• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
part_inc_in_flight(struct request_queue * q,struct hd_struct * part,int rw)48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
part_dec_in_flight(struct request_queue * q,struct hd_struct * part,int rw)58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
part_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
part_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 		       unsigned int inflight[2])
87 {
88 	if (q->mq_ops) {
89 		blk_mq_in_flight_rw(q, part, inflight);
90 		return;
91 	}
92 
93 	inflight[0] = atomic_read(&part->in_flight[0]);
94 	inflight[1] = atomic_read(&part->in_flight[1]);
95 }
96 
__disk_get_part(struct gendisk * disk,int partno)97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98 {
99 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100 
101 	if (unlikely(partno < 0 || partno >= ptbl->len))
102 		return NULL;
103 	return rcu_dereference(ptbl->part[partno]);
104 }
105 
106 /**
107  * disk_get_part - get partition
108  * @disk: disk to look partition from
109  * @partno: partition number
110  *
111  * Look for partition @partno from @disk.  If found, increment
112  * reference count and return it.
113  *
114  * CONTEXT:
115  * Don't care.
116  *
117  * RETURNS:
118  * Pointer to the found partition on success, NULL if not found.
119  */
disk_get_part(struct gendisk * disk,int partno)120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121 {
122 	struct hd_struct *part;
123 
124 	rcu_read_lock();
125 	part = __disk_get_part(disk, partno);
126 	if (part)
127 		get_device(part_to_dev(part));
128 	rcu_read_unlock();
129 
130 	return part;
131 }
132 EXPORT_SYMBOL_GPL(disk_get_part);
133 
134 /**
135  * disk_part_iter_init - initialize partition iterator
136  * @piter: iterator to initialize
137  * @disk: disk to iterate over
138  * @flags: DISK_PITER_* flags
139  *
140  * Initialize @piter so that it iterates over partitions of @disk.
141  *
142  * CONTEXT:
143  * Don't care.
144  */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 			  unsigned int flags)
147 {
148 	struct disk_part_tbl *ptbl;
149 
150 	rcu_read_lock();
151 	ptbl = rcu_dereference(disk->part_tbl);
152 
153 	piter->disk = disk;
154 	piter->part = NULL;
155 
156 	if (flags & DISK_PITER_REVERSE)
157 		piter->idx = ptbl->len - 1;
158 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 		piter->idx = 0;
160 	else
161 		piter->idx = 1;
162 
163 	piter->flags = flags;
164 
165 	rcu_read_unlock();
166 }
167 EXPORT_SYMBOL_GPL(disk_part_iter_init);
168 
169 /**
170  * disk_part_iter_next - proceed iterator to the next partition and return it
171  * @piter: iterator of interest
172  *
173  * Proceed @piter to the next partition and return it.
174  *
175  * CONTEXT:
176  * Don't care.
177  */
disk_part_iter_next(struct disk_part_iter * piter)178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179 {
180 	struct disk_part_tbl *ptbl;
181 	int inc, end;
182 
183 	/* put the last partition */
184 	disk_put_part(piter->part);
185 	piter->part = NULL;
186 
187 	/* get part_tbl */
188 	rcu_read_lock();
189 	ptbl = rcu_dereference(piter->disk->part_tbl);
190 
191 	/* determine iteration parameters */
192 	if (piter->flags & DISK_PITER_REVERSE) {
193 		inc = -1;
194 		if (piter->flags & (DISK_PITER_INCL_PART0 |
195 				    DISK_PITER_INCL_EMPTY_PART0))
196 			end = -1;
197 		else
198 			end = 0;
199 	} else {
200 		inc = 1;
201 		end = ptbl->len;
202 	}
203 
204 	/* iterate to the next partition */
205 	for (; piter->idx != end; piter->idx += inc) {
206 		struct hd_struct *part;
207 
208 		part = rcu_dereference(ptbl->part[piter->idx]);
209 		if (!part)
210 			continue;
211 		if (!part_nr_sects_read(part) &&
212 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
213 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
214 		      piter->idx == 0))
215 			continue;
216 
217 		get_device(part_to_dev(part));
218 		piter->part = part;
219 		piter->idx += inc;
220 		break;
221 	}
222 
223 	rcu_read_unlock();
224 
225 	return piter->part;
226 }
227 EXPORT_SYMBOL_GPL(disk_part_iter_next);
228 
229 /**
230  * disk_part_iter_exit - finish up partition iteration
231  * @piter: iter of interest
232  *
233  * Called when iteration is over.  Cleans up @piter.
234  *
235  * CONTEXT:
236  * Don't care.
237  */
disk_part_iter_exit(struct disk_part_iter * piter)238 void disk_part_iter_exit(struct disk_part_iter *piter)
239 {
240 	disk_put_part(piter->part);
241 	piter->part = NULL;
242 }
243 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
244 
sector_in_part(struct hd_struct * part,sector_t sector)245 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
246 {
247 	return part->start_sect <= sector &&
248 		sector < part->start_sect + part_nr_sects_read(part);
249 }
250 
251 /**
252  * disk_map_sector_rcu - map sector to partition
253  * @disk: gendisk of interest
254  * @sector: sector to map
255  *
256  * Find out which partition @sector maps to on @disk.  This is
257  * primarily used for stats accounting.
258  *
259  * CONTEXT:
260  * RCU read locked.  The returned partition pointer is valid only
261  * while preemption is disabled.
262  *
263  * RETURNS:
264  * Found partition on success, part0 is returned if no partition matches
265  */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)266 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
267 {
268 	struct disk_part_tbl *ptbl;
269 	struct hd_struct *part;
270 	int i;
271 
272 	ptbl = rcu_dereference(disk->part_tbl);
273 
274 	part = rcu_dereference(ptbl->last_lookup);
275 	if (part && sector_in_part(part, sector))
276 		return part;
277 
278 	for (i = 1; i < ptbl->len; i++) {
279 		part = rcu_dereference(ptbl->part[i]);
280 
281 		if (part && sector_in_part(part, sector)) {
282 			rcu_assign_pointer(ptbl->last_lookup, part);
283 			return part;
284 		}
285 	}
286 	return &disk->part0;
287 }
288 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
289 
290 /*
291  * Can be deleted altogether. Later.
292  *
293  */
294 #define BLKDEV_MAJOR_HASH_SIZE 255
295 static struct blk_major_name {
296 	struct blk_major_name *next;
297 	int major;
298 	char name[16];
299 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
300 
301 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)302 static inline int major_to_index(unsigned major)
303 {
304 	return major % BLKDEV_MAJOR_HASH_SIZE;
305 }
306 
307 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)308 void blkdev_show(struct seq_file *seqf, off_t offset)
309 {
310 	struct blk_major_name *dp;
311 
312 	mutex_lock(&block_class_lock);
313 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
314 		if (dp->major == offset)
315 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
316 	mutex_unlock(&block_class_lock);
317 }
318 #endif /* CONFIG_PROC_FS */
319 
320 /**
321  * register_blkdev - register a new block device
322  *
323  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
324  *         @major = 0, try to allocate any unused major number.
325  * @name: the name of the new block device as a zero terminated string
326  *
327  * The @name must be unique within the system.
328  *
329  * The return value depends on the @major input parameter:
330  *
331  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
332  *    then the function returns zero on success, or a negative error code
333  *  - if any unused major number was requested with @major = 0 parameter
334  *    then the return value is the allocated major number in range
335  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
336  *
337  * See Documentation/admin-guide/devices.txt for the list of allocated
338  * major numbers.
339  */
register_blkdev(unsigned int major,const char * name)340 int register_blkdev(unsigned int major, const char *name)
341 {
342 	struct blk_major_name **n, *p;
343 	int index, ret = 0;
344 
345 	mutex_lock(&block_class_lock);
346 
347 	/* temporary */
348 	if (major == 0) {
349 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
350 			if (major_names[index] == NULL)
351 				break;
352 		}
353 
354 		if (index == 0) {
355 			printk("register_blkdev: failed to get major for %s\n",
356 			       name);
357 			ret = -EBUSY;
358 			goto out;
359 		}
360 		major = index;
361 		ret = major;
362 	}
363 
364 	if (major >= BLKDEV_MAJOR_MAX) {
365 		pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n",
366 		       major, BLKDEV_MAJOR_MAX-1, name);
367 
368 		ret = -EINVAL;
369 		goto out;
370 	}
371 
372 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
373 	if (p == NULL) {
374 		ret = -ENOMEM;
375 		goto out;
376 	}
377 
378 	p->major = major;
379 	strlcpy(p->name, name, sizeof(p->name));
380 	p->next = NULL;
381 	index = major_to_index(major);
382 
383 	for (n = &major_names[index]; *n; n = &(*n)->next) {
384 		if ((*n)->major == major)
385 			break;
386 	}
387 	if (!*n)
388 		*n = p;
389 	else
390 		ret = -EBUSY;
391 
392 	if (ret < 0) {
393 		printk("register_blkdev: cannot get major %u for %s\n",
394 		       major, name);
395 		kfree(p);
396 	}
397 out:
398 	mutex_unlock(&block_class_lock);
399 	return ret;
400 }
401 
402 EXPORT_SYMBOL(register_blkdev);
403 
unregister_blkdev(unsigned int major,const char * name)404 void unregister_blkdev(unsigned int major, const char *name)
405 {
406 	struct blk_major_name **n;
407 	struct blk_major_name *p = NULL;
408 	int index = major_to_index(major);
409 
410 	mutex_lock(&block_class_lock);
411 	for (n = &major_names[index]; *n; n = &(*n)->next)
412 		if ((*n)->major == major)
413 			break;
414 	if (!*n || strcmp((*n)->name, name)) {
415 		WARN_ON(1);
416 	} else {
417 		p = *n;
418 		*n = p->next;
419 	}
420 	mutex_unlock(&block_class_lock);
421 	kfree(p);
422 }
423 
424 EXPORT_SYMBOL(unregister_blkdev);
425 
426 static struct kobj_map *bdev_map;
427 
428 /**
429  * blk_mangle_minor - scatter minor numbers apart
430  * @minor: minor number to mangle
431  *
432  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
433  * is enabled.  Mangling twice gives the original value.
434  *
435  * RETURNS:
436  * Mangled value.
437  *
438  * CONTEXT:
439  * Don't care.
440  */
blk_mangle_minor(int minor)441 static int blk_mangle_minor(int minor)
442 {
443 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
444 	int i;
445 
446 	for (i = 0; i < MINORBITS / 2; i++) {
447 		int low = minor & (1 << i);
448 		int high = minor & (1 << (MINORBITS - 1 - i));
449 		int distance = MINORBITS - 1 - 2 * i;
450 
451 		minor ^= low | high;	/* clear both bits */
452 		low <<= distance;	/* swap the positions */
453 		high >>= distance;
454 		minor |= low | high;	/* and set */
455 	}
456 #endif
457 	return minor;
458 }
459 
460 /**
461  * blk_alloc_devt - allocate a dev_t for a partition
462  * @part: partition to allocate dev_t for
463  * @devt: out parameter for resulting dev_t
464  *
465  * Allocate a dev_t for block device.
466  *
467  * RETURNS:
468  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
469  * failure.
470  *
471  * CONTEXT:
472  * Might sleep.
473  */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)474 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
475 {
476 	struct gendisk *disk = part_to_disk(part);
477 	int idx;
478 
479 	/* in consecutive minor range? */
480 	if (part->partno < disk->minors) {
481 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
482 		return 0;
483 	}
484 
485 	/* allocate ext devt */
486 	idr_preload(GFP_KERNEL);
487 
488 	spin_lock_bh(&ext_devt_lock);
489 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
490 	spin_unlock_bh(&ext_devt_lock);
491 
492 	idr_preload_end();
493 	if (idx < 0)
494 		return idx == -ENOSPC ? -EBUSY : idx;
495 
496 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
497 	return 0;
498 }
499 
500 /**
501  * blk_free_devt - free a dev_t
502  * @devt: dev_t to free
503  *
504  * Free @devt which was allocated using blk_alloc_devt().
505  *
506  * CONTEXT:
507  * Might sleep.
508  */
blk_free_devt(dev_t devt)509 void blk_free_devt(dev_t devt)
510 {
511 	if (devt == MKDEV(0, 0))
512 		return;
513 
514 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
515 		spin_lock_bh(&ext_devt_lock);
516 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
517 		spin_unlock_bh(&ext_devt_lock);
518 	}
519 }
520 
521 /**
522  *	We invalidate devt by assigning NULL pointer for devt in idr.
523  */
blk_invalidate_devt(dev_t devt)524 void blk_invalidate_devt(dev_t devt)
525 {
526 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
527 		spin_lock_bh(&ext_devt_lock);
528 		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
529 		spin_unlock_bh(&ext_devt_lock);
530 	}
531 }
532 
bdevt_str(dev_t devt,char * buf)533 static char *bdevt_str(dev_t devt, char *buf)
534 {
535 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
536 		char tbuf[BDEVT_SIZE];
537 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
538 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
539 	} else
540 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
541 
542 	return buf;
543 }
544 
545 /*
546  * Register device numbers dev..(dev+range-1)
547  * range must be nonzero
548  * The hash chain is sorted on range, so that subranges can override.
549  */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)550 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
551 			 struct kobject *(*probe)(dev_t, int *, void *),
552 			 int (*lock)(dev_t, void *), void *data)
553 {
554 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
555 }
556 
557 EXPORT_SYMBOL(blk_register_region);
558 
blk_unregister_region(dev_t devt,unsigned long range)559 void blk_unregister_region(dev_t devt, unsigned long range)
560 {
561 	kobj_unmap(bdev_map, devt, range);
562 }
563 
564 EXPORT_SYMBOL(blk_unregister_region);
565 
exact_match(dev_t devt,int * partno,void * data)566 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
567 {
568 	struct gendisk *p = data;
569 
570 	return &disk_to_dev(p)->kobj;
571 }
572 
exact_lock(dev_t devt,void * data)573 static int exact_lock(dev_t devt, void *data)
574 {
575 	struct gendisk *p = data;
576 
577 	if (!get_disk_and_module(p))
578 		return -1;
579 	return 0;
580 }
581 
register_disk(struct device * parent,struct gendisk * disk)582 static void register_disk(struct device *parent, struct gendisk *disk)
583 {
584 	struct device *ddev = disk_to_dev(disk);
585 	struct block_device *bdev;
586 	struct disk_part_iter piter;
587 	struct hd_struct *part;
588 	int err;
589 
590 	ddev->parent = parent;
591 
592 	dev_set_name(ddev, "%s", disk->disk_name);
593 
594 	/* delay uevents, until we scanned partition table */
595 	dev_set_uevent_suppress(ddev, 1);
596 
597 	if (device_add(ddev))
598 		return;
599 	if (!sysfs_deprecated) {
600 		err = sysfs_create_link(block_depr, &ddev->kobj,
601 					kobject_name(&ddev->kobj));
602 		if (err) {
603 			device_del(ddev);
604 			return;
605 		}
606 	}
607 
608 	/*
609 	 * avoid probable deadlock caused by allocating memory with
610 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
611 	 * devices
612 	 */
613 	pm_runtime_set_memalloc_noio(ddev, true);
614 
615 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
616 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
617 
618 	if (disk->flags & GENHD_FL_HIDDEN) {
619 		dev_set_uevent_suppress(ddev, 0);
620 		return;
621 	}
622 
623 	/* No minors to use for partitions */
624 	if (!disk_part_scan_enabled(disk))
625 		goto exit;
626 
627 	/* No such device (e.g., media were just removed) */
628 	if (!get_capacity(disk))
629 		goto exit;
630 
631 	bdev = bdget_disk(disk, 0);
632 	if (!bdev)
633 		goto exit;
634 
635 	bdev->bd_invalidated = 1;
636 	err = blkdev_get(bdev, FMODE_READ, NULL);
637 	if (err < 0)
638 		goto exit;
639 	blkdev_put(bdev, FMODE_READ);
640 
641 exit:
642 	/* announce disk after possible partitions are created */
643 	dev_set_uevent_suppress(ddev, 0);
644 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
645 
646 	/* announce possible partitions */
647 	disk_part_iter_init(&piter, disk, 0);
648 	while ((part = disk_part_iter_next(&piter)))
649 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
650 	disk_part_iter_exit(&piter);
651 
652 	err = sysfs_create_link(&ddev->kobj,
653 				&disk->queue->backing_dev_info->dev->kobj,
654 				"bdi");
655 	WARN_ON(err);
656 }
657 
658 /**
659  * __device_add_disk - add disk information to kernel list
660  * @parent: parent device for the disk
661  * @disk: per-device partitioning information
662  * @register_queue: register the queue if set to true
663  *
664  * This function registers the partitioning information in @disk
665  * with the kernel.
666  *
667  * FIXME: error handling
668  */
__device_add_disk(struct device * parent,struct gendisk * disk,bool register_queue)669 static void __device_add_disk(struct device *parent, struct gendisk *disk,
670 			      bool register_queue)
671 {
672 	dev_t devt;
673 	int retval;
674 
675 	/* minors == 0 indicates to use ext devt from part0 and should
676 	 * be accompanied with EXT_DEVT flag.  Make sure all
677 	 * parameters make sense.
678 	 */
679 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
680 	WARN_ON(!disk->minors &&
681 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
682 
683 	disk->flags |= GENHD_FL_UP;
684 
685 	retval = blk_alloc_devt(&disk->part0, &devt);
686 	if (retval) {
687 		WARN_ON(1);
688 		return;
689 	}
690 	disk->major = MAJOR(devt);
691 	disk->first_minor = MINOR(devt);
692 
693 	disk_alloc_events(disk);
694 
695 	if (disk->flags & GENHD_FL_HIDDEN) {
696 		/*
697 		 * Don't let hidden disks show up in /proc/partitions,
698 		 * and don't bother scanning for partitions either.
699 		 */
700 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
701 		disk->flags |= GENHD_FL_NO_PART_SCAN;
702 	} else {
703 		int ret;
704 
705 		/* Register BDI before referencing it from bdev */
706 		disk_to_dev(disk)->devt = devt;
707 		ret = bdi_register_owner(disk->queue->backing_dev_info,
708 						disk_to_dev(disk));
709 		WARN_ON(ret);
710 		blk_register_region(disk_devt(disk), disk->minors, NULL,
711 				    exact_match, exact_lock, disk);
712 	}
713 	register_disk(parent, disk);
714 	if (register_queue)
715 		blk_register_queue(disk);
716 
717 	/*
718 	 * Take an extra ref on queue which will be put on disk_release()
719 	 * so that it sticks around as long as @disk is there.
720 	 */
721 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
722 
723 	disk_add_events(disk);
724 	blk_integrity_add(disk);
725 }
726 
device_add_disk(struct device * parent,struct gendisk * disk)727 void device_add_disk(struct device *parent, struct gendisk *disk)
728 {
729 	__device_add_disk(parent, disk, true);
730 }
731 EXPORT_SYMBOL(device_add_disk);
732 
device_add_disk_no_queue_reg(struct device * parent,struct gendisk * disk)733 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
734 {
735 	__device_add_disk(parent, disk, false);
736 }
737 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
738 
del_gendisk(struct gendisk * disk)739 void del_gendisk(struct gendisk *disk)
740 {
741 	struct disk_part_iter piter;
742 	struct hd_struct *part;
743 
744 	blk_integrity_del(disk);
745 	disk_del_events(disk);
746 
747 	/*
748 	 * Block lookups of the disk until all bdevs are unhashed and the
749 	 * disk is marked as dead (GENHD_FL_UP cleared).
750 	 */
751 	down_write(&disk->lookup_sem);
752 	/* invalidate stuff */
753 	disk_part_iter_init(&piter, disk,
754 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
755 	while ((part = disk_part_iter_next(&piter))) {
756 		invalidate_partition(disk, part->partno);
757 		bdev_unhash_inode(part_devt(part));
758 		delete_partition(disk, part->partno);
759 	}
760 	disk_part_iter_exit(&piter);
761 
762 	invalidate_partition(disk, 0);
763 	bdev_unhash_inode(disk_devt(disk));
764 	set_capacity(disk, 0);
765 	disk->flags &= ~GENHD_FL_UP;
766 	up_write(&disk->lookup_sem);
767 
768 	if (!(disk->flags & GENHD_FL_HIDDEN))
769 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
770 	if (disk->queue) {
771 		/*
772 		 * Unregister bdi before releasing device numbers (as they can
773 		 * get reused and we'd get clashes in sysfs).
774 		 */
775 		if (!(disk->flags & GENHD_FL_HIDDEN))
776 			bdi_unregister(disk->queue->backing_dev_info);
777 		blk_unregister_queue(disk);
778 	} else {
779 		WARN_ON(1);
780 	}
781 
782 	if (!(disk->flags & GENHD_FL_HIDDEN))
783 		blk_unregister_region(disk_devt(disk), disk->minors);
784 	/*
785 	 * Remove gendisk pointer from idr so that it cannot be looked up
786 	 * while RCU period before freeing gendisk is running to prevent
787 	 * use-after-free issues. Note that the device number stays
788 	 * "in-use" until we really free the gendisk.
789 	 */
790 	blk_invalidate_devt(disk_devt(disk));
791 
792 	kobject_put(disk->part0.holder_dir);
793 	kobject_put(disk->slave_dir);
794 
795 	part_stat_set_all(&disk->part0, 0);
796 	disk->part0.stamp = 0;
797 	if (!sysfs_deprecated)
798 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
799 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
800 	device_del(disk_to_dev(disk));
801 }
802 EXPORT_SYMBOL(del_gendisk);
803 
804 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)805 static ssize_t disk_badblocks_show(struct device *dev,
806 					struct device_attribute *attr,
807 					char *page)
808 {
809 	struct gendisk *disk = dev_to_disk(dev);
810 
811 	if (!disk->bb)
812 		return sprintf(page, "\n");
813 
814 	return badblocks_show(disk->bb, page, 0);
815 }
816 
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)817 static ssize_t disk_badblocks_store(struct device *dev,
818 					struct device_attribute *attr,
819 					const char *page, size_t len)
820 {
821 	struct gendisk *disk = dev_to_disk(dev);
822 
823 	if (!disk->bb)
824 		return -ENXIO;
825 
826 	return badblocks_store(disk->bb, page, len, 0);
827 }
828 
829 /**
830  * get_gendisk - get partitioning information for a given device
831  * @devt: device to get partitioning information for
832  * @partno: returned partition index
833  *
834  * This function gets the structure containing partitioning
835  * information for the given device @devt.
836  */
get_gendisk(dev_t devt,int * partno)837 struct gendisk *get_gendisk(dev_t devt, int *partno)
838 {
839 	struct gendisk *disk = NULL;
840 
841 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
842 		struct kobject *kobj;
843 
844 		kobj = kobj_lookup(bdev_map, devt, partno);
845 		if (kobj)
846 			disk = dev_to_disk(kobj_to_dev(kobj));
847 	} else {
848 		struct hd_struct *part;
849 
850 		spin_lock_bh(&ext_devt_lock);
851 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
852 		if (part && get_disk_and_module(part_to_disk(part))) {
853 			*partno = part->partno;
854 			disk = part_to_disk(part);
855 		}
856 		spin_unlock_bh(&ext_devt_lock);
857 	}
858 
859 	if (!disk)
860 		return NULL;
861 
862 	/*
863 	 * Synchronize with del_gendisk() to not return disk that is being
864 	 * destroyed.
865 	 */
866 	down_read(&disk->lookup_sem);
867 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
868 		     !(disk->flags & GENHD_FL_UP))) {
869 		up_read(&disk->lookup_sem);
870 		put_disk_and_module(disk);
871 		disk = NULL;
872 	} else {
873 		up_read(&disk->lookup_sem);
874 	}
875 	return disk;
876 }
877 EXPORT_SYMBOL(get_gendisk);
878 
879 /**
880  * bdget_disk - do bdget() by gendisk and partition number
881  * @disk: gendisk of interest
882  * @partno: partition number
883  *
884  * Find partition @partno from @disk, do bdget() on it.
885  *
886  * CONTEXT:
887  * Don't care.
888  *
889  * RETURNS:
890  * Resulting block_device on success, NULL on failure.
891  */
bdget_disk(struct gendisk * disk,int partno)892 struct block_device *bdget_disk(struct gendisk *disk, int partno)
893 {
894 	struct hd_struct *part;
895 	struct block_device *bdev = NULL;
896 
897 	part = disk_get_part(disk, partno);
898 	if (part)
899 		bdev = bdget(part_devt(part));
900 	disk_put_part(part);
901 
902 	return bdev;
903 }
904 EXPORT_SYMBOL(bdget_disk);
905 
906 /*
907  * print a full list of all partitions - intended for places where the root
908  * filesystem can't be mounted and thus to give the victim some idea of what
909  * went wrong
910  */
printk_all_partitions(void)911 void __init printk_all_partitions(void)
912 {
913 	struct class_dev_iter iter;
914 	struct device *dev;
915 
916 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
917 	while ((dev = class_dev_iter_next(&iter))) {
918 		struct gendisk *disk = dev_to_disk(dev);
919 		struct disk_part_iter piter;
920 		struct hd_struct *part;
921 		char name_buf[BDEVNAME_SIZE];
922 		char devt_buf[BDEVT_SIZE];
923 
924 		/*
925 		 * Don't show empty devices or things that have been
926 		 * suppressed
927 		 */
928 		if (get_capacity(disk) == 0 ||
929 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
930 			continue;
931 
932 		/*
933 		 * Note, unlike /proc/partitions, I am showing the
934 		 * numbers in hex - the same format as the root=
935 		 * option takes.
936 		 */
937 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
938 		while ((part = disk_part_iter_next(&piter))) {
939 			bool is_part0 = part == &disk->part0;
940 
941 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
942 			       bdevt_str(part_devt(part), devt_buf),
943 			       (unsigned long long)part_nr_sects_read(part) >> 1
944 			       , disk_name(disk, part->partno, name_buf),
945 			       part->info ? part->info->uuid : "");
946 			if (is_part0) {
947 				if (dev->parent && dev->parent->driver)
948 					printk(" driver: %s\n",
949 					      dev->parent->driver->name);
950 				else
951 					printk(" (driver?)\n");
952 			} else
953 				printk("\n");
954 		}
955 		disk_part_iter_exit(&piter);
956 	}
957 	class_dev_iter_exit(&iter);
958 }
959 
960 #ifdef CONFIG_PROC_FS
961 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)962 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
963 {
964 	loff_t skip = *pos;
965 	struct class_dev_iter *iter;
966 	struct device *dev;
967 
968 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
969 	if (!iter)
970 		return ERR_PTR(-ENOMEM);
971 
972 	seqf->private = iter;
973 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
974 	do {
975 		dev = class_dev_iter_next(iter);
976 		if (!dev)
977 			return NULL;
978 	} while (skip--);
979 
980 	return dev_to_disk(dev);
981 }
982 
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)983 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
984 {
985 	struct device *dev;
986 
987 	(*pos)++;
988 	dev = class_dev_iter_next(seqf->private);
989 	if (dev)
990 		return dev_to_disk(dev);
991 
992 	return NULL;
993 }
994 
disk_seqf_stop(struct seq_file * seqf,void * v)995 static void disk_seqf_stop(struct seq_file *seqf, void *v)
996 {
997 	struct class_dev_iter *iter = seqf->private;
998 
999 	/* stop is called even after start failed :-( */
1000 	if (iter) {
1001 		class_dev_iter_exit(iter);
1002 		kfree(iter);
1003 		seqf->private = NULL;
1004 	}
1005 }
1006 
show_partition_start(struct seq_file * seqf,loff_t * pos)1007 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1008 {
1009 	void *p;
1010 
1011 	p = disk_seqf_start(seqf, pos);
1012 	if (!IS_ERR_OR_NULL(p) && !*pos)
1013 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1014 	return p;
1015 }
1016 
show_partition(struct seq_file * seqf,void * v)1017 static int show_partition(struct seq_file *seqf, void *v)
1018 {
1019 	struct gendisk *sgp = v;
1020 	struct disk_part_iter piter;
1021 	struct hd_struct *part;
1022 	char buf[BDEVNAME_SIZE];
1023 
1024 	/* Don't show non-partitionable removeable devices or empty devices */
1025 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1026 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1027 		return 0;
1028 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1029 		return 0;
1030 
1031 	/* show the full disk and all non-0 size partitions of it */
1032 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1033 	while ((part = disk_part_iter_next(&piter)))
1034 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1035 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1036 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1037 			   disk_name(sgp, part->partno, buf));
1038 	disk_part_iter_exit(&piter);
1039 
1040 	return 0;
1041 }
1042 
1043 static const struct seq_operations partitions_op = {
1044 	.start	= show_partition_start,
1045 	.next	= disk_seqf_next,
1046 	.stop	= disk_seqf_stop,
1047 	.show	= show_partition
1048 };
1049 #endif
1050 
1051 
base_probe(dev_t devt,int * partno,void * data)1052 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1053 {
1054 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1055 		/* Make old-style 2.4 aliases work */
1056 		request_module("block-major-%d", MAJOR(devt));
1057 	return NULL;
1058 }
1059 
genhd_device_init(void)1060 static int __init genhd_device_init(void)
1061 {
1062 	int error;
1063 
1064 	block_class.dev_kobj = sysfs_dev_block_kobj;
1065 	error = class_register(&block_class);
1066 	if (unlikely(error))
1067 		return error;
1068 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1069 	blk_dev_init();
1070 
1071 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1072 
1073 	/* create top-level block dir */
1074 	if (!sysfs_deprecated)
1075 		block_depr = kobject_create_and_add("block", NULL);
1076 	return 0;
1077 }
1078 
1079 subsys_initcall(genhd_device_init);
1080 
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1081 static ssize_t disk_range_show(struct device *dev,
1082 			       struct device_attribute *attr, char *buf)
1083 {
1084 	struct gendisk *disk = dev_to_disk(dev);
1085 
1086 	return sprintf(buf, "%d\n", disk->minors);
1087 }
1088 
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1089 static ssize_t disk_ext_range_show(struct device *dev,
1090 				   struct device_attribute *attr, char *buf)
1091 {
1092 	struct gendisk *disk = dev_to_disk(dev);
1093 
1094 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1095 }
1096 
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1097 static ssize_t disk_removable_show(struct device *dev,
1098 				   struct device_attribute *attr, char *buf)
1099 {
1100 	struct gendisk *disk = dev_to_disk(dev);
1101 
1102 	return sprintf(buf, "%d\n",
1103 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1104 }
1105 
disk_hidden_show(struct device * dev,struct device_attribute * attr,char * buf)1106 static ssize_t disk_hidden_show(struct device *dev,
1107 				   struct device_attribute *attr, char *buf)
1108 {
1109 	struct gendisk *disk = dev_to_disk(dev);
1110 
1111 	return sprintf(buf, "%d\n",
1112 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1113 }
1114 
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1115 static ssize_t disk_ro_show(struct device *dev,
1116 				   struct device_attribute *attr, char *buf)
1117 {
1118 	struct gendisk *disk = dev_to_disk(dev);
1119 
1120 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1121 }
1122 
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1123 static ssize_t disk_capability_show(struct device *dev,
1124 				    struct device_attribute *attr, char *buf)
1125 {
1126 	struct gendisk *disk = dev_to_disk(dev);
1127 
1128 	return sprintf(buf, "%x\n", disk->flags);
1129 }
1130 
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1131 static ssize_t disk_alignment_offset_show(struct device *dev,
1132 					  struct device_attribute *attr,
1133 					  char *buf)
1134 {
1135 	struct gendisk *disk = dev_to_disk(dev);
1136 
1137 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1138 }
1139 
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1140 static ssize_t disk_discard_alignment_show(struct device *dev,
1141 					   struct device_attribute *attr,
1142 					   char *buf)
1143 {
1144 	struct gendisk *disk = dev_to_disk(dev);
1145 
1146 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1147 }
1148 
1149 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1150 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1151 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1152 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1153 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1154 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1155 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1156 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1157 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1158 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1159 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1160 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1161 #ifdef CONFIG_FAIL_MAKE_REQUEST
1162 static struct device_attribute dev_attr_fail =
1163 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1164 #endif
1165 #ifdef CONFIG_FAIL_IO_TIMEOUT
1166 static struct device_attribute dev_attr_fail_timeout =
1167 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1168 #endif
1169 
1170 static struct attribute *disk_attrs[] = {
1171 	&dev_attr_range.attr,
1172 	&dev_attr_ext_range.attr,
1173 	&dev_attr_removable.attr,
1174 	&dev_attr_hidden.attr,
1175 	&dev_attr_ro.attr,
1176 	&dev_attr_size.attr,
1177 	&dev_attr_alignment_offset.attr,
1178 	&dev_attr_discard_alignment.attr,
1179 	&dev_attr_capability.attr,
1180 	&dev_attr_stat.attr,
1181 	&dev_attr_inflight.attr,
1182 	&dev_attr_badblocks.attr,
1183 #ifdef CONFIG_FAIL_MAKE_REQUEST
1184 	&dev_attr_fail.attr,
1185 #endif
1186 #ifdef CONFIG_FAIL_IO_TIMEOUT
1187 	&dev_attr_fail_timeout.attr,
1188 #endif
1189 	NULL
1190 };
1191 
disk_visible(struct kobject * kobj,struct attribute * a,int n)1192 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1193 {
1194 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1195 	struct gendisk *disk = dev_to_disk(dev);
1196 
1197 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1198 		return 0;
1199 	return a->mode;
1200 }
1201 
1202 static struct attribute_group disk_attr_group = {
1203 	.attrs = disk_attrs,
1204 	.is_visible = disk_visible,
1205 };
1206 
1207 static const struct attribute_group *disk_attr_groups[] = {
1208 	&disk_attr_group,
1209 	NULL
1210 };
1211 
1212 /**
1213  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1214  * @disk: disk to replace part_tbl for
1215  * @new_ptbl: new part_tbl to install
1216  *
1217  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1218  * original ptbl is freed using RCU callback.
1219  *
1220  * LOCKING:
1221  * Matching bd_mutex locked or the caller is the only user of @disk.
1222  */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1223 static void disk_replace_part_tbl(struct gendisk *disk,
1224 				  struct disk_part_tbl *new_ptbl)
1225 {
1226 	struct disk_part_tbl *old_ptbl =
1227 		rcu_dereference_protected(disk->part_tbl, 1);
1228 
1229 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1230 
1231 	if (old_ptbl) {
1232 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1233 		kfree_rcu(old_ptbl, rcu_head);
1234 	}
1235 }
1236 
1237 /**
1238  * disk_expand_part_tbl - expand disk->part_tbl
1239  * @disk: disk to expand part_tbl for
1240  * @partno: expand such that this partno can fit in
1241  *
1242  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1243  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1244  *
1245  * LOCKING:
1246  * Matching bd_mutex locked or the caller is the only user of @disk.
1247  * Might sleep.
1248  *
1249  * RETURNS:
1250  * 0 on success, -errno on failure.
1251  */
disk_expand_part_tbl(struct gendisk * disk,int partno)1252 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1253 {
1254 	struct disk_part_tbl *old_ptbl =
1255 		rcu_dereference_protected(disk->part_tbl, 1);
1256 	struct disk_part_tbl *new_ptbl;
1257 	int len = old_ptbl ? old_ptbl->len : 0;
1258 	int i, target;
1259 	size_t size;
1260 
1261 	/*
1262 	 * check for int overflow, since we can get here from blkpg_ioctl()
1263 	 * with a user passed 'partno'.
1264 	 */
1265 	target = partno + 1;
1266 	if (target < 0)
1267 		return -EINVAL;
1268 
1269 	/* disk_max_parts() is zero during initialization, ignore if so */
1270 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1271 		return -EINVAL;
1272 
1273 	if (target <= len)
1274 		return 0;
1275 
1276 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1277 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1278 	if (!new_ptbl)
1279 		return -ENOMEM;
1280 
1281 	new_ptbl->len = target;
1282 
1283 	for (i = 0; i < len; i++)
1284 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1285 
1286 	disk_replace_part_tbl(disk, new_ptbl);
1287 	return 0;
1288 }
1289 
disk_release(struct device * dev)1290 static void disk_release(struct device *dev)
1291 {
1292 	struct gendisk *disk = dev_to_disk(dev);
1293 
1294 	blk_free_devt(dev->devt);
1295 	disk_release_events(disk);
1296 	kfree(disk->random);
1297 	disk_replace_part_tbl(disk, NULL);
1298 	hd_free_part(&disk->part0);
1299 	if (disk->queue)
1300 		blk_put_queue(disk->queue);
1301 	kfree(disk);
1302 }
1303 struct class block_class = {
1304 	.name		= "block",
1305 };
1306 
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1307 static char *block_devnode(struct device *dev, umode_t *mode,
1308 			   kuid_t *uid, kgid_t *gid)
1309 {
1310 	struct gendisk *disk = dev_to_disk(dev);
1311 
1312 	if (disk->devnode)
1313 		return disk->devnode(disk, mode);
1314 	return NULL;
1315 }
1316 
1317 static const struct device_type disk_type = {
1318 	.name		= "disk",
1319 	.groups		= disk_attr_groups,
1320 	.release	= disk_release,
1321 	.devnode	= block_devnode,
1322 };
1323 
1324 #ifdef CONFIG_PROC_FS
1325 /*
1326  * aggregate disk stat collector.  Uses the same stats that the sysfs
1327  * entries do, above, but makes them available through one seq_file.
1328  *
1329  * The output looks suspiciously like /proc/partitions with a bunch of
1330  * extra fields.
1331  */
diskstats_show(struct seq_file * seqf,void * v)1332 static int diskstats_show(struct seq_file *seqf, void *v)
1333 {
1334 	struct gendisk *gp = v;
1335 	struct disk_part_iter piter;
1336 	struct hd_struct *hd;
1337 	char buf[BDEVNAME_SIZE];
1338 	unsigned int inflight[2];
1339 	int cpu;
1340 
1341 	/*
1342 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1343 		seq_puts(seqf,	"major minor name"
1344 				"     rio rmerge rsect ruse wio wmerge "
1345 				"wsect wuse running use aveq"
1346 				"\n\n");
1347 	*/
1348 
1349 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1350 	while ((hd = disk_part_iter_next(&piter))) {
1351 		cpu = part_stat_lock();
1352 		part_round_stats(gp->queue, cpu, hd);
1353 		part_stat_unlock();
1354 		part_in_flight(gp->queue, hd, inflight);
1355 		seq_printf(seqf, "%4d %7d %s "
1356 			   "%lu %lu %lu %u "
1357 			   "%lu %lu %lu %u "
1358 			   "%u %u %u "
1359 			   "%lu %lu %lu %u\n",
1360 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1361 			   disk_name(gp, hd->partno, buf),
1362 			   part_stat_read(hd, ios[STAT_READ]),
1363 			   part_stat_read(hd, merges[STAT_READ]),
1364 			   part_stat_read(hd, sectors[STAT_READ]),
1365 			   (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1366 			   part_stat_read(hd, ios[STAT_WRITE]),
1367 			   part_stat_read(hd, merges[STAT_WRITE]),
1368 			   part_stat_read(hd, sectors[STAT_WRITE]),
1369 			   (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1370 			   inflight[0],
1371 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1372 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1373 			   part_stat_read(hd, ios[STAT_DISCARD]),
1374 			   part_stat_read(hd, merges[STAT_DISCARD]),
1375 			   part_stat_read(hd, sectors[STAT_DISCARD]),
1376 			   (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD)
1377 			);
1378 	}
1379 	disk_part_iter_exit(&piter);
1380 
1381 	return 0;
1382 }
1383 
1384 static const struct seq_operations diskstats_op = {
1385 	.start	= disk_seqf_start,
1386 	.next	= disk_seqf_next,
1387 	.stop	= disk_seqf_stop,
1388 	.show	= diskstats_show
1389 };
1390 
proc_genhd_init(void)1391 static int __init proc_genhd_init(void)
1392 {
1393 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1394 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1395 	return 0;
1396 }
1397 module_init(proc_genhd_init);
1398 #endif /* CONFIG_PROC_FS */
1399 
blk_lookup_devt(const char * name,int partno)1400 dev_t blk_lookup_devt(const char *name, int partno)
1401 {
1402 	dev_t devt = MKDEV(0, 0);
1403 	struct class_dev_iter iter;
1404 	struct device *dev;
1405 
1406 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1407 	while ((dev = class_dev_iter_next(&iter))) {
1408 		struct gendisk *disk = dev_to_disk(dev);
1409 		struct hd_struct *part;
1410 
1411 		if (strcmp(dev_name(dev), name))
1412 			continue;
1413 
1414 		if (partno < disk->minors) {
1415 			/* We need to return the right devno, even
1416 			 * if the partition doesn't exist yet.
1417 			 */
1418 			devt = MKDEV(MAJOR(dev->devt),
1419 				     MINOR(dev->devt) + partno);
1420 			break;
1421 		}
1422 		part = disk_get_part(disk, partno);
1423 		if (part) {
1424 			devt = part_devt(part);
1425 			disk_put_part(part);
1426 			break;
1427 		}
1428 		disk_put_part(part);
1429 	}
1430 	class_dev_iter_exit(&iter);
1431 	return devt;
1432 }
1433 EXPORT_SYMBOL(blk_lookup_devt);
1434 
__alloc_disk_node(int minors,int node_id)1435 struct gendisk *__alloc_disk_node(int minors, int node_id)
1436 {
1437 	struct gendisk *disk;
1438 	struct disk_part_tbl *ptbl;
1439 
1440 	if (minors > DISK_MAX_PARTS) {
1441 		printk(KERN_ERR
1442 			"block: can't allocate more than %d partitions\n",
1443 			DISK_MAX_PARTS);
1444 		minors = DISK_MAX_PARTS;
1445 	}
1446 
1447 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1448 	if (disk) {
1449 		if (!init_part_stats(&disk->part0)) {
1450 			kfree(disk);
1451 			return NULL;
1452 		}
1453 		init_rwsem(&disk->lookup_sem);
1454 		disk->node_id = node_id;
1455 		if (disk_expand_part_tbl(disk, 0)) {
1456 			free_part_stats(&disk->part0);
1457 			kfree(disk);
1458 			return NULL;
1459 		}
1460 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1461 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1462 
1463 		/*
1464 		 * set_capacity() and get_capacity() currently don't use
1465 		 * seqcounter to read/update the part0->nr_sects. Still init
1466 		 * the counter as we can read the sectors in IO submission
1467 		 * patch using seqence counters.
1468 		 *
1469 		 * TODO: Ideally set_capacity() and get_capacity() should be
1470 		 * converted to make use of bd_mutex and sequence counters.
1471 		 */
1472 		seqcount_init(&disk->part0.nr_sects_seq);
1473 		if (hd_ref_init(&disk->part0)) {
1474 			hd_free_part(&disk->part0);
1475 			kfree(disk);
1476 			return NULL;
1477 		}
1478 
1479 		disk->minors = minors;
1480 		rand_initialize_disk(disk);
1481 		disk_to_dev(disk)->class = &block_class;
1482 		disk_to_dev(disk)->type = &disk_type;
1483 		device_initialize(disk_to_dev(disk));
1484 	}
1485 	return disk;
1486 }
1487 EXPORT_SYMBOL(__alloc_disk_node);
1488 
get_disk_and_module(struct gendisk * disk)1489 struct kobject *get_disk_and_module(struct gendisk *disk)
1490 {
1491 	struct module *owner;
1492 	struct kobject *kobj;
1493 
1494 	if (!disk->fops)
1495 		return NULL;
1496 	owner = disk->fops->owner;
1497 	if (owner && !try_module_get(owner))
1498 		return NULL;
1499 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1500 	if (kobj == NULL) {
1501 		module_put(owner);
1502 		return NULL;
1503 	}
1504 	return kobj;
1505 
1506 }
1507 EXPORT_SYMBOL(get_disk_and_module);
1508 
put_disk(struct gendisk * disk)1509 void put_disk(struct gendisk *disk)
1510 {
1511 	if (disk)
1512 		kobject_put(&disk_to_dev(disk)->kobj);
1513 }
1514 EXPORT_SYMBOL(put_disk);
1515 
1516 /*
1517  * This is a counterpart of get_disk_and_module() and thus also of
1518  * get_gendisk().
1519  */
put_disk_and_module(struct gendisk * disk)1520 void put_disk_and_module(struct gendisk *disk)
1521 {
1522 	if (disk) {
1523 		struct module *owner = disk->fops->owner;
1524 
1525 		put_disk(disk);
1526 		module_put(owner);
1527 	}
1528 }
1529 EXPORT_SYMBOL(put_disk_and_module);
1530 
set_disk_ro_uevent(struct gendisk * gd,int ro)1531 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1532 {
1533 	char event[] = "DISK_RO=1";
1534 	char *envp[] = { event, NULL };
1535 
1536 	if (!ro)
1537 		event[8] = '0';
1538 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1539 }
1540 
set_device_ro(struct block_device * bdev,int flag)1541 void set_device_ro(struct block_device *bdev, int flag)
1542 {
1543 	bdev->bd_part->policy = flag;
1544 }
1545 
1546 EXPORT_SYMBOL(set_device_ro);
1547 
set_disk_ro(struct gendisk * disk,int flag)1548 void set_disk_ro(struct gendisk *disk, int flag)
1549 {
1550 	struct disk_part_iter piter;
1551 	struct hd_struct *part;
1552 
1553 	if (disk->part0.policy != flag) {
1554 		set_disk_ro_uevent(disk, flag);
1555 		disk->part0.policy = flag;
1556 	}
1557 
1558 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1559 	while ((part = disk_part_iter_next(&piter)))
1560 		part->policy = flag;
1561 	disk_part_iter_exit(&piter);
1562 }
1563 
1564 EXPORT_SYMBOL(set_disk_ro);
1565 
bdev_read_only(struct block_device * bdev)1566 int bdev_read_only(struct block_device *bdev)
1567 {
1568 	if (!bdev)
1569 		return 0;
1570 	return bdev->bd_part->policy;
1571 }
1572 
1573 EXPORT_SYMBOL(bdev_read_only);
1574 
invalidate_partition(struct gendisk * disk,int partno)1575 int invalidate_partition(struct gendisk *disk, int partno)
1576 {
1577 	int res = 0;
1578 	struct block_device *bdev = bdget_disk(disk, partno);
1579 	if (bdev) {
1580 		fsync_bdev(bdev);
1581 		res = __invalidate_device(bdev, true);
1582 		bdput(bdev);
1583 	}
1584 	return res;
1585 }
1586 
1587 EXPORT_SYMBOL(invalidate_partition);
1588 
1589 /*
1590  * Disk events - monitor disk events like media change and eject request.
1591  */
1592 struct disk_events {
1593 	struct list_head	node;		/* all disk_event's */
1594 	struct gendisk		*disk;		/* the associated disk */
1595 	spinlock_t		lock;
1596 
1597 	struct mutex		block_mutex;	/* protects blocking */
1598 	int			block;		/* event blocking depth */
1599 	unsigned int		pending;	/* events already sent out */
1600 	unsigned int		clearing;	/* events being cleared */
1601 
1602 	long			poll_msecs;	/* interval, -1 for default */
1603 	struct delayed_work	dwork;
1604 };
1605 
1606 static const char *disk_events_strs[] = {
1607 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1608 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1609 };
1610 
1611 static char *disk_uevents[] = {
1612 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1613 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1614 };
1615 
1616 /* list of all disk_events */
1617 static DEFINE_MUTEX(disk_events_mutex);
1618 static LIST_HEAD(disk_events);
1619 
1620 /* disable in-kernel polling by default */
1621 static unsigned long disk_events_dfl_poll_msecs;
1622 
disk_events_poll_jiffies(struct gendisk * disk)1623 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1624 {
1625 	struct disk_events *ev = disk->ev;
1626 	long intv_msecs = 0;
1627 
1628 	/*
1629 	 * If device-specific poll interval is set, always use it.  If
1630 	 * the default is being used, poll iff there are events which
1631 	 * can't be monitored asynchronously.
1632 	 */
1633 	if (ev->poll_msecs >= 0)
1634 		intv_msecs = ev->poll_msecs;
1635 	else if (disk->events & ~disk->async_events)
1636 		intv_msecs = disk_events_dfl_poll_msecs;
1637 
1638 	return msecs_to_jiffies(intv_msecs);
1639 }
1640 
1641 /**
1642  * disk_block_events - block and flush disk event checking
1643  * @disk: disk to block events for
1644  *
1645  * On return from this function, it is guaranteed that event checking
1646  * isn't in progress and won't happen until unblocked by
1647  * disk_unblock_events().  Events blocking is counted and the actual
1648  * unblocking happens after the matching number of unblocks are done.
1649  *
1650  * Note that this intentionally does not block event checking from
1651  * disk_clear_events().
1652  *
1653  * CONTEXT:
1654  * Might sleep.
1655  */
disk_block_events(struct gendisk * disk)1656 void disk_block_events(struct gendisk *disk)
1657 {
1658 	struct disk_events *ev = disk->ev;
1659 	unsigned long flags;
1660 	bool cancel;
1661 
1662 	if (!ev)
1663 		return;
1664 
1665 	/*
1666 	 * Outer mutex ensures that the first blocker completes canceling
1667 	 * the event work before further blockers are allowed to finish.
1668 	 */
1669 	mutex_lock(&ev->block_mutex);
1670 
1671 	spin_lock_irqsave(&ev->lock, flags);
1672 	cancel = !ev->block++;
1673 	spin_unlock_irqrestore(&ev->lock, flags);
1674 
1675 	if (cancel)
1676 		cancel_delayed_work_sync(&disk->ev->dwork);
1677 
1678 	mutex_unlock(&ev->block_mutex);
1679 }
1680 
__disk_unblock_events(struct gendisk * disk,bool check_now)1681 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1682 {
1683 	struct disk_events *ev = disk->ev;
1684 	unsigned long intv;
1685 	unsigned long flags;
1686 
1687 	spin_lock_irqsave(&ev->lock, flags);
1688 
1689 	if (WARN_ON_ONCE(ev->block <= 0))
1690 		goto out_unlock;
1691 
1692 	if (--ev->block)
1693 		goto out_unlock;
1694 
1695 	intv = disk_events_poll_jiffies(disk);
1696 	if (check_now)
1697 		queue_delayed_work(system_freezable_power_efficient_wq,
1698 				&ev->dwork, 0);
1699 	else if (intv)
1700 		queue_delayed_work(system_freezable_power_efficient_wq,
1701 				&ev->dwork, intv);
1702 out_unlock:
1703 	spin_unlock_irqrestore(&ev->lock, flags);
1704 }
1705 
1706 /**
1707  * disk_unblock_events - unblock disk event checking
1708  * @disk: disk to unblock events for
1709  *
1710  * Undo disk_block_events().  When the block count reaches zero, it
1711  * starts events polling if configured.
1712  *
1713  * CONTEXT:
1714  * Don't care.  Safe to call from irq context.
1715  */
disk_unblock_events(struct gendisk * disk)1716 void disk_unblock_events(struct gendisk *disk)
1717 {
1718 	if (disk->ev)
1719 		__disk_unblock_events(disk, false);
1720 }
1721 
1722 /**
1723  * disk_flush_events - schedule immediate event checking and flushing
1724  * @disk: disk to check and flush events for
1725  * @mask: events to flush
1726  *
1727  * Schedule immediate event checking on @disk if not blocked.  Events in
1728  * @mask are scheduled to be cleared from the driver.  Note that this
1729  * doesn't clear the events from @disk->ev.
1730  *
1731  * CONTEXT:
1732  * If @mask is non-zero must be called with bdev->bd_mutex held.
1733  */
disk_flush_events(struct gendisk * disk,unsigned int mask)1734 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1735 {
1736 	struct disk_events *ev = disk->ev;
1737 
1738 	if (!ev)
1739 		return;
1740 
1741 	spin_lock_irq(&ev->lock);
1742 	ev->clearing |= mask;
1743 	if (!ev->block)
1744 		mod_delayed_work(system_freezable_power_efficient_wq,
1745 				&ev->dwork, 0);
1746 	spin_unlock_irq(&ev->lock);
1747 }
1748 
1749 /**
1750  * disk_clear_events - synchronously check, clear and return pending events
1751  * @disk: disk to fetch and clear events from
1752  * @mask: mask of events to be fetched and cleared
1753  *
1754  * Disk events are synchronously checked and pending events in @mask
1755  * are cleared and returned.  This ignores the block count.
1756  *
1757  * CONTEXT:
1758  * Might sleep.
1759  */
disk_clear_events(struct gendisk * disk,unsigned int mask)1760 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1761 {
1762 	const struct block_device_operations *bdops = disk->fops;
1763 	struct disk_events *ev = disk->ev;
1764 	unsigned int pending;
1765 	unsigned int clearing = mask;
1766 
1767 	if (!ev) {
1768 		/* for drivers still using the old ->media_changed method */
1769 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1770 		    bdops->media_changed && bdops->media_changed(disk))
1771 			return DISK_EVENT_MEDIA_CHANGE;
1772 		return 0;
1773 	}
1774 
1775 	disk_block_events(disk);
1776 
1777 	/*
1778 	 * store the union of mask and ev->clearing on the stack so that the
1779 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1780 	 * can still be modified even if events are blocked).
1781 	 */
1782 	spin_lock_irq(&ev->lock);
1783 	clearing |= ev->clearing;
1784 	ev->clearing = 0;
1785 	spin_unlock_irq(&ev->lock);
1786 
1787 	disk_check_events(ev, &clearing);
1788 	/*
1789 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1790 	 * middle of this function, so we want to run the workfn without delay.
1791 	 */
1792 	__disk_unblock_events(disk, ev->clearing ? true : false);
1793 
1794 	/* then, fetch and clear pending events */
1795 	spin_lock_irq(&ev->lock);
1796 	pending = ev->pending & mask;
1797 	ev->pending &= ~mask;
1798 	spin_unlock_irq(&ev->lock);
1799 	WARN_ON_ONCE(clearing & mask);
1800 
1801 	return pending;
1802 }
1803 
1804 /*
1805  * Separate this part out so that a different pointer for clearing_ptr can be
1806  * passed in for disk_clear_events.
1807  */
disk_events_workfn(struct work_struct * work)1808 static void disk_events_workfn(struct work_struct *work)
1809 {
1810 	struct delayed_work *dwork = to_delayed_work(work);
1811 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1812 
1813 	disk_check_events(ev, &ev->clearing);
1814 }
1815 
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1816 static void disk_check_events(struct disk_events *ev,
1817 			      unsigned int *clearing_ptr)
1818 {
1819 	struct gendisk *disk = ev->disk;
1820 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1821 	unsigned int clearing = *clearing_ptr;
1822 	unsigned int events;
1823 	unsigned long intv;
1824 	int nr_events = 0, i;
1825 
1826 	/* check events */
1827 	events = disk->fops->check_events(disk, clearing);
1828 
1829 	/* accumulate pending events and schedule next poll if necessary */
1830 	spin_lock_irq(&ev->lock);
1831 
1832 	events &= ~ev->pending;
1833 	ev->pending |= events;
1834 	*clearing_ptr &= ~clearing;
1835 
1836 	intv = disk_events_poll_jiffies(disk);
1837 	if (!ev->block && intv)
1838 		queue_delayed_work(system_freezable_power_efficient_wq,
1839 				&ev->dwork, intv);
1840 
1841 	spin_unlock_irq(&ev->lock);
1842 
1843 	/*
1844 	 * Tell userland about new events.  Only the events listed in
1845 	 * @disk->events are reported.  Unlisted events are processed the
1846 	 * same internally but never get reported to userland.
1847 	 */
1848 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1849 		if (events & disk->events & (1 << i))
1850 			envp[nr_events++] = disk_uevents[i];
1851 
1852 	if (nr_events)
1853 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1854 }
1855 
1856 /*
1857  * A disk events enabled device has the following sysfs nodes under
1858  * its /sys/block/X/ directory.
1859  *
1860  * events		: list of all supported events
1861  * events_async		: list of events which can be detected w/o polling
1862  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1863  */
__disk_events_show(unsigned int events,char * buf)1864 static ssize_t __disk_events_show(unsigned int events, char *buf)
1865 {
1866 	const char *delim = "";
1867 	ssize_t pos = 0;
1868 	int i;
1869 
1870 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1871 		if (events & (1 << i)) {
1872 			pos += sprintf(buf + pos, "%s%s",
1873 				       delim, disk_events_strs[i]);
1874 			delim = " ";
1875 		}
1876 	if (pos)
1877 		pos += sprintf(buf + pos, "\n");
1878 	return pos;
1879 }
1880 
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1881 static ssize_t disk_events_show(struct device *dev,
1882 				struct device_attribute *attr, char *buf)
1883 {
1884 	struct gendisk *disk = dev_to_disk(dev);
1885 
1886 	return __disk_events_show(disk->events, buf);
1887 }
1888 
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1889 static ssize_t disk_events_async_show(struct device *dev,
1890 				      struct device_attribute *attr, char *buf)
1891 {
1892 	struct gendisk *disk = dev_to_disk(dev);
1893 
1894 	return __disk_events_show(disk->async_events, buf);
1895 }
1896 
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1897 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1898 					   struct device_attribute *attr,
1899 					   char *buf)
1900 {
1901 	struct gendisk *disk = dev_to_disk(dev);
1902 
1903 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1904 }
1905 
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1906 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1907 					    struct device_attribute *attr,
1908 					    const char *buf, size_t count)
1909 {
1910 	struct gendisk *disk = dev_to_disk(dev);
1911 	long intv;
1912 
1913 	if (!count || !sscanf(buf, "%ld", &intv))
1914 		return -EINVAL;
1915 
1916 	if (intv < 0 && intv != -1)
1917 		return -EINVAL;
1918 
1919 	disk_block_events(disk);
1920 	disk->ev->poll_msecs = intv;
1921 	__disk_unblock_events(disk, true);
1922 
1923 	return count;
1924 }
1925 
1926 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1927 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1928 static const DEVICE_ATTR(events_poll_msecs, 0644,
1929 			 disk_events_poll_msecs_show,
1930 			 disk_events_poll_msecs_store);
1931 
1932 static const struct attribute *disk_events_attrs[] = {
1933 	&dev_attr_events.attr,
1934 	&dev_attr_events_async.attr,
1935 	&dev_attr_events_poll_msecs.attr,
1936 	NULL,
1937 };
1938 
1939 /*
1940  * The default polling interval can be specified by the kernel
1941  * parameter block.events_dfl_poll_msecs which defaults to 0
1942  * (disable).  This can also be modified runtime by writing to
1943  * /sys/module/block/events_dfl_poll_msecs.
1944  */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1945 static int disk_events_set_dfl_poll_msecs(const char *val,
1946 					  const struct kernel_param *kp)
1947 {
1948 	struct disk_events *ev;
1949 	int ret;
1950 
1951 	ret = param_set_ulong(val, kp);
1952 	if (ret < 0)
1953 		return ret;
1954 
1955 	mutex_lock(&disk_events_mutex);
1956 
1957 	list_for_each_entry(ev, &disk_events, node)
1958 		disk_flush_events(ev->disk, 0);
1959 
1960 	mutex_unlock(&disk_events_mutex);
1961 
1962 	return 0;
1963 }
1964 
1965 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1966 	.set	= disk_events_set_dfl_poll_msecs,
1967 	.get	= param_get_ulong,
1968 };
1969 
1970 #undef MODULE_PARAM_PREFIX
1971 #define MODULE_PARAM_PREFIX	"block."
1972 
1973 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1974 		&disk_events_dfl_poll_msecs, 0644);
1975 
1976 /*
1977  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1978  */
disk_alloc_events(struct gendisk * disk)1979 static void disk_alloc_events(struct gendisk *disk)
1980 {
1981 	struct disk_events *ev;
1982 
1983 	if (!disk->fops->check_events)
1984 		return;
1985 
1986 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1987 	if (!ev) {
1988 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1989 		return;
1990 	}
1991 
1992 	INIT_LIST_HEAD(&ev->node);
1993 	ev->disk = disk;
1994 	spin_lock_init(&ev->lock);
1995 	mutex_init(&ev->block_mutex);
1996 	ev->block = 1;
1997 	ev->poll_msecs = -1;
1998 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1999 
2000 	disk->ev = ev;
2001 }
2002 
disk_add_events(struct gendisk * disk)2003 static void disk_add_events(struct gendisk *disk)
2004 {
2005 	if (!disk->ev)
2006 		return;
2007 
2008 	/* FIXME: error handling */
2009 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2010 		pr_warn("%s: failed to create sysfs files for events\n",
2011 			disk->disk_name);
2012 
2013 	mutex_lock(&disk_events_mutex);
2014 	list_add_tail(&disk->ev->node, &disk_events);
2015 	mutex_unlock(&disk_events_mutex);
2016 
2017 	/*
2018 	 * Block count is initialized to 1 and the following initial
2019 	 * unblock kicks it into action.
2020 	 */
2021 	__disk_unblock_events(disk, true);
2022 }
2023 
disk_del_events(struct gendisk * disk)2024 static void disk_del_events(struct gendisk *disk)
2025 {
2026 	if (!disk->ev)
2027 		return;
2028 
2029 	disk_block_events(disk);
2030 
2031 	mutex_lock(&disk_events_mutex);
2032 	list_del_init(&disk->ev->node);
2033 	mutex_unlock(&disk_events_mutex);
2034 
2035 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2036 }
2037 
disk_release_events(struct gendisk * disk)2038 static void disk_release_events(struct gendisk *disk)
2039 {
2040 	/* the block count should be 1 from disk_del_events() */
2041 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2042 	kfree(disk->ev);
2043 }
2044