• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
96 
97 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
98 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
99 
100 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
101                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
102 
103 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
104 static void process_nmi(struct kvm_vcpu *vcpu);
105 static void enter_smm(struct kvm_vcpu *vcpu);
106 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
107 static void store_regs(struct kvm_vcpu *vcpu);
108 static int sync_regs(struct kvm_vcpu *vcpu);
109 
110 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
111 EXPORT_SYMBOL_GPL(kvm_x86_ops);
112 
113 static bool __read_mostly ignore_msrs = 0;
114 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
115 
116 static bool __read_mostly report_ignored_msrs = true;
117 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 unsigned int min_timer_period_us = 200;
120 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
121 
122 static bool __read_mostly kvmclock_periodic_sync = true;
123 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
124 
125 bool __read_mostly kvm_has_tsc_control;
126 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
127 u32  __read_mostly kvm_max_guest_tsc_khz;
128 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
129 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
130 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
131 u64  __read_mostly kvm_max_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
133 u64 __read_mostly kvm_default_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
135 
136 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
137 static u32 __read_mostly tsc_tolerance_ppm = 250;
138 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
139 
140 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
141 unsigned int __read_mostly lapic_timer_advance_ns = 0;
142 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
143 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
144 
145 static bool __read_mostly vector_hashing = true;
146 module_param(vector_hashing, bool, S_IRUGO);
147 
148 bool __read_mostly enable_vmware_backdoor = false;
149 module_param(enable_vmware_backdoor, bool, S_IRUGO);
150 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
151 
152 static bool __read_mostly force_emulation_prefix = false;
153 module_param(force_emulation_prefix, bool, S_IRUGO);
154 
155 #define KVM_NR_SHARED_MSRS 16
156 
157 struct kvm_shared_msrs_global {
158 	int nr;
159 	u32 msrs[KVM_NR_SHARED_MSRS];
160 };
161 
162 struct kvm_shared_msrs {
163 	struct user_return_notifier urn;
164 	bool registered;
165 	struct kvm_shared_msr_values {
166 		u64 host;
167 		u64 curr;
168 	} values[KVM_NR_SHARED_MSRS];
169 };
170 
171 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
172 static struct kvm_shared_msrs __percpu *shared_msrs;
173 
174 struct kvm_stats_debugfs_item debugfs_entries[] = {
175 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
176 	{ "pf_guest", VCPU_STAT(pf_guest) },
177 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
178 	{ "invlpg", VCPU_STAT(invlpg) },
179 	{ "exits", VCPU_STAT(exits) },
180 	{ "io_exits", VCPU_STAT(io_exits) },
181 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
182 	{ "signal_exits", VCPU_STAT(signal_exits) },
183 	{ "irq_window", VCPU_STAT(irq_window_exits) },
184 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
185 	{ "halt_exits", VCPU_STAT(halt_exits) },
186 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
187 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
188 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
189 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
190 	{ "hypercalls", VCPU_STAT(hypercalls) },
191 	{ "request_irq", VCPU_STAT(request_irq_exits) },
192 	{ "irq_exits", VCPU_STAT(irq_exits) },
193 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
194 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
195 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
196 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
197 	{ "irq_injections", VCPU_STAT(irq_injections) },
198 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
199 	{ "req_event", VCPU_STAT(req_event) },
200 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
201 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
202 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
203 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
204 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
205 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
206 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
207 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
208 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
209 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
210 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
211 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
212 	{ "max_mmu_page_hash_collisions",
213 		VM_STAT(max_mmu_page_hash_collisions) },
214 	{ NULL }
215 };
216 
217 u64 __read_mostly host_xcr0;
218 
219 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
220 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)221 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
222 {
223 	int i;
224 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
225 		vcpu->arch.apf.gfns[i] = ~0;
226 }
227 
kvm_on_user_return(struct user_return_notifier * urn)228 static void kvm_on_user_return(struct user_return_notifier *urn)
229 {
230 	unsigned slot;
231 	struct kvm_shared_msrs *locals
232 		= container_of(urn, struct kvm_shared_msrs, urn);
233 	struct kvm_shared_msr_values *values;
234 	unsigned long flags;
235 
236 	/*
237 	 * Disabling irqs at this point since the following code could be
238 	 * interrupted and executed through kvm_arch_hardware_disable()
239 	 */
240 	local_irq_save(flags);
241 	if (locals->registered) {
242 		locals->registered = false;
243 		user_return_notifier_unregister(urn);
244 	}
245 	local_irq_restore(flags);
246 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
247 		values = &locals->values[slot];
248 		if (values->host != values->curr) {
249 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
250 			values->curr = values->host;
251 		}
252 	}
253 }
254 
shared_msr_update(unsigned slot,u32 msr)255 static void shared_msr_update(unsigned slot, u32 msr)
256 {
257 	u64 value;
258 	unsigned int cpu = smp_processor_id();
259 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
260 
261 	/* only read, and nobody should modify it at this time,
262 	 * so don't need lock */
263 	if (slot >= shared_msrs_global.nr) {
264 		printk(KERN_ERR "kvm: invalid MSR slot!");
265 		return;
266 	}
267 	rdmsrl_safe(msr, &value);
268 	smsr->values[slot].host = value;
269 	smsr->values[slot].curr = value;
270 }
271 
kvm_define_shared_msr(unsigned slot,u32 msr)272 void kvm_define_shared_msr(unsigned slot, u32 msr)
273 {
274 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
275 	shared_msrs_global.msrs[slot] = msr;
276 	if (slot >= shared_msrs_global.nr)
277 		shared_msrs_global.nr = slot + 1;
278 }
279 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
280 
kvm_shared_msr_cpu_online(void)281 static void kvm_shared_msr_cpu_online(void)
282 {
283 	unsigned i;
284 
285 	for (i = 0; i < shared_msrs_global.nr; ++i)
286 		shared_msr_update(i, shared_msrs_global.msrs[i]);
287 }
288 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)289 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
290 {
291 	unsigned int cpu = smp_processor_id();
292 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
293 	int err;
294 
295 	value = (value & mask) | (smsr->values[slot].host & ~mask);
296 	if (value == smsr->values[slot].curr)
297 		return 0;
298 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
299 	if (err)
300 		return 1;
301 
302 	smsr->values[slot].curr = value;
303 	if (!smsr->registered) {
304 		smsr->urn.on_user_return = kvm_on_user_return;
305 		user_return_notifier_register(&smsr->urn);
306 		smsr->registered = true;
307 	}
308 	return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311 
drop_user_return_notifiers(void)312 static void drop_user_return_notifiers(void)
313 {
314 	unsigned int cpu = smp_processor_id();
315 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316 
317 	if (smsr->registered)
318 		kvm_on_user_return(&smsr->urn);
319 }
320 
kvm_get_apic_base(struct kvm_vcpu * vcpu)321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323 	return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339 
340 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341 		return 1;
342 	if (!msr_info->host_initiated) {
343 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344 			return 1;
345 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346 			return 1;
347 	}
348 
349 	kvm_lapic_set_base(vcpu, msr_info->data);
350 	return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353 
kvm_spurious_fault(void)354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356 	/* Fault while not rebooting.  We want the trace. */
357 	BUG();
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360 
361 #define EXCPT_BENIGN		0
362 #define EXCPT_CONTRIBUTORY	1
363 #define EXCPT_PF		2
364 
exception_class(int vector)365 static int exception_class(int vector)
366 {
367 	switch (vector) {
368 	case PF_VECTOR:
369 		return EXCPT_PF;
370 	case DE_VECTOR:
371 	case TS_VECTOR:
372 	case NP_VECTOR:
373 	case SS_VECTOR:
374 	case GP_VECTOR:
375 		return EXCPT_CONTRIBUTORY;
376 	default:
377 		break;
378 	}
379 	return EXCPT_BENIGN;
380 }
381 
382 #define EXCPT_FAULT		0
383 #define EXCPT_TRAP		1
384 #define EXCPT_ABORT		2
385 #define EXCPT_INTERRUPT		3
386 
exception_type(int vector)387 static int exception_type(int vector)
388 {
389 	unsigned int mask;
390 
391 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392 		return EXCPT_INTERRUPT;
393 
394 	mask = 1 << vector;
395 
396 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
397 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398 		return EXCPT_TRAP;
399 
400 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401 		return EXCPT_ABORT;
402 
403 	/* Reserved exceptions will result in fault */
404 	return EXCPT_FAULT;
405 }
406 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)407 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
408 		unsigned nr, bool has_error, u32 error_code,
409 		bool reinject)
410 {
411 	u32 prev_nr;
412 	int class1, class2;
413 
414 	kvm_make_request(KVM_REQ_EVENT, vcpu);
415 
416 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
417 	queue:
418 		if (has_error && !is_protmode(vcpu))
419 			has_error = false;
420 		if (reinject) {
421 			/*
422 			 * On vmentry, vcpu->arch.exception.pending is only
423 			 * true if an event injection was blocked by
424 			 * nested_run_pending.  In that case, however,
425 			 * vcpu_enter_guest requests an immediate exit,
426 			 * and the guest shouldn't proceed far enough to
427 			 * need reinjection.
428 			 */
429 			WARN_ON_ONCE(vcpu->arch.exception.pending);
430 			vcpu->arch.exception.injected = true;
431 		} else {
432 			vcpu->arch.exception.pending = true;
433 			vcpu->arch.exception.injected = false;
434 		}
435 		vcpu->arch.exception.has_error_code = has_error;
436 		vcpu->arch.exception.nr = nr;
437 		vcpu->arch.exception.error_code = error_code;
438 		return;
439 	}
440 
441 	/* to check exception */
442 	prev_nr = vcpu->arch.exception.nr;
443 	if (prev_nr == DF_VECTOR) {
444 		/* triple fault -> shutdown */
445 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
446 		return;
447 	}
448 	class1 = exception_class(prev_nr);
449 	class2 = exception_class(nr);
450 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
451 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
452 		/*
453 		 * Generate double fault per SDM Table 5-5.  Set
454 		 * exception.pending = true so that the double fault
455 		 * can trigger a nested vmexit.
456 		 */
457 		vcpu->arch.exception.pending = true;
458 		vcpu->arch.exception.injected = false;
459 		vcpu->arch.exception.has_error_code = true;
460 		vcpu->arch.exception.nr = DF_VECTOR;
461 		vcpu->arch.exception.error_code = 0;
462 	} else
463 		/* replace previous exception with a new one in a hope
464 		   that instruction re-execution will regenerate lost
465 		   exception */
466 		goto queue;
467 }
468 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)469 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
470 {
471 	kvm_multiple_exception(vcpu, nr, false, 0, false);
472 }
473 EXPORT_SYMBOL_GPL(kvm_queue_exception);
474 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)475 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
476 {
477 	kvm_multiple_exception(vcpu, nr, false, 0, true);
478 }
479 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
480 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)481 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
482 {
483 	if (err)
484 		kvm_inject_gp(vcpu, 0);
485 	else
486 		return kvm_skip_emulated_instruction(vcpu);
487 
488 	return 1;
489 }
490 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
491 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)492 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
493 {
494 	++vcpu->stat.pf_guest;
495 	vcpu->arch.exception.nested_apf =
496 		is_guest_mode(vcpu) && fault->async_page_fault;
497 	if (vcpu->arch.exception.nested_apf)
498 		vcpu->arch.apf.nested_apf_token = fault->address;
499 	else
500 		vcpu->arch.cr2 = fault->address;
501 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
502 }
503 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
504 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)505 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
506 {
507 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
508 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
509 	else
510 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
511 
512 	return fault->nested_page_fault;
513 }
514 
kvm_inject_nmi(struct kvm_vcpu * vcpu)515 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
516 {
517 	atomic_inc(&vcpu->arch.nmi_queued);
518 	kvm_make_request(KVM_REQ_NMI, vcpu);
519 }
520 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
521 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)522 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
523 {
524 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
525 }
526 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
527 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)528 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
529 {
530 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
531 }
532 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
533 
534 /*
535  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
536  * a #GP and return false.
537  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)538 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
539 {
540 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
541 		return true;
542 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
543 	return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_cpl);
546 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)547 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
548 {
549 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
550 		return true;
551 
552 	kvm_queue_exception(vcpu, UD_VECTOR);
553 	return false;
554 }
555 EXPORT_SYMBOL_GPL(kvm_require_dr);
556 
557 /*
558  * This function will be used to read from the physical memory of the currently
559  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
560  * can read from guest physical or from the guest's guest physical memory.
561  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)562 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
563 			    gfn_t ngfn, void *data, int offset, int len,
564 			    u32 access)
565 {
566 	struct x86_exception exception;
567 	gfn_t real_gfn;
568 	gpa_t ngpa;
569 
570 	ngpa     = gfn_to_gpa(ngfn);
571 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
572 	if (real_gfn == UNMAPPED_GVA)
573 		return -EFAULT;
574 
575 	real_gfn = gpa_to_gfn(real_gfn);
576 
577 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
578 }
579 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
580 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)581 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
582 			       void *data, int offset, int len, u32 access)
583 {
584 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
585 				       data, offset, len, access);
586 }
587 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)588 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
589 {
590 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
591 	       rsvd_bits(1, 2);
592 }
593 
594 /*
595  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
596  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)597 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
598 {
599 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
600 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
601 	int i;
602 	int ret;
603 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
604 
605 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
606 				      offset * sizeof(u64), sizeof(pdpte),
607 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
608 	if (ret < 0) {
609 		ret = 0;
610 		goto out;
611 	}
612 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
613 		if ((pdpte[i] & PT_PRESENT_MASK) &&
614 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
615 			ret = 0;
616 			goto out;
617 		}
618 	}
619 	ret = 1;
620 
621 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
622 	__set_bit(VCPU_EXREG_PDPTR,
623 		  (unsigned long *)&vcpu->arch.regs_avail);
624 	__set_bit(VCPU_EXREG_PDPTR,
625 		  (unsigned long *)&vcpu->arch.regs_dirty);
626 out:
627 
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(load_pdptrs);
631 
pdptrs_changed(struct kvm_vcpu * vcpu)632 bool pdptrs_changed(struct kvm_vcpu *vcpu)
633 {
634 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
635 	bool changed = true;
636 	int offset;
637 	gfn_t gfn;
638 	int r;
639 
640 	if (!is_pae_paging(vcpu))
641 		return false;
642 
643 	if (!test_bit(VCPU_EXREG_PDPTR,
644 		      (unsigned long *)&vcpu->arch.regs_avail))
645 		return true;
646 
647 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
648 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
649 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
650 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
651 	if (r < 0)
652 		goto out;
653 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
654 out:
655 
656 	return changed;
657 }
658 EXPORT_SYMBOL_GPL(pdptrs_changed);
659 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)660 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
661 {
662 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
663 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
664 
665 	cr0 |= X86_CR0_ET;
666 
667 #ifdef CONFIG_X86_64
668 	if (cr0 & 0xffffffff00000000UL)
669 		return 1;
670 #endif
671 
672 	cr0 &= ~CR0_RESERVED_BITS;
673 
674 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
675 		return 1;
676 
677 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
678 		return 1;
679 
680 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
681 #ifdef CONFIG_X86_64
682 		if ((vcpu->arch.efer & EFER_LME)) {
683 			int cs_db, cs_l;
684 
685 			if (!is_pae(vcpu))
686 				return 1;
687 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
688 			if (cs_l)
689 				return 1;
690 		} else
691 #endif
692 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
693 						 kvm_read_cr3(vcpu)))
694 			return 1;
695 	}
696 
697 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
698 		return 1;
699 
700 	kvm_x86_ops->set_cr0(vcpu, cr0);
701 
702 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
703 		kvm_clear_async_pf_completion_queue(vcpu);
704 		kvm_async_pf_hash_reset(vcpu);
705 	}
706 
707 	if ((cr0 ^ old_cr0) & update_bits)
708 		kvm_mmu_reset_context(vcpu);
709 
710 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
711 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
712 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
713 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
714 
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_cr0);
718 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)719 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
720 {
721 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
722 }
723 EXPORT_SYMBOL_GPL(kvm_lmsw);
724 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)725 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
726 {
727 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
728 			!vcpu->guest_xcr0_loaded) {
729 		/* kvm_set_xcr() also depends on this */
730 		if (vcpu->arch.xcr0 != host_xcr0)
731 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
732 		vcpu->guest_xcr0_loaded = 1;
733 	}
734 }
735 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
736 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)737 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
738 {
739 	if (vcpu->guest_xcr0_loaded) {
740 		if (vcpu->arch.xcr0 != host_xcr0)
741 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
742 		vcpu->guest_xcr0_loaded = 0;
743 	}
744 }
745 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
746 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)747 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
748 {
749 	u64 xcr0 = xcr;
750 	u64 old_xcr0 = vcpu->arch.xcr0;
751 	u64 valid_bits;
752 
753 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
754 	if (index != XCR_XFEATURE_ENABLED_MASK)
755 		return 1;
756 	if (!(xcr0 & XFEATURE_MASK_FP))
757 		return 1;
758 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
759 		return 1;
760 
761 	/*
762 	 * Do not allow the guest to set bits that we do not support
763 	 * saving.  However, xcr0 bit 0 is always set, even if the
764 	 * emulated CPU does not support XSAVE (see fx_init).
765 	 */
766 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
767 	if (xcr0 & ~valid_bits)
768 		return 1;
769 
770 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
771 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
772 		return 1;
773 
774 	if (xcr0 & XFEATURE_MASK_AVX512) {
775 		if (!(xcr0 & XFEATURE_MASK_YMM))
776 			return 1;
777 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
778 			return 1;
779 	}
780 	vcpu->arch.xcr0 = xcr0;
781 
782 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
783 		kvm_update_cpuid(vcpu);
784 	return 0;
785 }
786 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)787 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
788 {
789 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
790 	    __kvm_set_xcr(vcpu, index, xcr)) {
791 		kvm_inject_gp(vcpu, 0);
792 		return 1;
793 	}
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_xcr);
797 
kvm_host_cr4_reserved_bits(struct cpuinfo_x86 * c)798 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
799 {
800 	u64 reserved_bits = CR4_RESERVED_BITS;
801 
802 	if (!cpu_has(c, X86_FEATURE_XSAVE))
803 		reserved_bits |= X86_CR4_OSXSAVE;
804 
805 	if (!cpu_has(c, X86_FEATURE_SMEP))
806 		reserved_bits |= X86_CR4_SMEP;
807 
808 	if (!cpu_has(c, X86_FEATURE_SMAP))
809 		reserved_bits |= X86_CR4_SMAP;
810 
811 	if (!cpu_has(c, X86_FEATURE_FSGSBASE))
812 		reserved_bits |= X86_CR4_FSGSBASE;
813 
814 	if (!cpu_has(c, X86_FEATURE_PKU))
815 		reserved_bits |= X86_CR4_PKE;
816 
817 	if (!cpu_has(c, X86_FEATURE_LA57) &&
818 	    !(cpuid_ecx(0x7) & bit(X86_FEATURE_LA57)))
819 		reserved_bits |= X86_CR4_LA57;
820 
821 	if (!cpu_has(c, X86_FEATURE_UMIP) && !kvm_x86_ops->umip_emulated())
822 		reserved_bits |= X86_CR4_UMIP;
823 
824 	return reserved_bits;
825 }
826 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)827 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
828 {
829 	if (cr4 & cr4_reserved_bits)
830 		return -EINVAL;
831 
832 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
833 		return -EINVAL;
834 
835 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
836 		return -EINVAL;
837 
838 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
839 		return -EINVAL;
840 
841 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
842 		return -EINVAL;
843 
844 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
845 		return -EINVAL;
846 
847 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
848 		return -EINVAL;
849 
850 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)856 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
857 {
858 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
859 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
860 				   X86_CR4_SMEP;
861 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
862 
863 	if (kvm_valid_cr4(vcpu, cr4))
864 		return 1;
865 
866 	if (is_long_mode(vcpu)) {
867 		if (!(cr4 & X86_CR4_PAE))
868 			return 1;
869 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
870 			return 1;
871 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
872 		   && ((cr4 ^ old_cr4) & pdptr_bits)
873 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
874 				   kvm_read_cr3(vcpu)))
875 		return 1;
876 
877 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
878 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
879 			return 1;
880 
881 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
882 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
883 			return 1;
884 	}
885 
886 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
887 		return 1;
888 
889 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
890 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
891 		kvm_mmu_reset_context(vcpu);
892 
893 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
894 		kvm_update_cpuid(vcpu);
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL_GPL(kvm_set_cr4);
899 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)900 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
901 {
902 	bool skip_tlb_flush = false;
903 #ifdef CONFIG_X86_64
904 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
905 
906 	if (pcid_enabled) {
907 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
908 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
909 	}
910 #endif
911 
912 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
913 		if (!skip_tlb_flush) {
914 			kvm_mmu_sync_roots(vcpu);
915 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
916 		}
917 		return 0;
918 	}
919 
920 	if (is_long_mode(vcpu) &&
921 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
922 		return 1;
923 	else if (is_pae_paging(vcpu) &&
924 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
925 		return 1;
926 
927 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
928 	vcpu->arch.cr3 = cr3;
929 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
930 
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_set_cr3);
934 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)935 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
936 {
937 	if (cr8 & CR8_RESERVED_BITS)
938 		return 1;
939 	if (lapic_in_kernel(vcpu))
940 		kvm_lapic_set_tpr(vcpu, cr8);
941 	else
942 		vcpu->arch.cr8 = cr8;
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_set_cr8);
946 
kvm_get_cr8(struct kvm_vcpu * vcpu)947 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
948 {
949 	if (lapic_in_kernel(vcpu))
950 		return kvm_lapic_get_cr8(vcpu);
951 	else
952 		return vcpu->arch.cr8;
953 }
954 EXPORT_SYMBOL_GPL(kvm_get_cr8);
955 
kvm_update_dr0123(struct kvm_vcpu * vcpu)956 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
957 {
958 	int i;
959 
960 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
961 		for (i = 0; i < KVM_NR_DB_REGS; i++)
962 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
963 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
964 	}
965 }
966 
kvm_update_dr6(struct kvm_vcpu * vcpu)967 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
968 {
969 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
970 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
971 }
972 
kvm_update_dr7(struct kvm_vcpu * vcpu)973 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
974 {
975 	unsigned long dr7;
976 
977 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
978 		dr7 = vcpu->arch.guest_debug_dr7;
979 	else
980 		dr7 = vcpu->arch.dr7;
981 	kvm_x86_ops->set_dr7(vcpu, dr7);
982 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
983 	if (dr7 & DR7_BP_EN_MASK)
984 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
985 }
986 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)987 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
988 {
989 	u64 fixed = DR6_FIXED_1;
990 
991 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
992 		fixed |= DR6_RTM;
993 	return fixed;
994 }
995 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)996 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
997 {
998 	size_t size = ARRAY_SIZE(vcpu->arch.db);
999 
1000 	switch (dr) {
1001 	case 0 ... 3:
1002 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1003 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1004 			vcpu->arch.eff_db[dr] = val;
1005 		break;
1006 	case 4:
1007 		/* fall through */
1008 	case 6:
1009 		if (val & 0xffffffff00000000ULL)
1010 			return -1; /* #GP */
1011 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1012 		kvm_update_dr6(vcpu);
1013 		break;
1014 	case 5:
1015 		/* fall through */
1016 	default: /* 7 */
1017 		if (val & 0xffffffff00000000ULL)
1018 			return -1; /* #GP */
1019 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1020 		kvm_update_dr7(vcpu);
1021 		break;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1027 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1028 {
1029 	if (__kvm_set_dr(vcpu, dr, val)) {
1030 		kvm_inject_gp(vcpu, 0);
1031 		return 1;
1032 	}
1033 	return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_dr);
1036 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1037 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1038 {
1039 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1040 
1041 	switch (dr) {
1042 	case 0 ... 3:
1043 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1044 		break;
1045 	case 4:
1046 		/* fall through */
1047 	case 6:
1048 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1049 			*val = vcpu->arch.dr6;
1050 		else
1051 			*val = kvm_x86_ops->get_dr6(vcpu);
1052 		break;
1053 	case 5:
1054 		/* fall through */
1055 	default: /* 7 */
1056 		*val = vcpu->arch.dr7;
1057 		break;
1058 	}
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_dr);
1062 
kvm_rdpmc(struct kvm_vcpu * vcpu)1063 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1064 {
1065 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1066 	u64 data;
1067 	int err;
1068 
1069 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1070 	if (err)
1071 		return err;
1072 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1073 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1074 	return err;
1075 }
1076 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1077 
1078 /*
1079  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1080  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1081  *
1082  * This list is modified at module load time to reflect the
1083  * capabilities of the host cpu. This capabilities test skips MSRs that are
1084  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1085  * may depend on host virtualization features rather than host cpu features.
1086  */
1087 
1088 static u32 msrs_to_save[] = {
1089 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1090 	MSR_STAR,
1091 #ifdef CONFIG_X86_64
1092 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1093 #endif
1094 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1095 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1096 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1097 };
1098 
1099 static unsigned num_msrs_to_save;
1100 
1101 static u32 emulated_msrs[] = {
1102 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1103 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1104 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1105 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1106 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1107 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1108 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1109 	HV_X64_MSR_RESET,
1110 	HV_X64_MSR_VP_INDEX,
1111 	HV_X64_MSR_VP_RUNTIME,
1112 	HV_X64_MSR_SCONTROL,
1113 	HV_X64_MSR_STIMER0_CONFIG,
1114 	HV_X64_MSR_VP_ASSIST_PAGE,
1115 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1116 	HV_X64_MSR_TSC_EMULATION_STATUS,
1117 
1118 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1119 	MSR_KVM_PV_EOI_EN,
1120 
1121 	MSR_IA32_TSC_ADJUST,
1122 	MSR_IA32_TSCDEADLINE,
1123 	MSR_IA32_MISC_ENABLE,
1124 	MSR_IA32_MCG_STATUS,
1125 	MSR_IA32_MCG_CTL,
1126 	MSR_IA32_MCG_EXT_CTL,
1127 	MSR_IA32_SMBASE,
1128 	MSR_SMI_COUNT,
1129 	MSR_PLATFORM_INFO,
1130 	MSR_MISC_FEATURES_ENABLES,
1131 	MSR_AMD64_VIRT_SPEC_CTRL,
1132 };
1133 
1134 static unsigned num_emulated_msrs;
1135 
1136 /*
1137  * List of msr numbers which are used to expose MSR-based features that
1138  * can be used by a hypervisor to validate requested CPU features.
1139  */
1140 static u32 msr_based_features[] = {
1141 	MSR_IA32_VMX_BASIC,
1142 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1143 	MSR_IA32_VMX_PINBASED_CTLS,
1144 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1145 	MSR_IA32_VMX_PROCBASED_CTLS,
1146 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1147 	MSR_IA32_VMX_EXIT_CTLS,
1148 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1149 	MSR_IA32_VMX_ENTRY_CTLS,
1150 	MSR_IA32_VMX_MISC,
1151 	MSR_IA32_VMX_CR0_FIXED0,
1152 	MSR_IA32_VMX_CR0_FIXED1,
1153 	MSR_IA32_VMX_CR4_FIXED0,
1154 	MSR_IA32_VMX_CR4_FIXED1,
1155 	MSR_IA32_VMX_VMCS_ENUM,
1156 	MSR_IA32_VMX_PROCBASED_CTLS2,
1157 	MSR_IA32_VMX_EPT_VPID_CAP,
1158 	MSR_IA32_VMX_VMFUNC,
1159 
1160 	MSR_F10H_DECFG,
1161 	MSR_IA32_UCODE_REV,
1162 	MSR_IA32_ARCH_CAPABILITIES,
1163 };
1164 
1165 static unsigned int num_msr_based_features;
1166 
kvm_get_arch_capabilities(void)1167 u64 kvm_get_arch_capabilities(void)
1168 {
1169 	u64 data;
1170 
1171 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1172 
1173 	/*
1174 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1175 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1176 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1177 	 * L1 guests, so it need not worry about its own (L2) guests.
1178 	 */
1179 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1180 
1181 	/*
1182 	 * If we're doing cache flushes (either "always" or "cond")
1183 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1184 	 * If an outer hypervisor is doing the cache flush for us
1185 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1186 	 * capability to the guest too, and if EPT is disabled we're not
1187 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1188 	 * require a nested hypervisor to do a flush of its own.
1189 	 */
1190 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1191 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1192 
1193 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1194 		data |= ARCH_CAP_RDCL_NO;
1195 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1196 		data |= ARCH_CAP_SSB_NO;
1197 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1198 		data |= ARCH_CAP_MDS_NO;
1199 
1200 	/*
1201 	 * On TAA affected systems, export MDS_NO=0 when:
1202 	 *	- TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1203 	 *	- Updated microcode is present. This is detected by
1204 	 *	  the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1205 	 *	  that VERW clears CPU buffers.
1206 	 *
1207 	 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1208 	 * mitigation and don't complain:
1209 	 *
1210 	 *	"Vulnerable: Clear CPU buffers attempted, no microcode"
1211 	 *
1212 	 * If TSX is disabled on the system, guests are also mitigated against
1213 	 * TAA and clear CPU buffer mitigation is not required for guests.
1214 	 */
1215 	if (!boot_cpu_has(X86_FEATURE_RTM))
1216 		data &= ~ARCH_CAP_TAA_NO;
1217 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1218 		data |= ARCH_CAP_TAA_NO;
1219 	else if (data & ARCH_CAP_TSX_CTRL_MSR)
1220 		data &= ~ARCH_CAP_MDS_NO;
1221 
1222 	/* KVM does not emulate MSR_IA32_TSX_CTRL.  */
1223 	data &= ~ARCH_CAP_TSX_CTRL_MSR;
1224 	return data;
1225 }
1226 
1227 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1228 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1229 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1230 {
1231 	switch (msr->index) {
1232 	case MSR_IA32_ARCH_CAPABILITIES:
1233 		msr->data = kvm_get_arch_capabilities();
1234 		break;
1235 	case MSR_IA32_UCODE_REV:
1236 		rdmsrl_safe(msr->index, &msr->data);
1237 		break;
1238 	default:
1239 		if (kvm_x86_ops->get_msr_feature(msr))
1240 			return 1;
1241 	}
1242 	return 0;
1243 }
1244 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1245 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1246 {
1247 	struct kvm_msr_entry msr;
1248 	int r;
1249 
1250 	msr.index = index;
1251 	r = kvm_get_msr_feature(&msr);
1252 	if (r)
1253 		return r;
1254 
1255 	*data = msr.data;
1256 
1257 	return 0;
1258 }
1259 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1260 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1261 {
1262 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1263 		return false;
1264 
1265 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1266 		return false;
1267 
1268 	return true;
1269 
1270 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1271 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1272 {
1273 	if (efer & efer_reserved_bits)
1274 		return false;
1275 
1276 	return __kvm_valid_efer(vcpu, efer);
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1279 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1280 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1281 {
1282 	u64 old_efer = vcpu->arch.efer;
1283 	u64 efer = msr_info->data;
1284 
1285 	if (efer & efer_reserved_bits)
1286 		return 1;
1287 
1288 	if (!msr_info->host_initiated) {
1289 		if (!__kvm_valid_efer(vcpu, efer))
1290 			return 1;
1291 
1292 		if (is_paging(vcpu) &&
1293 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1294 			return 1;
1295 	}
1296 
1297 	efer &= ~EFER_LMA;
1298 	efer |= vcpu->arch.efer & EFER_LMA;
1299 
1300 	kvm_x86_ops->set_efer(vcpu, efer);
1301 
1302 	/* Update reserved bits */
1303 	if ((efer ^ old_efer) & EFER_NX)
1304 		kvm_mmu_reset_context(vcpu);
1305 
1306 	return 0;
1307 }
1308 
kvm_enable_efer_bits(u64 mask)1309 void kvm_enable_efer_bits(u64 mask)
1310 {
1311        efer_reserved_bits &= ~mask;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1314 
1315 /*
1316  * Writes msr value into into the appropriate "register".
1317  * Returns 0 on success, non-0 otherwise.
1318  * Assumes vcpu_load() was already called.
1319  */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1320 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1321 {
1322 	switch (msr->index) {
1323 	case MSR_FS_BASE:
1324 	case MSR_GS_BASE:
1325 	case MSR_KERNEL_GS_BASE:
1326 	case MSR_CSTAR:
1327 	case MSR_LSTAR:
1328 		if (is_noncanonical_address(msr->data, vcpu))
1329 			return 1;
1330 		break;
1331 	case MSR_IA32_SYSENTER_EIP:
1332 	case MSR_IA32_SYSENTER_ESP:
1333 		/*
1334 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1335 		 * non-canonical address is written on Intel but not on
1336 		 * AMD (which ignores the top 32-bits, because it does
1337 		 * not implement 64-bit SYSENTER).
1338 		 *
1339 		 * 64-bit code should hence be able to write a non-canonical
1340 		 * value on AMD.  Making the address canonical ensures that
1341 		 * vmentry does not fail on Intel after writing a non-canonical
1342 		 * value, and that something deterministic happens if the guest
1343 		 * invokes 64-bit SYSENTER.
1344 		 */
1345 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1346 	}
1347 	return kvm_x86_ops->set_msr(vcpu, msr);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_set_msr);
1350 
1351 /*
1352  * Adapt set_msr() to msr_io()'s calling convention
1353  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1354 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1355 {
1356 	struct msr_data msr;
1357 	int r;
1358 
1359 	msr.index = index;
1360 	msr.host_initiated = true;
1361 	r = kvm_get_msr(vcpu, &msr);
1362 	if (r)
1363 		return r;
1364 
1365 	*data = msr.data;
1366 	return 0;
1367 }
1368 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1369 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1370 {
1371 	struct msr_data msr;
1372 
1373 	msr.data = *data;
1374 	msr.index = index;
1375 	msr.host_initiated = true;
1376 	return kvm_set_msr(vcpu, &msr);
1377 }
1378 
1379 #ifdef CONFIG_X86_64
1380 struct pvclock_gtod_data {
1381 	seqcount_t	seq;
1382 
1383 	struct { /* extract of a clocksource struct */
1384 		int vclock_mode;
1385 		u64	cycle_last;
1386 		u64	mask;
1387 		u32	mult;
1388 		u32	shift;
1389 	} clock;
1390 
1391 	u64		boot_ns;
1392 	u64		nsec_base;
1393 	u64		wall_time_sec;
1394 };
1395 
1396 static struct pvclock_gtod_data pvclock_gtod_data;
1397 
update_pvclock_gtod(struct timekeeper * tk)1398 static void update_pvclock_gtod(struct timekeeper *tk)
1399 {
1400 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1401 	u64 boot_ns;
1402 
1403 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1404 
1405 	write_seqcount_begin(&vdata->seq);
1406 
1407 	/* copy pvclock gtod data */
1408 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1409 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1410 	vdata->clock.mask		= tk->tkr_mono.mask;
1411 	vdata->clock.mult		= tk->tkr_mono.mult;
1412 	vdata->clock.shift		= tk->tkr_mono.shift;
1413 
1414 	vdata->boot_ns			= boot_ns;
1415 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1416 
1417 	vdata->wall_time_sec            = tk->xtime_sec;
1418 
1419 	write_seqcount_end(&vdata->seq);
1420 }
1421 #endif
1422 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1423 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1424 {
1425 	/*
1426 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1427 	 * vcpu_enter_guest.  This function is only called from
1428 	 * the physical CPU that is running vcpu.
1429 	 */
1430 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1431 }
1432 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1433 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1434 {
1435 	int version;
1436 	int r;
1437 	struct pvclock_wall_clock wc;
1438 	struct timespec64 boot;
1439 
1440 	if (!wall_clock)
1441 		return;
1442 
1443 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1444 	if (r)
1445 		return;
1446 
1447 	if (version & 1)
1448 		++version;  /* first time write, random junk */
1449 
1450 	++version;
1451 
1452 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1453 		return;
1454 
1455 	/*
1456 	 * The guest calculates current wall clock time by adding
1457 	 * system time (updated by kvm_guest_time_update below) to the
1458 	 * wall clock specified here.  guest system time equals host
1459 	 * system time for us, thus we must fill in host boot time here.
1460 	 */
1461 	getboottime64(&boot);
1462 
1463 	if (kvm->arch.kvmclock_offset) {
1464 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1465 		boot = timespec64_sub(boot, ts);
1466 	}
1467 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1468 	wc.nsec = boot.tv_nsec;
1469 	wc.version = version;
1470 
1471 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1472 
1473 	version++;
1474 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1475 }
1476 
div_frac(uint32_t dividend,uint32_t divisor)1477 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1478 {
1479 	do_shl32_div32(dividend, divisor);
1480 	return dividend;
1481 }
1482 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1483 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1484 			       s8 *pshift, u32 *pmultiplier)
1485 {
1486 	uint64_t scaled64;
1487 	int32_t  shift = 0;
1488 	uint64_t tps64;
1489 	uint32_t tps32;
1490 
1491 	tps64 = base_hz;
1492 	scaled64 = scaled_hz;
1493 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1494 		tps64 >>= 1;
1495 		shift--;
1496 	}
1497 
1498 	tps32 = (uint32_t)tps64;
1499 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1500 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1501 			scaled64 >>= 1;
1502 		else
1503 			tps32 <<= 1;
1504 		shift++;
1505 	}
1506 
1507 	*pshift = shift;
1508 	*pmultiplier = div_frac(scaled64, tps32);
1509 
1510 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1511 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1512 }
1513 
1514 #ifdef CONFIG_X86_64
1515 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1516 #endif
1517 
1518 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1519 static unsigned long max_tsc_khz;
1520 
adjust_tsc_khz(u32 khz,s32 ppm)1521 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1522 {
1523 	u64 v = (u64)khz * (1000000 + ppm);
1524 	do_div(v, 1000000);
1525 	return v;
1526 }
1527 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1528 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1529 {
1530 	u64 ratio;
1531 
1532 	/* Guest TSC same frequency as host TSC? */
1533 	if (!scale) {
1534 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1535 		return 0;
1536 	}
1537 
1538 	/* TSC scaling supported? */
1539 	if (!kvm_has_tsc_control) {
1540 		if (user_tsc_khz > tsc_khz) {
1541 			vcpu->arch.tsc_catchup = 1;
1542 			vcpu->arch.tsc_always_catchup = 1;
1543 			return 0;
1544 		} else {
1545 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1546 			return -1;
1547 		}
1548 	}
1549 
1550 	/* TSC scaling required  - calculate ratio */
1551 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1552 				user_tsc_khz, tsc_khz);
1553 
1554 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1555 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1556 			            user_tsc_khz);
1557 		return -1;
1558 	}
1559 
1560 	vcpu->arch.tsc_scaling_ratio = ratio;
1561 	return 0;
1562 }
1563 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1564 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1565 {
1566 	u32 thresh_lo, thresh_hi;
1567 	int use_scaling = 0;
1568 
1569 	/* tsc_khz can be zero if TSC calibration fails */
1570 	if (user_tsc_khz == 0) {
1571 		/* set tsc_scaling_ratio to a safe value */
1572 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1573 		return -1;
1574 	}
1575 
1576 	/* Compute a scale to convert nanoseconds in TSC cycles */
1577 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1578 			   &vcpu->arch.virtual_tsc_shift,
1579 			   &vcpu->arch.virtual_tsc_mult);
1580 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1581 
1582 	/*
1583 	 * Compute the variation in TSC rate which is acceptable
1584 	 * within the range of tolerance and decide if the
1585 	 * rate being applied is within that bounds of the hardware
1586 	 * rate.  If so, no scaling or compensation need be done.
1587 	 */
1588 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1589 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1590 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1591 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1592 		use_scaling = 1;
1593 	}
1594 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1595 }
1596 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1597 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1598 {
1599 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1600 				      vcpu->arch.virtual_tsc_mult,
1601 				      vcpu->arch.virtual_tsc_shift);
1602 	tsc += vcpu->arch.this_tsc_write;
1603 	return tsc;
1604 }
1605 
gtod_is_based_on_tsc(int mode)1606 static inline int gtod_is_based_on_tsc(int mode)
1607 {
1608 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1609 }
1610 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1611 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1612 {
1613 #ifdef CONFIG_X86_64
1614 	bool vcpus_matched;
1615 	struct kvm_arch *ka = &vcpu->kvm->arch;
1616 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1617 
1618 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1619 			 atomic_read(&vcpu->kvm->online_vcpus));
1620 
1621 	/*
1622 	 * Once the masterclock is enabled, always perform request in
1623 	 * order to update it.
1624 	 *
1625 	 * In order to enable masterclock, the host clocksource must be TSC
1626 	 * and the vcpus need to have matched TSCs.  When that happens,
1627 	 * perform request to enable masterclock.
1628 	 */
1629 	if (ka->use_master_clock ||
1630 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1631 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1632 
1633 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1634 			    atomic_read(&vcpu->kvm->online_vcpus),
1635 		            ka->use_master_clock, gtod->clock.vclock_mode);
1636 #endif
1637 }
1638 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1639 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1640 {
1641 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1642 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1643 }
1644 
1645 /*
1646  * Multiply tsc by a fixed point number represented by ratio.
1647  *
1648  * The most significant 64-N bits (mult) of ratio represent the
1649  * integral part of the fixed point number; the remaining N bits
1650  * (frac) represent the fractional part, ie. ratio represents a fixed
1651  * point number (mult + frac * 2^(-N)).
1652  *
1653  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1654  */
__scale_tsc(u64 ratio,u64 tsc)1655 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1656 {
1657 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1658 }
1659 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1660 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1661 {
1662 	u64 _tsc = tsc;
1663 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1664 
1665 	if (ratio != kvm_default_tsc_scaling_ratio)
1666 		_tsc = __scale_tsc(ratio, tsc);
1667 
1668 	return _tsc;
1669 }
1670 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1671 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1672 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1673 {
1674 	u64 tsc;
1675 
1676 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1677 
1678 	return target_tsc - tsc;
1679 }
1680 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1681 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1682 {
1683 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1684 
1685 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1688 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1689 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1690 {
1691 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1692 }
1693 
kvm_check_tsc_unstable(void)1694 static inline bool kvm_check_tsc_unstable(void)
1695 {
1696 #ifdef CONFIG_X86_64
1697 	/*
1698 	 * TSC is marked unstable when we're running on Hyper-V,
1699 	 * 'TSC page' clocksource is good.
1700 	 */
1701 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1702 		return false;
1703 #endif
1704 	return check_tsc_unstable();
1705 }
1706 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1707 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1708 {
1709 	struct kvm *kvm = vcpu->kvm;
1710 	u64 offset, ns, elapsed;
1711 	unsigned long flags;
1712 	bool matched;
1713 	bool already_matched;
1714 	u64 data = msr->data;
1715 	bool synchronizing = false;
1716 
1717 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1718 	offset = kvm_compute_tsc_offset(vcpu, data);
1719 	ns = ktime_get_boot_ns();
1720 	elapsed = ns - kvm->arch.last_tsc_nsec;
1721 
1722 	if (vcpu->arch.virtual_tsc_khz) {
1723 		if (data == 0 && msr->host_initiated) {
1724 			/*
1725 			 * detection of vcpu initialization -- need to sync
1726 			 * with other vCPUs. This particularly helps to keep
1727 			 * kvm_clock stable after CPU hotplug
1728 			 */
1729 			synchronizing = true;
1730 		} else {
1731 			u64 tsc_exp = kvm->arch.last_tsc_write +
1732 						nsec_to_cycles(vcpu, elapsed);
1733 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1734 			/*
1735 			 * Special case: TSC write with a small delta (1 second)
1736 			 * of virtual cycle time against real time is
1737 			 * interpreted as an attempt to synchronize the CPU.
1738 			 */
1739 			synchronizing = data < tsc_exp + tsc_hz &&
1740 					data + tsc_hz > tsc_exp;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1746 	 * TSC, we add elapsed time in this computation.  We could let the
1747 	 * compensation code attempt to catch up if we fall behind, but
1748 	 * it's better to try to match offsets from the beginning.
1749          */
1750 	if (synchronizing &&
1751 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1752 		if (!kvm_check_tsc_unstable()) {
1753 			offset = kvm->arch.cur_tsc_offset;
1754 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1755 		} else {
1756 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1757 			data += delta;
1758 			offset = kvm_compute_tsc_offset(vcpu, data);
1759 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1760 		}
1761 		matched = true;
1762 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1763 	} else {
1764 		/*
1765 		 * We split periods of matched TSC writes into generations.
1766 		 * For each generation, we track the original measured
1767 		 * nanosecond time, offset, and write, so if TSCs are in
1768 		 * sync, we can match exact offset, and if not, we can match
1769 		 * exact software computation in compute_guest_tsc()
1770 		 *
1771 		 * These values are tracked in kvm->arch.cur_xxx variables.
1772 		 */
1773 		kvm->arch.cur_tsc_generation++;
1774 		kvm->arch.cur_tsc_nsec = ns;
1775 		kvm->arch.cur_tsc_write = data;
1776 		kvm->arch.cur_tsc_offset = offset;
1777 		matched = false;
1778 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1779 			 kvm->arch.cur_tsc_generation, data);
1780 	}
1781 
1782 	/*
1783 	 * We also track th most recent recorded KHZ, write and time to
1784 	 * allow the matching interval to be extended at each write.
1785 	 */
1786 	kvm->arch.last_tsc_nsec = ns;
1787 	kvm->arch.last_tsc_write = data;
1788 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1789 
1790 	vcpu->arch.last_guest_tsc = data;
1791 
1792 	/* Keep track of which generation this VCPU has synchronized to */
1793 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1794 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1795 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1796 
1797 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1798 		update_ia32_tsc_adjust_msr(vcpu, offset);
1799 
1800 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1801 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1802 
1803 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1804 	if (!matched) {
1805 		kvm->arch.nr_vcpus_matched_tsc = 0;
1806 	} else if (!already_matched) {
1807 		kvm->arch.nr_vcpus_matched_tsc++;
1808 	}
1809 
1810 	kvm_track_tsc_matching(vcpu);
1811 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1812 }
1813 
1814 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1815 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1816 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1817 					   s64 adjustment)
1818 {
1819 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1820 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1821 }
1822 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1823 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1824 {
1825 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1826 		WARN_ON(adjustment < 0);
1827 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1828 	adjust_tsc_offset_guest(vcpu, adjustment);
1829 }
1830 
1831 #ifdef CONFIG_X86_64
1832 
read_tsc(void)1833 static u64 read_tsc(void)
1834 {
1835 	u64 ret = (u64)rdtsc_ordered();
1836 	u64 last = pvclock_gtod_data.clock.cycle_last;
1837 
1838 	if (likely(ret >= last))
1839 		return ret;
1840 
1841 	/*
1842 	 * GCC likes to generate cmov here, but this branch is extremely
1843 	 * predictable (it's just a function of time and the likely is
1844 	 * very likely) and there's a data dependence, so force GCC
1845 	 * to generate a branch instead.  I don't barrier() because
1846 	 * we don't actually need a barrier, and if this function
1847 	 * ever gets inlined it will generate worse code.
1848 	 */
1849 	asm volatile ("");
1850 	return last;
1851 }
1852 
vgettsc(u64 * tsc_timestamp,int * mode)1853 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1854 {
1855 	long v;
1856 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1857 	u64 tsc_pg_val;
1858 
1859 	switch (gtod->clock.vclock_mode) {
1860 	case VCLOCK_HVCLOCK:
1861 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1862 						  tsc_timestamp);
1863 		if (tsc_pg_val != U64_MAX) {
1864 			/* TSC page valid */
1865 			*mode = VCLOCK_HVCLOCK;
1866 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1867 				gtod->clock.mask;
1868 		} else {
1869 			/* TSC page invalid */
1870 			*mode = VCLOCK_NONE;
1871 		}
1872 		break;
1873 	case VCLOCK_TSC:
1874 		*mode = VCLOCK_TSC;
1875 		*tsc_timestamp = read_tsc();
1876 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1877 			gtod->clock.mask;
1878 		break;
1879 	default:
1880 		*mode = VCLOCK_NONE;
1881 	}
1882 
1883 	if (*mode == VCLOCK_NONE)
1884 		*tsc_timestamp = v = 0;
1885 
1886 	return v * gtod->clock.mult;
1887 }
1888 
do_monotonic_boot(s64 * t,u64 * tsc_timestamp)1889 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1890 {
1891 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1892 	unsigned long seq;
1893 	int mode;
1894 	u64 ns;
1895 
1896 	do {
1897 		seq = read_seqcount_begin(&gtod->seq);
1898 		ns = gtod->nsec_base;
1899 		ns += vgettsc(tsc_timestamp, &mode);
1900 		ns >>= gtod->clock.shift;
1901 		ns += gtod->boot_ns;
1902 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1903 	*t = ns;
1904 
1905 	return mode;
1906 }
1907 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)1908 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1909 {
1910 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1911 	unsigned long seq;
1912 	int mode;
1913 	u64 ns;
1914 
1915 	do {
1916 		seq = read_seqcount_begin(&gtod->seq);
1917 		ts->tv_sec = gtod->wall_time_sec;
1918 		ns = gtod->nsec_base;
1919 		ns += vgettsc(tsc_timestamp, &mode);
1920 		ns >>= gtod->clock.shift;
1921 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1922 
1923 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1924 	ts->tv_nsec = ns;
1925 
1926 	return mode;
1927 }
1928 
1929 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)1930 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1931 {
1932 	/* checked again under seqlock below */
1933 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1934 		return false;
1935 
1936 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1937 						      tsc_timestamp));
1938 }
1939 
1940 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)1941 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1942 					   u64 *tsc_timestamp)
1943 {
1944 	/* checked again under seqlock below */
1945 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1946 		return false;
1947 
1948 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1949 }
1950 #endif
1951 
1952 /*
1953  *
1954  * Assuming a stable TSC across physical CPUS, and a stable TSC
1955  * across virtual CPUs, the following condition is possible.
1956  * Each numbered line represents an event visible to both
1957  * CPUs at the next numbered event.
1958  *
1959  * "timespecX" represents host monotonic time. "tscX" represents
1960  * RDTSC value.
1961  *
1962  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1963  *
1964  * 1.  read timespec0,tsc0
1965  * 2.					| timespec1 = timespec0 + N
1966  * 					| tsc1 = tsc0 + M
1967  * 3. transition to guest		| transition to guest
1968  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1969  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1970  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1971  *
1972  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1973  *
1974  * 	- ret0 < ret1
1975  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1976  *		...
1977  *	- 0 < N - M => M < N
1978  *
1979  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1980  * always the case (the difference between two distinct xtime instances
1981  * might be smaller then the difference between corresponding TSC reads,
1982  * when updating guest vcpus pvclock areas).
1983  *
1984  * To avoid that problem, do not allow visibility of distinct
1985  * system_timestamp/tsc_timestamp values simultaneously: use a master
1986  * copy of host monotonic time values. Update that master copy
1987  * in lockstep.
1988  *
1989  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1990  *
1991  */
1992 
pvclock_update_vm_gtod_copy(struct kvm * kvm)1993 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1994 {
1995 #ifdef CONFIG_X86_64
1996 	struct kvm_arch *ka = &kvm->arch;
1997 	int vclock_mode;
1998 	bool host_tsc_clocksource, vcpus_matched;
1999 
2000 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2001 			atomic_read(&kvm->online_vcpus));
2002 
2003 	/*
2004 	 * If the host uses TSC clock, then passthrough TSC as stable
2005 	 * to the guest.
2006 	 */
2007 	host_tsc_clocksource = kvm_get_time_and_clockread(
2008 					&ka->master_kernel_ns,
2009 					&ka->master_cycle_now);
2010 
2011 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2012 				&& !ka->backwards_tsc_observed
2013 				&& !ka->boot_vcpu_runs_old_kvmclock;
2014 
2015 	if (ka->use_master_clock)
2016 		atomic_set(&kvm_guest_has_master_clock, 1);
2017 
2018 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2019 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2020 					vcpus_matched);
2021 #endif
2022 }
2023 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2024 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2025 {
2026 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2027 }
2028 
kvm_gen_update_masterclock(struct kvm * kvm)2029 static void kvm_gen_update_masterclock(struct kvm *kvm)
2030 {
2031 #ifdef CONFIG_X86_64
2032 	int i;
2033 	struct kvm_vcpu *vcpu;
2034 	struct kvm_arch *ka = &kvm->arch;
2035 
2036 	spin_lock(&ka->pvclock_gtod_sync_lock);
2037 	kvm_make_mclock_inprogress_request(kvm);
2038 	/* no guest entries from this point */
2039 	pvclock_update_vm_gtod_copy(kvm);
2040 
2041 	kvm_for_each_vcpu(i, vcpu, kvm)
2042 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2043 
2044 	/* guest entries allowed */
2045 	kvm_for_each_vcpu(i, vcpu, kvm)
2046 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2047 
2048 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2049 #endif
2050 }
2051 
get_kvmclock_ns(struct kvm * kvm)2052 u64 get_kvmclock_ns(struct kvm *kvm)
2053 {
2054 	struct kvm_arch *ka = &kvm->arch;
2055 	struct pvclock_vcpu_time_info hv_clock;
2056 	u64 ret;
2057 
2058 	spin_lock(&ka->pvclock_gtod_sync_lock);
2059 	if (!ka->use_master_clock) {
2060 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2061 		return ktime_get_boot_ns() + ka->kvmclock_offset;
2062 	}
2063 
2064 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2065 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2066 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2067 
2068 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2069 	get_cpu();
2070 
2071 	if (__this_cpu_read(cpu_tsc_khz)) {
2072 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2073 				   &hv_clock.tsc_shift,
2074 				   &hv_clock.tsc_to_system_mul);
2075 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2076 	} else
2077 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2078 
2079 	put_cpu();
2080 
2081 	return ret;
2082 }
2083 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2084 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2085 {
2086 	struct kvm_vcpu_arch *vcpu = &v->arch;
2087 	struct pvclock_vcpu_time_info guest_hv_clock;
2088 
2089 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2090 		&guest_hv_clock, sizeof(guest_hv_clock))))
2091 		return;
2092 
2093 	/* This VCPU is paused, but it's legal for a guest to read another
2094 	 * VCPU's kvmclock, so we really have to follow the specification where
2095 	 * it says that version is odd if data is being modified, and even after
2096 	 * it is consistent.
2097 	 *
2098 	 * Version field updates must be kept separate.  This is because
2099 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2100 	 * writes within a string instruction are weakly ordered.  So there
2101 	 * are three writes overall.
2102 	 *
2103 	 * As a small optimization, only write the version field in the first
2104 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2105 	 * version field is the first in the struct.
2106 	 */
2107 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2108 
2109 	if (guest_hv_clock.version & 1)
2110 		++guest_hv_clock.version;  /* first time write, random junk */
2111 
2112 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2113 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2114 				&vcpu->hv_clock,
2115 				sizeof(vcpu->hv_clock.version));
2116 
2117 	smp_wmb();
2118 
2119 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2120 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2121 
2122 	if (vcpu->pvclock_set_guest_stopped_request) {
2123 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2124 		vcpu->pvclock_set_guest_stopped_request = false;
2125 	}
2126 
2127 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2128 
2129 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2130 				&vcpu->hv_clock,
2131 				sizeof(vcpu->hv_clock));
2132 
2133 	smp_wmb();
2134 
2135 	vcpu->hv_clock.version++;
2136 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2137 				&vcpu->hv_clock,
2138 				sizeof(vcpu->hv_clock.version));
2139 }
2140 
kvm_guest_time_update(struct kvm_vcpu * v)2141 static int kvm_guest_time_update(struct kvm_vcpu *v)
2142 {
2143 	unsigned long flags, tgt_tsc_khz;
2144 	struct kvm_vcpu_arch *vcpu = &v->arch;
2145 	struct kvm_arch *ka = &v->kvm->arch;
2146 	s64 kernel_ns;
2147 	u64 tsc_timestamp, host_tsc;
2148 	u8 pvclock_flags;
2149 	bool use_master_clock;
2150 
2151 	kernel_ns = 0;
2152 	host_tsc = 0;
2153 
2154 	/*
2155 	 * If the host uses TSC clock, then passthrough TSC as stable
2156 	 * to the guest.
2157 	 */
2158 	spin_lock(&ka->pvclock_gtod_sync_lock);
2159 	use_master_clock = ka->use_master_clock;
2160 	if (use_master_clock) {
2161 		host_tsc = ka->master_cycle_now;
2162 		kernel_ns = ka->master_kernel_ns;
2163 	}
2164 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2165 
2166 	/* Keep irq disabled to prevent changes to the clock */
2167 	local_irq_save(flags);
2168 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2169 	if (unlikely(tgt_tsc_khz == 0)) {
2170 		local_irq_restore(flags);
2171 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2172 		return 1;
2173 	}
2174 	if (!use_master_clock) {
2175 		host_tsc = rdtsc();
2176 		kernel_ns = ktime_get_boot_ns();
2177 	}
2178 
2179 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2180 
2181 	/*
2182 	 * We may have to catch up the TSC to match elapsed wall clock
2183 	 * time for two reasons, even if kvmclock is used.
2184 	 *   1) CPU could have been running below the maximum TSC rate
2185 	 *   2) Broken TSC compensation resets the base at each VCPU
2186 	 *      entry to avoid unknown leaps of TSC even when running
2187 	 *      again on the same CPU.  This may cause apparent elapsed
2188 	 *      time to disappear, and the guest to stand still or run
2189 	 *	very slowly.
2190 	 */
2191 	if (vcpu->tsc_catchup) {
2192 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2193 		if (tsc > tsc_timestamp) {
2194 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2195 			tsc_timestamp = tsc;
2196 		}
2197 	}
2198 
2199 	local_irq_restore(flags);
2200 
2201 	/* With all the info we got, fill in the values */
2202 
2203 	if (kvm_has_tsc_control)
2204 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2205 
2206 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2207 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2208 				   &vcpu->hv_clock.tsc_shift,
2209 				   &vcpu->hv_clock.tsc_to_system_mul);
2210 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2211 	}
2212 
2213 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2214 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2215 	vcpu->last_guest_tsc = tsc_timestamp;
2216 
2217 	/* If the host uses TSC clocksource, then it is stable */
2218 	pvclock_flags = 0;
2219 	if (use_master_clock)
2220 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2221 
2222 	vcpu->hv_clock.flags = pvclock_flags;
2223 
2224 	if (vcpu->pv_time_enabled)
2225 		kvm_setup_pvclock_page(v);
2226 	if (v == kvm_get_vcpu(v->kvm, 0))
2227 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2228 	return 0;
2229 }
2230 
2231 /*
2232  * kvmclock updates which are isolated to a given vcpu, such as
2233  * vcpu->cpu migration, should not allow system_timestamp from
2234  * the rest of the vcpus to remain static. Otherwise ntp frequency
2235  * correction applies to one vcpu's system_timestamp but not
2236  * the others.
2237  *
2238  * So in those cases, request a kvmclock update for all vcpus.
2239  * We need to rate-limit these requests though, as they can
2240  * considerably slow guests that have a large number of vcpus.
2241  * The time for a remote vcpu to update its kvmclock is bound
2242  * by the delay we use to rate-limit the updates.
2243  */
2244 
2245 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2246 
kvmclock_update_fn(struct work_struct * work)2247 static void kvmclock_update_fn(struct work_struct *work)
2248 {
2249 	int i;
2250 	struct delayed_work *dwork = to_delayed_work(work);
2251 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2252 					   kvmclock_update_work);
2253 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2254 	struct kvm_vcpu *vcpu;
2255 
2256 	kvm_for_each_vcpu(i, vcpu, kvm) {
2257 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2258 		kvm_vcpu_kick(vcpu);
2259 	}
2260 }
2261 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2262 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2263 {
2264 	struct kvm *kvm = v->kvm;
2265 
2266 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2267 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2268 					KVMCLOCK_UPDATE_DELAY);
2269 }
2270 
2271 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2272 
kvmclock_sync_fn(struct work_struct * work)2273 static void kvmclock_sync_fn(struct work_struct *work)
2274 {
2275 	struct delayed_work *dwork = to_delayed_work(work);
2276 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2277 					   kvmclock_sync_work);
2278 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2279 
2280 	if (!kvmclock_periodic_sync)
2281 		return;
2282 
2283 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2284 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2285 					KVMCLOCK_SYNC_PERIOD);
2286 }
2287 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2288 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2289 {
2290 	u64 mcg_cap = vcpu->arch.mcg_cap;
2291 	unsigned bank_num = mcg_cap & 0xff;
2292 	u32 msr = msr_info->index;
2293 	u64 data = msr_info->data;
2294 
2295 	switch (msr) {
2296 	case MSR_IA32_MCG_STATUS:
2297 		vcpu->arch.mcg_status = data;
2298 		break;
2299 	case MSR_IA32_MCG_CTL:
2300 		if (!(mcg_cap & MCG_CTL_P) &&
2301 		    (data || !msr_info->host_initiated))
2302 			return 1;
2303 		if (data != 0 && data != ~(u64)0)
2304 			return 1;
2305 		vcpu->arch.mcg_ctl = data;
2306 		break;
2307 	default:
2308 		if (msr >= MSR_IA32_MC0_CTL &&
2309 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2310 			u32 offset = array_index_nospec(
2311 				msr - MSR_IA32_MC0_CTL,
2312 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2313 
2314 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2315 			 * some Linux kernels though clear bit 10 in bank 4 to
2316 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2317 			 * this to avoid an uncatched #GP in the guest
2318 			 */
2319 			if ((offset & 0x3) == 0 &&
2320 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2321 				return -1;
2322 			if (!msr_info->host_initiated &&
2323 				(offset & 0x3) == 1 && data != 0)
2324 				return -1;
2325 			vcpu->arch.mce_banks[offset] = data;
2326 			break;
2327 		}
2328 		return 1;
2329 	}
2330 	return 0;
2331 }
2332 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2333 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2334 {
2335 	struct kvm *kvm = vcpu->kvm;
2336 	int lm = is_long_mode(vcpu);
2337 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2338 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2339 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2340 		: kvm->arch.xen_hvm_config.blob_size_32;
2341 	u32 page_num = data & ~PAGE_MASK;
2342 	u64 page_addr = data & PAGE_MASK;
2343 	u8 *page;
2344 	int r;
2345 
2346 	r = -E2BIG;
2347 	if (page_num >= blob_size)
2348 		goto out;
2349 	r = -ENOMEM;
2350 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2351 	if (IS_ERR(page)) {
2352 		r = PTR_ERR(page);
2353 		goto out;
2354 	}
2355 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2356 		goto out_free;
2357 	r = 0;
2358 out_free:
2359 	kfree(page);
2360 out:
2361 	return r;
2362 }
2363 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2364 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2365 {
2366 	gpa_t gpa = data & ~0x3f;
2367 
2368 	/* Bits 3:5 are reserved, Should be zero */
2369 	if (data & 0x38)
2370 		return 1;
2371 
2372 	vcpu->arch.apf.msr_val = data;
2373 
2374 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2375 		kvm_clear_async_pf_completion_queue(vcpu);
2376 		kvm_async_pf_hash_reset(vcpu);
2377 		return 0;
2378 	}
2379 
2380 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2381 					sizeof(u32)))
2382 		return 1;
2383 
2384 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2385 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2386 	kvm_async_pf_wakeup_all(vcpu);
2387 	return 0;
2388 }
2389 
kvmclock_reset(struct kvm_vcpu * vcpu)2390 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2391 {
2392 	vcpu->arch.pv_time_enabled = false;
2393 }
2394 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)2395 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2396 {
2397 	++vcpu->stat.tlb_flush;
2398 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2399 }
2400 
record_steal_time(struct kvm_vcpu * vcpu)2401 static void record_steal_time(struct kvm_vcpu *vcpu)
2402 {
2403 	struct kvm_host_map map;
2404 	struct kvm_steal_time *st;
2405 
2406 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2407 		return;
2408 
2409 	/* -EAGAIN is returned in atomic context so we can just return. */
2410 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2411 			&map, &vcpu->arch.st.cache, false))
2412 		return;
2413 
2414 	st = map.hva +
2415 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2416 
2417 	/*
2418 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2419 	 * expensive IPIs.
2420 	 */
2421 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2422 		kvm_vcpu_flush_tlb(vcpu, false);
2423 
2424 	vcpu->arch.st.preempted = 0;
2425 
2426 	if (st->version & 1)
2427 		st->version += 1;  /* first time write, random junk */
2428 
2429 	st->version += 1;
2430 
2431 	smp_wmb();
2432 
2433 	st->steal += current->sched_info.run_delay -
2434 		vcpu->arch.st.last_steal;
2435 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2436 
2437 	smp_wmb();
2438 
2439 	st->version += 1;
2440 
2441 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2442 }
2443 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2444 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2445 {
2446 	bool pr = false;
2447 	u32 msr = msr_info->index;
2448 	u64 data = msr_info->data;
2449 
2450 	switch (msr) {
2451 	case MSR_AMD64_NB_CFG:
2452 	case MSR_IA32_UCODE_WRITE:
2453 	case MSR_VM_HSAVE_PA:
2454 	case MSR_AMD64_PATCH_LOADER:
2455 	case MSR_AMD64_BU_CFG2:
2456 	case MSR_AMD64_DC_CFG:
2457 	case MSR_F15H_EX_CFG:
2458 		break;
2459 
2460 	case MSR_IA32_UCODE_REV:
2461 		if (msr_info->host_initiated)
2462 			vcpu->arch.microcode_version = data;
2463 		break;
2464 	case MSR_IA32_ARCH_CAPABILITIES:
2465 		if (!msr_info->host_initiated)
2466 			return 1;
2467 		vcpu->arch.arch_capabilities = data;
2468 		break;
2469 	case MSR_EFER:
2470 		return set_efer(vcpu, msr_info);
2471 	case MSR_K7_HWCR:
2472 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2473 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2474 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2475 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2476 		if (data != 0) {
2477 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2478 				    data);
2479 			return 1;
2480 		}
2481 		break;
2482 	case MSR_FAM10H_MMIO_CONF_BASE:
2483 		if (data != 0) {
2484 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2485 				    "0x%llx\n", data);
2486 			return 1;
2487 		}
2488 		break;
2489 	case MSR_IA32_DEBUGCTLMSR:
2490 		if (!data) {
2491 			/* We support the non-activated case already */
2492 			break;
2493 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2494 			/* Values other than LBR and BTF are vendor-specific,
2495 			   thus reserved and should throw a #GP */
2496 			return 1;
2497 		}
2498 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2499 			    __func__, data);
2500 		break;
2501 	case 0x200 ... 0x2ff:
2502 		return kvm_mtrr_set_msr(vcpu, msr, data);
2503 	case MSR_IA32_APICBASE:
2504 		return kvm_set_apic_base(vcpu, msr_info);
2505 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2506 		return kvm_x2apic_msr_write(vcpu, msr, data);
2507 	case MSR_IA32_TSCDEADLINE:
2508 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2509 		break;
2510 	case MSR_IA32_TSC_ADJUST:
2511 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2512 			if (!msr_info->host_initiated) {
2513 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2514 				adjust_tsc_offset_guest(vcpu, adj);
2515 			}
2516 			vcpu->arch.ia32_tsc_adjust_msr = data;
2517 		}
2518 		break;
2519 	case MSR_IA32_MISC_ENABLE:
2520 		vcpu->arch.ia32_misc_enable_msr = data;
2521 		break;
2522 	case MSR_IA32_SMBASE:
2523 		if (!msr_info->host_initiated)
2524 			return 1;
2525 		vcpu->arch.smbase = data;
2526 		break;
2527 	case MSR_IA32_TSC:
2528 		kvm_write_tsc(vcpu, msr_info);
2529 		break;
2530 	case MSR_SMI_COUNT:
2531 		if (!msr_info->host_initiated)
2532 			return 1;
2533 		vcpu->arch.smi_count = data;
2534 		break;
2535 	case MSR_KVM_WALL_CLOCK_NEW:
2536 	case MSR_KVM_WALL_CLOCK:
2537 		vcpu->kvm->arch.wall_clock = data;
2538 		kvm_write_wall_clock(vcpu->kvm, data);
2539 		break;
2540 	case MSR_KVM_SYSTEM_TIME_NEW:
2541 	case MSR_KVM_SYSTEM_TIME: {
2542 		struct kvm_arch *ka = &vcpu->kvm->arch;
2543 
2544 		kvmclock_reset(vcpu);
2545 
2546 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2547 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2548 
2549 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2550 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2551 
2552 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2553 		}
2554 
2555 		vcpu->arch.time = data;
2556 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2557 
2558 		/* we verify if the enable bit is set... */
2559 		if (!(data & 1))
2560 			break;
2561 
2562 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2563 		     &vcpu->arch.pv_time, data & ~1ULL,
2564 		     sizeof(struct pvclock_vcpu_time_info)))
2565 			vcpu->arch.pv_time_enabled = false;
2566 		else
2567 			vcpu->arch.pv_time_enabled = true;
2568 
2569 		break;
2570 	}
2571 	case MSR_KVM_ASYNC_PF_EN:
2572 		if (kvm_pv_enable_async_pf(vcpu, data))
2573 			return 1;
2574 		break;
2575 	case MSR_KVM_STEAL_TIME:
2576 
2577 		if (unlikely(!sched_info_on()))
2578 			return 1;
2579 
2580 		if (data & KVM_STEAL_RESERVED_MASK)
2581 			return 1;
2582 
2583 		vcpu->arch.st.msr_val = data;
2584 
2585 		if (!(data & KVM_MSR_ENABLED))
2586 			break;
2587 
2588 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2589 
2590 		break;
2591 	case MSR_KVM_PV_EOI_EN:
2592 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2593 			return 1;
2594 		break;
2595 
2596 	case MSR_IA32_MCG_CTL:
2597 	case MSR_IA32_MCG_STATUS:
2598 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2599 		return set_msr_mce(vcpu, msr_info);
2600 
2601 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2602 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2603 		pr = true; /* fall through */
2604 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2605 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2606 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2607 			return kvm_pmu_set_msr(vcpu, msr_info);
2608 
2609 		if (pr || data != 0)
2610 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2611 				    "0x%x data 0x%llx\n", msr, data);
2612 		break;
2613 	case MSR_K7_CLK_CTL:
2614 		/*
2615 		 * Ignore all writes to this no longer documented MSR.
2616 		 * Writes are only relevant for old K7 processors,
2617 		 * all pre-dating SVM, but a recommended workaround from
2618 		 * AMD for these chips. It is possible to specify the
2619 		 * affected processor models on the command line, hence
2620 		 * the need to ignore the workaround.
2621 		 */
2622 		break;
2623 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2624 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2625 	case HV_X64_MSR_CRASH_CTL:
2626 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2627 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2628 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2629 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2630 		return kvm_hv_set_msr_common(vcpu, msr, data,
2631 					     msr_info->host_initiated);
2632 	case MSR_IA32_BBL_CR_CTL3:
2633 		/* Drop writes to this legacy MSR -- see rdmsr
2634 		 * counterpart for further detail.
2635 		 */
2636 		if (report_ignored_msrs)
2637 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2638 				msr, data);
2639 		break;
2640 	case MSR_AMD64_OSVW_ID_LENGTH:
2641 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2642 			return 1;
2643 		vcpu->arch.osvw.length = data;
2644 		break;
2645 	case MSR_AMD64_OSVW_STATUS:
2646 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2647 			return 1;
2648 		vcpu->arch.osvw.status = data;
2649 		break;
2650 	case MSR_PLATFORM_INFO:
2651 		if (!msr_info->host_initiated ||
2652 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2653 		     cpuid_fault_enabled(vcpu)))
2654 			return 1;
2655 		vcpu->arch.msr_platform_info = data;
2656 		break;
2657 	case MSR_MISC_FEATURES_ENABLES:
2658 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2659 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2660 		     !supports_cpuid_fault(vcpu)))
2661 			return 1;
2662 		vcpu->arch.msr_misc_features_enables = data;
2663 		break;
2664 	default:
2665 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2666 			return xen_hvm_config(vcpu, data);
2667 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2668 			return kvm_pmu_set_msr(vcpu, msr_info);
2669 		if (!ignore_msrs) {
2670 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2671 				    msr, data);
2672 			return 1;
2673 		} else {
2674 			if (report_ignored_msrs)
2675 				vcpu_unimpl(vcpu,
2676 					"ignored wrmsr: 0x%x data 0x%llx\n",
2677 					msr, data);
2678 			break;
2679 		}
2680 	}
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2684 
2685 
2686 /*
2687  * Reads an msr value (of 'msr_index') into 'pdata'.
2688  * Returns 0 on success, non-0 otherwise.
2689  * Assumes vcpu_load() was already called.
2690  */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2691 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2692 {
2693 	return kvm_x86_ops->get_msr(vcpu, msr);
2694 }
2695 EXPORT_SYMBOL_GPL(kvm_get_msr);
2696 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)2697 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2698 {
2699 	u64 data;
2700 	u64 mcg_cap = vcpu->arch.mcg_cap;
2701 	unsigned bank_num = mcg_cap & 0xff;
2702 
2703 	switch (msr) {
2704 	case MSR_IA32_P5_MC_ADDR:
2705 	case MSR_IA32_P5_MC_TYPE:
2706 		data = 0;
2707 		break;
2708 	case MSR_IA32_MCG_CAP:
2709 		data = vcpu->arch.mcg_cap;
2710 		break;
2711 	case MSR_IA32_MCG_CTL:
2712 		if (!(mcg_cap & MCG_CTL_P) && !host)
2713 			return 1;
2714 		data = vcpu->arch.mcg_ctl;
2715 		break;
2716 	case MSR_IA32_MCG_STATUS:
2717 		data = vcpu->arch.mcg_status;
2718 		break;
2719 	default:
2720 		if (msr >= MSR_IA32_MC0_CTL &&
2721 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2722 			u32 offset = array_index_nospec(
2723 				msr - MSR_IA32_MC0_CTL,
2724 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2725 
2726 			data = vcpu->arch.mce_banks[offset];
2727 			break;
2728 		}
2729 		return 1;
2730 	}
2731 	*pdata = data;
2732 	return 0;
2733 }
2734 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2735 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2736 {
2737 	switch (msr_info->index) {
2738 	case MSR_IA32_PLATFORM_ID:
2739 	case MSR_IA32_EBL_CR_POWERON:
2740 	case MSR_IA32_DEBUGCTLMSR:
2741 	case MSR_IA32_LASTBRANCHFROMIP:
2742 	case MSR_IA32_LASTBRANCHTOIP:
2743 	case MSR_IA32_LASTINTFROMIP:
2744 	case MSR_IA32_LASTINTTOIP:
2745 	case MSR_K8_SYSCFG:
2746 	case MSR_K8_TSEG_ADDR:
2747 	case MSR_K8_TSEG_MASK:
2748 	case MSR_K7_HWCR:
2749 	case MSR_VM_HSAVE_PA:
2750 	case MSR_K8_INT_PENDING_MSG:
2751 	case MSR_AMD64_NB_CFG:
2752 	case MSR_FAM10H_MMIO_CONF_BASE:
2753 	case MSR_AMD64_BU_CFG2:
2754 	case MSR_IA32_PERF_CTL:
2755 	case MSR_AMD64_DC_CFG:
2756 	case MSR_F15H_EX_CFG:
2757 		msr_info->data = 0;
2758 		break;
2759 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2760 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2761 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2762 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2763 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2764 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2765 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2766 		msr_info->data = 0;
2767 		break;
2768 	case MSR_IA32_UCODE_REV:
2769 		msr_info->data = vcpu->arch.microcode_version;
2770 		break;
2771 	case MSR_IA32_ARCH_CAPABILITIES:
2772 		if (!msr_info->host_initiated &&
2773 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2774 			return 1;
2775 		msr_info->data = vcpu->arch.arch_capabilities;
2776 		break;
2777 	case MSR_IA32_TSC:
2778 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2779 		break;
2780 	case MSR_MTRRcap:
2781 	case 0x200 ... 0x2ff:
2782 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2783 	case 0xcd: /* fsb frequency */
2784 		msr_info->data = 3;
2785 		break;
2786 		/*
2787 		 * MSR_EBC_FREQUENCY_ID
2788 		 * Conservative value valid for even the basic CPU models.
2789 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2790 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2791 		 * and 266MHz for model 3, or 4. Set Core Clock
2792 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2793 		 * 31:24) even though these are only valid for CPU
2794 		 * models > 2, however guests may end up dividing or
2795 		 * multiplying by zero otherwise.
2796 		 */
2797 	case MSR_EBC_FREQUENCY_ID:
2798 		msr_info->data = 1 << 24;
2799 		break;
2800 	case MSR_IA32_APICBASE:
2801 		msr_info->data = kvm_get_apic_base(vcpu);
2802 		break;
2803 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2804 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2805 		break;
2806 	case MSR_IA32_TSCDEADLINE:
2807 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2808 		break;
2809 	case MSR_IA32_TSC_ADJUST:
2810 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2811 		break;
2812 	case MSR_IA32_MISC_ENABLE:
2813 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2814 		break;
2815 	case MSR_IA32_SMBASE:
2816 		if (!msr_info->host_initiated)
2817 			return 1;
2818 		msr_info->data = vcpu->arch.smbase;
2819 		break;
2820 	case MSR_SMI_COUNT:
2821 		msr_info->data = vcpu->arch.smi_count;
2822 		break;
2823 	case MSR_IA32_PERF_STATUS:
2824 		/* TSC increment by tick */
2825 		msr_info->data = 1000ULL;
2826 		/* CPU multiplier */
2827 		msr_info->data |= (((uint64_t)4ULL) << 40);
2828 		break;
2829 	case MSR_EFER:
2830 		msr_info->data = vcpu->arch.efer;
2831 		break;
2832 	case MSR_KVM_WALL_CLOCK:
2833 	case MSR_KVM_WALL_CLOCK_NEW:
2834 		msr_info->data = vcpu->kvm->arch.wall_clock;
2835 		break;
2836 	case MSR_KVM_SYSTEM_TIME:
2837 	case MSR_KVM_SYSTEM_TIME_NEW:
2838 		msr_info->data = vcpu->arch.time;
2839 		break;
2840 	case MSR_KVM_ASYNC_PF_EN:
2841 		msr_info->data = vcpu->arch.apf.msr_val;
2842 		break;
2843 	case MSR_KVM_STEAL_TIME:
2844 		msr_info->data = vcpu->arch.st.msr_val;
2845 		break;
2846 	case MSR_KVM_PV_EOI_EN:
2847 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2848 		break;
2849 	case MSR_IA32_P5_MC_ADDR:
2850 	case MSR_IA32_P5_MC_TYPE:
2851 	case MSR_IA32_MCG_CAP:
2852 	case MSR_IA32_MCG_CTL:
2853 	case MSR_IA32_MCG_STATUS:
2854 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2855 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2856 				   msr_info->host_initiated);
2857 	case MSR_K7_CLK_CTL:
2858 		/*
2859 		 * Provide expected ramp-up count for K7. All other
2860 		 * are set to zero, indicating minimum divisors for
2861 		 * every field.
2862 		 *
2863 		 * This prevents guest kernels on AMD host with CPU
2864 		 * type 6, model 8 and higher from exploding due to
2865 		 * the rdmsr failing.
2866 		 */
2867 		msr_info->data = 0x20000000;
2868 		break;
2869 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2870 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2871 	case HV_X64_MSR_CRASH_CTL:
2872 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2873 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2874 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2875 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2876 		return kvm_hv_get_msr_common(vcpu,
2877 					     msr_info->index, &msr_info->data,
2878 					     msr_info->host_initiated);
2879 		break;
2880 	case MSR_IA32_BBL_CR_CTL3:
2881 		/* This legacy MSR exists but isn't fully documented in current
2882 		 * silicon.  It is however accessed by winxp in very narrow
2883 		 * scenarios where it sets bit #19, itself documented as
2884 		 * a "reserved" bit.  Best effort attempt to source coherent
2885 		 * read data here should the balance of the register be
2886 		 * interpreted by the guest:
2887 		 *
2888 		 * L2 cache control register 3: 64GB range, 256KB size,
2889 		 * enabled, latency 0x1, configured
2890 		 */
2891 		msr_info->data = 0xbe702111;
2892 		break;
2893 	case MSR_AMD64_OSVW_ID_LENGTH:
2894 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2895 			return 1;
2896 		msr_info->data = vcpu->arch.osvw.length;
2897 		break;
2898 	case MSR_AMD64_OSVW_STATUS:
2899 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2900 			return 1;
2901 		msr_info->data = vcpu->arch.osvw.status;
2902 		break;
2903 	case MSR_PLATFORM_INFO:
2904 		if (!msr_info->host_initiated &&
2905 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2906 			return 1;
2907 		msr_info->data = vcpu->arch.msr_platform_info;
2908 		break;
2909 	case MSR_MISC_FEATURES_ENABLES:
2910 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2911 		break;
2912 	default:
2913 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2914 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2915 		if (!ignore_msrs) {
2916 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2917 					       msr_info->index);
2918 			return 1;
2919 		} else {
2920 			if (report_ignored_msrs)
2921 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2922 					msr_info->index);
2923 			msr_info->data = 0;
2924 		}
2925 		break;
2926 	}
2927 	return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2930 
2931 /*
2932  * Read or write a bunch of msrs. All parameters are kernel addresses.
2933  *
2934  * @return number of msrs set successfully.
2935  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2936 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2937 		    struct kvm_msr_entry *entries,
2938 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2939 				  unsigned index, u64 *data))
2940 {
2941 	int i;
2942 
2943 	for (i = 0; i < msrs->nmsrs; ++i)
2944 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2945 			break;
2946 
2947 	return i;
2948 }
2949 
2950 /*
2951  * Read or write a bunch of msrs. Parameters are user addresses.
2952  *
2953  * @return number of msrs set successfully.
2954  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2955 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2956 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2957 				unsigned index, u64 *data),
2958 		  int writeback)
2959 {
2960 	struct kvm_msrs msrs;
2961 	struct kvm_msr_entry *entries;
2962 	int r, n;
2963 	unsigned size;
2964 
2965 	r = -EFAULT;
2966 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2967 		goto out;
2968 
2969 	r = -E2BIG;
2970 	if (msrs.nmsrs >= MAX_IO_MSRS)
2971 		goto out;
2972 
2973 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2974 	entries = memdup_user(user_msrs->entries, size);
2975 	if (IS_ERR(entries)) {
2976 		r = PTR_ERR(entries);
2977 		goto out;
2978 	}
2979 
2980 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2981 	if (r < 0)
2982 		goto out_free;
2983 
2984 	r = -EFAULT;
2985 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2986 		goto out_free;
2987 
2988 	r = n;
2989 
2990 out_free:
2991 	kfree(entries);
2992 out:
2993 	return r;
2994 }
2995 
kvm_can_mwait_in_guest(void)2996 static inline bool kvm_can_mwait_in_guest(void)
2997 {
2998 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2999 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3000 		boot_cpu_has(X86_FEATURE_ARAT);
3001 }
3002 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3003 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3004 {
3005 	int r = 0;
3006 
3007 	switch (ext) {
3008 	case KVM_CAP_IRQCHIP:
3009 	case KVM_CAP_HLT:
3010 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3011 	case KVM_CAP_SET_TSS_ADDR:
3012 	case KVM_CAP_EXT_CPUID:
3013 	case KVM_CAP_EXT_EMUL_CPUID:
3014 	case KVM_CAP_CLOCKSOURCE:
3015 	case KVM_CAP_PIT:
3016 	case KVM_CAP_NOP_IO_DELAY:
3017 	case KVM_CAP_MP_STATE:
3018 	case KVM_CAP_SYNC_MMU:
3019 	case KVM_CAP_USER_NMI:
3020 	case KVM_CAP_REINJECT_CONTROL:
3021 	case KVM_CAP_IRQ_INJECT_STATUS:
3022 	case KVM_CAP_IOEVENTFD:
3023 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3024 	case KVM_CAP_PIT2:
3025 	case KVM_CAP_PIT_STATE2:
3026 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3027 	case KVM_CAP_XEN_HVM:
3028 	case KVM_CAP_VCPU_EVENTS:
3029 	case KVM_CAP_HYPERV:
3030 	case KVM_CAP_HYPERV_VAPIC:
3031 	case KVM_CAP_HYPERV_SPIN:
3032 	case KVM_CAP_HYPERV_SYNIC:
3033 	case KVM_CAP_HYPERV_SYNIC2:
3034 	case KVM_CAP_HYPERV_VP_INDEX:
3035 	case KVM_CAP_HYPERV_EVENTFD:
3036 	case KVM_CAP_HYPERV_TLBFLUSH:
3037 	case KVM_CAP_PCI_SEGMENT:
3038 	case KVM_CAP_DEBUGREGS:
3039 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3040 	case KVM_CAP_XSAVE:
3041 	case KVM_CAP_ASYNC_PF:
3042 	case KVM_CAP_GET_TSC_KHZ:
3043 	case KVM_CAP_KVMCLOCK_CTRL:
3044 	case KVM_CAP_READONLY_MEM:
3045 	case KVM_CAP_HYPERV_TIME:
3046 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3047 	case KVM_CAP_TSC_DEADLINE_TIMER:
3048 	case KVM_CAP_ENABLE_CAP_VM:
3049 	case KVM_CAP_DISABLE_QUIRKS:
3050 	case KVM_CAP_SET_BOOT_CPU_ID:
3051  	case KVM_CAP_SPLIT_IRQCHIP:
3052 	case KVM_CAP_IMMEDIATE_EXIT:
3053 	case KVM_CAP_GET_MSR_FEATURES:
3054 	case KVM_CAP_MSR_PLATFORM_INFO:
3055 		r = 1;
3056 		break;
3057 	case KVM_CAP_SYNC_REGS:
3058 		r = KVM_SYNC_X86_VALID_FIELDS;
3059 		break;
3060 	case KVM_CAP_ADJUST_CLOCK:
3061 		r = KVM_CLOCK_TSC_STABLE;
3062 		break;
3063 	case KVM_CAP_X86_DISABLE_EXITS:
3064 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3065 		if(kvm_can_mwait_in_guest())
3066 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3067 		break;
3068 	case KVM_CAP_X86_SMM:
3069 		/* SMBASE is usually relocated above 1M on modern chipsets,
3070 		 * and SMM handlers might indeed rely on 4G segment limits,
3071 		 * so do not report SMM to be available if real mode is
3072 		 * emulated via vm86 mode.  Still, do not go to great lengths
3073 		 * to avoid userspace's usage of the feature, because it is a
3074 		 * fringe case that is not enabled except via specific settings
3075 		 * of the module parameters.
3076 		 */
3077 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3078 		break;
3079 	case KVM_CAP_VAPIC:
3080 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3081 		break;
3082 	case KVM_CAP_NR_VCPUS:
3083 		r = KVM_SOFT_MAX_VCPUS;
3084 		break;
3085 	case KVM_CAP_MAX_VCPUS:
3086 		r = KVM_MAX_VCPUS;
3087 		break;
3088 	case KVM_CAP_MAX_VCPU_ID:
3089 		r = KVM_MAX_VCPU_ID;
3090 		break;
3091 	case KVM_CAP_NR_MEMSLOTS:
3092 		r = KVM_USER_MEM_SLOTS;
3093 		break;
3094 	case KVM_CAP_PV_MMU:	/* obsolete */
3095 		r = 0;
3096 		break;
3097 	case KVM_CAP_MCE:
3098 		r = KVM_MAX_MCE_BANKS;
3099 		break;
3100 	case KVM_CAP_XCRS:
3101 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3102 		break;
3103 	case KVM_CAP_TSC_CONTROL:
3104 		r = kvm_has_tsc_control;
3105 		break;
3106 	case KVM_CAP_X2APIC_API:
3107 		r = KVM_X2APIC_API_VALID_FLAGS;
3108 		break;
3109 	case KVM_CAP_NESTED_STATE:
3110 		r = kvm_x86_ops->get_nested_state ?
3111 			kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3112 		break;
3113 	default:
3114 		break;
3115 	}
3116 	return r;
3117 
3118 }
3119 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3120 long kvm_arch_dev_ioctl(struct file *filp,
3121 			unsigned int ioctl, unsigned long arg)
3122 {
3123 	void __user *argp = (void __user *)arg;
3124 	long r;
3125 
3126 	switch (ioctl) {
3127 	case KVM_GET_MSR_INDEX_LIST: {
3128 		struct kvm_msr_list __user *user_msr_list = argp;
3129 		struct kvm_msr_list msr_list;
3130 		unsigned n;
3131 
3132 		r = -EFAULT;
3133 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3134 			goto out;
3135 		n = msr_list.nmsrs;
3136 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3137 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3138 			goto out;
3139 		r = -E2BIG;
3140 		if (n < msr_list.nmsrs)
3141 			goto out;
3142 		r = -EFAULT;
3143 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3144 				 num_msrs_to_save * sizeof(u32)))
3145 			goto out;
3146 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3147 				 &emulated_msrs,
3148 				 num_emulated_msrs * sizeof(u32)))
3149 			goto out;
3150 		r = 0;
3151 		break;
3152 	}
3153 	case KVM_GET_SUPPORTED_CPUID:
3154 	case KVM_GET_EMULATED_CPUID: {
3155 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3156 		struct kvm_cpuid2 cpuid;
3157 
3158 		r = -EFAULT;
3159 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3160 			goto out;
3161 
3162 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3163 					    ioctl);
3164 		if (r)
3165 			goto out;
3166 
3167 		r = -EFAULT;
3168 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3169 			goto out;
3170 		r = 0;
3171 		break;
3172 	}
3173 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3174 		r = -EFAULT;
3175 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3176 				 sizeof(kvm_mce_cap_supported)))
3177 			goto out;
3178 		r = 0;
3179 		break;
3180 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3181 		struct kvm_msr_list __user *user_msr_list = argp;
3182 		struct kvm_msr_list msr_list;
3183 		unsigned int n;
3184 
3185 		r = -EFAULT;
3186 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3187 			goto out;
3188 		n = msr_list.nmsrs;
3189 		msr_list.nmsrs = num_msr_based_features;
3190 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3191 			goto out;
3192 		r = -E2BIG;
3193 		if (n < msr_list.nmsrs)
3194 			goto out;
3195 		r = -EFAULT;
3196 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3197 				 num_msr_based_features * sizeof(u32)))
3198 			goto out;
3199 		r = 0;
3200 		break;
3201 	}
3202 	case KVM_GET_MSRS:
3203 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3204 		break;
3205 	}
3206 	default:
3207 		r = -EINVAL;
3208 	}
3209 out:
3210 	return r;
3211 }
3212 
wbinvd_ipi(void * garbage)3213 static void wbinvd_ipi(void *garbage)
3214 {
3215 	wbinvd();
3216 }
3217 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3218 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3219 {
3220 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3221 }
3222 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3223 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3224 {
3225 	/* Address WBINVD may be executed by guest */
3226 	if (need_emulate_wbinvd(vcpu)) {
3227 		if (kvm_x86_ops->has_wbinvd_exit())
3228 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3229 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3230 			smp_call_function_single(vcpu->cpu,
3231 					wbinvd_ipi, NULL, 1);
3232 	}
3233 
3234 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3235 
3236 	/* Apply any externally detected TSC adjustments (due to suspend) */
3237 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3238 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3239 		vcpu->arch.tsc_offset_adjustment = 0;
3240 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3241 	}
3242 
3243 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3244 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3245 				rdtsc() - vcpu->arch.last_host_tsc;
3246 		if (tsc_delta < 0)
3247 			mark_tsc_unstable("KVM discovered backwards TSC");
3248 
3249 		if (kvm_check_tsc_unstable()) {
3250 			u64 offset = kvm_compute_tsc_offset(vcpu,
3251 						vcpu->arch.last_guest_tsc);
3252 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3253 			vcpu->arch.tsc_catchup = 1;
3254 		}
3255 
3256 		if (kvm_lapic_hv_timer_in_use(vcpu))
3257 			kvm_lapic_restart_hv_timer(vcpu);
3258 
3259 		/*
3260 		 * On a host with synchronized TSC, there is no need to update
3261 		 * kvmclock on vcpu->cpu migration
3262 		 */
3263 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3264 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3265 		if (vcpu->cpu != cpu)
3266 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3267 		vcpu->cpu = cpu;
3268 	}
3269 
3270 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3271 }
3272 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3273 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3274 {
3275 	struct kvm_host_map map;
3276 	struct kvm_steal_time *st;
3277 
3278 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3279 		return;
3280 
3281 	if (vcpu->arch.st.preempted)
3282 		return;
3283 
3284 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3285 			&vcpu->arch.st.cache, true))
3286 		return;
3287 
3288 	st = map.hva +
3289 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3290 
3291 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3292 
3293 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3294 }
3295 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3296 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3297 {
3298 	int idx;
3299 
3300 	if (vcpu->preempted)
3301 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3302 
3303 	/*
3304 	 * Disable page faults because we're in atomic context here.
3305 	 * kvm_write_guest_offset_cached() would call might_fault()
3306 	 * that relies on pagefault_disable() to tell if there's a
3307 	 * bug. NOTE: the write to guest memory may not go through if
3308 	 * during postcopy live migration or if there's heavy guest
3309 	 * paging.
3310 	 */
3311 	pagefault_disable();
3312 	/*
3313 	 * kvm_memslots() will be called by
3314 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3315 	 */
3316 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3317 	kvm_steal_time_set_preempted(vcpu);
3318 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3319 	pagefault_enable();
3320 	kvm_x86_ops->vcpu_put(vcpu);
3321 	vcpu->arch.last_host_tsc = rdtsc();
3322 	/*
3323 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3324 	 * on every vmexit, but if not, we might have a stale dr6 from the
3325 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3326 	 */
3327 	set_debugreg(0, 6);
3328 }
3329 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3330 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3331 				    struct kvm_lapic_state *s)
3332 {
3333 	if (vcpu->arch.apicv_active)
3334 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3335 
3336 	return kvm_apic_get_state(vcpu, s);
3337 }
3338 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3339 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3340 				    struct kvm_lapic_state *s)
3341 {
3342 	int r;
3343 
3344 	r = kvm_apic_set_state(vcpu, s);
3345 	if (r)
3346 		return r;
3347 	update_cr8_intercept(vcpu);
3348 
3349 	return 0;
3350 }
3351 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)3352 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3353 {
3354 	return (!lapic_in_kernel(vcpu) ||
3355 		kvm_apic_accept_pic_intr(vcpu));
3356 }
3357 
3358 /*
3359  * if userspace requested an interrupt window, check that the
3360  * interrupt window is open.
3361  *
3362  * No need to exit to userspace if we already have an interrupt queued.
3363  */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)3364 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3365 {
3366 	return kvm_arch_interrupt_allowed(vcpu) &&
3367 		!kvm_cpu_has_interrupt(vcpu) &&
3368 		!kvm_event_needs_reinjection(vcpu) &&
3369 		kvm_cpu_accept_dm_intr(vcpu);
3370 }
3371 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)3372 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3373 				    struct kvm_interrupt *irq)
3374 {
3375 	if (irq->irq >= KVM_NR_INTERRUPTS)
3376 		return -EINVAL;
3377 
3378 	if (!irqchip_in_kernel(vcpu->kvm)) {
3379 		kvm_queue_interrupt(vcpu, irq->irq, false);
3380 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3381 		return 0;
3382 	}
3383 
3384 	/*
3385 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3386 	 * fail for in-kernel 8259.
3387 	 */
3388 	if (pic_in_kernel(vcpu->kvm))
3389 		return -ENXIO;
3390 
3391 	if (vcpu->arch.pending_external_vector != -1)
3392 		return -EEXIST;
3393 
3394 	vcpu->arch.pending_external_vector = irq->irq;
3395 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3396 	return 0;
3397 }
3398 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3399 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3400 {
3401 	kvm_inject_nmi(vcpu);
3402 
3403 	return 0;
3404 }
3405 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)3406 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3407 {
3408 	kvm_make_request(KVM_REQ_SMI, vcpu);
3409 
3410 	return 0;
3411 }
3412 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3413 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3414 					   struct kvm_tpr_access_ctl *tac)
3415 {
3416 	if (tac->flags)
3417 		return -EINVAL;
3418 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3419 	return 0;
3420 }
3421 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3422 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3423 					u64 mcg_cap)
3424 {
3425 	int r;
3426 	unsigned bank_num = mcg_cap & 0xff, bank;
3427 
3428 	r = -EINVAL;
3429 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3430 		goto out;
3431 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3432 		goto out;
3433 	r = 0;
3434 	vcpu->arch.mcg_cap = mcg_cap;
3435 	/* Init IA32_MCG_CTL to all 1s */
3436 	if (mcg_cap & MCG_CTL_P)
3437 		vcpu->arch.mcg_ctl = ~(u64)0;
3438 	/* Init IA32_MCi_CTL to all 1s */
3439 	for (bank = 0; bank < bank_num; bank++)
3440 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3441 
3442 	if (kvm_x86_ops->setup_mce)
3443 		kvm_x86_ops->setup_mce(vcpu);
3444 out:
3445 	return r;
3446 }
3447 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3448 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3449 				      struct kvm_x86_mce *mce)
3450 {
3451 	u64 mcg_cap = vcpu->arch.mcg_cap;
3452 	unsigned bank_num = mcg_cap & 0xff;
3453 	u64 *banks = vcpu->arch.mce_banks;
3454 
3455 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3456 		return -EINVAL;
3457 	/*
3458 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3459 	 * reporting is disabled
3460 	 */
3461 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3462 	    vcpu->arch.mcg_ctl != ~(u64)0)
3463 		return 0;
3464 	banks += 4 * mce->bank;
3465 	/*
3466 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3467 	 * reporting is disabled for the bank
3468 	 */
3469 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3470 		return 0;
3471 	if (mce->status & MCI_STATUS_UC) {
3472 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3473 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3474 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3475 			return 0;
3476 		}
3477 		if (banks[1] & MCI_STATUS_VAL)
3478 			mce->status |= MCI_STATUS_OVER;
3479 		banks[2] = mce->addr;
3480 		banks[3] = mce->misc;
3481 		vcpu->arch.mcg_status = mce->mcg_status;
3482 		banks[1] = mce->status;
3483 		kvm_queue_exception(vcpu, MC_VECTOR);
3484 	} else if (!(banks[1] & MCI_STATUS_VAL)
3485 		   || !(banks[1] & MCI_STATUS_UC)) {
3486 		if (banks[1] & MCI_STATUS_VAL)
3487 			mce->status |= MCI_STATUS_OVER;
3488 		banks[2] = mce->addr;
3489 		banks[3] = mce->misc;
3490 		banks[1] = mce->status;
3491 	} else
3492 		banks[1] |= MCI_STATUS_OVER;
3493 	return 0;
3494 }
3495 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3496 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3497 					       struct kvm_vcpu_events *events)
3498 {
3499 	process_nmi(vcpu);
3500 	/*
3501 	 * FIXME: pass injected and pending separately.  This is only
3502 	 * needed for nested virtualization, whose state cannot be
3503 	 * migrated yet.  For now we can combine them.
3504 	 */
3505 	events->exception.injected =
3506 		(vcpu->arch.exception.pending ||
3507 		 vcpu->arch.exception.injected) &&
3508 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3509 	events->exception.nr = vcpu->arch.exception.nr;
3510 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3511 	events->exception.pad = 0;
3512 	events->exception.error_code = vcpu->arch.exception.error_code;
3513 
3514 	events->interrupt.injected =
3515 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3516 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3517 	events->interrupt.soft = 0;
3518 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3519 
3520 	events->nmi.injected = vcpu->arch.nmi_injected;
3521 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3522 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3523 	events->nmi.pad = 0;
3524 
3525 	events->sipi_vector = 0; /* never valid when reporting to user space */
3526 
3527 	events->smi.smm = is_smm(vcpu);
3528 	events->smi.pending = vcpu->arch.smi_pending;
3529 	events->smi.smm_inside_nmi =
3530 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3531 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3532 
3533 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3534 			 | KVM_VCPUEVENT_VALID_SHADOW
3535 			 | KVM_VCPUEVENT_VALID_SMM);
3536 	memset(&events->reserved, 0, sizeof(events->reserved));
3537 }
3538 
3539 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3540 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3541 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3542 					      struct kvm_vcpu_events *events)
3543 {
3544 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3545 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3546 			      | KVM_VCPUEVENT_VALID_SHADOW
3547 			      | KVM_VCPUEVENT_VALID_SMM))
3548 		return -EINVAL;
3549 
3550 	if (events->exception.injected &&
3551 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3552 	     is_guest_mode(vcpu)))
3553 		return -EINVAL;
3554 
3555 	/* INITs are latched while in SMM */
3556 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3557 	    (events->smi.smm || events->smi.pending) &&
3558 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3559 		return -EINVAL;
3560 
3561 	process_nmi(vcpu);
3562 	vcpu->arch.exception.injected = false;
3563 	vcpu->arch.exception.pending = events->exception.injected;
3564 	vcpu->arch.exception.nr = events->exception.nr;
3565 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3566 	vcpu->arch.exception.error_code = events->exception.error_code;
3567 
3568 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3569 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3570 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3571 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3572 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3573 						  events->interrupt.shadow);
3574 
3575 	vcpu->arch.nmi_injected = events->nmi.injected;
3576 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3577 		vcpu->arch.nmi_pending = events->nmi.pending;
3578 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3579 
3580 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3581 	    lapic_in_kernel(vcpu))
3582 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3583 
3584 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3585 		u32 hflags = vcpu->arch.hflags;
3586 		if (events->smi.smm)
3587 			hflags |= HF_SMM_MASK;
3588 		else
3589 			hflags &= ~HF_SMM_MASK;
3590 		kvm_set_hflags(vcpu, hflags);
3591 
3592 		vcpu->arch.smi_pending = events->smi.pending;
3593 
3594 		if (events->smi.smm) {
3595 			if (events->smi.smm_inside_nmi)
3596 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3597 			else
3598 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3599 			if (lapic_in_kernel(vcpu)) {
3600 				if (events->smi.latched_init)
3601 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3602 				else
3603 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3604 			}
3605 		}
3606 	}
3607 
3608 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3609 
3610 	return 0;
3611 }
3612 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3613 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3614 					     struct kvm_debugregs *dbgregs)
3615 {
3616 	unsigned long val;
3617 
3618 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3619 	kvm_get_dr(vcpu, 6, &val);
3620 	dbgregs->dr6 = val;
3621 	dbgregs->dr7 = vcpu->arch.dr7;
3622 	dbgregs->flags = 0;
3623 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3624 }
3625 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3626 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3627 					    struct kvm_debugregs *dbgregs)
3628 {
3629 	if (dbgregs->flags)
3630 		return -EINVAL;
3631 
3632 	if (dbgregs->dr6 & ~0xffffffffull)
3633 		return -EINVAL;
3634 	if (dbgregs->dr7 & ~0xffffffffull)
3635 		return -EINVAL;
3636 
3637 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3638 	kvm_update_dr0123(vcpu);
3639 	vcpu->arch.dr6 = dbgregs->dr6;
3640 	kvm_update_dr6(vcpu);
3641 	vcpu->arch.dr7 = dbgregs->dr7;
3642 	kvm_update_dr7(vcpu);
3643 
3644 	return 0;
3645 }
3646 
3647 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3648 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3649 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3650 {
3651 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3652 	u64 xstate_bv = xsave->header.xfeatures;
3653 	u64 valid;
3654 
3655 	/*
3656 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3657 	 * leaves 0 and 1 in the loop below.
3658 	 */
3659 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3660 
3661 	/* Set XSTATE_BV */
3662 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3663 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3664 
3665 	/*
3666 	 * Copy each region from the possibly compacted offset to the
3667 	 * non-compacted offset.
3668 	 */
3669 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3670 	while (valid) {
3671 		u64 feature = valid & -valid;
3672 		int index = fls64(feature) - 1;
3673 		void *src = get_xsave_addr(xsave, feature);
3674 
3675 		if (src) {
3676 			u32 size, offset, ecx, edx;
3677 			cpuid_count(XSTATE_CPUID, index,
3678 				    &size, &offset, &ecx, &edx);
3679 			if (feature == XFEATURE_MASK_PKRU)
3680 				memcpy(dest + offset, &vcpu->arch.pkru,
3681 				       sizeof(vcpu->arch.pkru));
3682 			else
3683 				memcpy(dest + offset, src, size);
3684 
3685 		}
3686 
3687 		valid -= feature;
3688 	}
3689 }
3690 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3691 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3692 {
3693 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3694 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3695 	u64 valid;
3696 
3697 	/*
3698 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3699 	 * leaves 0 and 1 in the loop below.
3700 	 */
3701 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3702 
3703 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3704 	xsave->header.xfeatures = xstate_bv;
3705 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3706 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3707 
3708 	/*
3709 	 * Copy each region from the non-compacted offset to the
3710 	 * possibly compacted offset.
3711 	 */
3712 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3713 	while (valid) {
3714 		u64 feature = valid & -valid;
3715 		int index = fls64(feature) - 1;
3716 		void *dest = get_xsave_addr(xsave, feature);
3717 
3718 		if (dest) {
3719 			u32 size, offset, ecx, edx;
3720 			cpuid_count(XSTATE_CPUID, index,
3721 				    &size, &offset, &ecx, &edx);
3722 			if (feature == XFEATURE_MASK_PKRU)
3723 				memcpy(&vcpu->arch.pkru, src + offset,
3724 				       sizeof(vcpu->arch.pkru));
3725 			else
3726 				memcpy(dest, src + offset, size);
3727 		}
3728 
3729 		valid -= feature;
3730 	}
3731 }
3732 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3733 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3734 					 struct kvm_xsave *guest_xsave)
3735 {
3736 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3737 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3738 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3739 	} else {
3740 		memcpy(guest_xsave->region,
3741 			&vcpu->arch.guest_fpu.state.fxsave,
3742 			sizeof(struct fxregs_state));
3743 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3744 			XFEATURE_MASK_FPSSE;
3745 	}
3746 }
3747 
3748 #define XSAVE_MXCSR_OFFSET 24
3749 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3750 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3751 					struct kvm_xsave *guest_xsave)
3752 {
3753 	u64 xstate_bv =
3754 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3755 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3756 
3757 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3758 		/*
3759 		 * Here we allow setting states that are not present in
3760 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3761 		 * with old userspace.
3762 		 */
3763 		if (xstate_bv & ~kvm_supported_xcr0() ||
3764 			mxcsr & ~mxcsr_feature_mask)
3765 			return -EINVAL;
3766 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3767 	} else {
3768 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3769 			mxcsr & ~mxcsr_feature_mask)
3770 			return -EINVAL;
3771 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3772 			guest_xsave->region, sizeof(struct fxregs_state));
3773 	}
3774 	return 0;
3775 }
3776 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3777 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3778 					struct kvm_xcrs *guest_xcrs)
3779 {
3780 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3781 		guest_xcrs->nr_xcrs = 0;
3782 		return;
3783 	}
3784 
3785 	guest_xcrs->nr_xcrs = 1;
3786 	guest_xcrs->flags = 0;
3787 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3788 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3789 }
3790 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3791 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3792 				       struct kvm_xcrs *guest_xcrs)
3793 {
3794 	int i, r = 0;
3795 
3796 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3797 		return -EINVAL;
3798 
3799 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3800 		return -EINVAL;
3801 
3802 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3803 		/* Only support XCR0 currently */
3804 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3805 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3806 				guest_xcrs->xcrs[i].value);
3807 			break;
3808 		}
3809 	if (r)
3810 		r = -EINVAL;
3811 	return r;
3812 }
3813 
3814 /*
3815  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3816  * stopped by the hypervisor.  This function will be called from the host only.
3817  * EINVAL is returned when the host attempts to set the flag for a guest that
3818  * does not support pv clocks.
3819  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3820 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3821 {
3822 	if (!vcpu->arch.pv_time_enabled)
3823 		return -EINVAL;
3824 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3825 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3826 	return 0;
3827 }
3828 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)3829 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3830 				     struct kvm_enable_cap *cap)
3831 {
3832 	if (cap->flags)
3833 		return -EINVAL;
3834 
3835 	switch (cap->cap) {
3836 	case KVM_CAP_HYPERV_SYNIC2:
3837 		if (cap->args[0])
3838 			return -EINVAL;
3839 	case KVM_CAP_HYPERV_SYNIC:
3840 		if (!irqchip_in_kernel(vcpu->kvm))
3841 			return -EINVAL;
3842 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3843 					     KVM_CAP_HYPERV_SYNIC2);
3844 	default:
3845 		return -EINVAL;
3846 	}
3847 }
3848 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3849 long kvm_arch_vcpu_ioctl(struct file *filp,
3850 			 unsigned int ioctl, unsigned long arg)
3851 {
3852 	struct kvm_vcpu *vcpu = filp->private_data;
3853 	void __user *argp = (void __user *)arg;
3854 	int r;
3855 	union {
3856 		struct kvm_lapic_state *lapic;
3857 		struct kvm_xsave *xsave;
3858 		struct kvm_xcrs *xcrs;
3859 		void *buffer;
3860 	} u;
3861 
3862 	vcpu_load(vcpu);
3863 
3864 	u.buffer = NULL;
3865 	switch (ioctl) {
3866 	case KVM_GET_LAPIC: {
3867 		r = -EINVAL;
3868 		if (!lapic_in_kernel(vcpu))
3869 			goto out;
3870 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3871 
3872 		r = -ENOMEM;
3873 		if (!u.lapic)
3874 			goto out;
3875 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3876 		if (r)
3877 			goto out;
3878 		r = -EFAULT;
3879 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3880 			goto out;
3881 		r = 0;
3882 		break;
3883 	}
3884 	case KVM_SET_LAPIC: {
3885 		r = -EINVAL;
3886 		if (!lapic_in_kernel(vcpu))
3887 			goto out;
3888 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3889 		if (IS_ERR(u.lapic)) {
3890 			r = PTR_ERR(u.lapic);
3891 			goto out_nofree;
3892 		}
3893 
3894 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3895 		break;
3896 	}
3897 	case KVM_INTERRUPT: {
3898 		struct kvm_interrupt irq;
3899 
3900 		r = -EFAULT;
3901 		if (copy_from_user(&irq, argp, sizeof irq))
3902 			goto out;
3903 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3904 		break;
3905 	}
3906 	case KVM_NMI: {
3907 		r = kvm_vcpu_ioctl_nmi(vcpu);
3908 		break;
3909 	}
3910 	case KVM_SMI: {
3911 		r = kvm_vcpu_ioctl_smi(vcpu);
3912 		break;
3913 	}
3914 	case KVM_SET_CPUID: {
3915 		struct kvm_cpuid __user *cpuid_arg = argp;
3916 		struct kvm_cpuid cpuid;
3917 
3918 		r = -EFAULT;
3919 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3920 			goto out;
3921 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3922 		break;
3923 	}
3924 	case KVM_SET_CPUID2: {
3925 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3926 		struct kvm_cpuid2 cpuid;
3927 
3928 		r = -EFAULT;
3929 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3930 			goto out;
3931 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3932 					      cpuid_arg->entries);
3933 		break;
3934 	}
3935 	case KVM_GET_CPUID2: {
3936 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3937 		struct kvm_cpuid2 cpuid;
3938 
3939 		r = -EFAULT;
3940 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3941 			goto out;
3942 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3943 					      cpuid_arg->entries);
3944 		if (r)
3945 			goto out;
3946 		r = -EFAULT;
3947 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3948 			goto out;
3949 		r = 0;
3950 		break;
3951 	}
3952 	case KVM_GET_MSRS: {
3953 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3954 		r = msr_io(vcpu, argp, do_get_msr, 1);
3955 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3956 		break;
3957 	}
3958 	case KVM_SET_MSRS: {
3959 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3960 		r = msr_io(vcpu, argp, do_set_msr, 0);
3961 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3962 		break;
3963 	}
3964 	case KVM_TPR_ACCESS_REPORTING: {
3965 		struct kvm_tpr_access_ctl tac;
3966 
3967 		r = -EFAULT;
3968 		if (copy_from_user(&tac, argp, sizeof tac))
3969 			goto out;
3970 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3971 		if (r)
3972 			goto out;
3973 		r = -EFAULT;
3974 		if (copy_to_user(argp, &tac, sizeof tac))
3975 			goto out;
3976 		r = 0;
3977 		break;
3978 	};
3979 	case KVM_SET_VAPIC_ADDR: {
3980 		struct kvm_vapic_addr va;
3981 		int idx;
3982 
3983 		r = -EINVAL;
3984 		if (!lapic_in_kernel(vcpu))
3985 			goto out;
3986 		r = -EFAULT;
3987 		if (copy_from_user(&va, argp, sizeof va))
3988 			goto out;
3989 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3990 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3991 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3992 		break;
3993 	}
3994 	case KVM_X86_SETUP_MCE: {
3995 		u64 mcg_cap;
3996 
3997 		r = -EFAULT;
3998 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3999 			goto out;
4000 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4001 		break;
4002 	}
4003 	case KVM_X86_SET_MCE: {
4004 		struct kvm_x86_mce mce;
4005 
4006 		r = -EFAULT;
4007 		if (copy_from_user(&mce, argp, sizeof mce))
4008 			goto out;
4009 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4010 		break;
4011 	}
4012 	case KVM_GET_VCPU_EVENTS: {
4013 		struct kvm_vcpu_events events;
4014 
4015 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4016 
4017 		r = -EFAULT;
4018 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4019 			break;
4020 		r = 0;
4021 		break;
4022 	}
4023 	case KVM_SET_VCPU_EVENTS: {
4024 		struct kvm_vcpu_events events;
4025 
4026 		r = -EFAULT;
4027 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4028 			break;
4029 
4030 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4031 		break;
4032 	}
4033 	case KVM_GET_DEBUGREGS: {
4034 		struct kvm_debugregs dbgregs;
4035 
4036 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4037 
4038 		r = -EFAULT;
4039 		if (copy_to_user(argp, &dbgregs,
4040 				 sizeof(struct kvm_debugregs)))
4041 			break;
4042 		r = 0;
4043 		break;
4044 	}
4045 	case KVM_SET_DEBUGREGS: {
4046 		struct kvm_debugregs dbgregs;
4047 
4048 		r = -EFAULT;
4049 		if (copy_from_user(&dbgregs, argp,
4050 				   sizeof(struct kvm_debugregs)))
4051 			break;
4052 
4053 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4054 		break;
4055 	}
4056 	case KVM_GET_XSAVE: {
4057 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4058 		r = -ENOMEM;
4059 		if (!u.xsave)
4060 			break;
4061 
4062 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4063 
4064 		r = -EFAULT;
4065 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4066 			break;
4067 		r = 0;
4068 		break;
4069 	}
4070 	case KVM_SET_XSAVE: {
4071 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4072 		if (IS_ERR(u.xsave)) {
4073 			r = PTR_ERR(u.xsave);
4074 			goto out_nofree;
4075 		}
4076 
4077 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4078 		break;
4079 	}
4080 	case KVM_GET_XCRS: {
4081 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4082 		r = -ENOMEM;
4083 		if (!u.xcrs)
4084 			break;
4085 
4086 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4087 
4088 		r = -EFAULT;
4089 		if (copy_to_user(argp, u.xcrs,
4090 				 sizeof(struct kvm_xcrs)))
4091 			break;
4092 		r = 0;
4093 		break;
4094 	}
4095 	case KVM_SET_XCRS: {
4096 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4097 		if (IS_ERR(u.xcrs)) {
4098 			r = PTR_ERR(u.xcrs);
4099 			goto out_nofree;
4100 		}
4101 
4102 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4103 		break;
4104 	}
4105 	case KVM_SET_TSC_KHZ: {
4106 		u32 user_tsc_khz;
4107 
4108 		r = -EINVAL;
4109 		user_tsc_khz = (u32)arg;
4110 
4111 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4112 			goto out;
4113 
4114 		if (user_tsc_khz == 0)
4115 			user_tsc_khz = tsc_khz;
4116 
4117 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4118 			r = 0;
4119 
4120 		goto out;
4121 	}
4122 	case KVM_GET_TSC_KHZ: {
4123 		r = vcpu->arch.virtual_tsc_khz;
4124 		goto out;
4125 	}
4126 	case KVM_KVMCLOCK_CTRL: {
4127 		r = kvm_set_guest_paused(vcpu);
4128 		goto out;
4129 	}
4130 	case KVM_ENABLE_CAP: {
4131 		struct kvm_enable_cap cap;
4132 
4133 		r = -EFAULT;
4134 		if (copy_from_user(&cap, argp, sizeof(cap)))
4135 			goto out;
4136 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4137 		break;
4138 	}
4139 	case KVM_GET_NESTED_STATE: {
4140 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4141 		u32 user_data_size;
4142 
4143 		r = -EINVAL;
4144 		if (!kvm_x86_ops->get_nested_state)
4145 			break;
4146 
4147 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4148 		r = -EFAULT;
4149 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4150 			break;
4151 
4152 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4153 						  user_data_size);
4154 		if (r < 0)
4155 			break;
4156 
4157 		if (r > user_data_size) {
4158 			if (put_user(r, &user_kvm_nested_state->size))
4159 				r = -EFAULT;
4160 			else
4161 				r = -E2BIG;
4162 			break;
4163 		}
4164 
4165 		r = 0;
4166 		break;
4167 	}
4168 	case KVM_SET_NESTED_STATE: {
4169 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4170 		struct kvm_nested_state kvm_state;
4171 		int idx;
4172 
4173 		r = -EINVAL;
4174 		if (!kvm_x86_ops->set_nested_state)
4175 			break;
4176 
4177 		r = -EFAULT;
4178 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4179 			break;
4180 
4181 		r = -EINVAL;
4182 		if (kvm_state.size < sizeof(kvm_state))
4183 			break;
4184 
4185 		if (kvm_state.flags &
4186 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4187 			break;
4188 
4189 		/* nested_run_pending implies guest_mode.  */
4190 		if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4191 			break;
4192 
4193 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4194 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4195 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4196 		break;
4197 	}
4198 	default:
4199 		r = -EINVAL;
4200 	}
4201 out:
4202 	kfree(u.buffer);
4203 out_nofree:
4204 	vcpu_put(vcpu);
4205 	return r;
4206 }
4207 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)4208 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4209 {
4210 	return VM_FAULT_SIGBUS;
4211 }
4212 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)4213 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4214 {
4215 	int ret;
4216 
4217 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4218 		return -EINVAL;
4219 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4220 	return ret;
4221 }
4222 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4223 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4224 					      u64 ident_addr)
4225 {
4226 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4227 }
4228 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)4229 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4230 					 unsigned long kvm_nr_mmu_pages)
4231 {
4232 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4233 		return -EINVAL;
4234 
4235 	mutex_lock(&kvm->slots_lock);
4236 
4237 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4238 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4239 
4240 	mutex_unlock(&kvm->slots_lock);
4241 	return 0;
4242 }
4243 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)4244 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4245 {
4246 	return kvm->arch.n_max_mmu_pages;
4247 }
4248 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4249 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4250 {
4251 	struct kvm_pic *pic = kvm->arch.vpic;
4252 	int r;
4253 
4254 	r = 0;
4255 	switch (chip->chip_id) {
4256 	case KVM_IRQCHIP_PIC_MASTER:
4257 		memcpy(&chip->chip.pic, &pic->pics[0],
4258 			sizeof(struct kvm_pic_state));
4259 		break;
4260 	case KVM_IRQCHIP_PIC_SLAVE:
4261 		memcpy(&chip->chip.pic, &pic->pics[1],
4262 			sizeof(struct kvm_pic_state));
4263 		break;
4264 	case KVM_IRQCHIP_IOAPIC:
4265 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4266 		break;
4267 	default:
4268 		r = -EINVAL;
4269 		break;
4270 	}
4271 	return r;
4272 }
4273 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4274 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4275 {
4276 	struct kvm_pic *pic = kvm->arch.vpic;
4277 	int r;
4278 
4279 	r = 0;
4280 	switch (chip->chip_id) {
4281 	case KVM_IRQCHIP_PIC_MASTER:
4282 		spin_lock(&pic->lock);
4283 		memcpy(&pic->pics[0], &chip->chip.pic,
4284 			sizeof(struct kvm_pic_state));
4285 		spin_unlock(&pic->lock);
4286 		break;
4287 	case KVM_IRQCHIP_PIC_SLAVE:
4288 		spin_lock(&pic->lock);
4289 		memcpy(&pic->pics[1], &chip->chip.pic,
4290 			sizeof(struct kvm_pic_state));
4291 		spin_unlock(&pic->lock);
4292 		break;
4293 	case KVM_IRQCHIP_IOAPIC:
4294 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4295 		break;
4296 	default:
4297 		r = -EINVAL;
4298 		break;
4299 	}
4300 	kvm_pic_update_irq(pic);
4301 	return r;
4302 }
4303 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)4304 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4305 {
4306 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4307 
4308 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4309 
4310 	mutex_lock(&kps->lock);
4311 	memcpy(ps, &kps->channels, sizeof(*ps));
4312 	mutex_unlock(&kps->lock);
4313 	return 0;
4314 }
4315 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)4316 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4317 {
4318 	int i;
4319 	struct kvm_pit *pit = kvm->arch.vpit;
4320 
4321 	mutex_lock(&pit->pit_state.lock);
4322 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4323 	for (i = 0; i < 3; i++)
4324 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4325 	mutex_unlock(&pit->pit_state.lock);
4326 	return 0;
4327 }
4328 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4329 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4330 {
4331 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4332 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4333 		sizeof(ps->channels));
4334 	ps->flags = kvm->arch.vpit->pit_state.flags;
4335 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4336 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4337 	return 0;
4338 }
4339 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4340 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4341 {
4342 	int start = 0;
4343 	int i;
4344 	u32 prev_legacy, cur_legacy;
4345 	struct kvm_pit *pit = kvm->arch.vpit;
4346 
4347 	mutex_lock(&pit->pit_state.lock);
4348 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4349 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4350 	if (!prev_legacy && cur_legacy)
4351 		start = 1;
4352 	memcpy(&pit->pit_state.channels, &ps->channels,
4353 	       sizeof(pit->pit_state.channels));
4354 	pit->pit_state.flags = ps->flags;
4355 	for (i = 0; i < 3; i++)
4356 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4357 				   start && i == 0);
4358 	mutex_unlock(&pit->pit_state.lock);
4359 	return 0;
4360 }
4361 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)4362 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4363 				 struct kvm_reinject_control *control)
4364 {
4365 	struct kvm_pit *pit = kvm->arch.vpit;
4366 
4367 	if (!pit)
4368 		return -ENXIO;
4369 
4370 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4371 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4372 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4373 	 */
4374 	mutex_lock(&pit->pit_state.lock);
4375 	kvm_pit_set_reinject(pit, control->pit_reinject);
4376 	mutex_unlock(&pit->pit_state.lock);
4377 
4378 	return 0;
4379 }
4380 
4381 /**
4382  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4383  * @kvm: kvm instance
4384  * @log: slot id and address to which we copy the log
4385  *
4386  * Steps 1-4 below provide general overview of dirty page logging. See
4387  * kvm_get_dirty_log_protect() function description for additional details.
4388  *
4389  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4390  * always flush the TLB (step 4) even if previous step failed  and the dirty
4391  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4392  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4393  * writes will be marked dirty for next log read.
4394  *
4395  *   1. Take a snapshot of the bit and clear it if needed.
4396  *   2. Write protect the corresponding page.
4397  *   3. Copy the snapshot to the userspace.
4398  *   4. Flush TLB's if needed.
4399  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)4400 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4401 {
4402 	bool is_dirty = false;
4403 	int r;
4404 
4405 	mutex_lock(&kvm->slots_lock);
4406 
4407 	/*
4408 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4409 	 */
4410 	if (kvm_x86_ops->flush_log_dirty)
4411 		kvm_x86_ops->flush_log_dirty(kvm);
4412 
4413 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4414 
4415 	/*
4416 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4417 	 * kvm_mmu_slot_remove_write_access().
4418 	 */
4419 	lockdep_assert_held(&kvm->slots_lock);
4420 	if (is_dirty)
4421 		kvm_flush_remote_tlbs(kvm);
4422 
4423 	mutex_unlock(&kvm->slots_lock);
4424 	return r;
4425 }
4426 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)4427 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4428 			bool line_status)
4429 {
4430 	if (!irqchip_in_kernel(kvm))
4431 		return -ENXIO;
4432 
4433 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4434 					irq_event->irq, irq_event->level,
4435 					line_status);
4436 	return 0;
4437 }
4438 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4439 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4440 				   struct kvm_enable_cap *cap)
4441 {
4442 	int r;
4443 
4444 	if (cap->flags)
4445 		return -EINVAL;
4446 
4447 	switch (cap->cap) {
4448 	case KVM_CAP_DISABLE_QUIRKS:
4449 		kvm->arch.disabled_quirks = cap->args[0];
4450 		r = 0;
4451 		break;
4452 	case KVM_CAP_SPLIT_IRQCHIP: {
4453 		mutex_lock(&kvm->lock);
4454 		r = -EINVAL;
4455 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4456 			goto split_irqchip_unlock;
4457 		r = -EEXIST;
4458 		if (irqchip_in_kernel(kvm))
4459 			goto split_irqchip_unlock;
4460 		if (kvm->created_vcpus)
4461 			goto split_irqchip_unlock;
4462 		r = kvm_setup_empty_irq_routing(kvm);
4463 		if (r)
4464 			goto split_irqchip_unlock;
4465 		/* Pairs with irqchip_in_kernel. */
4466 		smp_wmb();
4467 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4468 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4469 		r = 0;
4470 split_irqchip_unlock:
4471 		mutex_unlock(&kvm->lock);
4472 		break;
4473 	}
4474 	case KVM_CAP_X2APIC_API:
4475 		r = -EINVAL;
4476 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4477 			break;
4478 
4479 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4480 			kvm->arch.x2apic_format = true;
4481 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4482 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4483 
4484 		r = 0;
4485 		break;
4486 	case KVM_CAP_X86_DISABLE_EXITS:
4487 		r = -EINVAL;
4488 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4489 			break;
4490 
4491 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4492 			kvm_can_mwait_in_guest())
4493 			kvm->arch.mwait_in_guest = true;
4494 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4495 			kvm->arch.hlt_in_guest = true;
4496 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4497 			kvm->arch.pause_in_guest = true;
4498 		r = 0;
4499 		break;
4500 	case KVM_CAP_MSR_PLATFORM_INFO:
4501 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4502 		r = 0;
4503 		break;
4504 	default:
4505 		r = -EINVAL;
4506 		break;
4507 	}
4508 	return r;
4509 }
4510 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4511 long kvm_arch_vm_ioctl(struct file *filp,
4512 		       unsigned int ioctl, unsigned long arg)
4513 {
4514 	struct kvm *kvm = filp->private_data;
4515 	void __user *argp = (void __user *)arg;
4516 	int r = -ENOTTY;
4517 	/*
4518 	 * This union makes it completely explicit to gcc-3.x
4519 	 * that these two variables' stack usage should be
4520 	 * combined, not added together.
4521 	 */
4522 	union {
4523 		struct kvm_pit_state ps;
4524 		struct kvm_pit_state2 ps2;
4525 		struct kvm_pit_config pit_config;
4526 	} u;
4527 
4528 	switch (ioctl) {
4529 	case KVM_SET_TSS_ADDR:
4530 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4531 		break;
4532 	case KVM_SET_IDENTITY_MAP_ADDR: {
4533 		u64 ident_addr;
4534 
4535 		mutex_lock(&kvm->lock);
4536 		r = -EINVAL;
4537 		if (kvm->created_vcpus)
4538 			goto set_identity_unlock;
4539 		r = -EFAULT;
4540 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4541 			goto set_identity_unlock;
4542 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4543 set_identity_unlock:
4544 		mutex_unlock(&kvm->lock);
4545 		break;
4546 	}
4547 	case KVM_SET_NR_MMU_PAGES:
4548 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4549 		break;
4550 	case KVM_GET_NR_MMU_PAGES:
4551 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4552 		break;
4553 	case KVM_CREATE_IRQCHIP: {
4554 		mutex_lock(&kvm->lock);
4555 
4556 		r = -EEXIST;
4557 		if (irqchip_in_kernel(kvm))
4558 			goto create_irqchip_unlock;
4559 
4560 		r = -EINVAL;
4561 		if (kvm->created_vcpus)
4562 			goto create_irqchip_unlock;
4563 
4564 		r = kvm_pic_init(kvm);
4565 		if (r)
4566 			goto create_irqchip_unlock;
4567 
4568 		r = kvm_ioapic_init(kvm);
4569 		if (r) {
4570 			kvm_pic_destroy(kvm);
4571 			goto create_irqchip_unlock;
4572 		}
4573 
4574 		r = kvm_setup_default_irq_routing(kvm);
4575 		if (r) {
4576 			kvm_ioapic_destroy(kvm);
4577 			kvm_pic_destroy(kvm);
4578 			goto create_irqchip_unlock;
4579 		}
4580 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4581 		smp_wmb();
4582 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4583 	create_irqchip_unlock:
4584 		mutex_unlock(&kvm->lock);
4585 		break;
4586 	}
4587 	case KVM_CREATE_PIT:
4588 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4589 		goto create_pit;
4590 	case KVM_CREATE_PIT2:
4591 		r = -EFAULT;
4592 		if (copy_from_user(&u.pit_config, argp,
4593 				   sizeof(struct kvm_pit_config)))
4594 			goto out;
4595 	create_pit:
4596 		mutex_lock(&kvm->lock);
4597 		r = -EEXIST;
4598 		if (kvm->arch.vpit)
4599 			goto create_pit_unlock;
4600 		r = -ENOMEM;
4601 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4602 		if (kvm->arch.vpit)
4603 			r = 0;
4604 	create_pit_unlock:
4605 		mutex_unlock(&kvm->lock);
4606 		break;
4607 	case KVM_GET_IRQCHIP: {
4608 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4609 		struct kvm_irqchip *chip;
4610 
4611 		chip = memdup_user(argp, sizeof(*chip));
4612 		if (IS_ERR(chip)) {
4613 			r = PTR_ERR(chip);
4614 			goto out;
4615 		}
4616 
4617 		r = -ENXIO;
4618 		if (!irqchip_kernel(kvm))
4619 			goto get_irqchip_out;
4620 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4621 		if (r)
4622 			goto get_irqchip_out;
4623 		r = -EFAULT;
4624 		if (copy_to_user(argp, chip, sizeof *chip))
4625 			goto get_irqchip_out;
4626 		r = 0;
4627 	get_irqchip_out:
4628 		kfree(chip);
4629 		break;
4630 	}
4631 	case KVM_SET_IRQCHIP: {
4632 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4633 		struct kvm_irqchip *chip;
4634 
4635 		chip = memdup_user(argp, sizeof(*chip));
4636 		if (IS_ERR(chip)) {
4637 			r = PTR_ERR(chip);
4638 			goto out;
4639 		}
4640 
4641 		r = -ENXIO;
4642 		if (!irqchip_kernel(kvm))
4643 			goto set_irqchip_out;
4644 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4645 		if (r)
4646 			goto set_irqchip_out;
4647 		r = 0;
4648 	set_irqchip_out:
4649 		kfree(chip);
4650 		break;
4651 	}
4652 	case KVM_GET_PIT: {
4653 		r = -EFAULT;
4654 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4655 			goto out;
4656 		r = -ENXIO;
4657 		if (!kvm->arch.vpit)
4658 			goto out;
4659 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4660 		if (r)
4661 			goto out;
4662 		r = -EFAULT;
4663 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4664 			goto out;
4665 		r = 0;
4666 		break;
4667 	}
4668 	case KVM_SET_PIT: {
4669 		r = -EFAULT;
4670 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4671 			goto out;
4672 		mutex_lock(&kvm->lock);
4673 		r = -ENXIO;
4674 		if (!kvm->arch.vpit)
4675 			goto set_pit_out;
4676 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4677 set_pit_out:
4678 		mutex_unlock(&kvm->lock);
4679 		break;
4680 	}
4681 	case KVM_GET_PIT2: {
4682 		r = -ENXIO;
4683 		if (!kvm->arch.vpit)
4684 			goto out;
4685 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4686 		if (r)
4687 			goto out;
4688 		r = -EFAULT;
4689 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4690 			goto out;
4691 		r = 0;
4692 		break;
4693 	}
4694 	case KVM_SET_PIT2: {
4695 		r = -EFAULT;
4696 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4697 			goto out;
4698 		mutex_lock(&kvm->lock);
4699 		r = -ENXIO;
4700 		if (!kvm->arch.vpit)
4701 			goto set_pit2_out;
4702 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4703 set_pit2_out:
4704 		mutex_unlock(&kvm->lock);
4705 		break;
4706 	}
4707 	case KVM_REINJECT_CONTROL: {
4708 		struct kvm_reinject_control control;
4709 		r =  -EFAULT;
4710 		if (copy_from_user(&control, argp, sizeof(control)))
4711 			goto out;
4712 		r = kvm_vm_ioctl_reinject(kvm, &control);
4713 		break;
4714 	}
4715 	case KVM_SET_BOOT_CPU_ID:
4716 		r = 0;
4717 		mutex_lock(&kvm->lock);
4718 		if (kvm->created_vcpus)
4719 			r = -EBUSY;
4720 		else
4721 			kvm->arch.bsp_vcpu_id = arg;
4722 		mutex_unlock(&kvm->lock);
4723 		break;
4724 	case KVM_XEN_HVM_CONFIG: {
4725 		struct kvm_xen_hvm_config xhc;
4726 		r = -EFAULT;
4727 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4728 			goto out;
4729 		r = -EINVAL;
4730 		if (xhc.flags)
4731 			goto out;
4732 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4733 		r = 0;
4734 		break;
4735 	}
4736 	case KVM_SET_CLOCK: {
4737 		struct kvm_clock_data user_ns;
4738 		u64 now_ns;
4739 
4740 		r = -EFAULT;
4741 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4742 			goto out;
4743 
4744 		r = -EINVAL;
4745 		if (user_ns.flags)
4746 			goto out;
4747 
4748 		r = 0;
4749 		/*
4750 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4751 		 * kvm_gen_update_masterclock() can be cut down to locked
4752 		 * pvclock_update_vm_gtod_copy().
4753 		 */
4754 		kvm_gen_update_masterclock(kvm);
4755 		now_ns = get_kvmclock_ns(kvm);
4756 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4757 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4758 		break;
4759 	}
4760 	case KVM_GET_CLOCK: {
4761 		struct kvm_clock_data user_ns;
4762 		u64 now_ns;
4763 
4764 		now_ns = get_kvmclock_ns(kvm);
4765 		user_ns.clock = now_ns;
4766 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4767 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4768 
4769 		r = -EFAULT;
4770 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4771 			goto out;
4772 		r = 0;
4773 		break;
4774 	}
4775 	case KVM_ENABLE_CAP: {
4776 		struct kvm_enable_cap cap;
4777 
4778 		r = -EFAULT;
4779 		if (copy_from_user(&cap, argp, sizeof(cap)))
4780 			goto out;
4781 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4782 		break;
4783 	}
4784 	case KVM_MEMORY_ENCRYPT_OP: {
4785 		r = -ENOTTY;
4786 		if (kvm_x86_ops->mem_enc_op)
4787 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4788 		break;
4789 	}
4790 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4791 		struct kvm_enc_region region;
4792 
4793 		r = -EFAULT;
4794 		if (copy_from_user(&region, argp, sizeof(region)))
4795 			goto out;
4796 
4797 		r = -ENOTTY;
4798 		if (kvm_x86_ops->mem_enc_reg_region)
4799 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4800 		break;
4801 	}
4802 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4803 		struct kvm_enc_region region;
4804 
4805 		r = -EFAULT;
4806 		if (copy_from_user(&region, argp, sizeof(region)))
4807 			goto out;
4808 
4809 		r = -ENOTTY;
4810 		if (kvm_x86_ops->mem_enc_unreg_region)
4811 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4812 		break;
4813 	}
4814 	case KVM_HYPERV_EVENTFD: {
4815 		struct kvm_hyperv_eventfd hvevfd;
4816 
4817 		r = -EFAULT;
4818 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4819 			goto out;
4820 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4821 		break;
4822 	}
4823 	default:
4824 		r = -ENOTTY;
4825 	}
4826 out:
4827 	return r;
4828 }
4829 
kvm_init_msr_list(void)4830 static void kvm_init_msr_list(void)
4831 {
4832 	u32 dummy[2];
4833 	unsigned i, j;
4834 
4835 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4836 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4837 			continue;
4838 
4839 		/*
4840 		 * Even MSRs that are valid in the host may not be exposed
4841 		 * to the guests in some cases.
4842 		 */
4843 		switch (msrs_to_save[i]) {
4844 		case MSR_IA32_BNDCFGS:
4845 			if (!kvm_mpx_supported())
4846 				continue;
4847 			break;
4848 		case MSR_TSC_AUX:
4849 			if (!kvm_x86_ops->rdtscp_supported())
4850 				continue;
4851 			break;
4852 		default:
4853 			break;
4854 		}
4855 
4856 		if (j < i)
4857 			msrs_to_save[j] = msrs_to_save[i];
4858 		j++;
4859 	}
4860 	num_msrs_to_save = j;
4861 
4862 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4863 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4864 			continue;
4865 
4866 		if (j < i)
4867 			emulated_msrs[j] = emulated_msrs[i];
4868 		j++;
4869 	}
4870 	num_emulated_msrs = j;
4871 
4872 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4873 		struct kvm_msr_entry msr;
4874 
4875 		msr.index = msr_based_features[i];
4876 		if (kvm_get_msr_feature(&msr))
4877 			continue;
4878 
4879 		if (j < i)
4880 			msr_based_features[j] = msr_based_features[i];
4881 		j++;
4882 	}
4883 	num_msr_based_features = j;
4884 }
4885 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4886 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4887 			   const void *v)
4888 {
4889 	int handled = 0;
4890 	int n;
4891 
4892 	do {
4893 		n = min(len, 8);
4894 		if (!(lapic_in_kernel(vcpu) &&
4895 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4896 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4897 			break;
4898 		handled += n;
4899 		addr += n;
4900 		len -= n;
4901 		v += n;
4902 	} while (len);
4903 
4904 	return handled;
4905 }
4906 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4907 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4908 {
4909 	int handled = 0;
4910 	int n;
4911 
4912 	do {
4913 		n = min(len, 8);
4914 		if (!(lapic_in_kernel(vcpu) &&
4915 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4916 					 addr, n, v))
4917 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4918 			break;
4919 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4920 		handled += n;
4921 		addr += n;
4922 		len -= n;
4923 		v += n;
4924 	} while (len);
4925 
4926 	return handled;
4927 }
4928 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4929 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4930 			struct kvm_segment *var, int seg)
4931 {
4932 	kvm_x86_ops->set_segment(vcpu, var, seg);
4933 }
4934 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4935 void kvm_get_segment(struct kvm_vcpu *vcpu,
4936 		     struct kvm_segment *var, int seg)
4937 {
4938 	kvm_x86_ops->get_segment(vcpu, var, seg);
4939 }
4940 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4941 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4942 			   struct x86_exception *exception)
4943 {
4944 	gpa_t t_gpa;
4945 
4946 	BUG_ON(!mmu_is_nested(vcpu));
4947 
4948 	/* NPT walks are always user-walks */
4949 	access |= PFERR_USER_MASK;
4950 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4951 
4952 	return t_gpa;
4953 }
4954 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4955 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4956 			      struct x86_exception *exception)
4957 {
4958 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4959 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4960 }
4961 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4962  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4963 				struct x86_exception *exception)
4964 {
4965 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4966 	access |= PFERR_FETCH_MASK;
4967 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4968 }
4969 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4970 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4971 			       struct x86_exception *exception)
4972 {
4973 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4974 	access |= PFERR_WRITE_MASK;
4975 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4976 }
4977 
4978 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4980 				struct x86_exception *exception)
4981 {
4982 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4983 }
4984 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4985 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4986 				      struct kvm_vcpu *vcpu, u32 access,
4987 				      struct x86_exception *exception)
4988 {
4989 	void *data = val;
4990 	int r = X86EMUL_CONTINUE;
4991 
4992 	while (bytes) {
4993 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4994 							    exception);
4995 		unsigned offset = addr & (PAGE_SIZE-1);
4996 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4997 		int ret;
4998 
4999 		if (gpa == UNMAPPED_GVA)
5000 			return X86EMUL_PROPAGATE_FAULT;
5001 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5002 					       offset, toread);
5003 		if (ret < 0) {
5004 			r = X86EMUL_IO_NEEDED;
5005 			goto out;
5006 		}
5007 
5008 		bytes -= toread;
5009 		data += toread;
5010 		addr += toread;
5011 	}
5012 out:
5013 	return r;
5014 }
5015 
5016 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5017 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5018 				gva_t addr, void *val, unsigned int bytes,
5019 				struct x86_exception *exception)
5020 {
5021 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5022 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5023 	unsigned offset;
5024 	int ret;
5025 
5026 	/* Inline kvm_read_guest_virt_helper for speed.  */
5027 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5028 						    exception);
5029 	if (unlikely(gpa == UNMAPPED_GVA))
5030 		return X86EMUL_PROPAGATE_FAULT;
5031 
5032 	offset = addr & (PAGE_SIZE-1);
5033 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5034 		bytes = (unsigned)PAGE_SIZE - offset;
5035 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5036 				       offset, bytes);
5037 	if (unlikely(ret < 0))
5038 		return X86EMUL_IO_NEEDED;
5039 
5040 	return X86EMUL_CONTINUE;
5041 }
5042 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5043 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5044 			       gva_t addr, void *val, unsigned int bytes,
5045 			       struct x86_exception *exception)
5046 {
5047 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5048 
5049 	/*
5050 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5051 	 * is returned, but our callers are not ready for that and they blindly
5052 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5053 	 * uninitialized kernel stack memory into cr2 and error code.
5054 	 */
5055 	memset(exception, 0, sizeof(*exception));
5056 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5057 					  exception);
5058 }
5059 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5060 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5061 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5062 			     gva_t addr, void *val, unsigned int bytes,
5063 			     struct x86_exception *exception, bool system)
5064 {
5065 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066 	u32 access = 0;
5067 
5068 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5069 		access |= PFERR_USER_MASK;
5070 
5071 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5072 }
5073 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)5074 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5075 		unsigned long addr, void *val, unsigned int bytes)
5076 {
5077 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5078 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5079 
5080 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5081 }
5082 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5083 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5084 				      struct kvm_vcpu *vcpu, u32 access,
5085 				      struct x86_exception *exception)
5086 {
5087 	void *data = val;
5088 	int r = X86EMUL_CONTINUE;
5089 
5090 	while (bytes) {
5091 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5092 							     access,
5093 							     exception);
5094 		unsigned offset = addr & (PAGE_SIZE-1);
5095 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5096 		int ret;
5097 
5098 		if (gpa == UNMAPPED_GVA)
5099 			return X86EMUL_PROPAGATE_FAULT;
5100 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5101 		if (ret < 0) {
5102 			r = X86EMUL_IO_NEEDED;
5103 			goto out;
5104 		}
5105 
5106 		bytes -= towrite;
5107 		data += towrite;
5108 		addr += towrite;
5109 	}
5110 out:
5111 	return r;
5112 }
5113 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5114 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5115 			      unsigned int bytes, struct x86_exception *exception,
5116 			      bool system)
5117 {
5118 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5119 	u32 access = PFERR_WRITE_MASK;
5120 
5121 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5122 		access |= PFERR_USER_MASK;
5123 
5124 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5125 					   access, exception);
5126 }
5127 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5128 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5129 				unsigned int bytes, struct x86_exception *exception)
5130 {
5131 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5132 	vcpu->arch.l1tf_flush_l1d = true;
5133 
5134 	/*
5135 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5136 	 * is returned, but our callers are not ready for that and they blindly
5137 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5138 	 * uninitialized kernel stack memory into cr2 and error code.
5139 	 */
5140 	memset(exception, 0, sizeof(*exception));
5141 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5142 					   PFERR_WRITE_MASK, exception);
5143 }
5144 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5145 
handle_ud(struct kvm_vcpu * vcpu)5146 int handle_ud(struct kvm_vcpu *vcpu)
5147 {
5148 	int emul_type = EMULTYPE_TRAP_UD;
5149 	enum emulation_result er;
5150 	char sig[5]; /* ud2; .ascii "kvm" */
5151 	struct x86_exception e;
5152 
5153 	if (force_emulation_prefix &&
5154 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5155 				sig, sizeof(sig), &e) == 0 &&
5156 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5157 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5158 		emul_type = 0;
5159 	}
5160 
5161 	er = kvm_emulate_instruction(vcpu, emul_type);
5162 	if (er == EMULATE_USER_EXIT)
5163 		return 0;
5164 	if (er != EMULATE_DONE)
5165 		kvm_queue_exception(vcpu, UD_VECTOR);
5166 	return 1;
5167 }
5168 EXPORT_SYMBOL_GPL(handle_ud);
5169 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)5170 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5171 			    gpa_t gpa, bool write)
5172 {
5173 	/* For APIC access vmexit */
5174 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5175 		return 1;
5176 
5177 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5178 		trace_vcpu_match_mmio(gva, gpa, write, true);
5179 		return 1;
5180 	}
5181 
5182 	return 0;
5183 }
5184 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)5185 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5186 				gpa_t *gpa, struct x86_exception *exception,
5187 				bool write)
5188 {
5189 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5190 		| (write ? PFERR_WRITE_MASK : 0);
5191 
5192 	/*
5193 	 * currently PKRU is only applied to ept enabled guest so
5194 	 * there is no pkey in EPT page table for L1 guest or EPT
5195 	 * shadow page table for L2 guest.
5196 	 */
5197 	if (vcpu_match_mmio_gva(vcpu, gva)
5198 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5199 				 vcpu->arch.access, 0, access)) {
5200 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5201 					(gva & (PAGE_SIZE - 1));
5202 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5203 		return 1;
5204 	}
5205 
5206 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5207 
5208 	if (*gpa == UNMAPPED_GVA)
5209 		return -1;
5210 
5211 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5212 }
5213 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)5214 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5215 			const void *val, int bytes)
5216 {
5217 	int ret;
5218 
5219 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5220 	if (ret < 0)
5221 		return 0;
5222 	kvm_page_track_write(vcpu, gpa, val, bytes);
5223 	return 1;
5224 }
5225 
5226 struct read_write_emulator_ops {
5227 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5228 				  int bytes);
5229 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5230 				  void *val, int bytes);
5231 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5232 			       int bytes, void *val);
5233 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5234 				    void *val, int bytes);
5235 	bool write;
5236 };
5237 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)5238 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5239 {
5240 	if (vcpu->mmio_read_completed) {
5241 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5242 			       vcpu->mmio_fragments[0].gpa, val);
5243 		vcpu->mmio_read_completed = 0;
5244 		return 1;
5245 	}
5246 
5247 	return 0;
5248 }
5249 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5250 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5251 			void *val, int bytes)
5252 {
5253 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5254 }
5255 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5256 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5257 			 void *val, int bytes)
5258 {
5259 	return emulator_write_phys(vcpu, gpa, val, bytes);
5260 }
5261 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)5262 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5263 {
5264 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5265 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5266 }
5267 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5268 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5269 			  void *val, int bytes)
5270 {
5271 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5272 	return X86EMUL_IO_NEEDED;
5273 }
5274 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5275 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5276 			   void *val, int bytes)
5277 {
5278 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5279 
5280 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5281 	return X86EMUL_CONTINUE;
5282 }
5283 
5284 static const struct read_write_emulator_ops read_emultor = {
5285 	.read_write_prepare = read_prepare,
5286 	.read_write_emulate = read_emulate,
5287 	.read_write_mmio = vcpu_mmio_read,
5288 	.read_write_exit_mmio = read_exit_mmio,
5289 };
5290 
5291 static const struct read_write_emulator_ops write_emultor = {
5292 	.read_write_emulate = write_emulate,
5293 	.read_write_mmio = write_mmio,
5294 	.read_write_exit_mmio = write_exit_mmio,
5295 	.write = true,
5296 };
5297 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)5298 static int emulator_read_write_onepage(unsigned long addr, void *val,
5299 				       unsigned int bytes,
5300 				       struct x86_exception *exception,
5301 				       struct kvm_vcpu *vcpu,
5302 				       const struct read_write_emulator_ops *ops)
5303 {
5304 	gpa_t gpa;
5305 	int handled, ret;
5306 	bool write = ops->write;
5307 	struct kvm_mmio_fragment *frag;
5308 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5309 
5310 	/*
5311 	 * If the exit was due to a NPF we may already have a GPA.
5312 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5313 	 * Note, this cannot be used on string operations since string
5314 	 * operation using rep will only have the initial GPA from the NPF
5315 	 * occurred.
5316 	 */
5317 	if (vcpu->arch.gpa_available &&
5318 	    emulator_can_use_gpa(ctxt) &&
5319 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5320 		gpa = vcpu->arch.gpa_val;
5321 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5322 	} else {
5323 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5324 		if (ret < 0)
5325 			return X86EMUL_PROPAGATE_FAULT;
5326 	}
5327 
5328 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5329 		return X86EMUL_CONTINUE;
5330 
5331 	/*
5332 	 * Is this MMIO handled locally?
5333 	 */
5334 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5335 	if (handled == bytes)
5336 		return X86EMUL_CONTINUE;
5337 
5338 	gpa += handled;
5339 	bytes -= handled;
5340 	val += handled;
5341 
5342 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5343 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5344 	frag->gpa = gpa;
5345 	frag->data = val;
5346 	frag->len = bytes;
5347 	return X86EMUL_CONTINUE;
5348 }
5349 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)5350 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5351 			unsigned long addr,
5352 			void *val, unsigned int bytes,
5353 			struct x86_exception *exception,
5354 			const struct read_write_emulator_ops *ops)
5355 {
5356 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5357 	gpa_t gpa;
5358 	int rc;
5359 
5360 	if (ops->read_write_prepare &&
5361 		  ops->read_write_prepare(vcpu, val, bytes))
5362 		return X86EMUL_CONTINUE;
5363 
5364 	vcpu->mmio_nr_fragments = 0;
5365 
5366 	/* Crossing a page boundary? */
5367 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5368 		int now;
5369 
5370 		now = -addr & ~PAGE_MASK;
5371 		rc = emulator_read_write_onepage(addr, val, now, exception,
5372 						 vcpu, ops);
5373 
5374 		if (rc != X86EMUL_CONTINUE)
5375 			return rc;
5376 		addr += now;
5377 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5378 			addr = (u32)addr;
5379 		val += now;
5380 		bytes -= now;
5381 	}
5382 
5383 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5384 					 vcpu, ops);
5385 	if (rc != X86EMUL_CONTINUE)
5386 		return rc;
5387 
5388 	if (!vcpu->mmio_nr_fragments)
5389 		return rc;
5390 
5391 	gpa = vcpu->mmio_fragments[0].gpa;
5392 
5393 	vcpu->mmio_needed = 1;
5394 	vcpu->mmio_cur_fragment = 0;
5395 
5396 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5397 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5398 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5399 	vcpu->run->mmio.phys_addr = gpa;
5400 
5401 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5402 }
5403 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)5404 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5405 				  unsigned long addr,
5406 				  void *val,
5407 				  unsigned int bytes,
5408 				  struct x86_exception *exception)
5409 {
5410 	return emulator_read_write(ctxt, addr, val, bytes,
5411 				   exception, &read_emultor);
5412 }
5413 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)5414 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5415 			    unsigned long addr,
5416 			    const void *val,
5417 			    unsigned int bytes,
5418 			    struct x86_exception *exception)
5419 {
5420 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5421 				   exception, &write_emultor);
5422 }
5423 
5424 #define CMPXCHG_TYPE(t, ptr, old, new) \
5425 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5426 
5427 #ifdef CONFIG_X86_64
5428 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5429 #else
5430 #  define CMPXCHG64(ptr, old, new) \
5431 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5432 #endif
5433 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)5434 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5435 				     unsigned long addr,
5436 				     const void *old,
5437 				     const void *new,
5438 				     unsigned int bytes,
5439 				     struct x86_exception *exception)
5440 {
5441 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5442 	gpa_t gpa;
5443 	struct page *page;
5444 	char *kaddr;
5445 	bool exchanged;
5446 
5447 	/* guests cmpxchg8b have to be emulated atomically */
5448 	if (bytes > 8 || (bytes & (bytes - 1)))
5449 		goto emul_write;
5450 
5451 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5452 
5453 	if (gpa == UNMAPPED_GVA ||
5454 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5455 		goto emul_write;
5456 
5457 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5458 		goto emul_write;
5459 
5460 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5461 	if (is_error_page(page))
5462 		goto emul_write;
5463 
5464 	kaddr = kmap_atomic(page);
5465 	kaddr += offset_in_page(gpa);
5466 	switch (bytes) {
5467 	case 1:
5468 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5469 		break;
5470 	case 2:
5471 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5472 		break;
5473 	case 4:
5474 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5475 		break;
5476 	case 8:
5477 		exchanged = CMPXCHG64(kaddr, old, new);
5478 		break;
5479 	default:
5480 		BUG();
5481 	}
5482 	kunmap_atomic(kaddr);
5483 	kvm_release_page_dirty(page);
5484 
5485 	if (!exchanged)
5486 		return X86EMUL_CMPXCHG_FAILED;
5487 
5488 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5489 	kvm_page_track_write(vcpu, gpa, new, bytes);
5490 
5491 	return X86EMUL_CONTINUE;
5492 
5493 emul_write:
5494 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5495 
5496 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5497 }
5498 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)5499 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5500 {
5501 	int r = 0, i;
5502 
5503 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5504 		if (vcpu->arch.pio.in)
5505 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5506 					    vcpu->arch.pio.size, pd);
5507 		else
5508 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5509 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5510 					     pd);
5511 		if (r)
5512 			break;
5513 		pd += vcpu->arch.pio.size;
5514 	}
5515 	return r;
5516 }
5517 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)5518 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5519 			       unsigned short port, void *val,
5520 			       unsigned int count, bool in)
5521 {
5522 	vcpu->arch.pio.port = port;
5523 	vcpu->arch.pio.in = in;
5524 	vcpu->arch.pio.count  = count;
5525 	vcpu->arch.pio.size = size;
5526 
5527 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5528 		vcpu->arch.pio.count = 0;
5529 		return 1;
5530 	}
5531 
5532 	vcpu->run->exit_reason = KVM_EXIT_IO;
5533 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5534 	vcpu->run->io.size = size;
5535 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5536 	vcpu->run->io.count = count;
5537 	vcpu->run->io.port = port;
5538 
5539 	return 0;
5540 }
5541 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)5542 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5543 				    int size, unsigned short port, void *val,
5544 				    unsigned int count)
5545 {
5546 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5547 	int ret;
5548 
5549 	if (vcpu->arch.pio.count)
5550 		goto data_avail;
5551 
5552 	memset(vcpu->arch.pio_data, 0, size * count);
5553 
5554 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5555 	if (ret) {
5556 data_avail:
5557 		memcpy(val, vcpu->arch.pio_data, size * count);
5558 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5559 		vcpu->arch.pio.count = 0;
5560 		return 1;
5561 	}
5562 
5563 	return 0;
5564 }
5565 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)5566 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5567 				     int size, unsigned short port,
5568 				     const void *val, unsigned int count)
5569 {
5570 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5571 
5572 	memcpy(vcpu->arch.pio_data, val, size * count);
5573 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5574 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5575 }
5576 
get_segment_base(struct kvm_vcpu * vcpu,int seg)5577 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5578 {
5579 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5580 }
5581 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)5582 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5583 {
5584 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5585 }
5586 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)5587 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5588 {
5589 	if (!need_emulate_wbinvd(vcpu))
5590 		return X86EMUL_CONTINUE;
5591 
5592 	if (kvm_x86_ops->has_wbinvd_exit()) {
5593 		int cpu = get_cpu();
5594 
5595 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5596 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5597 				wbinvd_ipi, NULL, 1);
5598 		put_cpu();
5599 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5600 	} else
5601 		wbinvd();
5602 	return X86EMUL_CONTINUE;
5603 }
5604 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)5605 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5606 {
5607 	kvm_emulate_wbinvd_noskip(vcpu);
5608 	return kvm_skip_emulated_instruction(vcpu);
5609 }
5610 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5611 
5612 
5613 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)5614 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5615 {
5616 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5617 }
5618 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)5619 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5620 			   unsigned long *dest)
5621 {
5622 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5623 }
5624 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)5625 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5626 			   unsigned long value)
5627 {
5628 
5629 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5630 }
5631 
mk_cr_64(u64 curr_cr,u32 new_val)5632 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5633 {
5634 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5635 }
5636 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)5637 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5638 {
5639 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5640 	unsigned long value;
5641 
5642 	switch (cr) {
5643 	case 0:
5644 		value = kvm_read_cr0(vcpu);
5645 		break;
5646 	case 2:
5647 		value = vcpu->arch.cr2;
5648 		break;
5649 	case 3:
5650 		value = kvm_read_cr3(vcpu);
5651 		break;
5652 	case 4:
5653 		value = kvm_read_cr4(vcpu);
5654 		break;
5655 	case 8:
5656 		value = kvm_get_cr8(vcpu);
5657 		break;
5658 	default:
5659 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5660 		return 0;
5661 	}
5662 
5663 	return value;
5664 }
5665 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)5666 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5667 {
5668 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5669 	int res = 0;
5670 
5671 	switch (cr) {
5672 	case 0:
5673 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5674 		break;
5675 	case 2:
5676 		vcpu->arch.cr2 = val;
5677 		break;
5678 	case 3:
5679 		res = kvm_set_cr3(vcpu, val);
5680 		break;
5681 	case 4:
5682 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5683 		break;
5684 	case 8:
5685 		res = kvm_set_cr8(vcpu, val);
5686 		break;
5687 	default:
5688 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5689 		res = -1;
5690 	}
5691 
5692 	return res;
5693 }
5694 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)5695 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5696 {
5697 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5698 }
5699 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5700 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5701 {
5702 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5703 }
5704 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5705 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5706 {
5707 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5708 }
5709 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5710 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5711 {
5712 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5713 }
5714 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5715 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5716 {
5717 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5718 }
5719 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)5720 static unsigned long emulator_get_cached_segment_base(
5721 	struct x86_emulate_ctxt *ctxt, int seg)
5722 {
5723 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5724 }
5725 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)5726 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5727 				 struct desc_struct *desc, u32 *base3,
5728 				 int seg)
5729 {
5730 	struct kvm_segment var;
5731 
5732 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5733 	*selector = var.selector;
5734 
5735 	if (var.unusable) {
5736 		memset(desc, 0, sizeof(*desc));
5737 		if (base3)
5738 			*base3 = 0;
5739 		return false;
5740 	}
5741 
5742 	if (var.g)
5743 		var.limit >>= 12;
5744 	set_desc_limit(desc, var.limit);
5745 	set_desc_base(desc, (unsigned long)var.base);
5746 #ifdef CONFIG_X86_64
5747 	if (base3)
5748 		*base3 = var.base >> 32;
5749 #endif
5750 	desc->type = var.type;
5751 	desc->s = var.s;
5752 	desc->dpl = var.dpl;
5753 	desc->p = var.present;
5754 	desc->avl = var.avl;
5755 	desc->l = var.l;
5756 	desc->d = var.db;
5757 	desc->g = var.g;
5758 
5759 	return true;
5760 }
5761 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5762 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5763 				 struct desc_struct *desc, u32 base3,
5764 				 int seg)
5765 {
5766 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5767 	struct kvm_segment var;
5768 
5769 	var.selector = selector;
5770 	var.base = get_desc_base(desc);
5771 #ifdef CONFIG_X86_64
5772 	var.base |= ((u64)base3) << 32;
5773 #endif
5774 	var.limit = get_desc_limit(desc);
5775 	if (desc->g)
5776 		var.limit = (var.limit << 12) | 0xfff;
5777 	var.type = desc->type;
5778 	var.dpl = desc->dpl;
5779 	var.db = desc->d;
5780 	var.s = desc->s;
5781 	var.l = desc->l;
5782 	var.g = desc->g;
5783 	var.avl = desc->avl;
5784 	var.present = desc->p;
5785 	var.unusable = !var.present;
5786 	var.padding = 0;
5787 
5788 	kvm_set_segment(vcpu, &var, seg);
5789 	return;
5790 }
5791 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5792 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5793 			    u32 msr_index, u64 *pdata)
5794 {
5795 	struct msr_data msr;
5796 	int r;
5797 
5798 	msr.index = msr_index;
5799 	msr.host_initiated = false;
5800 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5801 	if (r)
5802 		return r;
5803 
5804 	*pdata = msr.data;
5805 	return 0;
5806 }
5807 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5808 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5809 			    u32 msr_index, u64 data)
5810 {
5811 	struct msr_data msr;
5812 
5813 	msr.data = data;
5814 	msr.index = msr_index;
5815 	msr.host_initiated = false;
5816 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5817 }
5818 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5819 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5820 {
5821 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5822 
5823 	return vcpu->arch.smbase;
5824 }
5825 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5826 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5827 {
5828 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5829 
5830 	vcpu->arch.smbase = smbase;
5831 }
5832 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5833 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5834 			      u32 pmc)
5835 {
5836 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5837 }
5838 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5839 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5840 			     u32 pmc, u64 *pdata)
5841 {
5842 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5843 }
5844 
emulator_halt(struct x86_emulate_ctxt * ctxt)5845 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5846 {
5847 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5848 }
5849 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5850 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5851 			      struct x86_instruction_info *info,
5852 			      enum x86_intercept_stage stage)
5853 {
5854 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5855 }
5856 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)5857 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5858 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5859 {
5860 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5861 }
5862 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5863 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5864 {
5865 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5866 }
5867 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5868 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5869 {
5870 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5871 }
5872 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5873 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5874 {
5875 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5876 }
5877 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5878 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5879 {
5880 	return emul_to_vcpu(ctxt)->arch.hflags;
5881 }
5882 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5883 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5884 {
5885 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5886 }
5887 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,u64 smbase)5888 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5889 {
5890 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5891 }
5892 
5893 static const struct x86_emulate_ops emulate_ops = {
5894 	.read_gpr            = emulator_read_gpr,
5895 	.write_gpr           = emulator_write_gpr,
5896 	.read_std            = emulator_read_std,
5897 	.write_std           = emulator_write_std,
5898 	.read_phys           = kvm_read_guest_phys_system,
5899 	.fetch               = kvm_fetch_guest_virt,
5900 	.read_emulated       = emulator_read_emulated,
5901 	.write_emulated      = emulator_write_emulated,
5902 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5903 	.invlpg              = emulator_invlpg,
5904 	.pio_in_emulated     = emulator_pio_in_emulated,
5905 	.pio_out_emulated    = emulator_pio_out_emulated,
5906 	.get_segment         = emulator_get_segment,
5907 	.set_segment         = emulator_set_segment,
5908 	.get_cached_segment_base = emulator_get_cached_segment_base,
5909 	.get_gdt             = emulator_get_gdt,
5910 	.get_idt	     = emulator_get_idt,
5911 	.set_gdt             = emulator_set_gdt,
5912 	.set_idt	     = emulator_set_idt,
5913 	.get_cr              = emulator_get_cr,
5914 	.set_cr              = emulator_set_cr,
5915 	.cpl                 = emulator_get_cpl,
5916 	.get_dr              = emulator_get_dr,
5917 	.set_dr              = emulator_set_dr,
5918 	.get_smbase          = emulator_get_smbase,
5919 	.set_smbase          = emulator_set_smbase,
5920 	.set_msr             = emulator_set_msr,
5921 	.get_msr             = emulator_get_msr,
5922 	.check_pmc	     = emulator_check_pmc,
5923 	.read_pmc            = emulator_read_pmc,
5924 	.halt                = emulator_halt,
5925 	.wbinvd              = emulator_wbinvd,
5926 	.fix_hypercall       = emulator_fix_hypercall,
5927 	.intercept           = emulator_intercept,
5928 	.get_cpuid           = emulator_get_cpuid,
5929 	.set_nmi_mask        = emulator_set_nmi_mask,
5930 	.get_hflags          = emulator_get_hflags,
5931 	.set_hflags          = emulator_set_hflags,
5932 	.pre_leave_smm       = emulator_pre_leave_smm,
5933 };
5934 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5935 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5936 {
5937 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5938 	/*
5939 	 * an sti; sti; sequence only disable interrupts for the first
5940 	 * instruction. So, if the last instruction, be it emulated or
5941 	 * not, left the system with the INT_STI flag enabled, it
5942 	 * means that the last instruction is an sti. We should not
5943 	 * leave the flag on in this case. The same goes for mov ss
5944 	 */
5945 	if (int_shadow & mask)
5946 		mask = 0;
5947 	if (unlikely(int_shadow || mask)) {
5948 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5949 		if (!mask)
5950 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5951 	}
5952 }
5953 
inject_emulated_exception(struct kvm_vcpu * vcpu)5954 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5955 {
5956 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5957 	if (ctxt->exception.vector == PF_VECTOR)
5958 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5959 
5960 	if (ctxt->exception.error_code_valid)
5961 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5962 				      ctxt->exception.error_code);
5963 	else
5964 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5965 	return false;
5966 }
5967 
init_emulate_ctxt(struct kvm_vcpu * vcpu)5968 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5969 {
5970 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5971 	int cs_db, cs_l;
5972 
5973 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5974 
5975 	ctxt->eflags = kvm_get_rflags(vcpu);
5976 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5977 
5978 	ctxt->eip = kvm_rip_read(vcpu);
5979 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5980 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5981 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5982 		     cs_db				? X86EMUL_MODE_PROT32 :
5983 							  X86EMUL_MODE_PROT16;
5984 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5985 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5986 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5987 
5988 	init_decode_cache(ctxt);
5989 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5990 }
5991 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5992 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5993 {
5994 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5995 	int ret;
5996 
5997 	init_emulate_ctxt(vcpu);
5998 
5999 	ctxt->op_bytes = 2;
6000 	ctxt->ad_bytes = 2;
6001 	ctxt->_eip = ctxt->eip + inc_eip;
6002 	ret = emulate_int_real(ctxt, irq);
6003 
6004 	if (ret != X86EMUL_CONTINUE)
6005 		return EMULATE_FAIL;
6006 
6007 	ctxt->eip = ctxt->_eip;
6008 	kvm_rip_write(vcpu, ctxt->eip);
6009 	kvm_set_rflags(vcpu, ctxt->eflags);
6010 
6011 	return EMULATE_DONE;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6014 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)6015 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6016 {
6017 	int r = EMULATE_DONE;
6018 
6019 	++vcpu->stat.insn_emulation_fail;
6020 	trace_kvm_emulate_insn_failed(vcpu);
6021 
6022 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6023 		return EMULATE_FAIL;
6024 
6025 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6026 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6027 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6028 		vcpu->run->internal.ndata = 0;
6029 		r = EMULATE_USER_EXIT;
6030 	}
6031 
6032 	kvm_queue_exception(vcpu, UD_VECTOR);
6033 
6034 	return r;
6035 }
6036 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)6037 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6038 				  bool write_fault_to_shadow_pgtable,
6039 				  int emulation_type)
6040 {
6041 	gpa_t gpa = cr2_or_gpa;
6042 	kvm_pfn_t pfn;
6043 
6044 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6045 		return false;
6046 
6047 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6048 		return false;
6049 
6050 	if (!vcpu->arch.mmu.direct_map) {
6051 		/*
6052 		 * Write permission should be allowed since only
6053 		 * write access need to be emulated.
6054 		 */
6055 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6056 
6057 		/*
6058 		 * If the mapping is invalid in guest, let cpu retry
6059 		 * it to generate fault.
6060 		 */
6061 		if (gpa == UNMAPPED_GVA)
6062 			return true;
6063 	}
6064 
6065 	/*
6066 	 * Do not retry the unhandleable instruction if it faults on the
6067 	 * readonly host memory, otherwise it will goto a infinite loop:
6068 	 * retry instruction -> write #PF -> emulation fail -> retry
6069 	 * instruction -> ...
6070 	 */
6071 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6072 
6073 	/*
6074 	 * If the instruction failed on the error pfn, it can not be fixed,
6075 	 * report the error to userspace.
6076 	 */
6077 	if (is_error_noslot_pfn(pfn))
6078 		return false;
6079 
6080 	kvm_release_pfn_clean(pfn);
6081 
6082 	/* The instructions are well-emulated on direct mmu. */
6083 	if (vcpu->arch.mmu.direct_map) {
6084 		unsigned int indirect_shadow_pages;
6085 
6086 		spin_lock(&vcpu->kvm->mmu_lock);
6087 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6088 		spin_unlock(&vcpu->kvm->mmu_lock);
6089 
6090 		if (indirect_shadow_pages)
6091 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6092 
6093 		return true;
6094 	}
6095 
6096 	/*
6097 	 * if emulation was due to access to shadowed page table
6098 	 * and it failed try to unshadow page and re-enter the
6099 	 * guest to let CPU execute the instruction.
6100 	 */
6101 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6102 
6103 	/*
6104 	 * If the access faults on its page table, it can not
6105 	 * be fixed by unprotecting shadow page and it should
6106 	 * be reported to userspace.
6107 	 */
6108 	return !write_fault_to_shadow_pgtable;
6109 }
6110 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)6111 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6112 			      gpa_t cr2_or_gpa,  int emulation_type)
6113 {
6114 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6115 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6116 
6117 	last_retry_eip = vcpu->arch.last_retry_eip;
6118 	last_retry_addr = vcpu->arch.last_retry_addr;
6119 
6120 	/*
6121 	 * If the emulation is caused by #PF and it is non-page_table
6122 	 * writing instruction, it means the VM-EXIT is caused by shadow
6123 	 * page protected, we can zap the shadow page and retry this
6124 	 * instruction directly.
6125 	 *
6126 	 * Note: if the guest uses a non-page-table modifying instruction
6127 	 * on the PDE that points to the instruction, then we will unmap
6128 	 * the instruction and go to an infinite loop. So, we cache the
6129 	 * last retried eip and the last fault address, if we meet the eip
6130 	 * and the address again, we can break out of the potential infinite
6131 	 * loop.
6132 	 */
6133 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6134 
6135 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6136 		return false;
6137 
6138 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6139 		return false;
6140 
6141 	if (x86_page_table_writing_insn(ctxt))
6142 		return false;
6143 
6144 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6145 		return false;
6146 
6147 	vcpu->arch.last_retry_eip = ctxt->eip;
6148 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6149 
6150 	if (!vcpu->arch.mmu.direct_map)
6151 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6152 
6153 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6154 
6155 	return true;
6156 }
6157 
6158 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6159 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6160 
kvm_smm_changed(struct kvm_vcpu * vcpu)6161 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6162 {
6163 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6164 		/* This is a good place to trace that we are exiting SMM.  */
6165 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6166 
6167 		/* Process a latched INIT or SMI, if any.  */
6168 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6169 	}
6170 
6171 	kvm_mmu_reset_context(vcpu);
6172 }
6173 
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)6174 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6175 {
6176 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
6177 
6178 	vcpu->arch.hflags = emul_flags;
6179 
6180 	if (changed & HF_SMM_MASK)
6181 		kvm_smm_changed(vcpu);
6182 }
6183 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)6184 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6185 				unsigned long *db)
6186 {
6187 	u32 dr6 = 0;
6188 	int i;
6189 	u32 enable, rwlen;
6190 
6191 	enable = dr7;
6192 	rwlen = dr7 >> 16;
6193 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6194 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6195 			dr6 |= (1 << i);
6196 	return dr6;
6197 }
6198 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)6199 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6200 {
6201 	struct kvm_run *kvm_run = vcpu->run;
6202 
6203 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6204 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6205 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6206 		kvm_run->debug.arch.exception = DB_VECTOR;
6207 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6208 		*r = EMULATE_USER_EXIT;
6209 	} else {
6210 		/*
6211 		 * "Certain debug exceptions may clear bit 0-3.  The
6212 		 * remaining contents of the DR6 register are never
6213 		 * cleared by the processor".
6214 		 */
6215 		vcpu->arch.dr6 &= ~15;
6216 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6217 		kvm_queue_exception(vcpu, DB_VECTOR);
6218 	}
6219 }
6220 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)6221 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6222 {
6223 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6224 	int r = EMULATE_DONE;
6225 
6226 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6227 
6228 	/*
6229 	 * rflags is the old, "raw" value of the flags.  The new value has
6230 	 * not been saved yet.
6231 	 *
6232 	 * This is correct even for TF set by the guest, because "the
6233 	 * processor will not generate this exception after the instruction
6234 	 * that sets the TF flag".
6235 	 */
6236 	if (unlikely(rflags & X86_EFLAGS_TF))
6237 		kvm_vcpu_do_singlestep(vcpu, &r);
6238 	return r == EMULATE_DONE;
6239 }
6240 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6241 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)6242 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6243 {
6244 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6245 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6246 		struct kvm_run *kvm_run = vcpu->run;
6247 		unsigned long eip = kvm_get_linear_rip(vcpu);
6248 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6249 					   vcpu->arch.guest_debug_dr7,
6250 					   vcpu->arch.eff_db);
6251 
6252 		if (dr6 != 0) {
6253 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6254 			kvm_run->debug.arch.pc = eip;
6255 			kvm_run->debug.arch.exception = DB_VECTOR;
6256 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6257 			*r = EMULATE_USER_EXIT;
6258 			return true;
6259 		}
6260 	}
6261 
6262 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6263 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6264 		unsigned long eip = kvm_get_linear_rip(vcpu);
6265 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6266 					   vcpu->arch.dr7,
6267 					   vcpu->arch.db);
6268 
6269 		if (dr6 != 0) {
6270 			vcpu->arch.dr6 &= ~15;
6271 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6272 			kvm_queue_exception(vcpu, DB_VECTOR);
6273 			*r = EMULATE_DONE;
6274 			return true;
6275 		}
6276 	}
6277 
6278 	return false;
6279 }
6280 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)6281 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6282 {
6283 	switch (ctxt->opcode_len) {
6284 	case 1:
6285 		switch (ctxt->b) {
6286 		case 0xe4:	/* IN */
6287 		case 0xe5:
6288 		case 0xec:
6289 		case 0xed:
6290 		case 0xe6:	/* OUT */
6291 		case 0xe7:
6292 		case 0xee:
6293 		case 0xef:
6294 		case 0x6c:	/* INS */
6295 		case 0x6d:
6296 		case 0x6e:	/* OUTS */
6297 		case 0x6f:
6298 			return true;
6299 		}
6300 		break;
6301 	case 2:
6302 		switch (ctxt->b) {
6303 		case 0x33:	/* RDPMC */
6304 			return true;
6305 		}
6306 		break;
6307 	}
6308 
6309 	return false;
6310 }
6311 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)6312 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6313 			    int emulation_type, void *insn, int insn_len)
6314 {
6315 	int r;
6316 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6317 	bool writeback = true;
6318 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6319 
6320 	vcpu->arch.l1tf_flush_l1d = true;
6321 
6322 	/*
6323 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6324 	 * never reused.
6325 	 */
6326 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6327 	kvm_clear_exception_queue(vcpu);
6328 
6329 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6330 		init_emulate_ctxt(vcpu);
6331 
6332 		/*
6333 		 * We will reenter on the same instruction since
6334 		 * we do not set complete_userspace_io.  This does not
6335 		 * handle watchpoints yet, those would be handled in
6336 		 * the emulate_ops.
6337 		 */
6338 		if (!(emulation_type & EMULTYPE_SKIP) &&
6339 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6340 			return r;
6341 
6342 		ctxt->interruptibility = 0;
6343 		ctxt->have_exception = false;
6344 		ctxt->exception.vector = -1;
6345 		ctxt->perm_ok = false;
6346 
6347 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6348 
6349 		r = x86_decode_insn(ctxt, insn, insn_len);
6350 
6351 		trace_kvm_emulate_insn_start(vcpu);
6352 		++vcpu->stat.insn_emulation;
6353 		if (r != EMULATION_OK)  {
6354 			if (emulation_type & EMULTYPE_TRAP_UD)
6355 				return EMULATE_FAIL;
6356 			if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6357 						emulation_type))
6358 				return EMULATE_DONE;
6359 			if (ctxt->have_exception) {
6360 				/*
6361 				 * #UD should result in just EMULATION_FAILED, and trap-like
6362 				 * exception should not be encountered during decode.
6363 				 */
6364 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6365 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6366 				inject_emulated_exception(vcpu);
6367 				return EMULATE_DONE;
6368 			}
6369 			if (emulation_type & EMULTYPE_SKIP)
6370 				return EMULATE_FAIL;
6371 			return handle_emulation_failure(vcpu, emulation_type);
6372 		}
6373 	}
6374 
6375 	if ((emulation_type & EMULTYPE_VMWARE) &&
6376 	    !is_vmware_backdoor_opcode(ctxt))
6377 		return EMULATE_FAIL;
6378 
6379 	if (emulation_type & EMULTYPE_SKIP) {
6380 		kvm_rip_write(vcpu, ctxt->_eip);
6381 		if (ctxt->eflags & X86_EFLAGS_RF)
6382 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6383 		return EMULATE_DONE;
6384 	}
6385 
6386 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6387 		return EMULATE_DONE;
6388 
6389 	/* this is needed for vmware backdoor interface to work since it
6390 	   changes registers values  during IO operation */
6391 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6392 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6393 		emulator_invalidate_register_cache(ctxt);
6394 	}
6395 
6396 restart:
6397 	/* Save the faulting GPA (cr2) in the address field */
6398 	ctxt->exception.address = cr2_or_gpa;
6399 
6400 	r = x86_emulate_insn(ctxt);
6401 
6402 	if (r == EMULATION_INTERCEPTED)
6403 		return EMULATE_DONE;
6404 
6405 	if (r == EMULATION_FAILED) {
6406 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6407 					emulation_type))
6408 			return EMULATE_DONE;
6409 
6410 		return handle_emulation_failure(vcpu, emulation_type);
6411 	}
6412 
6413 	if (ctxt->have_exception) {
6414 		r = EMULATE_DONE;
6415 		if (inject_emulated_exception(vcpu))
6416 			return r;
6417 	} else if (vcpu->arch.pio.count) {
6418 		if (!vcpu->arch.pio.in) {
6419 			/* FIXME: return into emulator if single-stepping.  */
6420 			vcpu->arch.pio.count = 0;
6421 		} else {
6422 			writeback = false;
6423 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6424 		}
6425 		r = EMULATE_USER_EXIT;
6426 	} else if (vcpu->mmio_needed) {
6427 		if (!vcpu->mmio_is_write)
6428 			writeback = false;
6429 		r = EMULATE_USER_EXIT;
6430 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6431 	} else if (r == EMULATION_RESTART)
6432 		goto restart;
6433 	else
6434 		r = EMULATE_DONE;
6435 
6436 	if (writeback) {
6437 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6438 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6439 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6440 		if (!ctxt->have_exception ||
6441 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6442 			kvm_rip_write(vcpu, ctxt->eip);
6443 			if (r == EMULATE_DONE && ctxt->tf)
6444 				kvm_vcpu_do_singlestep(vcpu, &r);
6445 			__kvm_set_rflags(vcpu, ctxt->eflags);
6446 		}
6447 
6448 		/*
6449 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6450 		 * do nothing, and it will be requested again as soon as
6451 		 * the shadow expires.  But we still need to check here,
6452 		 * because POPF has no interrupt shadow.
6453 		 */
6454 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6455 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6456 	} else
6457 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6458 
6459 	return r;
6460 }
6461 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)6462 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6463 {
6464 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6465 }
6466 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6467 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)6468 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6469 					void *insn, int insn_len)
6470 {
6471 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6472 }
6473 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6474 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)6475 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6476 {
6477 	vcpu->arch.pio.count = 0;
6478 	return 1;
6479 }
6480 
complete_fast_pio_out(struct kvm_vcpu * vcpu)6481 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6482 {
6483 	vcpu->arch.pio.count = 0;
6484 
6485 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6486 		return 1;
6487 
6488 	return kvm_skip_emulated_instruction(vcpu);
6489 }
6490 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)6491 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6492 			    unsigned short port)
6493 {
6494 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6495 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6496 					    size, port, &val, 1);
6497 	if (ret)
6498 		return ret;
6499 
6500 	/*
6501 	 * Workaround userspace that relies on old KVM behavior of %rip being
6502 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6503 	 */
6504 	if (port == 0x7e &&
6505 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6506 		vcpu->arch.complete_userspace_io =
6507 			complete_fast_pio_out_port_0x7e;
6508 		kvm_skip_emulated_instruction(vcpu);
6509 	} else {
6510 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6511 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6512 	}
6513 	return 0;
6514 }
6515 
complete_fast_pio_in(struct kvm_vcpu * vcpu)6516 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6517 {
6518 	unsigned long val;
6519 
6520 	/* We should only ever be called with arch.pio.count equal to 1 */
6521 	BUG_ON(vcpu->arch.pio.count != 1);
6522 
6523 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6524 		vcpu->arch.pio.count = 0;
6525 		return 1;
6526 	}
6527 
6528 	/* For size less than 4 we merge, else we zero extend */
6529 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6530 					: 0;
6531 
6532 	/*
6533 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6534 	 * the copy and tracing
6535 	 */
6536 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6537 				 vcpu->arch.pio.port, &val, 1);
6538 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6539 
6540 	return kvm_skip_emulated_instruction(vcpu);
6541 }
6542 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)6543 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6544 			   unsigned short port)
6545 {
6546 	unsigned long val;
6547 	int ret;
6548 
6549 	/* For size less than 4 we merge, else we zero extend */
6550 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6551 
6552 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6553 				       &val, 1);
6554 	if (ret) {
6555 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6556 		return ret;
6557 	}
6558 
6559 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6560 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6561 
6562 	return 0;
6563 }
6564 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)6565 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6566 {
6567 	int ret;
6568 
6569 	if (in)
6570 		ret = kvm_fast_pio_in(vcpu, size, port);
6571 	else
6572 		ret = kvm_fast_pio_out(vcpu, size, port);
6573 	return ret && kvm_skip_emulated_instruction(vcpu);
6574 }
6575 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6576 
kvmclock_cpu_down_prep(unsigned int cpu)6577 static int kvmclock_cpu_down_prep(unsigned int cpu)
6578 {
6579 	__this_cpu_write(cpu_tsc_khz, 0);
6580 	return 0;
6581 }
6582 
tsc_khz_changed(void * data)6583 static void tsc_khz_changed(void *data)
6584 {
6585 	struct cpufreq_freqs *freq = data;
6586 	unsigned long khz = 0;
6587 
6588 	if (data)
6589 		khz = freq->new;
6590 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6591 		khz = cpufreq_quick_get(raw_smp_processor_id());
6592 	if (!khz)
6593 		khz = tsc_khz;
6594 	__this_cpu_write(cpu_tsc_khz, khz);
6595 }
6596 
6597 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)6598 static void kvm_hyperv_tsc_notifier(void)
6599 {
6600 	struct kvm *kvm;
6601 	struct kvm_vcpu *vcpu;
6602 	int cpu;
6603 
6604 	mutex_lock(&kvm_lock);
6605 	list_for_each_entry(kvm, &vm_list, vm_list)
6606 		kvm_make_mclock_inprogress_request(kvm);
6607 
6608 	hyperv_stop_tsc_emulation();
6609 
6610 	/* TSC frequency always matches when on Hyper-V */
6611 	for_each_present_cpu(cpu)
6612 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6613 	kvm_max_guest_tsc_khz = tsc_khz;
6614 
6615 	list_for_each_entry(kvm, &vm_list, vm_list) {
6616 		struct kvm_arch *ka = &kvm->arch;
6617 
6618 		spin_lock(&ka->pvclock_gtod_sync_lock);
6619 
6620 		pvclock_update_vm_gtod_copy(kvm);
6621 
6622 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6623 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6624 
6625 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6626 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6627 
6628 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6629 	}
6630 	mutex_unlock(&kvm_lock);
6631 }
6632 #endif
6633 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)6634 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6635 				     void *data)
6636 {
6637 	struct cpufreq_freqs *freq = data;
6638 	struct kvm *kvm;
6639 	struct kvm_vcpu *vcpu;
6640 	int i, send_ipi = 0;
6641 
6642 	/*
6643 	 * We allow guests to temporarily run on slowing clocks,
6644 	 * provided we notify them after, or to run on accelerating
6645 	 * clocks, provided we notify them before.  Thus time never
6646 	 * goes backwards.
6647 	 *
6648 	 * However, we have a problem.  We can't atomically update
6649 	 * the frequency of a given CPU from this function; it is
6650 	 * merely a notifier, which can be called from any CPU.
6651 	 * Changing the TSC frequency at arbitrary points in time
6652 	 * requires a recomputation of local variables related to
6653 	 * the TSC for each VCPU.  We must flag these local variables
6654 	 * to be updated and be sure the update takes place with the
6655 	 * new frequency before any guests proceed.
6656 	 *
6657 	 * Unfortunately, the combination of hotplug CPU and frequency
6658 	 * change creates an intractable locking scenario; the order
6659 	 * of when these callouts happen is undefined with respect to
6660 	 * CPU hotplug, and they can race with each other.  As such,
6661 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6662 	 * undefined; you can actually have a CPU frequency change take
6663 	 * place in between the computation of X and the setting of the
6664 	 * variable.  To protect against this problem, all updates of
6665 	 * the per_cpu tsc_khz variable are done in an interrupt
6666 	 * protected IPI, and all callers wishing to update the value
6667 	 * must wait for a synchronous IPI to complete (which is trivial
6668 	 * if the caller is on the CPU already).  This establishes the
6669 	 * necessary total order on variable updates.
6670 	 *
6671 	 * Note that because a guest time update may take place
6672 	 * anytime after the setting of the VCPU's request bit, the
6673 	 * correct TSC value must be set before the request.  However,
6674 	 * to ensure the update actually makes it to any guest which
6675 	 * starts running in hardware virtualization between the set
6676 	 * and the acquisition of the spinlock, we must also ping the
6677 	 * CPU after setting the request bit.
6678 	 *
6679 	 */
6680 
6681 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6682 		return 0;
6683 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6684 		return 0;
6685 
6686 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6687 
6688 	mutex_lock(&kvm_lock);
6689 	list_for_each_entry(kvm, &vm_list, vm_list) {
6690 		kvm_for_each_vcpu(i, vcpu, kvm) {
6691 			if (vcpu->cpu != freq->cpu)
6692 				continue;
6693 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6694 			if (vcpu->cpu != raw_smp_processor_id())
6695 				send_ipi = 1;
6696 		}
6697 	}
6698 	mutex_unlock(&kvm_lock);
6699 
6700 	if (freq->old < freq->new && send_ipi) {
6701 		/*
6702 		 * We upscale the frequency.  Must make the guest
6703 		 * doesn't see old kvmclock values while running with
6704 		 * the new frequency, otherwise we risk the guest sees
6705 		 * time go backwards.
6706 		 *
6707 		 * In case we update the frequency for another cpu
6708 		 * (which might be in guest context) send an interrupt
6709 		 * to kick the cpu out of guest context.  Next time
6710 		 * guest context is entered kvmclock will be updated,
6711 		 * so the guest will not see stale values.
6712 		 */
6713 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6714 	}
6715 	return 0;
6716 }
6717 
6718 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6719 	.notifier_call  = kvmclock_cpufreq_notifier
6720 };
6721 
kvmclock_cpu_online(unsigned int cpu)6722 static int kvmclock_cpu_online(unsigned int cpu)
6723 {
6724 	tsc_khz_changed(NULL);
6725 	return 0;
6726 }
6727 
kvm_timer_init(void)6728 static void kvm_timer_init(void)
6729 {
6730 	max_tsc_khz = tsc_khz;
6731 
6732 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6733 #ifdef CONFIG_CPU_FREQ
6734 		struct cpufreq_policy policy;
6735 		int cpu;
6736 
6737 		memset(&policy, 0, sizeof(policy));
6738 		cpu = get_cpu();
6739 		cpufreq_get_policy(&policy, cpu);
6740 		if (policy.cpuinfo.max_freq)
6741 			max_tsc_khz = policy.cpuinfo.max_freq;
6742 		put_cpu();
6743 #endif
6744 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6745 					  CPUFREQ_TRANSITION_NOTIFIER);
6746 	}
6747 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6748 
6749 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6750 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6751 }
6752 
6753 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6754 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6755 
kvm_is_in_guest(void)6756 int kvm_is_in_guest(void)
6757 {
6758 	return __this_cpu_read(current_vcpu) != NULL;
6759 }
6760 
kvm_is_user_mode(void)6761 static int kvm_is_user_mode(void)
6762 {
6763 	int user_mode = 3;
6764 
6765 	if (__this_cpu_read(current_vcpu))
6766 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6767 
6768 	return user_mode != 0;
6769 }
6770 
kvm_get_guest_ip(void)6771 static unsigned long kvm_get_guest_ip(void)
6772 {
6773 	unsigned long ip = 0;
6774 
6775 	if (__this_cpu_read(current_vcpu))
6776 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6777 
6778 	return ip;
6779 }
6780 
6781 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6782 	.is_in_guest		= kvm_is_in_guest,
6783 	.is_user_mode		= kvm_is_user_mode,
6784 	.get_guest_ip		= kvm_get_guest_ip,
6785 };
6786 
6787 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)6788 static void pvclock_gtod_update_fn(struct work_struct *work)
6789 {
6790 	struct kvm *kvm;
6791 
6792 	struct kvm_vcpu *vcpu;
6793 	int i;
6794 
6795 	mutex_lock(&kvm_lock);
6796 	list_for_each_entry(kvm, &vm_list, vm_list)
6797 		kvm_for_each_vcpu(i, vcpu, kvm)
6798 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6799 	atomic_set(&kvm_guest_has_master_clock, 0);
6800 	mutex_unlock(&kvm_lock);
6801 }
6802 
6803 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6804 
6805 /*
6806  * Notification about pvclock gtod data update.
6807  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)6808 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6809 			       void *priv)
6810 {
6811 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6812 	struct timekeeper *tk = priv;
6813 
6814 	update_pvclock_gtod(tk);
6815 
6816 	/* disable master clock if host does not trust, or does not
6817 	 * use, TSC based clocksource.
6818 	 */
6819 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6820 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6821 		queue_work(system_long_wq, &pvclock_gtod_work);
6822 
6823 	return 0;
6824 }
6825 
6826 static struct notifier_block pvclock_gtod_notifier = {
6827 	.notifier_call = pvclock_gtod_notify,
6828 };
6829 #endif
6830 
kvm_arch_init(void * opaque)6831 int kvm_arch_init(void *opaque)
6832 {
6833 	int r;
6834 	struct kvm_x86_ops *ops = opaque;
6835 
6836 	if (kvm_x86_ops) {
6837 		printk(KERN_ERR "kvm: already loaded the other module\n");
6838 		r = -EEXIST;
6839 		goto out;
6840 	}
6841 
6842 	if (!ops->cpu_has_kvm_support()) {
6843 		printk(KERN_ERR "kvm: no hardware support\n");
6844 		r = -EOPNOTSUPP;
6845 		goto out;
6846 	}
6847 	if (ops->disabled_by_bios()) {
6848 		printk(KERN_ERR "kvm: disabled by bios\n");
6849 		r = -EOPNOTSUPP;
6850 		goto out;
6851 	}
6852 
6853 	r = -ENOMEM;
6854 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6855 	if (!shared_msrs) {
6856 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6857 		goto out;
6858 	}
6859 
6860 	r = kvm_mmu_module_init();
6861 	if (r)
6862 		goto out_free_percpu;
6863 
6864 	kvm_x86_ops = ops;
6865 
6866 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6867 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6868 			PT_PRESENT_MASK, 0, sme_me_mask);
6869 	kvm_timer_init();
6870 
6871 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6872 
6873 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6874 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6875 
6876 	kvm_lapic_init();
6877 #ifdef CONFIG_X86_64
6878 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6879 
6880 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6881 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6882 #endif
6883 
6884 	return 0;
6885 
6886 out_free_percpu:
6887 	free_percpu(shared_msrs);
6888 out:
6889 	return r;
6890 }
6891 
kvm_arch_exit(void)6892 void kvm_arch_exit(void)
6893 {
6894 #ifdef CONFIG_X86_64
6895 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6896 		clear_hv_tscchange_cb();
6897 #endif
6898 	kvm_lapic_exit();
6899 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6900 
6901 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6902 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6903 					    CPUFREQ_TRANSITION_NOTIFIER);
6904 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6905 #ifdef CONFIG_X86_64
6906 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6907 #endif
6908 	kvm_x86_ops = NULL;
6909 	kvm_mmu_module_exit();
6910 	free_percpu(shared_msrs);
6911 }
6912 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6913 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6914 {
6915 	++vcpu->stat.halt_exits;
6916 	if (lapic_in_kernel(vcpu)) {
6917 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6918 		return 1;
6919 	} else {
6920 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6921 		return 0;
6922 	}
6923 }
6924 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6925 
kvm_emulate_halt(struct kvm_vcpu * vcpu)6926 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6927 {
6928 	int ret = kvm_skip_emulated_instruction(vcpu);
6929 	/*
6930 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6931 	 * KVM_EXIT_DEBUG here.
6932 	 */
6933 	return kvm_vcpu_halt(vcpu) && ret;
6934 }
6935 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6936 
6937 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)6938 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6939 			        unsigned long clock_type)
6940 {
6941 	struct kvm_clock_pairing clock_pairing;
6942 	struct timespec64 ts;
6943 	u64 cycle;
6944 	int ret;
6945 
6946 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6947 		return -KVM_EOPNOTSUPP;
6948 
6949 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6950 		return -KVM_EOPNOTSUPP;
6951 
6952 	clock_pairing.sec = ts.tv_sec;
6953 	clock_pairing.nsec = ts.tv_nsec;
6954 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6955 	clock_pairing.flags = 0;
6956 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6957 
6958 	ret = 0;
6959 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6960 			    sizeof(struct kvm_clock_pairing)))
6961 		ret = -KVM_EFAULT;
6962 
6963 	return ret;
6964 }
6965 #endif
6966 
6967 /*
6968  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6969  *
6970  * @apicid - apicid of vcpu to be kicked.
6971  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6972 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6973 {
6974 	struct kvm_lapic_irq lapic_irq;
6975 
6976 	lapic_irq.shorthand = 0;
6977 	lapic_irq.dest_mode = 0;
6978 	lapic_irq.level = 0;
6979 	lapic_irq.dest_id = apicid;
6980 	lapic_irq.msi_redir_hint = false;
6981 
6982 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6983 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6984 }
6985 
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)6986 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6987 {
6988 	vcpu->arch.apicv_active = false;
6989 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6990 }
6991 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6992 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6993 {
6994 	unsigned long nr, a0, a1, a2, a3, ret;
6995 	int op_64_bit;
6996 
6997 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6998 		return kvm_hv_hypercall(vcpu);
6999 
7000 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7001 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7002 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7003 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7004 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7005 
7006 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7007 
7008 	op_64_bit = is_64_bit_mode(vcpu);
7009 	if (!op_64_bit) {
7010 		nr &= 0xFFFFFFFF;
7011 		a0 &= 0xFFFFFFFF;
7012 		a1 &= 0xFFFFFFFF;
7013 		a2 &= 0xFFFFFFFF;
7014 		a3 &= 0xFFFFFFFF;
7015 	}
7016 
7017 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7018 		ret = -KVM_EPERM;
7019 		goto out;
7020 	}
7021 
7022 	switch (nr) {
7023 	case KVM_HC_VAPIC_POLL_IRQ:
7024 		ret = 0;
7025 		break;
7026 	case KVM_HC_KICK_CPU:
7027 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7028 		ret = 0;
7029 		break;
7030 #ifdef CONFIG_X86_64
7031 	case KVM_HC_CLOCK_PAIRING:
7032 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7033 		break;
7034 #endif
7035 	case KVM_HC_SEND_IPI:
7036 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7037 		break;
7038 	default:
7039 		ret = -KVM_ENOSYS;
7040 		break;
7041 	}
7042 out:
7043 	if (!op_64_bit)
7044 		ret = (u32)ret;
7045 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7046 
7047 	++vcpu->stat.hypercalls;
7048 	return kvm_skip_emulated_instruction(vcpu);
7049 }
7050 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7051 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)7052 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7053 {
7054 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7055 	char instruction[3];
7056 	unsigned long rip = kvm_rip_read(vcpu);
7057 
7058 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7059 
7060 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7061 		&ctxt->exception);
7062 }
7063 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)7064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7065 {
7066 	return vcpu->run->request_interrupt_window &&
7067 		likely(!pic_in_kernel(vcpu->kvm));
7068 }
7069 
post_kvm_run_save(struct kvm_vcpu * vcpu)7070 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7071 {
7072 	struct kvm_run *kvm_run = vcpu->run;
7073 
7074 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7075 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7076 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7077 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7078 	kvm_run->ready_for_interrupt_injection =
7079 		pic_in_kernel(vcpu->kvm) ||
7080 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7081 }
7082 
update_cr8_intercept(struct kvm_vcpu * vcpu)7083 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7084 {
7085 	int max_irr, tpr;
7086 
7087 	if (!kvm_x86_ops->update_cr8_intercept)
7088 		return;
7089 
7090 	if (!lapic_in_kernel(vcpu))
7091 		return;
7092 
7093 	if (vcpu->arch.apicv_active)
7094 		return;
7095 
7096 	if (!vcpu->arch.apic->vapic_addr)
7097 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7098 	else
7099 		max_irr = -1;
7100 
7101 	if (max_irr != -1)
7102 		max_irr >>= 4;
7103 
7104 	tpr = kvm_lapic_get_cr8(vcpu);
7105 
7106 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7107 }
7108 
inject_pending_event(struct kvm_vcpu * vcpu)7109 static int inject_pending_event(struct kvm_vcpu *vcpu)
7110 {
7111 	int r;
7112 
7113 	/* try to reinject previous events if any */
7114 
7115 	if (vcpu->arch.exception.injected)
7116 		kvm_x86_ops->queue_exception(vcpu);
7117 	/*
7118 	 * Do not inject an NMI or interrupt if there is a pending
7119 	 * exception.  Exceptions and interrupts are recognized at
7120 	 * instruction boundaries, i.e. the start of an instruction.
7121 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7122 	 * NMIs and interrupts, i.e. traps are recognized before an
7123 	 * NMI/interrupt that's pending on the same instruction.
7124 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7125 	 * priority, but are only generated (pended) during instruction
7126 	 * execution, i.e. a pending fault-like exception means the
7127 	 * fault occurred on the *previous* instruction and must be
7128 	 * serviced prior to recognizing any new events in order to
7129 	 * fully complete the previous instruction.
7130 	 */
7131 	else if (!vcpu->arch.exception.pending) {
7132 		if (vcpu->arch.nmi_injected)
7133 			kvm_x86_ops->set_nmi(vcpu);
7134 		else if (vcpu->arch.interrupt.injected)
7135 			kvm_x86_ops->set_irq(vcpu);
7136 	}
7137 
7138 	/*
7139 	 * Call check_nested_events() even if we reinjected a previous event
7140 	 * in order for caller to determine if it should require immediate-exit
7141 	 * from L2 to L1 due to pending L1 events which require exit
7142 	 * from L2 to L1.
7143 	 */
7144 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7145 		r = kvm_x86_ops->check_nested_events(vcpu);
7146 		if (r != 0)
7147 			return r;
7148 	}
7149 
7150 	/* try to inject new event if pending */
7151 	if (vcpu->arch.exception.pending) {
7152 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7153 					vcpu->arch.exception.has_error_code,
7154 					vcpu->arch.exception.error_code);
7155 
7156 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7157 		vcpu->arch.exception.pending = false;
7158 		vcpu->arch.exception.injected = true;
7159 
7160 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7161 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7162 					     X86_EFLAGS_RF);
7163 
7164 		if (vcpu->arch.exception.nr == DB_VECTOR &&
7165 		    (vcpu->arch.dr7 & DR7_GD)) {
7166 			vcpu->arch.dr7 &= ~DR7_GD;
7167 			kvm_update_dr7(vcpu);
7168 		}
7169 
7170 		kvm_x86_ops->queue_exception(vcpu);
7171 	}
7172 
7173 	/* Don't consider new event if we re-injected an event */
7174 	if (kvm_event_needs_reinjection(vcpu))
7175 		return 0;
7176 
7177 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7178 	    kvm_x86_ops->smi_allowed(vcpu)) {
7179 		vcpu->arch.smi_pending = false;
7180 		++vcpu->arch.smi_count;
7181 		enter_smm(vcpu);
7182 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7183 		--vcpu->arch.nmi_pending;
7184 		vcpu->arch.nmi_injected = true;
7185 		kvm_x86_ops->set_nmi(vcpu);
7186 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7187 		/*
7188 		 * Because interrupts can be injected asynchronously, we are
7189 		 * calling check_nested_events again here to avoid a race condition.
7190 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7191 		 * proposal and current concerns.  Perhaps we should be setting
7192 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7193 		 */
7194 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7195 			r = kvm_x86_ops->check_nested_events(vcpu);
7196 			if (r != 0)
7197 				return r;
7198 		}
7199 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7200 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7201 					    false);
7202 			kvm_x86_ops->set_irq(vcpu);
7203 		}
7204 	}
7205 
7206 	return 0;
7207 }
7208 
process_nmi(struct kvm_vcpu * vcpu)7209 static void process_nmi(struct kvm_vcpu *vcpu)
7210 {
7211 	unsigned limit = 2;
7212 
7213 	/*
7214 	 * x86 is limited to one NMI running, and one NMI pending after it.
7215 	 * If an NMI is already in progress, limit further NMIs to just one.
7216 	 * Otherwise, allow two (and we'll inject the first one immediately).
7217 	 */
7218 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7219 		limit = 1;
7220 
7221 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7222 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7223 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7224 }
7225 
enter_smm_get_segment_flags(struct kvm_segment * seg)7226 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7227 {
7228 	u32 flags = 0;
7229 	flags |= seg->g       << 23;
7230 	flags |= seg->db      << 22;
7231 	flags |= seg->l       << 21;
7232 	flags |= seg->avl     << 20;
7233 	flags |= seg->present << 15;
7234 	flags |= seg->dpl     << 13;
7235 	flags |= seg->s       << 12;
7236 	flags |= seg->type    << 8;
7237 	return flags;
7238 }
7239 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)7240 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7241 {
7242 	struct kvm_segment seg;
7243 	int offset;
7244 
7245 	kvm_get_segment(vcpu, &seg, n);
7246 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7247 
7248 	if (n < 3)
7249 		offset = 0x7f84 + n * 12;
7250 	else
7251 		offset = 0x7f2c + (n - 3) * 12;
7252 
7253 	put_smstate(u32, buf, offset + 8, seg.base);
7254 	put_smstate(u32, buf, offset + 4, seg.limit);
7255 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7256 }
7257 
7258 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)7259 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7260 {
7261 	struct kvm_segment seg;
7262 	int offset;
7263 	u16 flags;
7264 
7265 	kvm_get_segment(vcpu, &seg, n);
7266 	offset = 0x7e00 + n * 16;
7267 
7268 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7269 	put_smstate(u16, buf, offset, seg.selector);
7270 	put_smstate(u16, buf, offset + 2, flags);
7271 	put_smstate(u32, buf, offset + 4, seg.limit);
7272 	put_smstate(u64, buf, offset + 8, seg.base);
7273 }
7274 #endif
7275 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)7276 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7277 {
7278 	struct desc_ptr dt;
7279 	struct kvm_segment seg;
7280 	unsigned long val;
7281 	int i;
7282 
7283 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7284 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7285 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7286 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7287 
7288 	for (i = 0; i < 8; i++)
7289 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7290 
7291 	kvm_get_dr(vcpu, 6, &val);
7292 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7293 	kvm_get_dr(vcpu, 7, &val);
7294 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7295 
7296 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7297 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7298 	put_smstate(u32, buf, 0x7f64, seg.base);
7299 	put_smstate(u32, buf, 0x7f60, seg.limit);
7300 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7301 
7302 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7303 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7304 	put_smstate(u32, buf, 0x7f80, seg.base);
7305 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7306 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7307 
7308 	kvm_x86_ops->get_gdt(vcpu, &dt);
7309 	put_smstate(u32, buf, 0x7f74, dt.address);
7310 	put_smstate(u32, buf, 0x7f70, dt.size);
7311 
7312 	kvm_x86_ops->get_idt(vcpu, &dt);
7313 	put_smstate(u32, buf, 0x7f58, dt.address);
7314 	put_smstate(u32, buf, 0x7f54, dt.size);
7315 
7316 	for (i = 0; i < 6; i++)
7317 		enter_smm_save_seg_32(vcpu, buf, i);
7318 
7319 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7320 
7321 	/* revision id */
7322 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7323 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7324 }
7325 
7326 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)7327 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7328 {
7329 	struct desc_ptr dt;
7330 	struct kvm_segment seg;
7331 	unsigned long val;
7332 	int i;
7333 
7334 	for (i = 0; i < 16; i++)
7335 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7336 
7337 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7338 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7339 
7340 	kvm_get_dr(vcpu, 6, &val);
7341 	put_smstate(u64, buf, 0x7f68, val);
7342 	kvm_get_dr(vcpu, 7, &val);
7343 	put_smstate(u64, buf, 0x7f60, val);
7344 
7345 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7346 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7347 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7348 
7349 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7350 
7351 	/* revision id */
7352 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7353 
7354 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7355 
7356 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7357 	put_smstate(u16, buf, 0x7e90, seg.selector);
7358 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7359 	put_smstate(u32, buf, 0x7e94, seg.limit);
7360 	put_smstate(u64, buf, 0x7e98, seg.base);
7361 
7362 	kvm_x86_ops->get_idt(vcpu, &dt);
7363 	put_smstate(u32, buf, 0x7e84, dt.size);
7364 	put_smstate(u64, buf, 0x7e88, dt.address);
7365 
7366 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7367 	put_smstate(u16, buf, 0x7e70, seg.selector);
7368 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7369 	put_smstate(u32, buf, 0x7e74, seg.limit);
7370 	put_smstate(u64, buf, 0x7e78, seg.base);
7371 
7372 	kvm_x86_ops->get_gdt(vcpu, &dt);
7373 	put_smstate(u32, buf, 0x7e64, dt.size);
7374 	put_smstate(u64, buf, 0x7e68, dt.address);
7375 
7376 	for (i = 0; i < 6; i++)
7377 		enter_smm_save_seg_64(vcpu, buf, i);
7378 }
7379 #endif
7380 
enter_smm(struct kvm_vcpu * vcpu)7381 static void enter_smm(struct kvm_vcpu *vcpu)
7382 {
7383 	struct kvm_segment cs, ds;
7384 	struct desc_ptr dt;
7385 	char buf[512];
7386 	u32 cr0;
7387 
7388 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7389 	memset(buf, 0, 512);
7390 #ifdef CONFIG_X86_64
7391 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7392 		enter_smm_save_state_64(vcpu, buf);
7393 	else
7394 #endif
7395 		enter_smm_save_state_32(vcpu, buf);
7396 
7397 	/*
7398 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7399 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7400 	 * the SMM state-save area.
7401 	 */
7402 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7403 
7404 	vcpu->arch.hflags |= HF_SMM_MASK;
7405 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7406 
7407 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7408 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7409 	else
7410 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7411 
7412 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7413 	kvm_rip_write(vcpu, 0x8000);
7414 
7415 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7416 	kvm_x86_ops->set_cr0(vcpu, cr0);
7417 	vcpu->arch.cr0 = cr0;
7418 
7419 	kvm_x86_ops->set_cr4(vcpu, 0);
7420 
7421 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7422 	dt.address = dt.size = 0;
7423 	kvm_x86_ops->set_idt(vcpu, &dt);
7424 
7425 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7426 
7427 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7428 	cs.base = vcpu->arch.smbase;
7429 
7430 	ds.selector = 0;
7431 	ds.base = 0;
7432 
7433 	cs.limit    = ds.limit = 0xffffffff;
7434 	cs.type     = ds.type = 0x3;
7435 	cs.dpl      = ds.dpl = 0;
7436 	cs.db       = ds.db = 0;
7437 	cs.s        = ds.s = 1;
7438 	cs.l        = ds.l = 0;
7439 	cs.g        = ds.g = 1;
7440 	cs.avl      = ds.avl = 0;
7441 	cs.present  = ds.present = 1;
7442 	cs.unusable = ds.unusable = 0;
7443 	cs.padding  = ds.padding = 0;
7444 
7445 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7446 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7447 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7448 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7449 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7450 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7451 
7452 #ifdef CONFIG_X86_64
7453 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7454 		kvm_x86_ops->set_efer(vcpu, 0);
7455 #endif
7456 
7457 	kvm_update_cpuid(vcpu);
7458 	kvm_mmu_reset_context(vcpu);
7459 }
7460 
process_smi(struct kvm_vcpu * vcpu)7461 static void process_smi(struct kvm_vcpu *vcpu)
7462 {
7463 	vcpu->arch.smi_pending = true;
7464 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7465 }
7466 
kvm_make_scan_ioapic_request(struct kvm * kvm)7467 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7468 {
7469 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7470 }
7471 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)7472 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7473 {
7474 	if (!kvm_apic_present(vcpu))
7475 		return;
7476 
7477 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7478 
7479 	if (irqchip_split(vcpu->kvm))
7480 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7481 	else {
7482 		if (vcpu->arch.apicv_active)
7483 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7484 		if (ioapic_in_kernel(vcpu->kvm))
7485 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7486 	}
7487 
7488 	if (is_guest_mode(vcpu))
7489 		vcpu->arch.load_eoi_exitmap_pending = true;
7490 	else
7491 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7492 }
7493 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)7494 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7495 {
7496 	u64 eoi_exit_bitmap[4];
7497 
7498 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7499 		return;
7500 
7501 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7502 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7503 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7504 }
7505 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)7506 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7507 					    unsigned long start, unsigned long end)
7508 {
7509 	unsigned long apic_address;
7510 
7511 	/*
7512 	 * The physical address of apic access page is stored in the VMCS.
7513 	 * Update it when it becomes invalid.
7514 	 */
7515 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7516 	if (start <= apic_address && apic_address < end)
7517 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7518 }
7519 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)7520 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7521 {
7522 	struct page *page = NULL;
7523 
7524 	if (!lapic_in_kernel(vcpu))
7525 		return;
7526 
7527 	if (!kvm_x86_ops->set_apic_access_page_addr)
7528 		return;
7529 
7530 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7531 	if (is_error_page(page))
7532 		return;
7533 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7534 
7535 	/*
7536 	 * Do not pin apic access page in memory, the MMU notifier
7537 	 * will call us again if it is migrated or swapped out.
7538 	 */
7539 	put_page(page);
7540 }
7541 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7542 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)7543 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7544 {
7545 	smp_send_reschedule(vcpu->cpu);
7546 }
7547 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7548 
7549 /*
7550  * Returns 1 to let vcpu_run() continue the guest execution loop without
7551  * exiting to the userspace.  Otherwise, the value will be returned to the
7552  * userspace.
7553  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)7554 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7555 {
7556 	int r;
7557 	bool req_int_win =
7558 		dm_request_for_irq_injection(vcpu) &&
7559 		kvm_cpu_accept_dm_intr(vcpu);
7560 
7561 	bool req_immediate_exit = false;
7562 
7563 	if (kvm_request_pending(vcpu)) {
7564 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7565 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7566 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7567 			kvm_mmu_unload(vcpu);
7568 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7569 			__kvm_migrate_timers(vcpu);
7570 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7571 			kvm_gen_update_masterclock(vcpu->kvm);
7572 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7573 			kvm_gen_kvmclock_update(vcpu);
7574 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7575 			r = kvm_guest_time_update(vcpu);
7576 			if (unlikely(r))
7577 				goto out;
7578 		}
7579 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7580 			kvm_mmu_sync_roots(vcpu);
7581 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7582 			kvm_mmu_load_cr3(vcpu);
7583 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7584 			kvm_vcpu_flush_tlb(vcpu, true);
7585 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7586 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7587 			r = 0;
7588 			goto out;
7589 		}
7590 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7591 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7592 			vcpu->mmio_needed = 0;
7593 			r = 0;
7594 			goto out;
7595 		}
7596 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7597 			/* Page is swapped out. Do synthetic halt */
7598 			vcpu->arch.apf.halted = true;
7599 			r = 1;
7600 			goto out;
7601 		}
7602 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7603 			record_steal_time(vcpu);
7604 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7605 			process_smi(vcpu);
7606 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7607 			process_nmi(vcpu);
7608 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7609 			kvm_pmu_handle_event(vcpu);
7610 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7611 			kvm_pmu_deliver_pmi(vcpu);
7612 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7613 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7614 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7615 				     vcpu->arch.ioapic_handled_vectors)) {
7616 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7617 				vcpu->run->eoi.vector =
7618 						vcpu->arch.pending_ioapic_eoi;
7619 				r = 0;
7620 				goto out;
7621 			}
7622 		}
7623 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7624 			vcpu_scan_ioapic(vcpu);
7625 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7626 			vcpu_load_eoi_exitmap(vcpu);
7627 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7628 			kvm_vcpu_reload_apic_access_page(vcpu);
7629 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7630 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7631 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7632 			r = 0;
7633 			goto out;
7634 		}
7635 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7636 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7637 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7638 			r = 0;
7639 			goto out;
7640 		}
7641 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7642 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7643 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7644 			r = 0;
7645 			goto out;
7646 		}
7647 
7648 		/*
7649 		 * KVM_REQ_HV_STIMER has to be processed after
7650 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7651 		 * depend on the guest clock being up-to-date
7652 		 */
7653 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7654 			kvm_hv_process_stimers(vcpu);
7655 	}
7656 
7657 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7658 		++vcpu->stat.req_event;
7659 		kvm_apic_accept_events(vcpu);
7660 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7661 			r = 1;
7662 			goto out;
7663 		}
7664 
7665 		if (inject_pending_event(vcpu) != 0)
7666 			req_immediate_exit = true;
7667 		else {
7668 			/* Enable SMI/NMI/IRQ window open exits if needed.
7669 			 *
7670 			 * SMIs have three cases:
7671 			 * 1) They can be nested, and then there is nothing to
7672 			 *    do here because RSM will cause a vmexit anyway.
7673 			 * 2) There is an ISA-specific reason why SMI cannot be
7674 			 *    injected, and the moment when this changes can be
7675 			 *    intercepted.
7676 			 * 3) Or the SMI can be pending because
7677 			 *    inject_pending_event has completed the injection
7678 			 *    of an IRQ or NMI from the previous vmexit, and
7679 			 *    then we request an immediate exit to inject the
7680 			 *    SMI.
7681 			 */
7682 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7683 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7684 					req_immediate_exit = true;
7685 			if (vcpu->arch.nmi_pending)
7686 				kvm_x86_ops->enable_nmi_window(vcpu);
7687 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7688 				kvm_x86_ops->enable_irq_window(vcpu);
7689 			WARN_ON(vcpu->arch.exception.pending);
7690 		}
7691 
7692 		if (kvm_lapic_enabled(vcpu)) {
7693 			update_cr8_intercept(vcpu);
7694 			kvm_lapic_sync_to_vapic(vcpu);
7695 		}
7696 	}
7697 
7698 	r = kvm_mmu_reload(vcpu);
7699 	if (unlikely(r)) {
7700 		goto cancel_injection;
7701 	}
7702 
7703 	preempt_disable();
7704 
7705 	kvm_x86_ops->prepare_guest_switch(vcpu);
7706 
7707 	/*
7708 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7709 	 * IPI are then delayed after guest entry, which ensures that they
7710 	 * result in virtual interrupt delivery.
7711 	 */
7712 	local_irq_disable();
7713 	vcpu->mode = IN_GUEST_MODE;
7714 
7715 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7716 
7717 	/*
7718 	 * 1) We should set ->mode before checking ->requests.  Please see
7719 	 * the comment in kvm_vcpu_exiting_guest_mode().
7720 	 *
7721 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7722 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7723 	 * (see vmx_deliver_posted_interrupt).
7724 	 *
7725 	 * 3) This also orders the write to mode from any reads to the page
7726 	 * tables done while the VCPU is running.  Please see the comment
7727 	 * in kvm_flush_remote_tlbs.
7728 	 */
7729 	smp_mb__after_srcu_read_unlock();
7730 
7731 	/*
7732 	 * This handles the case where a posted interrupt was
7733 	 * notified with kvm_vcpu_kick.
7734 	 */
7735 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7736 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7737 
7738 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7739 	    || need_resched() || signal_pending(current)) {
7740 		vcpu->mode = OUTSIDE_GUEST_MODE;
7741 		smp_wmb();
7742 		local_irq_enable();
7743 		preempt_enable();
7744 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7745 		r = 1;
7746 		goto cancel_injection;
7747 	}
7748 
7749 	if (req_immediate_exit) {
7750 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7751 		kvm_x86_ops->request_immediate_exit(vcpu);
7752 	}
7753 
7754 	trace_kvm_entry(vcpu->vcpu_id);
7755 	if (lapic_timer_advance_ns)
7756 		wait_lapic_expire(vcpu);
7757 	guest_enter_irqoff();
7758 
7759 	if (unlikely(vcpu->arch.switch_db_regs)) {
7760 		set_debugreg(0, 7);
7761 		set_debugreg(vcpu->arch.eff_db[0], 0);
7762 		set_debugreg(vcpu->arch.eff_db[1], 1);
7763 		set_debugreg(vcpu->arch.eff_db[2], 2);
7764 		set_debugreg(vcpu->arch.eff_db[3], 3);
7765 		set_debugreg(vcpu->arch.dr6, 6);
7766 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7767 	}
7768 
7769 	kvm_x86_ops->run(vcpu);
7770 
7771 	/*
7772 	 * Do this here before restoring debug registers on the host.  And
7773 	 * since we do this before handling the vmexit, a DR access vmexit
7774 	 * can (a) read the correct value of the debug registers, (b) set
7775 	 * KVM_DEBUGREG_WONT_EXIT again.
7776 	 */
7777 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7778 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7779 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7780 		kvm_update_dr0123(vcpu);
7781 		kvm_update_dr6(vcpu);
7782 		kvm_update_dr7(vcpu);
7783 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7784 	}
7785 
7786 	/*
7787 	 * If the guest has used debug registers, at least dr7
7788 	 * will be disabled while returning to the host.
7789 	 * If we don't have active breakpoints in the host, we don't
7790 	 * care about the messed up debug address registers. But if
7791 	 * we have some of them active, restore the old state.
7792 	 */
7793 	if (hw_breakpoint_active())
7794 		hw_breakpoint_restore();
7795 
7796 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7797 
7798 	vcpu->mode = OUTSIDE_GUEST_MODE;
7799 	smp_wmb();
7800 
7801 	kvm_before_interrupt(vcpu);
7802 	kvm_x86_ops->handle_external_intr(vcpu);
7803 	kvm_after_interrupt(vcpu);
7804 
7805 	++vcpu->stat.exits;
7806 
7807 	guest_exit_irqoff();
7808 
7809 	local_irq_enable();
7810 	preempt_enable();
7811 
7812 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7813 
7814 	/*
7815 	 * Profile KVM exit RIPs:
7816 	 */
7817 	if (unlikely(prof_on == KVM_PROFILING)) {
7818 		unsigned long rip = kvm_rip_read(vcpu);
7819 		profile_hit(KVM_PROFILING, (void *)rip);
7820 	}
7821 
7822 	if (unlikely(vcpu->arch.tsc_always_catchup))
7823 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7824 
7825 	if (vcpu->arch.apic_attention)
7826 		kvm_lapic_sync_from_vapic(vcpu);
7827 
7828 	vcpu->arch.gpa_available = false;
7829 	r = kvm_x86_ops->handle_exit(vcpu);
7830 	return r;
7831 
7832 cancel_injection:
7833 	kvm_x86_ops->cancel_injection(vcpu);
7834 	if (unlikely(vcpu->arch.apic_attention))
7835 		kvm_lapic_sync_from_vapic(vcpu);
7836 out:
7837 	return r;
7838 }
7839 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)7840 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7841 {
7842 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7843 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7844 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7845 		kvm_vcpu_block(vcpu);
7846 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7847 
7848 		if (kvm_x86_ops->post_block)
7849 			kvm_x86_ops->post_block(vcpu);
7850 
7851 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7852 			return 1;
7853 	}
7854 
7855 	kvm_apic_accept_events(vcpu);
7856 	switch(vcpu->arch.mp_state) {
7857 	case KVM_MP_STATE_HALTED:
7858 		vcpu->arch.pv.pv_unhalted = false;
7859 		vcpu->arch.mp_state =
7860 			KVM_MP_STATE_RUNNABLE;
7861 	case KVM_MP_STATE_RUNNABLE:
7862 		vcpu->arch.apf.halted = false;
7863 		break;
7864 	case KVM_MP_STATE_INIT_RECEIVED:
7865 		break;
7866 	default:
7867 		return -EINTR;
7868 		break;
7869 	}
7870 	return 1;
7871 }
7872 
kvm_vcpu_running(struct kvm_vcpu * vcpu)7873 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7874 {
7875 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7876 		kvm_x86_ops->check_nested_events(vcpu);
7877 
7878 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7879 		!vcpu->arch.apf.halted);
7880 }
7881 
vcpu_run(struct kvm_vcpu * vcpu)7882 static int vcpu_run(struct kvm_vcpu *vcpu)
7883 {
7884 	int r;
7885 	struct kvm *kvm = vcpu->kvm;
7886 
7887 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7888 	vcpu->arch.l1tf_flush_l1d = true;
7889 
7890 	for (;;) {
7891 		if (kvm_vcpu_running(vcpu)) {
7892 			r = vcpu_enter_guest(vcpu);
7893 		} else {
7894 			r = vcpu_block(kvm, vcpu);
7895 		}
7896 
7897 		if (r <= 0)
7898 			break;
7899 
7900 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7901 		if (kvm_cpu_has_pending_timer(vcpu))
7902 			kvm_inject_pending_timer_irqs(vcpu);
7903 
7904 		if (dm_request_for_irq_injection(vcpu) &&
7905 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7906 			r = 0;
7907 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7908 			++vcpu->stat.request_irq_exits;
7909 			break;
7910 		}
7911 
7912 		kvm_check_async_pf_completion(vcpu);
7913 
7914 		if (signal_pending(current)) {
7915 			r = -EINTR;
7916 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7917 			++vcpu->stat.signal_exits;
7918 			break;
7919 		}
7920 		if (need_resched()) {
7921 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7922 			cond_resched();
7923 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7924 		}
7925 	}
7926 
7927 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7928 
7929 	return r;
7930 }
7931 
complete_emulated_io(struct kvm_vcpu * vcpu)7932 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7933 {
7934 	int r;
7935 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7936 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7937 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7938 	if (r != EMULATE_DONE)
7939 		return 0;
7940 	return 1;
7941 }
7942 
complete_emulated_pio(struct kvm_vcpu * vcpu)7943 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7944 {
7945 	BUG_ON(!vcpu->arch.pio.count);
7946 
7947 	return complete_emulated_io(vcpu);
7948 }
7949 
7950 /*
7951  * Implements the following, as a state machine:
7952  *
7953  * read:
7954  *   for each fragment
7955  *     for each mmio piece in the fragment
7956  *       write gpa, len
7957  *       exit
7958  *       copy data
7959  *   execute insn
7960  *
7961  * write:
7962  *   for each fragment
7963  *     for each mmio piece in the fragment
7964  *       write gpa, len
7965  *       copy data
7966  *       exit
7967  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)7968 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7969 {
7970 	struct kvm_run *run = vcpu->run;
7971 	struct kvm_mmio_fragment *frag;
7972 	unsigned len;
7973 
7974 	BUG_ON(!vcpu->mmio_needed);
7975 
7976 	/* Complete previous fragment */
7977 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7978 	len = min(8u, frag->len);
7979 	if (!vcpu->mmio_is_write)
7980 		memcpy(frag->data, run->mmio.data, len);
7981 
7982 	if (frag->len <= 8) {
7983 		/* Switch to the next fragment. */
7984 		frag++;
7985 		vcpu->mmio_cur_fragment++;
7986 	} else {
7987 		/* Go forward to the next mmio piece. */
7988 		frag->data += len;
7989 		frag->gpa += len;
7990 		frag->len -= len;
7991 	}
7992 
7993 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7994 		vcpu->mmio_needed = 0;
7995 
7996 		/* FIXME: return into emulator if single-stepping.  */
7997 		if (vcpu->mmio_is_write)
7998 			return 1;
7999 		vcpu->mmio_read_completed = 1;
8000 		return complete_emulated_io(vcpu);
8001 	}
8002 
8003 	run->exit_reason = KVM_EXIT_MMIO;
8004 	run->mmio.phys_addr = frag->gpa;
8005 	if (vcpu->mmio_is_write)
8006 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8007 	run->mmio.len = min(8u, frag->len);
8008 	run->mmio.is_write = vcpu->mmio_is_write;
8009 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8010 	return 0;
8011 }
8012 
8013 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)8014 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8015 {
8016 	preempt_disable();
8017 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8018 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8019 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8020 				~XFEATURE_MASK_PKRU);
8021 	preempt_enable();
8022 	trace_kvm_fpu(1);
8023 }
8024 
8025 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)8026 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8027 {
8028 	preempt_disable();
8029 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8030 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8031 	preempt_enable();
8032 	++vcpu->stat.fpu_reload;
8033 	trace_kvm_fpu(0);
8034 }
8035 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)8036 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8037 {
8038 	int r;
8039 
8040 	vcpu_load(vcpu);
8041 	kvm_sigset_activate(vcpu);
8042 	kvm_load_guest_fpu(vcpu);
8043 
8044 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8045 		if (kvm_run->immediate_exit) {
8046 			r = -EINTR;
8047 			goto out;
8048 		}
8049 		kvm_vcpu_block(vcpu);
8050 		kvm_apic_accept_events(vcpu);
8051 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8052 		r = -EAGAIN;
8053 		if (signal_pending(current)) {
8054 			r = -EINTR;
8055 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8056 			++vcpu->stat.signal_exits;
8057 		}
8058 		goto out;
8059 	}
8060 
8061 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8062 		r = -EINVAL;
8063 		goto out;
8064 	}
8065 
8066 	if (vcpu->run->kvm_dirty_regs) {
8067 		r = sync_regs(vcpu);
8068 		if (r != 0)
8069 			goto out;
8070 	}
8071 
8072 	/* re-sync apic's tpr */
8073 	if (!lapic_in_kernel(vcpu)) {
8074 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8075 			r = -EINVAL;
8076 			goto out;
8077 		}
8078 	}
8079 
8080 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8081 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8082 		vcpu->arch.complete_userspace_io = NULL;
8083 		r = cui(vcpu);
8084 		if (r <= 0)
8085 			goto out;
8086 	} else
8087 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8088 
8089 	if (kvm_run->immediate_exit)
8090 		r = -EINTR;
8091 	else
8092 		r = vcpu_run(vcpu);
8093 
8094 out:
8095 	kvm_put_guest_fpu(vcpu);
8096 	if (vcpu->run->kvm_valid_regs)
8097 		store_regs(vcpu);
8098 	post_kvm_run_save(vcpu);
8099 	kvm_sigset_deactivate(vcpu);
8100 
8101 	vcpu_put(vcpu);
8102 	return r;
8103 }
8104 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8105 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8106 {
8107 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8108 		/*
8109 		 * We are here if userspace calls get_regs() in the middle of
8110 		 * instruction emulation. Registers state needs to be copied
8111 		 * back from emulation context to vcpu. Userspace shouldn't do
8112 		 * that usually, but some bad designed PV devices (vmware
8113 		 * backdoor interface) need this to work
8114 		 */
8115 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8116 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8117 	}
8118 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8119 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8120 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8121 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8122 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8123 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8124 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8125 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8126 #ifdef CONFIG_X86_64
8127 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8128 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8129 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8130 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8131 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8132 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8133 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8134 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8135 #endif
8136 
8137 	regs->rip = kvm_rip_read(vcpu);
8138 	regs->rflags = kvm_get_rflags(vcpu);
8139 }
8140 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8141 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8142 {
8143 	vcpu_load(vcpu);
8144 	__get_regs(vcpu, regs);
8145 	vcpu_put(vcpu);
8146 	return 0;
8147 }
8148 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8149 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8150 {
8151 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8152 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8153 
8154 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8155 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8156 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8157 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8158 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8159 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8160 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8161 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8162 #ifdef CONFIG_X86_64
8163 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8164 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8165 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8166 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8167 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8168 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8169 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8170 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8171 #endif
8172 
8173 	kvm_rip_write(vcpu, regs->rip);
8174 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8175 
8176 	vcpu->arch.exception.pending = false;
8177 
8178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8179 }
8180 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8181 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8182 {
8183 	vcpu_load(vcpu);
8184 	__set_regs(vcpu, regs);
8185 	vcpu_put(vcpu);
8186 	return 0;
8187 }
8188 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)8189 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8190 {
8191 	struct kvm_segment cs;
8192 
8193 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8194 	*db = cs.db;
8195 	*l = cs.l;
8196 }
8197 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8198 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8199 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8200 {
8201 	struct desc_ptr dt;
8202 
8203 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8204 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8205 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8206 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8207 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8208 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8209 
8210 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8211 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8212 
8213 	kvm_x86_ops->get_idt(vcpu, &dt);
8214 	sregs->idt.limit = dt.size;
8215 	sregs->idt.base = dt.address;
8216 	kvm_x86_ops->get_gdt(vcpu, &dt);
8217 	sregs->gdt.limit = dt.size;
8218 	sregs->gdt.base = dt.address;
8219 
8220 	sregs->cr0 = kvm_read_cr0(vcpu);
8221 	sregs->cr2 = vcpu->arch.cr2;
8222 	sregs->cr3 = kvm_read_cr3(vcpu);
8223 	sregs->cr4 = kvm_read_cr4(vcpu);
8224 	sregs->cr8 = kvm_get_cr8(vcpu);
8225 	sregs->efer = vcpu->arch.efer;
8226 	sregs->apic_base = kvm_get_apic_base(vcpu);
8227 
8228 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8229 
8230 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8231 		set_bit(vcpu->arch.interrupt.nr,
8232 			(unsigned long *)sregs->interrupt_bitmap);
8233 }
8234 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8235 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8236 				  struct kvm_sregs *sregs)
8237 {
8238 	vcpu_load(vcpu);
8239 	__get_sregs(vcpu, sregs);
8240 	vcpu_put(vcpu);
8241 	return 0;
8242 }
8243 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8244 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8245 				    struct kvm_mp_state *mp_state)
8246 {
8247 	vcpu_load(vcpu);
8248 	if (kvm_mpx_supported())
8249 		kvm_load_guest_fpu(vcpu);
8250 
8251 	kvm_apic_accept_events(vcpu);
8252 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8253 					vcpu->arch.pv.pv_unhalted)
8254 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8255 	else
8256 		mp_state->mp_state = vcpu->arch.mp_state;
8257 
8258 	if (kvm_mpx_supported())
8259 		kvm_put_guest_fpu(vcpu);
8260 	vcpu_put(vcpu);
8261 	return 0;
8262 }
8263 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8264 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8265 				    struct kvm_mp_state *mp_state)
8266 {
8267 	int ret = -EINVAL;
8268 
8269 	vcpu_load(vcpu);
8270 
8271 	if (!lapic_in_kernel(vcpu) &&
8272 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8273 		goto out;
8274 
8275 	/* INITs are latched while in SMM */
8276 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8277 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8278 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8279 		goto out;
8280 
8281 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8282 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8283 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8284 	} else
8285 		vcpu->arch.mp_state = mp_state->mp_state;
8286 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8287 
8288 	ret = 0;
8289 out:
8290 	vcpu_put(vcpu);
8291 	return ret;
8292 }
8293 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)8294 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8295 		    int reason, bool has_error_code, u32 error_code)
8296 {
8297 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8298 	int ret;
8299 
8300 	init_emulate_ctxt(vcpu);
8301 
8302 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8303 				   has_error_code, error_code);
8304 
8305 	if (ret)
8306 		return EMULATE_FAIL;
8307 
8308 	kvm_rip_write(vcpu, ctxt->eip);
8309 	kvm_set_rflags(vcpu, ctxt->eflags);
8310 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8311 	return EMULATE_DONE;
8312 }
8313 EXPORT_SYMBOL_GPL(kvm_task_switch);
8314 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8315 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8316 {
8317 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8318 		/*
8319 		 * When EFER.LME and CR0.PG are set, the processor is in
8320 		 * 64-bit mode (though maybe in a 32-bit code segment).
8321 		 * CR4.PAE and EFER.LMA must be set.
8322 		 */
8323 		if (!(sregs->cr4 & X86_CR4_PAE)
8324 		    || !(sregs->efer & EFER_LMA))
8325 			return -EINVAL;
8326 	} else {
8327 		/*
8328 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8329 		 * segment cannot be 64-bit.
8330 		 */
8331 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8332 			return -EINVAL;
8333 	}
8334 
8335 	return kvm_valid_cr4(vcpu, sregs->cr4);
8336 }
8337 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8338 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8339 {
8340 	struct msr_data apic_base_msr;
8341 	int mmu_reset_needed = 0;
8342 	int cpuid_update_needed = 0;
8343 	int pending_vec, max_bits, idx;
8344 	struct desc_ptr dt;
8345 	int ret = -EINVAL;
8346 
8347 	if (kvm_valid_sregs(vcpu, sregs))
8348 		goto out;
8349 
8350 	apic_base_msr.data = sregs->apic_base;
8351 	apic_base_msr.host_initiated = true;
8352 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8353 		goto out;
8354 
8355 	dt.size = sregs->idt.limit;
8356 	dt.address = sregs->idt.base;
8357 	kvm_x86_ops->set_idt(vcpu, &dt);
8358 	dt.size = sregs->gdt.limit;
8359 	dt.address = sregs->gdt.base;
8360 	kvm_x86_ops->set_gdt(vcpu, &dt);
8361 
8362 	vcpu->arch.cr2 = sregs->cr2;
8363 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8364 	vcpu->arch.cr3 = sregs->cr3;
8365 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8366 
8367 	kvm_set_cr8(vcpu, sregs->cr8);
8368 
8369 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8370 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8371 
8372 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8373 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8374 	vcpu->arch.cr0 = sregs->cr0;
8375 
8376 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8377 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8378 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8379 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8380 	if (cpuid_update_needed)
8381 		kvm_update_cpuid(vcpu);
8382 
8383 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8384 	if (is_pae_paging(vcpu)) {
8385 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8386 		mmu_reset_needed = 1;
8387 	}
8388 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8389 
8390 	if (mmu_reset_needed)
8391 		kvm_mmu_reset_context(vcpu);
8392 
8393 	max_bits = KVM_NR_INTERRUPTS;
8394 	pending_vec = find_first_bit(
8395 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8396 	if (pending_vec < max_bits) {
8397 		kvm_queue_interrupt(vcpu, pending_vec, false);
8398 		pr_debug("Set back pending irq %d\n", pending_vec);
8399 	}
8400 
8401 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8402 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8403 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8404 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8405 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8406 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8407 
8408 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8409 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8410 
8411 	update_cr8_intercept(vcpu);
8412 
8413 	/* Older userspace won't unhalt the vcpu on reset. */
8414 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8415 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8416 	    !is_protmode(vcpu))
8417 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8418 
8419 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8420 
8421 	ret = 0;
8422 out:
8423 	return ret;
8424 }
8425 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8426 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8427 				  struct kvm_sregs *sregs)
8428 {
8429 	int ret;
8430 
8431 	vcpu_load(vcpu);
8432 	ret = __set_sregs(vcpu, sregs);
8433 	vcpu_put(vcpu);
8434 	return ret;
8435 }
8436 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)8437 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8438 					struct kvm_guest_debug *dbg)
8439 {
8440 	unsigned long rflags;
8441 	int i, r;
8442 
8443 	vcpu_load(vcpu);
8444 
8445 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8446 		r = -EBUSY;
8447 		if (vcpu->arch.exception.pending)
8448 			goto out;
8449 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8450 			kvm_queue_exception(vcpu, DB_VECTOR);
8451 		else
8452 			kvm_queue_exception(vcpu, BP_VECTOR);
8453 	}
8454 
8455 	/*
8456 	 * Read rflags as long as potentially injected trace flags are still
8457 	 * filtered out.
8458 	 */
8459 	rflags = kvm_get_rflags(vcpu);
8460 
8461 	vcpu->guest_debug = dbg->control;
8462 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8463 		vcpu->guest_debug = 0;
8464 
8465 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8466 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8467 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8468 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8469 	} else {
8470 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8471 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8472 	}
8473 	kvm_update_dr7(vcpu);
8474 
8475 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8476 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8477 			get_segment_base(vcpu, VCPU_SREG_CS);
8478 
8479 	/*
8480 	 * Trigger an rflags update that will inject or remove the trace
8481 	 * flags.
8482 	 */
8483 	kvm_set_rflags(vcpu, rflags);
8484 
8485 	kvm_x86_ops->update_bp_intercept(vcpu);
8486 
8487 	r = 0;
8488 
8489 out:
8490 	vcpu_put(vcpu);
8491 	return r;
8492 }
8493 
8494 /*
8495  * Translate a guest virtual address to a guest physical address.
8496  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)8497 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8498 				    struct kvm_translation *tr)
8499 {
8500 	unsigned long vaddr = tr->linear_address;
8501 	gpa_t gpa;
8502 	int idx;
8503 
8504 	vcpu_load(vcpu);
8505 
8506 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8507 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8508 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8509 	tr->physical_address = gpa;
8510 	tr->valid = gpa != UNMAPPED_GVA;
8511 	tr->writeable = 1;
8512 	tr->usermode = 0;
8513 
8514 	vcpu_put(vcpu);
8515 	return 0;
8516 }
8517 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8518 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8519 {
8520 	struct fxregs_state *fxsave;
8521 
8522 	vcpu_load(vcpu);
8523 
8524 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8525 	memcpy(fpu->fpr, fxsave->st_space, 128);
8526 	fpu->fcw = fxsave->cwd;
8527 	fpu->fsw = fxsave->swd;
8528 	fpu->ftwx = fxsave->twd;
8529 	fpu->last_opcode = fxsave->fop;
8530 	fpu->last_ip = fxsave->rip;
8531 	fpu->last_dp = fxsave->rdp;
8532 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8533 
8534 	vcpu_put(vcpu);
8535 	return 0;
8536 }
8537 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8538 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8539 {
8540 	struct fxregs_state *fxsave;
8541 
8542 	vcpu_load(vcpu);
8543 
8544 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8545 
8546 	memcpy(fxsave->st_space, fpu->fpr, 128);
8547 	fxsave->cwd = fpu->fcw;
8548 	fxsave->swd = fpu->fsw;
8549 	fxsave->twd = fpu->ftwx;
8550 	fxsave->fop = fpu->last_opcode;
8551 	fxsave->rip = fpu->last_ip;
8552 	fxsave->rdp = fpu->last_dp;
8553 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8554 
8555 	vcpu_put(vcpu);
8556 	return 0;
8557 }
8558 
store_regs(struct kvm_vcpu * vcpu)8559 static void store_regs(struct kvm_vcpu *vcpu)
8560 {
8561 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8562 
8563 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8564 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8565 
8566 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8567 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8568 
8569 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8570 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8571 				vcpu, &vcpu->run->s.regs.events);
8572 }
8573 
sync_regs(struct kvm_vcpu * vcpu)8574 static int sync_regs(struct kvm_vcpu *vcpu)
8575 {
8576 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8577 		return -EINVAL;
8578 
8579 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8580 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8581 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8582 	}
8583 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8584 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8585 			return -EINVAL;
8586 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8587 	}
8588 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8589 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8590 				vcpu, &vcpu->run->s.regs.events))
8591 			return -EINVAL;
8592 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8593 	}
8594 
8595 	return 0;
8596 }
8597 
fx_init(struct kvm_vcpu * vcpu)8598 static void fx_init(struct kvm_vcpu *vcpu)
8599 {
8600 	fpstate_init(&vcpu->arch.guest_fpu.state);
8601 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8602 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8603 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8604 
8605 	/*
8606 	 * Ensure guest xcr0 is valid for loading
8607 	 */
8608 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8609 
8610 	vcpu->arch.cr0 |= X86_CR0_ET;
8611 }
8612 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)8613 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8614 {
8615 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8616 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
8617 
8618 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
8619 
8620 	kvmclock_reset(vcpu);
8621 
8622 	kvm_x86_ops->vcpu_free(vcpu);
8623 	free_cpumask_var(wbinvd_dirty_mask);
8624 }
8625 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)8626 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8627 						unsigned int id)
8628 {
8629 	struct kvm_vcpu *vcpu;
8630 
8631 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8632 		printk_once(KERN_WARNING
8633 		"kvm: SMP vm created on host with unstable TSC; "
8634 		"guest TSC will not be reliable\n");
8635 
8636 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8637 
8638 	return vcpu;
8639 }
8640 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)8641 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8642 {
8643 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8644 	kvm_vcpu_mtrr_init(vcpu);
8645 	vcpu_load(vcpu);
8646 	kvm_vcpu_reset(vcpu, false);
8647 	kvm_mmu_setup(vcpu);
8648 	vcpu_put(vcpu);
8649 	return 0;
8650 }
8651 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)8652 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8653 {
8654 	struct msr_data msr;
8655 	struct kvm *kvm = vcpu->kvm;
8656 
8657 	kvm_hv_vcpu_postcreate(vcpu);
8658 
8659 	if (mutex_lock_killable(&vcpu->mutex))
8660 		return;
8661 	vcpu_load(vcpu);
8662 	msr.data = 0x0;
8663 	msr.index = MSR_IA32_TSC;
8664 	msr.host_initiated = true;
8665 	kvm_write_tsc(vcpu, &msr);
8666 	vcpu_put(vcpu);
8667 	mutex_unlock(&vcpu->mutex);
8668 
8669 	if (!kvmclock_periodic_sync)
8670 		return;
8671 
8672 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8673 					KVMCLOCK_SYNC_PERIOD);
8674 }
8675 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)8676 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8677 {
8678 	kvm_arch_vcpu_free(vcpu);
8679 }
8680 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)8681 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8682 {
8683 	kvm_lapic_reset(vcpu, init_event);
8684 
8685 	vcpu->arch.hflags = 0;
8686 
8687 	vcpu->arch.smi_pending = 0;
8688 	vcpu->arch.smi_count = 0;
8689 	atomic_set(&vcpu->arch.nmi_queued, 0);
8690 	vcpu->arch.nmi_pending = 0;
8691 	vcpu->arch.nmi_injected = false;
8692 	kvm_clear_interrupt_queue(vcpu);
8693 	kvm_clear_exception_queue(vcpu);
8694 	vcpu->arch.exception.pending = false;
8695 
8696 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8697 	kvm_update_dr0123(vcpu);
8698 	vcpu->arch.dr6 = DR6_INIT;
8699 	kvm_update_dr6(vcpu);
8700 	vcpu->arch.dr7 = DR7_FIXED_1;
8701 	kvm_update_dr7(vcpu);
8702 
8703 	vcpu->arch.cr2 = 0;
8704 
8705 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8706 	vcpu->arch.apf.msr_val = 0;
8707 	vcpu->arch.st.msr_val = 0;
8708 
8709 	kvmclock_reset(vcpu);
8710 
8711 	kvm_clear_async_pf_completion_queue(vcpu);
8712 	kvm_async_pf_hash_reset(vcpu);
8713 	vcpu->arch.apf.halted = false;
8714 
8715 	if (kvm_mpx_supported()) {
8716 		void *mpx_state_buffer;
8717 
8718 		/*
8719 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8720 		 * called with loaded FPU and does not let userspace fix the state.
8721 		 */
8722 		if (init_event)
8723 			kvm_put_guest_fpu(vcpu);
8724 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8725 					XFEATURE_MASK_BNDREGS);
8726 		if (mpx_state_buffer)
8727 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8728 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8729 					XFEATURE_MASK_BNDCSR);
8730 		if (mpx_state_buffer)
8731 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8732 		if (init_event)
8733 			kvm_load_guest_fpu(vcpu);
8734 	}
8735 
8736 	if (!init_event) {
8737 		kvm_pmu_reset(vcpu);
8738 		vcpu->arch.smbase = 0x30000;
8739 
8740 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8741 		vcpu->arch.msr_misc_features_enables = 0;
8742 
8743 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8744 	}
8745 
8746 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8747 	vcpu->arch.regs_avail = ~0;
8748 	vcpu->arch.regs_dirty = ~0;
8749 
8750 	vcpu->arch.ia32_xss = 0;
8751 
8752 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8753 }
8754 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)8755 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8756 {
8757 	struct kvm_segment cs;
8758 
8759 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8760 	cs.selector = vector << 8;
8761 	cs.base = vector << 12;
8762 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8763 	kvm_rip_write(vcpu, 0);
8764 }
8765 
kvm_arch_hardware_enable(void)8766 int kvm_arch_hardware_enable(void)
8767 {
8768 	struct kvm *kvm;
8769 	struct kvm_vcpu *vcpu;
8770 	int i;
8771 	int ret;
8772 	u64 local_tsc;
8773 	u64 max_tsc = 0;
8774 	bool stable, backwards_tsc = false;
8775 
8776 	kvm_shared_msr_cpu_online();
8777 	ret = kvm_x86_ops->hardware_enable();
8778 	if (ret != 0)
8779 		return ret;
8780 
8781 	local_tsc = rdtsc();
8782 	stable = !kvm_check_tsc_unstable();
8783 	list_for_each_entry(kvm, &vm_list, vm_list) {
8784 		kvm_for_each_vcpu(i, vcpu, kvm) {
8785 			if (!stable && vcpu->cpu == smp_processor_id())
8786 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8787 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8788 				backwards_tsc = true;
8789 				if (vcpu->arch.last_host_tsc > max_tsc)
8790 					max_tsc = vcpu->arch.last_host_tsc;
8791 			}
8792 		}
8793 	}
8794 
8795 	/*
8796 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8797 	 * platforms that reset TSC during suspend or hibernate actions, but
8798 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8799 	 * detect that condition here, which happens early in CPU bringup,
8800 	 * before any KVM threads can be running.  Unfortunately, we can't
8801 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8802 	 * enough into CPU bringup that we know how much real time has actually
8803 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8804 	 * variables that haven't been updated yet.
8805 	 *
8806 	 * So we simply find the maximum observed TSC above, then record the
8807 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8808 	 * the adjustment will be applied.  Note that we accumulate
8809 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8810 	 * gets a chance to run again.  In the event that no KVM threads get a
8811 	 * chance to run, we will miss the entire elapsed period, as we'll have
8812 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8813 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8814 	 * uniform across all VCPUs (not to mention the scenario is extremely
8815 	 * unlikely). It is possible that a second hibernate recovery happens
8816 	 * much faster than a first, causing the observed TSC here to be
8817 	 * smaller; this would require additional padding adjustment, which is
8818 	 * why we set last_host_tsc to the local tsc observed here.
8819 	 *
8820 	 * N.B. - this code below runs only on platforms with reliable TSC,
8821 	 * as that is the only way backwards_tsc is set above.  Also note
8822 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8823 	 * have the same delta_cyc adjustment applied if backwards_tsc
8824 	 * is detected.  Note further, this adjustment is only done once,
8825 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8826 	 * called multiple times (one for each physical CPU bringup).
8827 	 *
8828 	 * Platforms with unreliable TSCs don't have to deal with this, they
8829 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8830 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8831 	 * guarantee that they stay in perfect synchronization.
8832 	 */
8833 	if (backwards_tsc) {
8834 		u64 delta_cyc = max_tsc - local_tsc;
8835 		list_for_each_entry(kvm, &vm_list, vm_list) {
8836 			kvm->arch.backwards_tsc_observed = true;
8837 			kvm_for_each_vcpu(i, vcpu, kvm) {
8838 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8839 				vcpu->arch.last_host_tsc = local_tsc;
8840 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8841 			}
8842 
8843 			/*
8844 			 * We have to disable TSC offset matching.. if you were
8845 			 * booting a VM while issuing an S4 host suspend....
8846 			 * you may have some problem.  Solving this issue is
8847 			 * left as an exercise to the reader.
8848 			 */
8849 			kvm->arch.last_tsc_nsec = 0;
8850 			kvm->arch.last_tsc_write = 0;
8851 		}
8852 
8853 	}
8854 	return 0;
8855 }
8856 
kvm_arch_hardware_disable(void)8857 void kvm_arch_hardware_disable(void)
8858 {
8859 	kvm_x86_ops->hardware_disable();
8860 	drop_user_return_notifiers();
8861 }
8862 
kvm_arch_hardware_setup(void)8863 int kvm_arch_hardware_setup(void)
8864 {
8865 	int r;
8866 
8867 	r = kvm_x86_ops->hardware_setup();
8868 	if (r != 0)
8869 		return r;
8870 
8871 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
8872 
8873 	if (kvm_has_tsc_control) {
8874 		/*
8875 		 * Make sure the user can only configure tsc_khz values that
8876 		 * fit into a signed integer.
8877 		 * A min value is not calculated because it will always
8878 		 * be 1 on all machines.
8879 		 */
8880 		u64 max = min(0x7fffffffULL,
8881 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8882 		kvm_max_guest_tsc_khz = max;
8883 
8884 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8885 	}
8886 
8887 	kvm_init_msr_list();
8888 	return 0;
8889 }
8890 
kvm_arch_hardware_unsetup(void)8891 void kvm_arch_hardware_unsetup(void)
8892 {
8893 	kvm_x86_ops->hardware_unsetup();
8894 }
8895 
kvm_arch_check_processor_compat(void * rtn)8896 void kvm_arch_check_processor_compat(void *rtn)
8897 {
8898 	kvm_x86_ops->check_processor_compatibility(rtn);
8899 }
8900 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)8901 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8902 {
8903 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8904 }
8905 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8906 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)8907 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8908 {
8909 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8910 }
8911 
8912 struct static_key kvm_no_apic_vcpu __read_mostly;
8913 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8914 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)8915 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8916 {
8917 	struct page *page;
8918 	int r;
8919 
8920 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8921 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8922 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8923 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8924 	else
8925 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8926 
8927 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8928 	if (!page) {
8929 		r = -ENOMEM;
8930 		goto fail;
8931 	}
8932 	vcpu->arch.pio_data = page_address(page);
8933 
8934 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8935 
8936 	r = kvm_mmu_create(vcpu);
8937 	if (r < 0)
8938 		goto fail_free_pio_data;
8939 
8940 	if (irqchip_in_kernel(vcpu->kvm)) {
8941 		r = kvm_create_lapic(vcpu);
8942 		if (r < 0)
8943 			goto fail_mmu_destroy;
8944 	} else
8945 		static_key_slow_inc(&kvm_no_apic_vcpu);
8946 
8947 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8948 				       GFP_KERNEL);
8949 	if (!vcpu->arch.mce_banks) {
8950 		r = -ENOMEM;
8951 		goto fail_free_lapic;
8952 	}
8953 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8954 
8955 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8956 		r = -ENOMEM;
8957 		goto fail_free_mce_banks;
8958 	}
8959 
8960 	fx_init(vcpu);
8961 
8962 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8963 
8964 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8965 
8966 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8967 
8968 	kvm_async_pf_hash_reset(vcpu);
8969 	kvm_pmu_init(vcpu);
8970 
8971 	vcpu->arch.pending_external_vector = -1;
8972 	vcpu->arch.preempted_in_kernel = false;
8973 
8974 	kvm_hv_vcpu_init(vcpu);
8975 
8976 	return 0;
8977 
8978 fail_free_mce_banks:
8979 	kfree(vcpu->arch.mce_banks);
8980 fail_free_lapic:
8981 	kvm_free_lapic(vcpu);
8982 fail_mmu_destroy:
8983 	kvm_mmu_destroy(vcpu);
8984 fail_free_pio_data:
8985 	free_page((unsigned long)vcpu->arch.pio_data);
8986 fail:
8987 	return r;
8988 }
8989 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)8990 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8991 {
8992 	int idx;
8993 
8994 	kvm_hv_vcpu_uninit(vcpu);
8995 	kvm_pmu_destroy(vcpu);
8996 	kfree(vcpu->arch.mce_banks);
8997 	kvm_free_lapic(vcpu);
8998 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8999 	kvm_mmu_destroy(vcpu);
9000 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9001 	free_page((unsigned long)vcpu->arch.pio_data);
9002 	if (!lapic_in_kernel(vcpu))
9003 		static_key_slow_dec(&kvm_no_apic_vcpu);
9004 }
9005 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)9006 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9007 {
9008 	vcpu->arch.l1tf_flush_l1d = true;
9009 	kvm_x86_ops->sched_in(vcpu, cpu);
9010 }
9011 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)9012 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9013 {
9014 	if (type)
9015 		return -EINVAL;
9016 
9017 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9018 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9019 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9020 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9021 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9022 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9023 
9024 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9025 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9026 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9027 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9028 		&kvm->arch.irq_sources_bitmap);
9029 
9030 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9031 	mutex_init(&kvm->arch.apic_map_lock);
9032 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9033 
9034 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9035 	pvclock_update_vm_gtod_copy(kvm);
9036 
9037 	kvm->arch.guest_can_read_msr_platform_info = true;
9038 
9039 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9040 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9041 
9042 	kvm_hv_init_vm(kvm);
9043 	kvm_page_track_init(kvm);
9044 	kvm_mmu_init_vm(kvm);
9045 
9046 	if (kvm_x86_ops->vm_init)
9047 		return kvm_x86_ops->vm_init(kvm);
9048 
9049 	return 0;
9050 }
9051 
kvm_arch_post_init_vm(struct kvm * kvm)9052 int kvm_arch_post_init_vm(struct kvm *kvm)
9053 {
9054 	return kvm_mmu_post_init_vm(kvm);
9055 }
9056 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)9057 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9058 {
9059 	vcpu_load(vcpu);
9060 	kvm_mmu_unload(vcpu);
9061 	vcpu_put(vcpu);
9062 }
9063 
kvm_free_vcpus(struct kvm * kvm)9064 static void kvm_free_vcpus(struct kvm *kvm)
9065 {
9066 	unsigned int i;
9067 	struct kvm_vcpu *vcpu;
9068 
9069 	/*
9070 	 * Unpin any mmu pages first.
9071 	 */
9072 	kvm_for_each_vcpu(i, vcpu, kvm) {
9073 		kvm_clear_async_pf_completion_queue(vcpu);
9074 		kvm_unload_vcpu_mmu(vcpu);
9075 	}
9076 	kvm_for_each_vcpu(i, vcpu, kvm)
9077 		kvm_arch_vcpu_free(vcpu);
9078 
9079 	mutex_lock(&kvm->lock);
9080 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9081 		kvm->vcpus[i] = NULL;
9082 
9083 	atomic_set(&kvm->online_vcpus, 0);
9084 	mutex_unlock(&kvm->lock);
9085 }
9086 
kvm_arch_sync_events(struct kvm * kvm)9087 void kvm_arch_sync_events(struct kvm *kvm)
9088 {
9089 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9090 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9091 	kvm_free_pit(kvm);
9092 }
9093 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9094 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9095 {
9096 	int i, r;
9097 	unsigned long hva;
9098 	struct kvm_memslots *slots = kvm_memslots(kvm);
9099 	struct kvm_memory_slot *slot, old;
9100 
9101 	/* Called with kvm->slots_lock held.  */
9102 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9103 		return -EINVAL;
9104 
9105 	slot = id_to_memslot(slots, id);
9106 	if (size) {
9107 		if (slot->npages)
9108 			return -EEXIST;
9109 
9110 		/*
9111 		 * MAP_SHARED to prevent internal slot pages from being moved
9112 		 * by fork()/COW.
9113 		 */
9114 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9115 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9116 		if (IS_ERR((void *)hva))
9117 			return PTR_ERR((void *)hva);
9118 	} else {
9119 		if (!slot->npages)
9120 			return 0;
9121 
9122 		hva = 0;
9123 	}
9124 
9125 	old = *slot;
9126 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9127 		struct kvm_userspace_memory_region m;
9128 
9129 		m.slot = id | (i << 16);
9130 		m.flags = 0;
9131 		m.guest_phys_addr = gpa;
9132 		m.userspace_addr = hva;
9133 		m.memory_size = size;
9134 		r = __kvm_set_memory_region(kvm, &m);
9135 		if (r < 0)
9136 			return r;
9137 	}
9138 
9139 	if (!size)
9140 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9141 
9142 	return 0;
9143 }
9144 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9145 
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9146 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9147 {
9148 	int r;
9149 
9150 	mutex_lock(&kvm->slots_lock);
9151 	r = __x86_set_memory_region(kvm, id, gpa, size);
9152 	mutex_unlock(&kvm->slots_lock);
9153 
9154 	return r;
9155 }
9156 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9157 
kvm_arch_pre_destroy_vm(struct kvm * kvm)9158 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9159 {
9160 	kvm_mmu_pre_destroy_vm(kvm);
9161 }
9162 
kvm_arch_destroy_vm(struct kvm * kvm)9163 void kvm_arch_destroy_vm(struct kvm *kvm)
9164 {
9165 	if (current->mm == kvm->mm) {
9166 		/*
9167 		 * Free memory regions allocated on behalf of userspace,
9168 		 * unless the the memory map has changed due to process exit
9169 		 * or fd copying.
9170 		 */
9171 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9172 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9173 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9174 	}
9175 	if (kvm_x86_ops->vm_destroy)
9176 		kvm_x86_ops->vm_destroy(kvm);
9177 	kvm_pic_destroy(kvm);
9178 	kvm_ioapic_destroy(kvm);
9179 	kvm_free_vcpus(kvm);
9180 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9181 	kvm_mmu_uninit_vm(kvm);
9182 	kvm_page_track_cleanup(kvm);
9183 	kvm_hv_destroy_vm(kvm);
9184 }
9185 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)9186 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9187 			   struct kvm_memory_slot *dont)
9188 {
9189 	int i;
9190 
9191 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9192 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9193 			kvfree(free->arch.rmap[i]);
9194 			free->arch.rmap[i] = NULL;
9195 		}
9196 		if (i == 0)
9197 			continue;
9198 
9199 		if (!dont || free->arch.lpage_info[i - 1] !=
9200 			     dont->arch.lpage_info[i - 1]) {
9201 			kvfree(free->arch.lpage_info[i - 1]);
9202 			free->arch.lpage_info[i - 1] = NULL;
9203 		}
9204 	}
9205 
9206 	kvm_page_track_free_memslot(free, dont);
9207 }
9208 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)9209 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9210 			    unsigned long npages)
9211 {
9212 	int i;
9213 
9214 	/*
9215 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9216 	 * old arrays will be freed by __kvm_set_memory_region() if installing
9217 	 * the new memslot is successful.
9218 	 */
9219 	memset(&slot->arch, 0, sizeof(slot->arch));
9220 
9221 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9222 		struct kvm_lpage_info *linfo;
9223 		unsigned long ugfn;
9224 		int lpages;
9225 		int level = i + 1;
9226 
9227 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9228 				      slot->base_gfn, level) + 1;
9229 
9230 		slot->arch.rmap[i] =
9231 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9232 				 GFP_KERNEL);
9233 		if (!slot->arch.rmap[i])
9234 			goto out_free;
9235 		if (i == 0)
9236 			continue;
9237 
9238 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9239 		if (!linfo)
9240 			goto out_free;
9241 
9242 		slot->arch.lpage_info[i - 1] = linfo;
9243 
9244 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9245 			linfo[0].disallow_lpage = 1;
9246 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9247 			linfo[lpages - 1].disallow_lpage = 1;
9248 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9249 		/*
9250 		 * If the gfn and userspace address are not aligned wrt each
9251 		 * other, or if explicitly asked to, disable large page
9252 		 * support for this slot
9253 		 */
9254 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9255 		    !kvm_largepages_enabled()) {
9256 			unsigned long j;
9257 
9258 			for (j = 0; j < lpages; ++j)
9259 				linfo[j].disallow_lpage = 1;
9260 		}
9261 	}
9262 
9263 	if (kvm_page_track_create_memslot(slot, npages))
9264 		goto out_free;
9265 
9266 	return 0;
9267 
9268 out_free:
9269 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9270 		kvfree(slot->arch.rmap[i]);
9271 		slot->arch.rmap[i] = NULL;
9272 		if (i == 0)
9273 			continue;
9274 
9275 		kvfree(slot->arch.lpage_info[i - 1]);
9276 		slot->arch.lpage_info[i - 1] = NULL;
9277 	}
9278 	return -ENOMEM;
9279 }
9280 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)9281 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9282 {
9283 	struct kvm_vcpu *vcpu;
9284 	int i;
9285 
9286 	/*
9287 	 * memslots->generation has been incremented.
9288 	 * mmio generation may have reached its maximum value.
9289 	 */
9290 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9291 
9292 	/* Force re-initialization of steal_time cache */
9293 	kvm_for_each_vcpu(i, vcpu, kvm)
9294 		kvm_vcpu_kick(vcpu);
9295 }
9296 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)9297 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9298 				struct kvm_memory_slot *memslot,
9299 				const struct kvm_userspace_memory_region *mem,
9300 				enum kvm_mr_change change)
9301 {
9302 	if (change == KVM_MR_MOVE)
9303 		return kvm_arch_create_memslot(kvm, memslot,
9304 					       mem->memory_size >> PAGE_SHIFT);
9305 
9306 	return 0;
9307 }
9308 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)9309 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9310 				     struct kvm_memory_slot *new)
9311 {
9312 	/* Still write protect RO slot */
9313 	if (new->flags & KVM_MEM_READONLY) {
9314 		kvm_mmu_slot_remove_write_access(kvm, new);
9315 		return;
9316 	}
9317 
9318 	/*
9319 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9320 	 *
9321 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9322 	 *
9323 	 *  - KVM_MR_CREATE with dirty logging is disabled
9324 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9325 	 *
9326 	 * The reason is, in case of PML, we need to set D-bit for any slots
9327 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9328 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9329 	 * guarantees leaving PML enabled during guest's lifetime won't have
9330 	 * any additonal overhead from PML when guest is running with dirty
9331 	 * logging disabled for memory slots.
9332 	 *
9333 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9334 	 * to dirty logging mode.
9335 	 *
9336 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9337 	 *
9338 	 * In case of write protect:
9339 	 *
9340 	 * Write protect all pages for dirty logging.
9341 	 *
9342 	 * All the sptes including the large sptes which point to this
9343 	 * slot are set to readonly. We can not create any new large
9344 	 * spte on this slot until the end of the logging.
9345 	 *
9346 	 * See the comments in fast_page_fault().
9347 	 */
9348 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9349 		if (kvm_x86_ops->slot_enable_log_dirty)
9350 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9351 		else
9352 			kvm_mmu_slot_remove_write_access(kvm, new);
9353 	} else {
9354 		if (kvm_x86_ops->slot_disable_log_dirty)
9355 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9356 	}
9357 }
9358 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)9359 void kvm_arch_commit_memory_region(struct kvm *kvm,
9360 				const struct kvm_userspace_memory_region *mem,
9361 				const struct kvm_memory_slot *old,
9362 				const struct kvm_memory_slot *new,
9363 				enum kvm_mr_change change)
9364 {
9365 	int nr_mmu_pages = 0;
9366 
9367 	if (!kvm->arch.n_requested_mmu_pages)
9368 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9369 
9370 	if (nr_mmu_pages)
9371 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9372 
9373 	/*
9374 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9375 	 * sptes have to be split.  If live migration is successful, the guest
9376 	 * in the source machine will be destroyed and large sptes will be
9377 	 * created in the destination. However, if the guest continues to run
9378 	 * in the source machine (for example if live migration fails), small
9379 	 * sptes will remain around and cause bad performance.
9380 	 *
9381 	 * Scan sptes if dirty logging has been stopped, dropping those
9382 	 * which can be collapsed into a single large-page spte.  Later
9383 	 * page faults will create the large-page sptes.
9384 	 */
9385 	if ((change != KVM_MR_DELETE) &&
9386 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9387 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9388 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9389 
9390 	/*
9391 	 * Set up write protection and/or dirty logging for the new slot.
9392 	 *
9393 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9394 	 * been zapped so no dirty logging staff is needed for old slot. For
9395 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9396 	 * new and it's also covered when dealing with the new slot.
9397 	 *
9398 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9399 	 */
9400 	if (change != KVM_MR_DELETE)
9401 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9402 }
9403 
kvm_arch_flush_shadow_all(struct kvm * kvm)9404 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9405 {
9406 	kvm_mmu_invalidate_zap_all_pages(kvm);
9407 }
9408 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)9409 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9410 				   struct kvm_memory_slot *slot)
9411 {
9412 	kvm_page_track_flush_slot(kvm, slot);
9413 }
9414 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)9415 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9416 {
9417 	return (is_guest_mode(vcpu) &&
9418 			kvm_x86_ops->guest_apic_has_interrupt &&
9419 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9420 }
9421 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)9422 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9423 {
9424 	if (!list_empty_careful(&vcpu->async_pf.done))
9425 		return true;
9426 
9427 	if (kvm_apic_has_events(vcpu))
9428 		return true;
9429 
9430 	if (vcpu->arch.pv.pv_unhalted)
9431 		return true;
9432 
9433 	if (vcpu->arch.exception.pending)
9434 		return true;
9435 
9436 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9437 	    (vcpu->arch.nmi_pending &&
9438 	     kvm_x86_ops->nmi_allowed(vcpu)))
9439 		return true;
9440 
9441 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9442 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9443 		return true;
9444 
9445 	if (kvm_arch_interrupt_allowed(vcpu) &&
9446 	    (kvm_cpu_has_interrupt(vcpu) ||
9447 	    kvm_guest_apic_has_interrupt(vcpu)))
9448 		return true;
9449 
9450 	if (kvm_hv_has_stimer_pending(vcpu))
9451 		return true;
9452 
9453 	return false;
9454 }
9455 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)9456 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9457 {
9458 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9459 }
9460 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)9461 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9462 {
9463 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9464 		return true;
9465 
9466 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9467 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9468 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9469 		return true;
9470 
9471 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9472 		return true;
9473 
9474 	return false;
9475 }
9476 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)9477 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9478 {
9479 	return vcpu->arch.preempted_in_kernel;
9480 }
9481 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)9482 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9483 {
9484 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9485 }
9486 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)9487 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9488 {
9489 	return kvm_x86_ops->interrupt_allowed(vcpu);
9490 }
9491 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)9492 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9493 {
9494 	if (is_64_bit_mode(vcpu))
9495 		return kvm_rip_read(vcpu);
9496 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9497 		     kvm_rip_read(vcpu));
9498 }
9499 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9500 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)9501 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9502 {
9503 	return kvm_get_linear_rip(vcpu) == linear_rip;
9504 }
9505 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9506 
kvm_get_rflags(struct kvm_vcpu * vcpu)9507 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9508 {
9509 	unsigned long rflags;
9510 
9511 	rflags = kvm_x86_ops->get_rflags(vcpu);
9512 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9513 		rflags &= ~X86_EFLAGS_TF;
9514 	return rflags;
9515 }
9516 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9517 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9518 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9519 {
9520 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9521 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9522 		rflags |= X86_EFLAGS_TF;
9523 	kvm_x86_ops->set_rflags(vcpu, rflags);
9524 }
9525 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9526 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9527 {
9528 	__kvm_set_rflags(vcpu, rflags);
9529 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9530 }
9531 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9532 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9533 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9534 {
9535 	int r;
9536 
9537 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9538 	      work->wakeup_all)
9539 		return;
9540 
9541 	r = kvm_mmu_reload(vcpu);
9542 	if (unlikely(r))
9543 		return;
9544 
9545 	if (!vcpu->arch.mmu.direct_map &&
9546 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9547 		return;
9548 
9549 	vcpu->arch.mmu.page_fault(vcpu, work->cr2_or_gpa, 0, true);
9550 }
9551 
kvm_async_pf_hash_fn(gfn_t gfn)9552 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9553 {
9554 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9555 }
9556 
kvm_async_pf_next_probe(u32 key)9557 static inline u32 kvm_async_pf_next_probe(u32 key)
9558 {
9559 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9560 }
9561 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9562 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9563 {
9564 	u32 key = kvm_async_pf_hash_fn(gfn);
9565 
9566 	while (vcpu->arch.apf.gfns[key] != ~0)
9567 		key = kvm_async_pf_next_probe(key);
9568 
9569 	vcpu->arch.apf.gfns[key] = gfn;
9570 }
9571 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)9572 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9573 {
9574 	int i;
9575 	u32 key = kvm_async_pf_hash_fn(gfn);
9576 
9577 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9578 		     (vcpu->arch.apf.gfns[key] != gfn &&
9579 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9580 		key = kvm_async_pf_next_probe(key);
9581 
9582 	return key;
9583 }
9584 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9585 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9586 {
9587 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9588 }
9589 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9590 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9591 {
9592 	u32 i, j, k;
9593 
9594 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9595 	while (true) {
9596 		vcpu->arch.apf.gfns[i] = ~0;
9597 		do {
9598 			j = kvm_async_pf_next_probe(j);
9599 			if (vcpu->arch.apf.gfns[j] == ~0)
9600 				return;
9601 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9602 			/*
9603 			 * k lies cyclically in ]i,j]
9604 			 * |    i.k.j |
9605 			 * |....j i.k.| or  |.k..j i...|
9606 			 */
9607 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9608 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9609 		i = j;
9610 	}
9611 }
9612 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)9613 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9614 {
9615 
9616 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9617 				      sizeof(val));
9618 }
9619 
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)9620 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9621 {
9622 
9623 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9624 				      sizeof(u32));
9625 }
9626 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9627 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9628 				     struct kvm_async_pf *work)
9629 {
9630 	struct x86_exception fault;
9631 
9632 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
9633 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9634 
9635 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9636 	    (vcpu->arch.apf.send_user_only &&
9637 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9638 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9639 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9640 		fault.vector = PF_VECTOR;
9641 		fault.error_code_valid = true;
9642 		fault.error_code = 0;
9643 		fault.nested_page_fault = false;
9644 		fault.address = work->arch.token;
9645 		fault.async_page_fault = true;
9646 		kvm_inject_page_fault(vcpu, &fault);
9647 	}
9648 }
9649 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9650 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9651 				 struct kvm_async_pf *work)
9652 {
9653 	struct x86_exception fault;
9654 	u32 val;
9655 
9656 	if (work->wakeup_all)
9657 		work->arch.token = ~0; /* broadcast wakeup */
9658 	else
9659 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9660 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
9661 
9662 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9663 	    !apf_get_user(vcpu, &val)) {
9664 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9665 		    vcpu->arch.exception.pending &&
9666 		    vcpu->arch.exception.nr == PF_VECTOR &&
9667 		    !apf_put_user(vcpu, 0)) {
9668 			vcpu->arch.exception.injected = false;
9669 			vcpu->arch.exception.pending = false;
9670 			vcpu->arch.exception.nr = 0;
9671 			vcpu->arch.exception.has_error_code = false;
9672 			vcpu->arch.exception.error_code = 0;
9673 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9674 			fault.vector = PF_VECTOR;
9675 			fault.error_code_valid = true;
9676 			fault.error_code = 0;
9677 			fault.nested_page_fault = false;
9678 			fault.address = work->arch.token;
9679 			fault.async_page_fault = true;
9680 			kvm_inject_page_fault(vcpu, &fault);
9681 		}
9682 	}
9683 	vcpu->arch.apf.halted = false;
9684 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9685 }
9686 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)9687 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9688 {
9689 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9690 		return true;
9691 	else
9692 		return kvm_can_do_async_pf(vcpu);
9693 }
9694 
kvm_arch_start_assignment(struct kvm * kvm)9695 void kvm_arch_start_assignment(struct kvm *kvm)
9696 {
9697 	atomic_inc(&kvm->arch.assigned_device_count);
9698 }
9699 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9700 
kvm_arch_end_assignment(struct kvm * kvm)9701 void kvm_arch_end_assignment(struct kvm *kvm)
9702 {
9703 	atomic_dec(&kvm->arch.assigned_device_count);
9704 }
9705 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9706 
kvm_arch_has_assigned_device(struct kvm * kvm)9707 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9708 {
9709 	return atomic_read(&kvm->arch.assigned_device_count);
9710 }
9711 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9712 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)9713 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9714 {
9715 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9716 }
9717 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9718 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)9719 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9720 {
9721 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9722 }
9723 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9724 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)9725 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9726 {
9727 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9728 }
9729 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9730 
kvm_arch_has_irq_bypass(void)9731 bool kvm_arch_has_irq_bypass(void)
9732 {
9733 	return kvm_x86_ops->update_pi_irte != NULL;
9734 }
9735 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9736 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9737 				      struct irq_bypass_producer *prod)
9738 {
9739 	struct kvm_kernel_irqfd *irqfd =
9740 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9741 
9742 	irqfd->producer = prod;
9743 
9744 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9745 					   prod->irq, irqfd->gsi, 1);
9746 }
9747 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9748 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9749 				      struct irq_bypass_producer *prod)
9750 {
9751 	int ret;
9752 	struct kvm_kernel_irqfd *irqfd =
9753 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9754 
9755 	WARN_ON(irqfd->producer != prod);
9756 	irqfd->producer = NULL;
9757 
9758 	/*
9759 	 * When producer of consumer is unregistered, we change back to
9760 	 * remapped mode, so we can re-use the current implementation
9761 	 * when the irq is masked/disabled or the consumer side (KVM
9762 	 * int this case doesn't want to receive the interrupts.
9763 	*/
9764 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9765 	if (ret)
9766 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9767 		       " fails: %d\n", irqfd->consumer.token, ret);
9768 }
9769 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)9770 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9771 				   uint32_t guest_irq, bool set)
9772 {
9773 	if (!kvm_x86_ops->update_pi_irte)
9774 		return -EINVAL;
9775 
9776 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9777 }
9778 
kvm_vector_hashing_enabled(void)9779 bool kvm_vector_hashing_enabled(void)
9780 {
9781 	return vector_hashing;
9782 }
9783 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9784 
9785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9804