• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
set_max_mapnr(unsigned long limit)43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
set_max_mapnr(unsigned long limit)48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54 
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71 
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75 
76 #ifndef __pa_symbol
77 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79 
80 #ifndef page_to_virt
81 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83 
84 #ifndef lm_alias
85 #define lm_alias(x)	__va(__pa_symbol(x))
86 #endif
87 
88 /*
89  * To prevent common memory management code establishing
90  * a zero page mapping on a read fault.
91  * This macro should be defined within <asm/pgtable.h>.
92  * s390 does this to prevent multiplexing of hardware bits
93  * related to the physical page in case of virtualization.
94  */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X)	(0)
97 #endif
98 
99 /*
100  * On some architectures it is expensive to call memset() for small sizes.
101  * Those architectures should provide their own implementation of "struct page"
102  * zeroing by defining this macro in <asm/pgtable.h>.
103  */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107 
108 /*
109  * Default maximum number of active map areas, this limits the number of vmas
110  * per mm struct. Users can overwrite this number by sysctl but there is a
111  * problem.
112  *
113  * When a program's coredump is generated as ELF format, a section is created
114  * per a vma. In ELF, the number of sections is represented in unsigned short.
115  * This means the number of sections should be smaller than 65535 at coredump.
116  * Because the kernel adds some informative sections to a image of program at
117  * generating coredump, we need some margin. The number of extra sections is
118  * 1-3 now and depends on arch. We use "5" as safe margin, here.
119  *
120  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121  * not a hard limit any more. Although some userspace tools can be surprised by
122  * that.
123  */
124 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
125 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 
127 extern int sysctl_max_map_count;
128 
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131 
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135 
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 				    size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 				    size_t *, loff_t *);
140 
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148 
149 /*
150  * Linux kernel virtual memory manager primitives.
151  * The idea being to have a "virtual" mm in the same way
152  * we have a virtual fs - giving a cleaner interface to the
153  * mm details, and allowing different kinds of memory mappings
154  * (from shared memory to executable loading to arbitrary
155  * mmap() functions).
156  */
157 
158 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
161 
162 #ifndef CONFIG_MMU
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
165 
166 extern unsigned int kobjsize(const void *objp);
167 #endif
168 
169 /*
170  * vm_flags in vm_area_struct, see mm_types.h.
171  * When changing, update also include/trace/events/mmflags.h
172  */
173 #define VM_NONE		0x00000000
174 
175 #define VM_READ		0x00000001	/* currently active flags */
176 #define VM_WRITE	0x00000002
177 #define VM_EXEC		0x00000004
178 #define VM_SHARED	0x00000008
179 
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
182 #define VM_MAYWRITE	0x00000020
183 #define VM_MAYEXEC	0x00000040
184 #define VM_MAYSHARE	0x00000080
185 
186 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
187 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
188 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
191 
192 #define VM_LOCKED	0x00002000
193 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
194 
195 					/* Used by sys_madvise() */
196 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
197 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
198 
199 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
203 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
204 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
205 #define VM_SYNC		0x00800000	/* Synchronous page faults */
206 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
207 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
208 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
209 
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
212 #else
213 # define VM_SOFTDIRTY	0
214 #endif
215 
216 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
220 
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233 
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
238 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
240 #ifdef CONFIG_PPC
241 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
242 #else
243 # define VM_PKEY_BIT4  0
244 #endif
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
246 
247 #if defined(CONFIG_X86)
248 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP	VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP	VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR	VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
260 #endif
261 
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX		VM_HIGH_ARCH_4
265 #else
266 # define VM_MPX		VM_NONE
267 #endif
268 
269 #ifndef VM_GROWSUP
270 # define VM_GROWSUP	VM_NONE
271 #endif
272 
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
275 
276 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278 #endif
279 
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK	VM_GROWSUP
282 #else
283 #define VM_STACK	VM_GROWSDOWN
284 #endif
285 
286 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287 
288 /*
289  * Special vmas that are non-mergable, non-mlock()able.
290  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291  */
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293 
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
296 
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
299 
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR	VM_NONE
303 #endif
304 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305 
306 /*
307  * mapping from the currently active vm_flags protection bits (the
308  * low four bits) to a page protection mask..
309  */
310 extern pgprot_t protection_map[16];
311 
312 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED	0x20	/* Second try */
318 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
321 
322 #define FAULT_FLAG_TRACE \
323 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
324 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
325 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
326 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
327 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
328 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
329 	{ FAULT_FLAG_USER,		"USER" }, \
330 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
331 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
332 
333 /*
334  * vm_fault is filled by the the pagefault handler and passed to the vma's
335  * ->fault function. The vma's ->fault is responsible for returning a bitmask
336  * of VM_FAULT_xxx flags that give details about how the fault was handled.
337  *
338  * MM layer fills up gfp_mask for page allocations but fault handler might
339  * alter it if its implementation requires a different allocation context.
340  *
341  * pgoff should be used in favour of virtual_address, if possible.
342  */
343 struct vm_fault {
344 	struct vm_area_struct *vma;	/* Target VMA */
345 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
346 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
347 	pgoff_t pgoff;			/* Logical page offset based on vma */
348 	unsigned long address;		/* Faulting virtual address */
349 	pmd_t *pmd;			/* Pointer to pmd entry matching
350 					 * the 'address' */
351 	pud_t *pud;			/* Pointer to pud entry matching
352 					 * the 'address'
353 					 */
354 	pte_t orig_pte;			/* Value of PTE at the time of fault */
355 
356 	struct page *cow_page;		/* Page handler may use for COW fault */
357 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
358 	struct page *page;		/* ->fault handlers should return a
359 					 * page here, unless VM_FAULT_NOPAGE
360 					 * is set (which is also implied by
361 					 * VM_FAULT_ERROR).
362 					 */
363 	/* These three entries are valid only while holding ptl lock */
364 	pte_t *pte;			/* Pointer to pte entry matching
365 					 * the 'address'. NULL if the page
366 					 * table hasn't been allocated.
367 					 */
368 	spinlock_t *ptl;		/* Page table lock.
369 					 * Protects pte page table if 'pte'
370 					 * is not NULL, otherwise pmd.
371 					 */
372 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
373 					 * vm_ops->map_pages() calls
374 					 * alloc_set_pte() from atomic context.
375 					 * do_fault_around() pre-allocates
376 					 * page table to avoid allocation from
377 					 * atomic context.
378 					 */
379 };
380 
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
383 	PE_SIZE_PTE = 0,
384 	PE_SIZE_PMD,
385 	PE_SIZE_PUD,
386 };
387 
388 /*
389  * These are the virtual MM functions - opening of an area, closing and
390  * unmapping it (needed to keep files on disk up-to-date etc), pointer
391  * to the functions called when a no-page or a wp-page exception occurs.
392  */
393 struct vm_operations_struct {
394 	void (*open)(struct vm_area_struct * area);
395 	void (*close)(struct vm_area_struct * area);
396 	int (*split)(struct vm_area_struct * area, unsigned long addr);
397 	int (*mremap)(struct vm_area_struct * area);
398 	vm_fault_t (*fault)(struct vm_fault *vmf);
399 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 			enum page_entry_size pe_size);
401 	void (*map_pages)(struct vm_fault *vmf,
402 			pgoff_t start_pgoff, pgoff_t end_pgoff);
403 	unsigned long (*pagesize)(struct vm_area_struct * area);
404 
405 	/* notification that a previously read-only page is about to become
406 	 * writable, if an error is returned it will cause a SIGBUS */
407 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408 
409 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411 
412 	/* called by access_process_vm when get_user_pages() fails, typically
413 	 * for use by special VMAs that can switch between memory and hardware
414 	 */
415 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 		      void *buf, int len, int write);
417 
418 	/* Called by the /proc/PID/maps code to ask the vma whether it
419 	 * has a special name.  Returning non-NULL will also cause this
420 	 * vma to be dumped unconditionally. */
421 	const char *(*name)(struct vm_area_struct *vma);
422 
423 #ifdef CONFIG_NUMA
424 	/*
425 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 	 * to hold the policy upon return.  Caller should pass NULL @new to
427 	 * remove a policy and fall back to surrounding context--i.e. do not
428 	 * install a MPOL_DEFAULT policy, nor the task or system default
429 	 * mempolicy.
430 	 */
431 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432 
433 	/*
434 	 * get_policy() op must add reference [mpol_get()] to any policy at
435 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
436 	 * in mm/mempolicy.c will do this automatically.
437 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 	 * must return NULL--i.e., do not "fallback" to task or system default
441 	 * policy.
442 	 */
443 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 					unsigned long addr);
445 #endif
446 	/*
447 	 * Called by vm_normal_page() for special PTEs to find the
448 	 * page for @addr.  This is useful if the default behavior
449 	 * (using pte_page()) would not find the correct page.
450 	 */
451 	struct page *(*find_special_page)(struct vm_area_struct *vma,
452 					  unsigned long addr);
453 };
454 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456 {
457 	static const struct vm_operations_struct dummy_vm_ops = {};
458 
459 	memset(vma, 0, sizeof(*vma));
460 	vma->vm_mm = mm;
461 	vma->vm_ops = &dummy_vm_ops;
462 	INIT_LIST_HEAD(&vma->anon_vma_chain);
463 }
464 
vma_set_anonymous(struct vm_area_struct * vma)465 static inline void vma_set_anonymous(struct vm_area_struct *vma)
466 {
467 	vma->vm_ops = NULL;
468 }
469 
470 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
471 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
472 
473 struct mmu_gather;
474 struct inode;
475 
476 #define page_private(page)		((page)->private)
477 #define set_page_private(page, v)	((page)->private = (v))
478 
479 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)480 static inline int pmd_devmap(pmd_t pmd)
481 {
482 	return 0;
483 }
pud_devmap(pud_t pud)484 static inline int pud_devmap(pud_t pud)
485 {
486 	return 0;
487 }
pgd_devmap(pgd_t pgd)488 static inline int pgd_devmap(pgd_t pgd)
489 {
490 	return 0;
491 }
492 #endif
493 
494 /*
495  * FIXME: take this include out, include page-flags.h in
496  * files which need it (119 of them)
497  */
498 #include <linux/page-flags.h>
499 #include <linux/huge_mm.h>
500 
501 /*
502  * Methods to modify the page usage count.
503  *
504  * What counts for a page usage:
505  * - cache mapping   (page->mapping)
506  * - private data    (page->private)
507  * - page mapped in a task's page tables, each mapping
508  *   is counted separately
509  *
510  * Also, many kernel routines increase the page count before a critical
511  * routine so they can be sure the page doesn't go away from under them.
512  */
513 
514 /*
515  * Drop a ref, return true if the refcount fell to zero (the page has no users)
516  */
put_page_testzero(struct page * page)517 static inline int put_page_testzero(struct page *page)
518 {
519 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
520 	return page_ref_dec_and_test(page);
521 }
522 
523 /*
524  * Try to grab a ref unless the page has a refcount of zero, return false if
525  * that is the case.
526  * This can be called when MMU is off so it must not access
527  * any of the virtual mappings.
528  */
get_page_unless_zero(struct page * page)529 static inline int get_page_unless_zero(struct page *page)
530 {
531 	return page_ref_add_unless(page, 1, 0);
532 }
533 
534 extern int page_is_ram(unsigned long pfn);
535 
536 enum {
537 	REGION_INTERSECTS,
538 	REGION_DISJOINT,
539 	REGION_MIXED,
540 };
541 
542 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
543 		      unsigned long desc);
544 
545 /* Support for virtually mapped pages */
546 struct page *vmalloc_to_page(const void *addr);
547 unsigned long vmalloc_to_pfn(const void *addr);
548 
549 /*
550  * Determine if an address is within the vmalloc range
551  *
552  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
553  * is no special casing required.
554  */
is_vmalloc_addr(const void * x)555 static inline bool is_vmalloc_addr(const void *x)
556 {
557 #ifdef CONFIG_MMU
558 	unsigned long addr = (unsigned long)x;
559 
560 	return addr >= VMALLOC_START && addr < VMALLOC_END;
561 #else
562 	return false;
563 #endif
564 }
565 #ifdef CONFIG_MMU
566 extern int is_vmalloc_or_module_addr(const void *x);
567 #else
is_vmalloc_or_module_addr(const void * x)568 static inline int is_vmalloc_or_module_addr(const void *x)
569 {
570 	return 0;
571 }
572 #endif
573 
574 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)575 static inline void *kvmalloc(size_t size, gfp_t flags)
576 {
577 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
578 }
kvzalloc_node(size_t size,gfp_t flags,int node)579 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580 {
581 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
582 }
kvzalloc(size_t size,gfp_t flags)583 static inline void *kvzalloc(size_t size, gfp_t flags)
584 {
585 	return kvmalloc(size, flags | __GFP_ZERO);
586 }
587 
kvmalloc_array(size_t n,size_t size,gfp_t flags)588 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
589 {
590 	size_t bytes;
591 
592 	if (unlikely(check_mul_overflow(n, size, &bytes)))
593 		return NULL;
594 
595 	return kvmalloc(bytes, flags);
596 }
597 
kvcalloc(size_t n,size_t size,gfp_t flags)598 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599 {
600 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
601 }
602 
603 extern void kvfree(const void *addr);
604 extern void kvfree_sensitive(const void *addr, size_t len);
605 
606 /*
607  * Mapcount of compound page as a whole, does not include mapped sub-pages.
608  *
609  * Must be called only for compound pages or any their tail sub-pages.
610  */
compound_mapcount(struct page * page)611 static inline int compound_mapcount(struct page *page)
612 {
613 	VM_BUG_ON_PAGE(!PageCompound(page), page);
614 	page = compound_head(page);
615 	return atomic_read(compound_mapcount_ptr(page)) + 1;
616 }
617 
618 /*
619  * The atomic page->_mapcount, starts from -1: so that transitions
620  * both from it and to it can be tracked, using atomic_inc_and_test
621  * and atomic_add_negative(-1).
622  */
page_mapcount_reset(struct page * page)623 static inline void page_mapcount_reset(struct page *page)
624 {
625 	atomic_set(&(page)->_mapcount, -1);
626 }
627 
628 int __page_mapcount(struct page *page);
629 
630 /*
631  * Mapcount of 0-order page; when compound sub-page, includes
632  * compound_mapcount().
633  *
634  * Result is undefined for pages which cannot be mapped into userspace.
635  * For example SLAB or special types of pages. See function page_has_type().
636  * They use this place in struct page differently.
637  */
page_mapcount(struct page * page)638 static inline int page_mapcount(struct page *page)
639 {
640 	if (unlikely(PageCompound(page)))
641 		return __page_mapcount(page);
642 	return atomic_read(&page->_mapcount) + 1;
643 }
644 
645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
646 int total_mapcount(struct page *page);
647 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
648 #else
total_mapcount(struct page * page)649 static inline int total_mapcount(struct page *page)
650 {
651 	return page_mapcount(page);
652 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)653 static inline int page_trans_huge_mapcount(struct page *page,
654 					   int *total_mapcount)
655 {
656 	int mapcount = page_mapcount(page);
657 	if (total_mapcount)
658 		*total_mapcount = mapcount;
659 	return mapcount;
660 }
661 #endif
662 
virt_to_head_page(const void * x)663 static inline struct page *virt_to_head_page(const void *x)
664 {
665 	struct page *page = virt_to_page(x);
666 
667 	return compound_head(page);
668 }
669 
670 void __put_page(struct page *page);
671 
672 void put_pages_list(struct list_head *pages);
673 
674 void split_page(struct page *page, unsigned int order);
675 
676 /*
677  * Compound pages have a destructor function.  Provide a
678  * prototype for that function and accessor functions.
679  * These are _only_ valid on the head of a compound page.
680  */
681 typedef void compound_page_dtor(struct page *);
682 
683 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
684 enum compound_dtor_id {
685 	NULL_COMPOUND_DTOR,
686 	COMPOUND_PAGE_DTOR,
687 #ifdef CONFIG_HUGETLB_PAGE
688 	HUGETLB_PAGE_DTOR,
689 #endif
690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
691 	TRANSHUGE_PAGE_DTOR,
692 #endif
693 	NR_COMPOUND_DTORS,
694 };
695 extern compound_page_dtor * const compound_page_dtors[];
696 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)697 static inline void set_compound_page_dtor(struct page *page,
698 		enum compound_dtor_id compound_dtor)
699 {
700 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
701 	page[1].compound_dtor = compound_dtor;
702 }
703 
get_compound_page_dtor(struct page * page)704 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
705 {
706 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
707 	return compound_page_dtors[page[1].compound_dtor];
708 }
709 
compound_order(struct page * page)710 static inline unsigned int compound_order(struct page *page)
711 {
712 	if (!PageHead(page))
713 		return 0;
714 	return page[1].compound_order;
715 }
716 
set_compound_order(struct page * page,unsigned int order)717 static inline void set_compound_order(struct page *page, unsigned int order)
718 {
719 	page[1].compound_order = order;
720 }
721 
722 void free_compound_page(struct page *page);
723 
724 #ifdef CONFIG_MMU
725 /*
726  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
727  * servicing faults for write access.  In the normal case, do always want
728  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
729  * that do not have writing enabled, when used by access_process_vm.
730  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)731 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
732 {
733 	if (likely(vma->vm_flags & VM_WRITE))
734 		pte = pte_mkwrite(pte);
735 	return pte;
736 }
737 
738 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
739 		struct page *page);
740 vm_fault_t finish_fault(struct vm_fault *vmf);
741 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
742 #endif
743 
744 /*
745  * Multiple processes may "see" the same page. E.g. for untouched
746  * mappings of /dev/null, all processes see the same page full of
747  * zeroes, and text pages of executables and shared libraries have
748  * only one copy in memory, at most, normally.
749  *
750  * For the non-reserved pages, page_count(page) denotes a reference count.
751  *   page_count() == 0 means the page is free. page->lru is then used for
752  *   freelist management in the buddy allocator.
753  *   page_count() > 0  means the page has been allocated.
754  *
755  * Pages are allocated by the slab allocator in order to provide memory
756  * to kmalloc and kmem_cache_alloc. In this case, the management of the
757  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
758  * unless a particular usage is carefully commented. (the responsibility of
759  * freeing the kmalloc memory is the caller's, of course).
760  *
761  * A page may be used by anyone else who does a __get_free_page().
762  * In this case, page_count still tracks the references, and should only
763  * be used through the normal accessor functions. The top bits of page->flags
764  * and page->virtual store page management information, but all other fields
765  * are unused and could be used privately, carefully. The management of this
766  * page is the responsibility of the one who allocated it, and those who have
767  * subsequently been given references to it.
768  *
769  * The other pages (we may call them "pagecache pages") are completely
770  * managed by the Linux memory manager: I/O, buffers, swapping etc.
771  * The following discussion applies only to them.
772  *
773  * A pagecache page contains an opaque `private' member, which belongs to the
774  * page's address_space. Usually, this is the address of a circular list of
775  * the page's disk buffers. PG_private must be set to tell the VM to call
776  * into the filesystem to release these pages.
777  *
778  * A page may belong to an inode's memory mapping. In this case, page->mapping
779  * is the pointer to the inode, and page->index is the file offset of the page,
780  * in units of PAGE_SIZE.
781  *
782  * If pagecache pages are not associated with an inode, they are said to be
783  * anonymous pages. These may become associated with the swapcache, and in that
784  * case PG_swapcache is set, and page->private is an offset into the swapcache.
785  *
786  * In either case (swapcache or inode backed), the pagecache itself holds one
787  * reference to the page. Setting PG_private should also increment the
788  * refcount. The each user mapping also has a reference to the page.
789  *
790  * The pagecache pages are stored in a per-mapping radix tree, which is
791  * rooted at mapping->i_pages, and indexed by offset.
792  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
793  * lists, we instead now tag pages as dirty/writeback in the radix tree.
794  *
795  * All pagecache pages may be subject to I/O:
796  * - inode pages may need to be read from disk,
797  * - inode pages which have been modified and are MAP_SHARED may need
798  *   to be written back to the inode on disk,
799  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
800  *   modified may need to be swapped out to swap space and (later) to be read
801  *   back into memory.
802  */
803 
804 /*
805  * The zone field is never updated after free_area_init_core()
806  * sets it, so none of the operations on it need to be atomic.
807  */
808 
809 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
810 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
811 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
812 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
813 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
814 
815 /*
816  * Define the bit shifts to access each section.  For non-existent
817  * sections we define the shift as 0; that plus a 0 mask ensures
818  * the compiler will optimise away reference to them.
819  */
820 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
821 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
822 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
823 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
824 
825 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
826 #ifdef NODE_NOT_IN_PAGE_FLAGS
827 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
828 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
829 						SECTIONS_PGOFF : ZONES_PGOFF)
830 #else
831 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
832 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
833 						NODES_PGOFF : ZONES_PGOFF)
834 #endif
835 
836 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
837 
838 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
839 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
840 #endif
841 
842 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
843 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
844 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
845 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
846 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
847 
page_zonenum(const struct page * page)848 static inline enum zone_type page_zonenum(const struct page *page)
849 {
850 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
851 }
852 
853 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)854 static inline bool is_zone_device_page(const struct page *page)
855 {
856 	return page_zonenum(page) == ZONE_DEVICE;
857 }
858 #else
is_zone_device_page(const struct page * page)859 static inline bool is_zone_device_page(const struct page *page)
860 {
861 	return false;
862 }
863 #endif
864 
865 #ifdef CONFIG_DEV_PAGEMAP_OPS
866 void dev_pagemap_get_ops(void);
867 void dev_pagemap_put_ops(void);
868 void __put_devmap_managed_page(struct page *page);
869 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
put_devmap_managed_page(struct page * page)870 static inline bool put_devmap_managed_page(struct page *page)
871 {
872 	if (!static_branch_unlikely(&devmap_managed_key))
873 		return false;
874 	if (!is_zone_device_page(page))
875 		return false;
876 	switch (page->pgmap->type) {
877 	case MEMORY_DEVICE_PRIVATE:
878 	case MEMORY_DEVICE_PUBLIC:
879 	case MEMORY_DEVICE_FS_DAX:
880 		__put_devmap_managed_page(page);
881 		return true;
882 	default:
883 		break;
884 	}
885 	return false;
886 }
887 
is_device_private_page(const struct page * page)888 static inline bool is_device_private_page(const struct page *page)
889 {
890 	return is_zone_device_page(page) &&
891 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
892 }
893 
is_device_public_page(const struct page * page)894 static inline bool is_device_public_page(const struct page *page)
895 {
896 	return is_zone_device_page(page) &&
897 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
898 }
899 
900 #else /* CONFIG_DEV_PAGEMAP_OPS */
dev_pagemap_get_ops(void)901 static inline void dev_pagemap_get_ops(void)
902 {
903 }
904 
dev_pagemap_put_ops(void)905 static inline void dev_pagemap_put_ops(void)
906 {
907 }
908 
put_devmap_managed_page(struct page * page)909 static inline bool put_devmap_managed_page(struct page *page)
910 {
911 	return false;
912 }
913 
is_device_private_page(const struct page * page)914 static inline bool is_device_private_page(const struct page *page)
915 {
916 	return false;
917 }
918 
is_device_public_page(const struct page * page)919 static inline bool is_device_public_page(const struct page *page)
920 {
921 	return false;
922 }
923 #endif /* CONFIG_DEV_PAGEMAP_OPS */
924 
925 /* 127: arbitrary random number, small enough to assemble well */
926 #define page_ref_zero_or_close_to_overflow(page) \
927 	((unsigned int) page_ref_count(page) + 127u <= 127u)
928 
get_page(struct page * page)929 static inline void get_page(struct page *page)
930 {
931 	page = compound_head(page);
932 	/*
933 	 * Getting a normal page or the head of a compound page
934 	 * requires to already have an elevated page->_refcount.
935 	 */
936 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
937 	page_ref_inc(page);
938 }
939 
try_get_page(struct page * page)940 static inline __must_check bool try_get_page(struct page *page)
941 {
942 	page = compound_head(page);
943 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
944 		return false;
945 	page_ref_inc(page);
946 	return true;
947 }
948 
put_page(struct page * page)949 static inline void put_page(struct page *page)
950 {
951 	page = compound_head(page);
952 
953 	/*
954 	 * For devmap managed pages we need to catch refcount transition from
955 	 * 2 to 1, when refcount reach one it means the page is free and we
956 	 * need to inform the device driver through callback. See
957 	 * include/linux/memremap.h and HMM for details.
958 	 */
959 	if (put_devmap_managed_page(page))
960 		return;
961 
962 	if (put_page_testzero(page))
963 		__put_page(page);
964 }
965 
966 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
967 #define SECTION_IN_PAGE_FLAGS
968 #endif
969 
970 /*
971  * The identification function is mainly used by the buddy allocator for
972  * determining if two pages could be buddies. We are not really identifying
973  * the zone since we could be using the section number id if we do not have
974  * node id available in page flags.
975  * We only guarantee that it will return the same value for two combinable
976  * pages in a zone.
977  */
page_zone_id(struct page * page)978 static inline int page_zone_id(struct page *page)
979 {
980 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
981 }
982 
983 #ifdef NODE_NOT_IN_PAGE_FLAGS
984 extern int page_to_nid(const struct page *page);
985 #else
page_to_nid(const struct page * page)986 static inline int page_to_nid(const struct page *page)
987 {
988 	struct page *p = (struct page *)page;
989 
990 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
991 }
992 #endif
993 
994 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)995 static inline int cpu_pid_to_cpupid(int cpu, int pid)
996 {
997 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
998 }
999 
cpupid_to_pid(int cpupid)1000 static inline int cpupid_to_pid(int cpupid)
1001 {
1002 	return cpupid & LAST__PID_MASK;
1003 }
1004 
cpupid_to_cpu(int cpupid)1005 static inline int cpupid_to_cpu(int cpupid)
1006 {
1007 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1008 }
1009 
cpupid_to_nid(int cpupid)1010 static inline int cpupid_to_nid(int cpupid)
1011 {
1012 	return cpu_to_node(cpupid_to_cpu(cpupid));
1013 }
1014 
cpupid_pid_unset(int cpupid)1015 static inline bool cpupid_pid_unset(int cpupid)
1016 {
1017 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1018 }
1019 
cpupid_cpu_unset(int cpupid)1020 static inline bool cpupid_cpu_unset(int cpupid)
1021 {
1022 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1023 }
1024 
__cpupid_match_pid(pid_t task_pid,int cpupid)1025 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1026 {
1027 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1028 }
1029 
1030 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1031 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1032 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1033 {
1034 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1035 }
1036 
page_cpupid_last(struct page * page)1037 static inline int page_cpupid_last(struct page *page)
1038 {
1039 	return page->_last_cpupid;
1040 }
page_cpupid_reset_last(struct page * page)1041 static inline void page_cpupid_reset_last(struct page *page)
1042 {
1043 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1044 }
1045 #else
page_cpupid_last(struct page * page)1046 static inline int page_cpupid_last(struct page *page)
1047 {
1048 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1049 }
1050 
1051 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1052 
page_cpupid_reset_last(struct page * page)1053 static inline void page_cpupid_reset_last(struct page *page)
1054 {
1055 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1056 }
1057 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1058 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1059 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1060 {
1061 	return page_to_nid(page); /* XXX */
1062 }
1063 
page_cpupid_last(struct page * page)1064 static inline int page_cpupid_last(struct page *page)
1065 {
1066 	return page_to_nid(page); /* XXX */
1067 }
1068 
cpupid_to_nid(int cpupid)1069 static inline int cpupid_to_nid(int cpupid)
1070 {
1071 	return -1;
1072 }
1073 
cpupid_to_pid(int cpupid)1074 static inline int cpupid_to_pid(int cpupid)
1075 {
1076 	return -1;
1077 }
1078 
cpupid_to_cpu(int cpupid)1079 static inline int cpupid_to_cpu(int cpupid)
1080 {
1081 	return -1;
1082 }
1083 
cpu_pid_to_cpupid(int nid,int pid)1084 static inline int cpu_pid_to_cpupid(int nid, int pid)
1085 {
1086 	return -1;
1087 }
1088 
cpupid_pid_unset(int cpupid)1089 static inline bool cpupid_pid_unset(int cpupid)
1090 {
1091 	return 1;
1092 }
1093 
page_cpupid_reset_last(struct page * page)1094 static inline void page_cpupid_reset_last(struct page *page)
1095 {
1096 }
1097 
cpupid_match_pid(struct task_struct * task,int cpupid)1098 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1099 {
1100 	return false;
1101 }
1102 #endif /* CONFIG_NUMA_BALANCING */
1103 
page_zone(const struct page * page)1104 static inline struct zone *page_zone(const struct page *page)
1105 {
1106 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1107 }
1108 
page_pgdat(const struct page * page)1109 static inline pg_data_t *page_pgdat(const struct page *page)
1110 {
1111 	return NODE_DATA(page_to_nid(page));
1112 }
1113 
1114 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1115 static inline void set_page_section(struct page *page, unsigned long section)
1116 {
1117 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1118 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1119 }
1120 
page_to_section(const struct page * page)1121 static inline unsigned long page_to_section(const struct page *page)
1122 {
1123 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1124 }
1125 #endif
1126 
set_page_zone(struct page * page,enum zone_type zone)1127 static inline void set_page_zone(struct page *page, enum zone_type zone)
1128 {
1129 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1130 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1131 }
1132 
set_page_node(struct page * page,unsigned long node)1133 static inline void set_page_node(struct page *page, unsigned long node)
1134 {
1135 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1136 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1137 }
1138 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1139 static inline void set_page_links(struct page *page, enum zone_type zone,
1140 	unsigned long node, unsigned long pfn)
1141 {
1142 	set_page_zone(page, zone);
1143 	set_page_node(page, node);
1144 #ifdef SECTION_IN_PAGE_FLAGS
1145 	set_page_section(page, pfn_to_section_nr(pfn));
1146 #endif
1147 }
1148 
1149 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1150 static inline struct mem_cgroup *page_memcg(struct page *page)
1151 {
1152 	return page->mem_cgroup;
1153 }
page_memcg_rcu(struct page * page)1154 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1155 {
1156 	WARN_ON_ONCE(!rcu_read_lock_held());
1157 	return READ_ONCE(page->mem_cgroup);
1158 }
1159 #else
page_memcg(struct page * page)1160 static inline struct mem_cgroup *page_memcg(struct page *page)
1161 {
1162 	return NULL;
1163 }
page_memcg_rcu(struct page * page)1164 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1165 {
1166 	WARN_ON_ONCE(!rcu_read_lock_held());
1167 	return NULL;
1168 }
1169 #endif
1170 
1171 /*
1172  * Some inline functions in vmstat.h depend on page_zone()
1173  */
1174 #include <linux/vmstat.h>
1175 
lowmem_page_address(const struct page * page)1176 static __always_inline void *lowmem_page_address(const struct page *page)
1177 {
1178 	return page_to_virt(page);
1179 }
1180 
1181 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1182 #define HASHED_PAGE_VIRTUAL
1183 #endif
1184 
1185 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1186 static inline void *page_address(const struct page *page)
1187 {
1188 	return page->virtual;
1189 }
set_page_address(struct page * page,void * address)1190 static inline void set_page_address(struct page *page, void *address)
1191 {
1192 	page->virtual = address;
1193 }
1194 #define page_address_init()  do { } while(0)
1195 #endif
1196 
1197 #if defined(HASHED_PAGE_VIRTUAL)
1198 void *page_address(const struct page *page);
1199 void set_page_address(struct page *page, void *virtual);
1200 void page_address_init(void);
1201 #endif
1202 
1203 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1204 #define page_address(page) lowmem_page_address(page)
1205 #define set_page_address(page, address)  do { } while(0)
1206 #define page_address_init()  do { } while(0)
1207 #endif
1208 
1209 extern void *page_rmapping(struct page *page);
1210 extern struct anon_vma *page_anon_vma(struct page *page);
1211 extern struct address_space *page_mapping(struct page *page);
1212 
1213 extern struct address_space *__page_file_mapping(struct page *);
1214 
1215 static inline
page_file_mapping(struct page * page)1216 struct address_space *page_file_mapping(struct page *page)
1217 {
1218 	if (unlikely(PageSwapCache(page)))
1219 		return __page_file_mapping(page);
1220 
1221 	return page->mapping;
1222 }
1223 
1224 extern pgoff_t __page_file_index(struct page *page);
1225 
1226 /*
1227  * Return the pagecache index of the passed page.  Regular pagecache pages
1228  * use ->index whereas swapcache pages use swp_offset(->private)
1229  */
page_index(struct page * page)1230 static inline pgoff_t page_index(struct page *page)
1231 {
1232 	if (unlikely(PageSwapCache(page)))
1233 		return __page_file_index(page);
1234 	return page->index;
1235 }
1236 
1237 bool page_mapped(struct page *page);
1238 struct address_space *page_mapping(struct page *page);
1239 struct address_space *page_mapping_file(struct page *page);
1240 
1241 /*
1242  * Return true only if the page has been allocated with
1243  * ALLOC_NO_WATERMARKS and the low watermark was not
1244  * met implying that the system is under some pressure.
1245  */
page_is_pfmemalloc(struct page * page)1246 static inline bool page_is_pfmemalloc(struct page *page)
1247 {
1248 	/*
1249 	 * Page index cannot be this large so this must be
1250 	 * a pfmemalloc page.
1251 	 */
1252 	return page->index == -1UL;
1253 }
1254 
1255 /*
1256  * Only to be called by the page allocator on a freshly allocated
1257  * page.
1258  */
set_page_pfmemalloc(struct page * page)1259 static inline void set_page_pfmemalloc(struct page *page)
1260 {
1261 	page->index = -1UL;
1262 }
1263 
clear_page_pfmemalloc(struct page * page)1264 static inline void clear_page_pfmemalloc(struct page *page)
1265 {
1266 	page->index = 0;
1267 }
1268 
1269 /*
1270  * Different kinds of faults, as returned by handle_mm_fault().
1271  * Used to decide whether a process gets delivered SIGBUS or
1272  * just gets major/minor fault counters bumped up.
1273  */
1274 
1275 #define VM_FAULT_OOM	0x0001
1276 #define VM_FAULT_SIGBUS	0x0002
1277 #define VM_FAULT_MAJOR	0x0004
1278 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1279 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1280 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1281 #define VM_FAULT_SIGSEGV 0x0040
1282 
1283 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1284 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1285 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1286 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1287 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1288 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1289 					 * and needs fsync() to complete (for
1290 					 * synchronous page faults in DAX) */
1291 
1292 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1293 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1294 			 VM_FAULT_FALLBACK)
1295 
1296 #define VM_FAULT_RESULT_TRACE \
1297 	{ VM_FAULT_OOM,			"OOM" }, \
1298 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1299 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1300 	{ VM_FAULT_WRITE,		"WRITE" }, \
1301 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1302 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1303 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1304 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1305 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1306 	{ VM_FAULT_RETRY,		"RETRY" }, \
1307 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1308 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1309 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1310 
1311 /* Encode hstate index for a hwpoisoned large page */
1312 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1313 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1314 
1315 /*
1316  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1317  */
1318 extern void pagefault_out_of_memory(void);
1319 
1320 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1321 
1322 /*
1323  * Flags passed to show_mem() and show_free_areas() to suppress output in
1324  * various contexts.
1325  */
1326 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1327 
1328 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1329 
1330 extern bool can_do_mlock(void);
1331 extern int user_shm_lock(size_t, struct user_struct *);
1332 extern void user_shm_unlock(size_t, struct user_struct *);
1333 
1334 /*
1335  * Parameter block passed down to zap_pte_range in exceptional cases.
1336  */
1337 struct zap_details {
1338 	struct address_space *check_mapping;	/* Check page->mapping if set */
1339 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1340 	pgoff_t last_index;			/* Highest page->index to unmap */
1341 };
1342 
1343 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1344 			     pte_t pte, bool with_public_device);
1345 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1346 
1347 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1348 				pmd_t pmd);
1349 
1350 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1351 		  unsigned long size);
1352 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1353 		    unsigned long size);
1354 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1355 		unsigned long start, unsigned long end);
1356 
1357 /**
1358  * mm_walk - callbacks for walk_page_range
1359  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1360  *	       this handler should only handle pud_trans_huge() puds.
1361  *	       the pmd_entry or pte_entry callbacks will be used for
1362  *	       regular PUDs.
1363  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1364  *	       this handler is required to be able to handle
1365  *	       pmd_trans_huge() pmds.  They may simply choose to
1366  *	       split_huge_page() instead of handling it explicitly.
1367  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1368  * @pte_hole: if set, called for each hole at all levels
1369  * @hugetlb_entry: if set, called for each hugetlb entry
1370  * @test_walk: caller specific callback function to determine whether
1371  *             we walk over the current vma or not. Returning 0
1372  *             value means "do page table walk over the current vma,"
1373  *             and a negative one means "abort current page table walk
1374  *             right now." 1 means "skip the current vma."
1375  * @mm:        mm_struct representing the target process of page table walk
1376  * @vma:       vma currently walked (NULL if walking outside vmas)
1377  * @private:   private data for callbacks' usage
1378  *
1379  * (see the comment on walk_page_range() for more details)
1380  */
1381 struct mm_walk {
1382 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1383 			 unsigned long next, struct mm_walk *walk);
1384 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1385 			 unsigned long next, struct mm_walk *walk);
1386 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1387 			 unsigned long next, struct mm_walk *walk);
1388 	int (*pte_hole)(unsigned long addr, unsigned long next,
1389 			struct mm_walk *walk);
1390 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1391 			     unsigned long addr, unsigned long next,
1392 			     struct mm_walk *walk);
1393 	int (*test_walk)(unsigned long addr, unsigned long next,
1394 			struct mm_walk *walk);
1395 	struct mm_struct *mm;
1396 	struct vm_area_struct *vma;
1397 	void *private;
1398 };
1399 
1400 int walk_page_range(unsigned long addr, unsigned long end,
1401 		struct mm_walk *walk);
1402 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1403 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1404 		unsigned long end, unsigned long floor, unsigned long ceiling);
1405 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1406 			struct vm_area_struct *vma);
1407 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1408 			     unsigned long *start, unsigned long *end,
1409 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1410 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1411 	unsigned long *pfn);
1412 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1413 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1414 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1415 			void *buf, int len, int write);
1416 
1417 extern void truncate_pagecache(struct inode *inode, loff_t new);
1418 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1421 int truncate_inode_page(struct address_space *mapping, struct page *page);
1422 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1423 int invalidate_inode_page(struct page *page);
1424 
1425 #ifdef CONFIG_MMU
1426 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1427 			unsigned long address, unsigned int flags);
1428 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1429 			    unsigned long address, unsigned int fault_flags,
1430 			    bool *unlocked);
1431 void unmap_mapping_pages(struct address_space *mapping,
1432 		pgoff_t start, pgoff_t nr, bool even_cows);
1433 void unmap_mapping_range(struct address_space *mapping,
1434 		loff_t const holebegin, loff_t const holelen, int even_cows);
1435 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1436 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1437 		unsigned long address, unsigned int flags)
1438 {
1439 	/* should never happen if there's no MMU */
1440 	BUG();
1441 	return VM_FAULT_SIGBUS;
1442 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1443 static inline int fixup_user_fault(struct task_struct *tsk,
1444 		struct mm_struct *mm, unsigned long address,
1445 		unsigned int fault_flags, bool *unlocked)
1446 {
1447 	/* should never happen if there's no MMU */
1448 	BUG();
1449 	return -EFAULT;
1450 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1451 static inline void unmap_mapping_pages(struct address_space *mapping,
1452 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1453 static inline void unmap_mapping_range(struct address_space *mapping,
1454 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1455 #endif
1456 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1457 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1458 		loff_t const holebegin, loff_t const holelen)
1459 {
1460 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1461 }
1462 
1463 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1464 		void *buf, int len, unsigned int gup_flags);
1465 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1466 		void *buf, int len, unsigned int gup_flags);
1467 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1468 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1469 
1470 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1471 			    unsigned long start, unsigned long nr_pages,
1472 			    unsigned int gup_flags, struct page **pages,
1473 			    struct vm_area_struct **vmas, int *locked);
1474 long get_user_pages(unsigned long start, unsigned long nr_pages,
1475 			    unsigned int gup_flags, struct page **pages,
1476 			    struct vm_area_struct **vmas);
1477 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1478 		    unsigned int gup_flags, struct page **pages, int *locked);
1479 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1480 		    struct page **pages, unsigned int gup_flags);
1481 #ifdef CONFIG_FS_DAX
1482 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1483 			    unsigned int gup_flags, struct page **pages,
1484 			    struct vm_area_struct **vmas);
1485 #else
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1486 static inline long get_user_pages_longterm(unsigned long start,
1487 		unsigned long nr_pages, unsigned int gup_flags,
1488 		struct page **pages, struct vm_area_struct **vmas)
1489 {
1490 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1491 }
1492 #endif /* CONFIG_FS_DAX */
1493 
1494 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1495 			struct page **pages);
1496 
1497 /* Container for pinned pfns / pages */
1498 struct frame_vector {
1499 	unsigned int nr_allocated;	/* Number of frames we have space for */
1500 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1501 	bool got_ref;		/* Did we pin pages by getting page ref? */
1502 	bool is_pfns;		/* Does array contain pages or pfns? */
1503 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1504 				 * pfns_vector_pages() or pfns_vector_pfns()
1505 				 * for access */
1506 };
1507 
1508 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1509 void frame_vector_destroy(struct frame_vector *vec);
1510 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1511 		     unsigned int gup_flags, struct frame_vector *vec);
1512 void put_vaddr_frames(struct frame_vector *vec);
1513 int frame_vector_to_pages(struct frame_vector *vec);
1514 void frame_vector_to_pfns(struct frame_vector *vec);
1515 
frame_vector_count(struct frame_vector * vec)1516 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1517 {
1518 	return vec->nr_frames;
1519 }
1520 
frame_vector_pages(struct frame_vector * vec)1521 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1522 {
1523 	if (vec->is_pfns) {
1524 		int err = frame_vector_to_pages(vec);
1525 
1526 		if (err)
1527 			return ERR_PTR(err);
1528 	}
1529 	return (struct page **)(vec->ptrs);
1530 }
1531 
frame_vector_pfns(struct frame_vector * vec)1532 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1533 {
1534 	if (!vec->is_pfns)
1535 		frame_vector_to_pfns(vec);
1536 	return (unsigned long *)(vec->ptrs);
1537 }
1538 
1539 struct kvec;
1540 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1541 			struct page **pages);
1542 int get_kernel_page(unsigned long start, int write, struct page **pages);
1543 struct page *get_dump_page(unsigned long addr);
1544 
1545 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1546 extern void do_invalidatepage(struct page *page, unsigned int offset,
1547 			      unsigned int length);
1548 
1549 void __set_page_dirty(struct page *, struct address_space *, int warn);
1550 int __set_page_dirty_nobuffers(struct page *page);
1551 int __set_page_dirty_no_writeback(struct page *page);
1552 int redirty_page_for_writepage(struct writeback_control *wbc,
1553 				struct page *page);
1554 void account_page_dirtied(struct page *page, struct address_space *mapping);
1555 void account_page_cleaned(struct page *page, struct address_space *mapping,
1556 			  struct bdi_writeback *wb);
1557 int set_page_dirty(struct page *page);
1558 int set_page_dirty_lock(struct page *page);
1559 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1560 static inline void cancel_dirty_page(struct page *page)
1561 {
1562 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1563 	if (PageDirty(page))
1564 		__cancel_dirty_page(page);
1565 }
1566 int clear_page_dirty_for_io(struct page *page);
1567 
1568 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1569 
vma_is_anonymous(struct vm_area_struct * vma)1570 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1571 {
1572 	return !vma->vm_ops;
1573 }
1574 
1575 #ifdef CONFIG_SHMEM
1576 /*
1577  * The vma_is_shmem is not inline because it is used only by slow
1578  * paths in userfault.
1579  */
1580 bool vma_is_shmem(struct vm_area_struct *vma);
1581 #else
vma_is_shmem(struct vm_area_struct * vma)1582 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1583 #endif
1584 
1585 int vma_is_stack_for_current(struct vm_area_struct *vma);
1586 
1587 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1588 		unsigned long old_addr, struct vm_area_struct *new_vma,
1589 		unsigned long new_addr, unsigned long len,
1590 		bool need_rmap_locks);
1591 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1592 			      unsigned long end, pgprot_t newprot,
1593 			      int dirty_accountable, int prot_numa);
1594 extern int mprotect_fixup(struct vm_area_struct *vma,
1595 			  struct vm_area_struct **pprev, unsigned long start,
1596 			  unsigned long end, unsigned long newflags);
1597 
1598 /*
1599  * doesn't attempt to fault and will return short.
1600  */
1601 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1602 			  struct page **pages);
1603 /*
1604  * per-process(per-mm_struct) statistics.
1605  */
get_mm_counter(struct mm_struct * mm,int member)1606 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1607 {
1608 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1609 
1610 #ifdef SPLIT_RSS_COUNTING
1611 	/*
1612 	 * counter is updated in asynchronous manner and may go to minus.
1613 	 * But it's never be expected number for users.
1614 	 */
1615 	if (val < 0)
1616 		val = 0;
1617 #endif
1618 	return (unsigned long)val;
1619 }
1620 
add_mm_counter(struct mm_struct * mm,int member,long value)1621 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1622 {
1623 	atomic_long_add(value, &mm->rss_stat.count[member]);
1624 }
1625 
inc_mm_counter(struct mm_struct * mm,int member)1626 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1627 {
1628 	atomic_long_inc(&mm->rss_stat.count[member]);
1629 }
1630 
dec_mm_counter(struct mm_struct * mm,int member)1631 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1632 {
1633 	atomic_long_dec(&mm->rss_stat.count[member]);
1634 }
1635 
1636 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1637 static inline int mm_counter_file(struct page *page)
1638 {
1639 	if (PageSwapBacked(page))
1640 		return MM_SHMEMPAGES;
1641 	return MM_FILEPAGES;
1642 }
1643 
mm_counter(struct page * page)1644 static inline int mm_counter(struct page *page)
1645 {
1646 	if (PageAnon(page))
1647 		return MM_ANONPAGES;
1648 	return mm_counter_file(page);
1649 }
1650 
get_mm_rss(struct mm_struct * mm)1651 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1652 {
1653 	return get_mm_counter(mm, MM_FILEPAGES) +
1654 		get_mm_counter(mm, MM_ANONPAGES) +
1655 		get_mm_counter(mm, MM_SHMEMPAGES);
1656 }
1657 
get_mm_hiwater_rss(struct mm_struct * mm)1658 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1659 {
1660 	return max(mm->hiwater_rss, get_mm_rss(mm));
1661 }
1662 
get_mm_hiwater_vm(struct mm_struct * mm)1663 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1664 {
1665 	return max(mm->hiwater_vm, mm->total_vm);
1666 }
1667 
update_hiwater_rss(struct mm_struct * mm)1668 static inline void update_hiwater_rss(struct mm_struct *mm)
1669 {
1670 	unsigned long _rss = get_mm_rss(mm);
1671 
1672 	if ((mm)->hiwater_rss < _rss)
1673 		(mm)->hiwater_rss = _rss;
1674 }
1675 
update_hiwater_vm(struct mm_struct * mm)1676 static inline void update_hiwater_vm(struct mm_struct *mm)
1677 {
1678 	if (mm->hiwater_vm < mm->total_vm)
1679 		mm->hiwater_vm = mm->total_vm;
1680 }
1681 
reset_mm_hiwater_rss(struct mm_struct * mm)1682 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1683 {
1684 	mm->hiwater_rss = get_mm_rss(mm);
1685 }
1686 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1687 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1688 					 struct mm_struct *mm)
1689 {
1690 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1691 
1692 	if (*maxrss < hiwater_rss)
1693 		*maxrss = hiwater_rss;
1694 }
1695 
1696 #if defined(SPLIT_RSS_COUNTING)
1697 void sync_mm_rss(struct mm_struct *mm);
1698 #else
sync_mm_rss(struct mm_struct * mm)1699 static inline void sync_mm_rss(struct mm_struct *mm)
1700 {
1701 }
1702 #endif
1703 
1704 #ifndef __HAVE_ARCH_PTE_DEVMAP
pte_devmap(pte_t pte)1705 static inline int pte_devmap(pte_t pte)
1706 {
1707 	return 0;
1708 }
1709 #endif
1710 
1711 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1712 
1713 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1714 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1715 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716 				    spinlock_t **ptl)
1717 {
1718 	pte_t *ptep;
1719 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1720 	return ptep;
1721 }
1722 
1723 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1724 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1725 						unsigned long address)
1726 {
1727 	return 0;
1728 }
1729 #else
1730 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1731 #endif
1732 
1733 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1734 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1735 						unsigned long address)
1736 {
1737 	return 0;
1738 }
mm_inc_nr_puds(struct mm_struct * mm)1739 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)1740 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1741 
1742 #else
1743 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1744 
mm_inc_nr_puds(struct mm_struct * mm)1745 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1746 {
1747 	if (mm_pud_folded(mm))
1748 		return;
1749 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1750 }
1751 
mm_dec_nr_puds(struct mm_struct * mm)1752 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1753 {
1754 	if (mm_pud_folded(mm))
1755 		return;
1756 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1757 }
1758 #endif
1759 
1760 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1761 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1762 						unsigned long address)
1763 {
1764 	return 0;
1765 }
1766 
mm_inc_nr_pmds(struct mm_struct * mm)1767 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1768 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1769 
1770 #else
1771 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1772 
mm_inc_nr_pmds(struct mm_struct * mm)1773 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1774 {
1775 	if (mm_pmd_folded(mm))
1776 		return;
1777 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1778 }
1779 
mm_dec_nr_pmds(struct mm_struct * mm)1780 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1781 {
1782 	if (mm_pmd_folded(mm))
1783 		return;
1784 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1785 }
1786 #endif
1787 
1788 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)1789 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1790 {
1791 	atomic_long_set(&mm->pgtables_bytes, 0);
1792 }
1793 
mm_pgtables_bytes(const struct mm_struct * mm)1794 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1795 {
1796 	return atomic_long_read(&mm->pgtables_bytes);
1797 }
1798 
mm_inc_nr_ptes(struct mm_struct * mm)1799 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1800 {
1801 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1802 }
1803 
mm_dec_nr_ptes(struct mm_struct * mm)1804 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1805 {
1806 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1807 }
1808 #else
1809 
mm_pgtables_bytes_init(struct mm_struct * mm)1810 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)1811 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1812 {
1813 	return 0;
1814 }
1815 
mm_inc_nr_ptes(struct mm_struct * mm)1816 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)1817 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1818 #endif
1819 
1820 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1821 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1822 
1823 /*
1824  * The following ifdef needed to get the 4level-fixup.h header to work.
1825  * Remove it when 4level-fixup.h has been removed.
1826  */
1827 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1828 
1829 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1830 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1831 		unsigned long address)
1832 {
1833 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1834 		NULL : p4d_offset(pgd, address);
1835 }
1836 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1837 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1838 		unsigned long address)
1839 {
1840 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1841 		NULL : pud_offset(p4d, address);
1842 }
1843 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1844 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1845 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1846 {
1847 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1848 		NULL: pmd_offset(pud, address);
1849 }
1850 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1851 
1852 #if USE_SPLIT_PTE_PTLOCKS
1853 #if ALLOC_SPLIT_PTLOCKS
1854 void __init ptlock_cache_init(void);
1855 extern bool ptlock_alloc(struct page *page);
1856 extern void ptlock_free(struct page *page);
1857 
ptlock_ptr(struct page * page)1858 static inline spinlock_t *ptlock_ptr(struct page *page)
1859 {
1860 	return page->ptl;
1861 }
1862 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1863 static inline void ptlock_cache_init(void)
1864 {
1865 }
1866 
ptlock_alloc(struct page * page)1867 static inline bool ptlock_alloc(struct page *page)
1868 {
1869 	return true;
1870 }
1871 
ptlock_free(struct page * page)1872 static inline void ptlock_free(struct page *page)
1873 {
1874 }
1875 
ptlock_ptr(struct page * page)1876 static inline spinlock_t *ptlock_ptr(struct page *page)
1877 {
1878 	return &page->ptl;
1879 }
1880 #endif /* ALLOC_SPLIT_PTLOCKS */
1881 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1882 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1883 {
1884 	return ptlock_ptr(pmd_page(*pmd));
1885 }
1886 
ptlock_init(struct page * page)1887 static inline bool ptlock_init(struct page *page)
1888 {
1889 	/*
1890 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1891 	 * with 0. Make sure nobody took it in use in between.
1892 	 *
1893 	 * It can happen if arch try to use slab for page table allocation:
1894 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1895 	 */
1896 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1897 	if (!ptlock_alloc(page))
1898 		return false;
1899 	spin_lock_init(ptlock_ptr(page));
1900 	return true;
1901 }
1902 
1903 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1904 static inline void pte_lock_deinit(struct page *page)
1905 {
1906 	page->mapping = NULL;
1907 	ptlock_free(page);
1908 }
1909 
1910 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1911 /*
1912  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1913  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1914 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1915 {
1916 	return &mm->page_table_lock;
1917 }
ptlock_cache_init(void)1918 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1919 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1920 static inline void pte_lock_deinit(struct page *page) {}
1921 #endif /* USE_SPLIT_PTE_PTLOCKS */
1922 
pgtable_init(void)1923 static inline void pgtable_init(void)
1924 {
1925 	ptlock_cache_init();
1926 	pgtable_cache_init();
1927 }
1928 
pgtable_page_ctor(struct page * page)1929 static inline bool pgtable_page_ctor(struct page *page)
1930 {
1931 	if (!ptlock_init(page))
1932 		return false;
1933 	__SetPageTable(page);
1934 	inc_zone_page_state(page, NR_PAGETABLE);
1935 	return true;
1936 }
1937 
pgtable_page_dtor(struct page * page)1938 static inline void pgtable_page_dtor(struct page *page)
1939 {
1940 	pte_lock_deinit(page);
1941 	__ClearPageTable(page);
1942 	dec_zone_page_state(page, NR_PAGETABLE);
1943 }
1944 
1945 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1946 ({							\
1947 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1948 	pte_t *__pte = pte_offset_map(pmd, address);	\
1949 	*(ptlp) = __ptl;				\
1950 	spin_lock(__ptl);				\
1951 	__pte;						\
1952 })
1953 
1954 #define pte_unmap_unlock(pte, ptl)	do {		\
1955 	spin_unlock(ptl);				\
1956 	pte_unmap(pte);					\
1957 } while (0)
1958 
1959 #define pte_alloc(mm, pmd, address)			\
1960 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1961 
1962 #define pte_alloc_map(mm, pmd, address)			\
1963 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1964 
1965 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1966 	(pte_alloc(mm, pmd, address) ?			\
1967 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1968 
1969 #define pte_alloc_kernel(pmd, address)			\
1970 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1971 		NULL: pte_offset_kernel(pmd, address))
1972 
1973 #if USE_SPLIT_PMD_PTLOCKS
1974 
pmd_to_page(pmd_t * pmd)1975 static struct page *pmd_to_page(pmd_t *pmd)
1976 {
1977 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1978 	return virt_to_page((void *)((unsigned long) pmd & mask));
1979 }
1980 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1981 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1982 {
1983 	return ptlock_ptr(pmd_to_page(pmd));
1984 }
1985 
pgtable_pmd_page_ctor(struct page * page)1986 static inline bool pgtable_pmd_page_ctor(struct page *page)
1987 {
1988 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1989 	page->pmd_huge_pte = NULL;
1990 #endif
1991 	return ptlock_init(page);
1992 }
1993 
pgtable_pmd_page_dtor(struct page * page)1994 static inline void pgtable_pmd_page_dtor(struct page *page)
1995 {
1996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1997 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1998 #endif
1999 	ptlock_free(page);
2000 }
2001 
2002 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2003 
2004 #else
2005 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2006 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2007 {
2008 	return &mm->page_table_lock;
2009 }
2010 
pgtable_pmd_page_ctor(struct page * page)2011 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)2012 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2013 
2014 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2015 
2016 #endif
2017 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2018 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2019 {
2020 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2021 	spin_lock(ptl);
2022 	return ptl;
2023 }
2024 
2025 /*
2026  * No scalability reason to split PUD locks yet, but follow the same pattern
2027  * as the PMD locks to make it easier if we decide to.  The VM should not be
2028  * considered ready to switch to split PUD locks yet; there may be places
2029  * which need to be converted from page_table_lock.
2030  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2031 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2032 {
2033 	return &mm->page_table_lock;
2034 }
2035 
pud_lock(struct mm_struct * mm,pud_t * pud)2036 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2037 {
2038 	spinlock_t *ptl = pud_lockptr(mm, pud);
2039 
2040 	spin_lock(ptl);
2041 	return ptl;
2042 }
2043 
2044 extern void __init pagecache_init(void);
2045 extern void free_area_init(unsigned long * zones_size);
2046 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2047 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2048 extern void free_initmem(void);
2049 
2050 /*
2051  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2052  * into the buddy system. The freed pages will be poisoned with pattern
2053  * "poison" if it's within range [0, UCHAR_MAX].
2054  * Return pages freed into the buddy system.
2055  */
2056 extern unsigned long free_reserved_area(void *start, void *end,
2057 					int poison, char *s);
2058 
2059 #ifdef	CONFIG_HIGHMEM
2060 /*
2061  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2062  * and totalram_pages.
2063  */
2064 extern void free_highmem_page(struct page *page);
2065 #endif
2066 
2067 extern void adjust_managed_page_count(struct page *page, long count);
2068 extern void mem_init_print_info(const char *str);
2069 
2070 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2071 
2072 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2073 static inline void __free_reserved_page(struct page *page)
2074 {
2075 	ClearPageReserved(page);
2076 	init_page_count(page);
2077 	__free_page(page);
2078 }
2079 
free_reserved_page(struct page * page)2080 static inline void free_reserved_page(struct page *page)
2081 {
2082 	__free_reserved_page(page);
2083 	adjust_managed_page_count(page, 1);
2084 }
2085 
mark_page_reserved(struct page * page)2086 static inline void mark_page_reserved(struct page *page)
2087 {
2088 	SetPageReserved(page);
2089 	adjust_managed_page_count(page, -1);
2090 }
2091 
2092 /*
2093  * Default method to free all the __init memory into the buddy system.
2094  * The freed pages will be poisoned with pattern "poison" if it's within
2095  * range [0, UCHAR_MAX].
2096  * Return pages freed into the buddy system.
2097  */
free_initmem_default(int poison)2098 static inline unsigned long free_initmem_default(int poison)
2099 {
2100 	extern char __init_begin[], __init_end[];
2101 
2102 	return free_reserved_area(&__init_begin, &__init_end,
2103 				  poison, "unused kernel");
2104 }
2105 
get_num_physpages(void)2106 static inline unsigned long get_num_physpages(void)
2107 {
2108 	int nid;
2109 	unsigned long phys_pages = 0;
2110 
2111 	for_each_online_node(nid)
2112 		phys_pages += node_present_pages(nid);
2113 
2114 	return phys_pages;
2115 }
2116 
2117 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2118 /*
2119  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2120  * zones, allocate the backing mem_map and account for memory holes in a more
2121  * architecture independent manner. This is a substitute for creating the
2122  * zone_sizes[] and zholes_size[] arrays and passing them to
2123  * free_area_init_node()
2124  *
2125  * An architecture is expected to register range of page frames backed by
2126  * physical memory with memblock_add[_node]() before calling
2127  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2128  * usage, an architecture is expected to do something like
2129  *
2130  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2131  * 							 max_highmem_pfn};
2132  * for_each_valid_physical_page_range()
2133  * 	memblock_add_node(base, size, nid)
2134  * free_area_init_nodes(max_zone_pfns);
2135  *
2136  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2137  * registered physical page range.  Similarly
2138  * sparse_memory_present_with_active_regions() calls memory_present() for
2139  * each range when SPARSEMEM is enabled.
2140  *
2141  * See mm/page_alloc.c for more information on each function exposed by
2142  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2143  */
2144 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2145 unsigned long node_map_pfn_alignment(void);
2146 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2147 						unsigned long end_pfn);
2148 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2149 						unsigned long end_pfn);
2150 extern void get_pfn_range_for_nid(unsigned int nid,
2151 			unsigned long *start_pfn, unsigned long *end_pfn);
2152 extern unsigned long find_min_pfn_with_active_regions(void);
2153 extern void free_bootmem_with_active_regions(int nid,
2154 						unsigned long max_low_pfn);
2155 extern void sparse_memory_present_with_active_regions(int nid);
2156 
2157 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2158 
2159 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2160     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2161 static inline int __early_pfn_to_nid(unsigned long pfn,
2162 					struct mminit_pfnnid_cache *state)
2163 {
2164 	return 0;
2165 }
2166 #else
2167 /* please see mm/page_alloc.c */
2168 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2169 /* there is a per-arch backend function. */
2170 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2171 					struct mminit_pfnnid_cache *state);
2172 #endif
2173 
2174 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2175 void zero_resv_unavail(void);
2176 #else
zero_resv_unavail(void)2177 static inline void zero_resv_unavail(void) {}
2178 #endif
2179 
2180 extern void set_dma_reserve(unsigned long new_dma_reserve);
2181 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2182 		enum meminit_context, struct vmem_altmap *);
2183 extern void setup_per_zone_wmarks(void);
2184 extern int __meminit init_per_zone_wmark_min(void);
2185 extern void mem_init(void);
2186 extern void __init mmap_init(void);
2187 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2188 extern long si_mem_available(void);
2189 extern void si_meminfo(struct sysinfo * val);
2190 extern void si_meminfo_node(struct sysinfo *val, int nid);
2191 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2192 extern unsigned long arch_reserved_kernel_pages(void);
2193 #endif
2194 
2195 extern __printf(3, 4)
2196 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2197 
2198 extern void setup_per_cpu_pageset(void);
2199 
2200 extern void zone_pcp_update(struct zone *zone);
2201 extern void zone_pcp_reset(struct zone *zone);
2202 
2203 /* page_alloc.c */
2204 extern int min_free_kbytes;
2205 extern int watermark_scale_factor;
2206 
2207 /* nommu.c */
2208 extern atomic_long_t mmap_pages_allocated;
2209 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2210 
2211 /* interval_tree.c */
2212 void vma_interval_tree_insert(struct vm_area_struct *node,
2213 			      struct rb_root_cached *root);
2214 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2215 				    struct vm_area_struct *prev,
2216 				    struct rb_root_cached *root);
2217 void vma_interval_tree_remove(struct vm_area_struct *node,
2218 			      struct rb_root_cached *root);
2219 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2220 				unsigned long start, unsigned long last);
2221 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2222 				unsigned long start, unsigned long last);
2223 
2224 #define vma_interval_tree_foreach(vma, root, start, last)		\
2225 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2226 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2227 
2228 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2229 				   struct rb_root_cached *root);
2230 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2231 				   struct rb_root_cached *root);
2232 struct anon_vma_chain *
2233 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2234 				  unsigned long start, unsigned long last);
2235 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2236 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2237 #ifdef CONFIG_DEBUG_VM_RB
2238 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2239 #endif
2240 
2241 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2242 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2243 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2244 
2245 /* mmap.c */
2246 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2247 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2248 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2249 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2250 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2251 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2252 {
2253 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2254 }
2255 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2256 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2257 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2258 	struct mempolicy *, struct vm_userfaultfd_ctx);
2259 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2260 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2261 	unsigned long addr, int new_below);
2262 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2263 	unsigned long addr, int new_below);
2264 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2265 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2266 	struct rb_node **, struct rb_node *);
2267 extern void unlink_file_vma(struct vm_area_struct *);
2268 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2269 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2270 	bool *need_rmap_locks);
2271 extern void exit_mmap(struct mm_struct *);
2272 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2273 static inline int check_data_rlimit(unsigned long rlim,
2274 				    unsigned long new,
2275 				    unsigned long start,
2276 				    unsigned long end_data,
2277 				    unsigned long start_data)
2278 {
2279 	if (rlim < RLIM_INFINITY) {
2280 		if (((new - start) + (end_data - start_data)) > rlim)
2281 			return -ENOSPC;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 extern int mm_take_all_locks(struct mm_struct *mm);
2288 extern void mm_drop_all_locks(struct mm_struct *mm);
2289 
2290 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2291 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2292 extern struct file *get_task_exe_file(struct task_struct *task);
2293 
2294 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2295 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2296 
2297 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2298 				   const struct vm_special_mapping *sm);
2299 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2300 				   unsigned long addr, unsigned long len,
2301 				   unsigned long flags,
2302 				   const struct vm_special_mapping *spec);
2303 /* This is an obsolete alternative to _install_special_mapping. */
2304 extern int install_special_mapping(struct mm_struct *mm,
2305 				   unsigned long addr, unsigned long len,
2306 				   unsigned long flags, struct page **pages);
2307 
2308 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2309 
2310 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2311 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2312 	struct list_head *uf);
2313 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2314 	unsigned long len, unsigned long prot, unsigned long flags,
2315 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2316 	struct list_head *uf);
2317 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2318 		     struct list_head *uf);
2319 
2320 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2321 do_mmap_pgoff(struct file *file, unsigned long addr,
2322 	unsigned long len, unsigned long prot, unsigned long flags,
2323 	unsigned long pgoff, unsigned long *populate,
2324 	struct list_head *uf)
2325 {
2326 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2327 }
2328 
2329 #ifdef CONFIG_MMU
2330 extern int __mm_populate(unsigned long addr, unsigned long len,
2331 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2332 static inline void mm_populate(unsigned long addr, unsigned long len)
2333 {
2334 	/* Ignore errors */
2335 	(void) __mm_populate(addr, len, 1);
2336 }
2337 #else
mm_populate(unsigned long addr,unsigned long len)2338 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2339 #endif
2340 
2341 /* These take the mm semaphore themselves */
2342 extern int __must_check vm_brk(unsigned long, unsigned long);
2343 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2344 extern int vm_munmap(unsigned long, size_t);
2345 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2346         unsigned long, unsigned long,
2347         unsigned long, unsigned long);
2348 
2349 struct vm_unmapped_area_info {
2350 #define VM_UNMAPPED_AREA_TOPDOWN 1
2351 	unsigned long flags;
2352 	unsigned long length;
2353 	unsigned long low_limit;
2354 	unsigned long high_limit;
2355 	unsigned long align_mask;
2356 	unsigned long align_offset;
2357 };
2358 
2359 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2360 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2361 
2362 /*
2363  * Search for an unmapped address range.
2364  *
2365  * We are looking for a range that:
2366  * - does not intersect with any VMA;
2367  * - is contained within the [low_limit, high_limit) interval;
2368  * - is at least the desired size.
2369  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2370  */
2371 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2372 vm_unmapped_area(struct vm_unmapped_area_info *info)
2373 {
2374 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2375 		return unmapped_area_topdown(info);
2376 	else
2377 		return unmapped_area(info);
2378 }
2379 
2380 /* truncate.c */
2381 extern void truncate_inode_pages(struct address_space *, loff_t);
2382 extern void truncate_inode_pages_range(struct address_space *,
2383 				       loff_t lstart, loff_t lend);
2384 extern void truncate_inode_pages_final(struct address_space *);
2385 
2386 /* generic vm_area_ops exported for stackable file systems */
2387 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2388 extern void filemap_map_pages(struct vm_fault *vmf,
2389 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2390 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2391 
2392 /* mm/page-writeback.c */
2393 int __must_check write_one_page(struct page *page);
2394 void task_dirty_inc(struct task_struct *tsk);
2395 
2396 /* readahead.c */
2397 #define VM_MAX_READAHEAD	128	/* kbytes */
2398 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2399 
2400 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2401 			pgoff_t offset, unsigned long nr_to_read);
2402 
2403 void page_cache_sync_readahead(struct address_space *mapping,
2404 			       struct file_ra_state *ra,
2405 			       struct file *filp,
2406 			       pgoff_t offset,
2407 			       unsigned long size);
2408 
2409 void page_cache_async_readahead(struct address_space *mapping,
2410 				struct file_ra_state *ra,
2411 				struct file *filp,
2412 				struct page *pg,
2413 				pgoff_t offset,
2414 				unsigned long size);
2415 
2416 extern unsigned long stack_guard_gap;
2417 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2418 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2419 
2420 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2421 extern int expand_downwards(struct vm_area_struct *vma,
2422 		unsigned long address);
2423 #if VM_GROWSUP
2424 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2425 #else
2426   #define expand_upwards(vma, address) (0)
2427 #endif
2428 
2429 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2430 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2431 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2432 					     struct vm_area_struct **pprev);
2433 
2434 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2435    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2436 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2437 {
2438 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2439 
2440 	if (vma && end_addr <= vma->vm_start)
2441 		vma = NULL;
2442 	return vma;
2443 }
2444 
vm_start_gap(struct vm_area_struct * vma)2445 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2446 {
2447 	unsigned long vm_start = vma->vm_start;
2448 
2449 	if (vma->vm_flags & VM_GROWSDOWN) {
2450 		vm_start -= stack_guard_gap;
2451 		if (vm_start > vma->vm_start)
2452 			vm_start = 0;
2453 	}
2454 	return vm_start;
2455 }
2456 
vm_end_gap(struct vm_area_struct * vma)2457 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2458 {
2459 	unsigned long vm_end = vma->vm_end;
2460 
2461 	if (vma->vm_flags & VM_GROWSUP) {
2462 		vm_end += stack_guard_gap;
2463 		if (vm_end < vma->vm_end)
2464 			vm_end = -PAGE_SIZE;
2465 	}
2466 	return vm_end;
2467 }
2468 
vma_pages(struct vm_area_struct * vma)2469 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2470 {
2471 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2472 }
2473 
2474 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2475 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2476 				unsigned long vm_start, unsigned long vm_end)
2477 {
2478 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2479 
2480 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2481 		vma = NULL;
2482 
2483 	return vma;
2484 }
2485 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2486 static inline bool range_in_vma(struct vm_area_struct *vma,
2487 				unsigned long start, unsigned long end)
2488 {
2489 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2490 }
2491 
2492 #ifdef CONFIG_MMU
2493 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2494 void vma_set_page_prot(struct vm_area_struct *vma);
2495 #else
vm_get_page_prot(unsigned long vm_flags)2496 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2497 {
2498 	return __pgprot(0);
2499 }
vma_set_page_prot(struct vm_area_struct * vma)2500 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2501 {
2502 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2503 }
2504 #endif
2505 
2506 #ifdef CONFIG_NUMA_BALANCING
2507 unsigned long change_prot_numa(struct vm_area_struct *vma,
2508 			unsigned long start, unsigned long end);
2509 #endif
2510 
2511 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2512 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2513 			unsigned long pfn, unsigned long size, pgprot_t);
2514 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2515 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2516 			unsigned long pfn);
2517 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2518 			unsigned long pfn, pgprot_t pgprot);
2519 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2520 			pfn_t pfn);
2521 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2522 		unsigned long addr, pfn_t pfn);
2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2524 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2525 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2526 				unsigned long addr, struct page *page)
2527 {
2528 	int err = vm_insert_page(vma, addr, page);
2529 
2530 	if (err == -ENOMEM)
2531 		return VM_FAULT_OOM;
2532 	if (err < 0 && err != -EBUSY)
2533 		return VM_FAULT_SIGBUS;
2534 
2535 	return VM_FAULT_NOPAGE;
2536 }
2537 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2538 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2539 				unsigned long addr, pfn_t pfn)
2540 {
2541 	int err = vm_insert_mixed(vma, addr, pfn);
2542 
2543 	if (err == -ENOMEM)
2544 		return VM_FAULT_OOM;
2545 	if (err < 0 && err != -EBUSY)
2546 		return VM_FAULT_SIGBUS;
2547 
2548 	return VM_FAULT_NOPAGE;
2549 }
2550 
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2551 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2552 			unsigned long addr, unsigned long pfn)
2553 {
2554 	int err = vm_insert_pfn(vma, addr, pfn);
2555 
2556 	if (err == -ENOMEM)
2557 		return VM_FAULT_OOM;
2558 	if (err < 0 && err != -EBUSY)
2559 		return VM_FAULT_SIGBUS;
2560 
2561 	return VM_FAULT_NOPAGE;
2562 }
2563 
vmf_error(int err)2564 static inline vm_fault_t vmf_error(int err)
2565 {
2566 	if (err == -ENOMEM)
2567 		return VM_FAULT_OOM;
2568 	return VM_FAULT_SIGBUS;
2569 }
2570 
2571 struct page *follow_page_mask(struct vm_area_struct *vma,
2572 			      unsigned long address, unsigned int foll_flags,
2573 			      unsigned int *page_mask);
2574 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2575 static inline struct page *follow_page(struct vm_area_struct *vma,
2576 		unsigned long address, unsigned int foll_flags)
2577 {
2578 	unsigned int unused_page_mask;
2579 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2580 }
2581 
2582 #define FOLL_WRITE	0x01	/* check pte is writable */
2583 #define FOLL_TOUCH	0x02	/* mark page accessed */
2584 #define FOLL_GET	0x04	/* do get_page on page */
2585 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2586 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2587 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2588 				 * and return without waiting upon it */
2589 #define FOLL_POPULATE	0x40	/* fault in page */
2590 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2591 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2592 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2593 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2594 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2595 #define FOLL_MLOCK	0x1000	/* lock present pages */
2596 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2597 #define FOLL_COW	0x4000	/* internal GUP flag */
2598 #define FOLL_ANON	0x8000	/* don't do file mappings */
2599 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2600 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2601 {
2602 	if (vm_fault & VM_FAULT_OOM)
2603 		return -ENOMEM;
2604 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2605 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2606 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2607 		return -EFAULT;
2608 	return 0;
2609 }
2610 
2611 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2612 			void *data);
2613 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2614 			       unsigned long size, pte_fn_t fn, void *data);
2615 
2616 
2617 #ifdef CONFIG_PAGE_POISONING
2618 extern bool page_poisoning_enabled(void);
2619 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2620 #else
page_poisoning_enabled(void)2621 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2622 static inline void kernel_poison_pages(struct page *page, int numpages,
2623 					int enable) { }
2624 #endif
2625 
2626 #ifdef CONFIG_DEBUG_PAGEALLOC
2627 extern bool _debug_pagealloc_enabled;
2628 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2629 
debug_pagealloc_enabled(void)2630 static inline bool debug_pagealloc_enabled(void)
2631 {
2632 	return _debug_pagealloc_enabled;
2633 }
2634 
2635 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2636 kernel_map_pages(struct page *page, int numpages, int enable)
2637 {
2638 	if (!debug_pagealloc_enabled())
2639 		return;
2640 
2641 	__kernel_map_pages(page, numpages, enable);
2642 }
2643 #ifdef CONFIG_HIBERNATION
2644 extern bool kernel_page_present(struct page *page);
2645 #endif	/* CONFIG_HIBERNATION */
2646 #else	/* CONFIG_DEBUG_PAGEALLOC */
2647 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2648 kernel_map_pages(struct page *page, int numpages, int enable) {}
2649 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2650 static inline bool kernel_page_present(struct page *page) { return true; }
2651 #endif	/* CONFIG_HIBERNATION */
debug_pagealloc_enabled(void)2652 static inline bool debug_pagealloc_enabled(void)
2653 {
2654 	return false;
2655 }
2656 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2657 
2658 #ifdef __HAVE_ARCH_GATE_AREA
2659 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2660 extern int in_gate_area_no_mm(unsigned long addr);
2661 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2662 #else
get_gate_vma(struct mm_struct * mm)2663 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2664 {
2665 	return NULL;
2666 }
in_gate_area_no_mm(unsigned long addr)2667 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2668 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2669 {
2670 	return 0;
2671 }
2672 #endif	/* __HAVE_ARCH_GATE_AREA */
2673 
2674 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2675 
2676 #ifdef CONFIG_SYSCTL
2677 extern int sysctl_drop_caches;
2678 int drop_caches_sysctl_handler(struct ctl_table *, int,
2679 					void __user *, size_t *, loff_t *);
2680 #endif
2681 
2682 void drop_slab(void);
2683 void drop_slab_node(int nid);
2684 
2685 #ifndef CONFIG_MMU
2686 #define randomize_va_space 0
2687 #else
2688 extern int randomize_va_space;
2689 #endif
2690 
2691 const char * arch_vma_name(struct vm_area_struct *vma);
2692 void print_vma_addr(char *prefix, unsigned long rip);
2693 
2694 void *sparse_buffer_alloc(unsigned long size);
2695 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2696 		struct vmem_altmap *altmap);
2697 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2698 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2699 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2700 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2701 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2702 void *vmemmap_alloc_block(unsigned long size, int node);
2703 struct vmem_altmap;
2704 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2705 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2706 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2707 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2708 			       int node);
2709 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2710 		struct vmem_altmap *altmap);
2711 void vmemmap_populate_print_last(void);
2712 #ifdef CONFIG_MEMORY_HOTPLUG
2713 void vmemmap_free(unsigned long start, unsigned long end,
2714 		struct vmem_altmap *altmap);
2715 #endif
2716 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2717 				  unsigned long nr_pages);
2718 
2719 enum mf_flags {
2720 	MF_COUNT_INCREASED = 1 << 0,
2721 	MF_ACTION_REQUIRED = 1 << 1,
2722 	MF_MUST_KILL = 1 << 2,
2723 	MF_SOFT_OFFLINE = 1 << 3,
2724 };
2725 extern int memory_failure(unsigned long pfn, int flags);
2726 extern void memory_failure_queue(unsigned long pfn, int flags);
2727 extern int unpoison_memory(unsigned long pfn);
2728 extern int get_hwpoison_page(struct page *page);
2729 #define put_hwpoison_page(page)	put_page(page)
2730 extern int sysctl_memory_failure_early_kill;
2731 extern int sysctl_memory_failure_recovery;
2732 extern void shake_page(struct page *p, int access);
2733 extern atomic_long_t num_poisoned_pages __read_mostly;
2734 extern int soft_offline_page(struct page *page, int flags);
2735 
2736 
2737 /*
2738  * Error handlers for various types of pages.
2739  */
2740 enum mf_result {
2741 	MF_IGNORED,	/* Error: cannot be handled */
2742 	MF_FAILED,	/* Error: handling failed */
2743 	MF_DELAYED,	/* Will be handled later */
2744 	MF_RECOVERED,	/* Successfully recovered */
2745 };
2746 
2747 enum mf_action_page_type {
2748 	MF_MSG_KERNEL,
2749 	MF_MSG_KERNEL_HIGH_ORDER,
2750 	MF_MSG_SLAB,
2751 	MF_MSG_DIFFERENT_COMPOUND,
2752 	MF_MSG_POISONED_HUGE,
2753 	MF_MSG_HUGE,
2754 	MF_MSG_FREE_HUGE,
2755 	MF_MSG_NON_PMD_HUGE,
2756 	MF_MSG_UNMAP_FAILED,
2757 	MF_MSG_DIRTY_SWAPCACHE,
2758 	MF_MSG_CLEAN_SWAPCACHE,
2759 	MF_MSG_DIRTY_MLOCKED_LRU,
2760 	MF_MSG_CLEAN_MLOCKED_LRU,
2761 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2762 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2763 	MF_MSG_DIRTY_LRU,
2764 	MF_MSG_CLEAN_LRU,
2765 	MF_MSG_TRUNCATED_LRU,
2766 	MF_MSG_BUDDY,
2767 	MF_MSG_BUDDY_2ND,
2768 	MF_MSG_DAX,
2769 	MF_MSG_UNKNOWN,
2770 };
2771 
2772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2773 extern void clear_huge_page(struct page *page,
2774 			    unsigned long addr_hint,
2775 			    unsigned int pages_per_huge_page);
2776 extern void copy_user_huge_page(struct page *dst, struct page *src,
2777 				unsigned long addr_hint,
2778 				struct vm_area_struct *vma,
2779 				unsigned int pages_per_huge_page);
2780 extern long copy_huge_page_from_user(struct page *dst_page,
2781 				const void __user *usr_src,
2782 				unsigned int pages_per_huge_page,
2783 				bool allow_pagefault);
2784 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2785 
2786 extern struct page_ext_operations debug_guardpage_ops;
2787 
2788 #ifdef CONFIG_DEBUG_PAGEALLOC
2789 extern unsigned int _debug_guardpage_minorder;
2790 extern bool _debug_guardpage_enabled;
2791 
debug_guardpage_minorder(void)2792 static inline unsigned int debug_guardpage_minorder(void)
2793 {
2794 	return _debug_guardpage_minorder;
2795 }
2796 
debug_guardpage_enabled(void)2797 static inline bool debug_guardpage_enabled(void)
2798 {
2799 	return _debug_guardpage_enabled;
2800 }
2801 
page_is_guard(struct page * page)2802 static inline bool page_is_guard(struct page *page)
2803 {
2804 	struct page_ext *page_ext;
2805 
2806 	if (!debug_guardpage_enabled())
2807 		return false;
2808 
2809 	page_ext = lookup_page_ext(page);
2810 	if (unlikely(!page_ext))
2811 		return false;
2812 
2813 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2814 }
2815 #else
debug_guardpage_minorder(void)2816 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2817 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2818 static inline bool page_is_guard(struct page *page) { return false; }
2819 #endif /* CONFIG_DEBUG_PAGEALLOC */
2820 
2821 #if MAX_NUMNODES > 1
2822 void __init setup_nr_node_ids(void);
2823 #else
setup_nr_node_ids(void)2824 static inline void setup_nr_node_ids(void) {}
2825 #endif
2826 
2827 #endif /* __KERNEL__ */
2828 #endif /* _LINUX_MM_H */
2829