1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57
58 /*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63 struct secondary_data secondary_data;
64
65 /*
66 * control for which core is the next to come out of the secondary
67 * boot "holding pen"
68 */
69 volatile int pen_release = -1;
70
71 enum ipi_msg_type {
72 IPI_WAKEUP,
73 IPI_TIMER,
74 IPI_RESCHEDULE,
75 IPI_CALL_FUNC,
76 IPI_CPU_STOP,
77 IPI_IRQ_WORK,
78 IPI_COMPLETION,
79 /*
80 * CPU_BACKTRACE is special and not included in NR_IPI
81 * or tracable with trace_ipi_*
82 */
83 IPI_CPU_BACKTRACE,
84 /*
85 * SGI8-15 can be reserved by secure firmware, and thus may
86 * not be usable by the kernel. Please keep the above limited
87 * to at most 8 entries.
88 */
89 };
90
91 static DECLARE_COMPLETION(cpu_running);
92
93 static struct smp_operations smp_ops __ro_after_init;
94
smp_set_ops(const struct smp_operations * ops)95 void __init smp_set_ops(const struct smp_operations *ops)
96 {
97 if (ops)
98 smp_ops = *ops;
99 };
100
get_arch_pgd(pgd_t * pgd)101 static unsigned long get_arch_pgd(pgd_t *pgd)
102 {
103 #ifdef CONFIG_ARM_LPAE
104 return __phys_to_pfn(virt_to_phys(pgd));
105 #else
106 return virt_to_phys(pgd);
107 #endif
108 }
109
110 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)111 static int secondary_biglittle_prepare(unsigned int cpu)
112 {
113 if (!cpu_vtable[cpu])
114 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
115
116 return cpu_vtable[cpu] ? 0 : -ENOMEM;
117 }
118
secondary_biglittle_init(void)119 static void secondary_biglittle_init(void)
120 {
121 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
122 }
123 #else
secondary_biglittle_prepare(unsigned int cpu)124 static int secondary_biglittle_prepare(unsigned int cpu)
125 {
126 return 0;
127 }
128
secondary_biglittle_init(void)129 static void secondary_biglittle_init(void)
130 {
131 }
132 #endif
133
__cpu_up(unsigned int cpu,struct task_struct * idle)134 int __cpu_up(unsigned int cpu, struct task_struct *idle)
135 {
136 int ret;
137
138 if (!smp_ops.smp_boot_secondary)
139 return -ENOSYS;
140
141 ret = secondary_biglittle_prepare(cpu);
142 if (ret)
143 return ret;
144
145 /*
146 * We need to tell the secondary core where to find
147 * its stack and the page tables.
148 */
149 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 #ifdef CONFIG_ARM_MPU
151 secondary_data.mpu_rgn_info = &mpu_rgn_info;
152 #endif
153
154 #ifdef CONFIG_MMU
155 secondary_data.pgdir = virt_to_phys(idmap_pgd);
156 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
157 #endif
158 sync_cache_w(&secondary_data);
159
160 /*
161 * Now bring the CPU into our world.
162 */
163 ret = smp_ops.smp_boot_secondary(cpu, idle);
164 if (ret == 0) {
165 /*
166 * CPU was successfully started, wait for it
167 * to come online or time out.
168 */
169 wait_for_completion_timeout(&cpu_running,
170 msecs_to_jiffies(1000));
171
172 if (!cpu_online(cpu)) {
173 pr_crit("CPU%u: failed to come online\n", cpu);
174 ret = -EIO;
175 }
176 } else {
177 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
178 }
179
180
181 memset(&secondary_data, 0, sizeof(secondary_data));
182 return ret;
183 }
184
185 /* platform specific SMP operations */
smp_init_cpus(void)186 void __init smp_init_cpus(void)
187 {
188 if (smp_ops.smp_init_cpus)
189 smp_ops.smp_init_cpus();
190 }
191
platform_can_secondary_boot(void)192 int platform_can_secondary_boot(void)
193 {
194 return !!smp_ops.smp_boot_secondary;
195 }
196
platform_can_cpu_hotplug(void)197 int platform_can_cpu_hotplug(void)
198 {
199 #ifdef CONFIG_HOTPLUG_CPU
200 if (smp_ops.cpu_kill)
201 return 1;
202 #endif
203
204 return 0;
205 }
206
207 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)208 static int platform_cpu_kill(unsigned int cpu)
209 {
210 if (smp_ops.cpu_kill)
211 return smp_ops.cpu_kill(cpu);
212 return 1;
213 }
214
platform_cpu_disable(unsigned int cpu)215 static int platform_cpu_disable(unsigned int cpu)
216 {
217 if (smp_ops.cpu_disable)
218 return smp_ops.cpu_disable(cpu);
219
220 return 0;
221 }
222
platform_can_hotplug_cpu(unsigned int cpu)223 int platform_can_hotplug_cpu(unsigned int cpu)
224 {
225 /* cpu_die must be specified to support hotplug */
226 if (!smp_ops.cpu_die)
227 return 0;
228
229 if (smp_ops.cpu_can_disable)
230 return smp_ops.cpu_can_disable(cpu);
231
232 /*
233 * By default, allow disabling all CPUs except the first one,
234 * since this is special on a lot of platforms, e.g. because
235 * of clock tick interrupts.
236 */
237 return cpu != 0;
238 }
239
240 /*
241 * __cpu_disable runs on the processor to be shutdown.
242 */
__cpu_disable(void)243 int __cpu_disable(void)
244 {
245 unsigned int cpu = smp_processor_id();
246 int ret;
247
248 ret = platform_cpu_disable(cpu);
249 if (ret)
250 return ret;
251
252 /*
253 * Take this CPU offline. Once we clear this, we can't return,
254 * and we must not schedule until we're ready to give up the cpu.
255 */
256 set_cpu_online(cpu, false);
257
258 /*
259 * OK - migrate IRQs away from this CPU
260 */
261 irq_migrate_all_off_this_cpu();
262
263 /*
264 * Flush user cache and TLB mappings, and then remove this CPU
265 * from the vm mask set of all processes.
266 *
267 * Caches are flushed to the Level of Unification Inner Shareable
268 * to write-back dirty lines to unified caches shared by all CPUs.
269 */
270 flush_cache_louis();
271 local_flush_tlb_all();
272
273 return 0;
274 }
275
276 static DECLARE_COMPLETION(cpu_died);
277
278 /*
279 * called on the thread which is asking for a CPU to be shutdown -
280 * waits until shutdown has completed, or it is timed out.
281 */
__cpu_die(unsigned int cpu)282 void __cpu_die(unsigned int cpu)
283 {
284 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
285 pr_err("CPU%u: cpu didn't die\n", cpu);
286 return;
287 }
288 pr_debug("CPU%u: shutdown\n", cpu);
289
290 clear_tasks_mm_cpumask(cpu);
291 /*
292 * platform_cpu_kill() is generally expected to do the powering off
293 * and/or cutting of clocks to the dying CPU. Optionally, this may
294 * be done by the CPU which is dying in preference to supporting
295 * this call, but that means there is _no_ synchronisation between
296 * the requesting CPU and the dying CPU actually losing power.
297 */
298 if (!platform_cpu_kill(cpu))
299 pr_err("CPU%u: unable to kill\n", cpu);
300 }
301
302 /*
303 * Called from the idle thread for the CPU which has been shutdown.
304 *
305 * Note that we disable IRQs here, but do not re-enable them
306 * before returning to the caller. This is also the behaviour
307 * of the other hotplug-cpu capable cores, so presumably coming
308 * out of idle fixes this.
309 */
arch_cpu_idle_dead(void)310 void arch_cpu_idle_dead(void)
311 {
312 unsigned int cpu = smp_processor_id();
313
314 idle_task_exit();
315
316 local_irq_disable();
317
318 /*
319 * Flush the data out of the L1 cache for this CPU. This must be
320 * before the completion to ensure that data is safely written out
321 * before platform_cpu_kill() gets called - which may disable
322 * *this* CPU and power down its cache.
323 */
324 flush_cache_louis();
325
326 /*
327 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
328 * this returns, power and/or clocks can be removed at any point
329 * from this CPU and its cache by platform_cpu_kill().
330 */
331 complete(&cpu_died);
332
333 /*
334 * Ensure that the cache lines associated with that completion are
335 * written out. This covers the case where _this_ CPU is doing the
336 * powering down, to ensure that the completion is visible to the
337 * CPU waiting for this one.
338 */
339 flush_cache_louis();
340
341 /*
342 * The actual CPU shutdown procedure is at least platform (if not
343 * CPU) specific. This may remove power, or it may simply spin.
344 *
345 * Platforms are generally expected *NOT* to return from this call,
346 * although there are some which do because they have no way to
347 * power down the CPU. These platforms are the _only_ reason we
348 * have a return path which uses the fragment of assembly below.
349 *
350 * The return path should not be used for platforms which can
351 * power off the CPU.
352 */
353 if (smp_ops.cpu_die)
354 smp_ops.cpu_die(cpu);
355
356 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
357 cpu);
358
359 /*
360 * Do not return to the idle loop - jump back to the secondary
361 * cpu initialisation. There's some initialisation which needs
362 * to be repeated to undo the effects of taking the CPU offline.
363 */
364 __asm__("mov sp, %0\n"
365 " mov fp, #0\n"
366 " b secondary_start_kernel"
367 :
368 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
369 }
370 #endif /* CONFIG_HOTPLUG_CPU */
371
372 /*
373 * Called by both boot and secondaries to move global data into
374 * per-processor storage.
375 */
smp_store_cpu_info(unsigned int cpuid)376 static void smp_store_cpu_info(unsigned int cpuid)
377 {
378 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
379
380 cpu_info->loops_per_jiffy = loops_per_jiffy;
381 cpu_info->cpuid = read_cpuid_id();
382
383 store_cpu_topology(cpuid);
384 }
385
386 /*
387 * This is the secondary CPU boot entry. We're using this CPUs
388 * idle thread stack, but a set of temporary page tables.
389 */
secondary_start_kernel(void)390 asmlinkage void secondary_start_kernel(void)
391 {
392 struct mm_struct *mm = &init_mm;
393 unsigned int cpu;
394
395 secondary_biglittle_init();
396
397 /*
398 * The identity mapping is uncached (strongly ordered), so
399 * switch away from it before attempting any exclusive accesses.
400 */
401 cpu_switch_mm(mm->pgd, mm);
402 local_flush_bp_all();
403 enter_lazy_tlb(mm, current);
404 local_flush_tlb_all();
405
406 /*
407 * All kernel threads share the same mm context; grab a
408 * reference and switch to it.
409 */
410 cpu = smp_processor_id();
411 mmgrab(mm);
412 current->active_mm = mm;
413 cpumask_set_cpu(cpu, mm_cpumask(mm));
414
415 cpu_init();
416
417 #ifndef CONFIG_MMU
418 setup_vectors_base();
419 #endif
420 pr_debug("CPU%u: Booted secondary processor\n", cpu);
421
422 preempt_disable();
423 trace_hardirqs_off();
424
425 /*
426 * Give the platform a chance to do its own initialisation.
427 */
428 if (smp_ops.smp_secondary_init)
429 smp_ops.smp_secondary_init(cpu);
430
431 notify_cpu_starting(cpu);
432
433 calibrate_delay();
434
435 smp_store_cpu_info(cpu);
436
437 /*
438 * OK, now it's safe to let the boot CPU continue. Wait for
439 * the CPU migration code to notice that the CPU is online
440 * before we continue - which happens after __cpu_up returns.
441 */
442 set_cpu_online(cpu, true);
443
444 check_other_bugs();
445
446 complete(&cpu_running);
447
448 local_irq_enable();
449 local_fiq_enable();
450 local_abt_enable();
451
452 /*
453 * OK, it's off to the idle thread for us
454 */
455 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
456 }
457
smp_cpus_done(unsigned int max_cpus)458 void __init smp_cpus_done(unsigned int max_cpus)
459 {
460 int cpu;
461 unsigned long bogosum = 0;
462
463 for_each_online_cpu(cpu)
464 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
465
466 printk(KERN_INFO "SMP: Total of %d processors activated "
467 "(%lu.%02lu BogoMIPS).\n",
468 num_online_cpus(),
469 bogosum / (500000/HZ),
470 (bogosum / (5000/HZ)) % 100);
471
472 hyp_mode_check();
473 }
474
smp_prepare_boot_cpu(void)475 void __init smp_prepare_boot_cpu(void)
476 {
477 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
478 }
479
smp_prepare_cpus(unsigned int max_cpus)480 void __init smp_prepare_cpus(unsigned int max_cpus)
481 {
482 unsigned int ncores = num_possible_cpus();
483
484 init_cpu_topology();
485
486 smp_store_cpu_info(smp_processor_id());
487
488 /*
489 * are we trying to boot more cores than exist?
490 */
491 if (max_cpus > ncores)
492 max_cpus = ncores;
493 if (ncores > 1 && max_cpus) {
494 /*
495 * Initialise the present map, which describes the set of CPUs
496 * actually populated at the present time. A platform should
497 * re-initialize the map in the platforms smp_prepare_cpus()
498 * if present != possible (e.g. physical hotplug).
499 */
500 init_cpu_present(cpu_possible_mask);
501
502 /*
503 * Initialise the SCU if there are more than one CPU
504 * and let them know where to start.
505 */
506 if (smp_ops.smp_prepare_cpus)
507 smp_ops.smp_prepare_cpus(max_cpus);
508 }
509 }
510
511 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
512
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))513 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
514 {
515 if (!__smp_cross_call)
516 __smp_cross_call = fn;
517 }
518
519 static const char *ipi_types[NR_IPI] __tracepoint_string = {
520 #define S(x,s) [x] = s
521 S(IPI_WAKEUP, "CPU wakeup interrupts"),
522 S(IPI_TIMER, "Timer broadcast interrupts"),
523 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
524 S(IPI_CALL_FUNC, "Function call interrupts"),
525 S(IPI_CPU_STOP, "CPU stop interrupts"),
526 S(IPI_IRQ_WORK, "IRQ work interrupts"),
527 S(IPI_COMPLETION, "completion interrupts"),
528 };
529
smp_cross_call(const struct cpumask * target,unsigned int ipinr)530 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
531 {
532 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
533 __smp_cross_call(target, ipinr);
534 }
535
show_ipi_list(struct seq_file * p,int prec)536 void show_ipi_list(struct seq_file *p, int prec)
537 {
538 unsigned int cpu, i;
539
540 for (i = 0; i < NR_IPI; i++) {
541 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
542
543 for_each_online_cpu(cpu)
544 seq_printf(p, "%10u ",
545 __get_irq_stat(cpu, ipi_irqs[i]));
546
547 seq_printf(p, " %s\n", ipi_types[i]);
548 }
549 }
550
smp_irq_stat_cpu(unsigned int cpu)551 u64 smp_irq_stat_cpu(unsigned int cpu)
552 {
553 u64 sum = 0;
554 int i;
555
556 for (i = 0; i < NR_IPI; i++)
557 sum += __get_irq_stat(cpu, ipi_irqs[i]);
558
559 return sum;
560 }
561
arch_send_call_function_ipi_mask(const struct cpumask * mask)562 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
563 {
564 smp_cross_call(mask, IPI_CALL_FUNC);
565 }
566
arch_send_wakeup_ipi_mask(const struct cpumask * mask)567 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
568 {
569 smp_cross_call(mask, IPI_WAKEUP);
570 }
571
arch_send_call_function_single_ipi(int cpu)572 void arch_send_call_function_single_ipi(int cpu)
573 {
574 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
575 }
576
577 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)578 void arch_irq_work_raise(void)
579 {
580 if (arch_irq_work_has_interrupt())
581 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
582 }
583 #endif
584
585 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)586 void tick_broadcast(const struct cpumask *mask)
587 {
588 smp_cross_call(mask, IPI_TIMER);
589 }
590 #endif
591
592 static DEFINE_RAW_SPINLOCK(stop_lock);
593
594 /*
595 * ipi_cpu_stop - handle IPI from smp_send_stop()
596 */
ipi_cpu_stop(unsigned int cpu)597 static void ipi_cpu_stop(unsigned int cpu)
598 {
599 if (system_state <= SYSTEM_RUNNING) {
600 raw_spin_lock(&stop_lock);
601 pr_crit("CPU%u: stopping\n", cpu);
602 dump_stack();
603 raw_spin_unlock(&stop_lock);
604 }
605
606 set_cpu_online(cpu, false);
607
608 local_fiq_disable();
609 local_irq_disable();
610
611 while (1) {
612 cpu_relax();
613 wfe();
614 }
615 }
616
617 static DEFINE_PER_CPU(struct completion *, cpu_completion);
618
register_ipi_completion(struct completion * completion,int cpu)619 int register_ipi_completion(struct completion *completion, int cpu)
620 {
621 per_cpu(cpu_completion, cpu) = completion;
622 return IPI_COMPLETION;
623 }
624
ipi_complete(unsigned int cpu)625 static void ipi_complete(unsigned int cpu)
626 {
627 complete(per_cpu(cpu_completion, cpu));
628 }
629
630 /*
631 * Main handler for inter-processor interrupts
632 */
do_IPI(int ipinr,struct pt_regs * regs)633 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
634 {
635 handle_IPI(ipinr, regs);
636 }
637
handle_IPI(int ipinr,struct pt_regs * regs)638 void handle_IPI(int ipinr, struct pt_regs *regs)
639 {
640 unsigned int cpu = smp_processor_id();
641 struct pt_regs *old_regs = set_irq_regs(regs);
642
643 if ((unsigned)ipinr < NR_IPI) {
644 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
645 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
646 }
647
648 switch (ipinr) {
649 case IPI_WAKEUP:
650 break;
651
652 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
653 case IPI_TIMER:
654 irq_enter();
655 tick_receive_broadcast();
656 irq_exit();
657 break;
658 #endif
659
660 case IPI_RESCHEDULE:
661 scheduler_ipi();
662 break;
663
664 case IPI_CALL_FUNC:
665 irq_enter();
666 generic_smp_call_function_interrupt();
667 irq_exit();
668 break;
669
670 case IPI_CPU_STOP:
671 irq_enter();
672 ipi_cpu_stop(cpu);
673 irq_exit();
674 break;
675
676 #ifdef CONFIG_IRQ_WORK
677 case IPI_IRQ_WORK:
678 irq_enter();
679 irq_work_run();
680 irq_exit();
681 break;
682 #endif
683
684 case IPI_COMPLETION:
685 irq_enter();
686 ipi_complete(cpu);
687 irq_exit();
688 break;
689
690 case IPI_CPU_BACKTRACE:
691 printk_nmi_enter();
692 irq_enter();
693 nmi_cpu_backtrace(regs);
694 irq_exit();
695 printk_nmi_exit();
696 break;
697
698 default:
699 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
700 cpu, ipinr);
701 break;
702 }
703
704 if ((unsigned)ipinr < NR_IPI)
705 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
706 set_irq_regs(old_regs);
707 }
708
smp_send_reschedule(int cpu)709 void smp_send_reschedule(int cpu)
710 {
711 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
712 }
713
smp_send_stop(void)714 void smp_send_stop(void)
715 {
716 unsigned long timeout;
717 struct cpumask mask;
718
719 cpumask_copy(&mask, cpu_online_mask);
720 cpumask_clear_cpu(smp_processor_id(), &mask);
721 if (!cpumask_empty(&mask))
722 smp_cross_call(&mask, IPI_CPU_STOP);
723
724 /* Wait up to one second for other CPUs to stop */
725 timeout = USEC_PER_SEC;
726 while (num_online_cpus() > 1 && timeout--)
727 udelay(1);
728
729 if (num_online_cpus() > 1)
730 pr_warn("SMP: failed to stop secondary CPUs\n");
731 }
732
733 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
734 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
735 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
736 * kdump fails. So split out the panic_smp_self_stop() and add
737 * set_cpu_online(smp_processor_id(), false).
738 */
panic_smp_self_stop(void)739 void panic_smp_self_stop(void)
740 {
741 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
742 smp_processor_id());
743 set_cpu_online(smp_processor_id(), false);
744 while (1)
745 cpu_relax();
746 }
747
748 /*
749 * not supported here
750 */
setup_profiling_timer(unsigned int multiplier)751 int setup_profiling_timer(unsigned int multiplier)
752 {
753 return -EINVAL;
754 }
755
756 #ifdef CONFIG_CPU_FREQ
757
758 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
759 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
760 static unsigned long global_l_p_j_ref;
761 static unsigned long global_l_p_j_ref_freq;
762
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)763 static int cpufreq_callback(struct notifier_block *nb,
764 unsigned long val, void *data)
765 {
766 struct cpufreq_freqs *freq = data;
767 int cpu = freq->cpu;
768
769 if (freq->flags & CPUFREQ_CONST_LOOPS)
770 return NOTIFY_OK;
771
772 if (!per_cpu(l_p_j_ref, cpu)) {
773 per_cpu(l_p_j_ref, cpu) =
774 per_cpu(cpu_data, cpu).loops_per_jiffy;
775 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
776 if (!global_l_p_j_ref) {
777 global_l_p_j_ref = loops_per_jiffy;
778 global_l_p_j_ref_freq = freq->old;
779 }
780 }
781
782 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
783 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
784 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
785 global_l_p_j_ref_freq,
786 freq->new);
787 per_cpu(cpu_data, cpu).loops_per_jiffy =
788 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
789 per_cpu(l_p_j_ref_freq, cpu),
790 freq->new);
791 }
792 return NOTIFY_OK;
793 }
794
795 static struct notifier_block cpufreq_notifier = {
796 .notifier_call = cpufreq_callback,
797 };
798
register_cpufreq_notifier(void)799 static int __init register_cpufreq_notifier(void)
800 {
801 return cpufreq_register_notifier(&cpufreq_notifier,
802 CPUFREQ_TRANSITION_NOTIFIER);
803 }
804 core_initcall(register_cpufreq_notifier);
805
806 #endif
807
raise_nmi(cpumask_t * mask)808 static void raise_nmi(cpumask_t *mask)
809 {
810 __smp_cross_call(mask, IPI_CPU_BACKTRACE);
811 }
812
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)813 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
814 {
815 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
816 }
817