1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 for (i = 0; i < type->cnt; i++)
186 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187 type->regions[i].size))
188 break;
189 return i < type->cnt;
190 }
191
192 /**
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
197 * @size: size of free area to find
198 * @align: alignment of free area to find
199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
200 * @flags: pick from blocks based on memory attributes
201 *
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203 *
204 * Return:
205 * Found address on success, 0 on failure.
206 */
207 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
209 phys_addr_t size, phys_addr_t align, int nid,
210 enum memblock_flags flags)
211 {
212 phys_addr_t this_start, this_end, cand;
213 u64 i;
214
215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
216 this_start = clamp(this_start, start, end);
217 this_end = clamp(this_end, start, end);
218
219 cand = round_up(this_start, align);
220 if (cand < this_end && this_end - cand >= size)
221 return cand;
222 }
223
224 return 0;
225 }
226
227 /**
228 * __memblock_find_range_top_down - find free area utility, in top-down
229 * @start: start of candidate range
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
232 * @size: size of free area to find
233 * @align: alignment of free area to find
234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
235 * @flags: pick from blocks based on memory attributes
236 *
237 * Utility called from memblock_find_in_range_node(), find free area top-down.
238 *
239 * Return:
240 * Found address on success, 0 on failure.
241 */
242 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
244 phys_addr_t size, phys_addr_t align, int nid,
245 enum memblock_flags flags)
246 {
247 phys_addr_t this_start, this_end, cand;
248 u64 i;
249
250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251 NULL) {
252 this_start = clamp(this_start, start, end);
253 this_end = clamp(this_end, start, end);
254
255 if (this_end < size)
256 continue;
257
258 cand = round_down(this_end - size, align);
259 if (cand >= this_start)
260 return cand;
261 }
262
263 return 0;
264 }
265
266 /**
267 * memblock_find_in_range_node - find free area in given range and node
268 * @size: size of free area to find
269 * @align: alignment of free area to find
270 * @start: start of candidate range
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
274 * @flags: pick from blocks based on memory attributes
275 *
276 * Find @size free area aligned to @align in the specified range and node.
277 *
278 * Return:
279 * Found address on success, 0 on failure.
280 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)281 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
282 phys_addr_t align, phys_addr_t start,
283 phys_addr_t end, int nid,
284 enum memblock_flags flags)
285 {
286 /* pump up @end */
287 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
288 end == MEMBLOCK_ALLOC_KASAN)
289 end = memblock.current_limit;
290
291 /* avoid allocating the first page */
292 start = max_t(phys_addr_t, start, PAGE_SIZE);
293 end = max(start, end);
294
295 if (memblock_bottom_up())
296 return __memblock_find_range_bottom_up(start, end, size, align,
297 nid, flags);
298 else
299 return __memblock_find_range_top_down(start, end, size, align,
300 nid, flags);
301 }
302
303 /**
304 * memblock_find_in_range - find free area in given range
305 * @start: start of candidate range
306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
307 * %MEMBLOCK_ALLOC_ACCESSIBLE
308 * @size: size of free area to find
309 * @align: alignment of free area to find
310 *
311 * Find @size free area aligned to @align in the specified range.
312 *
313 * Return:
314 * Found address on success, 0 on failure.
315 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)316 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
317 phys_addr_t end, phys_addr_t size,
318 phys_addr_t align)
319 {
320 phys_addr_t ret;
321 enum memblock_flags flags = choose_memblock_flags();
322
323 again:
324 ret = memblock_find_in_range_node(size, align, start, end,
325 NUMA_NO_NODE, flags);
326
327 if (!ret && (flags & MEMBLOCK_MIRROR)) {
328 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
329 &size);
330 flags &= ~MEMBLOCK_MIRROR;
331 goto again;
332 }
333
334 return ret;
335 }
336
memblock_remove_region(struct memblock_type * type,unsigned long r)337 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
338 {
339 type->total_size -= type->regions[r].size;
340 memmove(&type->regions[r], &type->regions[r + 1],
341 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
342 type->cnt--;
343
344 /* Special case for empty arrays */
345 if (type->cnt == 0) {
346 WARN_ON(type->total_size != 0);
347 type->cnt = 1;
348 type->regions[0].base = 0;
349 type->regions[0].size = 0;
350 type->regions[0].flags = 0;
351 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
352 }
353 }
354
355 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
356 /**
357 * memblock_discard - discard memory and reserved arrays if they were allocated
358 */
memblock_discard(void)359 void __init memblock_discard(void)
360 {
361 phys_addr_t addr, size;
362
363 if (memblock.reserved.regions != memblock_reserved_init_regions) {
364 addr = __pa(memblock.reserved.regions);
365 size = PAGE_ALIGN(sizeof(struct memblock_region) *
366 memblock.reserved.max);
367 __memblock_free_late(addr, size);
368 }
369
370 if (memblock.memory.regions != memblock_memory_init_regions) {
371 addr = __pa(memblock.memory.regions);
372 size = PAGE_ALIGN(sizeof(struct memblock_region) *
373 memblock.memory.max);
374 __memblock_free_late(addr, size);
375 }
376
377 memblock_memory = NULL;
378 }
379 #endif
380
381 /**
382 * memblock_double_array - double the size of the memblock regions array
383 * @type: memblock type of the regions array being doubled
384 * @new_area_start: starting address of memory range to avoid overlap with
385 * @new_area_size: size of memory range to avoid overlap with
386 *
387 * Double the size of the @type regions array. If memblock is being used to
388 * allocate memory for a new reserved regions array and there is a previously
389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
390 * waiting to be reserved, ensure the memory used by the new array does
391 * not overlap.
392 *
393 * Return:
394 * 0 on success, -1 on failure.
395 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)396 static int __init_memblock memblock_double_array(struct memblock_type *type,
397 phys_addr_t new_area_start,
398 phys_addr_t new_area_size)
399 {
400 struct memblock_region *new_array, *old_array;
401 phys_addr_t old_alloc_size, new_alloc_size;
402 phys_addr_t old_size, new_size, addr, new_end;
403 int use_slab = slab_is_available();
404 int *in_slab;
405
406 /* We don't allow resizing until we know about the reserved regions
407 * of memory that aren't suitable for allocation
408 */
409 if (!memblock_can_resize)
410 return -1;
411
412 /* Calculate new doubled size */
413 old_size = type->max * sizeof(struct memblock_region);
414 new_size = old_size << 1;
415 /*
416 * We need to allocated new one align to PAGE_SIZE,
417 * so we can free them completely later.
418 */
419 old_alloc_size = PAGE_ALIGN(old_size);
420 new_alloc_size = PAGE_ALIGN(new_size);
421
422 /* Retrieve the slab flag */
423 if (type == &memblock.memory)
424 in_slab = &memblock_memory_in_slab;
425 else
426 in_slab = &memblock_reserved_in_slab;
427
428 /* Try to find some space for it */
429 if (use_slab) {
430 new_array = kmalloc(new_size, GFP_KERNEL);
431 addr = new_array ? __pa(new_array) : 0;
432 } else {
433 /* only exclude range when trying to double reserved.regions */
434 if (type != &memblock.reserved)
435 new_area_start = new_area_size = 0;
436
437 addr = memblock_find_in_range(new_area_start + new_area_size,
438 memblock.current_limit,
439 new_alloc_size, PAGE_SIZE);
440 if (!addr && new_area_size)
441 addr = memblock_find_in_range(0,
442 min(new_area_start, memblock.current_limit),
443 new_alloc_size, PAGE_SIZE);
444
445 new_array = addr ? __va(addr) : NULL;
446 }
447 if (!addr) {
448 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
449 type->name, type->max, type->max * 2);
450 return -1;
451 }
452
453 new_end = addr + new_size - 1;
454 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
455 type->name, type->max * 2, &addr, &new_end);
456
457 /*
458 * Found space, we now need to move the array over before we add the
459 * reserved region since it may be our reserved array itself that is
460 * full.
461 */
462 memcpy(new_array, type->regions, old_size);
463 memset(new_array + type->max, 0, old_size);
464 old_array = type->regions;
465 type->regions = new_array;
466 type->max <<= 1;
467
468 /* Free old array. We needn't free it if the array is the static one */
469 if (*in_slab)
470 kfree(old_array);
471 else if (old_array != memblock_memory_init_regions &&
472 old_array != memblock_reserved_init_regions)
473 memblock_free(__pa(old_array), old_alloc_size);
474
475 /*
476 * Reserve the new array if that comes from the memblock. Otherwise, we
477 * needn't do it
478 */
479 if (!use_slab)
480 BUG_ON(memblock_reserve(addr, new_alloc_size));
481
482 /* Update slab flag */
483 *in_slab = use_slab;
484
485 return 0;
486 }
487
488 /**
489 * memblock_merge_regions - merge neighboring compatible regions
490 * @type: memblock type to scan
491 *
492 * Scan @type and merge neighboring compatible regions.
493 */
memblock_merge_regions(struct memblock_type * type)494 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
495 {
496 int i = 0;
497
498 /* cnt never goes below 1 */
499 while (i < type->cnt - 1) {
500 struct memblock_region *this = &type->regions[i];
501 struct memblock_region *next = &type->regions[i + 1];
502
503 if (this->base + this->size != next->base ||
504 memblock_get_region_node(this) !=
505 memblock_get_region_node(next) ||
506 this->flags != next->flags) {
507 BUG_ON(this->base + this->size > next->base);
508 i++;
509 continue;
510 }
511
512 this->size += next->size;
513 /* move forward from next + 1, index of which is i + 2 */
514 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
515 type->cnt--;
516 }
517 }
518
519 /**
520 * memblock_insert_region - insert new memblock region
521 * @type: memblock type to insert into
522 * @idx: index for the insertion point
523 * @base: base address of the new region
524 * @size: size of the new region
525 * @nid: node id of the new region
526 * @flags: flags of the new region
527 *
528 * Insert new memblock region [@base, @base + @size) into @type at @idx.
529 * @type must already have extra room to accommodate the new region.
530 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)531 static void __init_memblock memblock_insert_region(struct memblock_type *type,
532 int idx, phys_addr_t base,
533 phys_addr_t size,
534 int nid,
535 enum memblock_flags flags)
536 {
537 struct memblock_region *rgn = &type->regions[idx];
538
539 BUG_ON(type->cnt >= type->max);
540 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
541 rgn->base = base;
542 rgn->size = size;
543 rgn->flags = flags;
544 memblock_set_region_node(rgn, nid);
545 type->cnt++;
546 type->total_size += size;
547 }
548
549 /**
550 * memblock_add_range - add new memblock region
551 * @type: memblock type to add new region into
552 * @base: base address of the new region
553 * @size: size of the new region
554 * @nid: nid of the new region
555 * @flags: flags of the new region
556 *
557 * Add new memblock region [@base, @base + @size) into @type. The new region
558 * is allowed to overlap with existing ones - overlaps don't affect already
559 * existing regions. @type is guaranteed to be minimal (all neighbouring
560 * compatible regions are merged) after the addition.
561 *
562 * Return:
563 * 0 on success, -errno on failure.
564 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)565 static int __init_memblock memblock_add_range(struct memblock_type *type,
566 phys_addr_t base, phys_addr_t size,
567 int nid, enum memblock_flags flags)
568 {
569 bool insert = false;
570 phys_addr_t obase = base;
571 phys_addr_t end = base + memblock_cap_size(base, &size);
572 int idx, nr_new;
573 struct memblock_region *rgn;
574
575 if (!size)
576 return 0;
577
578 /* special case for empty array */
579 if (type->regions[0].size == 0) {
580 WARN_ON(type->cnt != 1 || type->total_size);
581 type->regions[0].base = base;
582 type->regions[0].size = size;
583 type->regions[0].flags = flags;
584 memblock_set_region_node(&type->regions[0], nid);
585 type->total_size = size;
586 return 0;
587 }
588 repeat:
589 /*
590 * The following is executed twice. Once with %false @insert and
591 * then with %true. The first counts the number of regions needed
592 * to accommodate the new area. The second actually inserts them.
593 */
594 base = obase;
595 nr_new = 0;
596
597 for_each_memblock_type(idx, type, rgn) {
598 phys_addr_t rbase = rgn->base;
599 phys_addr_t rend = rbase + rgn->size;
600
601 if (rbase >= end)
602 break;
603 if (rend <= base)
604 continue;
605 /*
606 * @rgn overlaps. If it separates the lower part of new
607 * area, insert that portion.
608 */
609 if (rbase > base) {
610 #ifdef CONFIG_NEED_MULTIPLE_NODES
611 WARN_ON(nid != memblock_get_region_node(rgn));
612 #endif
613 WARN_ON(flags != rgn->flags);
614 nr_new++;
615 if (insert)
616 memblock_insert_region(type, idx++, base,
617 rbase - base, nid,
618 flags);
619 }
620 /* area below @rend is dealt with, forget about it */
621 base = min(rend, end);
622 }
623
624 /* insert the remaining portion */
625 if (base < end) {
626 nr_new++;
627 if (insert)
628 memblock_insert_region(type, idx, base, end - base,
629 nid, flags);
630 }
631
632 if (!nr_new)
633 return 0;
634
635 /*
636 * If this was the first round, resize array and repeat for actual
637 * insertions; otherwise, merge and return.
638 */
639 if (!insert) {
640 while (type->cnt + nr_new > type->max)
641 if (memblock_double_array(type, obase, size) < 0)
642 return -ENOMEM;
643 insert = true;
644 goto repeat;
645 } else {
646 memblock_merge_regions(type);
647 return 0;
648 }
649 }
650
651 /**
652 * memblock_add_node - add new memblock region within a NUMA node
653 * @base: base address of the new region
654 * @size: size of the new region
655 * @nid: nid of the new region
656 *
657 * Add new memblock region [@base, @base + @size) to the "memory"
658 * type. See memblock_add_range() description for mode details
659 *
660 * Return:
661 * 0 on success, -errno on failure.
662 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)663 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
664 int nid)
665 {
666 return memblock_add_range(&memblock.memory, base, size, nid, 0);
667 }
668
669 /**
670 * memblock_add - add new memblock region
671 * @base: base address of the new region
672 * @size: size of the new region
673 *
674 * Add new memblock region [@base, @base + @size) to the "memory"
675 * type. See memblock_add_range() description for mode details
676 *
677 * Return:
678 * 0 on success, -errno on failure.
679 */
memblock_add(phys_addr_t base,phys_addr_t size)680 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
681 {
682 phys_addr_t end = base + size - 1;
683
684 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
685 &base, &end, (void *)_RET_IP_);
686
687 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
688 }
689
690 /**
691 * memblock_isolate_range - isolate given range into disjoint memblocks
692 * @type: memblock type to isolate range for
693 * @base: base of range to isolate
694 * @size: size of range to isolate
695 * @start_rgn: out parameter for the start of isolated region
696 * @end_rgn: out parameter for the end of isolated region
697 *
698 * Walk @type and ensure that regions don't cross the boundaries defined by
699 * [@base, @base + @size). Crossing regions are split at the boundaries,
700 * which may create at most two more regions. The index of the first
701 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
702 *
703 * Return:
704 * 0 on success, -errno on failure.
705 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)706 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
707 phys_addr_t base, phys_addr_t size,
708 int *start_rgn, int *end_rgn)
709 {
710 phys_addr_t end = base + memblock_cap_size(base, &size);
711 int idx;
712 struct memblock_region *rgn;
713
714 *start_rgn = *end_rgn = 0;
715
716 if (!size)
717 return 0;
718
719 /* we'll create at most two more regions */
720 while (type->cnt + 2 > type->max)
721 if (memblock_double_array(type, base, size) < 0)
722 return -ENOMEM;
723
724 for_each_memblock_type(idx, type, rgn) {
725 phys_addr_t rbase = rgn->base;
726 phys_addr_t rend = rbase + rgn->size;
727
728 if (rbase >= end)
729 break;
730 if (rend <= base)
731 continue;
732
733 if (rbase < base) {
734 /*
735 * @rgn intersects from below. Split and continue
736 * to process the next region - the new top half.
737 */
738 rgn->base = base;
739 rgn->size -= base - rbase;
740 type->total_size -= base - rbase;
741 memblock_insert_region(type, idx, rbase, base - rbase,
742 memblock_get_region_node(rgn),
743 rgn->flags);
744 } else if (rend > end) {
745 /*
746 * @rgn intersects from above. Split and redo the
747 * current region - the new bottom half.
748 */
749 rgn->base = end;
750 rgn->size -= end - rbase;
751 type->total_size -= end - rbase;
752 memblock_insert_region(type, idx--, rbase, end - rbase,
753 memblock_get_region_node(rgn),
754 rgn->flags);
755 } else {
756 /* @rgn is fully contained, record it */
757 if (!*end_rgn)
758 *start_rgn = idx;
759 *end_rgn = idx + 1;
760 }
761 }
762
763 return 0;
764 }
765
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)766 static int __init_memblock memblock_remove_range(struct memblock_type *type,
767 phys_addr_t base, phys_addr_t size)
768 {
769 int start_rgn, end_rgn;
770 int i, ret;
771
772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
773 if (ret)
774 return ret;
775
776 for (i = end_rgn - 1; i >= start_rgn; i--)
777 memblock_remove_region(type, i);
778 return 0;
779 }
780
memblock_remove(phys_addr_t base,phys_addr_t size)781 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
782 {
783 phys_addr_t end = base + size - 1;
784
785 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
786 &base, &end, (void *)_RET_IP_);
787
788 return memblock_remove_range(&memblock.memory, base, size);
789 }
790
791 /**
792 * memblock_free - free boot memory block
793 * @base: phys starting address of the boot memory block
794 * @size: size of the boot memory block in bytes
795 *
796 * Free boot memory block previously allocated by memblock_alloc_xx() API.
797 * The freeing memory will not be released to the buddy allocator.
798 */
memblock_free(phys_addr_t base,phys_addr_t size)799 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
800 {
801 phys_addr_t end = base + size - 1;
802
803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
804 &base, &end, (void *)_RET_IP_);
805
806 kmemleak_free_part_phys(base, size);
807 return memblock_remove_range(&memblock.reserved, base, size);
808 }
809
memblock_reserve(phys_addr_t base,phys_addr_t size)810 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
811 {
812 phys_addr_t end = base + size - 1;
813
814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815 &base, &end, (void *)_RET_IP_);
816
817 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
818 }
819
820 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)821 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
822 {
823 phys_addr_t end = base + size - 1;
824
825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
826 &base, &end, (void *)_RET_IP_);
827
828 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
829 }
830 #endif
831
832 /**
833 * memblock_setclr_flag - set or clear flag for a memory region
834 * @base: base address of the region
835 * @size: size of the region
836 * @set: set or clear the flag
837 * @flag: the flag to udpate
838 *
839 * This function isolates region [@base, @base + @size), and sets/clears flag
840 *
841 * Return: 0 on success, -errno on failure.
842 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)843 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
844 phys_addr_t size, int set, int flag)
845 {
846 struct memblock_type *type = &memblock.memory;
847 int i, ret, start_rgn, end_rgn;
848
849 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
850 if (ret)
851 return ret;
852
853 for (i = start_rgn; i < end_rgn; i++) {
854 struct memblock_region *r = &type->regions[i];
855
856 if (set)
857 r->flags |= flag;
858 else
859 r->flags &= ~flag;
860 }
861
862 memblock_merge_regions(type);
863 return 0;
864 }
865
866 /**
867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
868 * @base: the base phys addr of the region
869 * @size: the size of the region
870 *
871 * Return: 0 on success, -errno on failure.
872 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)873 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
874 {
875 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
876 }
877
878 /**
879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
880 * @base: the base phys addr of the region
881 * @size: the size of the region
882 *
883 * Return: 0 on success, -errno on failure.
884 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
886 {
887 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
888 }
889
890 /**
891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
892 * @base: the base phys addr of the region
893 * @size: the size of the region
894 *
895 * Return: 0 on success, -errno on failure.
896 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)897 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
898 {
899 system_has_some_mirror = true;
900
901 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
902 }
903
904 /**
905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
906 * @base: the base phys addr of the region
907 * @size: the size of the region
908 *
909 * Return: 0 on success, -errno on failure.
910 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)911 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
912 {
913 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
914 }
915
916 /**
917 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
918 * @base: the base phys addr of the region
919 * @size: the size of the region
920 *
921 * Return: 0 on success, -errno on failure.
922 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)923 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
924 {
925 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
926 }
927
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)928 static bool should_skip_region(struct memblock_type *type,
929 struct memblock_region *m,
930 int nid, int flags)
931 {
932 int m_nid = memblock_get_region_node(m);
933
934 /* we never skip regions when iterating memblock.reserved or physmem */
935 if (type != memblock_memory)
936 return false;
937
938 /* only memory regions are associated with nodes, check it */
939 if (nid != NUMA_NO_NODE && nid != m_nid)
940 return true;
941
942 /* skip hotpluggable memory regions if needed */
943 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
944 !(flags & MEMBLOCK_HOTPLUG))
945 return true;
946
947 /* if we want mirror memory skip non-mirror memory regions */
948 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
949 return true;
950
951 /* skip nomap memory unless we were asked for it explicitly */
952 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
953 return true;
954
955 return false;
956 }
957
958 /**
959 * __next_mem_range - next function for for_each_free_mem_range() etc.
960 * @idx: pointer to u64 loop variable
961 * @nid: node selector, %NUMA_NO_NODE for all nodes
962 * @flags: pick from blocks based on memory attributes
963 * @type_a: pointer to memblock_type from where the range is taken
964 * @type_b: pointer to memblock_type which excludes memory from being taken
965 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
966 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
967 * @out_nid: ptr to int for nid of the range, can be %NULL
968 *
969 * Find the first area from *@idx which matches @nid, fill the out
970 * parameters, and update *@idx for the next iteration. The lower 32bit of
971 * *@idx contains index into type_a and the upper 32bit indexes the
972 * areas before each region in type_b. For example, if type_b regions
973 * look like the following,
974 *
975 * 0:[0-16), 1:[32-48), 2:[128-130)
976 *
977 * The upper 32bit indexes the following regions.
978 *
979 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
980 *
981 * As both region arrays are sorted, the function advances the two indices
982 * in lockstep and returns each intersection.
983 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)984 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
985 struct memblock_type *type_a,
986 struct memblock_type *type_b, phys_addr_t *out_start,
987 phys_addr_t *out_end, int *out_nid)
988 {
989 int idx_a = *idx & 0xffffffff;
990 int idx_b = *idx >> 32;
991
992 if (WARN_ONCE(nid == MAX_NUMNODES,
993 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
994 nid = NUMA_NO_NODE;
995
996 for (; idx_a < type_a->cnt; idx_a++) {
997 struct memblock_region *m = &type_a->regions[idx_a];
998
999 phys_addr_t m_start = m->base;
1000 phys_addr_t m_end = m->base + m->size;
1001 int m_nid = memblock_get_region_node(m);
1002
1003 if (should_skip_region(type_a, m, nid, flags))
1004 continue;
1005
1006 if (!type_b) {
1007 if (out_start)
1008 *out_start = m_start;
1009 if (out_end)
1010 *out_end = m_end;
1011 if (out_nid)
1012 *out_nid = m_nid;
1013 idx_a++;
1014 *idx = (u32)idx_a | (u64)idx_b << 32;
1015 return;
1016 }
1017
1018 /* scan areas before each reservation */
1019 for (; idx_b < type_b->cnt + 1; idx_b++) {
1020 struct memblock_region *r;
1021 phys_addr_t r_start;
1022 phys_addr_t r_end;
1023
1024 r = &type_b->regions[idx_b];
1025 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1026 r_end = idx_b < type_b->cnt ?
1027 r->base : PHYS_ADDR_MAX;
1028
1029 /*
1030 * if idx_b advanced past idx_a,
1031 * break out to advance idx_a
1032 */
1033 if (r_start >= m_end)
1034 break;
1035 /* if the two regions intersect, we're done */
1036 if (m_start < r_end) {
1037 if (out_start)
1038 *out_start =
1039 max(m_start, r_start);
1040 if (out_end)
1041 *out_end = min(m_end, r_end);
1042 if (out_nid)
1043 *out_nid = m_nid;
1044 /*
1045 * The region which ends first is
1046 * advanced for the next iteration.
1047 */
1048 if (m_end <= r_end)
1049 idx_a++;
1050 else
1051 idx_b++;
1052 *idx = (u32)idx_a | (u64)idx_b << 32;
1053 return;
1054 }
1055 }
1056 }
1057
1058 /* signal end of iteration */
1059 *idx = ULLONG_MAX;
1060 }
1061
1062 /**
1063 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1064 *
1065 * @idx: pointer to u64 loop variable
1066 * @nid: node selector, %NUMA_NO_NODE for all nodes
1067 * @flags: pick from blocks based on memory attributes
1068 * @type_a: pointer to memblock_type from where the range is taken
1069 * @type_b: pointer to memblock_type which excludes memory from being taken
1070 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1071 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1072 * @out_nid: ptr to int for nid of the range, can be %NULL
1073 *
1074 * Finds the next range from type_a which is not marked as unsuitable
1075 * in type_b.
1076 *
1077 * Reverse of __next_mem_range().
1078 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1079 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1080 enum memblock_flags flags,
1081 struct memblock_type *type_a,
1082 struct memblock_type *type_b,
1083 phys_addr_t *out_start,
1084 phys_addr_t *out_end, int *out_nid)
1085 {
1086 int idx_a = *idx & 0xffffffff;
1087 int idx_b = *idx >> 32;
1088
1089 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1090 nid = NUMA_NO_NODE;
1091
1092 if (*idx == (u64)ULLONG_MAX) {
1093 idx_a = type_a->cnt - 1;
1094 if (type_b != NULL)
1095 idx_b = type_b->cnt;
1096 else
1097 idx_b = 0;
1098 }
1099
1100 for (; idx_a >= 0; idx_a--) {
1101 struct memblock_region *m = &type_a->regions[idx_a];
1102
1103 phys_addr_t m_start = m->base;
1104 phys_addr_t m_end = m->base + m->size;
1105 int m_nid = memblock_get_region_node(m);
1106
1107 if (should_skip_region(type_a, m, nid, flags))
1108 continue;
1109
1110 if (!type_b) {
1111 if (out_start)
1112 *out_start = m_start;
1113 if (out_end)
1114 *out_end = m_end;
1115 if (out_nid)
1116 *out_nid = m_nid;
1117 idx_a--;
1118 *idx = (u32)idx_a | (u64)idx_b << 32;
1119 return;
1120 }
1121
1122 /* scan areas before each reservation */
1123 for (; idx_b >= 0; idx_b--) {
1124 struct memblock_region *r;
1125 phys_addr_t r_start;
1126 phys_addr_t r_end;
1127
1128 r = &type_b->regions[idx_b];
1129 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1130 r_end = idx_b < type_b->cnt ?
1131 r->base : PHYS_ADDR_MAX;
1132 /*
1133 * if idx_b advanced past idx_a,
1134 * break out to advance idx_a
1135 */
1136
1137 if (r_end <= m_start)
1138 break;
1139 /* if the two regions intersect, we're done */
1140 if (m_end > r_start) {
1141 if (out_start)
1142 *out_start = max(m_start, r_start);
1143 if (out_end)
1144 *out_end = min(m_end, r_end);
1145 if (out_nid)
1146 *out_nid = m_nid;
1147 if (m_start >= r_start)
1148 idx_a--;
1149 else
1150 idx_b--;
1151 *idx = (u32)idx_a | (u64)idx_b << 32;
1152 return;
1153 }
1154 }
1155 }
1156 /* signal end of iteration */
1157 *idx = ULLONG_MAX;
1158 }
1159
1160 /*
1161 * Common iterator interface used to define for_each_mem_pfn_range().
1162 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1163 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1164 unsigned long *out_start_pfn,
1165 unsigned long *out_end_pfn, int *out_nid)
1166 {
1167 struct memblock_type *type = &memblock.memory;
1168 struct memblock_region *r;
1169 int r_nid;
1170
1171 while (++*idx < type->cnt) {
1172 r = &type->regions[*idx];
1173 r_nid = memblock_get_region_node(r);
1174
1175 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1176 continue;
1177 if (nid == MAX_NUMNODES || nid == r_nid)
1178 break;
1179 }
1180 if (*idx >= type->cnt) {
1181 *idx = -1;
1182 return;
1183 }
1184
1185 if (out_start_pfn)
1186 *out_start_pfn = PFN_UP(r->base);
1187 if (out_end_pfn)
1188 *out_end_pfn = PFN_DOWN(r->base + r->size);
1189 if (out_nid)
1190 *out_nid = r_nid;
1191 }
1192
1193 /**
1194 * memblock_set_node - set node ID on memblock regions
1195 * @base: base of area to set node ID for
1196 * @size: size of area to set node ID for
1197 * @type: memblock type to set node ID for
1198 * @nid: node ID to set
1199 *
1200 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1201 * Regions which cross the area boundaries are split as necessary.
1202 *
1203 * Return:
1204 * 0 on success, -errno on failure.
1205 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1206 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1207 struct memblock_type *type, int nid)
1208 {
1209 #ifdef CONFIG_NEED_MULTIPLE_NODES
1210 int start_rgn, end_rgn;
1211 int i, ret;
1212
1213 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1214 if (ret)
1215 return ret;
1216
1217 for (i = start_rgn; i < end_rgn; i++)
1218 memblock_set_region_node(&type->regions[i], nid);
1219
1220 memblock_merge_regions(type);
1221 #endif
1222 return 0;
1223 }
1224
1225 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1226 /**
1227 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1228 *
1229 * @idx: pointer to u64 loop variable
1230 * @zone: zone in which all of the memory blocks reside
1231 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1232 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1233 *
1234 * This function is meant to be a zone/pfn specific wrapper for the
1235 * for_each_mem_range type iterators. Specifically they are used in the
1236 * deferred memory init routines and as such we were duplicating much of
1237 * this logic throughout the code. So instead of having it in multiple
1238 * locations it seemed like it would make more sense to centralize this to
1239 * one new iterator that does everything they need.
1240 */
1241 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1242 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1243 unsigned long *out_spfn, unsigned long *out_epfn)
1244 {
1245 int zone_nid = zone_to_nid(zone);
1246 phys_addr_t spa, epa;
1247 int nid;
1248
1249 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1250 &memblock.memory, &memblock.reserved,
1251 &spa, &epa, &nid);
1252
1253 while (*idx != U64_MAX) {
1254 unsigned long epfn = PFN_DOWN(epa);
1255 unsigned long spfn = PFN_UP(spa);
1256
1257 /*
1258 * Verify the end is at least past the start of the zone and
1259 * that we have at least one PFN to initialize.
1260 */
1261 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1262 /* if we went too far just stop searching */
1263 if (zone_end_pfn(zone) <= spfn) {
1264 *idx = U64_MAX;
1265 break;
1266 }
1267
1268 if (out_spfn)
1269 *out_spfn = max(zone->zone_start_pfn, spfn);
1270 if (out_epfn)
1271 *out_epfn = min(zone_end_pfn(zone), epfn);
1272
1273 return;
1274 }
1275
1276 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1277 &memblock.memory, &memblock.reserved,
1278 &spa, &epa, &nid);
1279 }
1280
1281 /* signal end of iteration */
1282 if (out_spfn)
1283 *out_spfn = ULONG_MAX;
1284 if (out_epfn)
1285 *out_epfn = 0;
1286 }
1287
1288 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1289
1290 /**
1291 * memblock_alloc_range_nid - allocate boot memory block
1292 * @size: size of memory block to be allocated in bytes
1293 * @align: alignment of the region and block's size
1294 * @start: the lower bound of the memory region to allocate (phys address)
1295 * @end: the upper bound of the memory region to allocate (phys address)
1296 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1297 * @exact_nid: control the allocation fall back to other nodes
1298 *
1299 * The allocation is performed from memory region limited by
1300 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1301 *
1302 * If the specified node can not hold the requested memory and @exact_nid
1303 * is false, the allocation falls back to any node in the system.
1304 *
1305 * For systems with memory mirroring, the allocation is attempted first
1306 * from the regions with mirroring enabled and then retried from any
1307 * memory region.
1308 *
1309 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1310 * allocated boot memory block, so that it is never reported as leaks.
1311 *
1312 * Return:
1313 * Physical address of allocated memory block on success, %0 on failure.
1314 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1315 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1316 phys_addr_t align, phys_addr_t start,
1317 phys_addr_t end, int nid,
1318 bool exact_nid)
1319 {
1320 enum memblock_flags flags = choose_memblock_flags();
1321 phys_addr_t found;
1322
1323 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1324 nid = NUMA_NO_NODE;
1325
1326 if (!align) {
1327 /* Can't use WARNs this early in boot on powerpc */
1328 dump_stack();
1329 align = SMP_CACHE_BYTES;
1330 }
1331
1332 again:
1333 found = memblock_find_in_range_node(size, align, start, end, nid,
1334 flags);
1335 if (found && !memblock_reserve(found, size))
1336 goto done;
1337
1338 if (nid != NUMA_NO_NODE && !exact_nid) {
1339 found = memblock_find_in_range_node(size, align, start,
1340 end, NUMA_NO_NODE,
1341 flags);
1342 if (found && !memblock_reserve(found, size))
1343 goto done;
1344 }
1345
1346 if (flags & MEMBLOCK_MIRROR) {
1347 flags &= ~MEMBLOCK_MIRROR;
1348 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1349 &size);
1350 goto again;
1351 }
1352
1353 return 0;
1354
1355 done:
1356 /* Skip kmemleak for kasan_init() due to high volume. */
1357 if (end != MEMBLOCK_ALLOC_KASAN)
1358 /*
1359 * The min_count is set to 0 so that memblock allocated
1360 * blocks are never reported as leaks. This is because many
1361 * of these blocks are only referred via the physical
1362 * address which is not looked up by kmemleak.
1363 */
1364 kmemleak_alloc_phys(found, size, 0, 0);
1365
1366 return found;
1367 }
1368
1369 /**
1370 * memblock_phys_alloc_range - allocate a memory block inside specified range
1371 * @size: size of memory block to be allocated in bytes
1372 * @align: alignment of the region and block's size
1373 * @start: the lower bound of the memory region to allocate (physical address)
1374 * @end: the upper bound of the memory region to allocate (physical address)
1375 *
1376 * Allocate @size bytes in the between @start and @end.
1377 *
1378 * Return: physical address of the allocated memory block on success,
1379 * %0 on failure.
1380 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1381 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1382 phys_addr_t align,
1383 phys_addr_t start,
1384 phys_addr_t end)
1385 {
1386 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1387 false);
1388 }
1389
1390 /**
1391 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1392 * @size: size of memory block to be allocated in bytes
1393 * @align: alignment of the region and block's size
1394 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1395 *
1396 * Allocates memory block from the specified NUMA node. If the node
1397 * has no available memory, attempts to allocated from any node in the
1398 * system.
1399 *
1400 * Return: physical address of the allocated memory block on success,
1401 * %0 on failure.
1402 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1403 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1404 {
1405 return memblock_alloc_range_nid(size, align, 0,
1406 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1407 }
1408
1409 /**
1410 * memblock_alloc_internal - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @min_addr: the lower bound of the memory region to allocate (phys address)
1414 * @max_addr: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * Allocates memory block using memblock_alloc_range_nid() and
1419 * converts the returned physical address to virtual.
1420 *
1421 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1422 * will fall back to memory below @min_addr. Other constraints, such
1423 * as node and mirrored memory will be handled again in
1424 * memblock_alloc_range_nid().
1425 *
1426 * Return:
1427 * Virtual address of allocated memory block on success, NULL on failure.
1428 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1429 static void * __init memblock_alloc_internal(
1430 phys_addr_t size, phys_addr_t align,
1431 phys_addr_t min_addr, phys_addr_t max_addr,
1432 int nid, bool exact_nid)
1433 {
1434 phys_addr_t alloc;
1435
1436 /*
1437 * Detect any accidental use of these APIs after slab is ready, as at
1438 * this moment memblock may be deinitialized already and its
1439 * internal data may be destroyed (after execution of memblock_free_all)
1440 */
1441 if (WARN_ON_ONCE(slab_is_available()))
1442 return kzalloc_node(size, GFP_NOWAIT, nid);
1443
1444 if (max_addr > memblock.current_limit)
1445 max_addr = memblock.current_limit;
1446
1447 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1448 exact_nid);
1449
1450 /* retry allocation without lower limit */
1451 if (!alloc && min_addr)
1452 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1453 exact_nid);
1454
1455 if (!alloc)
1456 return NULL;
1457
1458 return phys_to_virt(alloc);
1459 }
1460
1461 /**
1462 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1463 * without zeroing memory
1464 * @size: size of memory block to be allocated in bytes
1465 * @align: alignment of the region and block's size
1466 * @min_addr: the lower bound of the memory region from where the allocation
1467 * is preferred (phys address)
1468 * @max_addr: the upper bound of the memory region from where the allocation
1469 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1470 * allocate only from memory limited by memblock.current_limit value
1471 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1472 *
1473 * Public function, provides additional debug information (including caller
1474 * info), if enabled. Does not zero allocated memory.
1475 *
1476 * Return:
1477 * Virtual address of allocated memory block on success, NULL on failure.
1478 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1479 void * __init memblock_alloc_exact_nid_raw(
1480 phys_addr_t size, phys_addr_t align,
1481 phys_addr_t min_addr, phys_addr_t max_addr,
1482 int nid)
1483 {
1484 void *ptr;
1485
1486 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1487 __func__, (u64)size, (u64)align, nid, &min_addr,
1488 &max_addr, (void *)_RET_IP_);
1489
1490 ptr = memblock_alloc_internal(size, align,
1491 min_addr, max_addr, nid, true);
1492 if (ptr && size > 0)
1493 page_init_poison(ptr, size);
1494
1495 return ptr;
1496 }
1497
1498 /**
1499 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1500 * memory and without panicking
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region from where the allocation
1504 * is preferred (phys address)
1505 * @max_addr: the upper bound of the memory region from where the allocation
1506 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1507 * allocate only from memory limited by memblock.current_limit value
1508 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1509 *
1510 * Public function, provides additional debug information (including caller
1511 * info), if enabled. Does not zero allocated memory, does not panic if request
1512 * cannot be satisfied.
1513 *
1514 * Return:
1515 * Virtual address of allocated memory block on success, NULL on failure.
1516 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1517 void * __init memblock_alloc_try_nid_raw(
1518 phys_addr_t size, phys_addr_t align,
1519 phys_addr_t min_addr, phys_addr_t max_addr,
1520 int nid)
1521 {
1522 void *ptr;
1523
1524 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1525 __func__, (u64)size, (u64)align, nid, &min_addr,
1526 &max_addr, (void *)_RET_IP_);
1527
1528 ptr = memblock_alloc_internal(size, align,
1529 min_addr, max_addr, nid, false);
1530 if (ptr && size > 0)
1531 page_init_poison(ptr, size);
1532
1533 return ptr;
1534 }
1535
1536 /**
1537 * memblock_alloc_try_nid - allocate boot memory block
1538 * @size: size of memory block to be allocated in bytes
1539 * @align: alignment of the region and block's size
1540 * @min_addr: the lower bound of the memory region from where the allocation
1541 * is preferred (phys address)
1542 * @max_addr: the upper bound of the memory region from where the allocation
1543 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1544 * allocate only from memory limited by memblock.current_limit value
1545 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1546 *
1547 * Public function, provides additional debug information (including caller
1548 * info), if enabled. This function zeroes the allocated memory.
1549 *
1550 * Return:
1551 * Virtual address of allocated memory block on success, NULL on failure.
1552 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1553 void * __init memblock_alloc_try_nid(
1554 phys_addr_t size, phys_addr_t align,
1555 phys_addr_t min_addr, phys_addr_t max_addr,
1556 int nid)
1557 {
1558 void *ptr;
1559
1560 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1561 __func__, (u64)size, (u64)align, nid, &min_addr,
1562 &max_addr, (void *)_RET_IP_);
1563 ptr = memblock_alloc_internal(size, align,
1564 min_addr, max_addr, nid, false);
1565 if (ptr)
1566 memset(ptr, 0, size);
1567
1568 return ptr;
1569 }
1570
1571 /**
1572 * __memblock_free_late - free pages directly to buddy allocator
1573 * @base: phys starting address of the boot memory block
1574 * @size: size of the boot memory block in bytes
1575 *
1576 * This is only useful when the memblock allocator has already been torn
1577 * down, but we are still initializing the system. Pages are released directly
1578 * to the buddy allocator.
1579 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1580 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1581 {
1582 phys_addr_t cursor, end;
1583
1584 end = base + size - 1;
1585 memblock_dbg("%s: [%pa-%pa] %pS\n",
1586 __func__, &base, &end, (void *)_RET_IP_);
1587 kmemleak_free_part_phys(base, size);
1588 cursor = PFN_UP(base);
1589 end = PFN_DOWN(base + size);
1590
1591 for (; cursor < end; cursor++) {
1592 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1593 totalram_pages_inc();
1594 }
1595 }
1596
1597 /*
1598 * Remaining API functions
1599 */
1600
memblock_phys_mem_size(void)1601 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1602 {
1603 return memblock.memory.total_size;
1604 }
1605
memblock_reserved_size(void)1606 phys_addr_t __init_memblock memblock_reserved_size(void)
1607 {
1608 return memblock.reserved.total_size;
1609 }
1610
1611 /* lowest address */
memblock_start_of_DRAM(void)1612 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1613 {
1614 return memblock.memory.regions[0].base;
1615 }
1616
memblock_end_of_DRAM(void)1617 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1618 {
1619 int idx = memblock.memory.cnt - 1;
1620
1621 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1622 }
1623
__find_max_addr(phys_addr_t limit)1624 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1625 {
1626 phys_addr_t max_addr = PHYS_ADDR_MAX;
1627 struct memblock_region *r;
1628
1629 /*
1630 * translate the memory @limit size into the max address within one of
1631 * the memory memblock regions, if the @limit exceeds the total size
1632 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1633 */
1634 for_each_mem_region(r) {
1635 if (limit <= r->size) {
1636 max_addr = r->base + limit;
1637 break;
1638 }
1639 limit -= r->size;
1640 }
1641
1642 return max_addr;
1643 }
1644
memblock_enforce_memory_limit(phys_addr_t limit)1645 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1646 {
1647 phys_addr_t max_addr;
1648
1649 if (!limit)
1650 return;
1651
1652 max_addr = __find_max_addr(limit);
1653
1654 /* @limit exceeds the total size of the memory, do nothing */
1655 if (max_addr == PHYS_ADDR_MAX)
1656 return;
1657
1658 /* truncate both memory and reserved regions */
1659 memblock_remove_range(&memblock.memory, max_addr,
1660 PHYS_ADDR_MAX);
1661 memblock_remove_range(&memblock.reserved, max_addr,
1662 PHYS_ADDR_MAX);
1663 }
1664
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1665 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1666 {
1667 int start_rgn, end_rgn;
1668 int i, ret;
1669
1670 if (!size)
1671 return;
1672
1673 ret = memblock_isolate_range(&memblock.memory, base, size,
1674 &start_rgn, &end_rgn);
1675 if (ret)
1676 return;
1677
1678 /* remove all the MAP regions */
1679 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1680 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1681 memblock_remove_region(&memblock.memory, i);
1682
1683 for (i = start_rgn - 1; i >= 0; i--)
1684 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1685 memblock_remove_region(&memblock.memory, i);
1686
1687 /* truncate the reserved regions */
1688 memblock_remove_range(&memblock.reserved, 0, base);
1689 memblock_remove_range(&memblock.reserved,
1690 base + size, PHYS_ADDR_MAX);
1691 }
1692
memblock_mem_limit_remove_map(phys_addr_t limit)1693 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1694 {
1695 phys_addr_t max_addr;
1696
1697 if (!limit)
1698 return;
1699
1700 max_addr = __find_max_addr(limit);
1701
1702 /* @limit exceeds the total size of the memory, do nothing */
1703 if (max_addr == PHYS_ADDR_MAX)
1704 return;
1705
1706 memblock_cap_memory_range(0, max_addr);
1707 }
1708
memblock_search(struct memblock_type * type,phys_addr_t addr)1709 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1710 {
1711 unsigned int left = 0, right = type->cnt;
1712
1713 do {
1714 unsigned int mid = (right + left) / 2;
1715
1716 if (addr < type->regions[mid].base)
1717 right = mid;
1718 else if (addr >= (type->regions[mid].base +
1719 type->regions[mid].size))
1720 left = mid + 1;
1721 else
1722 return mid;
1723 } while (left < right);
1724 return -1;
1725 }
1726
memblock_is_reserved(phys_addr_t addr)1727 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1728 {
1729 return memblock_search(&memblock.reserved, addr) != -1;
1730 }
1731
memblock_is_memory(phys_addr_t addr)1732 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1733 {
1734 return memblock_search(&memblock.memory, addr) != -1;
1735 }
1736
memblock_is_map_memory(phys_addr_t addr)1737 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1738 {
1739 int i = memblock_search(&memblock.memory, addr);
1740
1741 if (i == -1)
1742 return false;
1743 return !memblock_is_nomap(&memblock.memory.regions[i]);
1744 }
1745
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1746 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1747 unsigned long *start_pfn, unsigned long *end_pfn)
1748 {
1749 struct memblock_type *type = &memblock.memory;
1750 int mid = memblock_search(type, PFN_PHYS(pfn));
1751
1752 if (mid == -1)
1753 return -1;
1754
1755 *start_pfn = PFN_DOWN(type->regions[mid].base);
1756 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1757
1758 return memblock_get_region_node(&type->regions[mid]);
1759 }
1760
1761 /**
1762 * memblock_is_region_memory - check if a region is a subset of memory
1763 * @base: base of region to check
1764 * @size: size of region to check
1765 *
1766 * Check if the region [@base, @base + @size) is a subset of a memory block.
1767 *
1768 * Return:
1769 * 0 if false, non-zero if true
1770 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1771 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1772 {
1773 int idx = memblock_search(&memblock.memory, base);
1774 phys_addr_t end = base + memblock_cap_size(base, &size);
1775
1776 if (idx == -1)
1777 return false;
1778 return (memblock.memory.regions[idx].base +
1779 memblock.memory.regions[idx].size) >= end;
1780 }
1781
1782 /**
1783 * memblock_is_region_reserved - check if a region intersects reserved memory
1784 * @base: base of region to check
1785 * @size: size of region to check
1786 *
1787 * Check if the region [@base, @base + @size) intersects a reserved
1788 * memory block.
1789 *
1790 * Return:
1791 * True if they intersect, false if not.
1792 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1793 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1794 {
1795 memblock_cap_size(base, &size);
1796 return memblock_overlaps_region(&memblock.reserved, base, size);
1797 }
1798
memblock_trim_memory(phys_addr_t align)1799 void __init_memblock memblock_trim_memory(phys_addr_t align)
1800 {
1801 phys_addr_t start, end, orig_start, orig_end;
1802 struct memblock_region *r;
1803
1804 for_each_mem_region(r) {
1805 orig_start = r->base;
1806 orig_end = r->base + r->size;
1807 start = round_up(orig_start, align);
1808 end = round_down(orig_end, align);
1809
1810 if (start == orig_start && end == orig_end)
1811 continue;
1812
1813 if (start < end) {
1814 r->base = start;
1815 r->size = end - start;
1816 } else {
1817 memblock_remove_region(&memblock.memory,
1818 r - memblock.memory.regions);
1819 r--;
1820 }
1821 }
1822 }
1823
memblock_set_current_limit(phys_addr_t limit)1824 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1825 {
1826 memblock.current_limit = limit;
1827 }
1828
memblock_get_current_limit(void)1829 phys_addr_t __init_memblock memblock_get_current_limit(void)
1830 {
1831 return memblock.current_limit;
1832 }
1833
memblock_dump(struct memblock_type * type)1834 static void __init_memblock memblock_dump(struct memblock_type *type)
1835 {
1836 phys_addr_t base, end, size;
1837 enum memblock_flags flags;
1838 int idx;
1839 struct memblock_region *rgn;
1840
1841 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1842
1843 for_each_memblock_type(idx, type, rgn) {
1844 char nid_buf[32] = "";
1845
1846 base = rgn->base;
1847 size = rgn->size;
1848 end = base + size - 1;
1849 flags = rgn->flags;
1850 #ifdef CONFIG_NEED_MULTIPLE_NODES
1851 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1852 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1853 memblock_get_region_node(rgn));
1854 #endif
1855 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1856 type->name, idx, &base, &end, &size, nid_buf, flags);
1857 }
1858 }
1859
__memblock_dump_all(void)1860 static void __init_memblock __memblock_dump_all(void)
1861 {
1862 pr_info("MEMBLOCK configuration:\n");
1863 pr_info(" memory size = %pa reserved size = %pa\n",
1864 &memblock.memory.total_size,
1865 &memblock.reserved.total_size);
1866
1867 memblock_dump(&memblock.memory);
1868 memblock_dump(&memblock.reserved);
1869 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1870 memblock_dump(&physmem);
1871 #endif
1872 }
1873
memblock_dump_all(void)1874 void __init_memblock memblock_dump_all(void)
1875 {
1876 if (memblock_debug)
1877 __memblock_dump_all();
1878 }
1879
memblock_allow_resize(void)1880 void __init memblock_allow_resize(void)
1881 {
1882 memblock_can_resize = 1;
1883 }
1884
early_memblock(char * p)1885 static int __init early_memblock(char *p)
1886 {
1887 if (p && strstr(p, "debug"))
1888 memblock_debug = 1;
1889 return 0;
1890 }
1891 early_param("memblock", early_memblock);
1892
__free_pages_memory(unsigned long start,unsigned long end)1893 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1894 {
1895 int order;
1896
1897 while (start < end) {
1898 order = min(MAX_ORDER - 1UL, __ffs(start));
1899
1900 while (start + (1UL << order) > end)
1901 order--;
1902
1903 memblock_free_pages(pfn_to_page(start), start, order);
1904
1905 start += (1UL << order);
1906 }
1907 }
1908
__free_memory_core(phys_addr_t start,phys_addr_t end)1909 static unsigned long __init __free_memory_core(phys_addr_t start,
1910 phys_addr_t end)
1911 {
1912 unsigned long start_pfn = PFN_UP(start);
1913 unsigned long end_pfn = min_t(unsigned long,
1914 PFN_DOWN(end), max_low_pfn);
1915
1916 if (start_pfn >= end_pfn)
1917 return 0;
1918
1919 __free_pages_memory(start_pfn, end_pfn);
1920
1921 return end_pfn - start_pfn;
1922 }
1923
free_low_memory_core_early(void)1924 static unsigned long __init free_low_memory_core_early(void)
1925 {
1926 unsigned long count = 0;
1927 phys_addr_t start, end;
1928 u64 i;
1929
1930 memblock_clear_hotplug(0, -1);
1931
1932 for_each_reserved_mem_range(i, &start, &end)
1933 reserve_bootmem_region(start, end);
1934
1935 /*
1936 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1937 * because in some case like Node0 doesn't have RAM installed
1938 * low ram will be on Node1
1939 */
1940 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1941 NULL)
1942 count += __free_memory_core(start, end);
1943
1944 return count;
1945 }
1946
1947 static int reset_managed_pages_done __initdata;
1948
reset_node_managed_pages(pg_data_t * pgdat)1949 void reset_node_managed_pages(pg_data_t *pgdat)
1950 {
1951 struct zone *z;
1952
1953 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1954 atomic_long_set(&z->managed_pages, 0);
1955 }
1956
reset_all_zones_managed_pages(void)1957 void __init reset_all_zones_managed_pages(void)
1958 {
1959 struct pglist_data *pgdat;
1960
1961 if (reset_managed_pages_done)
1962 return;
1963
1964 for_each_online_pgdat(pgdat)
1965 reset_node_managed_pages(pgdat);
1966
1967 reset_managed_pages_done = 1;
1968 }
1969
1970 /**
1971 * memblock_free_all - release free pages to the buddy allocator
1972 *
1973 * Return: the number of pages actually released.
1974 */
memblock_free_all(void)1975 unsigned long __init memblock_free_all(void)
1976 {
1977 unsigned long pages;
1978
1979 reset_all_zones_managed_pages();
1980
1981 pages = free_low_memory_core_early();
1982 totalram_pages_add(pages);
1983
1984 return pages;
1985 }
1986
1987 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1988
memblock_debug_show(struct seq_file * m,void * private)1989 static int memblock_debug_show(struct seq_file *m, void *private)
1990 {
1991 struct memblock_type *type = m->private;
1992 struct memblock_region *reg;
1993 int i;
1994 phys_addr_t end;
1995
1996 for (i = 0; i < type->cnt; i++) {
1997 reg = &type->regions[i];
1998 end = reg->base + reg->size - 1;
1999
2000 seq_printf(m, "%4d: ", i);
2001 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2002 }
2003 return 0;
2004 }
2005 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2006
memblock_init_debugfs(void)2007 static int __init memblock_init_debugfs(void)
2008 {
2009 struct dentry *root = debugfs_create_dir("memblock", NULL);
2010
2011 debugfs_create_file("memory", 0444, root,
2012 &memblock.memory, &memblock_debug_fops);
2013 debugfs_create_file("reserved", 0444, root,
2014 &memblock.reserved, &memblock_debug_fops);
2015 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2016 debugfs_create_file("physmem", 0444, root, &physmem,
2017 &memblock_debug_fops);
2018 #endif
2019
2020 return 0;
2021 }
2022 __initcall(memblock_init_debugfs);
2023
2024 #endif /* CONFIG_DEBUG_FS */
2025