSI_ROUTING: {
3326 struct kvm_irq_routing routing;
3327 struct kvm_irq_routing __user *urouting;
3328 struct kvm_irq_routing_entry *entries = NULL;
3329
3330 r = -EFAULT;
3331 if (copy_from_user(&routing, argp, sizeof(routing)))
3332 goto out;
3333 r = -EINVAL;
3334 if (!kvm_arch_can_set_irq_routing(kvm))
3335 goto out;
3336 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3337 goto out;
3338 if (routing.flags)
3339 goto out;
3340 if (routing.nr) {
3341 r = -ENOMEM;
3342 entries = vmalloc(array_size(sizeof(*entries),
3343 routing.nr));
3344 if (!entries)
3345 goto out;
3346 r = -EFAULT;
3347 urouting = argp;
3348 if (copy_from_user(entries, urouting->entries,
3349 routing.nr * sizeof(*entries)))
3350 goto out_free_irq_routing;
3351 }
3352 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3353 routing.flags);
3354 out_free_irq_routing:
3355 vfree(entries);
3356 break;
3357 }
3358 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3359 case KVM_CREATE_DEVICE: {
3360 struct kvm_create_device cd;
3361
3362 r = -EFAULT;
3363 if (copy_from_user(&cd, argp, sizeof(cd)))
3364 goto out;
3365
3366 r = kvm_ioctl_create_device(kvm, &cd);
3367 if (r)
3368 goto out;
3369
3370 r = -EFAULT;
3371 if (copy_to_user(argp, &cd, sizeof(cd)))
3372 goto out;
3373
3374 r = 0;
3375 break;
3376 }
3377 case KVM_CHECK_EXTENSION:
3378 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3379 break;
3380 default:
3381 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3382 }
3383 out:
3384 return r;
3385 }
3386
3387 #ifdef CONFIG_KVM_COMPAT
3388 struct compat_kvm_dirty_log {
3389 __u32 slot;
3390 __u32 padding1;
3391 union {
3392 compat_uptr_t dirty_bitmap; /* one bit per page */
3393 __u64 padding2;
3394 };
3395 };
3396
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3397 static long kvm_vm_compat_ioctl(struct file *filp,
3398 unsigned int ioctl, unsigned long arg)
3399 {
3400 struct kvm *kvm = filp->private_data;
3401 int r;
3402
3403 if (kvm->mm != current->mm)
3404 return -EIO;
3405 switch (ioctl) {
3406 case KVM_GET_DIRTY_LOG: {
3407 struct compat_kvm_dirty_log compat_log;
3408 struct kvm_dirty_log log;
3409
3410 if (copy_from_user(&compat_log, (void __user *)arg,
3411 sizeof(compat_log)))
3412 return -EFAULT;
3413 log.slot = compat_log.slot;
3414 log.padding1 = compat_log.padding1;
3415 log.padding2 = compat_log.padding2;
3416 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3417
3418 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3419 break;
3420 }
3421 default:
3422 r = kvm_vm_ioctl(filp, ioctl, arg);
3423 }
3424 return r;
3425 }
3426 #endif
3427
3428 static struct file_operations kvm_vm_fops = {
3429 .release = kvm_vm_release,
3430 .unlocked_ioctl = kvm_vm_ioctl,
3431 .llseek = noop_llseek,
3432 KVM_COMPAT(kvm_vm_compat_ioctl),
3433 };
3434
kvm_dev_ioctl_create_vm(unsigned long type)3435 static int kvm_dev_ioctl_create_vm(unsigned long type)
3436 {
3437 int r;
3438 struct kvm *kvm;
3439 struct file *file;
3440
3441 kvm = kvm_create_vm(type);
3442 if (IS_ERR(kvm))
3443 return PTR_ERR(kvm);
3444 #ifdef CONFIG_KVM_MMIO
3445 r = kvm_coalesced_mmio_init(kvm);
3446 if (r < 0)
3447 goto put_kvm;
3448 #endif
3449 r = get_unused_fd_flags(O_CLOEXEC);
3450 if (r < 0)
3451 goto put_kvm;
3452
3453 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3454 if (IS_ERR(file)) {
3455 put_unused_fd(r);
3456 r = PTR_ERR(file);
3457 goto put_kvm;
3458 }
3459
3460 /*
3461 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3462 * already set, with ->release() being kvm_vm_release(). In error
3463 * cases it will be called by the final fput(file) and will take
3464 * care of doing kvm_put_kvm(kvm).
3465 */
3466 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3467 put_unused_fd(r);
3468 fput(file);
3469 return -ENOMEM;
3470 }
3471 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3472
3473 fd_install(r, file);
3474 return r;
3475
3476 put_kvm:
3477 kvm_put_kvm(kvm);
3478 return r;
3479 }
3480
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3481 static long kvm_dev_ioctl(struct file *filp,
3482 unsigned int ioctl, unsigned long arg)
3483 {
3484 long r = -EINVAL;
3485
3486 switch (ioctl) {
3487 case KVM_GET_API_VERSION:
3488 if (arg)
3489 goto out;
3490 r = KVM_API_VERSION;
3491 break;
3492 case KVM_CREATE_VM:
3493 r = kvm_dev_ioctl_create_vm(arg);
3494 break;
3495 case KVM_CHECK_EXTENSION:
3496 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3497 break;
3498 case KVM_GET_VCPU_MMAP_SIZE:
3499 if (arg)
3500 goto out;
3501 r = PAGE_SIZE; /* struct kvm_run */
3502 #ifdef CONFIG_X86
3503 r += PAGE_SIZE; /* pio data page */
3504 #endif
3505 #ifdef CONFIG_KVM_MMIO
3506 r += PAGE_SIZE; /* coalesced mmio ring page */
3507 #endif
3508 break;
3509 case KVM_TRACE_ENABLE:
3510 case KVM_TRACE_PAUSE:
3511 case KVM_TRACE_DISABLE:
3512 r = -EOPNOTSUPP;
3513 break;
3514 default:
3515 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3516 }
3517 out:
3518 return r;
3519 }
3520
3521 static struct file_operations kvm_chardev_ops = {
3522 .unlocked_ioctl = kvm_dev_ioctl,
3523 .llseek = noop_llseek,
3524 KVM_COMPAT(kvm_dev_ioctl),
3525 };
3526
3527 static struct miscdevice kvm_dev = {
3528 KVM_MINOR,
3529 "kvm",
3530 &kvm_chardev_ops,
3531 };
3532
hardware_enable_nolock(void * junk)3533 static void hardware_enable_nolock(void *junk)
3534 {
3535 int cpu = raw_smp_processor_id();
3536 int r;
3537
3538 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3539 return;
3540
3541 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3542
3543 r = kvm_arch_hardware_enable();
3544
3545 if (r) {
3546 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3547 atomic_inc(&hardware_enable_failed);
3548 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3549 }
3550 }
3551
kvm_starting_cpu(unsigned int cpu)3552 static int kvm_starting_cpu(unsigned int cpu)
3553 {
3554 raw_spin_lock(&kvm_count_lock);
3555 if (kvm_usage_count)
3556 hardware_enable_nolock(NULL);
3557 raw_spin_unlock(&kvm_count_lock);
3558 return 0;
3559 }
3560
hardware_disable_nolock(void * junk)3561 static void hardware_disable_nolock(void *junk)
3562 {
3563 int cpu = raw_smp_processor_id();
3564
3565 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3566 return;
3567 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3568 kvm_arch_hardware_disable();
3569 }
3570
kvm_dying_cpu(unsigned int cpu)3571 static int kvm_dying_cpu(unsigned int cpu)
3572 {
3573 raw_spin_lock(&kvm_count_lock);
3574 if (kvm_usage_count)
3575 hardware_disable_nolock(NULL);
3576 raw_spin_unlock(&kvm_count_lock);
3577 return 0;
3578 }
3579
hardware_disable_all_nolock(void)3580 static void hardware_disable_all_nolock(void)
3581 {
3582 BUG_ON(!kvm_usage_count);
3583
3584 kvm_usage_count--;
3585 if (!kvm_usage_count)
3586 on_each_cpu(hardware_disable_nolock, NULL, 1);
3587 }
3588
hardware_disable_all(void)3589 static void hardware_disable_all(void)
3590 {
3591 raw_spin_lock(&kvm_count_lock);
3592 hardware_disable_all_nolock();
3593 raw_spin_unlock(&kvm_count_lock);
3594 }
3595
hardware_enable_all(void)3596 static int hardware_enable_all(void)
3597 {
3598 int r = 0;
3599
3600 raw_spin_lock(&kvm_count_lock);
3601
3602 kvm_usage_count++;
3603 if (kvm_usage_count == 1) {
3604 atomic_set(&hardware_enable_failed, 0);
3605 on_each_cpu(hardware_enable_nolock, NULL, 1);
3606
3607 if (atomic_read(&hardware_enable_failed)) {
3608 hardware_disable_all_nolock();
3609 r = -EBUSY;
3610 }
3611 }
3612
3613 raw_spin_unlock(&kvm_count_lock);
3614
3615 return r;
3616 }
3617
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3618 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3619 void *v)
3620 {
3621 /*
3622 * Some (well, at least mine) BIOSes hang on reboot if
3623 * in vmx root mode.
3624 *
3625 * And Intel TXT required VMX off for all cpu when system shutdown.
3626 */
3627 pr_info("kvm: exiting hardware virtualization\n");
3628 kvm_rebooting = true;
3629 on_each_cpu(hardware_disable_nolock, NULL, 1);
3630 return NOTIFY_OK;
3631 }
3632
3633 static struct notifier_block kvm_reboot_notifier = {
3634 .notifier_call = kvm_reboot,
3635 .priority = 0,
3636 };
3637
kvm_io_bus_destroy(struct kvm_io_bus * bus)3638 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3639 {
3640 int i;
3641
3642 for (i = 0; i < bus->dev_count; i++) {
3643 struct kvm_io_device *pos = bus->range[i].dev;
3644
3645 kvm_iodevice_destructor(pos);
3646 }
3647 kfree(bus);
3648 }
3649
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3650 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3651 const struct kvm_io_range *r2)
3652 {
3653 gpa_t addr1 = r1->addr;
3654 gpa_t addr2 = r2->addr;
3655
3656 if (addr1 < addr2)
3657 return -1;
3658
3659 /* If r2->len == 0, match the exact address. If r2->len != 0,
3660 * accept any overlapping write. Any order is acceptable for
3661 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3662 * we process all of them.
3663 */
3664 if (r2->len) {
3665 addr1 += r1->len;
3666 addr2 += r2->len;
3667 }
3668
3669 if (addr1 > addr2)
3670 return 1;
3671
3672 return 0;
3673 }
3674
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3675 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3676 {
3677 return kvm_io_bus_cmp(p1, p2);
3678 }
3679
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3680 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3681 gpa_t addr, int len)
3682 {
3683 struct kvm_io_range *range, key;
3684 int off;
3685
3686 key = (struct kvm_io_range) {
3687 .addr = addr,
3688 .len = len,
3689 };
3690
3691 range = bsearch(&key, bus->range, bus->dev_count,
3692 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3693 if (range == NULL)
3694 return -ENOENT;
3695
3696 off = range - bus->range;
3697
3698 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3699 off--;
3700
3701 return off;
3702 }
3703
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3704 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3705 struct kvm_io_range *range, const void *val)
3706 {
3707 int idx;
3708
3709 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3710 if (idx < 0)
3711 return -EOPNOTSUPP;
3712
3713 while (idx < bus->dev_count &&
3714 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3715 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3716 range->len, val))
3717 return idx;
3718 idx++;
3719 }
3720
3721 return -EOPNOTSUPP;
3722 }
3723
3724 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3725 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3726 int len, const void *val)
3727 {
3728 struct kvm_io_bus *bus;
3729 struct kvm_io_range range;
3730 int r;
3731
3732 range = (struct kvm_io_range) {
3733 .addr = addr,
3734 .len = len,
3735 };
3736
3737 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3738 if (!bus)
3739 return -ENOMEM;
3740 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3741 return r < 0 ? r : 0;
3742 }
3743
3744 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3745 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3746 gpa_t addr, int len, const void *val, long cookie)
3747 {
3748 struct kvm_io_bus *bus;
3749 struct kvm_io_range range;
3750
3751 range = (struct kvm_io_range) {
3752 .addr = addr,
3753 .len = len,
3754 };
3755
3756 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3757 if (!bus)
3758 return -ENOMEM;
3759
3760 /* First try the device referenced by cookie. */
3761 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3762 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3763 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3764 val))
3765 return cookie;
3766
3767 /*
3768 * cookie contained garbage; fall back to search and return the
3769 * correct cookie value.
3770 */
3771 return __kvm_io_bus_write(vcpu, bus, &range, val);
3772 }
3773
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3774 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3775 struct kvm_io_range *range, void *val)
3776 {
3777 int idx;
3778
3779 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3780 if (idx < 0)
3781 return -EOPNOTSUPP;
3782
3783 while (idx < bus->dev_count &&
3784 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3785 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3786 range->len, val))
3787 return idx;
3788 idx++;
3789 }
3790
3791 return -EOPNOTSUPP;
3792 }
3793 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3794
3795 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3796 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3797 int len, void *val)
3798 {
3799 struct kvm_io_bus *bus;
3800 struct kvm_io_range range;
3801 int r;
3802
3803 range = (struct kvm_io_range) {
3804 .addr = addr,
3805 .len = len,
3806 };
3807
3808 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3809 if (!bus)
3810 return -ENOMEM;
3811 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3812 return r < 0 ? r : 0;
3813 }
3814
3815
3816 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3817 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3818 int len, struct kvm_io_device *dev)
3819 {
3820 int i;
3821 struct kvm_io_bus *new_bus, *bus;
3822 struct kvm_io_range range;
3823
3824 bus = kvm_get_bus(kvm, bus_idx);
3825 if (!bus)
3826 return -ENOMEM;
3827
3828 /* exclude ioeventfd which is limited by maximum fd */
3829 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3830 return -ENOSPC;
3831
3832 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3833 sizeof(struct kvm_io_range)), GFP_KERNEL);
3834 if (!new_bus)
3835 return -ENOMEM;
3836
3837 range = (struct kvm_io_range) {
3838 .addr = addr,
3839 .len = len,
3840 .dev = dev,
3841 };
3842
3843 for (i = 0; i < bus->dev_count; i++)
3844 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3845 break;
3846
3847 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3848 new_bus->dev_count++;
3849 new_bus->range[i] = range;
3850 memcpy(new_bus->range + i + 1, bus->range + i,
3851 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3852 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3853 synchronize_srcu_expedited(&kvm->srcu);
3854 kfree(bus);
3855
3856 return 0;
3857 }
3858
3859 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3860 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3861 struct kvm_io_device *dev)
3862 {
3863 int i, j;
3864 struct kvm_io_bus *new_bus, *bus;
3865
3866 bus = kvm_get_bus(kvm, bus_idx);
3867 if (!bus)
3868 return;
3869
3870 for (i = 0; i < bus->dev_count; i++)
3871 if (bus->range[i].dev == dev) {
3872 break;
3873 }
3874
3875 if (i == bus->dev_count)
3876 return;
3877
3878 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3879 sizeof(struct kvm_io_range)), GFP_KERNEL);
3880 if (new_bus) {
3881 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3882 new_bus->dev_count--;
3883 memcpy(new_bus->range + i, bus->range + i + 1,
3884 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3885 } else {
3886 pr_err("kvm: failed to shrink bus, removing it completely\n");
3887 for (j = 0; j < bus->dev_count; j++) {
3888 if (j == i)
3889 continue;
3890 kvm_iodevice_destructor(bus->range[j].dev);
3891 }
3892 }
3893
3894 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3895 synchronize_srcu_expedited(&kvm->srcu);
3896 kfree(bus);
3897 return;
3898 }
3899
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)3900 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3901 gpa_t addr)
3902 {
3903 struct kvm_io_bus *bus;
3904 int dev_idx, srcu_idx;
3905 struct kvm_io_device *iodev = NULL;
3906
3907 srcu_idx = srcu_read_lock(&kvm->srcu);
3908
3909 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3910 if (!bus)
3911 goto out_unlock;
3912
3913 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3914 if (dev_idx < 0)
3915 goto out_unlock;
3916
3917 iodev = bus->range[dev_idx].dev;
3918
3919 out_unlock:
3920 srcu_read_unlock(&kvm->srcu, srcu_idx);
3921
3922 return iodev;
3923 }
3924 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3925
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)3926 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3927 int (*get)(void *, u64 *), int (*set)(void *, u64),
3928 const char *fmt)
3929 {
3930 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3931 inode->i_private;
3932
3933 /* The debugfs files are a reference to the kvm struct which
3934 * is still valid when kvm_destroy_vm is called.
3935 * To avoid the race between open and the removal of the debugfs
3936 * directory we test against the users count.
3937 */
3938 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3939 return -ENOENT;
3940
3941 if (simple_attr_open(inode, file, get,
3942 stat_data->mode & S_IWUGO ? set : NULL,
3943 fmt)) {
3944 kvm_put_kvm(stat_data->kvm);
3945 return -ENOMEM;
3946 }
3947
3948 return 0;
3949 }
3950
kvm_debugfs_release(struct inode * inode,struct file * file)3951 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3952 {
3953 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3954 inode->i_private;
3955
3956 simple_attr_release(inode, file);
3957 kvm_put_kvm(stat_data->kvm);
3958
3959 return 0;
3960 }
3961
vm_stat_get_per_vm(void * data,u64 * val)3962 static int vm_stat_get_per_vm(void *data, u64 *val)
3963 {
3964 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3965
3966 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3967
3968 return 0;
3969 }
3970
vm_stat_clear_per_vm(void * data,u64 val)3971 static int vm_stat_clear_per_vm(void *data, u64 val)
3972 {
3973 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3974
3975 if (val)
3976 return -EINVAL;
3977
3978 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3979
3980 return 0;
3981 }
3982
vm_stat_get_per_vm_open(struct inode * inode,struct file * file)3983 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3984 {
3985 __simple_attr_check_format("%llu\n", 0ull);
3986 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3987 vm_stat_clear_per_vm, "%llu\n");
3988 }
3989
3990 static const struct file_operations vm_stat_get_per_vm_fops = {
3991 .owner = THIS_MODULE,
3992 .open = vm_stat_get_per_vm_open,
3993 .release = kvm_debugfs_release,
3994 .read = simple_attr_read,
3995 .write = simple_attr_write,
3996 .llseek = no_llseek,
3997 };
3998
vcpu_stat_get_per_vm(void * data,u64 * val)3999 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4000 {
4001 int i;
4002 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4003 struct kvm_vcpu *vcpu;
4004
4005 *val = 0;
4006
4007 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4008 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4009
4010 return 0;
4011 }
4012
vcpu_stat_clear_per_vm(void * data,u64 val)4013 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4014 {
4015 int i;
4016 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4017 struct kvm_vcpu *vcpu;
4018
4019 if (val)
4020 return -EINVAL;
4021
4022 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4023 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4024
4025 return 0;
4026 }
4027
vcpu_stat_get_per_vm_open(struct inode * inode,struct file * file)4028 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4029 {
4030 __simple_attr_check_format("%llu\n", 0ull);
4031 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4032 vcpu_stat_clear_per_vm, "%llu\n");
4033 }
4034
4035 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4036 .owner = THIS_MODULE,
4037 .open = vcpu_stat_get_per_vm_open,
4038 .release = kvm_debugfs_release,
4039 .read = simple_attr_read,
4040 .write = simple_attr_write,
4041 .llseek = no_llseek,
4042 };
4043
4044 static const struct file_operations *stat_fops_per_vm[] = {
4045 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4046 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4047 };
4048
vm_stat_get(void * _offset,u64 * val)4049 static int vm_stat_get(void *_offset, u64 *val)
4050 {
4051 unsigned offset = (long)_offset;
4052 struct kvm *kvm;
4053 struct kvm_stat_data stat_tmp = {.offset = offset};
4054 u64 tmp_val;
4055
4056 *val = 0;
4057 mutex_lock(&kvm_lock);
4058 list_for_each_entry(kvm, &vm_list, vm_list) {
4059 stat_tmp.kvm = kvm;
4060 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4061 *val += tmp_val;
4062 }
4063 mutex_unlock(&kvm_lock);
4064 return 0;
4065 }
4066
vm_stat_clear(void * _offset,u64 val)4067 static int vm_stat_clear(void *_offset, u64 val)
4068 {
4069 unsigned offset = (long)_offset;
4070 struct kvm *kvm;
4071 struct kvm_stat_data stat_tmp = {.offset = offset};
4072
4073 if (val)
4074 return -EINVAL;
4075
4076 mutex_lock(&kvm_lock);
4077 list_for_each_entry(kvm, &vm_list, vm_list) {
4078 stat_tmp.kvm = kvm;
4079 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4080 }
4081 mutex_unlock(&kvm_lock);
4082
4083 return 0;
4084 }
4085
4086 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4087
vcpu_stat_get(void * _offset,u64 * val)4088 static int vcpu_stat_get(void *_offset, u64 *val)
4089 {
4090 unsigned offset = (long)_offset;
4091 struct kvm *kvm;
4092 struct kvm_stat_data stat_tmp = {.offset = offset};
4093 u64 tmp_val;
4094
4095 *val = 0;
4096 mutex_lock(&kvm_lock);
4097 list_for_each_entry(kvm, &vm_list, vm_list) {
4098 stat_tmp.kvm = kvm;
4099 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4100 *val += tmp_val;
4101 }
4102 mutex_unlock(&kvm_lock);
4103 return 0;
4104 }
4105
vcpu_stat_clear(void * _offset,u64 val)4106 static int vcpu_stat_clear(void *_offset, u64 val)
4107 {
4108 unsigned offset = (long)_offset;
4109 struct kvm *kvm;
4110 struct kvm_stat_data stat_tmp = {.offset = offset};
4111
4112 if (val)
4113 return -EINVAL;
4114
4115 mutex_lock(&kvm_lock);
4116 list_for_each_entry(kvm, &vm_list, vm_list) {
4117 stat_tmp.kvm = kvm;
4118 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4119 }
4120 mutex_unlock(&kvm_lock);
4121
4122 return 0;
4123 }
4124
4125 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4126 "%llu\n");
4127
4128 static const struct file_operations *stat_fops[] = {
4129 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4130 [KVM_STAT_VM] = &vm_stat_fops,
4131 };
4132
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4133 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4134 {
4135 struct kobj_uevent_env *env;
4136 unsigned long long created, active;
4137
4138 if (!kvm_dev.this_device || !kvm)
4139 return;
4140
4141 mutex_lock(&kvm_lock);
4142 if (type == KVM_EVENT_CREATE_VM) {
4143 kvm_createvm_count++;
4144 kvm_active_vms++;
4145 } else if (type == KVM_EVENT_DESTROY_VM) {
4146 kvm_active_vms--;
4147 }
4148 created = kvm_createvm_count;
4149 active = kvm_active_vms;
4150 mutex_unlock(&kvm_lock);
4151
4152 env = kzalloc(sizeof(*env), GFP_KERNEL);
4153 if (!env)
4154 return;
4155
4156 add_uevent_var(env, "CREATED=%llu", created);
4157 add_uevent_var(env, "COUNT=%llu", active);
4158
4159 if (type == KVM_EVENT_CREATE_VM) {
4160 add_uevent_var(env, "EVENT=create");
4161 kvm->userspace_pid = task_pid_nr(current);
4162 } else if (type == KVM_EVENT_DESTROY_VM) {
4163 add_uevent_var(env, "EVENT=destroy");
4164 }
4165 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4166
4167 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4168 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4169
4170 if (p) {
4171 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4172 if (!IS_ERR(tmp))
4173 add_uevent_var(env, "STATS_PATH=%s", tmp);
4174 kfree(p);
4175 }
4176 }
4177 /* no need for checks, since we are adding at most only 5 keys */
4178 env->envp[env->envp_idx++] = NULL;
4179 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4180 kfree(env);
4181 }
4182
kvm_init_debug(void)4183 static void kvm_init_debug(void)
4184 {
4185 struct kvm_stats_debugfs_item *p;
4186
4187 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4188
4189 kvm_debugfs_num_entries = 0;
4190 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4191 int mode = p->mode ? p->mode : 0644;
4192 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4193 (void *)(long)p->offset,
4194 stat_fops[p->kind]);
4195 }
4196 }
4197
kvm_suspend(void)4198 static int kvm_suspend(void)
4199 {
4200 if (kvm_usage_count)
4201 hardware_disable_nolock(NULL);
4202 return 0;
4203 }
4204
kvm_resume(void)4205 static void kvm_resume(void)
4206 {
4207 if (kvm_usage_count) {
4208 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4209 hardware_enable_nolock(NULL);
4210 }
4211 }
4212
4213 static struct syscore_ops kvm_syscore_ops = {
4214 .suspend = kvm_suspend,
4215 .resume = kvm_resume,
4216 };
4217
4218 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4219 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4220 {
4221 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4222 }
4223
kvm_sched_in(struct preempt_notifier * pn,int cpu)4224 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4225 {
4226 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4227
4228 if (vcpu->preempted)
4229 vcpu->preempted = false;
4230
4231 kvm_arch_sched_in(vcpu, cpu);
4232
4233 kvm_arch_vcpu_load(vcpu, cpu);
4234 }
4235
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4236 static void kvm_sched_out(struct preempt_notifier *pn,
4237 struct task_struct *next)
4238 {
4239 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4240
4241 if (current->state == TASK_RUNNING)
4242 vcpu->preempted = true;
4243 kvm_arch_vcpu_put(vcpu);
4244 }
4245
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4246 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4247 struct module *module)
4248 {
4249 int r;
4250 int cpu;
4251
4252 r = kvm_arch_init(opaque);
4253 if (r)
4254 goto out_fail;
4255
4256 /*
4257 * kvm_arch_init makes sure there's at most one caller
4258 * for architectures that support multiple implementations,
4259 * like intel and amd on x86.
4260 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4261 * conflicts in case kvm is already setup for another implementation.
4262 */
4263 r = kvm_irqfd_init();
4264 if (r)
4265 goto out_irqfd;
4266
4267 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4268 r = -ENOMEM;
4269 goto out_free_0;
4270 }
4271
4272 r = kvm_arch_hardware_setup();
4273 if (r < 0)
4274 goto out_free_0a;
4275
4276 for_each_online_cpu(cpu) {
4277 smp_call_function_single(cpu,
4278 kvm_arch_check_processor_compat,
4279 &r, 1);
4280 if (r < 0)
4281 goto out_free_1;
4282 }
4283
4284 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4285 kvm_starting_cpu, kvm_dying_cpu);
4286 if (r)
4287 goto out_free_2;
4288 register_reboot_notifier(&kvm_reboot_notifier);
4289
4290 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4291 if (!vcpu_align)
4292 vcpu_align = __alignof__(struct kvm_vcpu);
4293 kvm_vcpu_cache =
4294 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4295 SLAB_ACCOUNT,
4296 offsetof(struct kvm_vcpu, arch),
4297 sizeof_field(struct kvm_vcpu, arch),
4298 NULL);
4299 if (!kvm_vcpu_cache) {
4300 r = -ENOMEM;
4301 goto out_free_3;
4302 }
4303
4304 r = kvm_async_pf_init();
4305 if (r)
4306 goto out_free;
4307
4308 kvm_chardev_ops.owner = module;
4309 kvm_vm_fops.owner = module;
4310 kvm_vcpu_fops.owner = module;
4311
4312 r = misc_register(&kvm_dev);
4313 if (r) {
4314 pr_err("kvm: misc device register failed\n");
4315 goto out_unreg;
4316 }
4317
4318 register_syscore_ops(&kvm_syscore_ops);
4319
4320 kvm_preempt_ops.sched_in = kvm_sched_in;
4321 kvm_preempt_ops.sched_out = kvm_sched_out;
4322
4323 kvm_init_debug();
4324
4325 r = kvm_vfio_ops_init();
4326 WARN_ON(r);
4327
4328 return 0;
4329
4330 out_unreg:
4331 kvm_async_pf_deinit();
4332 out_free:
4333 kmem_cache_destroy(kvm_vcpu_cache);
4334 out_free_3:
4335 unregister_reboot_notifier(&kvm_reboot_notifier);
4336 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4337 out_free_2:
4338 out_free_1:
4339 kvm_arch_hardware_unsetup();
4340 out_free_0a:
4341 free_cpumask_var(cpus_hardware_enabled);
4342 out_free_0:
4343 kvm_irqfd_exit();
4344 out_irqfd:
4345 kvm_arch_exit();
4346 out_fail:
4347 return r;
4348 }
4349 EXPORT_SYMBOL_GPL(kvm_init);
4350
kvm_exit(void)4351 void kvm_exit(void)
4352 {
4353 debugfs_remove_recursive(kvm_debugfs_dir);
4354 misc_deregister(&kvm_dev);
4355 kmem_cache_destroy(kvm_vcpu_cache);
4356 kvm_async_pf_deinit();
4357 unregister_syscore_ops(&kvm_syscore_ops);
4358 unregister_reboot_notifier(&kvm_reboot_notifier);
4359 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4360 on_each_cpu(hardware_disable_nolock, NULL, 1);
4361 kvm_arch_hardware_unsetup();
4362 kvm_arch_exit();
4363 kvm_irqfd_exit();
4364 free_cpumask_var(cpus_hardware_enabled);
4365 kvm_vfio_ops_exit();
4366 }
4367 EXPORT_SYMBOL_GPL(kvm_exit);
4368
4369 struct kvm_vm_worker_thread_context {
4370 struct kvm *kvm;
4371 struct task_struct *parent;
4372 struct completion init_done;
4373 kvm_vm_thread_fn_t thread_fn;
4374 uintptr_t data;
4375 int err;
4376 };
4377
kvm_vm_worker_thread(void * context)4378 static int kvm_vm_worker_thread(void *context)
4379 {
4380 /*
4381 * The init_context is allocated on the stack of the parent thread, so
4382 * we have to locally copy anything that is needed beyond initialization
4383 */
4384 struct kvm_vm_worker_thread_context *init_context = context;
4385 struct kvm *kvm = init_context->kvm;
4386 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4387 uintptr_t data = init_context->data;
4388 int err;
4389
4390 err = kthread_park(current);
4391 /* kthread_park(current) is never supposed to return an error */
4392 WARN_ON(err != 0);
4393 if (err)
4394 goto init_complete;
4395
4396 err = cgroup_attach_task_all(init_context->parent, current);
4397 if (err) {
4398 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4399 __func__, err);
4400 goto init_complete;
4401 }
4402
4403 set_user_nice(current, task_nice(init_context->parent));
4404
4405 init_complete:
4406 init_context->err = err;
4407 complete(&init_context->init_done);
4408 init_context = NULL;
4409
4410 if (err)
4411 return err;
4412
4413 /* Wait to be woken up by the spawner before proceeding. */
4414 kthread_parkme();
4415
4416 if (!kthread_should_stop())
4417 err = thread_fn(kvm, data);
4418
4419 return err;
4420 }
4421
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)4422 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4423 uintptr_t data, const char *name,
4424 struct task_struct **thread_ptr)
4425 {
4426 struct kvm_vm_worker_thread_context init_context = {};
4427 struct task_struct *thread;
4428
4429 *thread_ptr = NULL;
4430 init_context.kvm = kvm;
4431 init_context.parent = current;
4432 init_context.thread_fn = thread_fn;
4433 init_context.data = data;
4434 init_completion(&init_context.init_done);
4435
4436 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4437 "%s-%d", name, task_pid_nr(current));
4438 if (IS_ERR(thread))
4439 return PTR_ERR(thread);
4440
4441 /* kthread_run is never supposed to return NULL */
4442 WARN_ON(thread == NULL);
4443
4444 wait_for_completion(&init_context.init_done);
4445
4446 if (!init_context.err)
4447 *thread_ptr = thread;
4448
4449 return init_context.err;
4450 }
4451