• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
30 
31 #include "libavutil/buffer.h"
32 #include "libavutil/intreadwrite.h"
33 #include "libavutil/thread.h"
34 
35 #include "cabac.h"
36 #include "error_resilience.h"
37 #include "h264_parse.h"
38 #include "h264_ps.h"
39 #include "h264_sei.h"
40 #include "h2645_parse.h"
41 #include "h264chroma.h"
42 #include "h264dsp.h"
43 #include "h264pred.h"
44 #include "h264qpel.h"
45 #include "internal.h"
46 #include "mpegutils.h"
47 #include "parser.h"
48 #include "qpeldsp.h"
49 #include "rectangle.h"
50 #include "videodsp.h"
51 
52 #define H264_MAX_PICTURE_COUNT 36
53 
54 #define MAX_MMCO_COUNT         66
55 
56 #define MAX_DELAYED_PIC_COUNT  16
57 
58 /* Compiling in interlaced support reduces the speed
59  * of progressive decoding by about 2%. */
60 #define ALLOW_INTERLACE
61 
62 #define FMO 0
63 
64 /**
65  * The maximum number of slices supported by the decoder.
66  * must be a power of 2
67  */
68 #define MAX_SLICES 32
69 
70 #ifdef ALLOW_INTERLACE
71 #define MB_MBAFF(h)    (h)->mb_mbaff
72 #define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
73 #define FRAME_MBAFF(h) (h)->mb_aff_frame
74 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
75 #define LEFT_MBS 2
76 #define LTOP     0
77 #define LBOT     1
78 #define LEFT(i)  (i)
79 #else
80 #define MB_MBAFF(h)      0
81 #define MB_FIELD(sl)     0
82 #define FRAME_MBAFF(h)   0
83 #define FIELD_PICTURE(h) 0
84 #undef  IS_INTERLACED
85 #define IS_INTERLACED(mb_type) 0
86 #define LEFT_MBS 1
87 #define LTOP     0
88 #define LBOT     0
89 #define LEFT(i)  0
90 #endif
91 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
92 
93 #ifndef CABAC
94 #define CABAC(h) (h)->ps.pps->cabac
95 #endif
96 
97 #define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
98 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
99 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
100 
101 #define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
102 #define MB_TYPE_8x8DCT     0x01000000
103 #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
104 #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
105 
106 /**
107  * Memory management control operation opcode.
108  */
109 typedef enum MMCOOpcode {
110     MMCO_END = 0,
111     MMCO_SHORT2UNUSED,
112     MMCO_LONG2UNUSED,
113     MMCO_SHORT2LONG,
114     MMCO_SET_MAX_LONG,
115     MMCO_RESET,
116     MMCO_LONG,
117 } MMCOOpcode;
118 
119 /**
120  * Memory management control operation.
121  */
122 typedef struct MMCO {
123     MMCOOpcode opcode;
124     int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
125     int long_arg;       ///< index, pic_num, or num long refs depending on opcode
126 } MMCO;
127 
128 typedef struct H264Picture {
129     AVFrame *f;
130     ThreadFrame tf;
131 
132     AVBufferRef *qscale_table_buf;
133     int8_t *qscale_table;
134 
135     AVBufferRef *motion_val_buf[2];
136     int16_t (*motion_val[2])[2];
137 
138     AVBufferRef *mb_type_buf;
139     uint32_t *mb_type;
140 
141     AVBufferRef *hwaccel_priv_buf;
142     void *hwaccel_picture_private; ///< hardware accelerator private data
143 
144     AVBufferRef *ref_index_buf[2];
145     int8_t *ref_index[2];
146 
147     int field_poc[2];       ///< top/bottom POC
148     int poc;                ///< frame POC
149     int frame_num;          ///< frame_num (raw frame_num from slice header)
150     int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
151                                  not mix pictures before and after MMCO_RESET. */
152     int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
153                                  pic_num & max_pic_num; long -> long_pic_num) */
154     int long_ref;           ///< 1->long term reference 0->short term reference
155     int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
156     int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
157     int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
158     int field_picture;      ///< whether or not picture was encoded in separate fields
159 
160     int reference;
161     int recovered;          ///< picture at IDR or recovery point + recovery count
162     int invalid_gap;
163     int sei_recovery_frame_cnt;
164 
165     AVBufferRef *pps_buf;
166     const PPS   *pps;
167 
168     int mb_width, mb_height;
169     int mb_stride;
170 } H264Picture;
171 
172 typedef struct H264Ref {
173     uint8_t *data[3];
174     int linesize[3];
175 
176     int reference;
177     int poc;
178     int pic_id;
179 
180     H264Picture *parent;
181 } H264Ref;
182 
183 typedef struct H264SliceContext {
184     struct H264Context *h264;
185     GetBitContext gb;
186     ERContext er;
187 
188     int slice_num;
189     int slice_type;
190     int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
191     int slice_type_fixed;
192 
193     int qscale;
194     int chroma_qp[2];   // QPc
195     int qp_thresh;      ///< QP threshold to skip loopfilter
196     int last_qscale_diff;
197 
198     // deblock
199     int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
200     int slice_alpha_c0_offset;
201     int slice_beta_offset;
202 
203     H264PredWeightTable pwt;
204 
205     int prev_mb_skipped;
206     int next_mb_skipped;
207 
208     int chroma_pred_mode;
209     int intra16x16_pred_mode;
210 
211     int8_t intra4x4_pred_mode_cache[5 * 8];
212     int8_t(*intra4x4_pred_mode);
213 
214     int topleft_mb_xy;
215     int top_mb_xy;
216     int topright_mb_xy;
217     int left_mb_xy[LEFT_MBS];
218 
219     int topleft_type;
220     int top_type;
221     int topright_type;
222     int left_type[LEFT_MBS];
223 
224     const uint8_t *left_block;
225     int topleft_partition;
226 
227     unsigned int topleft_samples_available;
228     unsigned int top_samples_available;
229     unsigned int topright_samples_available;
230     unsigned int left_samples_available;
231 
232     ptrdiff_t linesize, uvlinesize;
233     ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
234     ptrdiff_t mb_uvlinesize;
235 
236     int mb_x, mb_y;
237     int mb_xy;
238     int resync_mb_x;
239     int resync_mb_y;
240     unsigned int first_mb_addr;
241     // index of the first MB of the next slice
242     int next_slice_idx;
243     int mb_skip_run;
244     int is_complex;
245 
246     int picture_structure;
247     int mb_field_decoding_flag;
248     int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
249 
250     int redundant_pic_count;
251 
252     /**
253      * number of neighbors (top and/or left) that used 8x8 dct
254      */
255     int neighbor_transform_size;
256 
257     int direct_spatial_mv_pred;
258     int col_parity;
259     int col_fieldoff;
260 
261     int cbp;
262     int top_cbp;
263     int left_cbp;
264 
265     int dist_scale_factor[32];
266     int dist_scale_factor_field[2][32];
267     int map_col_to_list0[2][16 + 32];
268     int map_col_to_list0_field[2][2][16 + 32];
269 
270     /**
271      * num_ref_idx_l0/1_active_minus1 + 1
272      */
273     unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
274     unsigned int list_count;
275     H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
276                                          *   Reordered version of default_ref_list
277                                          *   according to picture reordering in slice header */
278     struct {
279         uint8_t op;
280         uint32_t val;
281     } ref_modifications[2][32];
282     int nb_ref_modifications[2];
283 
284     unsigned int pps_id;
285 
286     const uint8_t *intra_pcm_ptr;
287     int16_t *dc_val_base;
288 
289     uint8_t *bipred_scratchpad;
290     uint8_t *edge_emu_buffer;
291     uint8_t (*top_borders[2])[(16 * 3) * 2];
292     int bipred_scratchpad_allocated;
293     int edge_emu_buffer_allocated;
294     int top_borders_allocated[2];
295 
296     /**
297      * non zero coeff count cache.
298      * is 64 if not available.
299      */
300     DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
301 
302     /**
303      * Motion vector cache.
304      */
305     DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
306     DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
307     DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
308     uint8_t direct_cache[5 * 8];
309 
310     DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
311 
312     ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
313     DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
314     DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
315     ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
316     ///< check that i is not too large or ensure that there is some unused stuff after mb
317     int16_t mb_padding[256 * 2];
318 
319     uint8_t (*mvd_table[2])[2];
320 
321     /**
322      * Cabac
323      */
324     CABACContext cabac;
325     uint8_t cabac_state[1024];
326     int cabac_init_idc;
327 
328     MMCO mmco[MAX_MMCO_COUNT];
329     int  nb_mmco;
330     int explicit_ref_marking;
331 
332     int frame_num;
333     int poc_lsb;
334     int delta_poc_bottom;
335     int delta_poc[2];
336     int curr_pic_num;
337     int max_pic_num;
338 } H264SliceContext;
339 
340 /**
341  * H264Context
342  */
343 typedef struct H264Context {
344     const AVClass *class;
345     AVCodecContext *avctx;
346     VideoDSPContext vdsp;
347     H264DSPContext h264dsp;
348     H264ChromaContext h264chroma;
349     H264QpelContext h264qpel;
350 
351     H264Picture DPB[H264_MAX_PICTURE_COUNT];
352     H264Picture *cur_pic_ptr;
353     H264Picture cur_pic;
354     H264Picture last_pic_for_ec;
355 
356     H264SliceContext *slice_ctx;
357     int            nb_slice_ctx;
358     int            nb_slice_ctx_queued;
359 
360     H2645Packet pkt;
361 
362     int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
363 
364     /* coded dimensions -- 16 * mb w/h */
365     int width, height;
366     int chroma_x_shift, chroma_y_shift;
367 
368     int droppable;
369     int coded_picture_number;
370 
371     int context_initialized;
372     int flags;
373     int workaround_bugs;
374     int x264_build;
375     /* Set when slice threading is used and at least one slice uses deblocking
376      * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
377      * during normal MB decoding and execute it serially at the end.
378      */
379     int postpone_filter;
380 
381     /*
382      * Set to 1 when the current picture is IDR, 0 otherwise.
383      */
384     int picture_idr;
385 
386     int crop_left;
387     int crop_right;
388     int crop_top;
389     int crop_bottom;
390 
391     int8_t(*intra4x4_pred_mode);
392     H264PredContext hpc;
393 
394     uint8_t (*non_zero_count)[48];
395 
396 #define LIST_NOT_USED -1 // FIXME rename?
397 #define PART_NOT_AVAILABLE -2
398 
399     /**
400      * block_offset[ 0..23] for frame macroblocks
401      * block_offset[24..47] for field macroblocks
402      */
403     int block_offset[2 * (16 * 3)];
404 
405     uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
406     uint32_t *mb2br_xy;
407     int b_stride;       // FIXME use s->b4_stride
408 
409     uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
410 
411     // interlacing specific flags
412     int mb_aff_frame;
413     int picture_structure;
414     int first_field;
415 
416     uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
417 
418     /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
419     uint16_t *cbp_table;
420 
421     /* chroma_pred_mode for i4x4 or i16x16, else 0 */
422     uint8_t *chroma_pred_mode_table;
423     uint8_t (*mvd_table[2])[2];
424     uint8_t *direct_table;
425 
426     uint8_t scan_padding[16];
427     uint8_t zigzag_scan[16];
428     uint8_t zigzag_scan8x8[64];
429     uint8_t zigzag_scan8x8_cavlc[64];
430     uint8_t field_scan[16];
431     uint8_t field_scan8x8[64];
432     uint8_t field_scan8x8_cavlc[64];
433     uint8_t zigzag_scan_q0[16];
434     uint8_t zigzag_scan8x8_q0[64];
435     uint8_t zigzag_scan8x8_cavlc_q0[64];
436     uint8_t field_scan_q0[16];
437     uint8_t field_scan8x8_q0[64];
438     uint8_t field_scan8x8_cavlc_q0[64];
439 
440     int mb_y;
441     int mb_height, mb_width;
442     int mb_stride;
443     int mb_num;
444 
445     // =============================================================
446     // Things below are not used in the MB or more inner code
447 
448     int nal_ref_idc;
449     int nal_unit_type;
450 
451     int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
452 
453     /**
454      * Used to parse AVC variant of H.264
455      */
456     int is_avc;           ///< this flag is != 0 if codec is avc1
457     int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
458 
459     int bit_depth_luma;         ///< luma bit depth from sps to detect changes
460     int chroma_format_idc;      ///< chroma format from sps to detect changes
461 
462     H264ParamSets ps;
463 
464     uint16_t *slice_table_base;
465 
466     H264POCContext poc;
467 
468     H264Ref default_ref[2];
469     H264Picture *short_ref[32];
470     H264Picture *long_ref[32];
471     H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
472     int last_pocs[MAX_DELAYED_PIC_COUNT];
473     H264Picture *next_output_pic;
474     int next_outputed_poc;
475 
476     /**
477      * memory management control operations buffer.
478      */
479     MMCO mmco[MAX_MMCO_COUNT];
480     int  nb_mmco;
481     int mmco_reset;
482     int explicit_ref_marking;
483 
484     int long_ref_count;     ///< number of actual long term references
485     int short_ref_count;    ///< number of actual short term references
486 
487     /**
488      * @name Members for slice based multithreading
489      * @{
490      */
491     /**
492      * current slice number, used to initialize slice_num of each thread/context
493      */
494     int current_slice;
495 
496     /** @} */
497 
498     /**
499      * Complement sei_pic_struct
500      * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
501      * However, soft telecined frames may have these values.
502      * This is used in an attempt to flag soft telecine progressive.
503      */
504     int prev_interlaced_frame;
505 
506     /**
507      * Are the SEI recovery points looking valid.
508      */
509     int valid_recovery_point;
510 
511     /**
512      * recovery_frame is the frame_num at which the next frame should
513      * be fully constructed.
514      *
515      * Set to -1 when not expecting a recovery point.
516      */
517     int recovery_frame;
518 
519 /**
520  * We have seen an IDR, so all the following frames in coded order are correctly
521  * decodable.
522  */
523 #define FRAME_RECOVERED_IDR  (1 << 0)
524 /**
525  * Sufficient number of frames have been decoded since a SEI recovery point,
526  * so all the following frames in presentation order are correct.
527  */
528 #define FRAME_RECOVERED_SEI  (1 << 1)
529 
530     int frame_recovered;    ///< Initial frame has been completely recovered
531 
532     int has_recovery_point;
533 
534     int missing_fields;
535 
536     /* for frame threading, this is set to 1
537      * after finish_setup() has been called, so we cannot modify
538      * some context properties (which are supposed to stay constant between
539      * slices) anymore */
540     int setup_finished;
541 
542     int cur_chroma_format_idc;
543     int cur_bit_depth_luma;
544     int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
545 
546     /* original AVCodecContext dimensions, used to handle container
547      * cropping */
548     int width_from_caller;
549     int height_from_caller;
550 
551     int enable_er;
552 
553     H264SEIContext sei;
554 
555     AVBufferPool *qscale_table_pool;
556     AVBufferPool *mb_type_pool;
557     AVBufferPool *motion_val_pool;
558     AVBufferPool *ref_index_pool;
559     int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
560 } H264Context;
561 
562 extern const uint16_t ff_h264_mb_sizes[4];
563 
564 /**
565  * Reconstruct bitstream slice_type.
566  */
567 int ff_h264_get_slice_type(const H264SliceContext *sl);
568 
569 /**
570  * Allocate tables.
571  * needs width/height
572  */
573 int ff_h264_alloc_tables(H264Context *h);
574 
575 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
576 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
577 void ff_h264_remove_all_refs(H264Context *h);
578 
579 /**
580  * Execute the reference picture marking (memory management control operations).
581  */
582 int ff_h264_execute_ref_pic_marking(H264Context *h);
583 
584 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
585                                    const H2645NAL *nal, void *logctx);
586 
587 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
588 void ff_h264_decode_init_vlc(void);
589 
590 /**
591  * Decode a macroblock
592  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
593  */
594 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
595 
596 /**
597  * Decode a CABAC coded macroblock
598  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
599  */
600 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
601 
602 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
603 
604 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
605 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
606 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
607                                 int *mb_type);
608 
609 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
610                             uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
611                             unsigned int linesize, unsigned int uvlinesize);
612 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
613                        uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
614                        unsigned int linesize, unsigned int uvlinesize);
615 
616 /*
617  * o-o o-o
618  *  / / /
619  * o-o o-o
620  *  ,---'
621  * o-o o-o
622  *  / / /
623  * o-o o-o
624  */
625 
626 /* Scan8 organization:
627  *    0 1 2 3 4 5 6 7
628  * 0  DY    y y y y y
629  * 1        y Y Y Y Y
630  * 2        y Y Y Y Y
631  * 3        y Y Y Y Y
632  * 4        y Y Y Y Y
633  * 5  DU    u u u u u
634  * 6        u U U U U
635  * 7        u U U U U
636  * 8        u U U U U
637  * 9        u U U U U
638  * 10 DV    v v v v v
639  * 11       v V V V V
640  * 12       v V V V V
641  * 13       v V V V V
642  * 14       v V V V V
643  * DY/DU/DV are for luma/chroma DC.
644  */
645 
646 #define LUMA_DC_BLOCK_INDEX   48
647 #define CHROMA_DC_BLOCK_INDEX 49
648 
649 // This table must be here because scan8[constant] must be known at compiletime
650 static const uint8_t scan8[16 * 3 + 3] = {
651     4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
652     6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
653     4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
654     6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
655     4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
656     6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
657     4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
658     6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
659     4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
660     6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
661     4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
662     6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
663     0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
664 };
665 
pack16to32(unsigned a,unsigned b)666 static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
667 {
668 #if HAVE_BIGENDIAN
669     return (b & 0xFFFF) + (a << 16);
670 #else
671     return (a & 0xFFFF) + (b << 16);
672 #endif
673 }
674 
pack8to16(unsigned a,unsigned b)675 static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
676 {
677 #if HAVE_BIGENDIAN
678     return (b & 0xFF) + (a << 8);
679 #else
680     return (a & 0xFF) + (b << 8);
681 #endif
682 }
683 
684 /**
685  * Get the chroma qp.
686  */
get_chroma_qp(const PPS * pps,int t,int qscale)687 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
688 {
689     return pps->chroma_qp_table[t][qscale];
690 }
691 
692 /**
693  * Get the predicted intra4x4 prediction mode.
694  */
pred_intra_mode(const H264Context * h,H264SliceContext * sl,int n)695 static av_always_inline int pred_intra_mode(const H264Context *h,
696                                             H264SliceContext *sl, int n)
697 {
698     const int index8 = scan8[n];
699     const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
700     const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
701     const int min    = FFMIN(left, top);
702 
703     ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
704 
705     if (min < 0)
706         return DC_PRED;
707     else
708         return min;
709 }
710 
write_back_intra_pred_mode(const H264Context * h,H264SliceContext * sl)711 static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
712                                                         H264SliceContext *sl)
713 {
714     int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
715     int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
716 
717     AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
718     i4x4[4] = i4x4_cache[7 + 8 * 3];
719     i4x4[5] = i4x4_cache[7 + 8 * 2];
720     i4x4[6] = i4x4_cache[7 + 8 * 1];
721 }
722 
write_back_non_zero_count(const H264Context * h,H264SliceContext * sl)723 static av_always_inline void write_back_non_zero_count(const H264Context *h,
724                                                        H264SliceContext *sl)
725 {
726     const int mb_xy    = sl->mb_xy;
727     uint8_t *nnz       = h->non_zero_count[mb_xy];
728     uint8_t *nnz_cache = sl->non_zero_count_cache;
729 
730     AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
731     AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
732     AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
733     AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
734     AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
735     AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
736     AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
737     AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
738 
739     if (!h->chroma_y_shift) {
740         AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
741         AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
742         AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
743         AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
744     }
745 }
746 
write_back_motion_list(const H264Context * h,H264SliceContext * sl,int b_stride,int b_xy,int b8_xy,int mb_type,int list)747 static av_always_inline void write_back_motion_list(const H264Context *h,
748                                                     H264SliceContext *sl,
749                                                     int b_stride,
750                                                     int b_xy, int b8_xy,
751                                                     int mb_type, int list)
752 {
753     int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
754     int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
755     AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
756     AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
757     AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
758     AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
759     if (CABAC(h)) {
760         uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
761                                                         : h->mb2br_xy[sl->mb_xy]];
762         uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
763         if (IS_SKIP(mb_type)) {
764             AV_ZERO128(mvd_dst);
765         } else {
766             AV_COPY64(mvd_dst, mvd_src + 8 * 3);
767             AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
768             AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
769             AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
770         }
771     }
772 
773     {
774         int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
775         int8_t *ref_cache = sl->ref_cache[list];
776         ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
777         ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
778         ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
779         ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
780     }
781 }
782 
write_back_motion(const H264Context * h,H264SliceContext * sl,int mb_type)783 static av_always_inline void write_back_motion(const H264Context *h,
784                                                H264SliceContext *sl,
785                                                int mb_type)
786 {
787     const int b_stride      = h->b_stride;
788     const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
789     const int b8_xy = 4 * sl->mb_xy;
790 
791     if (USES_LIST(mb_type, 0)) {
792         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
793     } else {
794         fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
795                        2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
796     }
797     if (USES_LIST(mb_type, 1))
798         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
799 
800     if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
801         if (IS_8X8(mb_type)) {
802             uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
803             direct_table[1] = sl->sub_mb_type[1] >> 1;
804             direct_table[2] = sl->sub_mb_type[2] >> 1;
805             direct_table[3] = sl->sub_mb_type[3] >> 1;
806         }
807     }
808 }
809 
get_dct8x8_allowed(const H264Context * h,H264SliceContext * sl)810 static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
811 {
812     if (h->ps.sps->direct_8x8_inference_flag)
813         return !(AV_RN64A(sl->sub_mb_type) &
814                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
815                   0x0001000100010001ULL));
816     else
817         return !(AV_RN64A(sl->sub_mb_type) &
818                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
819                   0x0001000100010001ULL));
820 }
821 
find_start_code(const uint8_t * buf,int buf_size,int buf_index,int next_avc)822 static inline int find_start_code(const uint8_t *buf, int buf_size,
823                            int buf_index, int next_avc)
824 {
825     uint32_t state = -1;
826 
827     buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
828 
829     return FFMIN(buf_index, buf_size);
830 }
831 
832 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
833 
834 int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
835 void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
836 
837 int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
838 
839 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
840 
841 /**
842  * Submit a slice for decoding.
843  *
844  * Parse the slice header, starting a new field/frame if necessary. If any
845  * slices are queued for the previous field, they are decoded.
846  */
847 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
848 int ff_h264_execute_decode_slices(H264Context *h);
849 int ff_h264_update_thread_context(AVCodecContext *dst,
850                                   const AVCodecContext *src);
851 
852 void ff_h264_flush_change(H264Context *h);
853 
854 void ff_h264_free_tables(H264Context *h);
855 
856 void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
857 
858 #endif /* AVCODEC_H264DEC_H */
859