• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
55 
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57 
58 /*
59  * Enabling software CRCs on the data blocks can be a significant (30%)
60  * performance cost, and for other reasons may not always be desired.
61  * So we allow it it to be disabled.
62  */
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
65 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)66 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 				     unsigned long delay)
68 {
69 	/*
70 	 * We use the system_freezable_wq, because of two reasons.
71 	 * First, it allows several works (not the same work item) to be
72 	 * executed simultaneously. Second, the queue becomes frozen when
73 	 * userspace becomes frozen during system PM.
74 	 */
75 	return queue_delayed_work(system_freezable_wq, work, delay);
76 }
77 
78 #ifdef CONFIG_FAIL_MMC_REQUEST
79 
80 /*
81  * Internal function. Inject random data errors.
82  * If mmc_data is NULL no errors are injected.
83  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)84 static void mmc_should_fail_request(struct mmc_host *host,
85 				    struct mmc_request *mrq)
86 {
87 	struct mmc_command *cmd = mrq->cmd;
88 	struct mmc_data *data = mrq->data;
89 	static const int data_errors[] = {
90 		-ETIMEDOUT,
91 		-EILSEQ,
92 		-EIO,
93 	};
94 
95 	if (!data)
96 		return;
97 
98 	if ((cmd && cmd->error) || data->error ||
99 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 		return;
101 
102 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104 }
105 
106 #else /* CONFIG_FAIL_MMC_REQUEST */
107 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)108 static inline void mmc_should_fail_request(struct mmc_host *host,
109 					   struct mmc_request *mrq)
110 {
111 }
112 
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
114 
mmc_complete_cmd(struct mmc_request * mrq)115 static inline void mmc_complete_cmd(struct mmc_request *mrq)
116 {
117 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 		complete_all(&mrq->cmd_completion);
119 }
120 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
122 {
123 	if (!mrq->cap_cmd_during_tfr)
124 		return;
125 
126 	mmc_complete_cmd(mrq);
127 
128 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 		 mmc_hostname(host), mrq->cmd->opcode);
130 }
131 EXPORT_SYMBOL(mmc_command_done);
132 
133 /**
134  *	mmc_request_done - finish processing an MMC request
135  *	@host: MMC host which completed request
136  *	@mrq: MMC request which request
137  *
138  *	MMC drivers should call this function when they have completed
139  *	their processing of a request.
140  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142 {
143 	struct mmc_command *cmd = mrq->cmd;
144 	int err = cmd->error;
145 
146 	/* Flag re-tuning needed on CRC errors */
147 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
149 	    !host->retune_crc_disable &&
150 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
151 	    (mrq->data && mrq->data->error == -EILSEQ) ||
152 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
153 		mmc_retune_needed(host);
154 
155 	if (err && cmd->retries && mmc_host_is_spi(host)) {
156 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
157 			cmd->retries = 0;
158 	}
159 
160 	if (host->ongoing_mrq == mrq)
161 		host->ongoing_mrq = NULL;
162 
163 	mmc_complete_cmd(mrq);
164 
165 	trace_mmc_request_done(host, mrq);
166 
167 	/*
168 	 * We list various conditions for the command to be considered
169 	 * properly done:
170 	 *
171 	 * - There was no error, OK fine then
172 	 * - We are not doing some kind of retry
173 	 * - The card was removed (...so just complete everything no matter
174 	 *   if there are errors or retries)
175 	 */
176 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
177 		mmc_should_fail_request(host, mrq);
178 
179 		if (!host->ongoing_mrq)
180 			led_trigger_event(host->led, LED_OFF);
181 
182 		if (mrq->sbc) {
183 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
184 				mmc_hostname(host), mrq->sbc->opcode,
185 				mrq->sbc->error,
186 				mrq->sbc->resp[0], mrq->sbc->resp[1],
187 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
188 		}
189 
190 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
191 			mmc_hostname(host), cmd->opcode, err,
192 			cmd->resp[0], cmd->resp[1],
193 			cmd->resp[2], cmd->resp[3]);
194 
195 		if (mrq->data) {
196 			pr_debug("%s:     %d bytes transferred: %d\n",
197 				mmc_hostname(host),
198 				mrq->data->bytes_xfered, mrq->data->error);
199 		}
200 
201 		if (mrq->stop) {
202 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
203 				mmc_hostname(host), mrq->stop->opcode,
204 				mrq->stop->error,
205 				mrq->stop->resp[0], mrq->stop->resp[1],
206 				mrq->stop->resp[2], mrq->stop->resp[3]);
207 		}
208 	}
209 	/*
210 	 * Request starter must handle retries - see
211 	 * mmc_wait_for_req_done().
212 	 */
213 	if (mrq->done)
214 		mrq->done(mrq);
215 }
216 
217 EXPORT_SYMBOL(mmc_request_done);
218 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)219 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
220 {
221 	int err;
222 
223 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
224 	err = mmc_retune(host);
225 	if (err) {
226 		mrq->cmd->error = err;
227 		mmc_request_done(host, mrq);
228 		return;
229 	}
230 
231 	/*
232 	 * For sdio rw commands we must wait for card busy otherwise some
233 	 * sdio devices won't work properly.
234 	 * And bypass I/O abort, reset and bus suspend operations.
235 	 */
236 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
237 	    host->ops->card_busy) {
238 		int tries = 500; /* Wait aprox 500ms at maximum */
239 
240 		while (host->ops->card_busy(host) && --tries)
241 			mmc_delay(1);
242 
243 		if (tries == 0) {
244 			mrq->cmd->error = -EBUSY;
245 			mmc_request_done(host, mrq);
246 			return;
247 		}
248 	}
249 
250 	if (mrq->cap_cmd_during_tfr) {
251 		host->ongoing_mrq = mrq;
252 		/*
253 		 * Retry path could come through here without having waiting on
254 		 * cmd_completion, so ensure it is reinitialised.
255 		 */
256 		reinit_completion(&mrq->cmd_completion);
257 	}
258 
259 	trace_mmc_request_start(host, mrq);
260 
261 	if (host->cqe_on)
262 		host->cqe_ops->cqe_off(host);
263 
264 	host->ops->request(host, mrq);
265 }
266 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)267 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
268 			     bool cqe)
269 {
270 	if (mrq->sbc) {
271 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
272 			 mmc_hostname(host), mrq->sbc->opcode,
273 			 mrq->sbc->arg, mrq->sbc->flags);
274 	}
275 
276 	if (mrq->cmd) {
277 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
278 			 mmc_hostname(host), cqe ? "CQE direct " : "",
279 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
280 	} else if (cqe) {
281 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
282 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
283 	}
284 
285 	if (mrq->data) {
286 		pr_debug("%s:     blksz %d blocks %d flags %08x "
287 			"tsac %d ms nsac %d\n",
288 			mmc_hostname(host), mrq->data->blksz,
289 			mrq->data->blocks, mrq->data->flags,
290 			mrq->data->timeout_ns / 1000000,
291 			mrq->data->timeout_clks);
292 	}
293 
294 	if (mrq->stop) {
295 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
296 			 mmc_hostname(host), mrq->stop->opcode,
297 			 mrq->stop->arg, mrq->stop->flags);
298 	}
299 }
300 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)301 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
302 {
303 	unsigned int i, sz = 0;
304 	struct scatterlist *sg;
305 
306 	if (mrq->cmd) {
307 		mrq->cmd->error = 0;
308 		mrq->cmd->mrq = mrq;
309 		mrq->cmd->data = mrq->data;
310 	}
311 	if (mrq->sbc) {
312 		mrq->sbc->error = 0;
313 		mrq->sbc->mrq = mrq;
314 	}
315 	if (mrq->data) {
316 		if (mrq->data->blksz > host->max_blk_size ||
317 		    mrq->data->blocks > host->max_blk_count ||
318 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
319 			return -EINVAL;
320 
321 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
322 			sz += sg->length;
323 		if (sz != mrq->data->blocks * mrq->data->blksz)
324 			return -EINVAL;
325 
326 		mrq->data->error = 0;
327 		mrq->data->mrq = mrq;
328 		if (mrq->stop) {
329 			mrq->data->stop = mrq->stop;
330 			mrq->stop->error = 0;
331 			mrq->stop->mrq = mrq;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)338 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
339 {
340 	int err;
341 
342 	init_completion(&mrq->cmd_completion);
343 
344 	mmc_retune_hold(host);
345 
346 	if (mmc_card_removed(host->card))
347 		return -ENOMEDIUM;
348 
349 	mmc_mrq_pr_debug(host, mrq, false);
350 
351 	WARN_ON(!host->claimed);
352 
353 	err = mmc_mrq_prep(host, mrq);
354 	if (err)
355 		return err;
356 
357 	led_trigger_event(host->led, LED_FULL);
358 	__mmc_start_request(host, mrq);
359 
360 	return 0;
361 }
362 EXPORT_SYMBOL(mmc_start_request);
363 
mmc_wait_done(struct mmc_request * mrq)364 static void mmc_wait_done(struct mmc_request *mrq)
365 {
366 	complete(&mrq->completion);
367 }
368 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)369 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
370 {
371 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
372 
373 	/*
374 	 * If there is an ongoing transfer, wait for the command line to become
375 	 * available.
376 	 */
377 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
378 		wait_for_completion(&ongoing_mrq->cmd_completion);
379 }
380 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)381 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
382 {
383 	int err;
384 
385 	mmc_wait_ongoing_tfr_cmd(host);
386 
387 	init_completion(&mrq->completion);
388 	mrq->done = mmc_wait_done;
389 
390 	err = mmc_start_request(host, mrq);
391 	if (err) {
392 		mrq->cmd->error = err;
393 		mmc_complete_cmd(mrq);
394 		complete(&mrq->completion);
395 	}
396 
397 	return err;
398 }
399 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)400 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
401 {
402 	struct mmc_command *cmd;
403 
404 	while (1) {
405 		wait_for_completion(&mrq->completion);
406 
407 		cmd = mrq->cmd;
408 
409 		/*
410 		 * If host has timed out waiting for the sanitize
411 		 * to complete, card might be still in programming state
412 		 * so let's try to bring the card out of programming
413 		 * state.
414 		 */
415 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
416 			if (!mmc_interrupt_hpi(host->card)) {
417 				pr_warn("%s: %s: Interrupted sanitize\n",
418 					mmc_hostname(host), __func__);
419 				cmd->error = 0;
420 				break;
421 			} else {
422 				pr_err("%s: %s: Failed to interrupt sanitize\n",
423 				       mmc_hostname(host), __func__);
424 			}
425 		}
426 		if (!cmd->error || !cmd->retries ||
427 		    mmc_card_removed(host->card))
428 			break;
429 
430 		mmc_retune_recheck(host);
431 
432 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
433 			 mmc_hostname(host), cmd->opcode, cmd->error);
434 		cmd->retries--;
435 		cmd->error = 0;
436 		__mmc_start_request(host, mrq);
437 	}
438 
439 	mmc_retune_release(host);
440 }
441 EXPORT_SYMBOL(mmc_wait_for_req_done);
442 
443 /*
444  * mmc_cqe_start_req - Start a CQE request.
445  * @host: MMC host to start the request
446  * @mrq: request to start
447  *
448  * Start the request, re-tuning if needed and it is possible. Returns an error
449  * code if the request fails to start or -EBUSY if CQE is busy.
450  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)451 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
452 {
453 	int err;
454 
455 	/*
456 	 * CQE cannot process re-tuning commands. Caller must hold retuning
457 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
458 	 * active requests i.e. this is the first.  Note, re-tuning will call
459 	 * ->cqe_off().
460 	 */
461 	err = mmc_retune(host);
462 	if (err)
463 		goto out_err;
464 
465 	mrq->host = host;
466 
467 	mmc_mrq_pr_debug(host, mrq, true);
468 
469 	err = mmc_mrq_prep(host, mrq);
470 	if (err)
471 		goto out_err;
472 
473 	err = host->cqe_ops->cqe_request(host, mrq);
474 	if (err)
475 		goto out_err;
476 
477 	trace_mmc_request_start(host, mrq);
478 
479 	return 0;
480 
481 out_err:
482 	if (mrq->cmd) {
483 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
484 			 mmc_hostname(host), mrq->cmd->opcode, err);
485 	} else {
486 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
487 			 mmc_hostname(host), mrq->tag, err);
488 	}
489 	return err;
490 }
491 EXPORT_SYMBOL(mmc_cqe_start_req);
492 
493 /**
494  *	mmc_cqe_request_done - CQE has finished processing an MMC request
495  *	@host: MMC host which completed request
496  *	@mrq: MMC request which completed
497  *
498  *	CQE drivers should call this function when they have completed
499  *	their processing of a request.
500  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)501 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
502 {
503 	mmc_should_fail_request(host, mrq);
504 
505 	/* Flag re-tuning needed on CRC errors */
506 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
507 	    (mrq->data && mrq->data->error == -EILSEQ))
508 		mmc_retune_needed(host);
509 
510 	trace_mmc_request_done(host, mrq);
511 
512 	if (mrq->cmd) {
513 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
514 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
515 	} else {
516 		pr_debug("%s: CQE transfer done tag %d\n",
517 			 mmc_hostname(host), mrq->tag);
518 	}
519 
520 	if (mrq->data) {
521 		pr_debug("%s:     %d bytes transferred: %d\n",
522 			 mmc_hostname(host),
523 			 mrq->data->bytes_xfered, mrq->data->error);
524 	}
525 
526 	mrq->done(mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_request_done);
529 
530 /**
531  *	mmc_cqe_post_req - CQE post process of a completed MMC request
532  *	@host: MMC host
533  *	@mrq: MMC request to be processed
534  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)535 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
536 {
537 	if (host->cqe_ops->cqe_post_req)
538 		host->cqe_ops->cqe_post_req(host, mrq);
539 }
540 EXPORT_SYMBOL(mmc_cqe_post_req);
541 
542 /* Arbitrary 1 second timeout */
543 #define MMC_CQE_RECOVERY_TIMEOUT	1000
544 
545 /*
546  * mmc_cqe_recovery - Recover from CQE errors.
547  * @host: MMC host to recover
548  *
549  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
550  * in eMMC, and discarding the queue in CQE. CQE must call
551  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
552  * fails to discard its queue.
553  */
mmc_cqe_recovery(struct mmc_host * host)554 int mmc_cqe_recovery(struct mmc_host *host)
555 {
556 	struct mmc_command cmd;
557 	int err;
558 
559 	mmc_retune_hold_now(host);
560 
561 	/*
562 	 * Recovery is expected seldom, if at all, but it reduces performance,
563 	 * so make sure it is not completely silent.
564 	 */
565 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
566 
567 	host->cqe_ops->cqe_recovery_start(host);
568 
569 	memset(&cmd, 0, sizeof(cmd));
570 	cmd.opcode       = MMC_STOP_TRANSMISSION,
571 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
572 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
573 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
574 	mmc_wait_for_cmd(host, &cmd, 0);
575 
576 	memset(&cmd, 0, sizeof(cmd));
577 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
578 	cmd.arg          = 1; /* Discard entire queue */
579 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
580 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
581 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
582 	err = mmc_wait_for_cmd(host, &cmd, 0);
583 
584 	host->cqe_ops->cqe_recovery_finish(host);
585 
586 	mmc_retune_release(host);
587 
588 	return err;
589 }
590 EXPORT_SYMBOL(mmc_cqe_recovery);
591 
592 /**
593  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
594  *	@host: MMC host
595  *	@mrq: MMC request
596  *
597  *	mmc_is_req_done() is used with requests that have
598  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
599  *	starting a request and before waiting for it to complete. That is,
600  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
601  *	and before mmc_wait_for_req_done(). If it is called at other times the
602  *	result is not meaningful.
603  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)604 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
605 {
606 	return completion_done(&mrq->completion);
607 }
608 EXPORT_SYMBOL(mmc_is_req_done);
609 
610 /**
611  *	mmc_wait_for_req - start a request and wait for completion
612  *	@host: MMC host to start command
613  *	@mrq: MMC request to start
614  *
615  *	Start a new MMC custom command request for a host, and wait
616  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
617  *	requests, the transfer is ongoing and the caller can issue further
618  *	commands that do not use the data lines, and then wait by calling
619  *	mmc_wait_for_req_done().
620  *	Does not attempt to parse the response.
621  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)622 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
623 {
624 	__mmc_start_req(host, mrq);
625 
626 	if (!mrq->cap_cmd_during_tfr)
627 		mmc_wait_for_req_done(host, mrq);
628 }
629 EXPORT_SYMBOL(mmc_wait_for_req);
630 
631 /**
632  *	mmc_wait_for_cmd - start a command and wait for completion
633  *	@host: MMC host to start command
634  *	@cmd: MMC command to start
635  *	@retries: maximum number of retries
636  *
637  *	Start a new MMC command for a host, and wait for the command
638  *	to complete.  Return any error that occurred while the command
639  *	was executing.  Do not attempt to parse the response.
640  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)641 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
642 {
643 	struct mmc_request mrq = {};
644 
645 	WARN_ON(!host->claimed);
646 
647 	memset(cmd->resp, 0, sizeof(cmd->resp));
648 	cmd->retries = retries;
649 
650 	mrq.cmd = cmd;
651 	cmd->data = NULL;
652 
653 	mmc_wait_for_req(host, &mrq);
654 
655 	return cmd->error;
656 }
657 
658 EXPORT_SYMBOL(mmc_wait_for_cmd);
659 
660 /**
661  *	mmc_set_data_timeout - set the timeout for a data command
662  *	@data: data phase for command
663  *	@card: the MMC card associated with the data transfer
664  *
665  *	Computes the data timeout parameters according to the
666  *	correct algorithm given the card type.
667  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)668 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
669 {
670 	unsigned int mult;
671 
672 	/*
673 	 * SDIO cards only define an upper 1 s limit on access.
674 	 */
675 	if (mmc_card_sdio(card)) {
676 		data->timeout_ns = 1000000000;
677 		data->timeout_clks = 0;
678 		return;
679 	}
680 
681 	/*
682 	 * SD cards use a 100 multiplier rather than 10
683 	 */
684 	mult = mmc_card_sd(card) ? 100 : 10;
685 
686 	/*
687 	 * Scale up the multiplier (and therefore the timeout) by
688 	 * the r2w factor for writes.
689 	 */
690 	if (data->flags & MMC_DATA_WRITE)
691 		mult <<= card->csd.r2w_factor;
692 
693 	data->timeout_ns = card->csd.taac_ns * mult;
694 	data->timeout_clks = card->csd.taac_clks * mult;
695 
696 	/*
697 	 * SD cards also have an upper limit on the timeout.
698 	 */
699 	if (mmc_card_sd(card)) {
700 		unsigned int timeout_us, limit_us;
701 
702 		timeout_us = data->timeout_ns / 1000;
703 		if (card->host->ios.clock)
704 			timeout_us += data->timeout_clks * 1000 /
705 				(card->host->ios.clock / 1000);
706 
707 		if (data->flags & MMC_DATA_WRITE)
708 			/*
709 			 * The MMC spec "It is strongly recommended
710 			 * for hosts to implement more than 500ms
711 			 * timeout value even if the card indicates
712 			 * the 250ms maximum busy length."  Even the
713 			 * previous value of 300ms is known to be
714 			 * insufficient for some cards.
715 			 */
716 			limit_us = 3000000;
717 		else
718 			limit_us = 100000;
719 
720 		/*
721 		 * SDHC cards always use these fixed values.
722 		 */
723 		if (timeout_us > limit_us) {
724 			data->timeout_ns = limit_us * 1000;
725 			data->timeout_clks = 0;
726 		}
727 
728 		/* assign limit value if invalid */
729 		if (timeout_us == 0)
730 			data->timeout_ns = limit_us * 1000;
731 	}
732 
733 	/*
734 	 * Some cards require longer data read timeout than indicated in CSD.
735 	 * Address this by setting the read timeout to a "reasonably high"
736 	 * value. For the cards tested, 600ms has proven enough. If necessary,
737 	 * this value can be increased if other problematic cards require this.
738 	 */
739 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
740 		data->timeout_ns = 600000000;
741 		data->timeout_clks = 0;
742 	}
743 
744 	/*
745 	 * Some cards need very high timeouts if driven in SPI mode.
746 	 * The worst observed timeout was 900ms after writing a
747 	 * continuous stream of data until the internal logic
748 	 * overflowed.
749 	 */
750 	if (mmc_host_is_spi(card->host)) {
751 		if (data->flags & MMC_DATA_WRITE) {
752 			if (data->timeout_ns < 1000000000)
753 				data->timeout_ns = 1000000000;	/* 1s */
754 		} else {
755 			if (data->timeout_ns < 100000000)
756 				data->timeout_ns =  100000000;	/* 100ms */
757 		}
758 	}
759 }
760 EXPORT_SYMBOL(mmc_set_data_timeout);
761 
762 /**
763  *	mmc_align_data_size - pads a transfer size to a more optimal value
764  *	@card: the MMC card associated with the data transfer
765  *	@sz: original transfer size
766  *
767  *	Pads the original data size with a number of extra bytes in
768  *	order to avoid controller bugs and/or performance hits
769  *	(e.g. some controllers revert to PIO for certain sizes).
770  *
771  *	Returns the improved size, which might be unmodified.
772  *
773  *	Note that this function is only relevant when issuing a
774  *	single scatter gather entry.
775  */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)776 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
777 {
778 	/*
779 	 * FIXME: We don't have a system for the controller to tell
780 	 * the core about its problems yet, so for now we just 32-bit
781 	 * align the size.
782 	 */
783 	sz = ((sz + 3) / 4) * 4;
784 
785 	return sz;
786 }
787 EXPORT_SYMBOL(mmc_align_data_size);
788 
789 /*
790  * Allow claiming an already claimed host if the context is the same or there is
791  * no context but the task is the same.
792  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)793 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
794 				   struct task_struct *task)
795 {
796 	return host->claimer == ctx ||
797 	       (!ctx && task && host->claimer->task == task);
798 }
799 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)800 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
801 				       struct mmc_ctx *ctx,
802 				       struct task_struct *task)
803 {
804 	if (!host->claimer) {
805 		if (ctx)
806 			host->claimer = ctx;
807 		else
808 			host->claimer = &host->default_ctx;
809 	}
810 	if (task)
811 		host->claimer->task = task;
812 }
813 
814 /**
815  *	__mmc_claim_host - exclusively claim a host
816  *	@host: mmc host to claim
817  *	@ctx: context that claims the host or NULL in which case the default
818  *	context will be used
819  *	@abort: whether or not the operation should be aborted
820  *
821  *	Claim a host for a set of operations.  If @abort is non null and
822  *	dereference a non-zero value then this will return prematurely with
823  *	that non-zero value without acquiring the lock.  Returns zero
824  *	with the lock held otherwise.
825  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)826 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
827 		     atomic_t *abort)
828 {
829 	struct task_struct *task = ctx ? NULL : current;
830 	DECLARE_WAITQUEUE(wait, current);
831 	unsigned long flags;
832 	int stop;
833 	bool pm = false;
834 
835 	might_sleep();
836 
837 	add_wait_queue(&host->wq, &wait);
838 	spin_lock_irqsave(&host->lock, flags);
839 	while (1) {
840 		set_current_state(TASK_UNINTERRUPTIBLE);
841 		stop = abort ? atomic_read(abort) : 0;
842 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
843 			break;
844 		spin_unlock_irqrestore(&host->lock, flags);
845 		schedule();
846 		spin_lock_irqsave(&host->lock, flags);
847 	}
848 	set_current_state(TASK_RUNNING);
849 	if (!stop) {
850 		host->claimed = 1;
851 		mmc_ctx_set_claimer(host, ctx, task);
852 		host->claim_cnt += 1;
853 		if (host->claim_cnt == 1)
854 			pm = true;
855 	} else
856 		wake_up(&host->wq);
857 	spin_unlock_irqrestore(&host->lock, flags);
858 	remove_wait_queue(&host->wq, &wait);
859 
860 	if (pm)
861 		pm_runtime_get_sync(mmc_dev(host));
862 
863 	return stop;
864 }
865 EXPORT_SYMBOL(__mmc_claim_host);
866 
867 /**
868  *	mmc_release_host - release a host
869  *	@host: mmc host to release
870  *
871  *	Release a MMC host, allowing others to claim the host
872  *	for their operations.
873  */
mmc_release_host(struct mmc_host * host)874 void mmc_release_host(struct mmc_host *host)
875 {
876 	unsigned long flags;
877 
878 	WARN_ON(!host->claimed);
879 
880 	spin_lock_irqsave(&host->lock, flags);
881 	if (--host->claim_cnt) {
882 		/* Release for nested claim */
883 		spin_unlock_irqrestore(&host->lock, flags);
884 	} else {
885 		host->claimed = 0;
886 		host->claimer->task = NULL;
887 		host->claimer = NULL;
888 		spin_unlock_irqrestore(&host->lock, flags);
889 		wake_up(&host->wq);
890 		pm_runtime_mark_last_busy(mmc_dev(host));
891 		pm_runtime_put_autosuspend(mmc_dev(host));
892 	}
893 }
894 EXPORT_SYMBOL(mmc_release_host);
895 
896 /*
897  * This is a helper function, which fetches a runtime pm reference for the
898  * card device and also claims the host.
899  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)900 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
901 {
902 	pm_runtime_get_sync(&card->dev);
903 	__mmc_claim_host(card->host, ctx, NULL);
904 }
905 EXPORT_SYMBOL(mmc_get_card);
906 
907 /*
908  * This is a helper function, which releases the host and drops the runtime
909  * pm reference for the card device.
910  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)911 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
912 {
913 	struct mmc_host *host = card->host;
914 
915 	WARN_ON(ctx && host->claimer != ctx);
916 
917 	mmc_release_host(host);
918 	pm_runtime_mark_last_busy(&card->dev);
919 	pm_runtime_put_autosuspend(&card->dev);
920 }
921 EXPORT_SYMBOL(mmc_put_card);
922 
923 /*
924  * Internal function that does the actual ios call to the host driver,
925  * optionally printing some debug output.
926  */
mmc_set_ios(struct mmc_host * host)927 static inline void mmc_set_ios(struct mmc_host *host)
928 {
929 	struct mmc_ios *ios = &host->ios;
930 
931 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
932 		"width %u timing %u\n",
933 		 mmc_hostname(host), ios->clock, ios->bus_mode,
934 		 ios->power_mode, ios->chip_select, ios->vdd,
935 		 1 << ios->bus_width, ios->timing);
936 
937 	host->ops->set_ios(host, ios);
938 }
939 
940 /*
941  * Control chip select pin on a host.
942  */
mmc_set_chip_select(struct mmc_host * host,int mode)943 void mmc_set_chip_select(struct mmc_host *host, int mode)
944 {
945 	host->ios.chip_select = mode;
946 	mmc_set_ios(host);
947 }
948 
949 /*
950  * Sets the host clock to the highest possible frequency that
951  * is below "hz".
952  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)953 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
954 {
955 	WARN_ON(hz && hz < host->f_min);
956 
957 	if (hz > host->f_max)
958 		hz = host->f_max;
959 
960 	host->ios.clock = hz;
961 	mmc_set_ios(host);
962 }
963 
mmc_execute_tuning(struct mmc_card * card)964 int mmc_execute_tuning(struct mmc_card *card)
965 {
966 	struct mmc_host *host = card->host;
967 	u32 opcode;
968 	int err;
969 
970 	if (!host->ops->execute_tuning)
971 		return 0;
972 
973 	if (host->cqe_on)
974 		host->cqe_ops->cqe_off(host);
975 
976 	if (mmc_card_mmc(card))
977 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
978 	else
979 		opcode = MMC_SEND_TUNING_BLOCK;
980 
981 	err = host->ops->execute_tuning(host, opcode);
982 
983 	if (err)
984 		pr_err("%s: tuning execution failed: %d\n",
985 			mmc_hostname(host), err);
986 	else
987 		mmc_retune_enable(host);
988 
989 	return err;
990 }
991 
992 /*
993  * Change the bus mode (open drain/push-pull) of a host.
994  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)995 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
996 {
997 	host->ios.bus_mode = mode;
998 	mmc_set_ios(host);
999 }
1000 
1001 /*
1002  * Change data bus width of a host.
1003  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1004 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1005 {
1006 	host->ios.bus_width = width;
1007 	mmc_set_ios(host);
1008 }
1009 
1010 /*
1011  * Set initial state after a power cycle or a hw_reset.
1012  */
mmc_set_initial_state(struct mmc_host * host)1013 void mmc_set_initial_state(struct mmc_host *host)
1014 {
1015 	if (host->cqe_on)
1016 		host->cqe_ops->cqe_off(host);
1017 
1018 	mmc_retune_disable(host);
1019 
1020 	if (mmc_host_is_spi(host))
1021 		host->ios.chip_select = MMC_CS_HIGH;
1022 	else
1023 		host->ios.chip_select = MMC_CS_DONTCARE;
1024 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1025 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1026 	host->ios.timing = MMC_TIMING_LEGACY;
1027 	host->ios.drv_type = 0;
1028 	host->ios.enhanced_strobe = false;
1029 
1030 	/*
1031 	 * Make sure we are in non-enhanced strobe mode before we
1032 	 * actually enable it in ext_csd.
1033 	 */
1034 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1035 	     host->ops->hs400_enhanced_strobe)
1036 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1037 
1038 	mmc_set_ios(host);
1039 }
1040 
1041 /**
1042  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1043  * @vdd:	voltage (mV)
1044  * @low_bits:	prefer low bits in boundary cases
1045  *
1046  * This function returns the OCR bit number according to the provided @vdd
1047  * value. If conversion is not possible a negative errno value returned.
1048  *
1049  * Depending on the @low_bits flag the function prefers low or high OCR bits
1050  * on boundary voltages. For example,
1051  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1052  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1053  *
1054  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1055  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1056 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1057 {
1058 	const int max_bit = ilog2(MMC_VDD_35_36);
1059 	int bit;
1060 
1061 	if (vdd < 1650 || vdd > 3600)
1062 		return -EINVAL;
1063 
1064 	if (vdd >= 1650 && vdd <= 1950)
1065 		return ilog2(MMC_VDD_165_195);
1066 
1067 	if (low_bits)
1068 		vdd -= 1;
1069 
1070 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1071 	bit = (vdd - 2000) / 100 + 8;
1072 	if (bit > max_bit)
1073 		return max_bit;
1074 	return bit;
1075 }
1076 
1077 /**
1078  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1079  * @vdd_min:	minimum voltage value (mV)
1080  * @vdd_max:	maximum voltage value (mV)
1081  *
1082  * This function returns the OCR mask bits according to the provided @vdd_min
1083  * and @vdd_max values. If conversion is not possible the function returns 0.
1084  *
1085  * Notes wrt boundary cases:
1086  * This function sets the OCR bits for all boundary voltages, for example
1087  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1088  * MMC_VDD_34_35 mask.
1089  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1090 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1091 {
1092 	u32 mask = 0;
1093 
1094 	if (vdd_max < vdd_min)
1095 		return 0;
1096 
1097 	/* Prefer high bits for the boundary vdd_max values. */
1098 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1099 	if (vdd_max < 0)
1100 		return 0;
1101 
1102 	/* Prefer low bits for the boundary vdd_min values. */
1103 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1104 	if (vdd_min < 0)
1105 		return 0;
1106 
1107 	/* Fill the mask, from max bit to min bit. */
1108 	while (vdd_max >= vdd_min)
1109 		mask |= 1 << vdd_max--;
1110 
1111 	return mask;
1112 }
1113 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1114 
1115 #ifdef CONFIG_OF
1116 
1117 /**
1118  * mmc_of_parse_voltage - return mask of supported voltages
1119  * @np: The device node need to be parsed.
1120  * @mask: mask of voltages available for MMC/SD/SDIO
1121  *
1122  * Parse the "voltage-ranges" DT property, returning zero if it is not
1123  * found, negative errno if the voltage-range specification is invalid,
1124  * or one if the voltage-range is specified and successfully parsed.
1125  */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1126 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1127 {
1128 	const u32 *voltage_ranges;
1129 	int num_ranges, i;
1130 
1131 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1132 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1133 	if (!voltage_ranges) {
1134 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1135 		return 0;
1136 	}
1137 	if (!num_ranges) {
1138 		pr_err("%pOF: voltage-ranges empty\n", np);
1139 		return -EINVAL;
1140 	}
1141 
1142 	for (i = 0; i < num_ranges; i++) {
1143 		const int j = i * 2;
1144 		u32 ocr_mask;
1145 
1146 		ocr_mask = mmc_vddrange_to_ocrmask(
1147 				be32_to_cpu(voltage_ranges[j]),
1148 				be32_to_cpu(voltage_ranges[j + 1]));
1149 		if (!ocr_mask) {
1150 			pr_err("%pOF: voltage-range #%d is invalid\n",
1151 				np, i);
1152 			return -EINVAL;
1153 		}
1154 		*mask |= ocr_mask;
1155 	}
1156 
1157 	return 1;
1158 }
1159 EXPORT_SYMBOL(mmc_of_parse_voltage);
1160 
1161 #endif /* CONFIG_OF */
1162 
mmc_of_get_func_num(struct device_node * node)1163 static int mmc_of_get_func_num(struct device_node *node)
1164 {
1165 	u32 reg;
1166 	int ret;
1167 
1168 	ret = of_property_read_u32(node, "reg", &reg);
1169 	if (ret < 0)
1170 		return ret;
1171 
1172 	return reg;
1173 }
1174 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1175 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1176 		unsigned func_num)
1177 {
1178 	struct device_node *node;
1179 
1180 	if (!host->parent || !host->parent->of_node)
1181 		return NULL;
1182 
1183 	for_each_child_of_node(host->parent->of_node, node) {
1184 		if (mmc_of_get_func_num(node) == func_num)
1185 			return node;
1186 	}
1187 
1188 	return NULL;
1189 }
1190 
1191 #ifdef CONFIG_REGULATOR
1192 
1193 /**
1194  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1195  * @vdd_bit:	OCR bit number
1196  * @min_uV:	minimum voltage value (mV)
1197  * @max_uV:	maximum voltage value (mV)
1198  *
1199  * This function returns the voltage range according to the provided OCR
1200  * bit number. If conversion is not possible a negative errno value returned.
1201  */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1202 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1203 {
1204 	int		tmp;
1205 
1206 	if (!vdd_bit)
1207 		return -EINVAL;
1208 
1209 	/*
1210 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1211 	 * bits this regulator doesn't quite support ... don't
1212 	 * be too picky, most cards and regulators are OK with
1213 	 * a 0.1V range goof (it's a small error percentage).
1214 	 */
1215 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1216 	if (tmp == 0) {
1217 		*min_uV = 1650 * 1000;
1218 		*max_uV = 1950 * 1000;
1219 	} else {
1220 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1221 		*max_uV = *min_uV + 100 * 1000;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  * mmc_regulator_get_ocrmask - return mask of supported voltages
1229  * @supply: regulator to use
1230  *
1231  * This returns either a negative errno, or a mask of voltages that
1232  * can be provided to MMC/SD/SDIO devices using the specified voltage
1233  * regulator.  This would normally be called before registering the
1234  * MMC host adapter.
1235  */
mmc_regulator_get_ocrmask(struct regulator * supply)1236 int mmc_regulator_get_ocrmask(struct regulator *supply)
1237 {
1238 	int			result = 0;
1239 	int			count;
1240 	int			i;
1241 	int			vdd_uV;
1242 	int			vdd_mV;
1243 
1244 	count = regulator_count_voltages(supply);
1245 	if (count < 0)
1246 		return count;
1247 
1248 	for (i = 0; i < count; i++) {
1249 		vdd_uV = regulator_list_voltage(supply, i);
1250 		if (vdd_uV <= 0)
1251 			continue;
1252 
1253 		vdd_mV = vdd_uV / 1000;
1254 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1255 	}
1256 
1257 	if (!result) {
1258 		vdd_uV = regulator_get_voltage(supply);
1259 		if (vdd_uV <= 0)
1260 			return vdd_uV;
1261 
1262 		vdd_mV = vdd_uV / 1000;
1263 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1264 	}
1265 
1266 	return result;
1267 }
1268 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1269 
1270 /**
1271  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1272  * @mmc: the host to regulate
1273  * @supply: regulator to use
1274  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1275  *
1276  * Returns zero on success, else negative errno.
1277  *
1278  * MMC host drivers may use this to enable or disable a regulator using
1279  * a particular supply voltage.  This would normally be called from the
1280  * set_ios() method.
1281  */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1282 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1283 			struct regulator *supply,
1284 			unsigned short vdd_bit)
1285 {
1286 	int			result = 0;
1287 	int			min_uV, max_uV;
1288 
1289 	if (vdd_bit) {
1290 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1291 
1292 		result = regulator_set_voltage(supply, min_uV, max_uV);
1293 		if (result == 0 && !mmc->regulator_enabled) {
1294 			result = regulator_enable(supply);
1295 			if (!result)
1296 				mmc->regulator_enabled = true;
1297 		}
1298 	} else if (mmc->regulator_enabled) {
1299 		result = regulator_disable(supply);
1300 		if (result == 0)
1301 			mmc->regulator_enabled = false;
1302 	}
1303 
1304 	if (result)
1305 		dev_err(mmc_dev(mmc),
1306 			"could not set regulator OCR (%d)\n", result);
1307 	return result;
1308 }
1309 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1310 
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1311 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1312 						  int min_uV, int target_uV,
1313 						  int max_uV)
1314 {
1315 	/*
1316 	 * Check if supported first to avoid errors since we may try several
1317 	 * signal levels during power up and don't want to show errors.
1318 	 */
1319 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1320 		return -EINVAL;
1321 
1322 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1323 					     max_uV);
1324 }
1325 
1326 /**
1327  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1328  *
1329  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1330  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1331  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1332  * SD card spec also define VQMMC in terms of VMMC.
1333  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1334  *
1335  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1336  * requested voltage.  This is definitely a good idea for UHS where there's a
1337  * separate regulator on the card that's trying to make 1.8V and it's best if
1338  * we match.
1339  *
1340  * This function is expected to be used by a controller's
1341  * start_signal_voltage_switch() function.
1342  */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1343 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1344 {
1345 	struct device *dev = mmc_dev(mmc);
1346 	int ret, volt, min_uV, max_uV;
1347 
1348 	/* If no vqmmc supply then we can't change the voltage */
1349 	if (IS_ERR(mmc->supply.vqmmc))
1350 		return -EINVAL;
1351 
1352 	switch (ios->signal_voltage) {
1353 	case MMC_SIGNAL_VOLTAGE_120:
1354 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1355 						1100000, 1200000, 1300000);
1356 	case MMC_SIGNAL_VOLTAGE_180:
1357 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1358 						1700000, 1800000, 1950000);
1359 	case MMC_SIGNAL_VOLTAGE_330:
1360 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1361 		if (ret < 0)
1362 			return ret;
1363 
1364 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1365 			__func__, volt, max_uV);
1366 
1367 		min_uV = max(volt - 300000, 2700000);
1368 		max_uV = min(max_uV + 200000, 3600000);
1369 
1370 		/*
1371 		 * Due to a limitation in the current implementation of
1372 		 * regulator_set_voltage_triplet() which is taking the lowest
1373 		 * voltage possible if below the target, search for a suitable
1374 		 * voltage in two steps and try to stay close to vmmc
1375 		 * with a 0.3V tolerance at first.
1376 		 */
1377 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1378 						min_uV, volt, max_uV))
1379 			return 0;
1380 
1381 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1382 						2700000, volt, 3600000);
1383 	default:
1384 		return -EINVAL;
1385 	}
1386 }
1387 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1388 
1389 #endif /* CONFIG_REGULATOR */
1390 
1391 /**
1392  * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1393  * @mmc: the host to regulate
1394  *
1395  * Returns 0 or errno. errno should be handled, it is either a critical error
1396  * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1397  * regulators have been found because they all are optional. If you require
1398  * certain regulators, you need to check separately in your driver if they got
1399  * populated after calling this function.
1400  */
mmc_regulator_get_supply(struct mmc_host * mmc)1401 int mmc_regulator_get_supply(struct mmc_host *mmc)
1402 {
1403 	struct device *dev = mmc_dev(mmc);
1404 	int ret;
1405 
1406 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1407 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1408 
1409 	if (IS_ERR(mmc->supply.vmmc)) {
1410 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1411 			return -EPROBE_DEFER;
1412 		dev_dbg(dev, "No vmmc regulator found\n");
1413 	} else {
1414 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1415 		if (ret > 0)
1416 			mmc->ocr_avail = ret;
1417 		else
1418 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1419 	}
1420 
1421 	if (IS_ERR(mmc->supply.vqmmc)) {
1422 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1423 			return -EPROBE_DEFER;
1424 		dev_dbg(dev, "No vqmmc regulator found\n");
1425 	}
1426 
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1430 
1431 /*
1432  * Mask off any voltages we don't support and select
1433  * the lowest voltage
1434  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1435 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1436 {
1437 	int bit;
1438 
1439 	/*
1440 	 * Sanity check the voltages that the card claims to
1441 	 * support.
1442 	 */
1443 	if (ocr & 0x7F) {
1444 		dev_warn(mmc_dev(host),
1445 		"card claims to support voltages below defined range\n");
1446 		ocr &= ~0x7F;
1447 	}
1448 
1449 	ocr &= host->ocr_avail;
1450 	if (!ocr) {
1451 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1452 		return 0;
1453 	}
1454 
1455 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1456 		bit = ffs(ocr) - 1;
1457 		ocr &= 3 << bit;
1458 		mmc_power_cycle(host, ocr);
1459 	} else {
1460 		bit = fls(ocr) - 1;
1461 		ocr &= 3 << bit;
1462 		if (bit != host->ios.vdd)
1463 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1464 	}
1465 
1466 	return ocr;
1467 }
1468 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1469 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1470 {
1471 	int err = 0;
1472 	int old_signal_voltage = host->ios.signal_voltage;
1473 
1474 	host->ios.signal_voltage = signal_voltage;
1475 	if (host->ops->start_signal_voltage_switch)
1476 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1477 
1478 	if (err)
1479 		host->ios.signal_voltage = old_signal_voltage;
1480 
1481 	return err;
1482 
1483 }
1484 
mmc_set_initial_signal_voltage(struct mmc_host * host)1485 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1486 {
1487 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1488 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1489 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1490 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1491 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1492 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1493 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1494 }
1495 
mmc_host_set_uhs_voltage(struct mmc_host * host)1496 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1497 {
1498 	u32 clock;
1499 
1500 	/*
1501 	 * During a signal voltage level switch, the clock must be gated
1502 	 * for 5 ms according to the SD spec
1503 	 */
1504 	clock = host->ios.clock;
1505 	host->ios.clock = 0;
1506 	mmc_set_ios(host);
1507 
1508 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1509 		return -EAGAIN;
1510 
1511 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1512 	mmc_delay(10);
1513 	host->ios.clock = clock;
1514 	mmc_set_ios(host);
1515 
1516 	return 0;
1517 }
1518 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1519 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1520 {
1521 	struct mmc_command cmd = {};
1522 	int err = 0;
1523 
1524 	/*
1525 	 * If we cannot switch voltages, return failure so the caller
1526 	 * can continue without UHS mode
1527 	 */
1528 	if (!host->ops->start_signal_voltage_switch)
1529 		return -EPERM;
1530 	if (!host->ops->card_busy)
1531 		pr_warn("%s: cannot verify signal voltage switch\n",
1532 			mmc_hostname(host));
1533 
1534 	cmd.opcode = SD_SWITCH_VOLTAGE;
1535 	cmd.arg = 0;
1536 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1537 
1538 	err = mmc_wait_for_cmd(host, &cmd, 0);
1539 	if (err)
1540 		return err;
1541 
1542 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1543 		return -EIO;
1544 
1545 	/*
1546 	 * The card should drive cmd and dat[0:3] low immediately
1547 	 * after the response of cmd11, but wait 1 ms to be sure
1548 	 */
1549 	mmc_delay(1);
1550 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1551 		err = -EAGAIN;
1552 		goto power_cycle;
1553 	}
1554 
1555 	if (mmc_host_set_uhs_voltage(host)) {
1556 		/*
1557 		 * Voltages may not have been switched, but we've already
1558 		 * sent CMD11, so a power cycle is required anyway
1559 		 */
1560 		err = -EAGAIN;
1561 		goto power_cycle;
1562 	}
1563 
1564 	/* Wait for at least 1 ms according to spec */
1565 	mmc_delay(1);
1566 
1567 	/*
1568 	 * Failure to switch is indicated by the card holding
1569 	 * dat[0:3] low
1570 	 */
1571 	if (host->ops->card_busy && host->ops->card_busy(host))
1572 		err = -EAGAIN;
1573 
1574 power_cycle:
1575 	if (err) {
1576 		pr_debug("%s: Signal voltage switch failed, "
1577 			"power cycling card\n", mmc_hostname(host));
1578 		mmc_power_cycle(host, ocr);
1579 	}
1580 
1581 	return err;
1582 }
1583 
1584 /*
1585  * Select timing parameters for host.
1586  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1587 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1588 {
1589 	host->ios.timing = timing;
1590 	mmc_set_ios(host);
1591 }
1592 
1593 /*
1594  * Select appropriate driver type for host.
1595  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1596 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1597 {
1598 	host->ios.drv_type = drv_type;
1599 	mmc_set_ios(host);
1600 }
1601 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1602 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1603 			      int card_drv_type, int *drv_type)
1604 {
1605 	struct mmc_host *host = card->host;
1606 	int host_drv_type = SD_DRIVER_TYPE_B;
1607 
1608 	*drv_type = 0;
1609 
1610 	if (!host->ops->select_drive_strength)
1611 		return 0;
1612 
1613 	/* Use SD definition of driver strength for hosts */
1614 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1615 		host_drv_type |= SD_DRIVER_TYPE_A;
1616 
1617 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1618 		host_drv_type |= SD_DRIVER_TYPE_C;
1619 
1620 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1621 		host_drv_type |= SD_DRIVER_TYPE_D;
1622 
1623 	/*
1624 	 * The drive strength that the hardware can support
1625 	 * depends on the board design.  Pass the appropriate
1626 	 * information and let the hardware specific code
1627 	 * return what is possible given the options
1628 	 */
1629 	return host->ops->select_drive_strength(card, max_dtr,
1630 						host_drv_type,
1631 						card_drv_type,
1632 						drv_type);
1633 }
1634 
1635 /*
1636  * Apply power to the MMC stack.  This is a two-stage process.
1637  * First, we enable power to the card without the clock running.
1638  * We then wait a bit for the power to stabilise.  Finally,
1639  * enable the bus drivers and clock to the card.
1640  *
1641  * We must _NOT_ enable the clock prior to power stablising.
1642  *
1643  * If a host does all the power sequencing itself, ignore the
1644  * initial MMC_POWER_UP stage.
1645  */
mmc_power_up(struct mmc_host * host,u32 ocr)1646 void mmc_power_up(struct mmc_host *host, u32 ocr)
1647 {
1648 	if (host->ios.power_mode == MMC_POWER_ON)
1649 		return;
1650 
1651 	mmc_pwrseq_pre_power_on(host);
1652 
1653 	host->ios.vdd = fls(ocr) - 1;
1654 	host->ios.power_mode = MMC_POWER_UP;
1655 	/* Set initial state and call mmc_set_ios */
1656 	mmc_set_initial_state(host);
1657 
1658 	mmc_set_initial_signal_voltage(host);
1659 
1660 	/*
1661 	 * This delay should be sufficient to allow the power supply
1662 	 * to reach the minimum voltage.
1663 	 */
1664 	mmc_delay(host->ios.power_delay_ms);
1665 
1666 	mmc_pwrseq_post_power_on(host);
1667 
1668 	host->ios.clock = host->f_init;
1669 
1670 	host->ios.power_mode = MMC_POWER_ON;
1671 	mmc_set_ios(host);
1672 
1673 	/*
1674 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1675 	 * time required to reach a stable voltage.
1676 	 */
1677 	mmc_delay(host->ios.power_delay_ms);
1678 }
1679 
mmc_power_off(struct mmc_host * host)1680 void mmc_power_off(struct mmc_host *host)
1681 {
1682 	if (host->ios.power_mode == MMC_POWER_OFF)
1683 		return;
1684 
1685 	mmc_pwrseq_power_off(host);
1686 
1687 	host->ios.clock = 0;
1688 	host->ios.vdd = 0;
1689 
1690 	host->ios.power_mode = MMC_POWER_OFF;
1691 	/* Set initial state and call mmc_set_ios */
1692 	mmc_set_initial_state(host);
1693 
1694 	/*
1695 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1696 	 * XO-1.5, require a short delay after poweroff before the card
1697 	 * can be successfully turned on again.
1698 	 */
1699 	mmc_delay(1);
1700 }
1701 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1702 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1703 {
1704 	mmc_power_off(host);
1705 	/* Wait at least 1 ms according to SD spec */
1706 	mmc_delay(1);
1707 	mmc_power_up(host, ocr);
1708 }
1709 
1710 /*
1711  * Cleanup when the last reference to the bus operator is dropped.
1712  */
__mmc_release_bus(struct mmc_host * host)1713 static void __mmc_release_bus(struct mmc_host *host)
1714 {
1715 	WARN_ON(!host->bus_dead);
1716 
1717 	host->bus_ops = NULL;
1718 }
1719 
1720 /*
1721  * Increase reference count of bus operator
1722  */
mmc_bus_get(struct mmc_host * host)1723 static inline void mmc_bus_get(struct mmc_host *host)
1724 {
1725 	unsigned long flags;
1726 
1727 	spin_lock_irqsave(&host->lock, flags);
1728 	host->bus_refs++;
1729 	spin_unlock_irqrestore(&host->lock, flags);
1730 }
1731 
1732 /*
1733  * Decrease reference count of bus operator and free it if
1734  * it is the last reference.
1735  */
mmc_bus_put(struct mmc_host * host)1736 static inline void mmc_bus_put(struct mmc_host *host)
1737 {
1738 	unsigned long flags;
1739 
1740 	spin_lock_irqsave(&host->lock, flags);
1741 	host->bus_refs--;
1742 	if ((host->bus_refs == 0) && host->bus_ops)
1743 		__mmc_release_bus(host);
1744 	spin_unlock_irqrestore(&host->lock, flags);
1745 }
1746 
1747 /*
1748  * Assign a mmc bus handler to a host. Only one bus handler may control a
1749  * host at any given time.
1750  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1751 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1752 {
1753 	unsigned long flags;
1754 
1755 	WARN_ON(!host->claimed);
1756 
1757 	spin_lock_irqsave(&host->lock, flags);
1758 
1759 	WARN_ON(host->bus_ops);
1760 	WARN_ON(host->bus_refs);
1761 
1762 	host->bus_ops = ops;
1763 	host->bus_refs = 1;
1764 	host->bus_dead = 0;
1765 
1766 	spin_unlock_irqrestore(&host->lock, flags);
1767 }
1768 
1769 /*
1770  * Remove the current bus handler from a host.
1771  */
mmc_detach_bus(struct mmc_host * host)1772 void mmc_detach_bus(struct mmc_host *host)
1773 {
1774 	unsigned long flags;
1775 
1776 	WARN_ON(!host->claimed);
1777 	WARN_ON(!host->bus_ops);
1778 
1779 	spin_lock_irqsave(&host->lock, flags);
1780 
1781 	host->bus_dead = 1;
1782 
1783 	spin_unlock_irqrestore(&host->lock, flags);
1784 
1785 	mmc_bus_put(host);
1786 }
1787 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1788 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1789 				bool cd_irq)
1790 {
1791 	/*
1792 	 * If the device is configured as wakeup, we prevent a new sleep for
1793 	 * 5 s to give provision for user space to consume the event.
1794 	 */
1795 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1796 		device_can_wakeup(mmc_dev(host)))
1797 		pm_wakeup_event(mmc_dev(host), 5000);
1798 
1799 	host->detect_change = 1;
1800 	mmc_schedule_delayed_work(&host->detect, delay);
1801 }
1802 
1803 /**
1804  *	mmc_detect_change - process change of state on a MMC socket
1805  *	@host: host which changed state.
1806  *	@delay: optional delay to wait before detection (jiffies)
1807  *
1808  *	MMC drivers should call this when they detect a card has been
1809  *	inserted or removed. The MMC layer will confirm that any
1810  *	present card is still functional, and initialize any newly
1811  *	inserted.
1812  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1813 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1814 {
1815 	_mmc_detect_change(host, delay, true);
1816 }
1817 EXPORT_SYMBOL(mmc_detect_change);
1818 
mmc_init_erase(struct mmc_card * card)1819 void mmc_init_erase(struct mmc_card *card)
1820 {
1821 	unsigned int sz;
1822 
1823 	if (is_power_of_2(card->erase_size))
1824 		card->erase_shift = ffs(card->erase_size) - 1;
1825 	else
1826 		card->erase_shift = 0;
1827 
1828 	/*
1829 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1830 	 * card.  That is not desirable because it can take a long time
1831 	 * (minutes) potentially delaying more important I/O, and also the
1832 	 * timeout calculations become increasingly hugely over-estimated.
1833 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1834 	 * to that size and alignment.
1835 	 *
1836 	 * For SD cards that define Allocation Unit size, limit erases to one
1837 	 * Allocation Unit at a time.
1838 	 * For MMC, have a stab at ai good value and for modern cards it will
1839 	 * end up being 4MiB. Note that if the value is too small, it can end
1840 	 * up taking longer to erase. Also note, erase_size is already set to
1841 	 * High Capacity Erase Size if available when this function is called.
1842 	 */
1843 	if (mmc_card_sd(card) && card->ssr.au) {
1844 		card->pref_erase = card->ssr.au;
1845 		card->erase_shift = ffs(card->ssr.au) - 1;
1846 	} else if (card->erase_size) {
1847 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1848 		if (sz < 128)
1849 			card->pref_erase = 512 * 1024 / 512;
1850 		else if (sz < 512)
1851 			card->pref_erase = 1024 * 1024 / 512;
1852 		else if (sz < 1024)
1853 			card->pref_erase = 2 * 1024 * 1024 / 512;
1854 		else
1855 			card->pref_erase = 4 * 1024 * 1024 / 512;
1856 		if (card->pref_erase < card->erase_size)
1857 			card->pref_erase = card->erase_size;
1858 		else {
1859 			sz = card->pref_erase % card->erase_size;
1860 			if (sz)
1861 				card->pref_erase += card->erase_size - sz;
1862 		}
1863 	} else
1864 		card->pref_erase = 0;
1865 }
1866 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1867 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1868 				          unsigned int arg, unsigned int qty)
1869 {
1870 	unsigned int erase_timeout;
1871 
1872 	if (arg == MMC_DISCARD_ARG ||
1873 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1874 		erase_timeout = card->ext_csd.trim_timeout;
1875 	} else if (card->ext_csd.erase_group_def & 1) {
1876 		/* High Capacity Erase Group Size uses HC timeouts */
1877 		if (arg == MMC_TRIM_ARG)
1878 			erase_timeout = card->ext_csd.trim_timeout;
1879 		else
1880 			erase_timeout = card->ext_csd.hc_erase_timeout;
1881 	} else {
1882 		/* CSD Erase Group Size uses write timeout */
1883 		unsigned int mult = (10 << card->csd.r2w_factor);
1884 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1885 		unsigned int timeout_us;
1886 
1887 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1888 		if (card->csd.taac_ns < 1000000)
1889 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1890 		else
1891 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1892 
1893 		/*
1894 		 * ios.clock is only a target.  The real clock rate might be
1895 		 * less but not that much less, so fudge it by multiplying by 2.
1896 		 */
1897 		timeout_clks <<= 1;
1898 		timeout_us += (timeout_clks * 1000) /
1899 			      (card->host->ios.clock / 1000);
1900 
1901 		erase_timeout = timeout_us / 1000;
1902 
1903 		/*
1904 		 * Theoretically, the calculation could underflow so round up
1905 		 * to 1ms in that case.
1906 		 */
1907 		if (!erase_timeout)
1908 			erase_timeout = 1;
1909 	}
1910 
1911 	/* Multiplier for secure operations */
1912 	if (arg & MMC_SECURE_ARGS) {
1913 		if (arg == MMC_SECURE_ERASE_ARG)
1914 			erase_timeout *= card->ext_csd.sec_erase_mult;
1915 		else
1916 			erase_timeout *= card->ext_csd.sec_trim_mult;
1917 	}
1918 
1919 	erase_timeout *= qty;
1920 
1921 	/*
1922 	 * Ensure at least a 1 second timeout for SPI as per
1923 	 * 'mmc_set_data_timeout()'
1924 	 */
1925 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1926 		erase_timeout = 1000;
1927 
1928 	return erase_timeout;
1929 }
1930 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1931 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1932 					 unsigned int arg,
1933 					 unsigned int qty)
1934 {
1935 	unsigned int erase_timeout;
1936 
1937 	if (card->ssr.erase_timeout) {
1938 		/* Erase timeout specified in SD Status Register (SSR) */
1939 		erase_timeout = card->ssr.erase_timeout * qty +
1940 				card->ssr.erase_offset;
1941 	} else {
1942 		/*
1943 		 * Erase timeout not specified in SD Status Register (SSR) so
1944 		 * use 250ms per write block.
1945 		 */
1946 		erase_timeout = 250 * qty;
1947 	}
1948 
1949 	/* Must not be less than 1 second */
1950 	if (erase_timeout < 1000)
1951 		erase_timeout = 1000;
1952 
1953 	return erase_timeout;
1954 }
1955 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1956 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1957 				      unsigned int arg,
1958 				      unsigned int qty)
1959 {
1960 	if (mmc_card_sd(card))
1961 		return mmc_sd_erase_timeout(card, arg, qty);
1962 	else
1963 		return mmc_mmc_erase_timeout(card, arg, qty);
1964 }
1965 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1966 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1967 			unsigned int to, unsigned int arg)
1968 {
1969 	struct mmc_command cmd = {};
1970 	unsigned int qty = 0, busy_timeout = 0;
1971 	bool use_r1b_resp = false;
1972 	unsigned long timeout;
1973 	int loop_udelay=64, udelay_max=32768;
1974 	int err;
1975 
1976 	mmc_retune_hold(card->host);
1977 
1978 	/*
1979 	 * qty is used to calculate the erase timeout which depends on how many
1980 	 * erase groups (or allocation units in SD terminology) are affected.
1981 	 * We count erasing part of an erase group as one erase group.
1982 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1983 	 * erase group size is almost certainly also power of 2, but it does not
1984 	 * seem to insist on that in the JEDEC standard, so we fall back to
1985 	 * division in that case.  SD may not specify an allocation unit size,
1986 	 * in which case the timeout is based on the number of write blocks.
1987 	 *
1988 	 * Note that the timeout for secure trim 2 will only be correct if the
1989 	 * number of erase groups specified is the same as the total of all
1990 	 * preceding secure trim 1 commands.  Since the power may have been
1991 	 * lost since the secure trim 1 commands occurred, it is generally
1992 	 * impossible to calculate the secure trim 2 timeout correctly.
1993 	 */
1994 	if (card->erase_shift)
1995 		qty += ((to >> card->erase_shift) -
1996 			(from >> card->erase_shift)) + 1;
1997 	else if (mmc_card_sd(card))
1998 		qty += to - from + 1;
1999 	else
2000 		qty += ((to / card->erase_size) -
2001 			(from / card->erase_size)) + 1;
2002 
2003 	if (!mmc_card_blockaddr(card)) {
2004 		from <<= 9;
2005 		to <<= 9;
2006 	}
2007 
2008 	if (mmc_card_sd(card))
2009 		cmd.opcode = SD_ERASE_WR_BLK_START;
2010 	else
2011 		cmd.opcode = MMC_ERASE_GROUP_START;
2012 	cmd.arg = from;
2013 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2014 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2015 	if (err) {
2016 		pr_err("mmc_erase: group start error %d, "
2017 		       "status %#x\n", err, cmd.resp[0]);
2018 		err = -EIO;
2019 		goto out;
2020 	}
2021 
2022 	memset(&cmd, 0, sizeof(struct mmc_command));
2023 	if (mmc_card_sd(card))
2024 		cmd.opcode = SD_ERASE_WR_BLK_END;
2025 	else
2026 		cmd.opcode = MMC_ERASE_GROUP_END;
2027 	cmd.arg = to;
2028 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2029 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2030 	if (err) {
2031 		pr_err("mmc_erase: group end error %d, status %#x\n",
2032 		       err, cmd.resp[0]);
2033 		err = -EIO;
2034 		goto out;
2035 	}
2036 
2037 	memset(&cmd, 0, sizeof(struct mmc_command));
2038 	cmd.opcode = MMC_ERASE;
2039 	cmd.arg = arg;
2040 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2041 	/*
2042 	 * If the host controller supports busy signalling and the timeout for
2043 	 * the erase operation does not exceed the max_busy_timeout, we should
2044 	 * use R1B response. Or we need to prevent the host from doing hw busy
2045 	 * detection, which is done by converting to a R1 response instead.
2046 	 * Note, some hosts requires R1B, which also means they are on their own
2047 	 * when it comes to deal with the busy timeout.
2048 	 */
2049 	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
2050 	    card->host->max_busy_timeout &&
2051 	    busy_timeout > card->host->max_busy_timeout) {
2052 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2053 	} else {
2054 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2055 		cmd.busy_timeout = busy_timeout;
2056 		use_r1b_resp = true;
2057 	}
2058 
2059 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2060 	if (err) {
2061 		pr_err("mmc_erase: erase error %d, status %#x\n",
2062 		       err, cmd.resp[0]);
2063 		err = -EIO;
2064 		goto out;
2065 	}
2066 
2067 	if (mmc_host_is_spi(card->host))
2068 		goto out;
2069 
2070 	/*
2071 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2072 	 * shall be avoided.
2073 	 */
2074 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2075 		goto out;
2076 
2077 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2078 	do {
2079 		memset(&cmd, 0, sizeof(struct mmc_command));
2080 		cmd.opcode = MMC_SEND_STATUS;
2081 		cmd.arg = card->rca << 16;
2082 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2083 		/* Do not retry else we can't see errors */
2084 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2085 		if (err || R1_STATUS(cmd.resp[0])) {
2086 			pr_err("error %d requesting status %#x\n",
2087 				err, cmd.resp[0]);
2088 			err = -EIO;
2089 			goto out;
2090 		}
2091 
2092 		/* Timeout if the device never becomes ready for data and
2093 		 * never leaves the program state.
2094 		 */
2095 		if (time_after(jiffies, timeout)) {
2096 			pr_err("%s: Card stuck in programming state! %s\n",
2097 				mmc_hostname(card->host), __func__);
2098 			err =  -EIO;
2099 			goto out;
2100 		}
2101 		if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2102 		    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2103 			break;
2104 
2105 		usleep_range(loop_udelay, loop_udelay*2);
2106 		if (loop_udelay < udelay_max)
2107 			loop_udelay *= 2;
2108 	} while (1);
2109 
2110 out:
2111 	mmc_retune_release(card->host);
2112 	return err;
2113 }
2114 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)2115 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2116 					 unsigned int *from,
2117 					 unsigned int *to,
2118 					 unsigned int nr)
2119 {
2120 	unsigned int from_new = *from, nr_new = nr, rem;
2121 
2122 	/*
2123 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2124 	 * to align the erase size efficiently.
2125 	 */
2126 	if (is_power_of_2(card->erase_size)) {
2127 		unsigned int temp = from_new;
2128 
2129 		from_new = round_up(temp, card->erase_size);
2130 		rem = from_new - temp;
2131 
2132 		if (nr_new > rem)
2133 			nr_new -= rem;
2134 		else
2135 			return 0;
2136 
2137 		nr_new = round_down(nr_new, card->erase_size);
2138 	} else {
2139 		rem = from_new % card->erase_size;
2140 		if (rem) {
2141 			rem = card->erase_size - rem;
2142 			from_new += rem;
2143 			if (nr_new > rem)
2144 				nr_new -= rem;
2145 			else
2146 				return 0;
2147 		}
2148 
2149 		rem = nr_new % card->erase_size;
2150 		if (rem)
2151 			nr_new -= rem;
2152 	}
2153 
2154 	if (nr_new == 0)
2155 		return 0;
2156 
2157 	*to = from_new + nr_new;
2158 	*from = from_new;
2159 
2160 	return nr_new;
2161 }
2162 
2163 /**
2164  * mmc_erase - erase sectors.
2165  * @card: card to erase
2166  * @from: first sector to erase
2167  * @nr: number of sectors to erase
2168  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2169  *
2170  * Caller must claim host before calling this function.
2171  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2172 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2173 	      unsigned int arg)
2174 {
2175 	unsigned int rem, to = from + nr;
2176 	int err;
2177 
2178 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2179 	    !(card->csd.cmdclass & CCC_ERASE))
2180 		return -EOPNOTSUPP;
2181 
2182 	if (!card->erase_size)
2183 		return -EOPNOTSUPP;
2184 
2185 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2186 		return -EOPNOTSUPP;
2187 
2188 	if ((arg & MMC_SECURE_ARGS) &&
2189 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2190 		return -EOPNOTSUPP;
2191 
2192 	if ((arg & MMC_TRIM_ARGS) &&
2193 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2194 		return -EOPNOTSUPP;
2195 
2196 	if (arg == MMC_SECURE_ERASE_ARG) {
2197 		if (from % card->erase_size || nr % card->erase_size)
2198 			return -EINVAL;
2199 	}
2200 
2201 	if (arg == MMC_ERASE_ARG)
2202 		nr = mmc_align_erase_size(card, &from, &to, nr);
2203 
2204 	if (nr == 0)
2205 		return 0;
2206 
2207 	if (to <= from)
2208 		return -EINVAL;
2209 
2210 	/* 'from' and 'to' are inclusive */
2211 	to -= 1;
2212 
2213 	/*
2214 	 * Special case where only one erase-group fits in the timeout budget:
2215 	 * If the region crosses an erase-group boundary on this particular
2216 	 * case, we will be trimming more than one erase-group which, does not
2217 	 * fit in the timeout budget of the controller, so we need to split it
2218 	 * and call mmc_do_erase() twice if necessary. This special case is
2219 	 * identified by the card->eg_boundary flag.
2220 	 */
2221 	rem = card->erase_size - (from % card->erase_size);
2222 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2223 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2224 		from += rem;
2225 		if ((err) || (to <= from))
2226 			return err;
2227 	}
2228 
2229 	return mmc_do_erase(card, from, to, arg);
2230 }
2231 EXPORT_SYMBOL(mmc_erase);
2232 
mmc_can_erase(struct mmc_card * card)2233 int mmc_can_erase(struct mmc_card *card)
2234 {
2235 	if ((card->host->caps & MMC_CAP_ERASE) &&
2236 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2237 		return 1;
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL(mmc_can_erase);
2241 
mmc_can_trim(struct mmc_card * card)2242 int mmc_can_trim(struct mmc_card *card)
2243 {
2244 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2245 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2246 		return 1;
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL(mmc_can_trim);
2250 
mmc_can_discard(struct mmc_card * card)2251 int mmc_can_discard(struct mmc_card *card)
2252 {
2253 	/*
2254 	 * As there's no way to detect the discard support bit at v4.5
2255 	 * use the s/w feature support filed.
2256 	 */
2257 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2258 		return 1;
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL(mmc_can_discard);
2262 
mmc_can_sanitize(struct mmc_card * card)2263 int mmc_can_sanitize(struct mmc_card *card)
2264 {
2265 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2266 		return 0;
2267 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2268 		return 1;
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL(mmc_can_sanitize);
2272 
mmc_can_secure_erase_trim(struct mmc_card * card)2273 int mmc_can_secure_erase_trim(struct mmc_card *card)
2274 {
2275 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2276 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2277 		return 1;
2278 	return 0;
2279 }
2280 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2281 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2282 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2283 			    unsigned int nr)
2284 {
2285 	if (!card->erase_size)
2286 		return 0;
2287 	if (from % card->erase_size || nr % card->erase_size)
2288 		return 0;
2289 	return 1;
2290 }
2291 EXPORT_SYMBOL(mmc_erase_group_aligned);
2292 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2293 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2294 					    unsigned int arg)
2295 {
2296 	struct mmc_host *host = card->host;
2297 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2298 	unsigned int last_timeout = 0;
2299 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2300 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2301 
2302 	if (card->erase_shift) {
2303 		max_qty = UINT_MAX >> card->erase_shift;
2304 		min_qty = card->pref_erase >> card->erase_shift;
2305 	} else if (mmc_card_sd(card)) {
2306 		max_qty = UINT_MAX;
2307 		min_qty = card->pref_erase;
2308 	} else {
2309 		max_qty = UINT_MAX / card->erase_size;
2310 		min_qty = card->pref_erase / card->erase_size;
2311 	}
2312 
2313 	/*
2314 	 * We should not only use 'host->max_busy_timeout' as the limitation
2315 	 * when deciding the max discard sectors. We should set a balance value
2316 	 * to improve the erase speed, and it can not get too long timeout at
2317 	 * the same time.
2318 	 *
2319 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2320 	 * matter what size of 'host->max_busy_timeout', but if the
2321 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2322 	 * then we can continue to increase the max discard sectors until we
2323 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2324 	 * isn't specified, use the default max erase timeout.
2325 	 */
2326 	do {
2327 		y = 0;
2328 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2329 			timeout = mmc_erase_timeout(card, arg, qty + x);
2330 
2331 			if (qty + x > min_qty && timeout > max_busy_timeout)
2332 				break;
2333 
2334 			if (timeout < last_timeout)
2335 				break;
2336 			last_timeout = timeout;
2337 			y = x;
2338 		}
2339 		qty += y;
2340 	} while (y);
2341 
2342 	if (!qty)
2343 		return 0;
2344 
2345 	/*
2346 	 * When specifying a sector range to trim, chances are we might cross
2347 	 * an erase-group boundary even if the amount of sectors is less than
2348 	 * one erase-group.
2349 	 * If we can only fit one erase-group in the controller timeout budget,
2350 	 * we have to care that erase-group boundaries are not crossed by a
2351 	 * single trim operation. We flag that special case with "eg_boundary".
2352 	 * In all other cases we can just decrement qty and pretend that we
2353 	 * always touch (qty + 1) erase-groups as a simple optimization.
2354 	 */
2355 	if (qty == 1)
2356 		card->eg_boundary = 1;
2357 	else
2358 		qty--;
2359 
2360 	/* Convert qty to sectors */
2361 	if (card->erase_shift)
2362 		max_discard = qty << card->erase_shift;
2363 	else if (mmc_card_sd(card))
2364 		max_discard = qty + 1;
2365 	else
2366 		max_discard = qty * card->erase_size;
2367 
2368 	return max_discard;
2369 }
2370 
mmc_calc_max_discard(struct mmc_card * card)2371 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2372 {
2373 	struct mmc_host *host = card->host;
2374 	unsigned int max_discard, max_trim;
2375 
2376 	/*
2377 	 * Without erase_group_def set, MMC erase timeout depends on clock
2378 	 * frequence which can change.  In that case, the best choice is
2379 	 * just the preferred erase size.
2380 	 */
2381 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2382 		return card->pref_erase;
2383 
2384 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2385 	if (mmc_can_trim(card)) {
2386 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2387 		if (max_trim < max_discard || max_discard == 0)
2388 			max_discard = max_trim;
2389 	} else if (max_discard < card->erase_size) {
2390 		max_discard = 0;
2391 	}
2392 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2393 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2394 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2395 	return max_discard;
2396 }
2397 EXPORT_SYMBOL(mmc_calc_max_discard);
2398 
mmc_card_is_blockaddr(struct mmc_card * card)2399 bool mmc_card_is_blockaddr(struct mmc_card *card)
2400 {
2401 	return card ? mmc_card_blockaddr(card) : false;
2402 }
2403 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2404 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2405 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2406 {
2407 	struct mmc_command cmd = {};
2408 
2409 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2410 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2411 		return 0;
2412 
2413 	cmd.opcode = MMC_SET_BLOCKLEN;
2414 	cmd.arg = blocklen;
2415 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2416 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2417 }
2418 EXPORT_SYMBOL(mmc_set_blocklen);
2419 
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2420 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2421 			bool is_rel_write)
2422 {
2423 	struct mmc_command cmd = {};
2424 
2425 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2426 	cmd.arg = blockcount & 0x0000FFFF;
2427 	if (is_rel_write)
2428 		cmd.arg |= 1 << 31;
2429 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2430 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2431 }
2432 EXPORT_SYMBOL(mmc_set_blockcount);
2433 
mmc_hw_reset_for_init(struct mmc_host * host)2434 static void mmc_hw_reset_for_init(struct mmc_host *host)
2435 {
2436 	mmc_pwrseq_reset(host);
2437 
2438 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2439 		return;
2440 	host->ops->hw_reset(host);
2441 }
2442 
mmc_hw_reset(struct mmc_host * host)2443 int mmc_hw_reset(struct mmc_host *host)
2444 {
2445 	int ret;
2446 
2447 	if (!host->card)
2448 		return -EINVAL;
2449 
2450 	mmc_bus_get(host);
2451 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2452 		mmc_bus_put(host);
2453 		return -EOPNOTSUPP;
2454 	}
2455 
2456 	ret = host->bus_ops->hw_reset(host);
2457 	mmc_bus_put(host);
2458 
2459 	if (ret)
2460 		pr_warn("%s: tried to HW reset card, got error %d\n",
2461 			mmc_hostname(host), ret);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL(mmc_hw_reset);
2466 
mmc_sw_reset(struct mmc_host * host)2467 int mmc_sw_reset(struct mmc_host *host)
2468 {
2469 	int ret;
2470 
2471 	if (!host->card)
2472 		return -EINVAL;
2473 
2474 	mmc_bus_get(host);
2475 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2476 		mmc_bus_put(host);
2477 		return -EOPNOTSUPP;
2478 	}
2479 
2480 	ret = host->bus_ops->sw_reset(host);
2481 	mmc_bus_put(host);
2482 
2483 	if (ret)
2484 		pr_warn("%s: tried to SW reset card, got error %d\n",
2485 			mmc_hostname(host), ret);
2486 
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(mmc_sw_reset);
2490 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2491 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2492 {
2493 	host->f_init = freq;
2494 
2495 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2496 		mmc_hostname(host), __func__, host->f_init);
2497 
2498 	mmc_power_up(host, host->ocr_avail);
2499 
2500 	/*
2501 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2502 	 * do a hardware reset if possible.
2503 	 */
2504 	mmc_hw_reset_for_init(host);
2505 
2506 	/*
2507 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2508 	 * if the card is being re-initialized, just send it.  CMD52
2509 	 * should be ignored by SD/eMMC cards.
2510 	 * Skip it if we already know that we do not support SDIO commands
2511 	 */
2512 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2513 		sdio_reset(host);
2514 
2515 	mmc_go_idle(host);
2516 
2517 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2518 		mmc_send_if_cond(host, host->ocr_avail);
2519 
2520 	/* Order's important: probe SDIO, then SD, then MMC */
2521 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2522 		if (!mmc_attach_sdio(host))
2523 			return 0;
2524 
2525 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2526 		if (!mmc_attach_sd(host))
2527 			return 0;
2528 
2529 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2530 		if (!mmc_attach_mmc(host))
2531 			return 0;
2532 
2533 	mmc_power_off(host);
2534 	return -EIO;
2535 }
2536 
_mmc_detect_card_removed(struct mmc_host * host)2537 int _mmc_detect_card_removed(struct mmc_host *host)
2538 {
2539 	int ret;
2540 
2541 	if (!host->card || mmc_card_removed(host->card))
2542 		return 1;
2543 
2544 	ret = host->bus_ops->alive(host);
2545 
2546 	/*
2547 	 * Card detect status and alive check may be out of sync if card is
2548 	 * removed slowly, when card detect switch changes while card/slot
2549 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2550 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2551 	 * detect work 200ms later for this case.
2552 	 */
2553 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2554 		mmc_detect_change(host, msecs_to_jiffies(200));
2555 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2556 	}
2557 
2558 	if (ret) {
2559 		mmc_card_set_removed(host->card);
2560 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2561 	}
2562 
2563 	return ret;
2564 }
2565 
mmc_detect_card_removed(struct mmc_host * host)2566 int mmc_detect_card_removed(struct mmc_host *host)
2567 {
2568 	struct mmc_card *card = host->card;
2569 	int ret;
2570 
2571 	WARN_ON(!host->claimed);
2572 
2573 	if (!card)
2574 		return 1;
2575 
2576 	if (!mmc_card_is_removable(host))
2577 		return 0;
2578 
2579 	ret = mmc_card_removed(card);
2580 	/*
2581 	 * The card will be considered unchanged unless we have been asked to
2582 	 * detect a change or host requires polling to provide card detection.
2583 	 */
2584 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2585 		return ret;
2586 
2587 	host->detect_change = 0;
2588 	if (!ret) {
2589 		ret = _mmc_detect_card_removed(host);
2590 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2591 			/*
2592 			 * Schedule a detect work as soon as possible to let a
2593 			 * rescan handle the card removal.
2594 			 */
2595 			cancel_delayed_work(&host->detect);
2596 			_mmc_detect_change(host, 0, false);
2597 		}
2598 	}
2599 
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(mmc_detect_card_removed);
2603 
mmc_rescan(struct work_struct * work)2604 void mmc_rescan(struct work_struct *work)
2605 {
2606 	struct mmc_host *host =
2607 		container_of(work, struct mmc_host, detect.work);
2608 	int i;
2609 
2610 	if (host->rescan_disable)
2611 		return;
2612 
2613 	/* If there is a non-removable card registered, only scan once */
2614 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2615 		return;
2616 	host->rescan_entered = 1;
2617 
2618 	if (host->trigger_card_event && host->ops->card_event) {
2619 		mmc_claim_host(host);
2620 		host->ops->card_event(host);
2621 		mmc_release_host(host);
2622 		host->trigger_card_event = false;
2623 	}
2624 
2625 	mmc_bus_get(host);
2626 
2627 	/*
2628 	 * if there is a _removable_ card registered, check whether it is
2629 	 * still present
2630 	 */
2631 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2632 		host->bus_ops->detect(host);
2633 
2634 	host->detect_change = 0;
2635 
2636 	/*
2637 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2638 	 * the card is no longer present.
2639 	 */
2640 	mmc_bus_put(host);
2641 	mmc_bus_get(host);
2642 
2643 	/* if there still is a card present, stop here */
2644 	if (host->bus_ops != NULL) {
2645 		mmc_bus_put(host);
2646 		goto out;
2647 	}
2648 
2649 	/*
2650 	 * Only we can add a new handler, so it's safe to
2651 	 * release the lock here.
2652 	 */
2653 	mmc_bus_put(host);
2654 
2655 	mmc_claim_host(host);
2656 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2657 			host->ops->get_cd(host) == 0) {
2658 		mmc_power_off(host);
2659 		mmc_release_host(host);
2660 		goto out;
2661 	}
2662 
2663 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2664 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2665 			break;
2666 		if (freqs[i] <= host->f_min)
2667 			break;
2668 	}
2669 	mmc_release_host(host);
2670 
2671  out:
2672 	if (host->caps & MMC_CAP_NEEDS_POLL)
2673 		mmc_schedule_delayed_work(&host->detect, HZ);
2674 }
2675 
mmc_start_host(struct mmc_host * host)2676 void mmc_start_host(struct mmc_host *host)
2677 {
2678 	host->f_init = max(freqs[0], host->f_min);
2679 	host->rescan_disable = 0;
2680 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2681 
2682 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2683 		mmc_claim_host(host);
2684 		mmc_power_up(host, host->ocr_avail);
2685 		mmc_release_host(host);
2686 	}
2687 
2688 	mmc_gpiod_request_cd_irq(host);
2689 	_mmc_detect_change(host, 0, false);
2690 }
2691 
mmc_stop_host(struct mmc_host * host)2692 void mmc_stop_host(struct mmc_host *host)
2693 {
2694 	if (host->slot.cd_irq >= 0) {
2695 		mmc_gpio_set_cd_wake(host, false);
2696 		disable_irq(host->slot.cd_irq);
2697 	}
2698 
2699 	host->rescan_disable = 1;
2700 	cancel_delayed_work_sync(&host->detect);
2701 
2702 	/* clear pm flags now and let card drivers set them as needed */
2703 	host->pm_flags = 0;
2704 
2705 	mmc_bus_get(host);
2706 	if (host->bus_ops && !host->bus_dead) {
2707 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2708 		host->bus_ops->remove(host);
2709 		mmc_claim_host(host);
2710 		mmc_detach_bus(host);
2711 		mmc_power_off(host);
2712 		mmc_release_host(host);
2713 		mmc_bus_put(host);
2714 		return;
2715 	}
2716 	mmc_bus_put(host);
2717 
2718 	mmc_claim_host(host);
2719 	mmc_power_off(host);
2720 	mmc_release_host(host);
2721 }
2722 
2723 #ifdef CONFIG_PM_SLEEP
2724 /* Do the card removal on suspend if card is assumed removeable
2725  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2726    to sync the card.
2727 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2728 static int mmc_pm_notify(struct notifier_block *notify_block,
2729 			unsigned long mode, void *unused)
2730 {
2731 	struct mmc_host *host = container_of(
2732 		notify_block, struct mmc_host, pm_notify);
2733 	unsigned long flags;
2734 	int err = 0;
2735 
2736 	switch (mode) {
2737 	case PM_HIBERNATION_PREPARE:
2738 	case PM_SUSPEND_PREPARE:
2739 	case PM_RESTORE_PREPARE:
2740 		spin_lock_irqsave(&host->lock, flags);
2741 		host->rescan_disable = 1;
2742 		spin_unlock_irqrestore(&host->lock, flags);
2743 		cancel_delayed_work_sync(&host->detect);
2744 
2745 		if (!host->bus_ops)
2746 			break;
2747 
2748 		/* Validate prerequisites for suspend */
2749 		if (host->bus_ops->pre_suspend)
2750 			err = host->bus_ops->pre_suspend(host);
2751 		if (!err)
2752 			break;
2753 
2754 		if (!mmc_card_is_removable(host)) {
2755 			dev_warn(mmc_dev(host),
2756 				 "pre_suspend failed for non-removable host: "
2757 				 "%d\n", err);
2758 			/* Avoid removing non-removable hosts */
2759 			break;
2760 		}
2761 
2762 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2763 		host->bus_ops->remove(host);
2764 		mmc_claim_host(host);
2765 		mmc_detach_bus(host);
2766 		mmc_power_off(host);
2767 		mmc_release_host(host);
2768 		host->pm_flags = 0;
2769 		break;
2770 
2771 	case PM_POST_SUSPEND:
2772 	case PM_POST_HIBERNATION:
2773 	case PM_POST_RESTORE:
2774 
2775 		spin_lock_irqsave(&host->lock, flags);
2776 		host->rescan_disable = 0;
2777 		spin_unlock_irqrestore(&host->lock, flags);
2778 		_mmc_detect_change(host, 0, false);
2779 
2780 	}
2781 
2782 	return 0;
2783 }
2784 
mmc_register_pm_notifier(struct mmc_host * host)2785 void mmc_register_pm_notifier(struct mmc_host *host)
2786 {
2787 	host->pm_notify.notifier_call = mmc_pm_notify;
2788 	register_pm_notifier(&host->pm_notify);
2789 }
2790 
mmc_unregister_pm_notifier(struct mmc_host * host)2791 void mmc_unregister_pm_notifier(struct mmc_host *host)
2792 {
2793 	unregister_pm_notifier(&host->pm_notify);
2794 }
2795 #endif
2796 
mmc_init(void)2797 static int __init mmc_init(void)
2798 {
2799 	int ret;
2800 
2801 	ret = mmc_register_bus();
2802 	if (ret)
2803 		return ret;
2804 
2805 	ret = mmc_register_host_class();
2806 	if (ret)
2807 		goto unregister_bus;
2808 
2809 	ret = sdio_register_bus();
2810 	if (ret)
2811 		goto unregister_host_class;
2812 
2813 	return 0;
2814 
2815 unregister_host_class:
2816 	mmc_unregister_host_class();
2817 unregister_bus:
2818 	mmc_unregister_bus();
2819 	return ret;
2820 }
2821 
mmc_exit(void)2822 static void __exit mmc_exit(void)
2823 {
2824 	sdio_unregister_bus();
2825 	mmc_unregister_host_class();
2826 	mmc_unregister_bus();
2827 }
2828 
2829 subsys_initcall(mmc_init);
2830 module_exit(mmc_exit);
2831 
2832 MODULE_LICENSE("GPL");
2833