1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 1;
121 #else
122 2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)126 static inline bool arch_faults_on_old_pte(void)
127 {
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134 }
135 #endif
136
disable_randmaps(char * s)137 static int __init disable_randmaps(char *s)
138 {
139 randomize_va_space = 0;
140 return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
init_zero_pfn(void)152 static int __init init_zero_pfn(void)
153 {
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156 }
157 early_initcall(init_zero_pfn);
158
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
sync_mm_rss(struct mm_struct * mm)166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
174 }
175 }
176 current->rss_stat.events = 0;
177 }
178
add_mm_counter_fast(struct mm_struct * mm,int member,int val)179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
check_sync_rss_stat(struct task_struct * task)205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
217 {
218 pgtable_t token = pmd_pgtable(*pmd);
219 pmd_clear(pmd);
220 pte_free_tlb(tlb, token, addr);
221 mm_dec_nr_ptes(tlb->mm);
222 }
223
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
227 {
228 pmd_t *pmd;
229 unsigned long next;
230 unsigned long start;
231
232 start = addr;
233 pmd = pmd_offset(pud, addr);
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
238 free_pte_range(tlb, pmd, addr);
239 } while (pmd++, addr = next, addr != end);
240
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
254 pmd_free_tlb(tlb, pmd, start);
255 mm_dec_nr_pmds(tlb->mm);
256 }
257
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
261 {
262 pud_t *pud;
263 unsigned long next;
264 unsigned long start;
265
266 start = addr;
267 pud = pud_offset(p4d, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 } while (pud++, addr = next, addr != end);
274
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
289 mm_dec_nr_puds(tlb->mm);
290 }
291
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295 {
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
316 }
317 if (end - 1 > ceiling - 1)
318 return;
319
320 p4d = p4d_offset(pgd, start);
321 pgd_clear(pgd);
322 p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326 * This function frees user-level page tables of a process.
327 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)328 void free_pgd_range(struct mmu_gather *tlb,
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
331 {
332 pgd_t *pgd;
333 unsigned long next;
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
360
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
380 tlb_change_page_size(tlb, PAGE_SIZE);
381 pgd = pgd_offset(tlb->mm, addr);
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 } while (pgd++, addr = next, addr != end);
388 }
389
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 unsigned long floor, unsigned long ceiling)
392 {
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
397 /*
398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
400 */
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403
404 if (is_vm_hugetlb_page(vma)) {
405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 && !is_vm_hugetlb_page(next)) {
413 vma = next;
414 next = vma->vm_next;
415 unlink_anon_vmas(vma);
416 unlink_file_vma(vma);
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
419 floor, next ? next->vm_start : ceiling);
420 }
421 vma = next;
422 }
423 }
424
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 spinlock_t *ptl;
428 pgtable_t new = pte_alloc_one(mm);
429 if (!new)
430 return -ENOMEM;
431
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
443 * smp_rmb() barriers in page table walking code.
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447 ptl = pmd_lock(mm, pmd);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 mm_inc_nr_ptes(mm);
450 pmd_populate(mm, pmd, new);
451 new = NULL;
452 }
453 spin_unlock(ptl);
454 if (new)
455 pte_free(mm, new);
456 return 0;
457 }
458
__pte_alloc_kernel(pmd_t * pmd)459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 pte_t *new = pte_alloc_one_kernel(&init_mm);
462 if (!new)
463 return -ENOMEM;
464
465 smp_wmb(); /* See comment in __pte_alloc */
466
467 spin_lock(&init_mm.page_table_lock);
468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
469 pmd_populate_kernel(&init_mm, pmd, new);
470 new = NULL;
471 }
472 spin_unlock(&init_mm.page_table_lock);
473 if (new)
474 pte_free_kernel(&init_mm, new);
475 return 0;
476 }
477
init_rss_vec(int * rss)478 static inline void init_rss_vec(int *rss)
479 {
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
add_mm_rss_vec(struct mm_struct * mm,int * rss)483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 int i;
486
487 if (current->mm == mm)
488 sync_mm_rss(mm);
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
498 *
499 * The calling function must still handle the error.
500 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
503 {
504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 if (page)
540 dump_page(page, "bad pte");
541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
548 dump_stack();
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 *
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 *
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
567 *
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
581 *
582 *
583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
593 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
596 {
597 unsigned long pfn = pte_pfn(pte);
598
599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 if (likely(!pte_special(pte)))
601 goto check_pfn;
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
606 if (is_zero_pfn(pfn))
607 return NULL;
608 if (pte_devmap(pte))
609 return NULL;
610
611 print_bad_pte(vma, addr, pte, NULL);
612 return NULL;
613 }
614
615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
630 }
631
632 if (is_zero_pfn(pfn))
633 return NULL;
634
635 check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /*
642 * NOTE! We still have PageReserved() pages in the page tables.
643 * eg. VDSO mappings can cause them to exist.
644 */
645 out:
646 return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652 {
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
675 if (pmd_devmap(pmd))
676 return NULL;
677 if (is_huge_zero_pmd(pmd))
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686 out:
687 return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
695 */
696
697 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
700 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
701 {
702 unsigned long vm_flags = dst_vma->vm_flags;
703 pte_t pte = *src_pte;
704 struct page *page;
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
723 rss[mm_counter(page)]++;
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 if (!userfaultfd_wp(dst_vma))
772 pte = pte_swp_clear_uffd_wp(pte);
773 set_pte_at(dst_mm, addr, dst_pte, pte);
774 return 0;
775 }
776
777 /*
778 * Copy a present and normal page if necessary.
779 *
780 * NOTE! The usual case is that this doesn't need to do
781 * anything, and can just return a positive value. That
782 * will let the caller know that it can just increase
783 * the page refcount and re-use the pte the traditional
784 * way.
785 *
786 * But _if_ we need to copy it because it needs to be
787 * pinned in the parent (and the child should get its own
788 * copy rather than just a reference to the same page),
789 * we'll do that here and return zero to let the caller
790 * know we're done.
791 *
792 * And if we need a pre-allocated page but don't yet have
793 * one, return a negative error to let the preallocation
794 * code know so that it can do so outside the page table
795 * lock.
796 */
797 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)798 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
799 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
800 struct page **prealloc, pte_t pte, struct page *page)
801 {
802 struct mm_struct *src_mm = src_vma->vm_mm;
803 struct page *new_page;
804
805 if (!is_cow_mapping(src_vma->vm_flags))
806 return 1;
807
808 /*
809 * What we want to do is to check whether this page may
810 * have been pinned by the parent process. If so,
811 * instead of wrprotect the pte on both sides, we copy
812 * the page immediately so that we'll always guarantee
813 * the pinned page won't be randomly replaced in the
814 * future.
815 *
816 * The page pinning checks are just "has this mm ever
817 * seen pinning", along with the (inexact) check of
818 * the page count. That might give false positives for
819 * for pinning, but it will work correctly.
820 */
821 if (likely(!atomic_read(&src_mm->has_pinned)))
822 return 1;
823 if (likely(!page_maybe_dma_pinned(page)))
824 return 1;
825
826 new_page = *prealloc;
827 if (!new_page)
828 return -EAGAIN;
829
830 /*
831 * We have a prealloc page, all good! Take it
832 * over and copy the page & arm it.
833 */
834 *prealloc = NULL;
835 copy_user_highpage(new_page, page, addr, src_vma);
836 __SetPageUptodate(new_page);
837 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
838 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
839 rss[mm_counter(new_page)]++;
840
841 /* All done, just insert the new page copy in the child */
842 pte = mk_pte(new_page, dst_vma->vm_page_prot);
843 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
844 if (userfaultfd_pte_wp(dst_vma, *src_pte))
845 /* Uffd-wp needs to be delivered to dest pte as well */
846 pte = pte_wrprotect(pte_mkuffd_wp(pte));
847 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
848 return 0;
849 }
850
851 /*
852 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
853 * is required to copy this pte.
854 */
855 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)856 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
857 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
858 struct page **prealloc)
859 {
860 struct mm_struct *src_mm = src_vma->vm_mm;
861 unsigned long vm_flags = src_vma->vm_flags;
862 pte_t pte = *src_pte;
863 struct page *page;
864
865 page = vm_normal_page(src_vma, addr, pte);
866 if (page) {
867 int retval;
868
869 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
870 addr, rss, prealloc, pte, page);
871 if (retval <= 0)
872 return retval;
873
874 get_page(page);
875 page_dup_rmap(page, false);
876 rss[mm_counter(page)]++;
877 }
878
879 /*
880 * If it's a COW mapping, write protect it both
881 * in the parent and the child
882 */
883 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884 ptep_set_wrprotect(src_mm, addr, src_pte);
885 pte = pte_wrprotect(pte);
886 }
887
888 /*
889 * If it's a shared mapping, mark it clean in
890 * the child
891 */
892 if (vm_flags & VM_SHARED)
893 pte = pte_mkclean(pte);
894 pte = pte_mkold(pte);
895
896 if (!userfaultfd_wp(dst_vma))
897 pte = pte_clear_uffd_wp(pte);
898
899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 return 0;
901 }
902
903 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906 {
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
916 }
917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919 return new_page;
920 }
921
922 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
926 {
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
929 pte_t *orig_src_pte, *orig_dst_pte;
930 pte_t *src_pte, *dst_pte;
931 spinlock_t *src_ptl, *dst_ptl;
932 int progress, ret = 0;
933 int rss[NR_MM_COUNTERS];
934 swp_entry_t entry = (swp_entry_t){0};
935 struct page *prealloc = NULL;
936
937 again:
938 progress = 0;
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
946 src_pte = pte_offset_map(src_pmd, addr);
947 src_ptl = pte_lockptr(src_mm, src_pmd);
948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
951 arch_enter_lazy_mmu_mode();
952
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 break;
963 }
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
971 dst_vma, src_vma,
972 addr, rss);
973 if (entry.val)
974 break;
975 progress += 8;
976 continue;
977 }
978 /* copy_present_pte() will clear `*prealloc' if consumed */
979 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980 addr, rss, &prealloc);
981 /*
982 * If we need a pre-allocated page for this pte, drop the
983 * locks, allocate, and try again.
984 */
985 if (unlikely(ret == -EAGAIN))
986 break;
987 if (unlikely(prealloc)) {
988 /*
989 * pre-alloc page cannot be reused by next time so as
990 * to strictly follow mempolicy (e.g., alloc_page_vma()
991 * will allocate page according to address). This
992 * could only happen if one pinned pte changed.
993 */
994 put_page(prealloc);
995 prealloc = NULL;
996 }
997 progress += 8;
998 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999
1000 arch_leave_lazy_mmu_mode();
1001 spin_unlock(src_ptl);
1002 pte_unmap(orig_src_pte);
1003 add_mm_rss_vec(dst_mm, rss);
1004 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005 cond_resched();
1006
1007 if (entry.val) {
1008 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009 ret = -ENOMEM;
1010 goto out;
1011 }
1012 entry.val = 0;
1013 } else if (ret) {
1014 WARN_ON_ONCE(ret != -EAGAIN);
1015 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016 if (!prealloc)
1017 return -ENOMEM;
1018 /* We've captured and resolved the error. Reset, try again. */
1019 ret = 0;
1020 }
1021 if (addr != end)
1022 goto again;
1023 out:
1024 if (unlikely(prealloc))
1025 put_page(prealloc);
1026 return ret;
1027 }
1028
1029 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032 unsigned long end)
1033 {
1034 struct mm_struct *dst_mm = dst_vma->vm_mm;
1035 struct mm_struct *src_mm = src_vma->vm_mm;
1036 pmd_t *src_pmd, *dst_pmd;
1037 unsigned long next;
1038
1039 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 if (!dst_pmd)
1041 return -ENOMEM;
1042 src_pmd = pmd_offset(src_pud, addr);
1043 do {
1044 next = pmd_addr_end(addr, end);
1045 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 || pmd_devmap(*src_pmd)) {
1047 int err;
1048 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1050 addr, dst_vma, src_vma);
1051 if (err == -ENOMEM)
1052 return -ENOMEM;
1053 if (!err)
1054 continue;
1055 /* fall through */
1056 }
1057 if (pmd_none_or_clear_bad(src_pmd))
1058 continue;
1059 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060 addr, next))
1061 return -ENOMEM;
1062 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 return 0;
1064 }
1065
1066 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069 unsigned long end)
1070 {
1071 struct mm_struct *dst_mm = dst_vma->vm_mm;
1072 struct mm_struct *src_mm = src_vma->vm_mm;
1073 pud_t *src_pud, *dst_pud;
1074 unsigned long next;
1075
1076 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077 if (!dst_pud)
1078 return -ENOMEM;
1079 src_pud = pud_offset(src_p4d, addr);
1080 do {
1081 next = pud_addr_end(addr, end);
1082 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083 int err;
1084
1085 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086 err = copy_huge_pud(dst_mm, src_mm,
1087 dst_pud, src_pud, addr, src_vma);
1088 if (err == -ENOMEM)
1089 return -ENOMEM;
1090 if (!err)
1091 continue;
1092 /* fall through */
1093 }
1094 if (pud_none_or_clear_bad(src_pud))
1095 continue;
1096 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097 addr, next))
1098 return -ENOMEM;
1099 } while (dst_pud++, src_pud++, addr = next, addr != end);
1100 return 0;
1101 }
1102
1103 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106 unsigned long end)
1107 {
1108 struct mm_struct *dst_mm = dst_vma->vm_mm;
1109 p4d_t *src_p4d, *dst_p4d;
1110 unsigned long next;
1111
1112 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113 if (!dst_p4d)
1114 return -ENOMEM;
1115 src_p4d = p4d_offset(src_pgd, addr);
1116 do {
1117 next = p4d_addr_end(addr, end);
1118 if (p4d_none_or_clear_bad(src_p4d))
1119 continue;
1120 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121 addr, next))
1122 return -ENOMEM;
1123 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124 return 0;
1125 }
1126
1127 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130 pgd_t *src_pgd, *dst_pgd;
1131 unsigned long next;
1132 unsigned long addr = src_vma->vm_start;
1133 unsigned long end = src_vma->vm_end;
1134 struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 struct mm_struct *src_mm = src_vma->vm_mm;
1136 struct mmu_notifier_range range;
1137 bool is_cow;
1138 int ret;
1139
1140 /*
1141 * Don't copy ptes where a page fault will fill them correctly.
1142 * Fork becomes much lighter when there are big shared or private
1143 * readonly mappings. The tradeoff is that copy_page_range is more
1144 * efficient than faulting.
1145 */
1146 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147 !src_vma->anon_vma)
1148 return 0;
1149
1150 if (is_vm_hugetlb_page(src_vma))
1151 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152
1153 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154 /*
1155 * We do not free on error cases below as remove_vma
1156 * gets called on error from higher level routine
1157 */
1158 ret = track_pfn_copy(src_vma);
1159 if (ret)
1160 return ret;
1161 }
1162
1163 /*
1164 * We need to invalidate the secondary MMU mappings only when
1165 * there could be a permission downgrade on the ptes of the
1166 * parent mm. And a permission downgrade will only happen if
1167 * is_cow_mapping() returns true.
1168 */
1169 is_cow = is_cow_mapping(src_vma->vm_flags);
1170
1171 if (is_cow) {
1172 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173 0, src_vma, src_mm, addr, end);
1174 mmu_notifier_invalidate_range_start(&range);
1175 /*
1176 * Disabling preemption is not needed for the write side, as
1177 * the read side doesn't spin, but goes to the mmap_lock.
1178 *
1179 * Use the raw variant of the seqcount_t write API to avoid
1180 * lockdep complaining about preemptibility.
1181 */
1182 mmap_assert_write_locked(src_mm);
1183 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1184 }
1185
1186 ret = 0;
1187 dst_pgd = pgd_offset(dst_mm, addr);
1188 src_pgd = pgd_offset(src_mm, addr);
1189 do {
1190 next = pgd_addr_end(addr, end);
1191 if (pgd_none_or_clear_bad(src_pgd))
1192 continue;
1193 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1194 addr, next))) {
1195 ret = -ENOMEM;
1196 break;
1197 }
1198 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1199
1200 if (is_cow) {
1201 raw_write_seqcount_end(&src_mm->write_protect_seq);
1202 mmu_notifier_invalidate_range_end(&range);
1203 }
1204 return ret;
1205 }
1206
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1207 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1208 struct vm_area_struct *vma, pmd_t *pmd,
1209 unsigned long addr, unsigned long end,
1210 struct zap_details *details)
1211 {
1212 struct mm_struct *mm = tlb->mm;
1213 int force_flush = 0;
1214 int rss[NR_MM_COUNTERS];
1215 spinlock_t *ptl;
1216 pte_t *start_pte;
1217 pte_t *pte;
1218 swp_entry_t entry;
1219
1220 tlb_change_page_size(tlb, PAGE_SIZE);
1221 again:
1222 init_rss_vec(rss);
1223 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1224 pte = start_pte;
1225 flush_tlb_batched_pending(mm);
1226 arch_enter_lazy_mmu_mode();
1227 do {
1228 pte_t ptent = *pte;
1229 if (pte_none(ptent))
1230 continue;
1231
1232 if (need_resched())
1233 break;
1234
1235 if (pte_present(ptent)) {
1236 struct page *page;
1237
1238 page = vm_normal_page(vma, addr, ptent);
1239 if (unlikely(details) && page) {
1240 /*
1241 * unmap_shared_mapping_pages() wants to
1242 * invalidate cache without truncating:
1243 * unmap shared but keep private pages.
1244 */
1245 if (details->check_mapping &&
1246 details->check_mapping != page_rmapping(page))
1247 continue;
1248 }
1249 ptent = ptep_get_and_clear_full(mm, addr, pte,
1250 tlb->fullmm);
1251 tlb_remove_tlb_entry(tlb, pte, addr);
1252 if (unlikely(!page))
1253 continue;
1254
1255 if (!PageAnon(page)) {
1256 if (pte_dirty(ptent)) {
1257 force_flush = 1;
1258 set_page_dirty(page);
1259 }
1260 if (pte_young(ptent) &&
1261 likely(!(vma->vm_flags & VM_SEQ_READ)))
1262 mark_page_accessed(page);
1263 }
1264 rss[mm_counter(page)]--;
1265 page_remove_rmap(page, false);
1266 if (unlikely(page_mapcount(page) < 0))
1267 print_bad_pte(vma, addr, ptent, page);
1268 if (unlikely(__tlb_remove_page(tlb, page))) {
1269 force_flush = 1;
1270 addr += PAGE_SIZE;
1271 break;
1272 }
1273 continue;
1274 }
1275
1276 entry = pte_to_swp_entry(ptent);
1277 if (is_device_private_entry(entry)) {
1278 struct page *page = device_private_entry_to_page(entry);
1279
1280 if (unlikely(details && details->check_mapping)) {
1281 /*
1282 * unmap_shared_mapping_pages() wants to
1283 * invalidate cache without truncating:
1284 * unmap shared but keep private pages.
1285 */
1286 if (details->check_mapping !=
1287 page_rmapping(page))
1288 continue;
1289 }
1290
1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292 rss[mm_counter(page)]--;
1293 page_remove_rmap(page, false);
1294 put_page(page);
1295 continue;
1296 }
1297
1298 /* If details->check_mapping, we leave swap entries. */
1299 if (unlikely(details))
1300 continue;
1301
1302 if (!non_swap_entry(entry))
1303 rss[MM_SWAPENTS]--;
1304 else if (is_migration_entry(entry)) {
1305 struct page *page;
1306
1307 page = migration_entry_to_page(entry);
1308 rss[mm_counter(page)]--;
1309 }
1310 if (unlikely(!free_swap_and_cache(entry)))
1311 print_bad_pte(vma, addr, ptent, NULL);
1312 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1313 } while (pte++, addr += PAGE_SIZE, addr != end);
1314
1315 add_mm_rss_vec(mm, rss);
1316 arch_leave_lazy_mmu_mode();
1317
1318 /* Do the actual TLB flush before dropping ptl */
1319 if (force_flush)
1320 tlb_flush_mmu_tlbonly(tlb);
1321 pte_unmap_unlock(start_pte, ptl);
1322
1323 /*
1324 * If we forced a TLB flush (either due to running out of
1325 * batch buffers or because we needed to flush dirty TLB
1326 * entries before releasing the ptl), free the batched
1327 * memory too. Restart if we didn't do everything.
1328 */
1329 if (force_flush) {
1330 force_flush = 0;
1331 tlb_flush_mmu(tlb);
1332 }
1333
1334 if (addr != end) {
1335 cond_resched();
1336 goto again;
1337 }
1338
1339 return addr;
1340 }
1341
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1342 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1343 struct vm_area_struct *vma, pud_t *pud,
1344 unsigned long addr, unsigned long end,
1345 struct zap_details *details)
1346 {
1347 pmd_t *pmd;
1348 unsigned long next;
1349
1350 pmd = pmd_offset(pud, addr);
1351 do {
1352 next = pmd_addr_end(addr, end);
1353 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1354 if (next - addr != HPAGE_PMD_SIZE)
1355 __split_huge_pmd(vma, pmd, addr, false, NULL);
1356 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1357 goto next;
1358 /* fall through */
1359 } else if (details && details->single_page &&
1360 PageTransCompound(details->single_page) &&
1361 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1362 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1363 /*
1364 * Take and drop THP pmd lock so that we cannot return
1365 * prematurely, while zap_huge_pmd() has cleared *pmd,
1366 * but not yet decremented compound_mapcount().
1367 */
1368 spin_unlock(ptl);
1369 }
1370
1371 /*
1372 * Here there can be other concurrent MADV_DONTNEED or
1373 * trans huge page faults running, and if the pmd is
1374 * none or trans huge it can change under us. This is
1375 * because MADV_DONTNEED holds the mmap_lock in read
1376 * mode.
1377 */
1378 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 goto next;
1380 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382 cond_resched();
1383 } while (pmd++, addr = next, addr != end);
1384
1385 return addr;
1386 }
1387
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389 struct vm_area_struct *vma, p4d_t *p4d,
1390 unsigned long addr, unsigned long end,
1391 struct zap_details *details)
1392 {
1393 pud_t *pud;
1394 unsigned long next;
1395
1396 pud = pud_offset(p4d, addr);
1397 do {
1398 next = pud_addr_end(addr, end);
1399 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 if (next - addr != HPAGE_PUD_SIZE) {
1401 mmap_assert_locked(tlb->mm);
1402 split_huge_pud(vma, pud, addr);
1403 } else if (zap_huge_pud(tlb, vma, pud, addr))
1404 goto next;
1405 /* fall through */
1406 }
1407 if (pud_none_or_clear_bad(pud))
1408 continue;
1409 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411 cond_resched();
1412 } while (pud++, addr = next, addr != end);
1413
1414 return addr;
1415 }
1416
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, pgd_t *pgd,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1421 {
1422 p4d_t *p4d;
1423 unsigned long next;
1424
1425 p4d = p4d_offset(pgd, addr);
1426 do {
1427 next = p4d_addr_end(addr, end);
1428 if (p4d_none_or_clear_bad(p4d))
1429 continue;
1430 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 } while (p4d++, addr = next, addr != end);
1432
1433 return addr;
1434 }
1435
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1436 void unmap_page_range(struct mmu_gather *tlb,
1437 struct vm_area_struct *vma,
1438 unsigned long addr, unsigned long end,
1439 struct zap_details *details)
1440 {
1441 pgd_t *pgd;
1442 unsigned long next;
1443
1444 BUG_ON(addr >= end);
1445 tlb_start_vma(tlb, vma);
1446 pgd = pgd_offset(vma->vm_mm, addr);
1447 do {
1448 next = pgd_addr_end(addr, end);
1449 if (pgd_none_or_clear_bad(pgd))
1450 continue;
1451 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452 } while (pgd++, addr = next, addr != end);
1453 tlb_end_vma(tlb, vma);
1454 }
1455
1456
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458 struct vm_area_struct *vma, unsigned long start_addr,
1459 unsigned long end_addr,
1460 struct zap_details *details)
1461 {
1462 unsigned long start = max(vma->vm_start, start_addr);
1463 unsigned long end;
1464
1465 if (start >= vma->vm_end)
1466 return;
1467 end = min(vma->vm_end, end_addr);
1468 if (end <= vma->vm_start)
1469 return;
1470
1471 if (vma->vm_file)
1472 uprobe_munmap(vma, start, end);
1473
1474 if (unlikely(vma->vm_flags & VM_PFNMAP))
1475 untrack_pfn(vma, 0, 0);
1476
1477 if (start != end) {
1478 if (unlikely(is_vm_hugetlb_page(vma))) {
1479 /*
1480 * It is undesirable to test vma->vm_file as it
1481 * should be non-null for valid hugetlb area.
1482 * However, vm_file will be NULL in the error
1483 * cleanup path of mmap_region. When
1484 * hugetlbfs ->mmap method fails,
1485 * mmap_region() nullifies vma->vm_file
1486 * before calling this function to clean up.
1487 * Since no pte has actually been setup, it is
1488 * safe to do nothing in this case.
1489 */
1490 if (vma->vm_file) {
1491 i_mmap_lock_write(vma->vm_file->f_mapping);
1492 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493 i_mmap_unlock_write(vma->vm_file->f_mapping);
1494 }
1495 } else
1496 unmap_page_range(tlb, vma, start, end, details);
1497 }
1498 }
1499
1500 /**
1501 * unmap_vmas - unmap a range of memory covered by a list of vma's
1502 * @tlb: address of the caller's struct mmu_gather
1503 * @vma: the starting vma
1504 * @start_addr: virtual address at which to start unmapping
1505 * @end_addr: virtual address at which to end unmapping
1506 *
1507 * Unmap all pages in the vma list.
1508 *
1509 * Only addresses between `start' and `end' will be unmapped.
1510 *
1511 * The VMA list must be sorted in ascending virtual address order.
1512 *
1513 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514 * range after unmap_vmas() returns. So the only responsibility here is to
1515 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516 * drops the lock and schedules.
1517 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1518 void unmap_vmas(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, unsigned long start_addr,
1520 unsigned long end_addr)
1521 {
1522 struct mmu_notifier_range range;
1523
1524 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 start_addr, end_addr);
1526 mmu_notifier_invalidate_range_start(&range);
1527 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529 mmu_notifier_invalidate_range_end(&range);
1530 }
1531
1532 /**
1533 * zap_page_range - remove user pages in a given range
1534 * @vma: vm_area_struct holding the applicable pages
1535 * @start: starting address of pages to zap
1536 * @size: number of bytes to zap
1537 *
1538 * Caller must protect the VMA list
1539 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541 unsigned long size)
1542 {
1543 struct mmu_notifier_range range;
1544 struct mmu_gather tlb;
1545
1546 lru_add_drain();
1547 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548 start, start + size);
1549 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1550 update_hiwater_rss(vma->vm_mm);
1551 mmu_notifier_invalidate_range_start(&range);
1552 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 mmu_notifier_invalidate_range_end(&range);
1555 tlb_finish_mmu(&tlb, start, range.end);
1556 }
1557
1558 /**
1559 * zap_page_range_single - remove user pages in a given range
1560 * @vma: vm_area_struct holding the applicable pages
1561 * @address: starting address of pages to zap
1562 * @size: number of bytes to zap
1563 * @details: details of shared cache invalidation
1564 *
1565 * The range must fit into one VMA.
1566 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568 unsigned long size, struct zap_details *details)
1569 {
1570 struct mmu_notifier_range range;
1571 struct mmu_gather tlb;
1572
1573 lru_add_drain();
1574 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575 address, address + size);
1576 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1577 update_hiwater_rss(vma->vm_mm);
1578 mmu_notifier_invalidate_range_start(&range);
1579 unmap_single_vma(&tlb, vma, address, range.end, details);
1580 mmu_notifier_invalidate_range_end(&range);
1581 tlb_finish_mmu(&tlb, address, range.end);
1582 }
1583
1584 /**
1585 * zap_vma_ptes - remove ptes mapping the vma
1586 * @vma: vm_area_struct holding ptes to be zapped
1587 * @address: starting address of pages to zap
1588 * @size: number of bytes to zap
1589 *
1590 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591 *
1592 * The entire address range must be fully contained within the vma.
1593 *
1594 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596 unsigned long size)
1597 {
1598 if (address < vma->vm_start || address + size > vma->vm_end ||
1599 !(vma->vm_flags & VM_PFNMAP))
1600 return;
1601
1602 zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608 pgd_t *pgd;
1609 p4d_t *p4d;
1610 pud_t *pud;
1611 pmd_t *pmd;
1612
1613 pgd = pgd_offset(mm, addr);
1614 p4d = p4d_alloc(mm, pgd, addr);
1615 if (!p4d)
1616 return NULL;
1617 pud = pud_alloc(mm, p4d, addr);
1618 if (!pud)
1619 return NULL;
1620 pmd = pmd_alloc(mm, pud, addr);
1621 if (!pmd)
1622 return NULL;
1623
1624 VM_BUG_ON(pmd_trans_huge(*pmd));
1625 return pmd;
1626 }
1627
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 spinlock_t **ptl)
1630 {
1631 pmd_t *pmd = walk_to_pmd(mm, addr);
1632
1633 if (!pmd)
1634 return NULL;
1635 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637
validate_page_before_insert(struct page * page)1638 static int validate_page_before_insert(struct page *page)
1639 {
1640 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 return -EINVAL;
1642 flush_dcache_page(page);
1643 return 0;
1644 }
1645
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649 if (!pte_none(*pte))
1650 return -EBUSY;
1651 /* Ok, finally just insert the thing.. */
1652 get_page(page);
1653 inc_mm_counter_fast(mm, mm_counter_file(page));
1654 page_add_file_rmap(page, false);
1655 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 return 0;
1657 }
1658
1659 /*
1660 * This is the old fallback for page remapping.
1661 *
1662 * For historical reasons, it only allows reserved pages. Only
1663 * old drivers should use this, and they needed to mark their
1664 * pages reserved for the old functions anyway.
1665 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 struct page *page, pgprot_t prot)
1668 {
1669 struct mm_struct *mm = vma->vm_mm;
1670 int retval;
1671 pte_t *pte;
1672 spinlock_t *ptl;
1673
1674 retval = validate_page_before_insert(page);
1675 if (retval)
1676 goto out;
1677 retval = -ENOMEM;
1678 pte = get_locked_pte(mm, addr, &ptl);
1679 if (!pte)
1680 goto out;
1681 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682 pte_unmap_unlock(pte, ptl);
1683 out:
1684 return retval;
1685 }
1686
1687 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689 unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691 int err;
1692
1693 if (!page_count(page))
1694 return -EINVAL;
1695 err = validate_page_before_insert(page);
1696 if (err)
1697 return err;
1698 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700
1701 /* insert_pages() amortizes the cost of spinlock operations
1702 * when inserting pages in a loop. Arch *must* define pte_index.
1703 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707 pmd_t *pmd = NULL;
1708 pte_t *start_pte, *pte;
1709 spinlock_t *pte_lock;
1710 struct mm_struct *const mm = vma->vm_mm;
1711 unsigned long curr_page_idx = 0;
1712 unsigned long remaining_pages_total = *num;
1713 unsigned long pages_to_write_in_pmd;
1714 int ret;
1715 more:
1716 ret = -EFAULT;
1717 pmd = walk_to_pmd(mm, addr);
1718 if (!pmd)
1719 goto out;
1720
1721 pages_to_write_in_pmd = min_t(unsigned long,
1722 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723
1724 /* Allocate the PTE if necessary; takes PMD lock once only. */
1725 ret = -ENOMEM;
1726 if (pte_alloc(mm, pmd))
1727 goto out;
1728
1729 while (pages_to_write_in_pmd) {
1730 int pte_idx = 0;
1731 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732
1733 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 int err = insert_page_in_batch_locked(mm, pte,
1736 addr, pages[curr_page_idx], prot);
1737 if (unlikely(err)) {
1738 pte_unmap_unlock(start_pte, pte_lock);
1739 ret = err;
1740 remaining_pages_total -= pte_idx;
1741 goto out;
1742 }
1743 addr += PAGE_SIZE;
1744 ++curr_page_idx;
1745 }
1746 pte_unmap_unlock(start_pte, pte_lock);
1747 pages_to_write_in_pmd -= batch_size;
1748 remaining_pages_total -= batch_size;
1749 }
1750 if (remaining_pages_total)
1751 goto more;
1752 ret = 0;
1753 out:
1754 *num = remaining_pages_total;
1755 return ret;
1756 }
1757 #endif /* ifdef pte_index */
1758
1759 /**
1760 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761 * @vma: user vma to map to
1762 * @addr: target start user address of these pages
1763 * @pages: source kernel pages
1764 * @num: in: number of pages to map. out: number of pages that were *not*
1765 * mapped. (0 means all pages were successfully mapped).
1766 *
1767 * Preferred over vm_insert_page() when inserting multiple pages.
1768 *
1769 * In case of error, we may have mapped a subset of the provided
1770 * pages. It is the caller's responsibility to account for this case.
1771 *
1772 * The same restrictions apply as in vm_insert_page().
1773 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779
1780 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 return -EFAULT;
1782 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783 BUG_ON(mmap_read_trylock(vma->vm_mm));
1784 BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 vma->vm_flags |= VM_MIXEDMAP;
1786 }
1787 /* Defer page refcount checking till we're about to map that page. */
1788 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790 unsigned long idx = 0, pgcount = *num;
1791 int err = -EINVAL;
1792
1793 for (; idx < pgcount; ++idx) {
1794 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 if (err)
1796 break;
1797 }
1798 *num = pgcount - idx;
1799 return err;
1800 #endif /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803
1804 /**
1805 * vm_insert_page - insert single page into user vma
1806 * @vma: user vma to map to
1807 * @addr: target user address of this page
1808 * @page: source kernel page
1809 *
1810 * This allows drivers to insert individual pages they've allocated
1811 * into a user vma.
1812 *
1813 * The page has to be a nice clean _individual_ kernel allocation.
1814 * If you allocate a compound page, you need to have marked it as
1815 * such (__GFP_COMP), or manually just split the page up yourself
1816 * (see split_page()).
1817 *
1818 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819 * took an arbitrary page protection parameter. This doesn't allow
1820 * that. Your vma protection will have to be set up correctly, which
1821 * means that if you want a shared writable mapping, you'd better
1822 * ask for a shared writable mapping!
1823 *
1824 * The page does not need to be reserved.
1825 *
1826 * Usually this function is called from f_op->mmap() handler
1827 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829 * function from other places, for example from page-fault handler.
1830 *
1831 * Return: %0 on success, negative error code otherwise.
1832 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 struct page *page)
1835 {
1836 if (addr < vma->vm_start || addr >= vma->vm_end)
1837 return -EFAULT;
1838 if (!page_count(page))
1839 return -EINVAL;
1840 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841 BUG_ON(mmap_read_trylock(vma->vm_mm));
1842 BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 vma->vm_flags |= VM_MIXEDMAP;
1844 }
1845 return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848
1849 /*
1850 * __vm_map_pages - maps range of kernel pages into user vma
1851 * @vma: user vma to map to
1852 * @pages: pointer to array of source kernel pages
1853 * @num: number of pages in page array
1854 * @offset: user's requested vm_pgoff
1855 *
1856 * This allows drivers to map range of kernel pages into a user vma.
1857 *
1858 * Return: 0 on success and error code otherwise.
1859 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 unsigned long num, unsigned long offset)
1862 {
1863 unsigned long count = vma_pages(vma);
1864 unsigned long uaddr = vma->vm_start;
1865 int ret, i;
1866
1867 /* Fail if the user requested offset is beyond the end of the object */
1868 if (offset >= num)
1869 return -ENXIO;
1870
1871 /* Fail if the user requested size exceeds available object size */
1872 if (count > num - offset)
1873 return -ENXIO;
1874
1875 for (i = 0; i < count; i++) {
1876 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 if (ret < 0)
1878 return ret;
1879 uaddr += PAGE_SIZE;
1880 }
1881
1882 return 0;
1883 }
1884
1885 /**
1886 * vm_map_pages - maps range of kernel pages starts with non zero offset
1887 * @vma: user vma to map to
1888 * @pages: pointer to array of source kernel pages
1889 * @num: number of pages in page array
1890 *
1891 * Maps an object consisting of @num pages, catering for the user's
1892 * requested vm_pgoff
1893 *
1894 * If we fail to insert any page into the vma, the function will return
1895 * immediately leaving any previously inserted pages present. Callers
1896 * from the mmap handler may immediately return the error as their caller
1897 * will destroy the vma, removing any successfully inserted pages. Other
1898 * callers should make their own arrangements for calling unmap_region().
1899 *
1900 * Context: Process context. Called by mmap handlers.
1901 * Return: 0 on success and error code otherwise.
1902 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 unsigned long num)
1905 {
1906 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909
1910 /**
1911 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912 * @vma: user vma to map to
1913 * @pages: pointer to array of source kernel pages
1914 * @num: number of pages in page array
1915 *
1916 * Similar to vm_map_pages(), except that it explicitly sets the offset
1917 * to 0. This function is intended for the drivers that did not consider
1918 * vm_pgoff.
1919 *
1920 * Context: Process context. Called by mmap handlers.
1921 * Return: 0 on success and error code otherwise.
1922 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 unsigned long num)
1925 {
1926 return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931 pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933 struct mm_struct *mm = vma->vm_mm;
1934 pte_t *pte, entry;
1935 spinlock_t *ptl;
1936
1937 pte = get_locked_pte(mm, addr, &ptl);
1938 if (!pte)
1939 return VM_FAULT_OOM;
1940 if (!pte_none(*pte)) {
1941 if (mkwrite) {
1942 /*
1943 * For read faults on private mappings the PFN passed
1944 * in may not match the PFN we have mapped if the
1945 * mapped PFN is a writeable COW page. In the mkwrite
1946 * case we are creating a writable PTE for a shared
1947 * mapping and we expect the PFNs to match. If they
1948 * don't match, we are likely racing with block
1949 * allocation and mapping invalidation so just skip the
1950 * update.
1951 */
1952 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954 goto out_unlock;
1955 }
1956 entry = pte_mkyoung(*pte);
1957 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 update_mmu_cache(vma, addr, pte);
1960 }
1961 goto out_unlock;
1962 }
1963
1964 /* Ok, finally just insert the thing.. */
1965 if (pfn_t_devmap(pfn))
1966 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 else
1968 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969
1970 if (mkwrite) {
1971 entry = pte_mkyoung(entry);
1972 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 }
1974
1975 set_pte_at(mm, addr, pte, entry);
1976 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977
1978 out_unlock:
1979 pte_unmap_unlock(pte, ptl);
1980 return VM_FAULT_NOPAGE;
1981 }
1982
1983 /**
1984 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985 * @vma: user vma to map to
1986 * @addr: target user address of this page
1987 * @pfn: source kernel pfn
1988 * @pgprot: pgprot flags for the inserted page
1989 *
1990 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991 * to override pgprot on a per-page basis.
1992 *
1993 * This only makes sense for IO mappings, and it makes no sense for
1994 * COW mappings. In general, using multiple vmas is preferable;
1995 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996 * impractical.
1997 *
1998 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999 * a value of @pgprot different from that of @vma->vm_page_prot.
2000 *
2001 * Context: Process context. May allocate using %GFP_KERNEL.
2002 * Return: vm_fault_t value.
2003 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn, pgprot_t pgprot)
2006 {
2007 /*
2008 * Technically, architectures with pte_special can avoid all these
2009 * restrictions (same for remap_pfn_range). However we would like
2010 * consistency in testing and feature parity among all, so we should
2011 * try to keep these invariants in place for everybody.
2012 */
2013 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 (VM_PFNMAP|VM_MIXEDMAP));
2016 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018
2019 if (addr < vma->vm_start || addr >= vma->vm_end)
2020 return VM_FAULT_SIGBUS;
2021
2022 if (!pfn_modify_allowed(pfn, pgprot))
2023 return VM_FAULT_SIGBUS;
2024
2025 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026
2027 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028 false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031
2032 /**
2033 * vmf_insert_pfn - insert single pfn into user vma
2034 * @vma: user vma to map to
2035 * @addr: target user address of this page
2036 * @pfn: source kernel pfn
2037 *
2038 * Similar to vm_insert_page, this allows drivers to insert individual pages
2039 * they've allocated into a user vma. Same comments apply.
2040 *
2041 * This function should only be called from a vm_ops->fault handler, and
2042 * in that case the handler should return the result of this function.
2043 *
2044 * vma cannot be a COW mapping.
2045 *
2046 * As this is called only for pages that do not currently exist, we
2047 * do not need to flush old virtual caches or the TLB.
2048 *
2049 * Context: Process context. May allocate using %GFP_KERNEL.
2050 * Return: vm_fault_t value.
2051 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 unsigned long pfn)
2054 {
2055 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061 /* these checks mirror the abort conditions in vm_normal_page */
2062 if (vma->vm_flags & VM_MIXEDMAP)
2063 return true;
2064 if (pfn_t_devmap(pfn))
2065 return true;
2066 if (pfn_t_special(pfn))
2067 return true;
2068 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 return true;
2070 return false;
2071 }
2072
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 bool mkwrite)
2076 {
2077 int err;
2078
2079 BUG_ON(!vm_mixed_ok(vma, pfn));
2080
2081 if (addr < vma->vm_start || addr >= vma->vm_end)
2082 return VM_FAULT_SIGBUS;
2083
2084 track_pfn_insert(vma, &pgprot, pfn);
2085
2086 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087 return VM_FAULT_SIGBUS;
2088
2089 /*
2090 * If we don't have pte special, then we have to use the pfn_valid()
2091 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 * refcount the page if pfn_valid is true (hence insert_page rather
2093 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2094 * without pte special, it would there be refcounted as a normal page.
2095 */
2096 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098 struct page *page;
2099
2100 /*
2101 * At this point we are committed to insert_page()
2102 * regardless of whether the caller specified flags that
2103 * result in pfn_t_has_page() == false.
2104 */
2105 page = pfn_to_page(pfn_t_to_pfn(pfn));
2106 err = insert_page(vma, addr, page, pgprot);
2107 } else {
2108 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109 }
2110
2111 if (err == -ENOMEM)
2112 return VM_FAULT_OOM;
2113 if (err < 0 && err != -EBUSY)
2114 return VM_FAULT_SIGBUS;
2115
2116 return VM_FAULT_NOPAGE;
2117 }
2118
2119 /**
2120 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2124 * @pgprot: pgprot flags for the inserted page
2125 *
2126 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127 * to override pgprot on a per-page basis.
2128 *
2129 * Typically this function should be used by drivers to set caching- and
2130 * encryption bits different than those of @vma->vm_page_prot, because
2131 * the caching- or encryption mode may not be known at mmap() time.
2132 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133 * to set caching and encryption bits for those vmas (except for COW pages).
2134 * This is ensured by core vm only modifying these page table entries using
2135 * functions that don't touch caching- or encryption bits, using pte_modify()
2136 * if needed. (See for example mprotect()).
2137 * Also when new page-table entries are created, this is only done using the
2138 * fault() callback, and never using the value of vma->vm_page_prot,
2139 * except for page-table entries that point to anonymous pages as the result
2140 * of COW.
2141 *
2142 * Context: Process context. May allocate using %GFP_KERNEL.
2143 * Return: vm_fault_t value.
2144 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 pfn_t pfn, pgprot_t pgprot)
2147 {
2148 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 pfn_t pfn)
2154 {
2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158
2159 /*
2160 * If the insertion of PTE failed because someone else already added a
2161 * different entry in the mean time, we treat that as success as we assume
2162 * the same entry was actually inserted.
2163 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 unsigned long addr, pfn_t pfn)
2166 {
2167 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170
2171 /*
2172 * maps a range of physical memory into the requested pages. the old
2173 * mappings are removed. any references to nonexistent pages results
2174 * in null mappings (currently treated as "copy-on-access")
2175 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 unsigned long addr, unsigned long end,
2178 unsigned long pfn, pgprot_t prot)
2179 {
2180 pte_t *pte, *mapped_pte;
2181 spinlock_t *ptl;
2182 int err = 0;
2183
2184 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185 if (!pte)
2186 return -ENOMEM;
2187 arch_enter_lazy_mmu_mode();
2188 do {
2189 BUG_ON(!pte_none(*pte));
2190 if (!pfn_modify_allowed(pfn, prot)) {
2191 err = -EACCES;
2192 break;
2193 }
2194 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195 pfn++;
2196 } while (pte++, addr += PAGE_SIZE, addr != end);
2197 arch_leave_lazy_mmu_mode();
2198 pte_unmap_unlock(mapped_pte, ptl);
2199 return err;
2200 }
2201
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205 {
2206 pmd_t *pmd;
2207 unsigned long next;
2208 int err;
2209
2210 pfn -= addr >> PAGE_SHIFT;
2211 pmd = pmd_alloc(mm, pud, addr);
2212 if (!pmd)
2213 return -ENOMEM;
2214 VM_BUG_ON(pmd_trans_huge(*pmd));
2215 do {
2216 next = pmd_addr_end(addr, end);
2217 err = remap_pte_range(mm, pmd, addr, next,
2218 pfn + (addr >> PAGE_SHIFT), prot);
2219 if (err)
2220 return err;
2221 } while (pmd++, addr = next, addr != end);
2222 return 0;
2223 }
2224
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228 {
2229 pud_t *pud;
2230 unsigned long next;
2231 int err;
2232
2233 pfn -= addr >> PAGE_SHIFT;
2234 pud = pud_alloc(mm, p4d, addr);
2235 if (!pud)
2236 return -ENOMEM;
2237 do {
2238 next = pud_addr_end(addr, end);
2239 err = remap_pmd_range(mm, pud, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot);
2241 if (err)
2242 return err;
2243 } while (pud++, addr = next, addr != end);
2244 return 0;
2245 }
2246
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 unsigned long addr, unsigned long end,
2249 unsigned long pfn, pgprot_t prot)
2250 {
2251 p4d_t *p4d;
2252 unsigned long next;
2253 int err;
2254
2255 pfn -= addr >> PAGE_SHIFT;
2256 p4d = p4d_alloc(mm, pgd, addr);
2257 if (!p4d)
2258 return -ENOMEM;
2259 do {
2260 next = p4d_addr_end(addr, end);
2261 err = remap_pud_range(mm, p4d, addr, next,
2262 pfn + (addr >> PAGE_SHIFT), prot);
2263 if (err)
2264 return err;
2265 } while (p4d++, addr = next, addr != end);
2266 return 0;
2267 }
2268
2269 /**
2270 * remap_pfn_range - remap kernel memory to userspace
2271 * @vma: user vma to map to
2272 * @addr: target page aligned user address to start at
2273 * @pfn: page frame number of kernel physical memory address
2274 * @size: size of mapping area
2275 * @prot: page protection flags for this mapping
2276 *
2277 * Note: this is only safe if the mm semaphore is held when called.
2278 *
2279 * Return: %0 on success, negative error code otherwise.
2280 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284 pgd_t *pgd;
2285 unsigned long next;
2286 unsigned long end = addr + PAGE_ALIGN(size);
2287 struct mm_struct *mm = vma->vm_mm;
2288 unsigned long remap_pfn = pfn;
2289 int err;
2290
2291 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 return -EINVAL;
2293
2294 /*
2295 * Physically remapped pages are special. Tell the
2296 * rest of the world about it:
2297 * VM_IO tells people not to look at these pages
2298 * (accesses can have side effects).
2299 * VM_PFNMAP tells the core MM that the base pages are just
2300 * raw PFN mappings, and do not have a "struct page" associated
2301 * with them.
2302 * VM_DONTEXPAND
2303 * Disable vma merging and expanding with mremap().
2304 * VM_DONTDUMP
2305 * Omit vma from core dump, even when VM_IO turned off.
2306 *
2307 * There's a horrible special case to handle copy-on-write
2308 * behaviour that some programs depend on. We mark the "original"
2309 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310 * See vm_normal_page() for details.
2311 */
2312 if (is_cow_mapping(vma->vm_flags)) {
2313 if (addr != vma->vm_start || end != vma->vm_end)
2314 return -EINVAL;
2315 vma->vm_pgoff = pfn;
2316 }
2317
2318 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319 if (err)
2320 return -EINVAL;
2321
2322 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323
2324 BUG_ON(addr >= end);
2325 pfn -= addr >> PAGE_SHIFT;
2326 pgd = pgd_offset(mm, addr);
2327 flush_cache_range(vma, addr, end);
2328 do {
2329 next = pgd_addr_end(addr, end);
2330 err = remap_p4d_range(mm, pgd, addr, next,
2331 pfn + (addr >> PAGE_SHIFT), prot);
2332 if (err)
2333 break;
2334 } while (pgd++, addr = next, addr != end);
2335
2336 if (err)
2337 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338
2339 return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342
2343 /**
2344 * vm_iomap_memory - remap memory to userspace
2345 * @vma: user vma to map to
2346 * @start: start of the physical memory to be mapped
2347 * @len: size of area
2348 *
2349 * This is a simplified io_remap_pfn_range() for common driver use. The
2350 * driver just needs to give us the physical memory range to be mapped,
2351 * we'll figure out the rest from the vma information.
2352 *
2353 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354 * whatever write-combining details or similar.
2355 *
2356 * Return: %0 on success, negative error code otherwise.
2357 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360 unsigned long vm_len, pfn, pages;
2361
2362 /* Check that the physical memory area passed in looks valid */
2363 if (start + len < start)
2364 return -EINVAL;
2365 /*
2366 * You *really* shouldn't map things that aren't page-aligned,
2367 * but we've historically allowed it because IO memory might
2368 * just have smaller alignment.
2369 */
2370 len += start & ~PAGE_MASK;
2371 pfn = start >> PAGE_SHIFT;
2372 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 if (pfn + pages < pfn)
2374 return -EINVAL;
2375
2376 /* We start the mapping 'vm_pgoff' pages into the area */
2377 if (vma->vm_pgoff > pages)
2378 return -EINVAL;
2379 pfn += vma->vm_pgoff;
2380 pages -= vma->vm_pgoff;
2381
2382 /* Can we fit all of the mapping? */
2383 vm_len = vma->vm_end - vma->vm_start;
2384 if (vm_len >> PAGE_SHIFT > pages)
2385 return -EINVAL;
2386
2387 /* Ok, let it rip */
2388 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 unsigned long addr, unsigned long end,
2394 pte_fn_t fn, void *data, bool create,
2395 pgtbl_mod_mask *mask)
2396 {
2397 pte_t *pte;
2398 int err = 0;
2399 spinlock_t *ptl;
2400
2401 if (create) {
2402 pte = (mm == &init_mm) ?
2403 pte_alloc_kernel_track(pmd, addr, mask) :
2404 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 if (!pte)
2406 return -ENOMEM;
2407 } else {
2408 pte = (mm == &init_mm) ?
2409 pte_offset_kernel(pmd, addr) :
2410 pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 }
2412
2413 BUG_ON(pmd_huge(*pmd));
2414
2415 arch_enter_lazy_mmu_mode();
2416
2417 if (fn) {
2418 do {
2419 if (create || !pte_none(*pte)) {
2420 err = fn(pte++, addr, data);
2421 if (err)
2422 break;
2423 }
2424 } while (addr += PAGE_SIZE, addr != end);
2425 }
2426 *mask |= PGTBL_PTE_MODIFIED;
2427
2428 arch_leave_lazy_mmu_mode();
2429
2430 if (mm != &init_mm)
2431 pte_unmap_unlock(pte-1, ptl);
2432 return err;
2433 }
2434
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 unsigned long addr, unsigned long end,
2437 pte_fn_t fn, void *data, bool create,
2438 pgtbl_mod_mask *mask)
2439 {
2440 pmd_t *pmd;
2441 unsigned long next;
2442 int err = 0;
2443
2444 BUG_ON(pud_huge(*pud));
2445
2446 if (create) {
2447 pmd = pmd_alloc_track(mm, pud, addr, mask);
2448 if (!pmd)
2449 return -ENOMEM;
2450 } else {
2451 pmd = pmd_offset(pud, addr);
2452 }
2453 do {
2454 next = pmd_addr_end(addr, end);
2455 if (create || !pmd_none_or_clear_bad(pmd)) {
2456 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457 create, mask);
2458 if (err)
2459 break;
2460 }
2461 } while (pmd++, addr = next, addr != end);
2462 return err;
2463 }
2464
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466 unsigned long addr, unsigned long end,
2467 pte_fn_t fn, void *data, bool create,
2468 pgtbl_mod_mask *mask)
2469 {
2470 pud_t *pud;
2471 unsigned long next;
2472 int err = 0;
2473
2474 if (create) {
2475 pud = pud_alloc_track(mm, p4d, addr, mask);
2476 if (!pud)
2477 return -ENOMEM;
2478 } else {
2479 pud = pud_offset(p4d, addr);
2480 }
2481 do {
2482 next = pud_addr_end(addr, end);
2483 if (create || !pud_none_or_clear_bad(pud)) {
2484 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485 create, mask);
2486 if (err)
2487 break;
2488 }
2489 } while (pud++, addr = next, addr != end);
2490 return err;
2491 }
2492
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 unsigned long addr, unsigned long end,
2495 pte_fn_t fn, void *data, bool create,
2496 pgtbl_mod_mask *mask)
2497 {
2498 p4d_t *p4d;
2499 unsigned long next;
2500 int err = 0;
2501
2502 if (create) {
2503 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504 if (!p4d)
2505 return -ENOMEM;
2506 } else {
2507 p4d = p4d_offset(pgd, addr);
2508 }
2509 do {
2510 next = p4d_addr_end(addr, end);
2511 if (create || !p4d_none_or_clear_bad(p4d)) {
2512 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513 create, mask);
2514 if (err)
2515 break;
2516 }
2517 } while (p4d++, addr = next, addr != end);
2518 return err;
2519 }
2520
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 unsigned long size, pte_fn_t fn,
2523 void *data, bool create)
2524 {
2525 pgd_t *pgd;
2526 unsigned long start = addr, next;
2527 unsigned long end = addr + size;
2528 pgtbl_mod_mask mask = 0;
2529 int err = 0;
2530
2531 if (WARN_ON(addr >= end))
2532 return -EINVAL;
2533
2534 pgd = pgd_offset(mm, addr);
2535 do {
2536 next = pgd_addr_end(addr, end);
2537 if (!create && pgd_none_or_clear_bad(pgd))
2538 continue;
2539 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540 if (err)
2541 break;
2542 } while (pgd++, addr = next, addr != end);
2543
2544 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 arch_sync_kernel_mappings(start, start + size);
2546
2547 return err;
2548 }
2549
2550 /*
2551 * Scan a region of virtual memory, filling in page tables as necessary
2552 * and calling a provided function on each leaf page table.
2553 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 unsigned long size, pte_fn_t fn, void *data)
2556 {
2557 return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
2561 /*
2562 * Scan a region of virtual memory, calling a provided function on
2563 * each leaf page table where it exists.
2564 *
2565 * Unlike apply_to_page_range, this does _not_ fill in page tables
2566 * where they are absent.
2567 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 unsigned long size, pte_fn_t fn, void *data)
2570 {
2571 return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574
2575 /*
2576 * handle_pte_fault chooses page fault handler according to an entry which was
2577 * read non-atomically. Before making any commitment, on those architectures
2578 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579 * parts, do_swap_page must check under lock before unmapping the pte and
2580 * proceeding (but do_wp_page is only called after already making such a check;
2581 * and do_anonymous_page can safely check later on).
2582 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584 pte_t *page_table, pte_t orig_pte)
2585 {
2586 int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588 if (sizeof(pte_t) > sizeof(unsigned long)) {
2589 spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 spin_lock(ptl);
2591 same = pte_same(*page_table, orig_pte);
2592 spin_unlock(ptl);
2593 }
2594 #endif
2595 pte_unmap(page_table);
2596 return same;
2597 }
2598
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600 struct vm_fault *vmf)
2601 {
2602 bool ret;
2603 void *kaddr;
2604 void __user *uaddr;
2605 bool locked = false;
2606 struct vm_area_struct *vma = vmf->vma;
2607 struct mm_struct *mm = vma->vm_mm;
2608 unsigned long addr = vmf->address;
2609
2610 if (likely(src)) {
2611 copy_user_highpage(dst, src, addr, vma);
2612 return true;
2613 }
2614
2615 /*
2616 * If the source page was a PFN mapping, we don't have
2617 * a "struct page" for it. We do a best-effort copy by
2618 * just copying from the original user address. If that
2619 * fails, we just zero-fill it. Live with it.
2620 */
2621 kaddr = kmap_atomic(dst);
2622 uaddr = (void __user *)(addr & PAGE_MASK);
2623
2624 /*
2625 * On architectures with software "accessed" bits, we would
2626 * take a double page fault, so mark it accessed here.
2627 */
2628 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629 pte_t entry;
2630
2631 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632 locked = true;
2633 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 /*
2635 * Other thread has already handled the fault
2636 * and update local tlb only
2637 */
2638 update_mmu_tlb(vma, addr, vmf->pte);
2639 ret = false;
2640 goto pte_unlock;
2641 }
2642
2643 entry = pte_mkyoung(vmf->orig_pte);
2644 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 update_mmu_cache(vma, addr, vmf->pte);
2646 }
2647
2648 /*
2649 * This really shouldn't fail, because the page is there
2650 * in the page tables. But it might just be unreadable,
2651 * in which case we just give up and fill the result with
2652 * zeroes.
2653 */
2654 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655 if (locked)
2656 goto warn;
2657
2658 /* Re-validate under PTL if the page is still mapped */
2659 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 locked = true;
2661 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662 /* The PTE changed under us, update local tlb */
2663 update_mmu_tlb(vma, addr, vmf->pte);
2664 ret = false;
2665 goto pte_unlock;
2666 }
2667
2668 /*
2669 * The same page can be mapped back since last copy attempt.
2670 * Try to copy again under PTL.
2671 */
2672 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 /*
2674 * Give a warn in case there can be some obscure
2675 * use-case
2676 */
2677 warn:
2678 WARN_ON_ONCE(1);
2679 clear_page(kaddr);
2680 }
2681 }
2682
2683 ret = true;
2684
2685 pte_unlock:
2686 if (locked)
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 kunmap_atomic(kaddr);
2689 flush_dcache_page(dst);
2690
2691 return ret;
2692 }
2693
__get_fault_gfp_mask(struct vm_area_struct * vma)2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696 struct file *vm_file = vma->vm_file;
2697
2698 if (vm_file)
2699 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700
2701 /*
2702 * Special mappings (e.g. VDSO) do not have any file so fake
2703 * a default GFP_KERNEL for them.
2704 */
2705 return GFP_KERNEL;
2706 }
2707
2708 /*
2709 * Notify the address space that the page is about to become writable so that
2710 * it can prohibit this or wait for the page to get into an appropriate state.
2711 *
2712 * We do this without the lock held, so that it can sleep if it needs to.
2713 */
do_page_mkwrite(struct vm_fault * vmf)2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716 vm_fault_t ret;
2717 struct page *page = vmf->page;
2718 unsigned int old_flags = vmf->flags;
2719
2720 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721
2722 if (vmf->vma->vm_file &&
2723 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 return VM_FAULT_SIGBUS;
2725
2726 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727 /* Restore original flags so that caller is not surprised */
2728 vmf->flags = old_flags;
2729 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 return ret;
2731 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 lock_page(page);
2733 if (!page->mapping) {
2734 unlock_page(page);
2735 return 0; /* retry */
2736 }
2737 ret |= VM_FAULT_LOCKED;
2738 } else
2739 VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 return ret;
2741 }
2742
2743 /*
2744 * Handle dirtying of a page in shared file mapping on a write fault.
2745 *
2746 * The function expects the page to be locked and unlocks it.
2747 */
fault_dirty_shared_page(struct vm_fault * vmf)2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750 struct vm_area_struct *vma = vmf->vma;
2751 struct address_space *mapping;
2752 struct page *page = vmf->page;
2753 bool dirtied;
2754 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755
2756 dirtied = set_page_dirty(page);
2757 VM_BUG_ON_PAGE(PageAnon(page), page);
2758 /*
2759 * Take a local copy of the address_space - page.mapping may be zeroed
2760 * by truncate after unlock_page(). The address_space itself remains
2761 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2762 * release semantics to prevent the compiler from undoing this copying.
2763 */
2764 mapping = page_rmapping(page);
2765 unlock_page(page);
2766
2767 if (!page_mkwrite)
2768 file_update_time(vma->vm_file);
2769
2770 /*
2771 * Throttle page dirtying rate down to writeback speed.
2772 *
2773 * mapping may be NULL here because some device drivers do not
2774 * set page.mapping but still dirty their pages
2775 *
2776 * Drop the mmap_lock before waiting on IO, if we can. The file
2777 * is pinning the mapping, as per above.
2778 */
2779 if ((dirtied || page_mkwrite) && mapping) {
2780 struct file *fpin;
2781
2782 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783 balance_dirty_pages_ratelimited(mapping);
2784 if (fpin) {
2785 fput(fpin);
2786 return VM_FAULT_RETRY;
2787 }
2788 }
2789
2790 return 0;
2791 }
2792
2793 /*
2794 * Handle write page faults for pages that can be reused in the current vma
2795 *
2796 * This can happen either due to the mapping being with the VM_SHARED flag,
2797 * or due to us being the last reference standing to the page. In either
2798 * case, all we need to do here is to mark the page as writable and update
2799 * any related book-keeping.
2800 */
wp_page_reuse(struct vm_fault * vmf)2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802 __releases(vmf->ptl)
2803 {
2804 struct vm_area_struct *vma = vmf->vma;
2805 struct page *page = vmf->page;
2806 pte_t entry;
2807 /*
2808 * Clear the pages cpupid information as the existing
2809 * information potentially belongs to a now completely
2810 * unrelated process.
2811 */
2812 if (page)
2813 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814
2815 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 entry = pte_mkyoung(vmf->orig_pte);
2817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 update_mmu_cache(vma, vmf->address, vmf->pte);
2820 pte_unmap_unlock(vmf->pte, vmf->ptl);
2821 count_vm_event(PGREUSE);
2822 }
2823
2824 /*
2825 * Handle the case of a page which we actually need to copy to a new page.
2826 *
2827 * Called with mmap_lock locked and the old page referenced, but
2828 * without the ptl held.
2829 *
2830 * High level logic flow:
2831 *
2832 * - Allocate a page, copy the content of the old page to the new one.
2833 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834 * - Take the PTL. If the pte changed, bail out and release the allocated page
2835 * - If the pte is still the way we remember it, update the page table and all
2836 * relevant references. This includes dropping the reference the page-table
2837 * held to the old page, as well as updating the rmap.
2838 * - In any case, unlock the PTL and drop the reference we took to the old page.
2839 */
wp_page_copy(struct vm_fault * vmf)2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842 struct vm_area_struct *vma = vmf->vma;
2843 struct mm_struct *mm = vma->vm_mm;
2844 struct page *old_page = vmf->page;
2845 struct page *new_page = NULL;
2846 pte_t entry;
2847 int page_copied = 0;
2848 struct mmu_notifier_range range;
2849
2850 if (unlikely(anon_vma_prepare(vma)))
2851 goto oom;
2852
2853 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854 new_page = alloc_zeroed_user_highpage_movable(vma,
2855 vmf->address);
2856 if (!new_page)
2857 goto oom;
2858 } else {
2859 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860 vmf->address);
2861 if (!new_page)
2862 goto oom;
2863
2864 if (!cow_user_page(new_page, old_page, vmf)) {
2865 /*
2866 * COW failed, if the fault was solved by other,
2867 * it's fine. If not, userspace would re-fault on
2868 * the same address and we will handle the fault
2869 * from the second attempt.
2870 */
2871 put_page(new_page);
2872 if (old_page)
2873 put_page(old_page);
2874 return 0;
2875 }
2876 }
2877
2878 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879 goto oom_free_new;
2880 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881
2882 __SetPageUptodate(new_page);
2883
2884 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885 vmf->address & PAGE_MASK,
2886 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 mmu_notifier_invalidate_range_start(&range);
2888
2889 /*
2890 * Re-check the pte - we dropped the lock
2891 */
2892 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894 if (old_page) {
2895 if (!PageAnon(old_page)) {
2896 dec_mm_counter_fast(mm,
2897 mm_counter_file(old_page));
2898 inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 }
2900 } else {
2901 inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 }
2903 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904 entry = mk_pte(new_page, vma->vm_page_prot);
2905 entry = pte_sw_mkyoung(entry);
2906 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2907 /*
2908 * Clear the pte entry and flush it first, before updating the
2909 * pte with the new entry. This will avoid a race condition
2910 * seen in the presence of one thread doing SMC and another
2911 * thread doing COW.
2912 */
2913 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2914 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2915 lru_cache_add_inactive_or_unevictable(new_page, vma);
2916 /*
2917 * We call the notify macro here because, when using secondary
2918 * mmu page tables (such as kvm shadow page tables), we want the
2919 * new page to be mapped directly into the secondary page table.
2920 */
2921 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2922 update_mmu_cache(vma, vmf->address, vmf->pte);
2923 if (old_page) {
2924 /*
2925 * Only after switching the pte to the new page may
2926 * we remove the mapcount here. Otherwise another
2927 * process may come and find the rmap count decremented
2928 * before the pte is switched to the new page, and
2929 * "reuse" the old page writing into it while our pte
2930 * here still points into it and can be read by other
2931 * threads.
2932 *
2933 * The critical issue is to order this
2934 * page_remove_rmap with the ptp_clear_flush above.
2935 * Those stores are ordered by (if nothing else,)
2936 * the barrier present in the atomic_add_negative
2937 * in page_remove_rmap.
2938 *
2939 * Then the TLB flush in ptep_clear_flush ensures that
2940 * no process can access the old page before the
2941 * decremented mapcount is visible. And the old page
2942 * cannot be reused until after the decremented
2943 * mapcount is visible. So transitively, TLBs to
2944 * old page will be flushed before it can be reused.
2945 */
2946 page_remove_rmap(old_page, false);
2947 }
2948
2949 /* Free the old page.. */
2950 new_page = old_page;
2951 page_copied = 1;
2952 } else {
2953 update_mmu_tlb(vma, vmf->address, vmf->pte);
2954 }
2955
2956 if (new_page)
2957 put_page(new_page);
2958
2959 pte_unmap_unlock(vmf->pte, vmf->ptl);
2960 /*
2961 * No need to double call mmu_notifier->invalidate_range() callback as
2962 * the above ptep_clear_flush_notify() did already call it.
2963 */
2964 mmu_notifier_invalidate_range_only_end(&range);
2965 if (old_page) {
2966 /*
2967 * Don't let another task, with possibly unlocked vma,
2968 * keep the mlocked page.
2969 */
2970 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2971 lock_page(old_page); /* LRU manipulation */
2972 if (PageMlocked(old_page))
2973 munlock_vma_page(old_page);
2974 unlock_page(old_page);
2975 }
2976 put_page(old_page);
2977 }
2978 return page_copied ? VM_FAULT_WRITE : 0;
2979 oom_free_new:
2980 put_page(new_page);
2981 oom:
2982 if (old_page)
2983 put_page(old_page);
2984 return VM_FAULT_OOM;
2985 }
2986
2987 /**
2988 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2989 * writeable once the page is prepared
2990 *
2991 * @vmf: structure describing the fault
2992 *
2993 * This function handles all that is needed to finish a write page fault in a
2994 * shared mapping due to PTE being read-only once the mapped page is prepared.
2995 * It handles locking of PTE and modifying it.
2996 *
2997 * The function expects the page to be locked or other protection against
2998 * concurrent faults / writeback (such as DAX radix tree locks).
2999 *
3000 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3001 * we acquired PTE lock.
3002 */
finish_mkwrite_fault(struct vm_fault * vmf)3003 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3004 {
3005 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3006 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3007 &vmf->ptl);
3008 /*
3009 * We might have raced with another page fault while we released the
3010 * pte_offset_map_lock.
3011 */
3012 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3013 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3014 pte_unmap_unlock(vmf->pte, vmf->ptl);
3015 return VM_FAULT_NOPAGE;
3016 }
3017 wp_page_reuse(vmf);
3018 return 0;
3019 }
3020
3021 /*
3022 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3023 * mapping
3024 */
wp_pfn_shared(struct vm_fault * vmf)3025 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3026 {
3027 struct vm_area_struct *vma = vmf->vma;
3028
3029 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3030 vm_fault_t ret;
3031
3032 pte_unmap_unlock(vmf->pte, vmf->ptl);
3033 vmf->flags |= FAULT_FLAG_MKWRITE;
3034 ret = vma->vm_ops->pfn_mkwrite(vmf);
3035 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3036 return ret;
3037 return finish_mkwrite_fault(vmf);
3038 }
3039 wp_page_reuse(vmf);
3040 return VM_FAULT_WRITE;
3041 }
3042
wp_page_shared(struct vm_fault * vmf)3043 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3044 __releases(vmf->ptl)
3045 {
3046 struct vm_area_struct *vma = vmf->vma;
3047 vm_fault_t ret = VM_FAULT_WRITE;
3048
3049 get_page(vmf->page);
3050
3051 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3052 vm_fault_t tmp;
3053
3054 pte_unmap_unlock(vmf->pte, vmf->ptl);
3055 tmp = do_page_mkwrite(vmf);
3056 if (unlikely(!tmp || (tmp &
3057 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3058 put_page(vmf->page);
3059 return tmp;
3060 }
3061 tmp = finish_mkwrite_fault(vmf);
3062 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3063 unlock_page(vmf->page);
3064 put_page(vmf->page);
3065 return tmp;
3066 }
3067 } else {
3068 wp_page_reuse(vmf);
3069 lock_page(vmf->page);
3070 }
3071 ret |= fault_dirty_shared_page(vmf);
3072 put_page(vmf->page);
3073
3074 return ret;
3075 }
3076
3077 /*
3078 * This routine handles present pages, when users try to write
3079 * to a shared page. It is done by copying the page to a new address
3080 * and decrementing the shared-page counter for the old page.
3081 *
3082 * Note that this routine assumes that the protection checks have been
3083 * done by the caller (the low-level page fault routine in most cases).
3084 * Thus we can safely just mark it writable once we've done any necessary
3085 * COW.
3086 *
3087 * We also mark the page dirty at this point even though the page will
3088 * change only once the write actually happens. This avoids a few races,
3089 * and potentially makes it more efficient.
3090 *
3091 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3092 * but allow concurrent faults), with pte both mapped and locked.
3093 * We return with mmap_lock still held, but pte unmapped and unlocked.
3094 */
do_wp_page(struct vm_fault * vmf)3095 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3096 __releases(vmf->ptl)
3097 {
3098 struct vm_area_struct *vma = vmf->vma;
3099
3100 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3101 pte_unmap_unlock(vmf->pte, vmf->ptl);
3102 return handle_userfault(vmf, VM_UFFD_WP);
3103 }
3104
3105 /*
3106 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3107 * is flushed in this case before copying.
3108 */
3109 if (unlikely(userfaultfd_wp(vmf->vma) &&
3110 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3111 flush_tlb_page(vmf->vma, vmf->address);
3112
3113 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3114 if (!vmf->page) {
3115 /*
3116 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3117 * VM_PFNMAP VMA.
3118 *
3119 * We should not cow pages in a shared writeable mapping.
3120 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3121 */
3122 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123 (VM_WRITE|VM_SHARED))
3124 return wp_pfn_shared(vmf);
3125
3126 pte_unmap_unlock(vmf->pte, vmf->ptl);
3127 return wp_page_copy(vmf);
3128 }
3129
3130 /*
3131 * Take out anonymous pages first, anonymous shared vmas are
3132 * not dirty accountable.
3133 */
3134 if (PageAnon(vmf->page)) {
3135 struct page *page = vmf->page;
3136
3137 /* PageKsm() doesn't necessarily raise the page refcount */
3138 if (PageKsm(page) || page_count(page) != 1)
3139 goto copy;
3140 if (!trylock_page(page))
3141 goto copy;
3142 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3143 unlock_page(page);
3144 goto copy;
3145 }
3146 /*
3147 * Ok, we've got the only map reference, and the only
3148 * page count reference, and the page is locked,
3149 * it's dark out, and we're wearing sunglasses. Hit it.
3150 */
3151 unlock_page(page);
3152 wp_page_reuse(vmf);
3153 return VM_FAULT_WRITE;
3154 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3155 (VM_WRITE|VM_SHARED))) {
3156 return wp_page_shared(vmf);
3157 }
3158 copy:
3159 /*
3160 * Ok, we need to copy. Oh, well..
3161 */
3162 get_page(vmf->page);
3163
3164 pte_unmap_unlock(vmf->pte, vmf->ptl);
3165 return wp_page_copy(vmf);
3166 }
3167
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3168 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3169 unsigned long start_addr, unsigned long end_addr,
3170 struct zap_details *details)
3171 {
3172 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3173 }
3174
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3175 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3176 struct zap_details *details)
3177 {
3178 struct vm_area_struct *vma;
3179 pgoff_t vba, vea, zba, zea;
3180
3181 vma_interval_tree_foreach(vma, root,
3182 details->first_index, details->last_index) {
3183
3184 vba = vma->vm_pgoff;
3185 vea = vba + vma_pages(vma) - 1;
3186 zba = details->first_index;
3187 if (zba < vba)
3188 zba = vba;
3189 zea = details->last_index;
3190 if (zea > vea)
3191 zea = vea;
3192
3193 unmap_mapping_range_vma(vma,
3194 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3195 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3196 details);
3197 }
3198 }
3199
3200 /**
3201 * unmap_mapping_page() - Unmap single page from processes.
3202 * @page: The locked page to be unmapped.
3203 *
3204 * Unmap this page from any userspace process which still has it mmaped.
3205 * Typically, for efficiency, the range of nearby pages has already been
3206 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3207 * truncation or invalidation holds the lock on a page, it may find that
3208 * the page has been remapped again: and then uses unmap_mapping_page()
3209 * to unmap it finally.
3210 */
unmap_mapping_page(struct page * page)3211 void unmap_mapping_page(struct page *page)
3212 {
3213 struct address_space *mapping = page->mapping;
3214 struct zap_details details = { };
3215
3216 VM_BUG_ON(!PageLocked(page));
3217 VM_BUG_ON(PageTail(page));
3218
3219 details.check_mapping = mapping;
3220 details.first_index = page->index;
3221 details.last_index = page->index + thp_nr_pages(page) - 1;
3222 details.single_page = page;
3223
3224 i_mmap_lock_write(mapping);
3225 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3226 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3227 i_mmap_unlock_write(mapping);
3228 }
3229
3230 /**
3231 * unmap_mapping_pages() - Unmap pages from processes.
3232 * @mapping: The address space containing pages to be unmapped.
3233 * @start: Index of first page to be unmapped.
3234 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3235 * @even_cows: Whether to unmap even private COWed pages.
3236 *
3237 * Unmap the pages in this address space from any userspace process which
3238 * has them mmaped. Generally, you want to remove COWed pages as well when
3239 * a file is being truncated, but not when invalidating pages from the page
3240 * cache.
3241 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3242 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3243 pgoff_t nr, bool even_cows)
3244 {
3245 struct zap_details details = { };
3246
3247 details.check_mapping = even_cows ? NULL : mapping;
3248 details.first_index = start;
3249 details.last_index = start + nr - 1;
3250 if (details.last_index < details.first_index)
3251 details.last_index = ULONG_MAX;
3252
3253 i_mmap_lock_write(mapping);
3254 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3255 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3256 i_mmap_unlock_write(mapping);
3257 }
3258
3259 /**
3260 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3261 * address_space corresponding to the specified byte range in the underlying
3262 * file.
3263 *
3264 * @mapping: the address space containing mmaps to be unmapped.
3265 * @holebegin: byte in first page to unmap, relative to the start of
3266 * the underlying file. This will be rounded down to a PAGE_SIZE
3267 * boundary. Note that this is different from truncate_pagecache(), which
3268 * must keep the partial page. In contrast, we must get rid of
3269 * partial pages.
3270 * @holelen: size of prospective hole in bytes. This will be rounded
3271 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3272 * end of the file.
3273 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3274 * but 0 when invalidating pagecache, don't throw away private data.
3275 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3276 void unmap_mapping_range(struct address_space *mapping,
3277 loff_t const holebegin, loff_t const holelen, int even_cows)
3278 {
3279 pgoff_t hba = holebegin >> PAGE_SHIFT;
3280 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3281
3282 /* Check for overflow. */
3283 if (sizeof(holelen) > sizeof(hlen)) {
3284 long long holeend =
3285 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3286 if (holeend & ~(long long)ULONG_MAX)
3287 hlen = ULONG_MAX - hba + 1;
3288 }
3289
3290 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3291 }
3292 EXPORT_SYMBOL(unmap_mapping_range);
3293
3294 /*
3295 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3296 * but allow concurrent faults), and pte mapped but not yet locked.
3297 * We return with pte unmapped and unlocked.
3298 *
3299 * We return with the mmap_lock locked or unlocked in the same cases
3300 * as does filemap_fault().
3301 */
do_swap_page(struct vm_fault * vmf)3302 vm_fault_t do_swap_page(struct vm_fault *vmf)
3303 {
3304 struct vm_area_struct *vma = vmf->vma;
3305 struct page *page = NULL, *swapcache;
3306 swp_entry_t entry;
3307 pte_t pte;
3308 int locked;
3309 int exclusive = 0;
3310 vm_fault_t ret = 0;
3311 void *shadow = NULL;
3312
3313 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3314 goto out;
3315
3316 entry = pte_to_swp_entry(vmf->orig_pte);
3317 if (unlikely(non_swap_entry(entry))) {
3318 if (is_migration_entry(entry)) {
3319 migration_entry_wait(vma->vm_mm, vmf->pmd,
3320 vmf->address);
3321 } else if (is_device_private_entry(entry)) {
3322 vmf->page = device_private_entry_to_page(entry);
3323 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3324 vmf->address, &vmf->ptl);
3325 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3326 spin_unlock(vmf->ptl);
3327 goto out;
3328 }
3329
3330 /*
3331 * Get a page reference while we know the page can't be
3332 * freed.
3333 */
3334 get_page(vmf->page);
3335 pte_unmap_unlock(vmf->pte, vmf->ptl);
3336 vmf->page->pgmap->ops->migrate_to_ram(vmf);
3337 put_page(vmf->page);
3338 } else if (is_hwpoison_entry(entry)) {
3339 ret = VM_FAULT_HWPOISON;
3340 } else {
3341 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3342 ret = VM_FAULT_SIGBUS;
3343 }
3344 goto out;
3345 }
3346
3347
3348 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3349 page = lookup_swap_cache(entry, vma, vmf->address);
3350 swapcache = page;
3351
3352 if (!page) {
3353 struct swap_info_struct *si = swp_swap_info(entry);
3354
3355 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3356 __swap_count(entry) == 1) {
3357 /* skip swapcache */
3358 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3359 vmf->address);
3360 if (page) {
3361 int err;
3362
3363 __SetPageLocked(page);
3364 __SetPageSwapBacked(page);
3365 set_page_private(page, entry.val);
3366
3367 /* Tell memcg to use swap ownership records */
3368 SetPageSwapCache(page);
3369 err = mem_cgroup_charge(page, vma->vm_mm,
3370 GFP_KERNEL);
3371 ClearPageSwapCache(page);
3372 if (err) {
3373 ret = VM_FAULT_OOM;
3374 goto out_page;
3375 }
3376
3377 shadow = get_shadow_from_swap_cache(entry);
3378 if (shadow)
3379 workingset_refault(page, shadow);
3380
3381 lru_cache_add(page);
3382 swap_readpage(page, true);
3383 }
3384 } else {
3385 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3386 vmf);
3387 swapcache = page;
3388 }
3389
3390 if (!page) {
3391 /*
3392 * Back out if somebody else faulted in this pte
3393 * while we released the pte lock.
3394 */
3395 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3396 vmf->address, &vmf->ptl);
3397 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3398 ret = VM_FAULT_OOM;
3399 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3400 goto unlock;
3401 }
3402
3403 /* Had to read the page from swap area: Major fault */
3404 ret = VM_FAULT_MAJOR;
3405 count_vm_event(PGMAJFAULT);
3406 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3407 } else if (PageHWPoison(page)) {
3408 /*
3409 * hwpoisoned dirty swapcache pages are kept for killing
3410 * owner processes (which may be unknown at hwpoison time)
3411 */
3412 ret = VM_FAULT_HWPOISON;
3413 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3414 goto out_release;
3415 }
3416
3417 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3418
3419 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3420 if (!locked) {
3421 ret |= VM_FAULT_RETRY;
3422 goto out_release;
3423 }
3424
3425 /*
3426 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3427 * release the swapcache from under us. The page pin, and pte_same
3428 * test below, are not enough to exclude that. Even if it is still
3429 * swapcache, we need to check that the page's swap has not changed.
3430 */
3431 if (unlikely((!PageSwapCache(page) ||
3432 page_private(page) != entry.val)) && swapcache)
3433 goto out_page;
3434
3435 page = ksm_might_need_to_copy(page, vma, vmf->address);
3436 if (unlikely(!page)) {
3437 ret = VM_FAULT_OOM;
3438 page = swapcache;
3439 goto out_page;
3440 }
3441
3442 cgroup_throttle_swaprate(page, GFP_KERNEL);
3443
3444 /*
3445 * Back out if somebody else already faulted in this pte.
3446 */
3447 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3448 &vmf->ptl);
3449 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3450 goto out_nomap;
3451
3452 if (unlikely(!PageUptodate(page))) {
3453 ret = VM_FAULT_SIGBUS;
3454 goto out_nomap;
3455 }
3456
3457 /*
3458 * The page isn't present yet, go ahead with the fault.
3459 *
3460 * Be careful about the sequence of operations here.
3461 * To get its accounting right, reuse_swap_page() must be called
3462 * while the page is counted on swap but not yet in mapcount i.e.
3463 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3464 * must be called after the swap_free(), or it will never succeed.
3465 */
3466
3467 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3468 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3469 pte = mk_pte(page, vma->vm_page_prot);
3470 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3471 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3472 vmf->flags &= ~FAULT_FLAG_WRITE;
3473 ret |= VM_FAULT_WRITE;
3474 exclusive = RMAP_EXCLUSIVE;
3475 }
3476 flush_icache_page(vma, page);
3477 if (pte_swp_soft_dirty(vmf->orig_pte))
3478 pte = pte_mksoft_dirty(pte);
3479 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3480 pte = pte_mkuffd_wp(pte);
3481 pte = pte_wrprotect(pte);
3482 }
3483 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3484 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3485 vmf->orig_pte = pte;
3486
3487 /* ksm created a completely new copy */
3488 if (unlikely(page != swapcache && swapcache)) {
3489 page_add_new_anon_rmap(page, vma, vmf->address, false);
3490 lru_cache_add_inactive_or_unevictable(page, vma);
3491 } else {
3492 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3493 }
3494
3495 swap_free(entry);
3496 if (mem_cgroup_swap_full(page) ||
3497 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3498 try_to_free_swap(page);
3499 unlock_page(page);
3500 if (page != swapcache && swapcache) {
3501 /*
3502 * Hold the lock to avoid the swap entry to be reused
3503 * until we take the PT lock for the pte_same() check
3504 * (to avoid false positives from pte_same). For
3505 * further safety release the lock after the swap_free
3506 * so that the swap count won't change under a
3507 * parallel locked swapcache.
3508 */
3509 unlock_page(swapcache);
3510 put_page(swapcache);
3511 }
3512
3513 if (vmf->flags & FAULT_FLAG_WRITE) {
3514 ret |= do_wp_page(vmf);
3515 if (ret & VM_FAULT_ERROR)
3516 ret &= VM_FAULT_ERROR;
3517 goto out;
3518 }
3519
3520 /* No need to invalidate - it was non-present before */
3521 update_mmu_cache(vma, vmf->address, vmf->pte);
3522 unlock:
3523 pte_unmap_unlock(vmf->pte, vmf->ptl);
3524 out:
3525 return ret;
3526 out_nomap:
3527 pte_unmap_unlock(vmf->pte, vmf->ptl);
3528 out_page:
3529 unlock_page(page);
3530 out_release:
3531 put_page(page);
3532 if (page != swapcache && swapcache) {
3533 unlock_page(swapcache);
3534 put_page(swapcache);
3535 }
3536 return ret;
3537 }
3538
3539 /*
3540 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3541 * but allow concurrent faults), and pte mapped but not yet locked.
3542 * We return with mmap_lock still held, but pte unmapped and unlocked.
3543 */
do_anonymous_page(struct vm_fault * vmf)3544 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3545 {
3546 struct vm_area_struct *vma = vmf->vma;
3547 struct page *page;
3548 vm_fault_t ret = 0;
3549 pte_t entry;
3550
3551 /* File mapping without ->vm_ops ? */
3552 if (vma->vm_flags & VM_SHARED)
3553 return VM_FAULT_SIGBUS;
3554
3555 /*
3556 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3557 * pte_offset_map() on pmds where a huge pmd might be created
3558 * from a different thread.
3559 *
3560 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3561 * parallel threads are excluded by other means.
3562 *
3563 * Here we only have mmap_read_lock(mm).
3564 */
3565 if (pte_alloc(vma->vm_mm, vmf->pmd))
3566 return VM_FAULT_OOM;
3567
3568 /* See the comment in pte_alloc_one_map() */
3569 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3570 return 0;
3571
3572 /* Use the zero-page for reads */
3573 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3574 !mm_forbids_zeropage(vma->vm_mm)) {
3575 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3576 vma->vm_page_prot));
3577 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3578 vmf->address, &vmf->ptl);
3579 if (!pte_none(*vmf->pte)) {
3580 update_mmu_tlb(vma, vmf->address, vmf->pte);
3581 goto unlock;
3582 }
3583 ret = check_stable_address_space(vma->vm_mm);
3584 if (ret)
3585 goto unlock;
3586 /* Deliver the page fault to userland, check inside PT lock */
3587 if (userfaultfd_missing(vma)) {
3588 pte_unmap_unlock(vmf->pte, vmf->ptl);
3589 return handle_userfault(vmf, VM_UFFD_MISSING);
3590 }
3591 goto setpte;
3592 }
3593
3594 /* Allocate our own private page. */
3595 if (unlikely(anon_vma_prepare(vma)))
3596 goto oom;
3597 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3598 if (!page)
3599 goto oom;
3600
3601 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3602 goto oom_free_page;
3603 cgroup_throttle_swaprate(page, GFP_KERNEL);
3604
3605 /*
3606 * The memory barrier inside __SetPageUptodate makes sure that
3607 * preceding stores to the page contents become visible before
3608 * the set_pte_at() write.
3609 */
3610 __SetPageUptodate(page);
3611
3612 entry = mk_pte(page, vma->vm_page_prot);
3613 entry = pte_sw_mkyoung(entry);
3614 if (vma->vm_flags & VM_WRITE)
3615 entry = pte_mkwrite(pte_mkdirty(entry));
3616
3617 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3618 &vmf->ptl);
3619 if (!pte_none(*vmf->pte)) {
3620 update_mmu_cache(vma, vmf->address, vmf->pte);
3621 goto release;
3622 }
3623
3624 ret = check_stable_address_space(vma->vm_mm);
3625 if (ret)
3626 goto release;
3627
3628 /* Deliver the page fault to userland, check inside PT lock */
3629 if (userfaultfd_missing(vma)) {
3630 pte_unmap_unlock(vmf->pte, vmf->ptl);
3631 put_page(page);
3632 return handle_userfault(vmf, VM_UFFD_MISSING);
3633 }
3634
3635 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3636 page_add_new_anon_rmap(page, vma, vmf->address, false);
3637 lru_cache_add_inactive_or_unevictable(page, vma);
3638 setpte:
3639 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3640
3641 /* No need to invalidate - it was non-present before */
3642 update_mmu_cache(vma, vmf->address, vmf->pte);
3643 unlock:
3644 pte_unmap_unlock(vmf->pte, vmf->ptl);
3645 return ret;
3646 release:
3647 put_page(page);
3648 goto unlock;
3649 oom_free_page:
3650 put_page(page);
3651 oom:
3652 return VM_FAULT_OOM;
3653 }
3654
3655 /*
3656 * The mmap_lock must have been held on entry, and may have been
3657 * released depending on flags and vma->vm_ops->fault() return value.
3658 * See filemap_fault() and __lock_page_retry().
3659 */
__do_fault(struct vm_fault * vmf)3660 static vm_fault_t __do_fault(struct vm_fault *vmf)
3661 {
3662 struct vm_area_struct *vma = vmf->vma;
3663 vm_fault_t ret;
3664
3665 /*
3666 * Preallocate pte before we take page_lock because this might lead to
3667 * deadlocks for memcg reclaim which waits for pages under writeback:
3668 * lock_page(A)
3669 * SetPageWriteback(A)
3670 * unlock_page(A)
3671 * lock_page(B)
3672 * lock_page(B)
3673 * pte_alloc_one
3674 * shrink_page_list
3675 * wait_on_page_writeback(A)
3676 * SetPageWriteback(B)
3677 * unlock_page(B)
3678 * # flush A, B to clear the writeback
3679 */
3680 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3681 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3682 if (!vmf->prealloc_pte)
3683 return VM_FAULT_OOM;
3684 smp_wmb(); /* See comment in __pte_alloc() */
3685 }
3686
3687 ret = vma->vm_ops->fault(vmf);
3688 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3689 VM_FAULT_DONE_COW)))
3690 return ret;
3691
3692 if (unlikely(PageHWPoison(vmf->page))) {
3693 if (ret & VM_FAULT_LOCKED)
3694 unlock_page(vmf->page);
3695 put_page(vmf->page);
3696 vmf->page = NULL;
3697 return VM_FAULT_HWPOISON;
3698 }
3699
3700 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3701 lock_page(vmf->page);
3702 else
3703 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3704
3705 return ret;
3706 }
3707
3708 /*
3709 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3710 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3711 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3712 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3713 */
pmd_devmap_trans_unstable(pmd_t * pmd)3714 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3715 {
3716 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3717 }
3718
pte_alloc_one_map(struct vm_fault * vmf)3719 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3720 {
3721 struct vm_area_struct *vma = vmf->vma;
3722
3723 if (!pmd_none(*vmf->pmd))
3724 goto map_pte;
3725 if (vmf->prealloc_pte) {
3726 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3727 if (unlikely(!pmd_none(*vmf->pmd))) {
3728 spin_unlock(vmf->ptl);
3729 goto map_pte;
3730 }
3731
3732 mm_inc_nr_ptes(vma->vm_mm);
3733 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3734 spin_unlock(vmf->ptl);
3735 vmf->prealloc_pte = NULL;
3736 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3737 return VM_FAULT_OOM;
3738 }
3739 map_pte:
3740 /*
3741 * If a huge pmd materialized under us just retry later. Use
3742 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3743 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3744 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3745 * running immediately after a huge pmd fault in a different thread of
3746 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3747 * All we have to ensure is that it is a regular pmd that we can walk
3748 * with pte_offset_map() and we can do that through an atomic read in
3749 * C, which is what pmd_trans_unstable() provides.
3750 */
3751 if (pmd_devmap_trans_unstable(vmf->pmd))
3752 return VM_FAULT_NOPAGE;
3753
3754 /*
3755 * At this point we know that our vmf->pmd points to a page of ptes
3756 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3757 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3758 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3759 * be valid and we will re-check to make sure the vmf->pte isn't
3760 * pte_none() under vmf->ptl protection when we return to
3761 * alloc_set_pte().
3762 */
3763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3764 &vmf->ptl);
3765 return 0;
3766 }
3767
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3769 static void deposit_prealloc_pte(struct vm_fault *vmf)
3770 {
3771 struct vm_area_struct *vma = vmf->vma;
3772
3773 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3774 /*
3775 * We are going to consume the prealloc table,
3776 * count that as nr_ptes.
3777 */
3778 mm_inc_nr_ptes(vma->vm_mm);
3779 vmf->prealloc_pte = NULL;
3780 }
3781
do_set_pmd(struct vm_fault * vmf,struct page * page)3782 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3783 {
3784 struct vm_area_struct *vma = vmf->vma;
3785 bool write = vmf->flags & FAULT_FLAG_WRITE;
3786 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3787 pmd_t entry;
3788 int i;
3789 vm_fault_t ret = VM_FAULT_FALLBACK;
3790
3791 if (!transhuge_vma_suitable(vma, haddr))
3792 return ret;
3793
3794 page = compound_head(page);
3795 if (compound_order(page) != HPAGE_PMD_ORDER)
3796 return ret;
3797
3798 /*
3799 * Archs like ppc64 need additonal space to store information
3800 * related to pte entry. Use the preallocated table for that.
3801 */
3802 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3803 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3804 if (!vmf->prealloc_pte)
3805 return VM_FAULT_OOM;
3806 smp_wmb(); /* See comment in __pte_alloc() */
3807 }
3808
3809 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3810 if (unlikely(!pmd_none(*vmf->pmd)))
3811 goto out;
3812
3813 for (i = 0; i < HPAGE_PMD_NR; i++)
3814 flush_icache_page(vma, page + i);
3815
3816 entry = mk_huge_pmd(page, vma->vm_page_prot);
3817 if (write)
3818 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3819
3820 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3821 page_add_file_rmap(page, true);
3822 /*
3823 * deposit and withdraw with pmd lock held
3824 */
3825 if (arch_needs_pgtable_deposit())
3826 deposit_prealloc_pte(vmf);
3827
3828 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3829
3830 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3831
3832 /* fault is handled */
3833 ret = 0;
3834 count_vm_event(THP_FILE_MAPPED);
3835 out:
3836 spin_unlock(vmf->ptl);
3837 return ret;
3838 }
3839 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3840 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3841 {
3842 BUILD_BUG();
3843 return 0;
3844 }
3845 #endif
3846
3847 /**
3848 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3849 * mapping. If needed, the function allocates page table or use pre-allocated.
3850 *
3851 * @vmf: fault environment
3852 * @page: page to map
3853 *
3854 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3855 * return.
3856 *
3857 * Target users are page handler itself and implementations of
3858 * vm_ops->map_pages.
3859 *
3860 * Return: %0 on success, %VM_FAULT_ code in case of error.
3861 */
alloc_set_pte(struct vm_fault * vmf,struct page * page)3862 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3863 {
3864 struct vm_area_struct *vma = vmf->vma;
3865 bool write = vmf->flags & FAULT_FLAG_WRITE;
3866 pte_t entry;
3867 vm_fault_t ret;
3868
3869 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3870 ret = do_set_pmd(vmf, page);
3871 if (ret != VM_FAULT_FALLBACK)
3872 return ret;
3873 }
3874
3875 if (!vmf->pte) {
3876 ret = pte_alloc_one_map(vmf);
3877 if (ret)
3878 return ret;
3879 }
3880
3881 /* Re-check under ptl */
3882 if (unlikely(!pte_none(*vmf->pte))) {
3883 update_mmu_tlb(vma, vmf->address, vmf->pte);
3884 return VM_FAULT_NOPAGE;
3885 }
3886
3887 flush_icache_page(vma, page);
3888 entry = mk_pte(page, vma->vm_page_prot);
3889 entry = pte_sw_mkyoung(entry);
3890 if (write)
3891 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3892 /* copy-on-write page */
3893 if (write && !(vma->vm_flags & VM_SHARED)) {
3894 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3895 page_add_new_anon_rmap(page, vma, vmf->address, false);
3896 lru_cache_add_inactive_or_unevictable(page, vma);
3897 } else {
3898 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3899 page_add_file_rmap(page, false);
3900 }
3901 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3902
3903 /* no need to invalidate: a not-present page won't be cached */
3904 update_mmu_cache(vma, vmf->address, vmf->pte);
3905
3906 return 0;
3907 }
3908
3909
3910 /**
3911 * finish_fault - finish page fault once we have prepared the page to fault
3912 *
3913 * @vmf: structure describing the fault
3914 *
3915 * This function handles all that is needed to finish a page fault once the
3916 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3917 * given page, adds reverse page mapping, handles memcg charges and LRU
3918 * addition.
3919 *
3920 * The function expects the page to be locked and on success it consumes a
3921 * reference of a page being mapped (for the PTE which maps it).
3922 *
3923 * Return: %0 on success, %VM_FAULT_ code in case of error.
3924 */
finish_fault(struct vm_fault * vmf)3925 vm_fault_t finish_fault(struct vm_fault *vmf)
3926 {
3927 struct page *page;
3928 vm_fault_t ret = 0;
3929
3930 /* Did we COW the page? */
3931 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3932 !(vmf->vma->vm_flags & VM_SHARED))
3933 page = vmf->cow_page;
3934 else
3935 page = vmf->page;
3936
3937 /*
3938 * check even for read faults because we might have lost our CoWed
3939 * page
3940 */
3941 if (!(vmf->vma->vm_flags & VM_SHARED))
3942 ret = check_stable_address_space(vmf->vma->vm_mm);
3943 if (!ret)
3944 ret = alloc_set_pte(vmf, page);
3945 if (vmf->pte)
3946 pte_unmap_unlock(vmf->pte, vmf->ptl);
3947 return ret;
3948 }
3949
3950 static unsigned long fault_around_bytes __read_mostly =
3951 rounddown_pow_of_two(65536);
3952
3953 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3954 static int fault_around_bytes_get(void *data, u64 *val)
3955 {
3956 *val = fault_around_bytes;
3957 return 0;
3958 }
3959
3960 /*
3961 * fault_around_bytes must be rounded down to the nearest page order as it's
3962 * what do_fault_around() expects to see.
3963 */
fault_around_bytes_set(void * data,u64 val)3964 static int fault_around_bytes_set(void *data, u64 val)
3965 {
3966 if (val / PAGE_SIZE > PTRS_PER_PTE)
3967 return -EINVAL;
3968 if (val > PAGE_SIZE)
3969 fault_around_bytes = rounddown_pow_of_two(val);
3970 else
3971 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3972 return 0;
3973 }
3974 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3975 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3976
fault_around_debugfs(void)3977 static int __init fault_around_debugfs(void)
3978 {
3979 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3980 &fault_around_bytes_fops);
3981 return 0;
3982 }
3983 late_initcall(fault_around_debugfs);
3984 #endif
3985
3986 /*
3987 * do_fault_around() tries to map few pages around the fault address. The hope
3988 * is that the pages will be needed soon and this will lower the number of
3989 * faults to handle.
3990 *
3991 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3992 * not ready to be mapped: not up-to-date, locked, etc.
3993 *
3994 * This function is called with the page table lock taken. In the split ptlock
3995 * case the page table lock only protects only those entries which belong to
3996 * the page table corresponding to the fault address.
3997 *
3998 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3999 * only once.
4000 *
4001 * fault_around_bytes defines how many bytes we'll try to map.
4002 * do_fault_around() expects it to be set to a power of two less than or equal
4003 * to PTRS_PER_PTE.
4004 *
4005 * The virtual address of the area that we map is naturally aligned to
4006 * fault_around_bytes rounded down to the machine page size
4007 * (and therefore to page order). This way it's easier to guarantee
4008 * that we don't cross page table boundaries.
4009 */
do_fault_around(struct vm_fault * vmf)4010 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4011 {
4012 unsigned long address = vmf->address, nr_pages, mask;
4013 pgoff_t start_pgoff = vmf->pgoff;
4014 pgoff_t end_pgoff;
4015 int off;
4016 vm_fault_t ret = 0;
4017
4018 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4019 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4020
4021 vmf->address = max(address & mask, vmf->vma->vm_start);
4022 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4023 start_pgoff -= off;
4024
4025 /*
4026 * end_pgoff is either the end of the page table, the end of
4027 * the vma or nr_pages from start_pgoff, depending what is nearest.
4028 */
4029 end_pgoff = start_pgoff -
4030 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4031 PTRS_PER_PTE - 1;
4032 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4033 start_pgoff + nr_pages - 1);
4034
4035 if (pmd_none(*vmf->pmd)) {
4036 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4037 if (!vmf->prealloc_pte)
4038 goto out;
4039 smp_wmb(); /* See comment in __pte_alloc() */
4040 }
4041
4042 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4043
4044 /* Huge page is mapped? Page fault is solved */
4045 if (pmd_trans_huge(*vmf->pmd)) {
4046 ret = VM_FAULT_NOPAGE;
4047 goto out;
4048 }
4049
4050 /* ->map_pages() haven't done anything useful. Cold page cache? */
4051 if (!vmf->pte)
4052 goto out;
4053
4054 /* check if the page fault is solved */
4055 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4056 if (!pte_none(*vmf->pte))
4057 ret = VM_FAULT_NOPAGE;
4058 pte_unmap_unlock(vmf->pte, vmf->ptl);
4059 out:
4060 vmf->address = address;
4061 vmf->pte = NULL;
4062 return ret;
4063 }
4064
do_read_fault(struct vm_fault * vmf)4065 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4066 {
4067 struct vm_area_struct *vma = vmf->vma;
4068 vm_fault_t ret = 0;
4069
4070 /*
4071 * Let's call ->map_pages() first and use ->fault() as fallback
4072 * if page by the offset is not ready to be mapped (cold cache or
4073 * something).
4074 */
4075 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4076 ret = do_fault_around(vmf);
4077 if (ret)
4078 return ret;
4079 }
4080
4081 ret = __do_fault(vmf);
4082 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4083 return ret;
4084
4085 ret |= finish_fault(vmf);
4086 unlock_page(vmf->page);
4087 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4088 put_page(vmf->page);
4089 return ret;
4090 }
4091
do_cow_fault(struct vm_fault * vmf)4092 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4093 {
4094 struct vm_area_struct *vma = vmf->vma;
4095 vm_fault_t ret;
4096
4097 if (unlikely(anon_vma_prepare(vma)))
4098 return VM_FAULT_OOM;
4099
4100 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4101 if (!vmf->cow_page)
4102 return VM_FAULT_OOM;
4103
4104 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4105 put_page(vmf->cow_page);
4106 return VM_FAULT_OOM;
4107 }
4108 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4109
4110 ret = __do_fault(vmf);
4111 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4112 goto uncharge_out;
4113 if (ret & VM_FAULT_DONE_COW)
4114 return ret;
4115
4116 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4117 __SetPageUptodate(vmf->cow_page);
4118
4119 ret |= finish_fault(vmf);
4120 unlock_page(vmf->page);
4121 put_page(vmf->page);
4122 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4123 goto uncharge_out;
4124 return ret;
4125 uncharge_out:
4126 put_page(vmf->cow_page);
4127 return ret;
4128 }
4129
do_shared_fault(struct vm_fault * vmf)4130 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4131 {
4132 struct vm_area_struct *vma = vmf->vma;
4133 vm_fault_t ret, tmp;
4134
4135 ret = __do_fault(vmf);
4136 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4137 return ret;
4138
4139 /*
4140 * Check if the backing address space wants to know that the page is
4141 * about to become writable
4142 */
4143 if (vma->vm_ops->page_mkwrite) {
4144 unlock_page(vmf->page);
4145 tmp = do_page_mkwrite(vmf);
4146 if (unlikely(!tmp ||
4147 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4148 put_page(vmf->page);
4149 return tmp;
4150 }
4151 }
4152
4153 ret |= finish_fault(vmf);
4154 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4155 VM_FAULT_RETRY))) {
4156 unlock_page(vmf->page);
4157 put_page(vmf->page);
4158 return ret;
4159 }
4160
4161 ret |= fault_dirty_shared_page(vmf);
4162 return ret;
4163 }
4164
4165 /*
4166 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4167 * but allow concurrent faults).
4168 * The mmap_lock may have been released depending on flags and our
4169 * return value. See filemap_fault() and __lock_page_or_retry().
4170 * If mmap_lock is released, vma may become invalid (for example
4171 * by other thread calling munmap()).
4172 */
do_fault(struct vm_fault * vmf)4173 static vm_fault_t do_fault(struct vm_fault *vmf)
4174 {
4175 struct vm_area_struct *vma = vmf->vma;
4176 struct mm_struct *vm_mm = vma->vm_mm;
4177 vm_fault_t ret;
4178
4179 /*
4180 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4181 */
4182 if (!vma->vm_ops->fault) {
4183 /*
4184 * If we find a migration pmd entry or a none pmd entry, which
4185 * should never happen, return SIGBUS
4186 */
4187 if (unlikely(!pmd_present(*vmf->pmd)))
4188 ret = VM_FAULT_SIGBUS;
4189 else {
4190 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4191 vmf->pmd,
4192 vmf->address,
4193 &vmf->ptl);
4194 /*
4195 * Make sure this is not a temporary clearing of pte
4196 * by holding ptl and checking again. A R/M/W update
4197 * of pte involves: take ptl, clearing the pte so that
4198 * we don't have concurrent modification by hardware
4199 * followed by an update.
4200 */
4201 if (unlikely(pte_none(*vmf->pte)))
4202 ret = VM_FAULT_SIGBUS;
4203 else
4204 ret = VM_FAULT_NOPAGE;
4205
4206 pte_unmap_unlock(vmf->pte, vmf->ptl);
4207 }
4208 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4209 ret = do_read_fault(vmf);
4210 else if (!(vma->vm_flags & VM_SHARED))
4211 ret = do_cow_fault(vmf);
4212 else
4213 ret = do_shared_fault(vmf);
4214
4215 /* preallocated pagetable is unused: free it */
4216 if (vmf->prealloc_pte) {
4217 pte_free(vm_mm, vmf->prealloc_pte);
4218 vmf->prealloc_pte = NULL;
4219 }
4220 return ret;
4221 }
4222
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4223 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4224 unsigned long addr, int page_nid,
4225 int *flags)
4226 {
4227 get_page(page);
4228
4229 count_vm_numa_event(NUMA_HINT_FAULTS);
4230 if (page_nid == numa_node_id()) {
4231 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4232 *flags |= TNF_FAULT_LOCAL;
4233 }
4234
4235 return mpol_misplaced(page, vma, addr);
4236 }
4237
do_numa_page(struct vm_fault * vmf)4238 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4239 {
4240 struct vm_area_struct *vma = vmf->vma;
4241 struct page *page = NULL;
4242 int page_nid = NUMA_NO_NODE;
4243 int last_cpupid;
4244 int target_nid;
4245 bool migrated = false;
4246 pte_t pte, old_pte;
4247 bool was_writable = pte_savedwrite(vmf->orig_pte);
4248 int flags = 0;
4249
4250 /*
4251 * The "pte" at this point cannot be used safely without
4252 * validation through pte_unmap_same(). It's of NUMA type but
4253 * the pfn may be screwed if the read is non atomic.
4254 */
4255 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4256 spin_lock(vmf->ptl);
4257 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4258 pte_unmap_unlock(vmf->pte, vmf->ptl);
4259 goto out;
4260 }
4261
4262 /*
4263 * Make it present again, Depending on how arch implementes non
4264 * accessible ptes, some can allow access by kernel mode.
4265 */
4266 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4267 pte = pte_modify(old_pte, vma->vm_page_prot);
4268 pte = pte_mkyoung(pte);
4269 if (was_writable)
4270 pte = pte_mkwrite(pte);
4271 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4272 update_mmu_cache(vma, vmf->address, vmf->pte);
4273
4274 page = vm_normal_page(vma, vmf->address, pte);
4275 if (!page) {
4276 pte_unmap_unlock(vmf->pte, vmf->ptl);
4277 return 0;
4278 }
4279
4280 /* TODO: handle PTE-mapped THP */
4281 if (PageCompound(page)) {
4282 pte_unmap_unlock(vmf->pte, vmf->ptl);
4283 return 0;
4284 }
4285
4286 /*
4287 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4288 * much anyway since they can be in shared cache state. This misses
4289 * the case where a mapping is writable but the process never writes
4290 * to it but pte_write gets cleared during protection updates and
4291 * pte_dirty has unpredictable behaviour between PTE scan updates,
4292 * background writeback, dirty balancing and application behaviour.
4293 */
4294 if (!pte_write(pte))
4295 flags |= TNF_NO_GROUP;
4296
4297 /*
4298 * Flag if the page is shared between multiple address spaces. This
4299 * is later used when determining whether to group tasks together
4300 */
4301 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4302 flags |= TNF_SHARED;
4303
4304 last_cpupid = page_cpupid_last(page);
4305 page_nid = page_to_nid(page);
4306 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4307 &flags);
4308 pte_unmap_unlock(vmf->pte, vmf->ptl);
4309 if (target_nid == NUMA_NO_NODE) {
4310 put_page(page);
4311 goto out;
4312 }
4313
4314 /* Migrate to the requested node */
4315 migrated = migrate_misplaced_page(page, vma, target_nid);
4316 if (migrated) {
4317 page_nid = target_nid;
4318 flags |= TNF_MIGRATED;
4319 } else
4320 flags |= TNF_MIGRATE_FAIL;
4321
4322 out:
4323 if (page_nid != NUMA_NO_NODE)
4324 task_numa_fault(last_cpupid, page_nid, 1, flags);
4325 return 0;
4326 }
4327
create_huge_pmd(struct vm_fault * vmf)4328 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4329 {
4330 if (vma_is_anonymous(vmf->vma))
4331 return do_huge_pmd_anonymous_page(vmf);
4332 if (vmf->vma->vm_ops->huge_fault)
4333 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4334 return VM_FAULT_FALLBACK;
4335 }
4336
4337 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4338 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4339 {
4340 if (vma_is_anonymous(vmf->vma)) {
4341 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4342 return handle_userfault(vmf, VM_UFFD_WP);
4343 return do_huge_pmd_wp_page(vmf, orig_pmd);
4344 }
4345 if (vmf->vma->vm_ops->huge_fault) {
4346 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4347
4348 if (!(ret & VM_FAULT_FALLBACK))
4349 return ret;
4350 }
4351
4352 /* COW or write-notify handled on pte level: split pmd. */
4353 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4354
4355 return VM_FAULT_FALLBACK;
4356 }
4357
create_huge_pud(struct vm_fault * vmf)4358 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4359 {
4360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4361 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4362 /* No support for anonymous transparent PUD pages yet */
4363 if (vma_is_anonymous(vmf->vma))
4364 goto split;
4365 if (vmf->vma->vm_ops->huge_fault) {
4366 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4367
4368 if (!(ret & VM_FAULT_FALLBACK))
4369 return ret;
4370 }
4371 split:
4372 /* COW or write-notify not handled on PUD level: split pud.*/
4373 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4374 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4375 return VM_FAULT_FALLBACK;
4376 }
4377
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4378 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4379 {
4380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4381 /* No support for anonymous transparent PUD pages yet */
4382 if (vma_is_anonymous(vmf->vma))
4383 return VM_FAULT_FALLBACK;
4384 if (vmf->vma->vm_ops->huge_fault)
4385 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4387 return VM_FAULT_FALLBACK;
4388 }
4389
4390 /*
4391 * These routines also need to handle stuff like marking pages dirty
4392 * and/or accessed for architectures that don't do it in hardware (most
4393 * RISC architectures). The early dirtying is also good on the i386.
4394 *
4395 * There is also a hook called "update_mmu_cache()" that architectures
4396 * with external mmu caches can use to update those (ie the Sparc or
4397 * PowerPC hashed page tables that act as extended TLBs).
4398 *
4399 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4400 * concurrent faults).
4401 *
4402 * The mmap_lock may have been released depending on flags and our return value.
4403 * See filemap_fault() and __lock_page_or_retry().
4404 */
handle_pte_fault(struct vm_fault * vmf)4405 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4406 {
4407 pte_t entry;
4408
4409 if (unlikely(pmd_none(*vmf->pmd))) {
4410 /*
4411 * Leave __pte_alloc() until later: because vm_ops->fault may
4412 * want to allocate huge page, and if we expose page table
4413 * for an instant, it will be difficult to retract from
4414 * concurrent faults and from rmap lookups.
4415 */
4416 vmf->pte = NULL;
4417 } else {
4418 /* See comment in pte_alloc_one_map() */
4419 if (pmd_devmap_trans_unstable(vmf->pmd))
4420 return 0;
4421 /*
4422 * A regular pmd is established and it can't morph into a huge
4423 * pmd from under us anymore at this point because we hold the
4424 * mmap_lock read mode and khugepaged takes it in write mode.
4425 * So now it's safe to run pte_offset_map().
4426 */
4427 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4428 vmf->orig_pte = *vmf->pte;
4429
4430 /*
4431 * some architectures can have larger ptes than wordsize,
4432 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4433 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4434 * accesses. The code below just needs a consistent view
4435 * for the ifs and we later double check anyway with the
4436 * ptl lock held. So here a barrier will do.
4437 */
4438 barrier();
4439 if (pte_none(vmf->orig_pte)) {
4440 pte_unmap(vmf->pte);
4441 vmf->pte = NULL;
4442 }
4443 }
4444
4445 if (!vmf->pte) {
4446 if (vma_is_anonymous(vmf->vma))
4447 return do_anonymous_page(vmf);
4448 else
4449 return do_fault(vmf);
4450 }
4451
4452 if (!pte_present(vmf->orig_pte))
4453 return do_swap_page(vmf);
4454
4455 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4456 return do_numa_page(vmf);
4457
4458 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4459 spin_lock(vmf->ptl);
4460 entry = vmf->orig_pte;
4461 if (unlikely(!pte_same(*vmf->pte, entry))) {
4462 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4463 goto unlock;
4464 }
4465 if (vmf->flags & FAULT_FLAG_WRITE) {
4466 if (!pte_write(entry))
4467 return do_wp_page(vmf);
4468 entry = pte_mkdirty(entry);
4469 }
4470 entry = pte_mkyoung(entry);
4471 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4472 vmf->flags & FAULT_FLAG_WRITE)) {
4473 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4474 } else {
4475 /* Skip spurious TLB flush for retried page fault */
4476 if (vmf->flags & FAULT_FLAG_TRIED)
4477 goto unlock;
4478 /*
4479 * This is needed only for protection faults but the arch code
4480 * is not yet telling us if this is a protection fault or not.
4481 * This still avoids useless tlb flushes for .text page faults
4482 * with threads.
4483 */
4484 if (vmf->flags & FAULT_FLAG_WRITE)
4485 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4486 }
4487 unlock:
4488 pte_unmap_unlock(vmf->pte, vmf->ptl);
4489 return 0;
4490 }
4491
4492 /*
4493 * By the time we get here, we already hold the mm semaphore
4494 *
4495 * The mmap_lock may have been released depending on flags and our
4496 * return value. See filemap_fault() and __lock_page_or_retry().
4497 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4498 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4499 unsigned long address, unsigned int flags)
4500 {
4501 struct vm_fault vmf = {
4502 .vma = vma,
4503 .address = address & PAGE_MASK,
4504 .flags = flags,
4505 .pgoff = linear_page_index(vma, address),
4506 .gfp_mask = __get_fault_gfp_mask(vma),
4507 };
4508 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4509 struct mm_struct *mm = vma->vm_mm;
4510 pgd_t *pgd;
4511 p4d_t *p4d;
4512 vm_fault_t ret;
4513
4514 pgd = pgd_offset(mm, address);
4515 p4d = p4d_alloc(mm, pgd, address);
4516 if (!p4d)
4517 return VM_FAULT_OOM;
4518
4519 vmf.pud = pud_alloc(mm, p4d, address);
4520 if (!vmf.pud)
4521 return VM_FAULT_OOM;
4522 retry_pud:
4523 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4524 ret = create_huge_pud(&vmf);
4525 if (!(ret & VM_FAULT_FALLBACK))
4526 return ret;
4527 } else {
4528 pud_t orig_pud = *vmf.pud;
4529
4530 barrier();
4531 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4532
4533 /* NUMA case for anonymous PUDs would go here */
4534
4535 if (dirty && !pud_write(orig_pud)) {
4536 ret = wp_huge_pud(&vmf, orig_pud);
4537 if (!(ret & VM_FAULT_FALLBACK))
4538 return ret;
4539 } else {
4540 huge_pud_set_accessed(&vmf, orig_pud);
4541 return 0;
4542 }
4543 }
4544 }
4545
4546 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4547 if (!vmf.pmd)
4548 return VM_FAULT_OOM;
4549
4550 /* Huge pud page fault raced with pmd_alloc? */
4551 if (pud_trans_unstable(vmf.pud))
4552 goto retry_pud;
4553
4554 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4555 ret = create_huge_pmd(&vmf);
4556 if (!(ret & VM_FAULT_FALLBACK))
4557 return ret;
4558 } else {
4559 pmd_t orig_pmd = *vmf.pmd;
4560
4561 barrier();
4562 if (unlikely(is_swap_pmd(orig_pmd))) {
4563 VM_BUG_ON(thp_migration_supported() &&
4564 !is_pmd_migration_entry(orig_pmd));
4565 if (is_pmd_migration_entry(orig_pmd))
4566 pmd_migration_entry_wait(mm, vmf.pmd);
4567 return 0;
4568 }
4569 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4570 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4571 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4572
4573 if (dirty && !pmd_write(orig_pmd)) {
4574 ret = wp_huge_pmd(&vmf, orig_pmd);
4575 if (!(ret & VM_FAULT_FALLBACK))
4576 return ret;
4577 } else {
4578 huge_pmd_set_accessed(&vmf, orig_pmd);
4579 return 0;
4580 }
4581 }
4582 }
4583
4584 return handle_pte_fault(&vmf);
4585 }
4586
4587 /**
4588 * mm_account_fault - Do page fault accountings
4589 *
4590 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4591 * of perf event counters, but we'll still do the per-task accounting to
4592 * the task who triggered this page fault.
4593 * @address: the faulted address.
4594 * @flags: the fault flags.
4595 * @ret: the fault retcode.
4596 *
4597 * This will take care of most of the page fault accountings. Meanwhile, it
4598 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4599 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4600 * still be in per-arch page fault handlers at the entry of page fault.
4601 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4602 static inline void mm_account_fault(struct pt_regs *regs,
4603 unsigned long address, unsigned int flags,
4604 vm_fault_t ret)
4605 {
4606 bool major;
4607
4608 /*
4609 * We don't do accounting for some specific faults:
4610 *
4611 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4612 * includes arch_vma_access_permitted() failing before reaching here.
4613 * So this is not a "this many hardware page faults" counter. We
4614 * should use the hw profiling for that.
4615 *
4616 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4617 * once they're completed.
4618 */
4619 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4620 return;
4621
4622 /*
4623 * We define the fault as a major fault when the final successful fault
4624 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4625 * handle it immediately previously).
4626 */
4627 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4628
4629 if (major)
4630 current->maj_flt++;
4631 else
4632 current->min_flt++;
4633
4634 /*
4635 * If the fault is done for GUP, regs will be NULL. We only do the
4636 * accounting for the per thread fault counters who triggered the
4637 * fault, and we skip the perf event updates.
4638 */
4639 if (!regs)
4640 return;
4641
4642 if (major)
4643 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4644 else
4645 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4646 }
4647
4648 /*
4649 * By the time we get here, we already hold the mm semaphore
4650 *
4651 * The mmap_lock may have been released depending on flags and our
4652 * return value. See filemap_fault() and __lock_page_or_retry().
4653 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4654 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4655 unsigned int flags, struct pt_regs *regs)
4656 {
4657 vm_fault_t ret;
4658
4659 __set_current_state(TASK_RUNNING);
4660
4661 count_vm_event(PGFAULT);
4662 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4663
4664 /* do counter updates before entering really critical section. */
4665 check_sync_rss_stat(current);
4666
4667 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4668 flags & FAULT_FLAG_INSTRUCTION,
4669 flags & FAULT_FLAG_REMOTE))
4670 return VM_FAULT_SIGSEGV;
4671
4672 /*
4673 * Enable the memcg OOM handling for faults triggered in user
4674 * space. Kernel faults are handled more gracefully.
4675 */
4676 if (flags & FAULT_FLAG_USER)
4677 mem_cgroup_enter_user_fault();
4678
4679 if (unlikely(is_vm_hugetlb_page(vma)))
4680 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4681 else
4682 ret = __handle_mm_fault(vma, address, flags);
4683
4684 if (flags & FAULT_FLAG_USER) {
4685 mem_cgroup_exit_user_fault();
4686 /*
4687 * The task may have entered a memcg OOM situation but
4688 * if the allocation error was handled gracefully (no
4689 * VM_FAULT_OOM), there is no need to kill anything.
4690 * Just clean up the OOM state peacefully.
4691 */
4692 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4693 mem_cgroup_oom_synchronize(false);
4694 }
4695
4696 mm_account_fault(regs, address, flags, ret);
4697
4698 return ret;
4699 }
4700 EXPORT_SYMBOL_GPL(handle_mm_fault);
4701
4702 #ifndef __PAGETABLE_P4D_FOLDED
4703 /*
4704 * Allocate p4d page table.
4705 * We've already handled the fast-path in-line.
4706 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4707 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4708 {
4709 p4d_t *new = p4d_alloc_one(mm, address);
4710 if (!new)
4711 return -ENOMEM;
4712
4713 smp_wmb(); /* See comment in __pte_alloc */
4714
4715 spin_lock(&mm->page_table_lock);
4716 if (pgd_present(*pgd)) /* Another has populated it */
4717 p4d_free(mm, new);
4718 else
4719 pgd_populate(mm, pgd, new);
4720 spin_unlock(&mm->page_table_lock);
4721 return 0;
4722 }
4723 #endif /* __PAGETABLE_P4D_FOLDED */
4724
4725 #ifndef __PAGETABLE_PUD_FOLDED
4726 /*
4727 * Allocate page upper directory.
4728 * We've already handled the fast-path in-line.
4729 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4730 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4731 {
4732 pud_t *new = pud_alloc_one(mm, address);
4733 if (!new)
4734 return -ENOMEM;
4735
4736 smp_wmb(); /* See comment in __pte_alloc */
4737
4738 spin_lock(&mm->page_table_lock);
4739 if (!p4d_present(*p4d)) {
4740 mm_inc_nr_puds(mm);
4741 p4d_populate(mm, p4d, new);
4742 } else /* Another has populated it */
4743 pud_free(mm, new);
4744 spin_unlock(&mm->page_table_lock);
4745 return 0;
4746 }
4747 #endif /* __PAGETABLE_PUD_FOLDED */
4748
4749 #ifndef __PAGETABLE_PMD_FOLDED
4750 /*
4751 * Allocate page middle directory.
4752 * We've already handled the fast-path in-line.
4753 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4754 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4755 {
4756 spinlock_t *ptl;
4757 pmd_t *new = pmd_alloc_one(mm, address);
4758 if (!new)
4759 return -ENOMEM;
4760
4761 smp_wmb(); /* See comment in __pte_alloc */
4762
4763 ptl = pud_lock(mm, pud);
4764 if (!pud_present(*pud)) {
4765 mm_inc_nr_pmds(mm);
4766 pud_populate(mm, pud, new);
4767 } else /* Another has populated it */
4768 pmd_free(mm, new);
4769 spin_unlock(ptl);
4770 return 0;
4771 }
4772 #endif /* __PAGETABLE_PMD_FOLDED */
4773
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4774 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4775 struct mmu_notifier_range *range, pte_t **ptepp,
4776 pmd_t **pmdpp, spinlock_t **ptlp)
4777 {
4778 pgd_t *pgd;
4779 p4d_t *p4d;
4780 pud_t *pud;
4781 pmd_t *pmd;
4782 pte_t *ptep;
4783
4784 pgd = pgd_offset(mm, address);
4785 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4786 goto out;
4787
4788 p4d = p4d_offset(pgd, address);
4789 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4790 goto out;
4791
4792 pud = pud_offset(p4d, address);
4793 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4794 goto out;
4795
4796 pmd = pmd_offset(pud, address);
4797 VM_BUG_ON(pmd_trans_huge(*pmd));
4798
4799 if (pmd_huge(*pmd)) {
4800 if (!pmdpp)
4801 goto out;
4802
4803 if (range) {
4804 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4805 NULL, mm, address & PMD_MASK,
4806 (address & PMD_MASK) + PMD_SIZE);
4807 mmu_notifier_invalidate_range_start(range);
4808 }
4809 *ptlp = pmd_lock(mm, pmd);
4810 if (pmd_huge(*pmd)) {
4811 *pmdpp = pmd;
4812 return 0;
4813 }
4814 spin_unlock(*ptlp);
4815 if (range)
4816 mmu_notifier_invalidate_range_end(range);
4817 }
4818
4819 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4820 goto out;
4821
4822 if (range) {
4823 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4824 address & PAGE_MASK,
4825 (address & PAGE_MASK) + PAGE_SIZE);
4826 mmu_notifier_invalidate_range_start(range);
4827 }
4828 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4829 if (!pte_present(*ptep))
4830 goto unlock;
4831 *ptepp = ptep;
4832 return 0;
4833 unlock:
4834 pte_unmap_unlock(ptep, *ptlp);
4835 if (range)
4836 mmu_notifier_invalidate_range_end(range);
4837 out:
4838 return -EINVAL;
4839 }
4840
4841 /**
4842 * follow_pte - look up PTE at a user virtual address
4843 * @mm: the mm_struct of the target address space
4844 * @address: user virtual address
4845 * @ptepp: location to store found PTE
4846 * @ptlp: location to store the lock for the PTE
4847 *
4848 * On a successful return, the pointer to the PTE is stored in @ptepp;
4849 * the corresponding lock is taken and its location is stored in @ptlp.
4850 * The contents of the PTE are only stable until @ptlp is released;
4851 * any further use, if any, must be protected against invalidation
4852 * with MMU notifiers.
4853 *
4854 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4855 * should be taken for read.
4856 *
4857 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4858 * it is not a good general-purpose API.
4859 *
4860 * Return: zero on success, -ve otherwise.
4861 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4862 int follow_pte(struct mm_struct *mm, unsigned long address,
4863 pte_t **ptepp, spinlock_t **ptlp)
4864 {
4865 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4866 }
4867 EXPORT_SYMBOL_GPL(follow_pte);
4868
4869 /**
4870 * follow_pfn - look up PFN at a user virtual address
4871 * @vma: memory mapping
4872 * @address: user virtual address
4873 * @pfn: location to store found PFN
4874 *
4875 * Only IO mappings and raw PFN mappings are allowed.
4876 *
4877 * This function does not allow the caller to read the permissions
4878 * of the PTE. Do not use it.
4879 *
4880 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4881 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4882 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4883 unsigned long *pfn)
4884 {
4885 int ret = -EINVAL;
4886 spinlock_t *ptl;
4887 pte_t *ptep;
4888
4889 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4890 return ret;
4891
4892 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4893 if (ret)
4894 return ret;
4895 *pfn = pte_pfn(*ptep);
4896 pte_unmap_unlock(ptep, ptl);
4897 return 0;
4898 }
4899 EXPORT_SYMBOL(follow_pfn);
4900
4901 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4902 int follow_phys(struct vm_area_struct *vma,
4903 unsigned long address, unsigned int flags,
4904 unsigned long *prot, resource_size_t *phys)
4905 {
4906 int ret = -EINVAL;
4907 pte_t *ptep, pte;
4908 spinlock_t *ptl;
4909
4910 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4911 goto out;
4912
4913 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4914 goto out;
4915 pte = *ptep;
4916
4917 if ((flags & FOLL_WRITE) && !pte_write(pte))
4918 goto unlock;
4919
4920 *prot = pgprot_val(pte_pgprot(pte));
4921 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4922
4923 ret = 0;
4924 unlock:
4925 pte_unmap_unlock(ptep, ptl);
4926 out:
4927 return ret;
4928 }
4929
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4930 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4931 void *buf, int len, int write)
4932 {
4933 resource_size_t phys_addr;
4934 unsigned long prot = 0;
4935 void __iomem *maddr;
4936 int offset = addr & (PAGE_SIZE-1);
4937
4938 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4939 return -EINVAL;
4940
4941 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4942 if (!maddr)
4943 return -ENOMEM;
4944
4945 if (write)
4946 memcpy_toio(maddr + offset, buf, len);
4947 else
4948 memcpy_fromio(buf, maddr + offset, len);
4949 iounmap(maddr);
4950
4951 return len;
4952 }
4953 EXPORT_SYMBOL_GPL(generic_access_phys);
4954 #endif
4955
4956 /*
4957 * Access another process' address space as given in mm. If non-NULL, use the
4958 * given task for page fault accounting.
4959 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4960 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4961 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4962 {
4963 struct vm_area_struct *vma;
4964 void *old_buf = buf;
4965 int write = gup_flags & FOLL_WRITE;
4966
4967 if (mmap_read_lock_killable(mm))
4968 return 0;
4969
4970 /* ignore errors, just check how much was successfully transferred */
4971 while (len) {
4972 int bytes, ret, offset;
4973 void *maddr;
4974 struct page *page = NULL;
4975
4976 ret = get_user_pages_remote(mm, addr, 1,
4977 gup_flags, &page, &vma, NULL);
4978 if (ret <= 0) {
4979 #ifndef CONFIG_HAVE_IOREMAP_PROT
4980 break;
4981 #else
4982 /*
4983 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4984 * we can access using slightly different code.
4985 */
4986 vma = find_vma(mm, addr);
4987 if (!vma || vma->vm_start > addr)
4988 break;
4989 if (vma->vm_ops && vma->vm_ops->access)
4990 ret = vma->vm_ops->access(vma, addr, buf,
4991 len, write);
4992 if (ret <= 0)
4993 break;
4994 bytes = ret;
4995 #endif
4996 } else {
4997 bytes = len;
4998 offset = addr & (PAGE_SIZE-1);
4999 if (bytes > PAGE_SIZE-offset)
5000 bytes = PAGE_SIZE-offset;
5001
5002 maddr = kmap(page);
5003 if (write) {
5004 copy_to_user_page(vma, page, addr,
5005 maddr + offset, buf, bytes);
5006 set_page_dirty_lock(page);
5007 } else {
5008 copy_from_user_page(vma, page, addr,
5009 buf, maddr + offset, bytes);
5010 }
5011 kunmap(page);
5012 put_page(page);
5013 }
5014 len -= bytes;
5015 buf += bytes;
5016 addr += bytes;
5017 }
5018 mmap_read_unlock(mm);
5019
5020 return buf - old_buf;
5021 }
5022
5023 /**
5024 * access_remote_vm - access another process' address space
5025 * @mm: the mm_struct of the target address space
5026 * @addr: start address to access
5027 * @buf: source or destination buffer
5028 * @len: number of bytes to transfer
5029 * @gup_flags: flags modifying lookup behaviour
5030 *
5031 * The caller must hold a reference on @mm.
5032 *
5033 * Return: number of bytes copied from source to destination.
5034 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5035 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5036 void *buf, int len, unsigned int gup_flags)
5037 {
5038 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5039 }
5040
5041 /*
5042 * Access another process' address space.
5043 * Source/target buffer must be kernel space,
5044 * Do not walk the page table directly, use get_user_pages
5045 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5046 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5047 void *buf, int len, unsigned int gup_flags)
5048 {
5049 struct mm_struct *mm;
5050 int ret;
5051
5052 mm = get_task_mm(tsk);
5053 if (!mm)
5054 return 0;
5055
5056 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5057
5058 mmput(mm);
5059
5060 return ret;
5061 }
5062 EXPORT_SYMBOL_GPL(access_process_vm);
5063
5064 /*
5065 * Print the name of a VMA.
5066 */
print_vma_addr(char * prefix,unsigned long ip)5067 void print_vma_addr(char *prefix, unsigned long ip)
5068 {
5069 struct mm_struct *mm = current->mm;
5070 struct vm_area_struct *vma;
5071
5072 /*
5073 * we might be running from an atomic context so we cannot sleep
5074 */
5075 if (!mmap_read_trylock(mm))
5076 return;
5077
5078 vma = find_vma(mm, ip);
5079 if (vma && vma->vm_file) {
5080 struct file *f = vma->vm_file;
5081 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5082 if (buf) {
5083 char *p;
5084
5085 p = file_path(f, buf, PAGE_SIZE);
5086 if (IS_ERR(p))
5087 p = "?";
5088 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5089 vma->vm_start,
5090 vma->vm_end - vma->vm_start);
5091 free_page((unsigned long)buf);
5092 }
5093 }
5094 mmap_read_unlock(mm);
5095 }
5096
5097 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5098 void __might_fault(const char *file, int line)
5099 {
5100 /*
5101 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5102 * holding the mmap_lock, this is safe because kernel memory doesn't
5103 * get paged out, therefore we'll never actually fault, and the
5104 * below annotations will generate false positives.
5105 */
5106 if (uaccess_kernel())
5107 return;
5108 if (pagefault_disabled())
5109 return;
5110 __might_sleep(file, line, 0);
5111 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5112 if (current->mm)
5113 might_lock_read(¤t->mm->mmap_lock);
5114 #endif
5115 }
5116 EXPORT_SYMBOL(__might_fault);
5117 #endif
5118
5119 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5120 /*
5121 * Process all subpages of the specified huge page with the specified
5122 * operation. The target subpage will be processed last to keep its
5123 * cache lines hot.
5124 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5125 static inline void process_huge_page(
5126 unsigned long addr_hint, unsigned int pages_per_huge_page,
5127 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5128 void *arg)
5129 {
5130 int i, n, base, l;
5131 unsigned long addr = addr_hint &
5132 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5133
5134 /* Process target subpage last to keep its cache lines hot */
5135 might_sleep();
5136 n = (addr_hint - addr) / PAGE_SIZE;
5137 if (2 * n <= pages_per_huge_page) {
5138 /* If target subpage in first half of huge page */
5139 base = 0;
5140 l = n;
5141 /* Process subpages at the end of huge page */
5142 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5143 cond_resched();
5144 process_subpage(addr + i * PAGE_SIZE, i, arg);
5145 }
5146 } else {
5147 /* If target subpage in second half of huge page */
5148 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5149 l = pages_per_huge_page - n;
5150 /* Process subpages at the begin of huge page */
5151 for (i = 0; i < base; i++) {
5152 cond_resched();
5153 process_subpage(addr + i * PAGE_SIZE, i, arg);
5154 }
5155 }
5156 /*
5157 * Process remaining subpages in left-right-left-right pattern
5158 * towards the target subpage
5159 */
5160 for (i = 0; i < l; i++) {
5161 int left_idx = base + i;
5162 int right_idx = base + 2 * l - 1 - i;
5163
5164 cond_resched();
5165 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5166 cond_resched();
5167 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5168 }
5169 }
5170
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5171 static void clear_gigantic_page(struct page *page,
5172 unsigned long addr,
5173 unsigned int pages_per_huge_page)
5174 {
5175 int i;
5176 struct page *p = page;
5177
5178 might_sleep();
5179 for (i = 0; i < pages_per_huge_page;
5180 i++, p = mem_map_next(p, page, i)) {
5181 cond_resched();
5182 clear_user_highpage(p, addr + i * PAGE_SIZE);
5183 }
5184 }
5185
clear_subpage(unsigned long addr,int idx,void * arg)5186 static void clear_subpage(unsigned long addr, int idx, void *arg)
5187 {
5188 struct page *page = arg;
5189
5190 clear_user_highpage(page + idx, addr);
5191 }
5192
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5193 void clear_huge_page(struct page *page,
5194 unsigned long addr_hint, unsigned int pages_per_huge_page)
5195 {
5196 unsigned long addr = addr_hint &
5197 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5198
5199 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5200 clear_gigantic_page(page, addr, pages_per_huge_page);
5201 return;
5202 }
5203
5204 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5205 }
5206
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5207 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5208 unsigned long addr,
5209 struct vm_area_struct *vma,
5210 unsigned int pages_per_huge_page)
5211 {
5212 int i;
5213 struct page *dst_base = dst;
5214 struct page *src_base = src;
5215
5216 for (i = 0; i < pages_per_huge_page; ) {
5217 cond_resched();
5218 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5219
5220 i++;
5221 dst = mem_map_next(dst, dst_base, i);
5222 src = mem_map_next(src, src_base, i);
5223 }
5224 }
5225
5226 struct copy_subpage_arg {
5227 struct page *dst;
5228 struct page *src;
5229 struct vm_area_struct *vma;
5230 };
5231
copy_subpage(unsigned long addr,int idx,void * arg)5232 static void copy_subpage(unsigned long addr, int idx, void *arg)
5233 {
5234 struct copy_subpage_arg *copy_arg = arg;
5235
5236 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5237 addr, copy_arg->vma);
5238 }
5239
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5240 void copy_user_huge_page(struct page *dst, struct page *src,
5241 unsigned long addr_hint, struct vm_area_struct *vma,
5242 unsigned int pages_per_huge_page)
5243 {
5244 unsigned long addr = addr_hint &
5245 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5246 struct copy_subpage_arg arg = {
5247 .dst = dst,
5248 .src = src,
5249 .vma = vma,
5250 };
5251
5252 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5253 copy_user_gigantic_page(dst, src, addr, vma,
5254 pages_per_huge_page);
5255 return;
5256 }
5257
5258 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5259 }
5260
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5261 long copy_huge_page_from_user(struct page *dst_page,
5262 const void __user *usr_src,
5263 unsigned int pages_per_huge_page,
5264 bool allow_pagefault)
5265 {
5266 void *src = (void *)usr_src;
5267 void *page_kaddr;
5268 unsigned long i, rc = 0;
5269 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5270 struct page *subpage = dst_page;
5271
5272 for (i = 0; i < pages_per_huge_page;
5273 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5274 if (allow_pagefault)
5275 page_kaddr = kmap(subpage);
5276 else
5277 page_kaddr = kmap_atomic(subpage);
5278 rc = copy_from_user(page_kaddr,
5279 (const void __user *)(src + i * PAGE_SIZE),
5280 PAGE_SIZE);
5281 if (allow_pagefault)
5282 kunmap(subpage);
5283 else
5284 kunmap_atomic(page_kaddr);
5285
5286 ret_val -= (PAGE_SIZE - rc);
5287 if (rc)
5288 break;
5289
5290 cond_resched();
5291 }
5292 return ret_val;
5293 }
5294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5295
5296 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5297
5298 static struct kmem_cache *page_ptl_cachep;
5299
ptlock_cache_init(void)5300 void __init ptlock_cache_init(void)
5301 {
5302 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5303 SLAB_PANIC, NULL);
5304 }
5305
ptlock_alloc(struct page * page)5306 bool ptlock_alloc(struct page *page)
5307 {
5308 spinlock_t *ptl;
5309
5310 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5311 if (!ptl)
5312 return false;
5313 page->ptl = ptl;
5314 return true;
5315 }
5316
ptlock_free(struct page * page)5317 void ptlock_free(struct page *page)
5318 {
5319 kmem_cache_free(page_ptl_cachep, page->ptl);
5320 }
5321 #endif
5322