1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 struct ttm_mem_reg *mem, unsigned num_pages,
56 uint64_t offset, unsigned window,
57 struct amdgpu_ring *ring,
58 uint64_t *addr);
59
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62
63 /*
64 * Global memory.
65 */
66
67 /**
68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69 * memory object
70 *
71 * @ref: Object for initialization.
72 *
73 * This is called by drm_global_item_ref() when an object is being
74 * initialized.
75 */
amdgpu_ttm_mem_global_init(struct drm_global_reference * ref)76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 return ttm_mem_global_init(ref->object);
79 }
80
81 /**
82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83 *
84 * @ref: Object being removed
85 *
86 * This is called by drm_global_item_unref() when an object is being
87 * released.
88 */
amdgpu_ttm_mem_global_release(struct drm_global_reference * ref)89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 ttm_mem_global_release(ref->object);
92 }
93
94 /**
95 * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
96 *
97 * @adev: AMDGPU device for which the global structures need to be registered.
98 *
99 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
100 * during bring up.
101 */
amdgpu_ttm_global_init(struct amdgpu_device * adev)102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
103 {
104 struct drm_global_reference *global_ref;
105 int r;
106
107 /* ensure reference is false in case init fails */
108 adev->mman.mem_global_referenced = false;
109
110 global_ref = &adev->mman.mem_global_ref;
111 global_ref->global_type = DRM_GLOBAL_TTM_MEM;
112 global_ref->size = sizeof(struct ttm_mem_global);
113 global_ref->init = &amdgpu_ttm_mem_global_init;
114 global_ref->release = &amdgpu_ttm_mem_global_release;
115 r = drm_global_item_ref(global_ref);
116 if (r) {
117 DRM_ERROR("Failed setting up TTM memory accounting "
118 "subsystem.\n");
119 goto error_mem;
120 }
121
122 adev->mman.bo_global_ref.mem_glob =
123 adev->mman.mem_global_ref.object;
124 global_ref = &adev->mman.bo_global_ref.ref;
125 global_ref->global_type = DRM_GLOBAL_TTM_BO;
126 global_ref->size = sizeof(struct ttm_bo_global);
127 global_ref->init = &ttm_bo_global_init;
128 global_ref->release = &ttm_bo_global_release;
129 r = drm_global_item_ref(global_ref);
130 if (r) {
131 DRM_ERROR("Failed setting up TTM BO subsystem.\n");
132 goto error_bo;
133 }
134
135 mutex_init(&adev->mman.gtt_window_lock);
136
137 adev->mman.mem_global_referenced = true;
138
139 return 0;
140
141 error_bo:
142 drm_global_item_unref(&adev->mman.mem_global_ref);
143 error_mem:
144 return r;
145 }
146
amdgpu_ttm_global_fini(struct amdgpu_device * adev)147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
148 {
149 if (adev->mman.mem_global_referenced) {
150 mutex_destroy(&adev->mman.gtt_window_lock);
151 drm_global_item_unref(&adev->mman.bo_global_ref.ref);
152 drm_global_item_unref(&adev->mman.mem_global_ref);
153 adev->mman.mem_global_referenced = false;
154 }
155 }
156
amdgpu_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
158 {
159 return 0;
160 }
161
162 /**
163 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
164 * memory request.
165 *
166 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
167 * @type: The type of memory requested
168 * @man: The memory type manager for each domain
169 *
170 * This is called by ttm_bo_init_mm() when a buffer object is being
171 * initialized.
172 */
amdgpu_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
174 struct ttm_mem_type_manager *man)
175 {
176 struct amdgpu_device *adev;
177
178 adev = amdgpu_ttm_adev(bdev);
179
180 switch (type) {
181 case TTM_PL_SYSTEM:
182 /* System memory */
183 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
184 man->available_caching = TTM_PL_MASK_CACHING;
185 man->default_caching = TTM_PL_FLAG_CACHED;
186 break;
187 case TTM_PL_TT:
188 /* GTT memory */
189 man->func = &amdgpu_gtt_mgr_func;
190 man->gpu_offset = adev->gmc.gart_start;
191 man->available_caching = TTM_PL_MASK_CACHING;
192 man->default_caching = TTM_PL_FLAG_CACHED;
193 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
194 break;
195 case TTM_PL_VRAM:
196 /* "On-card" video ram */
197 man->func = &amdgpu_vram_mgr_func;
198 man->gpu_offset = adev->gmc.vram_start;
199 man->flags = TTM_MEMTYPE_FLAG_FIXED |
200 TTM_MEMTYPE_FLAG_MAPPABLE;
201 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
202 man->default_caching = TTM_PL_FLAG_WC;
203 break;
204 case AMDGPU_PL_GDS:
205 case AMDGPU_PL_GWS:
206 case AMDGPU_PL_OA:
207 /* On-chip GDS memory*/
208 man->func = &ttm_bo_manager_func;
209 man->gpu_offset = 0;
210 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
211 man->available_caching = TTM_PL_FLAG_UNCACHED;
212 man->default_caching = TTM_PL_FLAG_UNCACHED;
213 break;
214 default:
215 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
216 return -EINVAL;
217 }
218 return 0;
219 }
220
221 /**
222 * amdgpu_evict_flags - Compute placement flags
223 *
224 * @bo: The buffer object to evict
225 * @placement: Possible destination(s) for evicted BO
226 *
227 * Fill in placement data when ttm_bo_evict() is called
228 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
230 struct ttm_placement *placement)
231 {
232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
233 struct amdgpu_bo *abo;
234 static const struct ttm_place placements = {
235 .fpfn = 0,
236 .lpfn = 0,
237 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
238 };
239
240 /* Don't handle scatter gather BOs */
241 if (bo->type == ttm_bo_type_sg) {
242 placement->num_placement = 0;
243 placement->num_busy_placement = 0;
244 return;
245 }
246
247 /* Object isn't an AMDGPU object so ignore */
248 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
249 placement->placement = &placements;
250 placement->busy_placement = &placements;
251 placement->num_placement = 1;
252 placement->num_busy_placement = 1;
253 return;
254 }
255
256 abo = ttm_to_amdgpu_bo(bo);
257 switch (bo->mem.mem_type) {
258 case TTM_PL_VRAM:
259 if (!adev->mman.buffer_funcs_enabled) {
260 /* Move to system memory */
261 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
262 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
263 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
264 amdgpu_bo_in_cpu_visible_vram(abo)) {
265
266 /* Try evicting to the CPU inaccessible part of VRAM
267 * first, but only set GTT as busy placement, so this
268 * BO will be evicted to GTT rather than causing other
269 * BOs to be evicted from VRAM
270 */
271 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
272 AMDGPU_GEM_DOMAIN_GTT);
273 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
274 abo->placements[0].lpfn = 0;
275 abo->placement.busy_placement = &abo->placements[1];
276 abo->placement.num_busy_placement = 1;
277 } else {
278 /* Move to GTT memory */
279 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
280 }
281 break;
282 case TTM_PL_TT:
283 default:
284 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
285 }
286 *placement = abo->placement;
287 }
288
289 /**
290 * amdgpu_verify_access - Verify access for a mmap call
291 *
292 * @bo: The buffer object to map
293 * @filp: The file pointer from the process performing the mmap
294 *
295 * This is called by ttm_bo_mmap() to verify whether a process
296 * has the right to mmap a BO to their process space.
297 */
amdgpu_verify_access(struct ttm_buffer_object * bo,struct file * filp)298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
299 {
300 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
301
302 /*
303 * Don't verify access for KFD BOs. They don't have a GEM
304 * object associated with them.
305 */
306 if (abo->kfd_bo)
307 return 0;
308
309 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
310 return -EPERM;
311 return drm_vma_node_verify_access(&abo->gem_base.vma_node,
312 filp->private_data);
313 }
314
315 /**
316 * amdgpu_move_null - Register memory for a buffer object
317 *
318 * @bo: The bo to assign the memory to
319 * @new_mem: The memory to be assigned.
320 *
321 * Assign the memory from new_mem to the memory of the buffer object bo.
322 */
amdgpu_move_null(struct ttm_buffer_object * bo,struct ttm_mem_reg * new_mem)323 static void amdgpu_move_null(struct ttm_buffer_object *bo,
324 struct ttm_mem_reg *new_mem)
325 {
326 struct ttm_mem_reg *old_mem = &bo->mem;
327
328 BUG_ON(old_mem->mm_node != NULL);
329 *old_mem = *new_mem;
330 new_mem->mm_node = NULL;
331 }
332
333 /**
334 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
335 *
336 * @bo: The bo to assign the memory to.
337 * @mm_node: Memory manager node for drm allocator.
338 * @mem: The region where the bo resides.
339 *
340 */
amdgpu_mm_node_addr(struct ttm_buffer_object * bo,struct drm_mm_node * mm_node,struct ttm_mem_reg * mem)341 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
342 struct drm_mm_node *mm_node,
343 struct ttm_mem_reg *mem)
344 {
345 uint64_t addr = 0;
346
347 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
348 addr = mm_node->start << PAGE_SHIFT;
349 addr += bo->bdev->man[mem->mem_type].gpu_offset;
350 }
351 return addr;
352 }
353
354 /**
355 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
356 * @offset. It also modifies the offset to be within the drm_mm_node returned
357 *
358 * @mem: The region where the bo resides.
359 * @offset: The offset that drm_mm_node is used for finding.
360 *
361 */
amdgpu_find_mm_node(struct ttm_mem_reg * mem,unsigned long * offset)362 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
363 unsigned long *offset)
364 {
365 struct drm_mm_node *mm_node = mem->mm_node;
366
367 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
368 *offset -= (mm_node->size << PAGE_SHIFT);
369 ++mm_node;
370 }
371 return mm_node;
372 }
373
374 /**
375 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
376 *
377 * The function copies @size bytes from {src->mem + src->offset} to
378 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
379 * move and different for a BO to BO copy.
380 *
381 * @f: Returns the last fence if multiple jobs are submitted.
382 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,struct amdgpu_copy_mem * src,struct amdgpu_copy_mem * dst,uint64_t size,struct reservation_object * resv,struct dma_fence ** f)383 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
384 struct amdgpu_copy_mem *src,
385 struct amdgpu_copy_mem *dst,
386 uint64_t size,
387 struct reservation_object *resv,
388 struct dma_fence **f)
389 {
390 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
391 struct drm_mm_node *src_mm, *dst_mm;
392 uint64_t src_node_start, dst_node_start, src_node_size,
393 dst_node_size, src_page_offset, dst_page_offset;
394 struct dma_fence *fence = NULL;
395 int r = 0;
396 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
397 AMDGPU_GPU_PAGE_SIZE);
398
399 if (!adev->mman.buffer_funcs_enabled) {
400 DRM_ERROR("Trying to move memory with ring turned off.\n");
401 return -EINVAL;
402 }
403
404 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
405 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
406 src->offset;
407 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
408 src_page_offset = src_node_start & (PAGE_SIZE - 1);
409
410 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
411 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
412 dst->offset;
413 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
414 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
415
416 mutex_lock(&adev->mman.gtt_window_lock);
417
418 while (size) {
419 unsigned long cur_size;
420 uint64_t from = src_node_start, to = dst_node_start;
421 struct dma_fence *next;
422
423 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
424 * begins at an offset, then adjust the size accordingly
425 */
426 cur_size = min3(min(src_node_size, dst_node_size), size,
427 GTT_MAX_BYTES);
428 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
429 cur_size + dst_page_offset > GTT_MAX_BYTES)
430 cur_size -= max(src_page_offset, dst_page_offset);
431
432 /* Map only what needs to be accessed. Map src to window 0 and
433 * dst to window 1
434 */
435 if (src->mem->mem_type == TTM_PL_TT &&
436 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
437 r = amdgpu_map_buffer(src->bo, src->mem,
438 PFN_UP(cur_size + src_page_offset),
439 src_node_start, 0, ring,
440 &from);
441 if (r)
442 goto error;
443 /* Adjust the offset because amdgpu_map_buffer returns
444 * start of mapped page
445 */
446 from += src_page_offset;
447 }
448
449 if (dst->mem->mem_type == TTM_PL_TT &&
450 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
451 r = amdgpu_map_buffer(dst->bo, dst->mem,
452 PFN_UP(cur_size + dst_page_offset),
453 dst_node_start, 1, ring,
454 &to);
455 if (r)
456 goto error;
457 to += dst_page_offset;
458 }
459
460 r = amdgpu_copy_buffer(ring, from, to, cur_size,
461 resv, &next, false, true);
462 if (r)
463 goto error;
464
465 dma_fence_put(fence);
466 fence = next;
467
468 size -= cur_size;
469 if (!size)
470 break;
471
472 src_node_size -= cur_size;
473 if (!src_node_size) {
474 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
475 src->mem);
476 src_node_size = (src_mm->size << PAGE_SHIFT);
477 } else {
478 src_node_start += cur_size;
479 src_page_offset = src_node_start & (PAGE_SIZE - 1);
480 }
481 dst_node_size -= cur_size;
482 if (!dst_node_size) {
483 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
484 dst->mem);
485 dst_node_size = (dst_mm->size << PAGE_SHIFT);
486 } else {
487 dst_node_start += cur_size;
488 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
489 }
490 }
491 error:
492 mutex_unlock(&adev->mman.gtt_window_lock);
493 if (f)
494 *f = dma_fence_get(fence);
495 dma_fence_put(fence);
496 return r;
497 }
498
499 /**
500 * amdgpu_move_blit - Copy an entire buffer to another buffer
501 *
502 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
503 * help move buffers to and from VRAM.
504 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,bool no_wait_gpu,struct ttm_mem_reg * new_mem,struct ttm_mem_reg * old_mem)505 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
506 bool evict, bool no_wait_gpu,
507 struct ttm_mem_reg *new_mem,
508 struct ttm_mem_reg *old_mem)
509 {
510 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
511 struct amdgpu_copy_mem src, dst;
512 struct dma_fence *fence = NULL;
513 int r;
514
515 src.bo = bo;
516 dst.bo = bo;
517 src.mem = old_mem;
518 dst.mem = new_mem;
519 src.offset = 0;
520 dst.offset = 0;
521
522 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
523 new_mem->num_pages << PAGE_SHIFT,
524 bo->resv, &fence);
525 if (r)
526 goto error;
527
528 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
529 dma_fence_put(fence);
530 return r;
531
532 error:
533 if (fence)
534 dma_fence_wait(fence, false);
535 dma_fence_put(fence);
536 return r;
537 }
538
539 /**
540 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
541 *
542 * Called by amdgpu_bo_move().
543 */
amdgpu_move_vram_ram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)544 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
545 struct ttm_operation_ctx *ctx,
546 struct ttm_mem_reg *new_mem)
547 {
548 struct amdgpu_device *adev;
549 struct ttm_mem_reg *old_mem = &bo->mem;
550 struct ttm_mem_reg tmp_mem;
551 struct ttm_place placements;
552 struct ttm_placement placement;
553 int r;
554
555 adev = amdgpu_ttm_adev(bo->bdev);
556
557 /* create space/pages for new_mem in GTT space */
558 tmp_mem = *new_mem;
559 tmp_mem.mm_node = NULL;
560 placement.num_placement = 1;
561 placement.placement = &placements;
562 placement.num_busy_placement = 1;
563 placement.busy_placement = &placements;
564 placements.fpfn = 0;
565 placements.lpfn = 0;
566 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
567 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
568 if (unlikely(r)) {
569 return r;
570 }
571
572 /* set caching flags */
573 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
574 if (unlikely(r)) {
575 goto out_cleanup;
576 }
577
578 /* Bind the memory to the GTT space */
579 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
580 if (unlikely(r)) {
581 goto out_cleanup;
582 }
583
584 /* blit VRAM to GTT */
585 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
586 if (unlikely(r)) {
587 goto out_cleanup;
588 }
589
590 /* move BO (in tmp_mem) to new_mem */
591 r = ttm_bo_move_ttm(bo, ctx, new_mem);
592 out_cleanup:
593 ttm_bo_mem_put(bo, &tmp_mem);
594 return r;
595 }
596
597 /**
598 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
599 *
600 * Called by amdgpu_bo_move().
601 */
amdgpu_move_ram_vram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)602 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
603 struct ttm_operation_ctx *ctx,
604 struct ttm_mem_reg *new_mem)
605 {
606 struct amdgpu_device *adev;
607 struct ttm_mem_reg *old_mem = &bo->mem;
608 struct ttm_mem_reg tmp_mem;
609 struct ttm_placement placement;
610 struct ttm_place placements;
611 int r;
612
613 adev = amdgpu_ttm_adev(bo->bdev);
614
615 /* make space in GTT for old_mem buffer */
616 tmp_mem = *new_mem;
617 tmp_mem.mm_node = NULL;
618 placement.num_placement = 1;
619 placement.placement = &placements;
620 placement.num_busy_placement = 1;
621 placement.busy_placement = &placements;
622 placements.fpfn = 0;
623 placements.lpfn = 0;
624 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
625 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
626 if (unlikely(r)) {
627 return r;
628 }
629
630 /* move/bind old memory to GTT space */
631 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
632 if (unlikely(r)) {
633 goto out_cleanup;
634 }
635
636 /* copy to VRAM */
637 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
638 if (unlikely(r)) {
639 goto out_cleanup;
640 }
641 out_cleanup:
642 ttm_bo_mem_put(bo, &tmp_mem);
643 return r;
644 }
645
646 /**
647 * amdgpu_bo_move - Move a buffer object to a new memory location
648 *
649 * Called by ttm_bo_handle_move_mem()
650 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)651 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
652 struct ttm_operation_ctx *ctx,
653 struct ttm_mem_reg *new_mem)
654 {
655 struct amdgpu_device *adev;
656 struct amdgpu_bo *abo;
657 struct ttm_mem_reg *old_mem = &bo->mem;
658 int r;
659
660 /* Can't move a pinned BO */
661 abo = ttm_to_amdgpu_bo(bo);
662 if (WARN_ON_ONCE(abo->pin_count > 0))
663 return -EINVAL;
664
665 adev = amdgpu_ttm_adev(bo->bdev);
666
667 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
668 amdgpu_move_null(bo, new_mem);
669 return 0;
670 }
671 if ((old_mem->mem_type == TTM_PL_TT &&
672 new_mem->mem_type == TTM_PL_SYSTEM) ||
673 (old_mem->mem_type == TTM_PL_SYSTEM &&
674 new_mem->mem_type == TTM_PL_TT)) {
675 /* bind is enough */
676 amdgpu_move_null(bo, new_mem);
677 return 0;
678 }
679
680 if (!adev->mman.buffer_funcs_enabled)
681 goto memcpy;
682
683 if (old_mem->mem_type == TTM_PL_VRAM &&
684 new_mem->mem_type == TTM_PL_SYSTEM) {
685 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
686 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
687 new_mem->mem_type == TTM_PL_VRAM) {
688 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
689 } else {
690 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
691 new_mem, old_mem);
692 }
693
694 if (r) {
695 memcpy:
696 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
697 if (r) {
698 return r;
699 }
700 }
701
702 if (bo->type == ttm_bo_type_device &&
703 new_mem->mem_type == TTM_PL_VRAM &&
704 old_mem->mem_type != TTM_PL_VRAM) {
705 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
706 * accesses the BO after it's moved.
707 */
708 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
709 }
710
711 /* update statistics */
712 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
713 return 0;
714 }
715
716 /**
717 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
718 *
719 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
720 */
amdgpu_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)721 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
722 {
723 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
724 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
725 struct drm_mm_node *mm_node = mem->mm_node;
726
727 mem->bus.addr = NULL;
728 mem->bus.offset = 0;
729 mem->bus.size = mem->num_pages << PAGE_SHIFT;
730 mem->bus.base = 0;
731 mem->bus.is_iomem = false;
732 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
733 return -EINVAL;
734 switch (mem->mem_type) {
735 case TTM_PL_SYSTEM:
736 /* system memory */
737 return 0;
738 case TTM_PL_TT:
739 break;
740 case TTM_PL_VRAM:
741 mem->bus.offset = mem->start << PAGE_SHIFT;
742 /* check if it's visible */
743 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
744 return -EINVAL;
745 /* Only physically contiguous buffers apply. In a contiguous
746 * buffer, size of the first mm_node would match the number of
747 * pages in ttm_mem_reg.
748 */
749 if (adev->mman.aper_base_kaddr &&
750 (mm_node->size == mem->num_pages))
751 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
752 mem->bus.offset;
753
754 mem->bus.base = adev->gmc.aper_base;
755 mem->bus.is_iomem = true;
756 break;
757 default:
758 return -EINVAL;
759 }
760 return 0;
761 }
762
amdgpu_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)763 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
764 {
765 }
766
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)767 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
768 unsigned long page_offset)
769 {
770 struct drm_mm_node *mm;
771 unsigned long offset = (page_offset << PAGE_SHIFT);
772
773 mm = amdgpu_find_mm_node(&bo->mem, &offset);
774 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
775 (offset >> PAGE_SHIFT);
776 }
777
778 /*
779 * TTM backend functions.
780 */
781 struct amdgpu_ttm_gup_task_list {
782 struct list_head list;
783 struct task_struct *task;
784 };
785
786 struct amdgpu_ttm_tt {
787 struct ttm_dma_tt ttm;
788 u64 offset;
789 uint64_t userptr;
790 struct task_struct *usertask;
791 uint32_t userflags;
792 spinlock_t guptasklock;
793 struct list_head guptasks;
794 atomic_t mmu_invalidations;
795 uint32_t last_set_pages;
796 };
797
798 /**
799 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
800 * pointer to memory
801 *
802 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
803 * This provides a wrapper around the get_user_pages() call to provide
804 * device accessible pages that back user memory.
805 */
amdgpu_ttm_tt_get_user_pages(struct ttm_tt * ttm,struct page ** pages)806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
807 {
808 struct amdgpu_ttm_tt *gtt = (void *)ttm;
809 struct mm_struct *mm = gtt->usertask->mm;
810 unsigned int flags = 0;
811 unsigned pinned = 0;
812 int r;
813
814 if (!mm) /* Happens during process shutdown */
815 return -ESRCH;
816
817 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
818 flags |= FOLL_WRITE;
819
820 down_read(&mm->mmap_sem);
821
822 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
823 /*
824 * check that we only use anonymous memory to prevent problems
825 * with writeback
826 */
827 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
828 struct vm_area_struct *vma;
829
830 vma = find_vma(mm, gtt->userptr);
831 if (!vma || vma->vm_file || vma->vm_end < end) {
832 up_read(&mm->mmap_sem);
833 return -EPERM;
834 }
835 }
836
837 /* loop enough times using contiguous pages of memory */
838 do {
839 unsigned num_pages = ttm->num_pages - pinned;
840 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
841 struct page **p = pages + pinned;
842 struct amdgpu_ttm_gup_task_list guptask;
843
844 guptask.task = current;
845 spin_lock(>t->guptasklock);
846 list_add(&guptask.list, >t->guptasks);
847 spin_unlock(>t->guptasklock);
848
849 if (mm == current->mm)
850 r = get_user_pages(userptr, num_pages, flags, p, NULL);
851 else
852 r = get_user_pages_remote(gtt->usertask,
853 mm, userptr, num_pages,
854 flags, p, NULL, NULL);
855
856 spin_lock(>t->guptasklock);
857 list_del(&guptask.list);
858 spin_unlock(>t->guptasklock);
859
860 if (r < 0)
861 goto release_pages;
862
863 pinned += r;
864
865 } while (pinned < ttm->num_pages);
866
867 up_read(&mm->mmap_sem);
868 return 0;
869
870 release_pages:
871 release_pages(pages, pinned);
872 up_read(&mm->mmap_sem);
873 return r;
874 }
875
876 /**
877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
878 *
879 * Called by amdgpu_cs_list_validate(). This creates the page list
880 * that backs user memory and will ultimately be mapped into the device
881 * address space.
882 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
884 {
885 struct amdgpu_ttm_tt *gtt = (void *)ttm;
886 unsigned i;
887
888 gtt->last_set_pages = atomic_read(>t->mmu_invalidations);
889 for (i = 0; i < ttm->num_pages; ++i) {
890 if (ttm->pages[i])
891 put_page(ttm->pages[i]);
892
893 ttm->pages[i] = pages ? pages[i] : NULL;
894 }
895 }
896
897 /**
898 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
899 *
900 * Called while unpinning userptr pages
901 */
amdgpu_ttm_tt_mark_user_pages(struct ttm_tt * ttm)902 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
903 {
904 struct amdgpu_ttm_tt *gtt = (void *)ttm;
905 unsigned i;
906
907 for (i = 0; i < ttm->num_pages; ++i) {
908 struct page *page = ttm->pages[i];
909
910 if (!page)
911 continue;
912
913 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
914 set_page_dirty(page);
915
916 mark_page_accessed(page);
917 }
918 }
919
920 /**
921 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
922 *
923 * Called by amdgpu_ttm_backend_bind()
924 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_tt * ttm)925 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
926 {
927 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
928 struct amdgpu_ttm_tt *gtt = (void *)ttm;
929 unsigned nents;
930 int r;
931
932 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
933 enum dma_data_direction direction = write ?
934 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
935
936 /* Allocate an SG array and squash pages into it */
937 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
938 ttm->num_pages << PAGE_SHIFT,
939 GFP_KERNEL);
940 if (r)
941 goto release_sg;
942
943 /* Map SG to device */
944 r = -ENOMEM;
945 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
946 if (nents != ttm->sg->nents)
947 goto release_sg;
948
949 /* convert SG to linear array of pages and dma addresses */
950 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
951 gtt->ttm.dma_address, ttm->num_pages);
952
953 return 0;
954
955 release_sg:
956 kfree(ttm->sg);
957 ttm->sg = NULL;
958 return r;
959 }
960
961 /**
962 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
963 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_tt * ttm)964 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
965 {
966 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
967 struct amdgpu_ttm_tt *gtt = (void *)ttm;
968
969 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
970 enum dma_data_direction direction = write ?
971 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
972
973 /* double check that we don't free the table twice */
974 if (!ttm->sg->sgl)
975 return;
976
977 /* unmap the pages mapped to the device */
978 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
979
980 /* mark the pages as dirty */
981 amdgpu_ttm_tt_mark_user_pages(ttm);
982
983 sg_free_table(ttm->sg);
984 }
985
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)986 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
987 struct ttm_buffer_object *tbo,
988 uint64_t flags)
989 {
990 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
991 struct ttm_tt *ttm = tbo->ttm;
992 struct amdgpu_ttm_tt *gtt = (void *)ttm;
993 int r;
994
995 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
996 uint64_t page_idx = 1;
997
998 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
999 ttm->pages, gtt->ttm.dma_address, flags);
1000 if (r)
1001 goto gart_bind_fail;
1002
1003 /* Patch mtype of the second part BO */
1004 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1005 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1006
1007 r = amdgpu_gart_bind(adev,
1008 gtt->offset + (page_idx << PAGE_SHIFT),
1009 ttm->num_pages - page_idx,
1010 &ttm->pages[page_idx],
1011 &(gtt->ttm.dma_address[page_idx]), flags);
1012 } else {
1013 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1014 ttm->pages, gtt->ttm.dma_address, flags);
1015 }
1016
1017 gart_bind_fail:
1018 if (r)
1019 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1020 ttm->num_pages, gtt->offset);
1021
1022 return r;
1023 }
1024
1025 /**
1026 * amdgpu_ttm_backend_bind - Bind GTT memory
1027 *
1028 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1029 * This handles binding GTT memory to the device address space.
1030 */
amdgpu_ttm_backend_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)1031 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1032 struct ttm_mem_reg *bo_mem)
1033 {
1034 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1035 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1036 uint64_t flags;
1037 int r = 0;
1038
1039 if (gtt->userptr) {
1040 r = amdgpu_ttm_tt_pin_userptr(ttm);
1041 if (r) {
1042 DRM_ERROR("failed to pin userptr\n");
1043 return r;
1044 }
1045 }
1046 if (!ttm->num_pages) {
1047 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1048 ttm->num_pages, bo_mem, ttm);
1049 }
1050
1051 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1052 bo_mem->mem_type == AMDGPU_PL_GWS ||
1053 bo_mem->mem_type == AMDGPU_PL_OA)
1054 return -EINVAL;
1055
1056 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1057 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1058 return 0;
1059 }
1060
1061 /* compute PTE flags relevant to this BO memory */
1062 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1063
1064 /* bind pages into GART page tables */
1065 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1066 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1067 ttm->pages, gtt->ttm.dma_address, flags);
1068
1069 if (r)
1070 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1071 ttm->num_pages, gtt->offset);
1072 return r;
1073 }
1074
1075 /**
1076 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1077 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1079 {
1080 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1081 struct ttm_operation_ctx ctx = { false, false };
1082 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1083 struct ttm_mem_reg tmp;
1084 struct ttm_placement placement;
1085 struct ttm_place placements;
1086 uint64_t flags;
1087 int r;
1088
1089 if (bo->mem.mem_type != TTM_PL_TT ||
1090 amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1091 return 0;
1092
1093 /* allocate GTT space */
1094 tmp = bo->mem;
1095 tmp.mm_node = NULL;
1096 placement.num_placement = 1;
1097 placement.placement = &placements;
1098 placement.num_busy_placement = 1;
1099 placement.busy_placement = &placements;
1100 placements.fpfn = 0;
1101 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1102 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1103 TTM_PL_FLAG_TT;
1104
1105 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1106 if (unlikely(r))
1107 return r;
1108
1109 /* compute PTE flags for this buffer object */
1110 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1111
1112 /* Bind pages */
1113 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1114 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1115 if (unlikely(r)) {
1116 ttm_bo_mem_put(bo, &tmp);
1117 return r;
1118 }
1119
1120 ttm_bo_mem_put(bo, &bo->mem);
1121 bo->mem = tmp;
1122 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1123 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1124
1125 return 0;
1126 }
1127
1128 /**
1129 * amdgpu_ttm_recover_gart - Rebind GTT pages
1130 *
1131 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1132 * rebind GTT pages during a GPU reset.
1133 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1134 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1135 {
1136 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1137 uint64_t flags;
1138 int r;
1139
1140 if (!tbo->ttm)
1141 return 0;
1142
1143 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1144 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1145
1146 return r;
1147 }
1148
1149 /**
1150 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1151 *
1152 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1153 * ttm_tt_destroy().
1154 */
amdgpu_ttm_backend_unbind(struct ttm_tt * ttm)1155 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1156 {
1157 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1158 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159 int r;
1160
1161 /* if the pages have userptr pinning then clear that first */
1162 if (gtt->userptr)
1163 amdgpu_ttm_tt_unpin_userptr(ttm);
1164
1165 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1166 return 0;
1167
1168 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1169 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1170 if (r)
1171 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1172 gtt->ttm.ttm.num_pages, gtt->offset);
1173 return r;
1174 }
1175
amdgpu_ttm_backend_destroy(struct ttm_tt * ttm)1176 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1177 {
1178 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1179
1180 if (gtt->usertask)
1181 put_task_struct(gtt->usertask);
1182
1183 ttm_dma_tt_fini(>t->ttm);
1184 kfree(gtt);
1185 }
1186
1187 static struct ttm_backend_func amdgpu_backend_func = {
1188 .bind = &amdgpu_ttm_backend_bind,
1189 .unbind = &amdgpu_ttm_backend_unbind,
1190 .destroy = &amdgpu_ttm_backend_destroy,
1191 };
1192
1193 /**
1194 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1195 *
1196 * @bo: The buffer object to create a GTT ttm_tt object around
1197 *
1198 * Called by ttm_tt_create().
1199 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1200 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1201 uint32_t page_flags)
1202 {
1203 struct amdgpu_device *adev;
1204 struct amdgpu_ttm_tt *gtt;
1205
1206 adev = amdgpu_ttm_adev(bo->bdev);
1207
1208 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1209 if (gtt == NULL) {
1210 return NULL;
1211 }
1212 gtt->ttm.ttm.func = &amdgpu_backend_func;
1213
1214 /* allocate space for the uninitialized page entries */
1215 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1216 kfree(gtt);
1217 return NULL;
1218 }
1219 return >t->ttm.ttm;
1220 }
1221
1222 /**
1223 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1224 *
1225 * Map the pages of a ttm_tt object to an address space visible
1226 * to the underlying device.
1227 */
amdgpu_ttm_tt_populate(struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1228 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1229 struct ttm_operation_ctx *ctx)
1230 {
1231 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1232 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1234
1235 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1236 if (gtt && gtt->userptr) {
1237 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1238 if (!ttm->sg)
1239 return -ENOMEM;
1240
1241 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1242 ttm->state = tt_unbound;
1243 return 0;
1244 }
1245
1246 if (slave && ttm->sg) {
1247 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1248 gtt->ttm.dma_address,
1249 ttm->num_pages);
1250 ttm->state = tt_unbound;
1251 return 0;
1252 }
1253
1254 #ifdef CONFIG_SWIOTLB
1255 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1256 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1257 }
1258 #endif
1259
1260 /* fall back to generic helper to populate the page array
1261 * and map them to the device */
1262 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1263 }
1264
1265 /**
1266 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1267 *
1268 * Unmaps pages of a ttm_tt object from the device address space and
1269 * unpopulates the page array backing it.
1270 */
amdgpu_ttm_tt_unpopulate(struct ttm_tt * ttm)1271 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1272 {
1273 struct amdgpu_device *adev;
1274 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1275 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1276
1277 if (gtt && gtt->userptr) {
1278 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1279 kfree(ttm->sg);
1280 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1281 return;
1282 }
1283
1284 if (slave)
1285 return;
1286
1287 adev = amdgpu_ttm_adev(ttm->bdev);
1288
1289 #ifdef CONFIG_SWIOTLB
1290 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1291 ttm_dma_unpopulate(>t->ttm, adev->dev);
1292 return;
1293 }
1294 #endif
1295
1296 /* fall back to generic helper to unmap and unpopulate array */
1297 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1298 }
1299
1300 /**
1301 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1302 * task
1303 *
1304 * @ttm: The ttm_tt object to bind this userptr object to
1305 * @addr: The address in the current tasks VM space to use
1306 * @flags: Requirements of userptr object.
1307 *
1308 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1309 * to current task
1310 */
amdgpu_ttm_tt_set_userptr(struct ttm_tt * ttm,uint64_t addr,uint32_t flags)1311 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1312 uint32_t flags)
1313 {
1314 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1315
1316 if (gtt == NULL)
1317 return -EINVAL;
1318
1319 gtt->userptr = addr;
1320 gtt->userflags = flags;
1321
1322 if (gtt->usertask)
1323 put_task_struct(gtt->usertask);
1324 gtt->usertask = current->group_leader;
1325 get_task_struct(gtt->usertask);
1326
1327 spin_lock_init(>t->guptasklock);
1328 INIT_LIST_HEAD(>t->guptasks);
1329 atomic_set(>t->mmu_invalidations, 0);
1330 gtt->last_set_pages = 0;
1331
1332 return 0;
1333 }
1334
1335 /**
1336 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1337 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1338 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1339 {
1340 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1341
1342 if (gtt == NULL)
1343 return NULL;
1344
1345 if (gtt->usertask == NULL)
1346 return NULL;
1347
1348 return gtt->usertask->mm;
1349 }
1350
1351 /**
1352 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1353 * address range for the current task.
1354 *
1355 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end)1356 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1357 unsigned long end)
1358 {
1359 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1360 struct amdgpu_ttm_gup_task_list *entry;
1361 unsigned long size;
1362
1363 if (gtt == NULL || !gtt->userptr)
1364 return false;
1365
1366 /* Return false if no part of the ttm_tt object lies within
1367 * the range
1368 */
1369 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1370 if (gtt->userptr > end || gtt->userptr + size <= start)
1371 return false;
1372
1373 /* Search the lists of tasks that hold this mapping and see
1374 * if current is one of them. If it is return false.
1375 */
1376 spin_lock(>t->guptasklock);
1377 list_for_each_entry(entry, >t->guptasks, list) {
1378 if (entry->task == current) {
1379 spin_unlock(>t->guptasklock);
1380 return false;
1381 }
1382 }
1383 spin_unlock(>t->guptasklock);
1384
1385 atomic_inc(>t->mmu_invalidations);
1386
1387 return true;
1388 }
1389
1390 /**
1391 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1392 */
amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt * ttm,int * last_invalidated)1393 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1394 int *last_invalidated)
1395 {
1396 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1397 int prev_invalidated = *last_invalidated;
1398
1399 *last_invalidated = atomic_read(>t->mmu_invalidations);
1400 return prev_invalidated != *last_invalidated;
1401 }
1402
1403 /**
1404 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1405 * been invalidated since the last time they've been set?
1406 */
amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt * ttm)1407 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1408 {
1409 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1410
1411 if (gtt == NULL || !gtt->userptr)
1412 return false;
1413
1414 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages;
1415 }
1416
1417 /**
1418 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1419 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1420 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1421 {
1422 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423
1424 if (gtt == NULL)
1425 return false;
1426
1427 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1428 }
1429
1430 /**
1431 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1432 *
1433 * @ttm: The ttm_tt object to compute the flags for
1434 * @mem: The memory registry backing this ttm_tt object
1435 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_mem_reg * mem)1436 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1437 struct ttm_mem_reg *mem)
1438 {
1439 uint64_t flags = 0;
1440
1441 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1442 flags |= AMDGPU_PTE_VALID;
1443
1444 if (mem && mem->mem_type == TTM_PL_TT) {
1445 flags |= AMDGPU_PTE_SYSTEM;
1446
1447 if (ttm->caching_state == tt_cached)
1448 flags |= AMDGPU_PTE_SNOOPED;
1449 }
1450
1451 flags |= adev->gart.gart_pte_flags;
1452 flags |= AMDGPU_PTE_READABLE;
1453
1454 if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 flags |= AMDGPU_PTE_WRITEABLE;
1456
1457 return flags;
1458 }
1459
1460 /**
1461 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462 * object.
1463 *
1464 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467 * used to clean out a memory space.
1468 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 const struct ttm_place *place)
1471 {
1472 unsigned long num_pages = bo->mem.num_pages;
1473 struct drm_mm_node *node = bo->mem.mm_node;
1474 struct reservation_object_list *flist;
1475 struct dma_fence *f;
1476 int i;
1477
1478 /* If bo is a KFD BO, check if the bo belongs to the current process.
1479 * If true, then return false as any KFD process needs all its BOs to
1480 * be resident to run successfully
1481 */
1482 flist = reservation_object_get_list(bo->resv);
1483 if (flist) {
1484 for (i = 0; i < flist->shared_count; ++i) {
1485 f = rcu_dereference_protected(flist->shared[i],
1486 reservation_object_held(bo->resv));
1487 if (amdkfd_fence_check_mm(f, current->mm))
1488 return false;
1489 }
1490 }
1491
1492 switch (bo->mem.mem_type) {
1493 case TTM_PL_TT:
1494 return true;
1495
1496 case TTM_PL_VRAM:
1497 /* Check each drm MM node individually */
1498 while (num_pages) {
1499 if (place->fpfn < (node->start + node->size) &&
1500 !(place->lpfn && place->lpfn <= node->start))
1501 return true;
1502
1503 num_pages -= node->size;
1504 ++node;
1505 }
1506 return false;
1507
1508 default:
1509 break;
1510 }
1511
1512 return ttm_bo_eviction_valuable(bo, place);
1513 }
1514
1515 /**
1516 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1517 *
1518 * @bo: The buffer object to read/write
1519 * @offset: Offset into buffer object
1520 * @buf: Secondary buffer to write/read from
1521 * @len: Length in bytes of access
1522 * @write: true if writing
1523 *
1524 * This is used to access VRAM that backs a buffer object via MMIO
1525 * access for debugging purposes.
1526 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1527 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1528 unsigned long offset,
1529 void *buf, int len, int write)
1530 {
1531 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1532 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1533 struct drm_mm_node *nodes;
1534 uint32_t value = 0;
1535 int ret = 0;
1536 uint64_t pos;
1537 unsigned long flags;
1538
1539 if (bo->mem.mem_type != TTM_PL_VRAM)
1540 return -EIO;
1541
1542 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1543 pos = (nodes->start << PAGE_SHIFT) + offset;
1544
1545 while (len && pos < adev->gmc.mc_vram_size) {
1546 uint64_t aligned_pos = pos & ~(uint64_t)3;
1547 uint32_t bytes = 4 - (pos & 3);
1548 uint32_t shift = (pos & 3) * 8;
1549 uint32_t mask = 0xffffffff << shift;
1550
1551 if (len < bytes) {
1552 mask &= 0xffffffff >> (bytes - len) * 8;
1553 bytes = len;
1554 }
1555
1556 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1557 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1558 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1559 if (!write || mask != 0xffffffff)
1560 value = RREG32_NO_KIQ(mmMM_DATA);
1561 if (write) {
1562 value &= ~mask;
1563 value |= (*(uint32_t *)buf << shift) & mask;
1564 WREG32_NO_KIQ(mmMM_DATA, value);
1565 }
1566 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1567 if (!write) {
1568 value = (value & mask) >> shift;
1569 memcpy(buf, &value, bytes);
1570 }
1571
1572 ret += bytes;
1573 buf = (uint8_t *)buf + bytes;
1574 pos += bytes;
1575 len -= bytes;
1576 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1577 ++nodes;
1578 pos = (nodes->start << PAGE_SHIFT);
1579 }
1580 }
1581
1582 return ret;
1583 }
1584
1585 static struct ttm_bo_driver amdgpu_bo_driver = {
1586 .ttm_tt_create = &amdgpu_ttm_tt_create,
1587 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1588 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1589 .invalidate_caches = &amdgpu_invalidate_caches,
1590 .init_mem_type = &amdgpu_init_mem_type,
1591 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1592 .evict_flags = &amdgpu_evict_flags,
1593 .move = &amdgpu_bo_move,
1594 .verify_access = &amdgpu_verify_access,
1595 .move_notify = &amdgpu_bo_move_notify,
1596 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1597 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1598 .io_mem_free = &amdgpu_ttm_io_mem_free,
1599 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1600 .access_memory = &amdgpu_ttm_access_memory
1601 };
1602
1603 /*
1604 * Firmware Reservation functions
1605 */
1606 /**
1607 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1608 *
1609 * @adev: amdgpu_device pointer
1610 *
1611 * free fw reserved vram if it has been reserved.
1612 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1613 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1614 {
1615 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1616 NULL, &adev->fw_vram_usage.va);
1617 }
1618
1619 /**
1620 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1621 *
1622 * @adev: amdgpu_device pointer
1623 *
1624 * create bo vram reservation from fw.
1625 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1626 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1627 {
1628 struct ttm_operation_ctx ctx = { false, false };
1629 struct amdgpu_bo_param bp;
1630 int r = 0;
1631 int i;
1632 u64 vram_size = adev->gmc.visible_vram_size;
1633 u64 offset = adev->fw_vram_usage.start_offset;
1634 u64 size = adev->fw_vram_usage.size;
1635 struct amdgpu_bo *bo;
1636
1637 memset(&bp, 0, sizeof(bp));
1638 bp.size = adev->fw_vram_usage.size;
1639 bp.byte_align = PAGE_SIZE;
1640 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1641 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1642 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1643 bp.type = ttm_bo_type_kernel;
1644 bp.resv = NULL;
1645 adev->fw_vram_usage.va = NULL;
1646 adev->fw_vram_usage.reserved_bo = NULL;
1647
1648 if (adev->fw_vram_usage.size > 0 &&
1649 adev->fw_vram_usage.size <= vram_size) {
1650
1651 r = amdgpu_bo_create(adev, &bp,
1652 &adev->fw_vram_usage.reserved_bo);
1653 if (r)
1654 goto error_create;
1655
1656 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1657 if (r)
1658 goto error_reserve;
1659
1660 /* remove the original mem node and create a new one at the
1661 * request position
1662 */
1663 bo = adev->fw_vram_usage.reserved_bo;
1664 offset = ALIGN(offset, PAGE_SIZE);
1665 for (i = 0; i < bo->placement.num_placement; ++i) {
1666 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1667 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1668 }
1669
1670 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1671 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1672 &bo->tbo.mem, &ctx);
1673 if (r)
1674 goto error_pin;
1675
1676 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1677 AMDGPU_GEM_DOMAIN_VRAM,
1678 adev->fw_vram_usage.start_offset,
1679 (adev->fw_vram_usage.start_offset +
1680 adev->fw_vram_usage.size));
1681 if (r)
1682 goto error_pin;
1683 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1684 &adev->fw_vram_usage.va);
1685 if (r)
1686 goto error_kmap;
1687
1688 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1689 }
1690 return r;
1691
1692 error_kmap:
1693 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1694 error_pin:
1695 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1696 error_reserve:
1697 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1698 error_create:
1699 adev->fw_vram_usage.va = NULL;
1700 adev->fw_vram_usage.reserved_bo = NULL;
1701 return r;
1702 }
1703 /**
1704 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1705 * gtt/vram related fields.
1706 *
1707 * This initializes all of the memory space pools that the TTM layer
1708 * will need such as the GTT space (system memory mapped to the device),
1709 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1710 * can be mapped per VMID.
1711 */
amdgpu_ttm_init(struct amdgpu_device * adev)1712 int amdgpu_ttm_init(struct amdgpu_device *adev)
1713 {
1714 uint64_t gtt_size;
1715 int r;
1716 u64 vis_vram_limit;
1717
1718 /* initialize global references for vram/gtt */
1719 r = amdgpu_ttm_global_init(adev);
1720 if (r) {
1721 return r;
1722 }
1723 /* No others user of address space so set it to 0 */
1724 r = ttm_bo_device_init(&adev->mman.bdev,
1725 adev->mman.bo_global_ref.ref.object,
1726 &amdgpu_bo_driver,
1727 adev->ddev->anon_inode->i_mapping,
1728 DRM_FILE_PAGE_OFFSET,
1729 adev->need_dma32);
1730 if (r) {
1731 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1732 return r;
1733 }
1734 adev->mman.initialized = true;
1735
1736 /* We opt to avoid OOM on system pages allocations */
1737 adev->mman.bdev.no_retry = true;
1738
1739 /* Initialize VRAM pool with all of VRAM divided into pages */
1740 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1741 adev->gmc.real_vram_size >> PAGE_SHIFT);
1742 if (r) {
1743 DRM_ERROR("Failed initializing VRAM heap.\n");
1744 return r;
1745 }
1746
1747 /* Reduce size of CPU-visible VRAM if requested */
1748 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1749 if (amdgpu_vis_vram_limit > 0 &&
1750 vis_vram_limit <= adev->gmc.visible_vram_size)
1751 adev->gmc.visible_vram_size = vis_vram_limit;
1752
1753 /* Change the size here instead of the init above so only lpfn is affected */
1754 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1755 #ifdef CONFIG_64BIT
1756 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1757 adev->gmc.visible_vram_size);
1758 #endif
1759
1760 /*
1761 *The reserved vram for firmware must be pinned to the specified
1762 *place on the VRAM, so reserve it early.
1763 */
1764 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1765 if (r) {
1766 return r;
1767 }
1768
1769 /* allocate memory as required for VGA
1770 * This is used for VGA emulation and pre-OS scanout buffers to
1771 * avoid display artifacts while transitioning between pre-OS
1772 * and driver. */
1773 if (adev->gmc.stolen_size) {
1774 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1775 AMDGPU_GEM_DOMAIN_VRAM,
1776 &adev->stolen_vga_memory,
1777 NULL, NULL);
1778 if (r)
1779 return r;
1780 }
1781 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1782 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1783
1784 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1785 * or whatever the user passed on module init */
1786 if (amdgpu_gtt_size == -1) {
1787 struct sysinfo si;
1788
1789 si_meminfo(&si);
1790 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1791 adev->gmc.mc_vram_size),
1792 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1793 }
1794 else
1795 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1796
1797 /* Initialize GTT memory pool */
1798 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1799 if (r) {
1800 DRM_ERROR("Failed initializing GTT heap.\n");
1801 return r;
1802 }
1803 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1804 (unsigned)(gtt_size / (1024 * 1024)));
1805
1806 /* Initialize various on-chip memory pools */
1807 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1808 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1809 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1810 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1811 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1812 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1813 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1814 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1815 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1816 /* GDS Memory */
1817 if (adev->gds.mem.total_size) {
1818 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1819 adev->gds.mem.total_size >> PAGE_SHIFT);
1820 if (r) {
1821 DRM_ERROR("Failed initializing GDS heap.\n");
1822 return r;
1823 }
1824 }
1825
1826 /* GWS */
1827 if (adev->gds.gws.total_size) {
1828 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1829 adev->gds.gws.total_size >> PAGE_SHIFT);
1830 if (r) {
1831 DRM_ERROR("Failed initializing gws heap.\n");
1832 return r;
1833 }
1834 }
1835
1836 /* OA */
1837 if (adev->gds.oa.total_size) {
1838 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1839 adev->gds.oa.total_size >> PAGE_SHIFT);
1840 if (r) {
1841 DRM_ERROR("Failed initializing oa heap.\n");
1842 return r;
1843 }
1844 }
1845
1846 /* Register debugfs entries for amdgpu_ttm */
1847 r = amdgpu_ttm_debugfs_init(adev);
1848 if (r) {
1849 DRM_ERROR("Failed to init debugfs\n");
1850 return r;
1851 }
1852 return 0;
1853 }
1854
1855 /**
1856 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1857 */
amdgpu_ttm_late_init(struct amdgpu_device * adev)1858 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1859 {
1860 /* return the VGA stolen memory (if any) back to VRAM */
1861 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1862 }
1863
1864 /**
1865 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1866 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1867 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1868 {
1869 if (!adev->mman.initialized)
1870 return;
1871
1872 amdgpu_ttm_debugfs_fini(adev);
1873 amdgpu_ttm_fw_reserve_vram_fini(adev);
1874 if (adev->mman.aper_base_kaddr)
1875 iounmap(adev->mman.aper_base_kaddr);
1876 adev->mman.aper_base_kaddr = NULL;
1877
1878 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1879 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1880 if (adev->gds.mem.total_size)
1881 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1882 if (adev->gds.gws.total_size)
1883 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1884 if (adev->gds.oa.total_size)
1885 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1886 ttm_bo_device_release(&adev->mman.bdev);
1887 amdgpu_ttm_global_fini(adev);
1888 adev->mman.initialized = false;
1889 DRM_INFO("amdgpu: ttm finalized\n");
1890 }
1891
1892 /**
1893 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1894 *
1895 * @adev: amdgpu_device pointer
1896 * @enable: true when we can use buffer functions.
1897 *
1898 * Enable/disable use of buffer functions during suspend/resume. This should
1899 * only be called at bootup or when userspace isn't running.
1900 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1901 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1902 {
1903 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1904 uint64_t size;
1905 int r;
1906
1907 if (!adev->mman.initialized || adev->in_gpu_reset ||
1908 adev->mman.buffer_funcs_enabled == enable)
1909 return;
1910
1911 if (enable) {
1912 struct amdgpu_ring *ring;
1913 struct drm_sched_rq *rq;
1914
1915 ring = adev->mman.buffer_funcs_ring;
1916 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1917 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1918 if (r) {
1919 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1920 r);
1921 return;
1922 }
1923 } else {
1924 drm_sched_entity_destroy(&adev->mman.entity);
1925 dma_fence_put(man->move);
1926 man->move = NULL;
1927 }
1928
1929 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1930 if (enable)
1931 size = adev->gmc.real_vram_size;
1932 else
1933 size = adev->gmc.visible_vram_size;
1934 man->size = size >> PAGE_SHIFT;
1935 adev->mman.buffer_funcs_enabled = enable;
1936 }
1937
amdgpu_mmap(struct file * filp,struct vm_area_struct * vma)1938 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1939 {
1940 struct drm_file *file_priv;
1941 struct amdgpu_device *adev;
1942
1943 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1944 return -EINVAL;
1945
1946 file_priv = filp->private_data;
1947 adev = file_priv->minor->dev->dev_private;
1948 if (adev == NULL)
1949 return -EINVAL;
1950
1951 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1952 }
1953
amdgpu_map_buffer(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,unsigned num_pages,uint64_t offset,unsigned window,struct amdgpu_ring * ring,uint64_t * addr)1954 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1955 struct ttm_mem_reg *mem, unsigned num_pages,
1956 uint64_t offset, unsigned window,
1957 struct amdgpu_ring *ring,
1958 uint64_t *addr)
1959 {
1960 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1961 struct amdgpu_device *adev = ring->adev;
1962 struct ttm_tt *ttm = bo->ttm;
1963 struct amdgpu_job *job;
1964 unsigned num_dw, num_bytes;
1965 dma_addr_t *dma_address;
1966 struct dma_fence *fence;
1967 uint64_t src_addr, dst_addr;
1968 uint64_t flags;
1969 int r;
1970
1971 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1972 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1973
1974 *addr = adev->gmc.gart_start;
1975 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1976 AMDGPU_GPU_PAGE_SIZE;
1977
1978 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1979 while (num_dw & 0x7)
1980 num_dw++;
1981
1982 num_bytes = num_pages * 8;
1983
1984 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1985 if (r)
1986 return r;
1987
1988 src_addr = num_dw * 4;
1989 src_addr += job->ibs[0].gpu_addr;
1990
1991 dst_addr = adev->gart.table_addr;
1992 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1993 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1994 dst_addr, num_bytes);
1995
1996 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1997 WARN_ON(job->ibs[0].length_dw > num_dw);
1998
1999 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
2000 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2001 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2002 &job->ibs[0].ptr[num_dw]);
2003 if (r)
2004 goto error_free;
2005
2006 r = amdgpu_job_submit(job, &adev->mman.entity,
2007 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2008 if (r)
2009 goto error_free;
2010
2011 dma_fence_put(fence);
2012
2013 return r;
2014
2015 error_free:
2016 amdgpu_job_free(job);
2017 return r;
2018 }
2019
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct reservation_object * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush)2020 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2021 uint64_t dst_offset, uint32_t byte_count,
2022 struct reservation_object *resv,
2023 struct dma_fence **fence, bool direct_submit,
2024 bool vm_needs_flush)
2025 {
2026 struct amdgpu_device *adev = ring->adev;
2027 struct amdgpu_job *job;
2028
2029 uint32_t max_bytes;
2030 unsigned num_loops, num_dw;
2031 unsigned i;
2032 int r;
2033
2034 if (direct_submit && !ring->ready) {
2035 DRM_ERROR("Trying to move memory with ring turned off.\n");
2036 return -EINVAL;
2037 }
2038
2039 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2040 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2041 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2042
2043 /* for IB padding */
2044 while (num_dw & 0x7)
2045 num_dw++;
2046
2047 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2048 if (r)
2049 return r;
2050
2051 job->vm_needs_flush = vm_needs_flush;
2052 if (resv) {
2053 r = amdgpu_sync_resv(adev, &job->sync, resv,
2054 AMDGPU_FENCE_OWNER_UNDEFINED,
2055 false);
2056 if (r) {
2057 DRM_ERROR("sync failed (%d).\n", r);
2058 goto error_free;
2059 }
2060 }
2061
2062 for (i = 0; i < num_loops; i++) {
2063 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2064
2065 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2066 dst_offset, cur_size_in_bytes);
2067
2068 src_offset += cur_size_in_bytes;
2069 dst_offset += cur_size_in_bytes;
2070 byte_count -= cur_size_in_bytes;
2071 }
2072
2073 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2074 WARN_ON(job->ibs[0].length_dw > num_dw);
2075 if (direct_submit)
2076 r = amdgpu_job_submit_direct(job, ring, fence);
2077 else
2078 r = amdgpu_job_submit(job, &adev->mman.entity,
2079 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2080 if (r)
2081 goto error_free;
2082
2083 return r;
2084
2085 error_free:
2086 amdgpu_job_free(job);
2087 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2088 return r;
2089 }
2090
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct reservation_object * resv,struct dma_fence ** fence)2091 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2092 uint32_t src_data,
2093 struct reservation_object *resv,
2094 struct dma_fence **fence)
2095 {
2096 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2097 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2098 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2099
2100 struct drm_mm_node *mm_node;
2101 unsigned long num_pages;
2102 unsigned int num_loops, num_dw;
2103
2104 struct amdgpu_job *job;
2105 int r;
2106
2107 if (!adev->mman.buffer_funcs_enabled) {
2108 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2109 return -EINVAL;
2110 }
2111
2112 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2113 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2114 if (r)
2115 return r;
2116 }
2117
2118 num_pages = bo->tbo.num_pages;
2119 mm_node = bo->tbo.mem.mm_node;
2120 num_loops = 0;
2121 while (num_pages) {
2122 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2123
2124 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2125 num_pages -= mm_node->size;
2126 ++mm_node;
2127 }
2128 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2129
2130 /* for IB padding */
2131 num_dw += 64;
2132
2133 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2134 if (r)
2135 return r;
2136
2137 if (resv) {
2138 r = amdgpu_sync_resv(adev, &job->sync, resv,
2139 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2140 if (r) {
2141 DRM_ERROR("sync failed (%d).\n", r);
2142 goto error_free;
2143 }
2144 }
2145
2146 num_pages = bo->tbo.num_pages;
2147 mm_node = bo->tbo.mem.mm_node;
2148
2149 while (num_pages) {
2150 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2151 uint64_t dst_addr;
2152
2153 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2154 while (byte_count) {
2155 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2156
2157 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2158 dst_addr, cur_size_in_bytes);
2159
2160 dst_addr += cur_size_in_bytes;
2161 byte_count -= cur_size_in_bytes;
2162 }
2163
2164 num_pages -= mm_node->size;
2165 ++mm_node;
2166 }
2167
2168 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2169 WARN_ON(job->ibs[0].length_dw > num_dw);
2170 r = amdgpu_job_submit(job, &adev->mman.entity,
2171 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2172 if (r)
2173 goto error_free;
2174
2175 return 0;
2176
2177 error_free:
2178 amdgpu_job_free(job);
2179 return r;
2180 }
2181
2182 #if defined(CONFIG_DEBUG_FS)
2183
amdgpu_mm_dump_table(struct seq_file * m,void * data)2184 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2185 {
2186 struct drm_info_node *node = (struct drm_info_node *)m->private;
2187 unsigned ttm_pl = *(int *)node->info_ent->data;
2188 struct drm_device *dev = node->minor->dev;
2189 struct amdgpu_device *adev = dev->dev_private;
2190 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2191 struct drm_printer p = drm_seq_file_printer(m);
2192
2193 man->func->debug(man, &p);
2194 return 0;
2195 }
2196
2197 static int ttm_pl_vram = TTM_PL_VRAM;
2198 static int ttm_pl_tt = TTM_PL_TT;
2199
2200 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2201 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2202 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2203 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2204 #ifdef CONFIG_SWIOTLB
2205 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2206 #endif
2207 };
2208
2209 /**
2210 * amdgpu_ttm_vram_read - Linear read access to VRAM
2211 *
2212 * Accesses VRAM via MMIO for debugging purposes.
2213 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2214 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2215 size_t size, loff_t *pos)
2216 {
2217 struct amdgpu_device *adev = file_inode(f)->i_private;
2218 ssize_t result = 0;
2219 int r;
2220
2221 if (size & 0x3 || *pos & 0x3)
2222 return -EINVAL;
2223
2224 if (*pos >= adev->gmc.mc_vram_size)
2225 return -ENXIO;
2226
2227 while (size) {
2228 unsigned long flags;
2229 uint32_t value;
2230
2231 if (*pos >= adev->gmc.mc_vram_size)
2232 return result;
2233
2234 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2235 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2236 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2237 value = RREG32_NO_KIQ(mmMM_DATA);
2238 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2239
2240 r = put_user(value, (uint32_t *)buf);
2241 if (r)
2242 return r;
2243
2244 result += 4;
2245 buf += 4;
2246 *pos += 4;
2247 size -= 4;
2248 }
2249
2250 return result;
2251 }
2252
2253 /**
2254 * amdgpu_ttm_vram_write - Linear write access to VRAM
2255 *
2256 * Accesses VRAM via MMIO for debugging purposes.
2257 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2258 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2259 size_t size, loff_t *pos)
2260 {
2261 struct amdgpu_device *adev = file_inode(f)->i_private;
2262 ssize_t result = 0;
2263 int r;
2264
2265 if (size & 0x3 || *pos & 0x3)
2266 return -EINVAL;
2267
2268 if (*pos >= adev->gmc.mc_vram_size)
2269 return -ENXIO;
2270
2271 while (size) {
2272 unsigned long flags;
2273 uint32_t value;
2274
2275 if (*pos >= adev->gmc.mc_vram_size)
2276 return result;
2277
2278 r = get_user(value, (uint32_t *)buf);
2279 if (r)
2280 return r;
2281
2282 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2283 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2284 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2285 WREG32_NO_KIQ(mmMM_DATA, value);
2286 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2287
2288 result += 4;
2289 buf += 4;
2290 *pos += 4;
2291 size -= 4;
2292 }
2293
2294 return result;
2295 }
2296
2297 static const struct file_operations amdgpu_ttm_vram_fops = {
2298 .owner = THIS_MODULE,
2299 .read = amdgpu_ttm_vram_read,
2300 .write = amdgpu_ttm_vram_write,
2301 .llseek = default_llseek,
2302 };
2303
2304 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2305
2306 /**
2307 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2308 */
amdgpu_ttm_gtt_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2309 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2310 size_t size, loff_t *pos)
2311 {
2312 struct amdgpu_device *adev = file_inode(f)->i_private;
2313 ssize_t result = 0;
2314 int r;
2315
2316 while (size) {
2317 loff_t p = *pos / PAGE_SIZE;
2318 unsigned off = *pos & ~PAGE_MASK;
2319 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2320 struct page *page;
2321 void *ptr;
2322
2323 if (p >= adev->gart.num_cpu_pages)
2324 return result;
2325
2326 page = adev->gart.pages[p];
2327 if (page) {
2328 ptr = kmap(page);
2329 ptr += off;
2330
2331 r = copy_to_user(buf, ptr, cur_size);
2332 kunmap(adev->gart.pages[p]);
2333 } else
2334 r = clear_user(buf, cur_size);
2335
2336 if (r)
2337 return -EFAULT;
2338
2339 result += cur_size;
2340 buf += cur_size;
2341 *pos += cur_size;
2342 size -= cur_size;
2343 }
2344
2345 return result;
2346 }
2347
2348 static const struct file_operations amdgpu_ttm_gtt_fops = {
2349 .owner = THIS_MODULE,
2350 .read = amdgpu_ttm_gtt_read,
2351 .llseek = default_llseek
2352 };
2353
2354 #endif
2355
2356 /**
2357 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2358 *
2359 * This function is used to read memory that has been mapped to the
2360 * GPU and the known addresses are not physical addresses but instead
2361 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2362 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2363 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2364 size_t size, loff_t *pos)
2365 {
2366 struct amdgpu_device *adev = file_inode(f)->i_private;
2367 struct iommu_domain *dom;
2368 ssize_t result = 0;
2369 int r;
2370
2371 /* retrieve the IOMMU domain if any for this device */
2372 dom = iommu_get_domain_for_dev(adev->dev);
2373
2374 while (size) {
2375 phys_addr_t addr = *pos & PAGE_MASK;
2376 loff_t off = *pos & ~PAGE_MASK;
2377 size_t bytes = PAGE_SIZE - off;
2378 unsigned long pfn;
2379 struct page *p;
2380 void *ptr;
2381
2382 bytes = bytes < size ? bytes : size;
2383
2384 /* Translate the bus address to a physical address. If
2385 * the domain is NULL it means there is no IOMMU active
2386 * and the address translation is the identity
2387 */
2388 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2389
2390 pfn = addr >> PAGE_SHIFT;
2391 if (!pfn_valid(pfn))
2392 return -EPERM;
2393
2394 p = pfn_to_page(pfn);
2395 if (p->mapping != adev->mman.bdev.dev_mapping)
2396 return -EPERM;
2397
2398 ptr = kmap(p);
2399 r = copy_to_user(buf, ptr + off, bytes);
2400 kunmap(p);
2401 if (r)
2402 return -EFAULT;
2403
2404 size -= bytes;
2405 *pos += bytes;
2406 result += bytes;
2407 }
2408
2409 return result;
2410 }
2411
2412 /**
2413 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2414 *
2415 * This function is used to write memory that has been mapped to the
2416 * GPU and the known addresses are not physical addresses but instead
2417 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2418 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2419 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2420 size_t size, loff_t *pos)
2421 {
2422 struct amdgpu_device *adev = file_inode(f)->i_private;
2423 struct iommu_domain *dom;
2424 ssize_t result = 0;
2425 int r;
2426
2427 dom = iommu_get_domain_for_dev(adev->dev);
2428
2429 while (size) {
2430 phys_addr_t addr = *pos & PAGE_MASK;
2431 loff_t off = *pos & ~PAGE_MASK;
2432 size_t bytes = PAGE_SIZE - off;
2433 unsigned long pfn;
2434 struct page *p;
2435 void *ptr;
2436
2437 bytes = bytes < size ? bytes : size;
2438
2439 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2440
2441 pfn = addr >> PAGE_SHIFT;
2442 if (!pfn_valid(pfn))
2443 return -EPERM;
2444
2445 p = pfn_to_page(pfn);
2446 if (p->mapping != adev->mman.bdev.dev_mapping)
2447 return -EPERM;
2448
2449 ptr = kmap(p);
2450 r = copy_from_user(ptr + off, buf, bytes);
2451 kunmap(p);
2452 if (r)
2453 return -EFAULT;
2454
2455 size -= bytes;
2456 *pos += bytes;
2457 result += bytes;
2458 }
2459
2460 return result;
2461 }
2462
2463 static const struct file_operations amdgpu_ttm_iomem_fops = {
2464 .owner = THIS_MODULE,
2465 .read = amdgpu_iomem_read,
2466 .write = amdgpu_iomem_write,
2467 .llseek = default_llseek
2468 };
2469
2470 static const struct {
2471 char *name;
2472 const struct file_operations *fops;
2473 int domain;
2474 } ttm_debugfs_entries[] = {
2475 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2476 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2477 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2478 #endif
2479 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2480 };
2481
2482 #endif
2483
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2484 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2485 {
2486 #if defined(CONFIG_DEBUG_FS)
2487 unsigned count;
2488
2489 struct drm_minor *minor = adev->ddev->primary;
2490 struct dentry *ent, *root = minor->debugfs_root;
2491
2492 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2493 ent = debugfs_create_file(
2494 ttm_debugfs_entries[count].name,
2495 S_IFREG | S_IRUGO, root,
2496 adev,
2497 ttm_debugfs_entries[count].fops);
2498 if (IS_ERR(ent))
2499 return PTR_ERR(ent);
2500 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2501 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2502 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2503 i_size_write(ent->d_inode, adev->gmc.gart_size);
2504 adev->mman.debugfs_entries[count] = ent;
2505 }
2506
2507 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2508
2509 #ifdef CONFIG_SWIOTLB
2510 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2511 --count;
2512 #endif
2513
2514 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2515 #else
2516 return 0;
2517 #endif
2518 }
2519
amdgpu_ttm_debugfs_fini(struct amdgpu_device * adev)2520 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2521 {
2522 #if defined(CONFIG_DEBUG_FS)
2523 unsigned i;
2524
2525 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2526 debugfs_remove(adev->mman.debugfs_entries[i]);
2527 #endif
2528 }
2529