• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161 
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166 
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 					    struct intel_engine_cs *engine,
169 					    struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171 				     struct i915_gem_context *ctx,
172 				     struct intel_engine_cs *engine,
173 				     struct intel_ring *ring);
174 
to_priolist(struct rb_node * rb)175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177 	return rb_entry(rb, struct i915_priolist, node);
178 }
179 
rq_prio(const struct i915_request * rq)180 static inline int rq_prio(const struct i915_request *rq)
181 {
182 	return rq->sched.attr.priority;
183 }
184 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * last,int prio)185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186 				const struct i915_request *last,
187 				int prio)
188 {
189 	return (intel_engine_has_preemption(engine) &&
190 		__execlists_need_preempt(prio, rq_prio(last)) &&
191 		!i915_request_completed(last));
192 }
193 
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
intel_lr_context_descriptor_update(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_context * ce)221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 				   struct intel_engine_cs *engine,
223 				   struct intel_context *ce)
224 {
225 	u64 desc;
226 
227 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228 	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229 
230 	desc = ctx->desc_template;				/* bits  0-11 */
231 	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232 
233 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234 								/* bits 12-31 */
235 	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236 
237 	/*
238 	 * The following 32bits are copied into the OA reports (dword 2).
239 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240 	 * anything below.
241 	 */
242 	if (INTEL_GEN(ctx->i915) >= 11) {
243 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244 		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245 								/* bits 37-47 */
246 
247 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248 								/* bits 48-53 */
249 
250 		/* TODO: decide what to do with SW counter (bits 55-60) */
251 
252 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253 								/* bits 61-63 */
254 	} else {
255 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256 		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
257 	}
258 
259 	ce->lrc_desc = desc;
260 }
261 
262 static struct i915_priolist *
lookup_priolist(struct intel_engine_cs * engine,int prio)263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265 	struct intel_engine_execlists * const execlists = &engine->execlists;
266 	struct i915_priolist *p;
267 	struct rb_node **parent, *rb;
268 	bool first = true;
269 
270 	if (unlikely(execlists->no_priolist))
271 		prio = I915_PRIORITY_NORMAL;
272 
273 find_priolist:
274 	/* most positive priority is scheduled first, equal priorities fifo */
275 	rb = NULL;
276 	parent = &execlists->queue.rb_root.rb_node;
277 	while (*parent) {
278 		rb = *parent;
279 		p = to_priolist(rb);
280 		if (prio > p->priority) {
281 			parent = &rb->rb_left;
282 		} else if (prio < p->priority) {
283 			parent = &rb->rb_right;
284 			first = false;
285 		} else {
286 			return p;
287 		}
288 	}
289 
290 	if (prio == I915_PRIORITY_NORMAL) {
291 		p = &execlists->default_priolist;
292 	} else {
293 		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294 		/* Convert an allocation failure to a priority bump */
295 		if (unlikely(!p)) {
296 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
297 
298 			/* To maintain ordering with all rendering, after an
299 			 * allocation failure we have to disable all scheduling.
300 			 * Requests will then be executed in fifo, and schedule
301 			 * will ensure that dependencies are emitted in fifo.
302 			 * There will be still some reordering with existing
303 			 * requests, so if userspace lied about their
304 			 * dependencies that reordering may be visible.
305 			 */
306 			execlists->no_priolist = true;
307 			goto find_priolist;
308 		}
309 	}
310 
311 	p->priority = prio;
312 	INIT_LIST_HEAD(&p->requests);
313 	rb_link_node(&p->node, rb, parent);
314 	rb_insert_color_cached(&p->node, &execlists->queue, first);
315 
316 	return p;
317 }
318 
unwind_wa_tail(struct i915_request * rq)319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322 	assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324 
__unwind_incomplete_requests(struct intel_engine_cs * engine)325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327 	struct i915_request *rq, *rn;
328 	struct i915_priolist *uninitialized_var(p);
329 	int last_prio = I915_PRIORITY_INVALID;
330 
331 	lockdep_assert_held(&engine->timeline.lock);
332 
333 	list_for_each_entry_safe_reverse(rq, rn,
334 					 &engine->timeline.requests,
335 					 link) {
336 		if (i915_request_completed(rq))
337 			return;
338 
339 		__i915_request_unsubmit(rq);
340 		unwind_wa_tail(rq);
341 
342 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343 		if (rq_prio(rq) != last_prio) {
344 			last_prio = rq_prio(rq);
345 			p = lookup_priolist(engine, last_prio);
346 		}
347 
348 		GEM_BUG_ON(p->priority != rq_prio(rq));
349 		list_add(&rq->sched.link, &p->requests);
350 	}
351 }
352 
353 void
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356 	struct intel_engine_cs *engine =
357 		container_of(execlists, typeof(*engine), execlists);
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&engine->timeline.lock, flags);
361 
362 	__unwind_incomplete_requests(engine);
363 
364 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366 
367 static inline void
execlists_context_status_change(struct i915_request * rq,unsigned long status)368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370 	/*
371 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
372 	 * The compiler should eliminate this function as dead-code.
373 	 */
374 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375 		return;
376 
377 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378 				   status, rq);
379 }
380 
381 inline void
execlists_user_begin(struct intel_engine_execlists * execlists,const struct execlist_port * port)382 execlists_user_begin(struct intel_engine_execlists *execlists,
383 		     const struct execlist_port *port)
384 {
385 	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387 
388 inline void
execlists_user_end(struct intel_engine_execlists * execlists)389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393 
394 static inline void
execlists_context_schedule_in(struct i915_request * rq)395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398 	intel_engine_context_in(rq->engine);
399 }
400 
401 static inline void
execlists_context_schedule_out(struct i915_request * rq,unsigned long status)402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404 	intel_engine_context_out(rq->engine);
405 	execlists_context_status_change(rq, status);
406 	trace_i915_request_out(rq);
407 }
408 
409 static void
execlists_update_context_pdps(struct i915_hw_ppgtt * ppgtt,u32 * reg_state)410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417 
execlists_update_context(struct i915_request * rq)418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420 	struct intel_context *ce = rq->hw_context;
421 	struct i915_hw_ppgtt *ppgtt =
422 		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423 	u32 *reg_state = ce->lrc_reg_state;
424 
425 	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426 
427 	/*
428 	 * True 32b PPGTT with dynamic page allocation: update PDP
429 	 * registers and point the unallocated PDPs to scratch page.
430 	 * PML4 is allocated during ppgtt init, so this is not needed
431 	 * in 48-bit mode.
432 	 */
433 	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
434 		execlists_update_context_pdps(ppgtt, reg_state);
435 
436 	/*
437 	 * Make sure the context image is complete before we submit it to HW.
438 	 *
439 	 * Ostensibly, writes (including the WCB) should be flushed prior to
440 	 * an uncached write such as our mmio register access, the empirical
441 	 * evidence (esp. on Braswell) suggests that the WC write into memory
442 	 * may not be visible to the HW prior to the completion of the UC
443 	 * register write and that we may begin execution from the context
444 	 * before its image is complete leading to invalid PD chasing.
445 	 *
446 	 * Furthermore, Braswell, at least, wants a full mb to be sure that
447 	 * the writes are coherent in memory (visible to the GPU) prior to
448 	 * execution, and not just visible to other CPUs (as is the result of
449 	 * wmb).
450 	 */
451 	mb();
452 	return ce->lrc_desc;
453 }
454 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)455 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
456 {
457 	if (execlists->ctrl_reg) {
458 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
459 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
460 	} else {
461 		writel(upper_32_bits(desc), execlists->submit_reg);
462 		writel(lower_32_bits(desc), execlists->submit_reg);
463 	}
464 }
465 
execlists_submit_ports(struct intel_engine_cs * engine)466 static void execlists_submit_ports(struct intel_engine_cs *engine)
467 {
468 	struct intel_engine_execlists *execlists = &engine->execlists;
469 	struct execlist_port *port = execlists->port;
470 	unsigned int n;
471 
472 	/*
473 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
474 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
475 	 * not be relinquished until the device is idle (see
476 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
477 	 * that all ELSP are drained i.e. we have processed the CSB,
478 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
479 	 */
480 	GEM_BUG_ON(!engine->i915->gt.awake);
481 
482 	/*
483 	 * ELSQ note: the submit queue is not cleared after being submitted
484 	 * to the HW so we need to make sure we always clean it up. This is
485 	 * currently ensured by the fact that we always write the same number
486 	 * of elsq entries, keep this in mind before changing the loop below.
487 	 */
488 	for (n = execlists_num_ports(execlists); n--; ) {
489 		struct i915_request *rq;
490 		unsigned int count;
491 		u64 desc;
492 
493 		rq = port_unpack(&port[n], &count);
494 		if (rq) {
495 			GEM_BUG_ON(count > !n);
496 			if (!count++)
497 				execlists_context_schedule_in(rq);
498 			port_set(&port[n], port_pack(rq, count));
499 			desc = execlists_update_context(rq);
500 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
501 
502 			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
503 				  engine->name, n,
504 				  port[n].context_id, count,
505 				  rq->global_seqno,
506 				  rq->fence.context, rq->fence.seqno,
507 				  intel_engine_get_seqno(engine),
508 				  rq_prio(rq));
509 		} else {
510 			GEM_BUG_ON(!n);
511 			desc = 0;
512 		}
513 
514 		write_desc(execlists, desc, n);
515 	}
516 
517 	/* we need to manually load the submit queue */
518 	if (execlists->ctrl_reg)
519 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
520 
521 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
522 }
523 
ctx_single_port_submission(const struct intel_context * ce)524 static bool ctx_single_port_submission(const struct intel_context *ce)
525 {
526 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
527 		i915_gem_context_force_single_submission(ce->gem_context));
528 }
529 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)530 static bool can_merge_ctx(const struct intel_context *prev,
531 			  const struct intel_context *next)
532 {
533 	if (prev != next)
534 		return false;
535 
536 	if (ctx_single_port_submission(prev))
537 		return false;
538 
539 	return true;
540 }
541 
port_assign(struct execlist_port * port,struct i915_request * rq)542 static void port_assign(struct execlist_port *port, struct i915_request *rq)
543 {
544 	GEM_BUG_ON(rq == port_request(port));
545 
546 	if (port_isset(port))
547 		i915_request_put(port_request(port));
548 
549 	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
550 }
551 
inject_preempt_context(struct intel_engine_cs * engine)552 static void inject_preempt_context(struct intel_engine_cs *engine)
553 {
554 	struct intel_engine_execlists *execlists = &engine->execlists;
555 	struct intel_context *ce =
556 		to_intel_context(engine->i915->preempt_context, engine);
557 	unsigned int n;
558 
559 	GEM_BUG_ON(execlists->preempt_complete_status !=
560 		   upper_32_bits(ce->lrc_desc));
561 	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
562 		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
563 				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
564 		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
565 				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
566 
567 	/*
568 	 * Switch to our empty preempt context so
569 	 * the state of the GPU is known (idle).
570 	 */
571 	GEM_TRACE("%s\n", engine->name);
572 	for (n = execlists_num_ports(execlists); --n; )
573 		write_desc(execlists, 0, n);
574 
575 	write_desc(execlists, ce->lrc_desc, n);
576 
577 	/* we need to manually load the submit queue */
578 	if (execlists->ctrl_reg)
579 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
580 
581 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
582 	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
583 }
584 
complete_preempt_context(struct intel_engine_execlists * execlists)585 static void complete_preempt_context(struct intel_engine_execlists *execlists)
586 {
587 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
588 
589 	if (inject_preempt_hang(execlists))
590 		return;
591 
592 	execlists_cancel_port_requests(execlists);
593 	__unwind_incomplete_requests(container_of(execlists,
594 						  struct intel_engine_cs,
595 						  execlists));
596 }
597 
execlists_dequeue(struct intel_engine_cs * engine)598 static void execlists_dequeue(struct intel_engine_cs *engine)
599 {
600 	struct intel_engine_execlists * const execlists = &engine->execlists;
601 	struct execlist_port *port = execlists->port;
602 	const struct execlist_port * const last_port =
603 		&execlists->port[execlists->port_mask];
604 	struct i915_request *last = port_request(port);
605 	struct rb_node *rb;
606 	bool submit = false;
607 
608 	/*
609 	 * Hardware submission is through 2 ports. Conceptually each port
610 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
611 	 * static for a context, and unique to each, so we only execute
612 	 * requests belonging to a single context from each ring. RING_HEAD
613 	 * is maintained by the CS in the context image, it marks the place
614 	 * where it got up to last time, and through RING_TAIL we tell the CS
615 	 * where we want to execute up to this time.
616 	 *
617 	 * In this list the requests are in order of execution. Consecutive
618 	 * requests from the same context are adjacent in the ringbuffer. We
619 	 * can combine these requests into a single RING_TAIL update:
620 	 *
621 	 *              RING_HEAD...req1...req2
622 	 *                                    ^- RING_TAIL
623 	 * since to execute req2 the CS must first execute req1.
624 	 *
625 	 * Our goal then is to point each port to the end of a consecutive
626 	 * sequence of requests as being the most optimal (fewest wake ups
627 	 * and context switches) submission.
628 	 */
629 
630 	if (last) {
631 		/*
632 		 * Don't resubmit or switch until all outstanding
633 		 * preemptions (lite-restore) are seen. Then we
634 		 * know the next preemption status we see corresponds
635 		 * to this ELSP update.
636 		 */
637 		GEM_BUG_ON(!execlists_is_active(execlists,
638 						EXECLISTS_ACTIVE_USER));
639 		GEM_BUG_ON(!port_count(&port[0]));
640 
641 		/*
642 		 * If we write to ELSP a second time before the HW has had
643 		 * a chance to respond to the previous write, we can confuse
644 		 * the HW and hit "undefined behaviour". After writing to ELSP,
645 		 * we must then wait until we see a context-switch event from
646 		 * the HW to indicate that it has had a chance to respond.
647 		 */
648 		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
649 			return;
650 
651 		if (need_preempt(engine, last, execlists->queue_priority)) {
652 			inject_preempt_context(engine);
653 			return;
654 		}
655 
656 		/*
657 		 * In theory, we could coalesce more requests onto
658 		 * the second port (the first port is active, with
659 		 * no preemptions pending). However, that means we
660 		 * then have to deal with the possible lite-restore
661 		 * of the second port (as we submit the ELSP, there
662 		 * may be a context-switch) but also we may complete
663 		 * the resubmission before the context-switch. Ergo,
664 		 * coalescing onto the second port will cause a
665 		 * preemption event, but we cannot predict whether
666 		 * that will affect port[0] or port[1].
667 		 *
668 		 * If the second port is already active, we can wait
669 		 * until the next context-switch before contemplating
670 		 * new requests. The GPU will be busy and we should be
671 		 * able to resubmit the new ELSP before it idles,
672 		 * avoiding pipeline bubbles (momentary pauses where
673 		 * the driver is unable to keep up the supply of new
674 		 * work). However, we have to double check that the
675 		 * priorities of the ports haven't been switch.
676 		 */
677 		if (port_count(&port[1]))
678 			return;
679 
680 		/*
681 		 * WaIdleLiteRestore:bdw,skl
682 		 * Apply the wa NOOPs to prevent
683 		 * ring:HEAD == rq:TAIL as we resubmit the
684 		 * request. See gen8_emit_breadcrumb() for
685 		 * where we prepare the padding after the
686 		 * end of the request.
687 		 */
688 		last->tail = last->wa_tail;
689 	}
690 
691 	while ((rb = rb_first_cached(&execlists->queue))) {
692 		struct i915_priolist *p = to_priolist(rb);
693 		struct i915_request *rq, *rn;
694 
695 		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
696 			/*
697 			 * Can we combine this request with the current port?
698 			 * It has to be the same context/ringbuffer and not
699 			 * have any exceptions (e.g. GVT saying never to
700 			 * combine contexts).
701 			 *
702 			 * If we can combine the requests, we can execute both
703 			 * by updating the RING_TAIL to point to the end of the
704 			 * second request, and so we never need to tell the
705 			 * hardware about the first.
706 			 */
707 			if (last &&
708 			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
709 				/*
710 				 * If we are on the second port and cannot
711 				 * combine this request with the last, then we
712 				 * are done.
713 				 */
714 				if (port == last_port) {
715 					__list_del_many(&p->requests,
716 							&rq->sched.link);
717 					goto done;
718 				}
719 
720 				/*
721 				 * If GVT overrides us we only ever submit
722 				 * port[0], leaving port[1] empty. Note that we
723 				 * also have to be careful that we don't queue
724 				 * the same context (even though a different
725 				 * request) to the second port.
726 				 */
727 				if (ctx_single_port_submission(last->hw_context) ||
728 				    ctx_single_port_submission(rq->hw_context)) {
729 					__list_del_many(&p->requests,
730 							&rq->sched.link);
731 					goto done;
732 				}
733 
734 				GEM_BUG_ON(last->hw_context == rq->hw_context);
735 
736 				if (submit)
737 					port_assign(port, last);
738 				port++;
739 
740 				GEM_BUG_ON(port_isset(port));
741 			}
742 
743 			INIT_LIST_HEAD(&rq->sched.link);
744 			__i915_request_submit(rq);
745 			trace_i915_request_in(rq, port_index(port, execlists));
746 			last = rq;
747 			submit = true;
748 		}
749 
750 		rb_erase_cached(&p->node, &execlists->queue);
751 		INIT_LIST_HEAD(&p->requests);
752 		if (p->priority != I915_PRIORITY_NORMAL)
753 			kmem_cache_free(engine->i915->priorities, p);
754 	}
755 
756 done:
757 	/*
758 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
759 	 *
760 	 * We choose queue_priority such that if we add a request of greater
761 	 * priority than this, we kick the submission tasklet to decide on
762 	 * the right order of submitting the requests to hardware. We must
763 	 * also be prepared to reorder requests as they are in-flight on the
764 	 * HW. We derive the queue_priority then as the first "hole" in
765 	 * the HW submission ports and if there are no available slots,
766 	 * the priority of the lowest executing request, i.e. last.
767 	 *
768 	 * When we do receive a higher priority request ready to run from the
769 	 * user, see queue_request(), the queue_priority is bumped to that
770 	 * request triggering preemption on the next dequeue (or subsequent
771 	 * interrupt for secondary ports).
772 	 */
773 	execlists->queue_priority =
774 		port != execlists->port ? rq_prio(last) : INT_MIN;
775 
776 	if (submit) {
777 		port_assign(port, last);
778 		execlists_submit_ports(engine);
779 	}
780 
781 	/* We must always keep the beast fed if we have work piled up */
782 	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
783 		   !port_isset(execlists->port));
784 
785 	/* Re-evaluate the executing context setup after each preemptive kick */
786 	if (last)
787 		execlists_user_begin(execlists, execlists->port);
788 
789 	/* If the engine is now idle, so should be the flag; and vice versa. */
790 	GEM_BUG_ON(execlists_is_active(&engine->execlists,
791 				       EXECLISTS_ACTIVE_USER) ==
792 		   !port_isset(engine->execlists.port));
793 }
794 
795 void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)796 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
797 {
798 	struct execlist_port *port = execlists->port;
799 	unsigned int num_ports = execlists_num_ports(execlists);
800 
801 	while (num_ports-- && port_isset(port)) {
802 		struct i915_request *rq = port_request(port);
803 
804 		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
805 			  rq->engine->name,
806 			  (unsigned int)(port - execlists->port),
807 			  rq->global_seqno,
808 			  rq->fence.context, rq->fence.seqno,
809 			  intel_engine_get_seqno(rq->engine));
810 
811 		GEM_BUG_ON(!execlists->active);
812 		execlists_context_schedule_out(rq,
813 					       i915_request_completed(rq) ?
814 					       INTEL_CONTEXT_SCHEDULE_OUT :
815 					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
816 
817 		i915_request_put(rq);
818 
819 		memset(port, 0, sizeof(*port));
820 		port++;
821 	}
822 
823 	execlists_clear_all_active(execlists);
824 }
825 
reset_csb_pointers(struct intel_engine_execlists * execlists)826 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
827 {
828 	/*
829 	 * After a reset, the HW starts writing into CSB entry [0]. We
830 	 * therefore have to set our HEAD pointer back one entry so that
831 	 * the *first* entry we check is entry 0. To complicate this further,
832 	 * as we don't wait for the first interrupt after reset, we have to
833 	 * fake the HW write to point back to the last entry so that our
834 	 * inline comparison of our cached head position against the last HW
835 	 * write works even before the first interrupt.
836 	 */
837 	execlists->csb_head = execlists->csb_write_reset;
838 	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
839 }
840 
nop_submission_tasklet(unsigned long data)841 static void nop_submission_tasklet(unsigned long data)
842 {
843 	/* The driver is wedged; don't process any more events. */
844 }
845 
execlists_cancel_requests(struct intel_engine_cs * engine)846 static void execlists_cancel_requests(struct intel_engine_cs *engine)
847 {
848 	struct intel_engine_execlists * const execlists = &engine->execlists;
849 	struct i915_request *rq, *rn;
850 	struct rb_node *rb;
851 	unsigned long flags;
852 
853 	GEM_TRACE("%s current %d\n",
854 		  engine->name, intel_engine_get_seqno(engine));
855 
856 	/*
857 	 * Before we call engine->cancel_requests(), we should have exclusive
858 	 * access to the submission state. This is arranged for us by the
859 	 * caller disabling the interrupt generation, the tasklet and other
860 	 * threads that may then access the same state, giving us a free hand
861 	 * to reset state. However, we still need to let lockdep be aware that
862 	 * we know this state may be accessed in hardirq context, so we
863 	 * disable the irq around this manipulation and we want to keep
864 	 * the spinlock focused on its duties and not accidentally conflate
865 	 * coverage to the submission's irq state. (Similarly, although we
866 	 * shouldn't need to disable irq around the manipulation of the
867 	 * submission's irq state, we also wish to remind ourselves that
868 	 * it is irq state.)
869 	 */
870 	spin_lock_irqsave(&engine->timeline.lock, flags);
871 
872 	/* Cancel the requests on the HW and clear the ELSP tracker. */
873 	execlists_cancel_port_requests(execlists);
874 	execlists_user_end(execlists);
875 
876 	/* Mark all executing requests as skipped. */
877 	list_for_each_entry(rq, &engine->timeline.requests, link) {
878 		GEM_BUG_ON(!rq->global_seqno);
879 		if (!i915_request_completed(rq))
880 			dma_fence_set_error(&rq->fence, -EIO);
881 	}
882 
883 	/* Flush the queued requests to the timeline list (for retiring). */
884 	while ((rb = rb_first_cached(&execlists->queue))) {
885 		struct i915_priolist *p = to_priolist(rb);
886 
887 		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
888 			INIT_LIST_HEAD(&rq->sched.link);
889 
890 			dma_fence_set_error(&rq->fence, -EIO);
891 			__i915_request_submit(rq);
892 		}
893 
894 		rb_erase_cached(&p->node, &execlists->queue);
895 		INIT_LIST_HEAD(&p->requests);
896 		if (p->priority != I915_PRIORITY_NORMAL)
897 			kmem_cache_free(engine->i915->priorities, p);
898 	}
899 
900 	/* Remaining _unready_ requests will be nop'ed when submitted */
901 
902 	execlists->queue_priority = INT_MIN;
903 	execlists->queue = RB_ROOT_CACHED;
904 	GEM_BUG_ON(port_isset(execlists->port));
905 
906 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
907 	execlists->tasklet.func = nop_submission_tasklet;
908 
909 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
910 }
911 
912 static inline bool
reset_in_progress(const struct intel_engine_execlists * execlists)913 reset_in_progress(const struct intel_engine_execlists *execlists)
914 {
915 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
916 }
917 
process_csb(struct intel_engine_cs * engine)918 static void process_csb(struct intel_engine_cs *engine)
919 {
920 	struct intel_engine_execlists * const execlists = &engine->execlists;
921 	struct execlist_port *port = execlists->port;
922 	const u32 * const buf = execlists->csb_status;
923 	u8 head, tail;
924 
925 	/*
926 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
927 	 * When reading from the csb_write mmio register, we have to be
928 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
929 	 * the low 4bits. As it happens we know the next 4bits are always
930 	 * zero and so we can simply masked off the low u8 of the register
931 	 * and treat it identically to reading from the HWSP (without having
932 	 * to use explicit shifting and masking, and probably bifurcating
933 	 * the code to handle the legacy mmio read).
934 	 */
935 	head = execlists->csb_head;
936 	tail = READ_ONCE(*execlists->csb_write);
937 	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
938 	if (unlikely(head == tail))
939 		return;
940 
941 	/*
942 	 * Hopefully paired with a wmb() in HW!
943 	 *
944 	 * We must complete the read of the write pointer before any reads
945 	 * from the CSB, so that we do not see stale values. Without an rmb
946 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
947 	 * we perform the READ_ONCE(*csb_write).
948 	 */
949 	rmb();
950 
951 	do {
952 		struct i915_request *rq;
953 		unsigned int status;
954 		unsigned int count;
955 
956 		if (++head == GEN8_CSB_ENTRIES)
957 			head = 0;
958 
959 		/*
960 		 * We are flying near dragons again.
961 		 *
962 		 * We hold a reference to the request in execlist_port[]
963 		 * but no more than that. We are operating in softirq
964 		 * context and so cannot hold any mutex or sleep. That
965 		 * prevents us stopping the requests we are processing
966 		 * in port[] from being retired simultaneously (the
967 		 * breadcrumb will be complete before we see the
968 		 * context-switch). As we only hold the reference to the
969 		 * request, any pointer chasing underneath the request
970 		 * is subject to a potential use-after-free. Thus we
971 		 * store all of the bookkeeping within port[] as
972 		 * required, and avoid using unguarded pointers beneath
973 		 * request itself. The same applies to the atomic
974 		 * status notifier.
975 		 */
976 
977 		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
978 			  engine->name, head,
979 			  buf[2 * head + 0], buf[2 * head + 1],
980 			  execlists->active);
981 
982 		status = buf[2 * head];
983 		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
984 			      GEN8_CTX_STATUS_PREEMPTED))
985 			execlists_set_active(execlists,
986 					     EXECLISTS_ACTIVE_HWACK);
987 		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
988 			execlists_clear_active(execlists,
989 					       EXECLISTS_ACTIVE_HWACK);
990 
991 		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
992 			continue;
993 
994 		/* We should never get a COMPLETED | IDLE_ACTIVE! */
995 		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
996 
997 		if (status & GEN8_CTX_STATUS_COMPLETE &&
998 		    buf[2*head + 1] == execlists->preempt_complete_status) {
999 			GEM_TRACE("%s preempt-idle\n", engine->name);
1000 			complete_preempt_context(execlists);
1001 			continue;
1002 		}
1003 
1004 		if (status & GEN8_CTX_STATUS_PREEMPTED &&
1005 		    execlists_is_active(execlists,
1006 					EXECLISTS_ACTIVE_PREEMPT))
1007 			continue;
1008 
1009 		GEM_BUG_ON(!execlists_is_active(execlists,
1010 						EXECLISTS_ACTIVE_USER));
1011 
1012 		rq = port_unpack(port, &count);
1013 		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1014 			  engine->name,
1015 			  port->context_id, count,
1016 			  rq ? rq->global_seqno : 0,
1017 			  rq ? rq->fence.context : 0,
1018 			  rq ? rq->fence.seqno : 0,
1019 			  intel_engine_get_seqno(engine),
1020 			  rq ? rq_prio(rq) : 0);
1021 
1022 		/* Check the context/desc id for this event matches */
1023 		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1024 
1025 		GEM_BUG_ON(count == 0);
1026 		if (--count == 0) {
1027 			/*
1028 			 * On the final event corresponding to the
1029 			 * submission of this context, we expect either
1030 			 * an element-switch event or a completion
1031 			 * event (and on completion, the active-idle
1032 			 * marker). No more preemptions, lite-restore
1033 			 * or otherwise.
1034 			 */
1035 			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1036 			GEM_BUG_ON(port_isset(&port[1]) &&
1037 				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1038 			GEM_BUG_ON(!port_isset(&port[1]) &&
1039 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1040 
1041 			/*
1042 			 * We rely on the hardware being strongly
1043 			 * ordered, that the breadcrumb write is
1044 			 * coherent (visible from the CPU) before the
1045 			 * user interrupt and CSB is processed.
1046 			 */
1047 			GEM_BUG_ON(!i915_request_completed(rq));
1048 
1049 			execlists_context_schedule_out(rq,
1050 						       INTEL_CONTEXT_SCHEDULE_OUT);
1051 			i915_request_put(rq);
1052 
1053 			GEM_TRACE("%s completed ctx=%d\n",
1054 				  engine->name, port->context_id);
1055 
1056 			port = execlists_port_complete(execlists, port);
1057 			if (port_isset(port))
1058 				execlists_user_begin(execlists, port);
1059 			else
1060 				execlists_user_end(execlists);
1061 		} else {
1062 			port_set(port, port_pack(rq, count));
1063 		}
1064 	} while (head != tail);
1065 
1066 	execlists->csb_head = head;
1067 }
1068 
__execlists_submission_tasklet(struct intel_engine_cs * const engine)1069 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1070 {
1071 	lockdep_assert_held(&engine->timeline.lock);
1072 
1073 	process_csb(engine);
1074 	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1075 		execlists_dequeue(engine);
1076 }
1077 
1078 /*
1079  * Check the unread Context Status Buffers and manage the submission of new
1080  * contexts to the ELSP accordingly.
1081  */
execlists_submission_tasklet(unsigned long data)1082 static void execlists_submission_tasklet(unsigned long data)
1083 {
1084 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1085 	unsigned long flags;
1086 
1087 	GEM_TRACE("%s awake?=%d, active=%x\n",
1088 		  engine->name,
1089 		  engine->i915->gt.awake,
1090 		  engine->execlists.active);
1091 
1092 	spin_lock_irqsave(&engine->timeline.lock, flags);
1093 	__execlists_submission_tasklet(engine);
1094 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1095 }
1096 
queue_request(struct intel_engine_cs * engine,struct i915_sched_node * node,int prio)1097 static void queue_request(struct intel_engine_cs *engine,
1098 			  struct i915_sched_node *node,
1099 			  int prio)
1100 {
1101 	list_add_tail(&node->link,
1102 		      &lookup_priolist(engine, prio)->requests);
1103 }
1104 
__update_queue(struct intel_engine_cs * engine,int prio)1105 static void __update_queue(struct intel_engine_cs *engine, int prio)
1106 {
1107 	engine->execlists.queue_priority = prio;
1108 }
1109 
__submit_queue_imm(struct intel_engine_cs * engine)1110 static void __submit_queue_imm(struct intel_engine_cs *engine)
1111 {
1112 	struct intel_engine_execlists * const execlists = &engine->execlists;
1113 
1114 	if (reset_in_progress(execlists))
1115 		return; /* defer until we restart the engine following reset */
1116 
1117 	if (execlists->tasklet.func == execlists_submission_tasklet)
1118 		__execlists_submission_tasklet(engine);
1119 	else
1120 		tasklet_hi_schedule(&execlists->tasklet);
1121 }
1122 
submit_queue(struct intel_engine_cs * engine,int prio)1123 static void submit_queue(struct intel_engine_cs *engine, int prio)
1124 {
1125 	if (prio > engine->execlists.queue_priority) {
1126 		__update_queue(engine, prio);
1127 		__submit_queue_imm(engine);
1128 	}
1129 }
1130 
execlists_submit_request(struct i915_request * request)1131 static void execlists_submit_request(struct i915_request *request)
1132 {
1133 	struct intel_engine_cs *engine = request->engine;
1134 	unsigned long flags;
1135 
1136 	/* Will be called from irq-context when using foreign fences. */
1137 	spin_lock_irqsave(&engine->timeline.lock, flags);
1138 
1139 	queue_request(engine, &request->sched, rq_prio(request));
1140 
1141 	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1142 	GEM_BUG_ON(list_empty(&request->sched.link));
1143 
1144 	submit_queue(engine, rq_prio(request));
1145 
1146 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1147 }
1148 
sched_to_request(struct i915_sched_node * node)1149 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1150 {
1151 	return container_of(node, struct i915_request, sched);
1152 }
1153 
1154 static struct intel_engine_cs *
sched_lock_engine(struct i915_sched_node * node,struct intel_engine_cs * locked)1155 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1156 {
1157 	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1158 
1159 	GEM_BUG_ON(!locked);
1160 
1161 	if (engine != locked) {
1162 		spin_unlock(&locked->timeline.lock);
1163 		spin_lock(&engine->timeline.lock);
1164 	}
1165 
1166 	return engine;
1167 }
1168 
execlists_schedule(struct i915_request * request,const struct i915_sched_attr * attr)1169 static void execlists_schedule(struct i915_request *request,
1170 			       const struct i915_sched_attr *attr)
1171 {
1172 	struct i915_priolist *uninitialized_var(pl);
1173 	struct intel_engine_cs *engine, *last;
1174 	struct i915_dependency *dep, *p;
1175 	struct i915_dependency stack;
1176 	const int prio = attr->priority;
1177 	LIST_HEAD(dfs);
1178 
1179 	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1180 
1181 	if (i915_request_completed(request))
1182 		return;
1183 
1184 	if (prio <= READ_ONCE(request->sched.attr.priority))
1185 		return;
1186 
1187 	/* Need BKL in order to use the temporary link inside i915_dependency */
1188 	lockdep_assert_held(&request->i915->drm.struct_mutex);
1189 
1190 	stack.signaler = &request->sched;
1191 	list_add(&stack.dfs_link, &dfs);
1192 
1193 	/*
1194 	 * Recursively bump all dependent priorities to match the new request.
1195 	 *
1196 	 * A naive approach would be to use recursion:
1197 	 * static void update_priorities(struct i915_sched_node *node, prio) {
1198 	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1199 	 *		update_priorities(dep->signal, prio)
1200 	 *	queue_request(node);
1201 	 * }
1202 	 * but that may have unlimited recursion depth and so runs a very
1203 	 * real risk of overunning the kernel stack. Instead, we build
1204 	 * a flat list of all dependencies starting with the current request.
1205 	 * As we walk the list of dependencies, we add all of its dependencies
1206 	 * to the end of the list (this may include an already visited
1207 	 * request) and continue to walk onwards onto the new dependencies. The
1208 	 * end result is a topological list of requests in reverse order, the
1209 	 * last element in the list is the request we must execute first.
1210 	 */
1211 	list_for_each_entry(dep, &dfs, dfs_link) {
1212 		struct i915_sched_node *node = dep->signaler;
1213 
1214 		/*
1215 		 * Within an engine, there can be no cycle, but we may
1216 		 * refer to the same dependency chain multiple times
1217 		 * (redundant dependencies are not eliminated) and across
1218 		 * engines.
1219 		 */
1220 		list_for_each_entry(p, &node->signalers_list, signal_link) {
1221 			GEM_BUG_ON(p == dep); /* no cycles! */
1222 
1223 			if (i915_sched_node_signaled(p->signaler))
1224 				continue;
1225 
1226 			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1227 			if (prio > READ_ONCE(p->signaler->attr.priority))
1228 				list_move_tail(&p->dfs_link, &dfs);
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * If we didn't need to bump any existing priorities, and we haven't
1234 	 * yet submitted this request (i.e. there is no potential race with
1235 	 * execlists_submit_request()), we can set our own priority and skip
1236 	 * acquiring the engine locks.
1237 	 */
1238 	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1239 		GEM_BUG_ON(!list_empty(&request->sched.link));
1240 		request->sched.attr = *attr;
1241 		if (stack.dfs_link.next == stack.dfs_link.prev)
1242 			return;
1243 		__list_del_entry(&stack.dfs_link);
1244 	}
1245 
1246 	last = NULL;
1247 	engine = request->engine;
1248 	spin_lock_irq(&engine->timeline.lock);
1249 
1250 	/* Fifo and depth-first replacement ensure our deps execute before us */
1251 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1252 		struct i915_sched_node *node = dep->signaler;
1253 
1254 		INIT_LIST_HEAD(&dep->dfs_link);
1255 
1256 		engine = sched_lock_engine(node, engine);
1257 
1258 		if (prio <= node->attr.priority)
1259 			continue;
1260 
1261 		node->attr.priority = prio;
1262 		if (!list_empty(&node->link)) {
1263 			if (last != engine) {
1264 				pl = lookup_priolist(engine, prio);
1265 				last = engine;
1266 			}
1267 			GEM_BUG_ON(pl->priority != prio);
1268 			list_move_tail(&node->link, &pl->requests);
1269 		}
1270 
1271 		if (prio > engine->execlists.queue_priority &&
1272 		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
1273 			/* defer submission until after all of our updates */
1274 			__update_queue(engine, prio);
1275 			tasklet_hi_schedule(&engine->execlists.tasklet);
1276 		}
1277 	}
1278 
1279 	spin_unlock_irq(&engine->timeline.lock);
1280 }
1281 
execlists_context_destroy(struct intel_context * ce)1282 static void execlists_context_destroy(struct intel_context *ce)
1283 {
1284 	GEM_BUG_ON(ce->pin_count);
1285 
1286 	if (!ce->state)
1287 		return;
1288 
1289 	intel_ring_free(ce->ring);
1290 
1291 	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1292 	i915_gem_object_put(ce->state->obj);
1293 }
1294 
execlists_context_unpin(struct intel_context * ce)1295 static void execlists_context_unpin(struct intel_context *ce)
1296 {
1297 	intel_ring_unpin(ce->ring);
1298 
1299 	ce->state->obj->pin_global--;
1300 	i915_gem_object_unpin_map(ce->state->obj);
1301 	i915_vma_unpin(ce->state);
1302 
1303 	i915_gem_context_put(ce->gem_context);
1304 }
1305 
__context_pin(struct i915_gem_context * ctx,struct i915_vma * vma)1306 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1307 {
1308 	unsigned int flags;
1309 	int err;
1310 
1311 	/*
1312 	 * Clear this page out of any CPU caches for coherent swap-in/out.
1313 	 * We only want to do this on the first bind so that we do not stall
1314 	 * on an active context (which by nature is already on the GPU).
1315 	 */
1316 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1317 		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1318 		if (err)
1319 			return err;
1320 	}
1321 
1322 	flags = PIN_GLOBAL | PIN_HIGH;
1323 	if (ctx->ggtt_offset_bias)
1324 		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1325 
1326 	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1327 }
1328 
1329 static struct intel_context *
__execlists_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx,struct intel_context * ce)1330 __execlists_context_pin(struct intel_engine_cs *engine,
1331 			struct i915_gem_context *ctx,
1332 			struct intel_context *ce)
1333 {
1334 	void *vaddr;
1335 	int ret;
1336 
1337 	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1338 	if (ret)
1339 		goto err;
1340 	GEM_BUG_ON(!ce->state);
1341 
1342 	ret = __context_pin(ctx, ce->state);
1343 	if (ret)
1344 		goto err;
1345 
1346 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1347 	if (IS_ERR(vaddr)) {
1348 		ret = PTR_ERR(vaddr);
1349 		goto unpin_vma;
1350 	}
1351 
1352 	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1353 	if (ret)
1354 		goto unpin_map;
1355 
1356 	intel_lr_context_descriptor_update(ctx, engine, ce);
1357 
1358 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1359 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1360 		i915_ggtt_offset(ce->ring->vma);
1361 	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1362 	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1363 
1364 	ce->state->obj->pin_global++;
1365 	i915_gem_context_get(ctx);
1366 	return ce;
1367 
1368 unpin_map:
1369 	i915_gem_object_unpin_map(ce->state->obj);
1370 unpin_vma:
1371 	__i915_vma_unpin(ce->state);
1372 err:
1373 	ce->pin_count = 0;
1374 	return ERR_PTR(ret);
1375 }
1376 
1377 static const struct intel_context_ops execlists_context_ops = {
1378 	.unpin = execlists_context_unpin,
1379 	.destroy = execlists_context_destroy,
1380 };
1381 
1382 static struct intel_context *
execlists_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1383 execlists_context_pin(struct intel_engine_cs *engine,
1384 		      struct i915_gem_context *ctx)
1385 {
1386 	struct intel_context *ce = to_intel_context(ctx, engine);
1387 
1388 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1389 
1390 	if (likely(ce->pin_count++))
1391 		return ce;
1392 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1393 
1394 	ce->ops = &execlists_context_ops;
1395 
1396 	return __execlists_context_pin(engine, ctx, ce);
1397 }
1398 
execlists_request_alloc(struct i915_request * request)1399 static int execlists_request_alloc(struct i915_request *request)
1400 {
1401 	int ret;
1402 
1403 	GEM_BUG_ON(!request->hw_context->pin_count);
1404 
1405 	/* Flush enough space to reduce the likelihood of waiting after
1406 	 * we start building the request - in which case we will just
1407 	 * have to repeat work.
1408 	 */
1409 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1410 
1411 	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1412 	if (ret)
1413 		return ret;
1414 
1415 	/* Note that after this point, we have committed to using
1416 	 * this request as it is being used to both track the
1417 	 * state of engine initialisation and liveness of the
1418 	 * golden renderstate above. Think twice before you try
1419 	 * to cancel/unwind this request now.
1420 	 */
1421 
1422 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1423 	return 0;
1424 }
1425 
1426 /*
1427  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1428  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1429  * but there is a slight complication as this is applied in WA batch where the
1430  * values are only initialized once so we cannot take register value at the
1431  * beginning and reuse it further; hence we save its value to memory, upload a
1432  * constant value with bit21 set and then we restore it back with the saved value.
1433  * To simplify the WA, a constant value is formed by using the default value
1434  * of this register. This shouldn't be a problem because we are only modifying
1435  * it for a short period and this batch in non-premptible. We can ofcourse
1436  * use additional instructions that read the actual value of the register
1437  * at that time and set our bit of interest but it makes the WA complicated.
1438  *
1439  * This WA is also required for Gen9 so extracting as a function avoids
1440  * code duplication.
1441  */
1442 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)1443 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1444 {
1445 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1446 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1447 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1448 	*batch++ = 0;
1449 
1450 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1451 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1452 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1453 
1454 	batch = gen8_emit_pipe_control(batch,
1455 				       PIPE_CONTROL_CS_STALL |
1456 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1457 				       0);
1458 
1459 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1460 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1461 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1462 	*batch++ = 0;
1463 
1464 	return batch;
1465 }
1466 
1467 /*
1468  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1469  * initialized at the beginning and shared across all contexts but this field
1470  * helps us to have multiple batches at different offsets and select them based
1471  * on a criteria. At the moment this batch always start at the beginning of the page
1472  * and at this point we don't have multiple wa_ctx batch buffers.
1473  *
1474  * The number of WA applied are not known at the beginning; we use this field
1475  * to return the no of DWORDS written.
1476  *
1477  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1478  * so it adds NOOPs as padding to make it cacheline aligned.
1479  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1480  * makes a complete batch buffer.
1481  */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1482 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1483 {
1484 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1485 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1486 
1487 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1488 	if (IS_BROADWELL(engine->i915))
1489 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1490 
1491 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1492 	/* Actual scratch location is at 128 bytes offset */
1493 	batch = gen8_emit_pipe_control(batch,
1494 				       PIPE_CONTROL_FLUSH_L3 |
1495 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1496 				       PIPE_CONTROL_CS_STALL |
1497 				       PIPE_CONTROL_QW_WRITE,
1498 				       i915_ggtt_offset(engine->scratch) +
1499 				       2 * CACHELINE_BYTES);
1500 
1501 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1502 
1503 	/* Pad to end of cacheline */
1504 	while ((unsigned long)batch % CACHELINE_BYTES)
1505 		*batch++ = MI_NOOP;
1506 
1507 	/*
1508 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1509 	 * execution depends on the length specified in terms of cache lines
1510 	 * in the register CTX_RCS_INDIRECT_CTX
1511 	 */
1512 
1513 	return batch;
1514 }
1515 
1516 struct lri {
1517 	i915_reg_t reg;
1518 	u32 value;
1519 };
1520 
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)1521 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1522 {
1523 	GEM_BUG_ON(!count || count > 63);
1524 
1525 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1526 	do {
1527 		*batch++ = i915_mmio_reg_offset(lri->reg);
1528 		*batch++ = lri->value;
1529 	} while (lri++, --count);
1530 	*batch++ = MI_NOOP;
1531 
1532 	return batch;
1533 }
1534 
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1535 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1536 {
1537 	static const struct lri lri[] = {
1538 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1539 		{
1540 			COMMON_SLICE_CHICKEN2,
1541 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1542 				       0),
1543 		},
1544 
1545 		/* BSpec: 11391 */
1546 		{
1547 			FF_SLICE_CHICKEN,
1548 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1549 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1550 		},
1551 
1552 		/* BSpec: 11299 */
1553 		{
1554 			_3D_CHICKEN3,
1555 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1556 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1557 		}
1558 	};
1559 
1560 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1561 
1562 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1563 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1564 
1565 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1566 	batch = gen8_emit_pipe_control(batch,
1567 				       PIPE_CONTROL_FLUSH_L3 |
1568 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1569 				       PIPE_CONTROL_CS_STALL |
1570 				       PIPE_CONTROL_QW_WRITE,
1571 				       i915_ggtt_offset(engine->scratch) +
1572 				       2 * CACHELINE_BYTES);
1573 
1574 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1575 
1576 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1577 	/* Actual scratch location is at 128 bytes offset */
1578 	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1579 		batch = gen8_emit_pipe_control(batch,
1580 					       PIPE_CONTROL_FLUSH_L3 |
1581 					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1582 					       PIPE_CONTROL_CS_STALL |
1583 					       PIPE_CONTROL_QW_WRITE,
1584 					       i915_ggtt_offset(engine->scratch)
1585 					       + 2 * CACHELINE_BYTES);
1586 	}
1587 
1588 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1589 	if (HAS_POOLED_EU(engine->i915)) {
1590 		/*
1591 		 * EU pool configuration is setup along with golden context
1592 		 * during context initialization. This value depends on
1593 		 * device type (2x6 or 3x6) and needs to be updated based
1594 		 * on which subslice is disabled especially for 2x6
1595 		 * devices, however it is safe to load default
1596 		 * configuration of 3x6 device instead of masking off
1597 		 * corresponding bits because HW ignores bits of a disabled
1598 		 * subslice and drops down to appropriate config. Please
1599 		 * see render_state_setup() in i915_gem_render_state.c for
1600 		 * possible configurations, to avoid duplication they are
1601 		 * not shown here again.
1602 		 */
1603 		*batch++ = GEN9_MEDIA_POOL_STATE;
1604 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1605 		*batch++ = 0x00777000;
1606 		*batch++ = 0;
1607 		*batch++ = 0;
1608 		*batch++ = 0;
1609 	}
1610 
1611 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1612 
1613 	/* Pad to end of cacheline */
1614 	while ((unsigned long)batch % CACHELINE_BYTES)
1615 		*batch++ = MI_NOOP;
1616 
1617 	return batch;
1618 }
1619 
1620 static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1621 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1622 {
1623 	int i;
1624 
1625 	/*
1626 	 * WaPipeControlBefore3DStateSamplePattern: cnl
1627 	 *
1628 	 * Ensure the engine is idle prior to programming a
1629 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1630 	 */
1631 	batch = gen8_emit_pipe_control(batch,
1632 				       PIPE_CONTROL_CS_STALL,
1633 				       0);
1634 	/*
1635 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1636 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1637 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1638 	 * confusing. Since gen8_emit_pipe_control() already advances the
1639 	 * batch by 6 dwords, we advance the other 10 here, completing a
1640 	 * cacheline. It's not clear if the workaround requires this padding
1641 	 * before other commands, or if it's just the regular padding we would
1642 	 * already have for the workaround bb, so leave it here for now.
1643 	 */
1644 	for (i = 0; i < 10; i++)
1645 		*batch++ = MI_NOOP;
1646 
1647 	/* Pad to end of cacheline */
1648 	while ((unsigned long)batch % CACHELINE_BYTES)
1649 		*batch++ = MI_NOOP;
1650 
1651 	return batch;
1652 }
1653 
1654 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1655 
lrc_setup_wa_ctx(struct intel_engine_cs * engine)1656 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1657 {
1658 	struct drm_i915_gem_object *obj;
1659 	struct i915_vma *vma;
1660 	int err;
1661 
1662 	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1663 	if (IS_ERR(obj))
1664 		return PTR_ERR(obj);
1665 
1666 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1667 	if (IS_ERR(vma)) {
1668 		err = PTR_ERR(vma);
1669 		goto err;
1670 	}
1671 
1672 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1673 	if (err)
1674 		goto err;
1675 
1676 	engine->wa_ctx.vma = vma;
1677 	return 0;
1678 
1679 err:
1680 	i915_gem_object_put(obj);
1681 	return err;
1682 }
1683 
lrc_destroy_wa_ctx(struct intel_engine_cs * engine)1684 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1685 {
1686 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1687 }
1688 
1689 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1690 
intel_init_workaround_bb(struct intel_engine_cs * engine)1691 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1692 {
1693 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1694 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1695 					    &wa_ctx->per_ctx };
1696 	wa_bb_func_t wa_bb_fn[2];
1697 	struct page *page;
1698 	void *batch, *batch_ptr;
1699 	unsigned int i;
1700 	int ret;
1701 
1702 	if (GEM_WARN_ON(engine->id != RCS))
1703 		return -EINVAL;
1704 
1705 	switch (INTEL_GEN(engine->i915)) {
1706 	case 11:
1707 		return 0;
1708 	case 10:
1709 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1710 		wa_bb_fn[1] = NULL;
1711 		break;
1712 	case 9:
1713 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1714 		wa_bb_fn[1] = NULL;
1715 		break;
1716 	case 8:
1717 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1718 		wa_bb_fn[1] = NULL;
1719 		break;
1720 	default:
1721 		MISSING_CASE(INTEL_GEN(engine->i915));
1722 		return 0;
1723 	}
1724 
1725 	ret = lrc_setup_wa_ctx(engine);
1726 	if (ret) {
1727 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1728 		return ret;
1729 	}
1730 
1731 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1732 	batch = batch_ptr = kmap_atomic(page);
1733 
1734 	/*
1735 	 * Emit the two workaround batch buffers, recording the offset from the
1736 	 * start of the workaround batch buffer object for each and their
1737 	 * respective sizes.
1738 	 */
1739 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1740 		wa_bb[i]->offset = batch_ptr - batch;
1741 		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1742 					    CACHELINE_BYTES))) {
1743 			ret = -EINVAL;
1744 			break;
1745 		}
1746 		if (wa_bb_fn[i])
1747 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1748 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1749 	}
1750 
1751 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1752 
1753 	kunmap_atomic(batch);
1754 	if (ret)
1755 		lrc_destroy_wa_ctx(engine);
1756 
1757 	return ret;
1758 }
1759 
enable_execlists(struct intel_engine_cs * engine)1760 static void enable_execlists(struct intel_engine_cs *engine)
1761 {
1762 	struct drm_i915_private *dev_priv = engine->i915;
1763 
1764 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1765 
1766 	/*
1767 	 * Make sure we're not enabling the new 12-deep CSB
1768 	 * FIFO as that requires a slightly updated handling
1769 	 * in the ctx switch irq. Since we're currently only
1770 	 * using only 2 elements of the enhanced execlists the
1771 	 * deeper FIFO it's not needed and it's not worth adding
1772 	 * more statements to the irq handler to support it.
1773 	 */
1774 	if (INTEL_GEN(dev_priv) >= 11)
1775 		I915_WRITE(RING_MODE_GEN7(engine),
1776 			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1777 	else
1778 		I915_WRITE(RING_MODE_GEN7(engine),
1779 			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1780 
1781 	I915_WRITE(RING_MI_MODE(engine->mmio_base),
1782 		   _MASKED_BIT_DISABLE(STOP_RING));
1783 
1784 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1785 		   engine->status_page.ggtt_offset);
1786 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1787 }
1788 
unexpected_starting_state(struct intel_engine_cs * engine)1789 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1790 {
1791 	struct drm_i915_private *dev_priv = engine->i915;
1792 	bool unexpected = false;
1793 
1794 	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1795 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1796 		unexpected = true;
1797 	}
1798 
1799 	return unexpected;
1800 }
1801 
gen8_init_common_ring(struct intel_engine_cs * engine)1802 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1803 {
1804 	int ret;
1805 
1806 	ret = intel_mocs_init_engine(engine);
1807 	if (ret)
1808 		return ret;
1809 
1810 	intel_engine_reset_breadcrumbs(engine);
1811 
1812 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1813 		struct drm_printer p = drm_debug_printer(__func__);
1814 
1815 		intel_engine_dump(engine, &p, NULL);
1816 	}
1817 
1818 	enable_execlists(engine);
1819 
1820 	return 0;
1821 }
1822 
gen8_init_render_ring(struct intel_engine_cs * engine)1823 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1824 {
1825 	struct drm_i915_private *dev_priv = engine->i915;
1826 	int ret;
1827 
1828 	ret = gen8_init_common_ring(engine);
1829 	if (ret)
1830 		return ret;
1831 
1832 	intel_whitelist_workarounds_apply(engine);
1833 
1834 	/* We need to disable the AsyncFlip performance optimisations in order
1835 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1836 	 * programmed to '1' on all products.
1837 	 *
1838 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1839 	 */
1840 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1841 
1842 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1843 
1844 	return 0;
1845 }
1846 
gen9_init_render_ring(struct intel_engine_cs * engine)1847 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1848 {
1849 	int ret;
1850 
1851 	ret = gen8_init_common_ring(engine);
1852 	if (ret)
1853 		return ret;
1854 
1855 	intel_whitelist_workarounds_apply(engine);
1856 
1857 	return 0;
1858 }
1859 
1860 static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs * engine)1861 execlists_reset_prepare(struct intel_engine_cs *engine)
1862 {
1863 	struct intel_engine_execlists * const execlists = &engine->execlists;
1864 	struct i915_request *request, *active;
1865 	unsigned long flags;
1866 
1867 	GEM_TRACE("%s\n", engine->name);
1868 
1869 	/*
1870 	 * Prevent request submission to the hardware until we have
1871 	 * completed the reset in i915_gem_reset_finish(). If a request
1872 	 * is completed by one engine, it may then queue a request
1873 	 * to a second via its execlists->tasklet *just* as we are
1874 	 * calling engine->init_hw() and also writing the ELSP.
1875 	 * Turning off the execlists->tasklet until the reset is over
1876 	 * prevents the race.
1877 	 */
1878 	__tasklet_disable_sync_once(&execlists->tasklet);
1879 
1880 	spin_lock_irqsave(&engine->timeline.lock, flags);
1881 
1882 	/*
1883 	 * We want to flush the pending context switches, having disabled
1884 	 * the tasklet above, we can assume exclusive access to the execlists.
1885 	 * For this allows us to catch up with an inflight preemption event,
1886 	 * and avoid blaming an innocent request if the stall was due to the
1887 	 * preemption itself.
1888 	 */
1889 	process_csb(engine);
1890 
1891 	/*
1892 	 * The last active request can then be no later than the last request
1893 	 * now in ELSP[0]. So search backwards from there, so that if the GPU
1894 	 * has advanced beyond the last CSB update, it will be pardoned.
1895 	 */
1896 	active = NULL;
1897 	request = port_request(execlists->port);
1898 	if (request) {
1899 		/*
1900 		 * Prevent the breadcrumb from advancing before we decide
1901 		 * which request is currently active.
1902 		 */
1903 		intel_engine_stop_cs(engine);
1904 
1905 		list_for_each_entry_from_reverse(request,
1906 						 &engine->timeline.requests,
1907 						 link) {
1908 			if (__i915_request_completed(request,
1909 						     request->global_seqno))
1910 				break;
1911 
1912 			active = request;
1913 		}
1914 	}
1915 
1916 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1917 
1918 	return active;
1919 }
1920 
execlists_reset(struct intel_engine_cs * engine,struct i915_request * request)1921 static void execlists_reset(struct intel_engine_cs *engine,
1922 			    struct i915_request *request)
1923 {
1924 	struct intel_engine_execlists * const execlists = &engine->execlists;
1925 	unsigned long flags;
1926 	u32 *regs;
1927 
1928 	GEM_TRACE("%s request global=%x, current=%d\n",
1929 		  engine->name, request ? request->global_seqno : 0,
1930 		  intel_engine_get_seqno(engine));
1931 
1932 	spin_lock_irqsave(&engine->timeline.lock, flags);
1933 
1934 	/*
1935 	 * Catch up with any missed context-switch interrupts.
1936 	 *
1937 	 * Ideally we would just read the remaining CSB entries now that we
1938 	 * know the gpu is idle. However, the CSB registers are sometimes^W
1939 	 * often trashed across a GPU reset! Instead we have to rely on
1940 	 * guessing the missed context-switch events by looking at what
1941 	 * requests were completed.
1942 	 */
1943 	execlists_cancel_port_requests(execlists);
1944 
1945 	/* Push back any incomplete requests for replay after the reset. */
1946 	__unwind_incomplete_requests(engine);
1947 
1948 	/* Following the reset, we need to reload the CSB read/write pointers */
1949 	reset_csb_pointers(&engine->execlists);
1950 
1951 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1952 
1953 	/*
1954 	 * If the request was innocent, we leave the request in the ELSP
1955 	 * and will try to replay it on restarting. The context image may
1956 	 * have been corrupted by the reset, in which case we may have
1957 	 * to service a new GPU hang, but more likely we can continue on
1958 	 * without impact.
1959 	 *
1960 	 * If the request was guilty, we presume the context is corrupt
1961 	 * and have to at least restore the RING register in the context
1962 	 * image back to the expected values to skip over the guilty request.
1963 	 */
1964 	if (!request || request->fence.error != -EIO)
1965 		return;
1966 
1967 	/*
1968 	 * We want a simple context + ring to execute the breadcrumb update.
1969 	 * We cannot rely on the context being intact across the GPU hang,
1970 	 * so clear it and rebuild just what we need for the breadcrumb.
1971 	 * All pending requests for this context will be zapped, and any
1972 	 * future request will be after userspace has had the opportunity
1973 	 * to recreate its own state.
1974 	 */
1975 	regs = request->hw_context->lrc_reg_state;
1976 	if (engine->pinned_default_state) {
1977 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
1978 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1979 		       engine->context_size - PAGE_SIZE);
1980 	}
1981 	execlists_init_reg_state(regs,
1982 				 request->gem_context, engine, request->ring);
1983 
1984 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1985 	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1986 
1987 	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1988 	regs[CTX_RING_HEAD + 1] = request->ring->head;
1989 
1990 	intel_ring_update_space(request->ring);
1991 
1992 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1993 	unwind_wa_tail(request);
1994 }
1995 
execlists_reset_finish(struct intel_engine_cs * engine)1996 static void execlists_reset_finish(struct intel_engine_cs *engine)
1997 {
1998 	struct intel_engine_execlists * const execlists = &engine->execlists;
1999 
2000 	/* After a GPU reset, we may have requests to replay */
2001 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2002 		tasklet_schedule(&execlists->tasklet);
2003 
2004 	/*
2005 	 * Flush the tasklet while we still have the forcewake to be sure
2006 	 * that it is not allowed to sleep before we restart and reload a
2007 	 * context.
2008 	 *
2009 	 * As before (with execlists_reset_prepare) we rely on the caller
2010 	 * serialising multiple attempts to reset so that we know that we
2011 	 * are the only one manipulating tasklet state.
2012 	 */
2013 	__tasklet_enable_sync_once(&execlists->tasklet);
2014 
2015 	GEM_TRACE("%s\n", engine->name);
2016 }
2017 
intel_logical_ring_emit_pdps(struct i915_request * rq)2018 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2019 {
2020 	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2021 	struct intel_engine_cs *engine = rq->engine;
2022 	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2023 	u32 *cs;
2024 	int i;
2025 
2026 	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2027 	if (IS_ERR(cs))
2028 		return PTR_ERR(cs);
2029 
2030 	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2031 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2032 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2033 
2034 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2035 		*cs++ = upper_32_bits(pd_daddr);
2036 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2037 		*cs++ = lower_32_bits(pd_daddr);
2038 	}
2039 
2040 	*cs++ = MI_NOOP;
2041 	intel_ring_advance(rq, cs);
2042 
2043 	return 0;
2044 }
2045 
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)2046 static int gen8_emit_bb_start(struct i915_request *rq,
2047 			      u64 offset, u32 len,
2048 			      const unsigned int flags)
2049 {
2050 	u32 *cs;
2051 	int ret;
2052 
2053 	/* Don't rely in hw updating PDPs, specially in lite-restore.
2054 	 * Ideally, we should set Force PD Restore in ctx descriptor,
2055 	 * but we can't. Force Restore would be a second option, but
2056 	 * it is unsafe in case of lite-restore (because the ctx is
2057 	 * not idle). PML4 is allocated during ppgtt init so this is
2058 	 * not needed in 48-bit.*/
2059 	if (rq->gem_context->ppgtt &&
2060 	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2061 	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2062 	    !intel_vgpu_active(rq->i915)) {
2063 		ret = intel_logical_ring_emit_pdps(rq);
2064 		if (ret)
2065 			return ret;
2066 
2067 		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2068 	}
2069 
2070 	cs = intel_ring_begin(rq, 6);
2071 	if (IS_ERR(cs))
2072 		return PTR_ERR(cs);
2073 
2074 	/*
2075 	 * WaDisableCtxRestoreArbitration:bdw,chv
2076 	 *
2077 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2078 	 * particular all the gen that do not need the w/a at all!), if we
2079 	 * took care to make sure that on every switch into this context
2080 	 * (both ordinary and for preemption) that arbitrartion was enabled
2081 	 * we would be fine. However, there doesn't seem to be a downside to
2082 	 * being paranoid and making sure it is set before each batch and
2083 	 * every context-switch.
2084 	 *
2085 	 * Note that if we fail to enable arbitration before the request
2086 	 * is complete, then we do not see the context-switch interrupt and
2087 	 * the engine hangs (with RING_HEAD == RING_TAIL).
2088 	 *
2089 	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2090 	 */
2091 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2092 
2093 	/* FIXME(BDW): Address space and security selectors. */
2094 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2095 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
2096 		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2097 	*cs++ = lower_32_bits(offset);
2098 	*cs++ = upper_32_bits(offset);
2099 
2100 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2101 	*cs++ = MI_NOOP;
2102 	intel_ring_advance(rq, cs);
2103 
2104 	return 0;
2105 }
2106 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)2107 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2108 {
2109 	struct drm_i915_private *dev_priv = engine->i915;
2110 	I915_WRITE_IMR(engine,
2111 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
2112 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2113 }
2114 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)2115 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2116 {
2117 	struct drm_i915_private *dev_priv = engine->i915;
2118 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2119 }
2120 
gen8_emit_flush(struct i915_request * request,u32 mode)2121 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2122 {
2123 	u32 cmd, *cs;
2124 
2125 	cs = intel_ring_begin(request, 4);
2126 	if (IS_ERR(cs))
2127 		return PTR_ERR(cs);
2128 
2129 	cmd = MI_FLUSH_DW + 1;
2130 
2131 	/* We always require a command barrier so that subsequent
2132 	 * commands, such as breadcrumb interrupts, are strictly ordered
2133 	 * wrt the contents of the write cache being flushed to memory
2134 	 * (and thus being coherent from the CPU).
2135 	 */
2136 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2137 
2138 	if (mode & EMIT_INVALIDATE) {
2139 		cmd |= MI_INVALIDATE_TLB;
2140 		if (request->engine->id == VCS)
2141 			cmd |= MI_INVALIDATE_BSD;
2142 	}
2143 
2144 	*cs++ = cmd;
2145 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2146 	*cs++ = 0; /* upper addr */
2147 	*cs++ = 0; /* value */
2148 	intel_ring_advance(request, cs);
2149 
2150 	return 0;
2151 }
2152 
gen8_emit_flush_render(struct i915_request * request,u32 mode)2153 static int gen8_emit_flush_render(struct i915_request *request,
2154 				  u32 mode)
2155 {
2156 	struct intel_engine_cs *engine = request->engine;
2157 	u32 scratch_addr =
2158 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2159 	bool vf_flush_wa = false, dc_flush_wa = false;
2160 	u32 *cs, flags = 0;
2161 	int len;
2162 
2163 	flags |= PIPE_CONTROL_CS_STALL;
2164 
2165 	if (mode & EMIT_FLUSH) {
2166 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2167 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2168 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2169 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2170 	}
2171 
2172 	if (mode & EMIT_INVALIDATE) {
2173 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2174 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2175 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2176 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2177 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2178 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2179 		flags |= PIPE_CONTROL_QW_WRITE;
2180 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2181 
2182 		/*
2183 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2184 		 * pipe control.
2185 		 */
2186 		if (IS_GEN9(request->i915))
2187 			vf_flush_wa = true;
2188 
2189 		/* WaForGAMHang:kbl */
2190 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2191 			dc_flush_wa = true;
2192 	}
2193 
2194 	len = 6;
2195 
2196 	if (vf_flush_wa)
2197 		len += 6;
2198 
2199 	if (dc_flush_wa)
2200 		len += 12;
2201 
2202 	cs = intel_ring_begin(request, len);
2203 	if (IS_ERR(cs))
2204 		return PTR_ERR(cs);
2205 
2206 	if (vf_flush_wa)
2207 		cs = gen8_emit_pipe_control(cs, 0, 0);
2208 
2209 	if (dc_flush_wa)
2210 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2211 					    0);
2212 
2213 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2214 
2215 	if (dc_flush_wa)
2216 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2217 
2218 	intel_ring_advance(request, cs);
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * Reserve space for 2 NOOPs at the end of each request to be
2225  * used as a workaround for not being allowed to do lite
2226  * restore with HEAD==TAIL (WaIdleLiteRestore).
2227  */
gen8_emit_wa_tail(struct i915_request * request,u32 * cs)2228 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2229 {
2230 	/* Ensure there's always at least one preemption point per-request. */
2231 	*cs++ = MI_ARB_CHECK;
2232 	*cs++ = MI_NOOP;
2233 	request->wa_tail = intel_ring_offset(request, cs);
2234 }
2235 
gen8_emit_breadcrumb(struct i915_request * request,u32 * cs)2236 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2237 {
2238 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2239 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2240 
2241 	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2242 				  intel_hws_seqno_address(request->engine));
2243 	*cs++ = MI_USER_INTERRUPT;
2244 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2245 	request->tail = intel_ring_offset(request, cs);
2246 	assert_ring_tail_valid(request->ring, request->tail);
2247 
2248 	gen8_emit_wa_tail(request, cs);
2249 }
2250 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2251 
gen8_emit_breadcrumb_rcs(struct i915_request * request,u32 * cs)2252 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2253 {
2254 	/* We're using qword write, seqno should be aligned to 8 bytes. */
2255 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2256 
2257 	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2258 				      intel_hws_seqno_address(request->engine));
2259 	*cs++ = MI_USER_INTERRUPT;
2260 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2261 	request->tail = intel_ring_offset(request, cs);
2262 	assert_ring_tail_valid(request->ring, request->tail);
2263 
2264 	gen8_emit_wa_tail(request, cs);
2265 }
2266 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2267 
gen8_init_rcs_context(struct i915_request * rq)2268 static int gen8_init_rcs_context(struct i915_request *rq)
2269 {
2270 	int ret;
2271 
2272 	ret = intel_ctx_workarounds_emit(rq);
2273 	if (ret)
2274 		return ret;
2275 
2276 	ret = intel_rcs_context_init_mocs(rq);
2277 	/*
2278 	 * Failing to program the MOCS is non-fatal.The system will not
2279 	 * run at peak performance. So generate an error and carry on.
2280 	 */
2281 	if (ret)
2282 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2283 
2284 	return i915_gem_render_state_emit(rq);
2285 }
2286 
2287 /**
2288  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2289  * @engine: Engine Command Streamer.
2290  */
intel_logical_ring_cleanup(struct intel_engine_cs * engine)2291 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2292 {
2293 	struct drm_i915_private *dev_priv;
2294 
2295 	/*
2296 	 * Tasklet cannot be active at this point due intel_mark_active/idle
2297 	 * so this is just for documentation.
2298 	 */
2299 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2300 			     &engine->execlists.tasklet.state)))
2301 		tasklet_kill(&engine->execlists.tasklet);
2302 
2303 	dev_priv = engine->i915;
2304 
2305 	if (engine->buffer) {
2306 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2307 	}
2308 
2309 	if (engine->cleanup)
2310 		engine->cleanup(engine);
2311 
2312 	intel_engine_cleanup_common(engine);
2313 
2314 	lrc_destroy_wa_ctx(engine);
2315 
2316 	engine->i915 = NULL;
2317 	dev_priv->engine[engine->id] = NULL;
2318 	kfree(engine);
2319 }
2320 
intel_execlists_set_default_submission(struct intel_engine_cs * engine)2321 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2322 {
2323 	engine->submit_request = execlists_submit_request;
2324 	engine->cancel_requests = execlists_cancel_requests;
2325 	engine->schedule = execlists_schedule;
2326 	engine->execlists.tasklet.func = execlists_submission_tasklet;
2327 
2328 	engine->reset.prepare = execlists_reset_prepare;
2329 
2330 	engine->park = NULL;
2331 	engine->unpark = NULL;
2332 
2333 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2334 	if (engine->i915->preempt_context)
2335 		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2336 
2337 	engine->i915->caps.scheduler =
2338 		I915_SCHEDULER_CAP_ENABLED |
2339 		I915_SCHEDULER_CAP_PRIORITY;
2340 	if (intel_engine_has_preemption(engine))
2341 		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2342 }
2343 
2344 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)2345 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2346 {
2347 	/* Default vfuncs which can be overriden by each engine. */
2348 	engine->init_hw = gen8_init_common_ring;
2349 
2350 	engine->reset.prepare = execlists_reset_prepare;
2351 	engine->reset.reset = execlists_reset;
2352 	engine->reset.finish = execlists_reset_finish;
2353 
2354 	engine->context_pin = execlists_context_pin;
2355 	engine->request_alloc = execlists_request_alloc;
2356 
2357 	engine->emit_flush = gen8_emit_flush;
2358 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2359 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2360 
2361 	engine->set_default_submission = intel_execlists_set_default_submission;
2362 
2363 	if (INTEL_GEN(engine->i915) < 11) {
2364 		engine->irq_enable = gen8_logical_ring_enable_irq;
2365 		engine->irq_disable = gen8_logical_ring_disable_irq;
2366 	} else {
2367 		/*
2368 		 * TODO: On Gen11 interrupt masks need to be clear
2369 		 * to allow C6 entry. Keep interrupts enabled at
2370 		 * and take the hit of generating extra interrupts
2371 		 * until a more refined solution exists.
2372 		 */
2373 	}
2374 	engine->emit_bb_start = gen8_emit_bb_start;
2375 }
2376 
2377 static inline void
logical_ring_default_irqs(struct intel_engine_cs * engine)2378 logical_ring_default_irqs(struct intel_engine_cs *engine)
2379 {
2380 	unsigned int shift = 0;
2381 
2382 	if (INTEL_GEN(engine->i915) < 11) {
2383 		const u8 irq_shifts[] = {
2384 			[RCS]  = GEN8_RCS_IRQ_SHIFT,
2385 			[BCS]  = GEN8_BCS_IRQ_SHIFT,
2386 			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
2387 			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
2388 			[VECS] = GEN8_VECS_IRQ_SHIFT,
2389 		};
2390 
2391 		shift = irq_shifts[engine->id];
2392 	}
2393 
2394 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2395 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2396 }
2397 
2398 static void
logical_ring_setup(struct intel_engine_cs * engine)2399 logical_ring_setup(struct intel_engine_cs *engine)
2400 {
2401 	intel_engine_setup_common(engine);
2402 
2403 	/* Intentionally left blank. */
2404 	engine->buffer = NULL;
2405 
2406 	tasklet_init(&engine->execlists.tasklet,
2407 		     execlists_submission_tasklet, (unsigned long)engine);
2408 
2409 	logical_ring_default_vfuncs(engine);
2410 	logical_ring_default_irqs(engine);
2411 }
2412 
csb_force_mmio(struct drm_i915_private * i915)2413 static bool csb_force_mmio(struct drm_i915_private *i915)
2414 {
2415 	/* Older GVT emulation depends upon intercepting CSB mmio */
2416 	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2417 }
2418 
logical_ring_init(struct intel_engine_cs * engine)2419 static int logical_ring_init(struct intel_engine_cs *engine)
2420 {
2421 	struct drm_i915_private *i915 = engine->i915;
2422 	struct intel_engine_execlists * const execlists = &engine->execlists;
2423 	int ret;
2424 
2425 	ret = intel_engine_init_common(engine);
2426 	if (ret)
2427 		goto error;
2428 
2429 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2430 		execlists->submit_reg = i915->regs +
2431 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2432 		execlists->ctrl_reg = i915->regs +
2433 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2434 	} else {
2435 		execlists->submit_reg = i915->regs +
2436 			i915_mmio_reg_offset(RING_ELSP(engine));
2437 	}
2438 
2439 	execlists->preempt_complete_status = ~0u;
2440 	if (i915->preempt_context) {
2441 		struct intel_context *ce =
2442 			to_intel_context(i915->preempt_context, engine);
2443 
2444 		execlists->preempt_complete_status =
2445 			upper_32_bits(ce->lrc_desc);
2446 	}
2447 
2448 	execlists->csb_read =
2449 		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2450 	if (csb_force_mmio(i915)) {
2451 		execlists->csb_status = (u32 __force *)
2452 			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2453 
2454 		execlists->csb_write = (u32 __force *)execlists->csb_read;
2455 		execlists->csb_write_reset =
2456 			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2457 				      GEN8_CSB_ENTRIES - 1);
2458 	} else {
2459 		execlists->csb_status =
2460 			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2461 
2462 		execlists->csb_write =
2463 			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2464 		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2465 	}
2466 	reset_csb_pointers(execlists);
2467 
2468 	return 0;
2469 
2470 error:
2471 	intel_logical_ring_cleanup(engine);
2472 	return ret;
2473 }
2474 
logical_render_ring_init(struct intel_engine_cs * engine)2475 int logical_render_ring_init(struct intel_engine_cs *engine)
2476 {
2477 	struct drm_i915_private *dev_priv = engine->i915;
2478 	int ret;
2479 
2480 	logical_ring_setup(engine);
2481 
2482 	if (HAS_L3_DPF(dev_priv))
2483 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2484 
2485 	/* Override some for render ring. */
2486 	if (INTEL_GEN(dev_priv) >= 9)
2487 		engine->init_hw = gen9_init_render_ring;
2488 	else
2489 		engine->init_hw = gen8_init_render_ring;
2490 	engine->init_context = gen8_init_rcs_context;
2491 	engine->emit_flush = gen8_emit_flush_render;
2492 	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2493 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2494 
2495 	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2496 	if (ret)
2497 		return ret;
2498 
2499 	ret = intel_init_workaround_bb(engine);
2500 	if (ret) {
2501 		/*
2502 		 * We continue even if we fail to initialize WA batch
2503 		 * because we only expect rare glitches but nothing
2504 		 * critical to prevent us from using GPU
2505 		 */
2506 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2507 			  ret);
2508 	}
2509 
2510 	return logical_ring_init(engine);
2511 }
2512 
logical_xcs_ring_init(struct intel_engine_cs * engine)2513 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2514 {
2515 	logical_ring_setup(engine);
2516 
2517 	return logical_ring_init(engine);
2518 }
2519 
2520 static u32
make_rpcs(struct drm_i915_private * dev_priv)2521 make_rpcs(struct drm_i915_private *dev_priv)
2522 {
2523 	u32 rpcs = 0;
2524 
2525 	/*
2526 	 * No explicit RPCS request is needed to ensure full
2527 	 * slice/subslice/EU enablement prior to Gen9.
2528 	*/
2529 	if (INTEL_GEN(dev_priv) < 9)
2530 		return 0;
2531 
2532 	/*
2533 	 * Starting in Gen9, render power gating can leave
2534 	 * slice/subslice/EU in a partially enabled state. We
2535 	 * must make an explicit request through RPCS for full
2536 	 * enablement.
2537 	*/
2538 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2539 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2540 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2541 			GEN8_RPCS_S_CNT_SHIFT;
2542 		rpcs |= GEN8_RPCS_ENABLE;
2543 	}
2544 
2545 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2546 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2547 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2548 			GEN8_RPCS_SS_CNT_SHIFT;
2549 		rpcs |= GEN8_RPCS_ENABLE;
2550 	}
2551 
2552 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2553 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2554 			GEN8_RPCS_EU_MIN_SHIFT;
2555 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2556 			GEN8_RPCS_EU_MAX_SHIFT;
2557 		rpcs |= GEN8_RPCS_ENABLE;
2558 	}
2559 
2560 	return rpcs;
2561 }
2562 
intel_lr_indirect_ctx_offset(struct intel_engine_cs * engine)2563 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2564 {
2565 	u32 indirect_ctx_offset;
2566 
2567 	switch (INTEL_GEN(engine->i915)) {
2568 	default:
2569 		MISSING_CASE(INTEL_GEN(engine->i915));
2570 		/* fall through */
2571 	case 11:
2572 		indirect_ctx_offset =
2573 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2574 		break;
2575 	case 10:
2576 		indirect_ctx_offset =
2577 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2578 		break;
2579 	case 9:
2580 		indirect_ctx_offset =
2581 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2582 		break;
2583 	case 8:
2584 		indirect_ctx_offset =
2585 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2586 		break;
2587 	}
2588 
2589 	return indirect_ctx_offset;
2590 }
2591 
execlists_init_reg_state(u32 * regs,struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_ring * ring)2592 static void execlists_init_reg_state(u32 *regs,
2593 				     struct i915_gem_context *ctx,
2594 				     struct intel_engine_cs *engine,
2595 				     struct intel_ring *ring)
2596 {
2597 	struct drm_i915_private *dev_priv = engine->i915;
2598 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2599 	u32 base = engine->mmio_base;
2600 	bool rcs = engine->class == RENDER_CLASS;
2601 
2602 	/* A context is actually a big batch buffer with several
2603 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2604 	 * values we are setting here are only for the first context restore:
2605 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2606 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2607 	 * we are not initializing here).
2608 	 */
2609 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2610 				 MI_LRI_FORCE_POSTED;
2611 
2612 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2613 		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2614 				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2615 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2616 				   (HAS_RESOURCE_STREAMER(dev_priv) ?
2617 				   CTX_CTRL_RS_CTX_ENABLE : 0)));
2618 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2619 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2620 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2621 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2622 		RING_CTL_SIZE(ring->size) | RING_VALID);
2623 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2624 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2625 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2626 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2627 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2628 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2629 	if (rcs) {
2630 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2631 
2632 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2633 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2634 			RING_INDIRECT_CTX_OFFSET(base), 0);
2635 		if (wa_ctx->indirect_ctx.size) {
2636 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2637 
2638 			regs[CTX_RCS_INDIRECT_CTX + 1] =
2639 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2640 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2641 
2642 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2643 				intel_lr_indirect_ctx_offset(engine) << 6;
2644 		}
2645 
2646 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2647 		if (wa_ctx->per_ctx.size) {
2648 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2649 
2650 			regs[CTX_BB_PER_CTX_PTR + 1] =
2651 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2652 		}
2653 	}
2654 
2655 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2656 
2657 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2658 	/* PDP values well be assigned later if needed */
2659 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2660 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2661 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2662 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2663 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2664 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2665 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2666 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2667 
2668 	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2669 		/* 64b PPGTT (48bit canonical)
2670 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2671 		 * other PDP Descriptors are ignored.
2672 		 */
2673 		ASSIGN_CTX_PML4(ppgtt, regs);
2674 	}
2675 
2676 	if (rcs) {
2677 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2678 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2679 			make_rpcs(dev_priv));
2680 
2681 		i915_oa_init_reg_state(engine, ctx, regs);
2682 	}
2683 }
2684 
2685 static int
populate_lr_context(struct i915_gem_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * engine,struct intel_ring * ring)2686 populate_lr_context(struct i915_gem_context *ctx,
2687 		    struct drm_i915_gem_object *ctx_obj,
2688 		    struct intel_engine_cs *engine,
2689 		    struct intel_ring *ring)
2690 {
2691 	void *vaddr;
2692 	u32 *regs;
2693 	int ret;
2694 
2695 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2696 	if (ret) {
2697 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2698 		return ret;
2699 	}
2700 
2701 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2702 	if (IS_ERR(vaddr)) {
2703 		ret = PTR_ERR(vaddr);
2704 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2705 		return ret;
2706 	}
2707 	ctx_obj->mm.dirty = true;
2708 
2709 	if (engine->default_state) {
2710 		/*
2711 		 * We only want to copy over the template context state;
2712 		 * skipping over the headers reserved for GuC communication,
2713 		 * leaving those as zero.
2714 		 */
2715 		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2716 		void *defaults;
2717 
2718 		defaults = i915_gem_object_pin_map(engine->default_state,
2719 						   I915_MAP_WB);
2720 		if (IS_ERR(defaults)) {
2721 			ret = PTR_ERR(defaults);
2722 			goto err_unpin_ctx;
2723 		}
2724 
2725 		memcpy(vaddr + start, defaults + start, engine->context_size);
2726 		i915_gem_object_unpin_map(engine->default_state);
2727 	}
2728 
2729 	/* The second page of the context object contains some fields which must
2730 	 * be set up prior to the first execution. */
2731 	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2732 	execlists_init_reg_state(regs, ctx, engine, ring);
2733 	if (!engine->default_state)
2734 		regs[CTX_CONTEXT_CONTROL + 1] |=
2735 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2736 	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2737 		regs[CTX_CONTEXT_CONTROL + 1] |=
2738 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2739 					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2740 
2741 err_unpin_ctx:
2742 	i915_gem_object_unpin_map(ctx_obj);
2743 	return ret;
2744 }
2745 
execlists_context_deferred_alloc(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_context * ce)2746 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2747 					    struct intel_engine_cs *engine,
2748 					    struct intel_context *ce)
2749 {
2750 	struct drm_i915_gem_object *ctx_obj;
2751 	struct i915_vma *vma;
2752 	uint32_t context_size;
2753 	struct intel_ring *ring;
2754 	struct i915_timeline *timeline;
2755 	int ret;
2756 
2757 	if (ce->state)
2758 		return 0;
2759 
2760 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2761 
2762 	/*
2763 	 * Before the actual start of the context image, we insert a few pages
2764 	 * for our own use and for sharing with the GuC.
2765 	 */
2766 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2767 
2768 	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2769 	if (IS_ERR(ctx_obj))
2770 		return PTR_ERR(ctx_obj);
2771 
2772 	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2773 	if (IS_ERR(vma)) {
2774 		ret = PTR_ERR(vma);
2775 		goto error_deref_obj;
2776 	}
2777 
2778 	timeline = i915_timeline_create(ctx->i915, ctx->name);
2779 	if (IS_ERR(timeline)) {
2780 		ret = PTR_ERR(timeline);
2781 		goto error_deref_obj;
2782 	}
2783 
2784 	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2785 	i915_timeline_put(timeline);
2786 	if (IS_ERR(ring)) {
2787 		ret = PTR_ERR(ring);
2788 		goto error_deref_obj;
2789 	}
2790 
2791 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2792 	if (ret) {
2793 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2794 		goto error_ring_free;
2795 	}
2796 
2797 	ce->ring = ring;
2798 	ce->state = vma;
2799 
2800 	return 0;
2801 
2802 error_ring_free:
2803 	intel_ring_free(ring);
2804 error_deref_obj:
2805 	i915_gem_object_put(ctx_obj);
2806 	return ret;
2807 }
2808 
intel_lr_context_resume(struct drm_i915_private * dev_priv)2809 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2810 {
2811 	struct intel_engine_cs *engine;
2812 	struct i915_gem_context *ctx;
2813 	enum intel_engine_id id;
2814 
2815 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2816 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2817 	 * that stored in context. As we only write new commands from
2818 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2819 	 * starts reading from its RING_HEAD from the context, it may try to
2820 	 * execute that junk and die.
2821 	 *
2822 	 * So to avoid that we reset the context images upon resume. For
2823 	 * simplicity, we just zero everything out.
2824 	 */
2825 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2826 		for_each_engine(engine, dev_priv, id) {
2827 			struct intel_context *ce =
2828 				to_intel_context(ctx, engine);
2829 			u32 *reg;
2830 
2831 			if (!ce->state)
2832 				continue;
2833 
2834 			reg = i915_gem_object_pin_map(ce->state->obj,
2835 						      I915_MAP_WB);
2836 			if (WARN_ON(IS_ERR(reg)))
2837 				continue;
2838 
2839 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2840 			reg[CTX_RING_HEAD+1] = 0;
2841 			reg[CTX_RING_TAIL+1] = 0;
2842 
2843 			ce->state->obj->mm.dirty = true;
2844 			i915_gem_object_unpin_map(ce->state->obj);
2845 
2846 			intel_ring_reset(ce->ring, 0);
2847 		}
2848 	}
2849 }
2850 
2851 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2852 #include "selftests/intel_lrc.c"
2853 #endif
2854