1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* MD: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 char *lock_name;
265 struct lock_class_key key;
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282
283 static struct kmem_cache *pwq_cache;
284
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295 static bool wq_online; /* can kworkers be created yet? */
296
297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307
308 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
309 static bool workqueue_freezing; /* PL: have wqs started freezing? */
310
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316
317 /*
318 * Local execution of unbound work items is no longer guaranteed. The
319 * following always forces round-robin CPU selection on unbound work items
320 * to uncover usages which depend on it.
321 */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331
332 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
333
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364
365 #define assert_rcu_or_pool_mutex() \
366 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
367 !lockdep_is_held(&wq_pool_mutex), \
368 "RCU or wq_pool_mutex should be held")
369
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
371 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "RCU, wq->mutex or wq_pool_mutex should be held")
375
376 #define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 (pool)++)
380
381 /**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
384 * @pi: integer used for iteration
385 *
386 * This must be called either with wq_pool_mutex held or RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
393 #define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 else
397
398 /**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
401 * @pool: worker_pool to iterate workers of
402 *
403 * This must be called with wq_pool_attach_mutex.
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
408 #define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
410 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 else
412
413 /**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
417 *
418 * This must be called either with wq->mutex held or RCU read locked.
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pwq(pwq, wq) \
426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
427 lockdep_is_held(&(wq->mutex)))
428
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431 static const struct debug_obj_descr work_debug_descr;
432
work_debug_hint(void * addr)433 static void *work_debug_hint(void *addr)
434 {
435 return ((struct work_struct *) addr)->func;
436 }
437
work_is_static_object(void * addr)438 static bool work_is_static_object(void *addr)
439 {
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444
445 /*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
work_fixup_init(void * addr,enum debug_obj_state state)449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461 }
462
463 /*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
work_fixup_free(void * addr,enum debug_obj_state state)467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 static const struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487 };
488
debug_work_activate(struct work_struct * work)489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 debug_object_activate(work, &work_debug_descr);
492 }
493
debug_work_deactivate(struct work_struct * work)494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 debug_object_deactivate(work, &work_debug_descr);
497 }
498
__init_work(struct work_struct * work,int onstack)499 void __init_work(struct work_struct *work, int onstack)
500 {
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507
destroy_work_on_stack(struct work_struct * work)508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
destroy_delayed_work_on_stack(struct delayed_work * work)514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521 #else
debug_work_activate(struct work_struct * work)522 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525
526 /**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
worker_pool_assign_id(struct worker_pool * pool)533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546 }
547
548 /**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562 {
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576
work_color_to_flags(int color)577 static unsigned int work_color_to_flags(int color)
578 {
579 return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581
get_work_color(struct work_struct * work)582 static int get_work_color(struct work_struct *work)
583 {
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587
work_next_color(int color)588 static int work_next_color(int color)
589 {
590 return (color + 1) % WORK_NR_COLORS;
591 }
592
593 /*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615 {
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622 {
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629 {
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632 }
633
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636 {
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to queue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674 }
675
clear_work_data(struct work_struct * work)676 static void clear_work_data(struct work_struct *work)
677 {
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681
get_work_pwq(struct work_struct * work)682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 unsigned long data = atomic_long_read(&work->data);
685
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
690 }
691
692 /**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
706 */
get_work_pool(struct work_struct * work)707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
711
712 assert_rcu_or_pool_mutex();
713
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
721
722 return idr_find(&worker_pool_idr, pool_id);
723 }
724
725 /**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
get_work_pool_id(struct work_struct * work)732 static int get_work_pool_id(struct work_struct *work)
733 {
734 unsigned long data = atomic_long_read(&work->data);
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739
740 return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742
mark_work_canceling(struct work_struct * work)743 static void mark_work_canceling(struct work_struct *work)
744 {
745 unsigned long pool_id = get_work_pool_id(work);
746
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750
work_is_canceling(struct work_struct * work)751 static bool work_is_canceling(struct work_struct *work)
752 {
753 unsigned long data = atomic_long_read(&work->data);
754
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757
758 /*
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
762 */
763
__need_more_worker(struct worker_pool * pool)764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 return !atomic_read(&pool->nr_running);
767 }
768
769 /*
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
776 */
need_more_worker(struct worker_pool * pool)777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781
782 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)783 static bool may_start_working(struct worker_pool *pool)
784 {
785 return pool->nr_idle;
786 }
787
788 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)789 static bool keep_working(struct worker_pool *pool)
790 {
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
793 }
794
795 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 return need_more_worker(pool) && !may_start_working(pool);
799 }
800
801 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810
811 /*
812 * Wake up functions.
813 */
814
815 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
820
821 return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823
824 /**
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
827 *
828 * Wake up the first idle worker of @pool.
829 *
830 * CONTEXT:
831 * raw_spin_lock_irq(pool->lock).
832 */
wake_up_worker(struct worker_pool * pool)833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 struct worker *worker = first_idle_worker(pool);
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839 }
840
841 /**
842 * wq_worker_running - a worker is running again
843 * @task: task waking up
844 *
845 * This function is called when a worker returns from schedule()
846 */
wq_worker_running(struct task_struct * task)847 void wq_worker_running(struct task_struct *task)
848 {
849 struct worker *worker = kthread_data(task);
850
851 if (!worker->sleeping)
852 return;
853 if (!(worker->flags & WORKER_NOT_RUNNING))
854 atomic_inc(&worker->pool->nr_running);
855 worker->sleeping = 0;
856 }
857
858 /**
859 * wq_worker_sleeping - a worker is going to sleep
860 * @task: task going to sleep
861 *
862 * This function is called from schedule() when a busy worker is
863 * going to sleep. Preemption needs to be disabled to protect ->sleeping
864 * assignment.
865 */
wq_worker_sleeping(struct task_struct * task)866 void wq_worker_sleeping(struct task_struct *task)
867 {
868 struct worker *next, *worker = kthread_data(task);
869 struct worker_pool *pool;
870
871 /*
872 * Rescuers, which may not have all the fields set up like normal
873 * workers, also reach here, let's not access anything before
874 * checking NOT_RUNNING.
875 */
876 if (worker->flags & WORKER_NOT_RUNNING)
877 return;
878
879 pool = worker->pool;
880
881 /* Return if preempted before wq_worker_running() was reached */
882 if (worker->sleeping)
883 return;
884
885 worker->sleeping = 1;
886 raw_spin_lock_irq(&pool->lock);
887
888 /*
889 * The counterpart of the following dec_and_test, implied mb,
890 * worklist not empty test sequence is in insert_work().
891 * Please read comment there.
892 *
893 * NOT_RUNNING is clear. This means that we're bound to and
894 * running on the local cpu w/ rq lock held and preemption
895 * disabled, which in turn means that none else could be
896 * manipulating idle_list, so dereferencing idle_list without pool
897 * lock is safe.
898 */
899 if (atomic_dec_and_test(&pool->nr_running) &&
900 !list_empty(&pool->worklist)) {
901 next = first_idle_worker(pool);
902 if (next)
903 wake_up_process(next->task);
904 }
905 raw_spin_unlock_irq(&pool->lock);
906 }
907
908 /**
909 * wq_worker_last_func - retrieve worker's last work function
910 * @task: Task to retrieve last work function of.
911 *
912 * Determine the last function a worker executed. This is called from
913 * the scheduler to get a worker's last known identity.
914 *
915 * CONTEXT:
916 * raw_spin_lock_irq(rq->lock)
917 *
918 * This function is called during schedule() when a kworker is going
919 * to sleep. It's used by psi to identify aggregation workers during
920 * dequeuing, to allow periodic aggregation to shut-off when that
921 * worker is the last task in the system or cgroup to go to sleep.
922 *
923 * As this function doesn't involve any workqueue-related locking, it
924 * only returns stable values when called from inside the scheduler's
925 * queuing and dequeuing paths, when @task, which must be a kworker,
926 * is guaranteed to not be processing any works.
927 *
928 * Return:
929 * The last work function %current executed as a worker, NULL if it
930 * hasn't executed any work yet.
931 */
wq_worker_last_func(struct task_struct * task)932 work_func_t wq_worker_last_func(struct task_struct *task)
933 {
934 struct worker *worker = kthread_data(task);
935
936 return worker->last_func;
937 }
938
939 /**
940 * worker_set_flags - set worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to set
943 *
944 * Set @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * raw_spin_lock_irq(pool->lock)
948 */
worker_set_flags(struct worker * worker,unsigned int flags)949 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952
953 WARN_ON_ONCE(worker->task != current);
954
955 /* If transitioning into NOT_RUNNING, adjust nr_running. */
956 if ((flags & WORKER_NOT_RUNNING) &&
957 !(worker->flags & WORKER_NOT_RUNNING)) {
958 atomic_dec(&pool->nr_running);
959 }
960
961 worker->flags |= flags;
962 }
963
964 /**
965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
966 * @worker: self
967 * @flags: flags to clear
968 *
969 * Clear @flags in @worker->flags and adjust nr_running accordingly.
970 *
971 * CONTEXT:
972 * raw_spin_lock_irq(pool->lock)
973 */
worker_clr_flags(struct worker * worker,unsigned int flags)974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 {
976 struct worker_pool *pool = worker->pool;
977 unsigned int oflags = worker->flags;
978
979 WARN_ON_ONCE(worker->task != current);
980
981 worker->flags &= ~flags;
982
983 /*
984 * If transitioning out of NOT_RUNNING, increment nr_running. Note
985 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
986 * of multiple flags, not a single flag.
987 */
988 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
989 if (!(worker->flags & WORKER_NOT_RUNNING))
990 atomic_inc(&pool->nr_running);
991 }
992
993 /**
994 * find_worker_executing_work - find worker which is executing a work
995 * @pool: pool of interest
996 * @work: work to find worker for
997 *
998 * Find a worker which is executing @work on @pool by searching
999 * @pool->busy_hash which is keyed by the address of @work. For a worker
1000 * to match, its current execution should match the address of @work and
1001 * its work function. This is to avoid unwanted dependency between
1002 * unrelated work executions through a work item being recycled while still
1003 * being executed.
1004 *
1005 * This is a bit tricky. A work item may be freed once its execution
1006 * starts and nothing prevents the freed area from being recycled for
1007 * another work item. If the same work item address ends up being reused
1008 * before the original execution finishes, workqueue will identify the
1009 * recycled work item as currently executing and make it wait until the
1010 * current execution finishes, introducing an unwanted dependency.
1011 *
1012 * This function checks the work item address and work function to avoid
1013 * false positives. Note that this isn't complete as one may construct a
1014 * work function which can introduce dependency onto itself through a
1015 * recycled work item. Well, if somebody wants to shoot oneself in the
1016 * foot that badly, there's only so much we can do, and if such deadlock
1017 * actually occurs, it should be easy to locate the culprit work function.
1018 *
1019 * CONTEXT:
1020 * raw_spin_lock_irq(pool->lock).
1021 *
1022 * Return:
1023 * Pointer to worker which is executing @work if found, %NULL
1024 * otherwise.
1025 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1026 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027 struct work_struct *work)
1028 {
1029 struct worker *worker;
1030
1031 hash_for_each_possible(pool->busy_hash, worker, hentry,
1032 (unsigned long)work)
1033 if (worker->current_work == work &&
1034 worker->current_func == work->func)
1035 return worker;
1036
1037 return NULL;
1038 }
1039
1040 /**
1041 * move_linked_works - move linked works to a list
1042 * @work: start of series of works to be scheduled
1043 * @head: target list to append @work to
1044 * @nextp: out parameter for nested worklist walking
1045 *
1046 * Schedule linked works starting from @work to @head. Work series to
1047 * be scheduled starts at @work and includes any consecutive work with
1048 * WORK_STRUCT_LINKED set in its predecessor.
1049 *
1050 * If @nextp is not NULL, it's updated to point to the next work of
1051 * the last scheduled work. This allows move_linked_works() to be
1052 * nested inside outer list_for_each_entry_safe().
1053 *
1054 * CONTEXT:
1055 * raw_spin_lock_irq(pool->lock).
1056 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1057 static void move_linked_works(struct work_struct *work, struct list_head *head,
1058 struct work_struct **nextp)
1059 {
1060 struct work_struct *n;
1061
1062 /*
1063 * Linked worklist will always end before the end of the list,
1064 * use NULL for list head.
1065 */
1066 list_for_each_entry_safe_from(work, n, NULL, entry) {
1067 list_move_tail(&work->entry, head);
1068 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069 break;
1070 }
1071
1072 /*
1073 * If we're already inside safe list traversal and have moved
1074 * multiple works to the scheduled queue, the next position
1075 * needs to be updated.
1076 */
1077 if (nextp)
1078 *nextp = n;
1079 }
1080
1081 /**
1082 * get_pwq - get an extra reference on the specified pool_workqueue
1083 * @pwq: pool_workqueue to get
1084 *
1085 * Obtain an extra reference on @pwq. The caller should guarantee that
1086 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 */
get_pwq(struct pool_workqueue * pwq)1088 static void get_pwq(struct pool_workqueue *pwq)
1089 {
1090 lockdep_assert_held(&pwq->pool->lock);
1091 WARN_ON_ONCE(pwq->refcnt <= 0);
1092 pwq->refcnt++;
1093 }
1094
1095 /**
1096 * put_pwq - put a pool_workqueue reference
1097 * @pwq: pool_workqueue to put
1098 *
1099 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1100 * destruction. The caller should be holding the matching pool->lock.
1101 */
put_pwq(struct pool_workqueue * pwq)1102 static void put_pwq(struct pool_workqueue *pwq)
1103 {
1104 lockdep_assert_held(&pwq->pool->lock);
1105 if (likely(--pwq->refcnt))
1106 return;
1107 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108 return;
1109 /*
1110 * @pwq can't be released under pool->lock, bounce to
1111 * pwq_unbound_release_workfn(). This never recurses on the same
1112 * pool->lock as this path is taken only for unbound workqueues and
1113 * the release work item is scheduled on a per-cpu workqueue. To
1114 * avoid lockdep warning, unbound pool->locks are given lockdep
1115 * subclass of 1 in get_unbound_pool().
1116 */
1117 schedule_work(&pwq->unbound_release_work);
1118 }
1119
1120 /**
1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122 * @pwq: pool_workqueue to put (can be %NULL)
1123 *
1124 * put_pwq() with locking. This function also allows %NULL @pwq.
1125 */
put_pwq_unlocked(struct pool_workqueue * pwq)1126 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 {
1128 if (pwq) {
1129 /*
1130 * As both pwqs and pools are RCU protected, the
1131 * following lock operations are safe.
1132 */
1133 raw_spin_lock_irq(&pwq->pool->lock);
1134 put_pwq(pwq);
1135 raw_spin_unlock_irq(&pwq->pool->lock);
1136 }
1137 }
1138
pwq_activate_delayed_work(struct work_struct * work)1139 static void pwq_activate_delayed_work(struct work_struct *work)
1140 {
1141 struct pool_workqueue *pwq = get_work_pwq(work);
1142
1143 trace_workqueue_activate_work(work);
1144 if (list_empty(&pwq->pool->worklist))
1145 pwq->pool->watchdog_ts = jiffies;
1146 move_linked_works(work, &pwq->pool->worklist, NULL);
1147 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148 pwq->nr_active++;
1149 }
1150
pwq_activate_first_delayed(struct pool_workqueue * pwq)1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 {
1153 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154 struct work_struct, entry);
1155
1156 pwq_activate_delayed_work(work);
1157 }
1158
1159 /**
1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161 * @pwq: pwq of interest
1162 * @color: color of work which left the queue
1163 *
1164 * A work either has completed or is removed from pending queue,
1165 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 *
1167 * CONTEXT:
1168 * raw_spin_lock_irq(pool->lock).
1169 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 {
1172 /* uncolored work items don't participate in flushing or nr_active */
1173 if (color == WORK_NO_COLOR)
1174 goto out_put;
1175
1176 pwq->nr_in_flight[color]--;
1177
1178 pwq->nr_active--;
1179 if (!list_empty(&pwq->delayed_works)) {
1180 /* one down, submit a delayed one */
1181 if (pwq->nr_active < pwq->max_active)
1182 pwq_activate_first_delayed(pwq);
1183 }
1184
1185 /* is flush in progress and are we at the flushing tip? */
1186 if (likely(pwq->flush_color != color))
1187 goto out_put;
1188
1189 /* are there still in-flight works? */
1190 if (pwq->nr_in_flight[color])
1191 goto out_put;
1192
1193 /* this pwq is done, clear flush_color */
1194 pwq->flush_color = -1;
1195
1196 /*
1197 * If this was the last pwq, wake up the first flusher. It
1198 * will handle the rest.
1199 */
1200 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201 complete(&pwq->wq->first_flusher->done);
1202 out_put:
1203 put_pwq(pwq);
1204 }
1205
1206 /**
1207 * try_to_grab_pending - steal work item from worklist and disable irq
1208 * @work: work item to steal
1209 * @is_dwork: @work is a delayed_work
1210 * @flags: place to store irq state
1211 *
1212 * Try to grab PENDING bit of @work. This function can handle @work in any
1213 * stable state - idle, on timer or on worklist.
1214 *
1215 * Return:
1216 *
1217 * ======== ================================================================
1218 * 1 if @work was pending and we successfully stole PENDING
1219 * 0 if @work was idle and we claimed PENDING
1220 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221 * -ENOENT if someone else is canceling @work, this state may persist
1222 * for arbitrarily long
1223 * ======== ================================================================
1224 *
1225 * Note:
1226 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1227 * interrupted while holding PENDING and @work off queue, irq must be
1228 * disabled on entry. This, combined with delayed_work->timer being
1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230 *
1231 * On successful return, >= 0, irq is disabled and the caller is
1232 * responsible for releasing it using local_irq_restore(*@flags).
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237 unsigned long *flags)
1238 {
1239 struct worker_pool *pool;
1240 struct pool_workqueue *pwq;
1241
1242 local_irq_save(*flags);
1243
1244 /* try to steal the timer if it exists */
1245 if (is_dwork) {
1246 struct delayed_work *dwork = to_delayed_work(work);
1247
1248 /*
1249 * dwork->timer is irqsafe. If del_timer() fails, it's
1250 * guaranteed that the timer is not queued anywhere and not
1251 * running on the local CPU.
1252 */
1253 if (likely(del_timer(&dwork->timer)))
1254 return 1;
1255 }
1256
1257 /* try to claim PENDING the normal way */
1258 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259 return 0;
1260
1261 rcu_read_lock();
1262 /*
1263 * The queueing is in progress, or it is already queued. Try to
1264 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265 */
1266 pool = get_work_pool(work);
1267 if (!pool)
1268 goto fail;
1269
1270 raw_spin_lock(&pool->lock);
1271 /*
1272 * work->data is guaranteed to point to pwq only while the work
1273 * item is queued on pwq->wq, and both updating work->data to point
1274 * to pwq on queueing and to pool on dequeueing are done under
1275 * pwq->pool->lock. This in turn guarantees that, if work->data
1276 * points to pwq which is associated with a locked pool, the work
1277 * item is currently queued on that pool.
1278 */
1279 pwq = get_work_pwq(work);
1280 if (pwq && pwq->pool == pool) {
1281 debug_work_deactivate(work);
1282
1283 /*
1284 * A delayed work item cannot be grabbed directly because
1285 * it might have linked NO_COLOR work items which, if left
1286 * on the delayed_list, will confuse pwq->nr_active
1287 * management later on and cause stall. Make sure the work
1288 * item is activated before grabbing.
1289 */
1290 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291 pwq_activate_delayed_work(work);
1292
1293 list_del_init(&work->entry);
1294 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295
1296 /* work->data points to pwq iff queued, point to pool */
1297 set_work_pool_and_keep_pending(work, pool->id);
1298
1299 raw_spin_unlock(&pool->lock);
1300 rcu_read_unlock();
1301 return 1;
1302 }
1303 raw_spin_unlock(&pool->lock);
1304 fail:
1305 rcu_read_unlock();
1306 local_irq_restore(*flags);
1307 if (work_is_canceling(work))
1308 return -ENOENT;
1309 cpu_relax();
1310 return -EAGAIN;
1311 }
1312
1313 /**
1314 * insert_work - insert a work into a pool
1315 * @pwq: pwq @work belongs to
1316 * @work: work to insert
1317 * @head: insertion point
1318 * @extra_flags: extra WORK_STRUCT_* flags to set
1319 *
1320 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1321 * work_struct flags.
1322 *
1323 * CONTEXT:
1324 * raw_spin_lock_irq(pool->lock).
1325 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327 struct list_head *head, unsigned int extra_flags)
1328 {
1329 struct worker_pool *pool = pwq->pool;
1330
1331 /* we own @work, set data and link */
1332 set_work_pwq(work, pwq, extra_flags);
1333 list_add_tail(&work->entry, head);
1334 get_pwq(pwq);
1335
1336 /*
1337 * Ensure either wq_worker_sleeping() sees the above
1338 * list_add_tail() or we see zero nr_running to avoid workers lying
1339 * around lazily while there are works to be processed.
1340 */
1341 smp_mb();
1342
1343 if (__need_more_worker(pool))
1344 wake_up_worker(pool);
1345 }
1346
1347 /*
1348 * Test whether @work is being queued from another work executing on the
1349 * same workqueue.
1350 */
is_chained_work(struct workqueue_struct * wq)1351 static bool is_chained_work(struct workqueue_struct *wq)
1352 {
1353 struct worker *worker;
1354
1355 worker = current_wq_worker();
1356 /*
1357 * Return %true iff I'm a worker executing a work item on @wq. If
1358 * I'm @worker, it's safe to dereference it without locking.
1359 */
1360 return worker && worker->current_pwq->wq == wq;
1361 }
1362
1363 /*
1364 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1365 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1366 * avoid perturbing sensitive tasks.
1367 */
wq_select_unbound_cpu(int cpu)1368 static int wq_select_unbound_cpu(int cpu)
1369 {
1370 static bool printed_dbg_warning;
1371 int new_cpu;
1372
1373 if (likely(!wq_debug_force_rr_cpu)) {
1374 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1375 return cpu;
1376 } else if (!printed_dbg_warning) {
1377 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1378 printed_dbg_warning = true;
1379 }
1380
1381 if (cpumask_empty(wq_unbound_cpumask))
1382 return cpu;
1383
1384 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1385 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1386 if (unlikely(new_cpu >= nr_cpu_ids)) {
1387 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1388 if (unlikely(new_cpu >= nr_cpu_ids))
1389 return cpu;
1390 }
1391 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1392
1393 return new_cpu;
1394 }
1395
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1396 static void __queue_work(int cpu, struct workqueue_struct *wq,
1397 struct work_struct *work)
1398 {
1399 struct pool_workqueue *pwq;
1400 struct worker_pool *last_pool;
1401 struct list_head *worklist;
1402 unsigned int work_flags;
1403 unsigned int req_cpu = cpu;
1404
1405 /*
1406 * While a work item is PENDING && off queue, a task trying to
1407 * steal the PENDING will busy-loop waiting for it to either get
1408 * queued or lose PENDING. Grabbing PENDING and queueing should
1409 * happen with IRQ disabled.
1410 */
1411 lockdep_assert_irqs_disabled();
1412
1413
1414 /* if draining, only works from the same workqueue are allowed */
1415 if (unlikely(wq->flags & __WQ_DRAINING) &&
1416 WARN_ON_ONCE(!is_chained_work(wq)))
1417 return;
1418 rcu_read_lock();
1419 retry:
1420 /* pwq which will be used unless @work is executing elsewhere */
1421 if (wq->flags & WQ_UNBOUND) {
1422 if (req_cpu == WORK_CPU_UNBOUND)
1423 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1425 } else {
1426 if (req_cpu == WORK_CPU_UNBOUND)
1427 cpu = raw_smp_processor_id();
1428 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1429 }
1430
1431 /*
1432 * If @work was previously on a different pool, it might still be
1433 * running there, in which case the work needs to be queued on that
1434 * pool to guarantee non-reentrancy.
1435 */
1436 last_pool = get_work_pool(work);
1437 if (last_pool && last_pool != pwq->pool) {
1438 struct worker *worker;
1439
1440 raw_spin_lock(&last_pool->lock);
1441
1442 worker = find_worker_executing_work(last_pool, work);
1443
1444 if (worker && worker->current_pwq->wq == wq) {
1445 pwq = worker->current_pwq;
1446 } else {
1447 /* meh... not running there, queue here */
1448 raw_spin_unlock(&last_pool->lock);
1449 raw_spin_lock(&pwq->pool->lock);
1450 }
1451 } else {
1452 raw_spin_lock(&pwq->pool->lock);
1453 }
1454
1455 /*
1456 * pwq is determined and locked. For unbound pools, we could have
1457 * raced with pwq release and it could already be dead. If its
1458 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1459 * without another pwq replacing it in the numa_pwq_tbl or while
1460 * work items are executing on it, so the retrying is guaranteed to
1461 * make forward-progress.
1462 */
1463 if (unlikely(!pwq->refcnt)) {
1464 if (wq->flags & WQ_UNBOUND) {
1465 raw_spin_unlock(&pwq->pool->lock);
1466 cpu_relax();
1467 goto retry;
1468 }
1469 /* oops */
1470 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1471 wq->name, cpu);
1472 }
1473
1474 /* pwq determined, queue */
1475 trace_workqueue_queue_work(req_cpu, pwq, work);
1476
1477 if (WARN_ON(!list_empty(&work->entry)))
1478 goto out;
1479
1480 pwq->nr_in_flight[pwq->work_color]++;
1481 work_flags = work_color_to_flags(pwq->work_color);
1482
1483 if (likely(pwq->nr_active < pwq->max_active)) {
1484 trace_workqueue_activate_work(work);
1485 pwq->nr_active++;
1486 worklist = &pwq->pool->worklist;
1487 if (list_empty(worklist))
1488 pwq->pool->watchdog_ts = jiffies;
1489 } else {
1490 work_flags |= WORK_STRUCT_DELAYED;
1491 worklist = &pwq->delayed_works;
1492 }
1493
1494 debug_work_activate(work);
1495 insert_work(pwq, work, worklist, work_flags);
1496
1497 out:
1498 raw_spin_unlock(&pwq->pool->lock);
1499 rcu_read_unlock();
1500 }
1501
1502 /**
1503 * queue_work_on - queue work on specific cpu
1504 * @cpu: CPU number to execute work on
1505 * @wq: workqueue to use
1506 * @work: work to queue
1507 *
1508 * We queue the work to a specific CPU, the caller must ensure it
1509 * can't go away.
1510 *
1511 * Return: %false if @work was already on a queue, %true otherwise.
1512 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1513 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1514 struct work_struct *work)
1515 {
1516 bool ret = false;
1517 unsigned long flags;
1518
1519 local_irq_save(flags);
1520
1521 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1522 __queue_work(cpu, wq, work);
1523 ret = true;
1524 }
1525
1526 local_irq_restore(flags);
1527 return ret;
1528 }
1529 EXPORT_SYMBOL(queue_work_on);
1530
1531 /**
1532 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1533 * @node: NUMA node ID that we want to select a CPU from
1534 *
1535 * This function will attempt to find a "random" cpu available on a given
1536 * node. If there are no CPUs available on the given node it will return
1537 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1538 * available CPU if we need to schedule this work.
1539 */
workqueue_select_cpu_near(int node)1540 static int workqueue_select_cpu_near(int node)
1541 {
1542 int cpu;
1543
1544 /* No point in doing this if NUMA isn't enabled for workqueues */
1545 if (!wq_numa_enabled)
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Delay binding to CPU if node is not valid or online */
1549 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1550 return WORK_CPU_UNBOUND;
1551
1552 /* Use local node/cpu if we are already there */
1553 cpu = raw_smp_processor_id();
1554 if (node == cpu_to_node(cpu))
1555 return cpu;
1556
1557 /* Use "random" otherwise know as "first" online CPU of node */
1558 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1559
1560 /* If CPU is valid return that, otherwise just defer */
1561 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1562 }
1563
1564 /**
1565 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1566 * @node: NUMA node that we are targeting the work for
1567 * @wq: workqueue to use
1568 * @work: work to queue
1569 *
1570 * We queue the work to a "random" CPU within a given NUMA node. The basic
1571 * idea here is to provide a way to somehow associate work with a given
1572 * NUMA node.
1573 *
1574 * This function will only make a best effort attempt at getting this onto
1575 * the right NUMA node. If no node is requested or the requested node is
1576 * offline then we just fall back to standard queue_work behavior.
1577 *
1578 * Currently the "random" CPU ends up being the first available CPU in the
1579 * intersection of cpu_online_mask and the cpumask of the node, unless we
1580 * are running on the node. In that case we just use the current CPU.
1581 *
1582 * Return: %false if @work was already on a queue, %true otherwise.
1583 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1584 bool queue_work_node(int node, struct workqueue_struct *wq,
1585 struct work_struct *work)
1586 {
1587 unsigned long flags;
1588 bool ret = false;
1589
1590 /*
1591 * This current implementation is specific to unbound workqueues.
1592 * Specifically we only return the first available CPU for a given
1593 * node instead of cycling through individual CPUs within the node.
1594 *
1595 * If this is used with a per-cpu workqueue then the logic in
1596 * workqueue_select_cpu_near would need to be updated to allow for
1597 * some round robin type logic.
1598 */
1599 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1600
1601 local_irq_save(flags);
1602
1603 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1604 int cpu = workqueue_select_cpu_near(node);
1605
1606 __queue_work(cpu, wq, work);
1607 ret = true;
1608 }
1609
1610 local_irq_restore(flags);
1611 return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(queue_work_node);
1614
delayed_work_timer_fn(struct timer_list * t)1615 void delayed_work_timer_fn(struct timer_list *t)
1616 {
1617 struct delayed_work *dwork = from_timer(dwork, t, timer);
1618
1619 /* should have been called from irqsafe timer with irq already off */
1620 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1621 }
1622 EXPORT_SYMBOL(delayed_work_timer_fn);
1623
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1624 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1625 struct delayed_work *dwork, unsigned long delay)
1626 {
1627 struct timer_list *timer = &dwork->timer;
1628 struct work_struct *work = &dwork->work;
1629
1630 WARN_ON_ONCE(!wq);
1631 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1632 WARN_ON_ONCE(timer_pending(timer));
1633 WARN_ON_ONCE(!list_empty(&work->entry));
1634
1635 /*
1636 * If @delay is 0, queue @dwork->work immediately. This is for
1637 * both optimization and correctness. The earliest @timer can
1638 * expire is on the closest next tick and delayed_work users depend
1639 * on that there's no such delay when @delay is 0.
1640 */
1641 if (!delay) {
1642 __queue_work(cpu, wq, &dwork->work);
1643 return;
1644 }
1645
1646 dwork->wq = wq;
1647 dwork->cpu = cpu;
1648 timer->expires = jiffies + delay;
1649
1650 if (unlikely(cpu != WORK_CPU_UNBOUND))
1651 add_timer_on(timer, cpu);
1652 else
1653 add_timer(timer);
1654 }
1655
1656 /**
1657 * queue_delayed_work_on - queue work on specific CPU after delay
1658 * @cpu: CPU number to execute work on
1659 * @wq: workqueue to use
1660 * @dwork: work to queue
1661 * @delay: number of jiffies to wait before queueing
1662 *
1663 * Return: %false if @work was already on a queue, %true otherwise. If
1664 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1665 * execution.
1666 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1667 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1668 struct delayed_work *dwork, unsigned long delay)
1669 {
1670 struct work_struct *work = &dwork->work;
1671 bool ret = false;
1672 unsigned long flags;
1673
1674 /* read the comment in __queue_work() */
1675 local_irq_save(flags);
1676
1677 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1678 __queue_delayed_work(cpu, wq, dwork, delay);
1679 ret = true;
1680 }
1681
1682 local_irq_restore(flags);
1683 return ret;
1684 }
1685 EXPORT_SYMBOL(queue_delayed_work_on);
1686
1687 /**
1688 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1689 * @cpu: CPU number to execute work on
1690 * @wq: workqueue to use
1691 * @dwork: work to queue
1692 * @delay: number of jiffies to wait before queueing
1693 *
1694 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1695 * modify @dwork's timer so that it expires after @delay. If @delay is
1696 * zero, @work is guaranteed to be scheduled immediately regardless of its
1697 * current state.
1698 *
1699 * Return: %false if @dwork was idle and queued, %true if @dwork was
1700 * pending and its timer was modified.
1701 *
1702 * This function is safe to call from any context including IRQ handler.
1703 * See try_to_grab_pending() for details.
1704 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1705 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1706 struct delayed_work *dwork, unsigned long delay)
1707 {
1708 unsigned long flags;
1709 int ret;
1710
1711 do {
1712 ret = try_to_grab_pending(&dwork->work, true, &flags);
1713 } while (unlikely(ret == -EAGAIN));
1714
1715 if (likely(ret >= 0)) {
1716 __queue_delayed_work(cpu, wq, dwork, delay);
1717 local_irq_restore(flags);
1718 }
1719
1720 /* -ENOENT from try_to_grab_pending() becomes %true */
1721 return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1724
rcu_work_rcufn(struct rcu_head * rcu)1725 static void rcu_work_rcufn(struct rcu_head *rcu)
1726 {
1727 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1728
1729 /* read the comment in __queue_work() */
1730 local_irq_disable();
1731 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1732 local_irq_enable();
1733 }
1734
1735 /**
1736 * queue_rcu_work - queue work after a RCU grace period
1737 * @wq: workqueue to use
1738 * @rwork: work to queue
1739 *
1740 * Return: %false if @rwork was already pending, %true otherwise. Note
1741 * that a full RCU grace period is guaranteed only after a %true return.
1742 * While @rwork is guaranteed to be executed after a %false return, the
1743 * execution may happen before a full RCU grace period has passed.
1744 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1745 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1746 {
1747 struct work_struct *work = &rwork->work;
1748
1749 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1750 rwork->wq = wq;
1751 call_rcu(&rwork->rcu, rcu_work_rcufn);
1752 return true;
1753 }
1754
1755 return false;
1756 }
1757 EXPORT_SYMBOL(queue_rcu_work);
1758
1759 /**
1760 * worker_enter_idle - enter idle state
1761 * @worker: worker which is entering idle state
1762 *
1763 * @worker is entering idle state. Update stats and idle timer if
1764 * necessary.
1765 *
1766 * LOCKING:
1767 * raw_spin_lock_irq(pool->lock).
1768 */
worker_enter_idle(struct worker * worker)1769 static void worker_enter_idle(struct worker *worker)
1770 {
1771 struct worker_pool *pool = worker->pool;
1772
1773 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1774 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1775 (worker->hentry.next || worker->hentry.pprev)))
1776 return;
1777
1778 /* can't use worker_set_flags(), also called from create_worker() */
1779 worker->flags |= WORKER_IDLE;
1780 pool->nr_idle++;
1781 worker->last_active = jiffies;
1782
1783 /* idle_list is LIFO */
1784 list_add(&worker->entry, &pool->idle_list);
1785
1786 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1787 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1788
1789 /*
1790 * Sanity check nr_running. Because unbind_workers() releases
1791 * pool->lock between setting %WORKER_UNBOUND and zapping
1792 * nr_running, the warning may trigger spuriously. Check iff
1793 * unbind is not in progress.
1794 */
1795 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1796 pool->nr_workers == pool->nr_idle &&
1797 atomic_read(&pool->nr_running));
1798 }
1799
1800 /**
1801 * worker_leave_idle - leave idle state
1802 * @worker: worker which is leaving idle state
1803 *
1804 * @worker is leaving idle state. Update stats.
1805 *
1806 * LOCKING:
1807 * raw_spin_lock_irq(pool->lock).
1808 */
worker_leave_idle(struct worker * worker)1809 static void worker_leave_idle(struct worker *worker)
1810 {
1811 struct worker_pool *pool = worker->pool;
1812
1813 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1814 return;
1815 worker_clr_flags(worker, WORKER_IDLE);
1816 pool->nr_idle--;
1817 list_del_init(&worker->entry);
1818 }
1819
alloc_worker(int node)1820 static struct worker *alloc_worker(int node)
1821 {
1822 struct worker *worker;
1823
1824 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1825 if (worker) {
1826 INIT_LIST_HEAD(&worker->entry);
1827 INIT_LIST_HEAD(&worker->scheduled);
1828 INIT_LIST_HEAD(&worker->node);
1829 /* on creation a worker is in !idle && prep state */
1830 worker->flags = WORKER_PREP;
1831 }
1832 return worker;
1833 }
1834
1835 /**
1836 * worker_attach_to_pool() - attach a worker to a pool
1837 * @worker: worker to be attached
1838 * @pool: the target pool
1839 *
1840 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1841 * cpu-binding of @worker are kept coordinated with the pool across
1842 * cpu-[un]hotplugs.
1843 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1844 static void worker_attach_to_pool(struct worker *worker,
1845 struct worker_pool *pool)
1846 {
1847 mutex_lock(&wq_pool_attach_mutex);
1848
1849 /*
1850 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1851 * stable across this function. See the comments above the flag
1852 * definition for details.
1853 */
1854 if (pool->flags & POOL_DISASSOCIATED)
1855 worker->flags |= WORKER_UNBOUND;
1856
1857 if (worker->rescue_wq)
1858 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1859
1860 list_add_tail(&worker->node, &pool->workers);
1861 worker->pool = pool;
1862
1863 mutex_unlock(&wq_pool_attach_mutex);
1864 }
1865
1866 /**
1867 * worker_detach_from_pool() - detach a worker from its pool
1868 * @worker: worker which is attached to its pool
1869 *
1870 * Undo the attaching which had been done in worker_attach_to_pool(). The
1871 * caller worker shouldn't access to the pool after detached except it has
1872 * other reference to the pool.
1873 */
worker_detach_from_pool(struct worker * worker)1874 static void worker_detach_from_pool(struct worker *worker)
1875 {
1876 struct worker_pool *pool = worker->pool;
1877 struct completion *detach_completion = NULL;
1878
1879 mutex_lock(&wq_pool_attach_mutex);
1880
1881 list_del(&worker->node);
1882 worker->pool = NULL;
1883
1884 if (list_empty(&pool->workers))
1885 detach_completion = pool->detach_completion;
1886 mutex_unlock(&wq_pool_attach_mutex);
1887
1888 /* clear leftover flags without pool->lock after it is detached */
1889 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1890
1891 if (detach_completion)
1892 complete(detach_completion);
1893 }
1894
1895 /**
1896 * create_worker - create a new workqueue worker
1897 * @pool: pool the new worker will belong to
1898 *
1899 * Create and start a new worker which is attached to @pool.
1900 *
1901 * CONTEXT:
1902 * Might sleep. Does GFP_KERNEL allocations.
1903 *
1904 * Return:
1905 * Pointer to the newly created worker.
1906 */
create_worker(struct worker_pool * pool)1907 static struct worker *create_worker(struct worker_pool *pool)
1908 {
1909 struct worker *worker = NULL;
1910 int id = -1;
1911 char id_buf[16];
1912
1913 /* ID is needed to determine kthread name */
1914 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1915 if (id < 0)
1916 goto fail;
1917
1918 worker = alloc_worker(pool->node);
1919 if (!worker)
1920 goto fail;
1921
1922 worker->id = id;
1923
1924 if (pool->cpu >= 0)
1925 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1926 pool->attrs->nice < 0 ? "H" : "");
1927 else
1928 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1929
1930 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1931 "kworker/%s", id_buf);
1932 if (IS_ERR(worker->task))
1933 goto fail;
1934
1935 set_user_nice(worker->task, pool->attrs->nice);
1936 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1937
1938 /* successful, attach the worker to the pool */
1939 worker_attach_to_pool(worker, pool);
1940
1941 /* start the newly created worker */
1942 raw_spin_lock_irq(&pool->lock);
1943 worker->pool->nr_workers++;
1944 worker_enter_idle(worker);
1945 wake_up_process(worker->task);
1946 raw_spin_unlock_irq(&pool->lock);
1947
1948 return worker;
1949
1950 fail:
1951 if (id >= 0)
1952 ida_simple_remove(&pool->worker_ida, id);
1953 kfree(worker);
1954 return NULL;
1955 }
1956
1957 /**
1958 * destroy_worker - destroy a workqueue worker
1959 * @worker: worker to be destroyed
1960 *
1961 * Destroy @worker and adjust @pool stats accordingly. The worker should
1962 * be idle.
1963 *
1964 * CONTEXT:
1965 * raw_spin_lock_irq(pool->lock).
1966 */
destroy_worker(struct worker * worker)1967 static void destroy_worker(struct worker *worker)
1968 {
1969 struct worker_pool *pool = worker->pool;
1970
1971 lockdep_assert_held(&pool->lock);
1972
1973 /* sanity check frenzy */
1974 if (WARN_ON(worker->current_work) ||
1975 WARN_ON(!list_empty(&worker->scheduled)) ||
1976 WARN_ON(!(worker->flags & WORKER_IDLE)))
1977 return;
1978
1979 pool->nr_workers--;
1980 pool->nr_idle--;
1981
1982 list_del_init(&worker->entry);
1983 worker->flags |= WORKER_DIE;
1984 wake_up_process(worker->task);
1985 }
1986
idle_worker_timeout(struct timer_list * t)1987 static void idle_worker_timeout(struct timer_list *t)
1988 {
1989 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1990
1991 raw_spin_lock_irq(&pool->lock);
1992
1993 while (too_many_workers(pool)) {
1994 struct worker *worker;
1995 unsigned long expires;
1996
1997 /* idle_list is kept in LIFO order, check the last one */
1998 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1999 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2000
2001 if (time_before(jiffies, expires)) {
2002 mod_timer(&pool->idle_timer, expires);
2003 break;
2004 }
2005
2006 destroy_worker(worker);
2007 }
2008
2009 raw_spin_unlock_irq(&pool->lock);
2010 }
2011
send_mayday(struct work_struct * work)2012 static void send_mayday(struct work_struct *work)
2013 {
2014 struct pool_workqueue *pwq = get_work_pwq(work);
2015 struct workqueue_struct *wq = pwq->wq;
2016
2017 lockdep_assert_held(&wq_mayday_lock);
2018
2019 if (!wq->rescuer)
2020 return;
2021
2022 /* mayday mayday mayday */
2023 if (list_empty(&pwq->mayday_node)) {
2024 /*
2025 * If @pwq is for an unbound wq, its base ref may be put at
2026 * any time due to an attribute change. Pin @pwq until the
2027 * rescuer is done with it.
2028 */
2029 get_pwq(pwq);
2030 list_add_tail(&pwq->mayday_node, &wq->maydays);
2031 wake_up_process(wq->rescuer->task);
2032 }
2033 }
2034
pool_mayday_timeout(struct timer_list * t)2035 static void pool_mayday_timeout(struct timer_list *t)
2036 {
2037 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2038 struct work_struct *work;
2039
2040 raw_spin_lock_irq(&pool->lock);
2041 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2042
2043 if (need_to_create_worker(pool)) {
2044 /*
2045 * We've been trying to create a new worker but
2046 * haven't been successful. We might be hitting an
2047 * allocation deadlock. Send distress signals to
2048 * rescuers.
2049 */
2050 list_for_each_entry(work, &pool->worklist, entry)
2051 send_mayday(work);
2052 }
2053
2054 raw_spin_unlock(&wq_mayday_lock);
2055 raw_spin_unlock_irq(&pool->lock);
2056
2057 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2058 }
2059
2060 /**
2061 * maybe_create_worker - create a new worker if necessary
2062 * @pool: pool to create a new worker for
2063 *
2064 * Create a new worker for @pool if necessary. @pool is guaranteed to
2065 * have at least one idle worker on return from this function. If
2066 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2067 * sent to all rescuers with works scheduled on @pool to resolve
2068 * possible allocation deadlock.
2069 *
2070 * On return, need_to_create_worker() is guaranteed to be %false and
2071 * may_start_working() %true.
2072 *
2073 * LOCKING:
2074 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2075 * multiple times. Does GFP_KERNEL allocations. Called only from
2076 * manager.
2077 */
maybe_create_worker(struct worker_pool * pool)2078 static void maybe_create_worker(struct worker_pool *pool)
2079 __releases(&pool->lock)
2080 __acquires(&pool->lock)
2081 {
2082 restart:
2083 raw_spin_unlock_irq(&pool->lock);
2084
2085 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2086 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2087
2088 while (true) {
2089 if (create_worker(pool) || !need_to_create_worker(pool))
2090 break;
2091
2092 schedule_timeout_interruptible(CREATE_COOLDOWN);
2093
2094 if (!need_to_create_worker(pool))
2095 break;
2096 }
2097
2098 del_timer_sync(&pool->mayday_timer);
2099 raw_spin_lock_irq(&pool->lock);
2100 /*
2101 * This is necessary even after a new worker was just successfully
2102 * created as @pool->lock was dropped and the new worker might have
2103 * already become busy.
2104 */
2105 if (need_to_create_worker(pool))
2106 goto restart;
2107 }
2108
2109 /**
2110 * manage_workers - manage worker pool
2111 * @worker: self
2112 *
2113 * Assume the manager role and manage the worker pool @worker belongs
2114 * to. At any given time, there can be only zero or one manager per
2115 * pool. The exclusion is handled automatically by this function.
2116 *
2117 * The caller can safely start processing works on false return. On
2118 * true return, it's guaranteed that need_to_create_worker() is false
2119 * and may_start_working() is true.
2120 *
2121 * CONTEXT:
2122 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2123 * multiple times. Does GFP_KERNEL allocations.
2124 *
2125 * Return:
2126 * %false if the pool doesn't need management and the caller can safely
2127 * start processing works, %true if management function was performed and
2128 * the conditions that the caller verified before calling the function may
2129 * no longer be true.
2130 */
manage_workers(struct worker * worker)2131 static bool manage_workers(struct worker *worker)
2132 {
2133 struct worker_pool *pool = worker->pool;
2134
2135 if (pool->flags & POOL_MANAGER_ACTIVE)
2136 return false;
2137
2138 pool->flags |= POOL_MANAGER_ACTIVE;
2139 pool->manager = worker;
2140
2141 maybe_create_worker(pool);
2142
2143 pool->manager = NULL;
2144 pool->flags &= ~POOL_MANAGER_ACTIVE;
2145 rcuwait_wake_up(&manager_wait);
2146 return true;
2147 }
2148
2149 /**
2150 * process_one_work - process single work
2151 * @worker: self
2152 * @work: work to process
2153 *
2154 * Process @work. This function contains all the logics necessary to
2155 * process a single work including synchronization against and
2156 * interaction with other workers on the same cpu, queueing and
2157 * flushing. As long as context requirement is met, any worker can
2158 * call this function to process a work.
2159 *
2160 * CONTEXT:
2161 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2162 */
process_one_work(struct worker * worker,struct work_struct * work)2163 static void process_one_work(struct worker *worker, struct work_struct *work)
2164 __releases(&pool->lock)
2165 __acquires(&pool->lock)
2166 {
2167 struct pool_workqueue *pwq = get_work_pwq(work);
2168 struct worker_pool *pool = worker->pool;
2169 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2170 int work_color;
2171 struct worker *collision;
2172 #ifdef CONFIG_LOCKDEP
2173 /*
2174 * It is permissible to free the struct work_struct from
2175 * inside the function that is called from it, this we need to
2176 * take into account for lockdep too. To avoid bogus "held
2177 * lock freed" warnings as well as problems when looking into
2178 * work->lockdep_map, make a copy and use that here.
2179 */
2180 struct lockdep_map lockdep_map;
2181
2182 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2183 #endif
2184 /* ensure we're on the correct CPU */
2185 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2186 raw_smp_processor_id() != pool->cpu);
2187
2188 /*
2189 * A single work shouldn't be executed concurrently by
2190 * multiple workers on a single cpu. Check whether anyone is
2191 * already processing the work. If so, defer the work to the
2192 * currently executing one.
2193 */
2194 collision = find_worker_executing_work(pool, work);
2195 if (unlikely(collision)) {
2196 move_linked_works(work, &collision->scheduled, NULL);
2197 return;
2198 }
2199
2200 /* claim and dequeue */
2201 debug_work_deactivate(work);
2202 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2203 worker->current_work = work;
2204 worker->current_func = work->func;
2205 worker->current_pwq = pwq;
2206 work_color = get_work_color(work);
2207
2208 /*
2209 * Record wq name for cmdline and debug reporting, may get
2210 * overridden through set_worker_desc().
2211 */
2212 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2213
2214 list_del_init(&work->entry);
2215
2216 /*
2217 * CPU intensive works don't participate in concurrency management.
2218 * They're the scheduler's responsibility. This takes @worker out
2219 * of concurrency management and the next code block will chain
2220 * execution of the pending work items.
2221 */
2222 if (unlikely(cpu_intensive))
2223 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2224
2225 /*
2226 * Wake up another worker if necessary. The condition is always
2227 * false for normal per-cpu workers since nr_running would always
2228 * be >= 1 at this point. This is used to chain execution of the
2229 * pending work items for WORKER_NOT_RUNNING workers such as the
2230 * UNBOUND and CPU_INTENSIVE ones.
2231 */
2232 if (need_more_worker(pool))
2233 wake_up_worker(pool);
2234
2235 /*
2236 * Record the last pool and clear PENDING which should be the last
2237 * update to @work. Also, do this inside @pool->lock so that
2238 * PENDING and queued state changes happen together while IRQ is
2239 * disabled.
2240 */
2241 set_work_pool_and_clear_pending(work, pool->id);
2242
2243 raw_spin_unlock_irq(&pool->lock);
2244
2245 lock_map_acquire(&pwq->wq->lockdep_map);
2246 lock_map_acquire(&lockdep_map);
2247 /*
2248 * Strictly speaking we should mark the invariant state without holding
2249 * any locks, that is, before these two lock_map_acquire()'s.
2250 *
2251 * However, that would result in:
2252 *
2253 * A(W1)
2254 * WFC(C)
2255 * A(W1)
2256 * C(C)
2257 *
2258 * Which would create W1->C->W1 dependencies, even though there is no
2259 * actual deadlock possible. There are two solutions, using a
2260 * read-recursive acquire on the work(queue) 'locks', but this will then
2261 * hit the lockdep limitation on recursive locks, or simply discard
2262 * these locks.
2263 *
2264 * AFAICT there is no possible deadlock scenario between the
2265 * flush_work() and complete() primitives (except for single-threaded
2266 * workqueues), so hiding them isn't a problem.
2267 */
2268 lockdep_invariant_state(true);
2269 trace_workqueue_execute_start(work);
2270 worker->current_func(work);
2271 /*
2272 * While we must be careful to not use "work" after this, the trace
2273 * point will only record its address.
2274 */
2275 trace_workqueue_execute_end(work, worker->current_func);
2276 lock_map_release(&lockdep_map);
2277 lock_map_release(&pwq->wq->lockdep_map);
2278
2279 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2280 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2281 " last function: %ps\n",
2282 current->comm, preempt_count(), task_pid_nr(current),
2283 worker->current_func);
2284 debug_show_held_locks(current);
2285 dump_stack();
2286 }
2287
2288 /*
2289 * The following prevents a kworker from hogging CPU on !PREEMPTION
2290 * kernels, where a requeueing work item waiting for something to
2291 * happen could deadlock with stop_machine as such work item could
2292 * indefinitely requeue itself while all other CPUs are trapped in
2293 * stop_machine. At the same time, report a quiescent RCU state so
2294 * the same condition doesn't freeze RCU.
2295 */
2296 cond_resched();
2297
2298 raw_spin_lock_irq(&pool->lock);
2299
2300 /* clear cpu intensive status */
2301 if (unlikely(cpu_intensive))
2302 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2303
2304 /* tag the worker for identification in schedule() */
2305 worker->last_func = worker->current_func;
2306
2307 /* we're done with it, release */
2308 hash_del(&worker->hentry);
2309 worker->current_work = NULL;
2310 worker->current_func = NULL;
2311 worker->current_pwq = NULL;
2312 pwq_dec_nr_in_flight(pwq, work_color);
2313 }
2314
2315 /**
2316 * process_scheduled_works - process scheduled works
2317 * @worker: self
2318 *
2319 * Process all scheduled works. Please note that the scheduled list
2320 * may change while processing a work, so this function repeatedly
2321 * fetches a work from the top and executes it.
2322 *
2323 * CONTEXT:
2324 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2325 * multiple times.
2326 */
process_scheduled_works(struct worker * worker)2327 static void process_scheduled_works(struct worker *worker)
2328 {
2329 while (!list_empty(&worker->scheduled)) {
2330 struct work_struct *work = list_first_entry(&worker->scheduled,
2331 struct work_struct, entry);
2332 process_one_work(worker, work);
2333 }
2334 }
2335
set_pf_worker(bool val)2336 static void set_pf_worker(bool val)
2337 {
2338 mutex_lock(&wq_pool_attach_mutex);
2339 if (val)
2340 current->flags |= PF_WQ_WORKER;
2341 else
2342 current->flags &= ~PF_WQ_WORKER;
2343 mutex_unlock(&wq_pool_attach_mutex);
2344 }
2345
2346 /**
2347 * worker_thread - the worker thread function
2348 * @__worker: self
2349 *
2350 * The worker thread function. All workers belong to a worker_pool -
2351 * either a per-cpu one or dynamic unbound one. These workers process all
2352 * work items regardless of their specific target workqueue. The only
2353 * exception is work items which belong to workqueues with a rescuer which
2354 * will be explained in rescuer_thread().
2355 *
2356 * Return: 0
2357 */
worker_thread(void * __worker)2358 static int worker_thread(void *__worker)
2359 {
2360 struct worker *worker = __worker;
2361 struct worker_pool *pool = worker->pool;
2362
2363 /* tell the scheduler that this is a workqueue worker */
2364 set_pf_worker(true);
2365 woke_up:
2366 raw_spin_lock_irq(&pool->lock);
2367
2368 /* am I supposed to die? */
2369 if (unlikely(worker->flags & WORKER_DIE)) {
2370 raw_spin_unlock_irq(&pool->lock);
2371 WARN_ON_ONCE(!list_empty(&worker->entry));
2372 set_pf_worker(false);
2373
2374 set_task_comm(worker->task, "kworker/dying");
2375 ida_simple_remove(&pool->worker_ida, worker->id);
2376 worker_detach_from_pool(worker);
2377 kfree(worker);
2378 return 0;
2379 }
2380
2381 worker_leave_idle(worker);
2382 recheck:
2383 /* no more worker necessary? */
2384 if (!need_more_worker(pool))
2385 goto sleep;
2386
2387 /* do we need to manage? */
2388 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2389 goto recheck;
2390
2391 /*
2392 * ->scheduled list can only be filled while a worker is
2393 * preparing to process a work or actually processing it.
2394 * Make sure nobody diddled with it while I was sleeping.
2395 */
2396 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2397
2398 /*
2399 * Finish PREP stage. We're guaranteed to have at least one idle
2400 * worker or that someone else has already assumed the manager
2401 * role. This is where @worker starts participating in concurrency
2402 * management if applicable and concurrency management is restored
2403 * after being rebound. See rebind_workers() for details.
2404 */
2405 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2406
2407 do {
2408 struct work_struct *work =
2409 list_first_entry(&pool->worklist,
2410 struct work_struct, entry);
2411
2412 pool->watchdog_ts = jiffies;
2413
2414 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2415 /* optimization path, not strictly necessary */
2416 process_one_work(worker, work);
2417 if (unlikely(!list_empty(&worker->scheduled)))
2418 process_scheduled_works(worker);
2419 } else {
2420 move_linked_works(work, &worker->scheduled, NULL);
2421 process_scheduled_works(worker);
2422 }
2423 } while (keep_working(pool));
2424
2425 worker_set_flags(worker, WORKER_PREP);
2426 sleep:
2427 /*
2428 * pool->lock is held and there's no work to process and no need to
2429 * manage, sleep. Workers are woken up only while holding
2430 * pool->lock or from local cpu, so setting the current state
2431 * before releasing pool->lock is enough to prevent losing any
2432 * event.
2433 */
2434 worker_enter_idle(worker);
2435 __set_current_state(TASK_IDLE);
2436 raw_spin_unlock_irq(&pool->lock);
2437 schedule();
2438 goto woke_up;
2439 }
2440
2441 /**
2442 * rescuer_thread - the rescuer thread function
2443 * @__rescuer: self
2444 *
2445 * Workqueue rescuer thread function. There's one rescuer for each
2446 * workqueue which has WQ_MEM_RECLAIM set.
2447 *
2448 * Regular work processing on a pool may block trying to create a new
2449 * worker which uses GFP_KERNEL allocation which has slight chance of
2450 * developing into deadlock if some works currently on the same queue
2451 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2452 * the problem rescuer solves.
2453 *
2454 * When such condition is possible, the pool summons rescuers of all
2455 * workqueues which have works queued on the pool and let them process
2456 * those works so that forward progress can be guaranteed.
2457 *
2458 * This should happen rarely.
2459 *
2460 * Return: 0
2461 */
rescuer_thread(void * __rescuer)2462 static int rescuer_thread(void *__rescuer)
2463 {
2464 struct worker *rescuer = __rescuer;
2465 struct workqueue_struct *wq = rescuer->rescue_wq;
2466 struct list_head *scheduled = &rescuer->scheduled;
2467 bool should_stop;
2468
2469 set_user_nice(current, RESCUER_NICE_LEVEL);
2470
2471 /*
2472 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2473 * doesn't participate in concurrency management.
2474 */
2475 set_pf_worker(true);
2476 repeat:
2477 set_current_state(TASK_IDLE);
2478
2479 /*
2480 * By the time the rescuer is requested to stop, the workqueue
2481 * shouldn't have any work pending, but @wq->maydays may still have
2482 * pwq(s) queued. This can happen by non-rescuer workers consuming
2483 * all the work items before the rescuer got to them. Go through
2484 * @wq->maydays processing before acting on should_stop so that the
2485 * list is always empty on exit.
2486 */
2487 should_stop = kthread_should_stop();
2488
2489 /* see whether any pwq is asking for help */
2490 raw_spin_lock_irq(&wq_mayday_lock);
2491
2492 while (!list_empty(&wq->maydays)) {
2493 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2494 struct pool_workqueue, mayday_node);
2495 struct worker_pool *pool = pwq->pool;
2496 struct work_struct *work, *n;
2497 bool first = true;
2498
2499 __set_current_state(TASK_RUNNING);
2500 list_del_init(&pwq->mayday_node);
2501
2502 raw_spin_unlock_irq(&wq_mayday_lock);
2503
2504 worker_attach_to_pool(rescuer, pool);
2505
2506 raw_spin_lock_irq(&pool->lock);
2507
2508 /*
2509 * Slurp in all works issued via this workqueue and
2510 * process'em.
2511 */
2512 WARN_ON_ONCE(!list_empty(scheduled));
2513 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2514 if (get_work_pwq(work) == pwq) {
2515 if (first)
2516 pool->watchdog_ts = jiffies;
2517 move_linked_works(work, scheduled, &n);
2518 }
2519 first = false;
2520 }
2521
2522 if (!list_empty(scheduled)) {
2523 process_scheduled_works(rescuer);
2524
2525 /*
2526 * The above execution of rescued work items could
2527 * have created more to rescue through
2528 * pwq_activate_first_delayed() or chained
2529 * queueing. Let's put @pwq back on mayday list so
2530 * that such back-to-back work items, which may be
2531 * being used to relieve memory pressure, don't
2532 * incur MAYDAY_INTERVAL delay inbetween.
2533 */
2534 if (pwq->nr_active && need_to_create_worker(pool)) {
2535 raw_spin_lock(&wq_mayday_lock);
2536 /*
2537 * Queue iff we aren't racing destruction
2538 * and somebody else hasn't queued it already.
2539 */
2540 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2541 get_pwq(pwq);
2542 list_add_tail(&pwq->mayday_node, &wq->maydays);
2543 }
2544 raw_spin_unlock(&wq_mayday_lock);
2545 }
2546 }
2547
2548 /*
2549 * Put the reference grabbed by send_mayday(). @pool won't
2550 * go away while we're still attached to it.
2551 */
2552 put_pwq(pwq);
2553
2554 /*
2555 * Leave this pool. If need_more_worker() is %true, notify a
2556 * regular worker; otherwise, we end up with 0 concurrency
2557 * and stalling the execution.
2558 */
2559 if (need_more_worker(pool))
2560 wake_up_worker(pool);
2561
2562 raw_spin_unlock_irq(&pool->lock);
2563
2564 worker_detach_from_pool(rescuer);
2565
2566 raw_spin_lock_irq(&wq_mayday_lock);
2567 }
2568
2569 raw_spin_unlock_irq(&wq_mayday_lock);
2570
2571 if (should_stop) {
2572 __set_current_state(TASK_RUNNING);
2573 set_pf_worker(false);
2574 return 0;
2575 }
2576
2577 /* rescuers should never participate in concurrency management */
2578 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2579 schedule();
2580 goto repeat;
2581 }
2582
2583 /**
2584 * check_flush_dependency - check for flush dependency sanity
2585 * @target_wq: workqueue being flushed
2586 * @target_work: work item being flushed (NULL for workqueue flushes)
2587 *
2588 * %current is trying to flush the whole @target_wq or @target_work on it.
2589 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2590 * reclaiming memory or running on a workqueue which doesn't have
2591 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2592 * a deadlock.
2593 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2594 static void check_flush_dependency(struct workqueue_struct *target_wq,
2595 struct work_struct *target_work)
2596 {
2597 work_func_t target_func = target_work ? target_work->func : NULL;
2598 struct worker *worker;
2599
2600 if (target_wq->flags & WQ_MEM_RECLAIM)
2601 return;
2602
2603 worker = current_wq_worker();
2604
2605 WARN_ONCE(current->flags & PF_MEMALLOC,
2606 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2607 current->pid, current->comm, target_wq->name, target_func);
2608 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2609 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2610 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2611 worker->current_pwq->wq->name, worker->current_func,
2612 target_wq->name, target_func);
2613 }
2614
2615 struct wq_barrier {
2616 struct work_struct work;
2617 struct completion done;
2618 struct task_struct *task; /* purely informational */
2619 };
2620
wq_barrier_func(struct work_struct * work)2621 static void wq_barrier_func(struct work_struct *work)
2622 {
2623 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2624 complete(&barr->done);
2625 }
2626
2627 /**
2628 * insert_wq_barrier - insert a barrier work
2629 * @pwq: pwq to insert barrier into
2630 * @barr: wq_barrier to insert
2631 * @target: target work to attach @barr to
2632 * @worker: worker currently executing @target, NULL if @target is not executing
2633 *
2634 * @barr is linked to @target such that @barr is completed only after
2635 * @target finishes execution. Please note that the ordering
2636 * guarantee is observed only with respect to @target and on the local
2637 * cpu.
2638 *
2639 * Currently, a queued barrier can't be canceled. This is because
2640 * try_to_grab_pending() can't determine whether the work to be
2641 * grabbed is at the head of the queue and thus can't clear LINKED
2642 * flag of the previous work while there must be a valid next work
2643 * after a work with LINKED flag set.
2644 *
2645 * Note that when @worker is non-NULL, @target may be modified
2646 * underneath us, so we can't reliably determine pwq from @target.
2647 *
2648 * CONTEXT:
2649 * raw_spin_lock_irq(pool->lock).
2650 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2651 static void insert_wq_barrier(struct pool_workqueue *pwq,
2652 struct wq_barrier *barr,
2653 struct work_struct *target, struct worker *worker)
2654 {
2655 struct list_head *head;
2656 unsigned int linked = 0;
2657
2658 /*
2659 * debugobject calls are safe here even with pool->lock locked
2660 * as we know for sure that this will not trigger any of the
2661 * checks and call back into the fixup functions where we
2662 * might deadlock.
2663 */
2664 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2665 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2666
2667 init_completion_map(&barr->done, &target->lockdep_map);
2668
2669 barr->task = current;
2670
2671 /*
2672 * If @target is currently being executed, schedule the
2673 * barrier to the worker; otherwise, put it after @target.
2674 */
2675 if (worker)
2676 head = worker->scheduled.next;
2677 else {
2678 unsigned long *bits = work_data_bits(target);
2679
2680 head = target->entry.next;
2681 /* there can already be other linked works, inherit and set */
2682 linked = *bits & WORK_STRUCT_LINKED;
2683 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2684 }
2685
2686 debug_work_activate(&barr->work);
2687 insert_work(pwq, &barr->work, head,
2688 work_color_to_flags(WORK_NO_COLOR) | linked);
2689 }
2690
2691 /**
2692 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2693 * @wq: workqueue being flushed
2694 * @flush_color: new flush color, < 0 for no-op
2695 * @work_color: new work color, < 0 for no-op
2696 *
2697 * Prepare pwqs for workqueue flushing.
2698 *
2699 * If @flush_color is non-negative, flush_color on all pwqs should be
2700 * -1. If no pwq has in-flight commands at the specified color, all
2701 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2702 * has in flight commands, its pwq->flush_color is set to
2703 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2704 * wakeup logic is armed and %true is returned.
2705 *
2706 * The caller should have initialized @wq->first_flusher prior to
2707 * calling this function with non-negative @flush_color. If
2708 * @flush_color is negative, no flush color update is done and %false
2709 * is returned.
2710 *
2711 * If @work_color is non-negative, all pwqs should have the same
2712 * work_color which is previous to @work_color and all will be
2713 * advanced to @work_color.
2714 *
2715 * CONTEXT:
2716 * mutex_lock(wq->mutex).
2717 *
2718 * Return:
2719 * %true if @flush_color >= 0 and there's something to flush. %false
2720 * otherwise.
2721 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2722 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2723 int flush_color, int work_color)
2724 {
2725 bool wait = false;
2726 struct pool_workqueue *pwq;
2727
2728 if (flush_color >= 0) {
2729 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2730 atomic_set(&wq->nr_pwqs_to_flush, 1);
2731 }
2732
2733 for_each_pwq(pwq, wq) {
2734 struct worker_pool *pool = pwq->pool;
2735
2736 raw_spin_lock_irq(&pool->lock);
2737
2738 if (flush_color >= 0) {
2739 WARN_ON_ONCE(pwq->flush_color != -1);
2740
2741 if (pwq->nr_in_flight[flush_color]) {
2742 pwq->flush_color = flush_color;
2743 atomic_inc(&wq->nr_pwqs_to_flush);
2744 wait = true;
2745 }
2746 }
2747
2748 if (work_color >= 0) {
2749 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2750 pwq->work_color = work_color;
2751 }
2752
2753 raw_spin_unlock_irq(&pool->lock);
2754 }
2755
2756 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2757 complete(&wq->first_flusher->done);
2758
2759 return wait;
2760 }
2761
2762 /**
2763 * flush_workqueue - ensure that any scheduled work has run to completion.
2764 * @wq: workqueue to flush
2765 *
2766 * This function sleeps until all work items which were queued on entry
2767 * have finished execution, but it is not livelocked by new incoming ones.
2768 */
flush_workqueue(struct workqueue_struct * wq)2769 void flush_workqueue(struct workqueue_struct *wq)
2770 {
2771 struct wq_flusher this_flusher = {
2772 .list = LIST_HEAD_INIT(this_flusher.list),
2773 .flush_color = -1,
2774 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2775 };
2776 int next_color;
2777
2778 if (WARN_ON(!wq_online))
2779 return;
2780
2781 lock_map_acquire(&wq->lockdep_map);
2782 lock_map_release(&wq->lockdep_map);
2783
2784 mutex_lock(&wq->mutex);
2785
2786 /*
2787 * Start-to-wait phase
2788 */
2789 next_color = work_next_color(wq->work_color);
2790
2791 if (next_color != wq->flush_color) {
2792 /*
2793 * Color space is not full. The current work_color
2794 * becomes our flush_color and work_color is advanced
2795 * by one.
2796 */
2797 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2798 this_flusher.flush_color = wq->work_color;
2799 wq->work_color = next_color;
2800
2801 if (!wq->first_flusher) {
2802 /* no flush in progress, become the first flusher */
2803 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2804
2805 wq->first_flusher = &this_flusher;
2806
2807 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2808 wq->work_color)) {
2809 /* nothing to flush, done */
2810 wq->flush_color = next_color;
2811 wq->first_flusher = NULL;
2812 goto out_unlock;
2813 }
2814 } else {
2815 /* wait in queue */
2816 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2817 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2818 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2819 }
2820 } else {
2821 /*
2822 * Oops, color space is full, wait on overflow queue.
2823 * The next flush completion will assign us
2824 * flush_color and transfer to flusher_queue.
2825 */
2826 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2827 }
2828
2829 check_flush_dependency(wq, NULL);
2830
2831 mutex_unlock(&wq->mutex);
2832
2833 wait_for_completion(&this_flusher.done);
2834
2835 /*
2836 * Wake-up-and-cascade phase
2837 *
2838 * First flushers are responsible for cascading flushes and
2839 * handling overflow. Non-first flushers can simply return.
2840 */
2841 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2842 return;
2843
2844 mutex_lock(&wq->mutex);
2845
2846 /* we might have raced, check again with mutex held */
2847 if (wq->first_flusher != &this_flusher)
2848 goto out_unlock;
2849
2850 WRITE_ONCE(wq->first_flusher, NULL);
2851
2852 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2853 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2854
2855 while (true) {
2856 struct wq_flusher *next, *tmp;
2857
2858 /* complete all the flushers sharing the current flush color */
2859 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2860 if (next->flush_color != wq->flush_color)
2861 break;
2862 list_del_init(&next->list);
2863 complete(&next->done);
2864 }
2865
2866 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2867 wq->flush_color != work_next_color(wq->work_color));
2868
2869 /* this flush_color is finished, advance by one */
2870 wq->flush_color = work_next_color(wq->flush_color);
2871
2872 /* one color has been freed, handle overflow queue */
2873 if (!list_empty(&wq->flusher_overflow)) {
2874 /*
2875 * Assign the same color to all overflowed
2876 * flushers, advance work_color and append to
2877 * flusher_queue. This is the start-to-wait
2878 * phase for these overflowed flushers.
2879 */
2880 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2881 tmp->flush_color = wq->work_color;
2882
2883 wq->work_color = work_next_color(wq->work_color);
2884
2885 list_splice_tail_init(&wq->flusher_overflow,
2886 &wq->flusher_queue);
2887 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2888 }
2889
2890 if (list_empty(&wq->flusher_queue)) {
2891 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2892 break;
2893 }
2894
2895 /*
2896 * Need to flush more colors. Make the next flusher
2897 * the new first flusher and arm pwqs.
2898 */
2899 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2900 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2901
2902 list_del_init(&next->list);
2903 wq->first_flusher = next;
2904
2905 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2906 break;
2907
2908 /*
2909 * Meh... this color is already done, clear first
2910 * flusher and repeat cascading.
2911 */
2912 wq->first_flusher = NULL;
2913 }
2914
2915 out_unlock:
2916 mutex_unlock(&wq->mutex);
2917 }
2918 EXPORT_SYMBOL(flush_workqueue);
2919
2920 /**
2921 * drain_workqueue - drain a workqueue
2922 * @wq: workqueue to drain
2923 *
2924 * Wait until the workqueue becomes empty. While draining is in progress,
2925 * only chain queueing is allowed. IOW, only currently pending or running
2926 * work items on @wq can queue further work items on it. @wq is flushed
2927 * repeatedly until it becomes empty. The number of flushing is determined
2928 * by the depth of chaining and should be relatively short. Whine if it
2929 * takes too long.
2930 */
drain_workqueue(struct workqueue_struct * wq)2931 void drain_workqueue(struct workqueue_struct *wq)
2932 {
2933 unsigned int flush_cnt = 0;
2934 struct pool_workqueue *pwq;
2935
2936 /*
2937 * __queue_work() needs to test whether there are drainers, is much
2938 * hotter than drain_workqueue() and already looks at @wq->flags.
2939 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2940 */
2941 mutex_lock(&wq->mutex);
2942 if (!wq->nr_drainers++)
2943 wq->flags |= __WQ_DRAINING;
2944 mutex_unlock(&wq->mutex);
2945 reflush:
2946 flush_workqueue(wq);
2947
2948 mutex_lock(&wq->mutex);
2949
2950 for_each_pwq(pwq, wq) {
2951 bool drained;
2952
2953 raw_spin_lock_irq(&pwq->pool->lock);
2954 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2955 raw_spin_unlock_irq(&pwq->pool->lock);
2956
2957 if (drained)
2958 continue;
2959
2960 if (++flush_cnt == 10 ||
2961 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2962 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2963 wq->name, flush_cnt);
2964
2965 mutex_unlock(&wq->mutex);
2966 goto reflush;
2967 }
2968
2969 if (!--wq->nr_drainers)
2970 wq->flags &= ~__WQ_DRAINING;
2971 mutex_unlock(&wq->mutex);
2972 }
2973 EXPORT_SYMBOL_GPL(drain_workqueue);
2974
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2975 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2976 bool from_cancel)
2977 {
2978 struct worker *worker = NULL;
2979 struct worker_pool *pool;
2980 struct pool_workqueue *pwq;
2981
2982 might_sleep();
2983
2984 rcu_read_lock();
2985 pool = get_work_pool(work);
2986 if (!pool) {
2987 rcu_read_unlock();
2988 return false;
2989 }
2990
2991 raw_spin_lock_irq(&pool->lock);
2992 /* see the comment in try_to_grab_pending() with the same code */
2993 pwq = get_work_pwq(work);
2994 if (pwq) {
2995 if (unlikely(pwq->pool != pool))
2996 goto already_gone;
2997 } else {
2998 worker = find_worker_executing_work(pool, work);
2999 if (!worker)
3000 goto already_gone;
3001 pwq = worker->current_pwq;
3002 }
3003
3004 check_flush_dependency(pwq->wq, work);
3005
3006 insert_wq_barrier(pwq, barr, work, worker);
3007 raw_spin_unlock_irq(&pool->lock);
3008
3009 /*
3010 * Force a lock recursion deadlock when using flush_work() inside a
3011 * single-threaded or rescuer equipped workqueue.
3012 *
3013 * For single threaded workqueues the deadlock happens when the work
3014 * is after the work issuing the flush_work(). For rescuer equipped
3015 * workqueues the deadlock happens when the rescuer stalls, blocking
3016 * forward progress.
3017 */
3018 if (!from_cancel &&
3019 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3020 lock_map_acquire(&pwq->wq->lockdep_map);
3021 lock_map_release(&pwq->wq->lockdep_map);
3022 }
3023 rcu_read_unlock();
3024 return true;
3025 already_gone:
3026 raw_spin_unlock_irq(&pool->lock);
3027 rcu_read_unlock();
3028 return false;
3029 }
3030
__flush_work(struct work_struct * work,bool from_cancel)3031 static bool __flush_work(struct work_struct *work, bool from_cancel)
3032 {
3033 struct wq_barrier barr;
3034
3035 if (WARN_ON(!wq_online))
3036 return false;
3037
3038 if (WARN_ON(!work->func))
3039 return false;
3040
3041 if (!from_cancel) {
3042 lock_map_acquire(&work->lockdep_map);
3043 lock_map_release(&work->lockdep_map);
3044 }
3045
3046 if (start_flush_work(work, &barr, from_cancel)) {
3047 wait_for_completion(&barr.done);
3048 destroy_work_on_stack(&barr.work);
3049 return true;
3050 } else {
3051 return false;
3052 }
3053 }
3054
3055 /**
3056 * flush_work - wait for a work to finish executing the last queueing instance
3057 * @work: the work to flush
3058 *
3059 * Wait until @work has finished execution. @work is guaranteed to be idle
3060 * on return if it hasn't been requeued since flush started.
3061 *
3062 * Return:
3063 * %true if flush_work() waited for the work to finish execution,
3064 * %false if it was already idle.
3065 */
flush_work(struct work_struct * work)3066 bool flush_work(struct work_struct *work)
3067 {
3068 return __flush_work(work, false);
3069 }
3070 EXPORT_SYMBOL_GPL(flush_work);
3071
3072 struct cwt_wait {
3073 wait_queue_entry_t wait;
3074 struct work_struct *work;
3075 };
3076
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3077 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3078 {
3079 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3080
3081 if (cwait->work != key)
3082 return 0;
3083 return autoremove_wake_function(wait, mode, sync, key);
3084 }
3085
__cancel_work_timer(struct work_struct * work,bool is_dwork)3086 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3087 {
3088 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3089 unsigned long flags;
3090 int ret;
3091
3092 do {
3093 ret = try_to_grab_pending(work, is_dwork, &flags);
3094 /*
3095 * If someone else is already canceling, wait for it to
3096 * finish. flush_work() doesn't work for PREEMPT_NONE
3097 * because we may get scheduled between @work's completion
3098 * and the other canceling task resuming and clearing
3099 * CANCELING - flush_work() will return false immediately
3100 * as @work is no longer busy, try_to_grab_pending() will
3101 * return -ENOENT as @work is still being canceled and the
3102 * other canceling task won't be able to clear CANCELING as
3103 * we're hogging the CPU.
3104 *
3105 * Let's wait for completion using a waitqueue. As this
3106 * may lead to the thundering herd problem, use a custom
3107 * wake function which matches @work along with exclusive
3108 * wait and wakeup.
3109 */
3110 if (unlikely(ret == -ENOENT)) {
3111 struct cwt_wait cwait;
3112
3113 init_wait(&cwait.wait);
3114 cwait.wait.func = cwt_wakefn;
3115 cwait.work = work;
3116
3117 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3118 TASK_UNINTERRUPTIBLE);
3119 if (work_is_canceling(work))
3120 schedule();
3121 finish_wait(&cancel_waitq, &cwait.wait);
3122 }
3123 } while (unlikely(ret < 0));
3124
3125 /* tell other tasks trying to grab @work to back off */
3126 mark_work_canceling(work);
3127 local_irq_restore(flags);
3128
3129 /*
3130 * This allows canceling during early boot. We know that @work
3131 * isn't executing.
3132 */
3133 if (wq_online)
3134 __flush_work(work, true);
3135
3136 clear_work_data(work);
3137
3138 /*
3139 * Paired with prepare_to_wait() above so that either
3140 * waitqueue_active() is visible here or !work_is_canceling() is
3141 * visible there.
3142 */
3143 smp_mb();
3144 if (waitqueue_active(&cancel_waitq))
3145 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3146
3147 return ret;
3148 }
3149
3150 /**
3151 * cancel_work_sync - cancel a work and wait for it to finish
3152 * @work: the work to cancel
3153 *
3154 * Cancel @work and wait for its execution to finish. This function
3155 * can be used even if the work re-queues itself or migrates to
3156 * another workqueue. On return from this function, @work is
3157 * guaranteed to be not pending or executing on any CPU.
3158 *
3159 * cancel_work_sync(&delayed_work->work) must not be used for
3160 * delayed_work's. Use cancel_delayed_work_sync() instead.
3161 *
3162 * The caller must ensure that the workqueue on which @work was last
3163 * queued can't be destroyed before this function returns.
3164 *
3165 * Return:
3166 * %true if @work was pending, %false otherwise.
3167 */
cancel_work_sync(struct work_struct * work)3168 bool cancel_work_sync(struct work_struct *work)
3169 {
3170 return __cancel_work_timer(work, false);
3171 }
3172 EXPORT_SYMBOL_GPL(cancel_work_sync);
3173
3174 /**
3175 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3176 * @dwork: the delayed work to flush
3177 *
3178 * Delayed timer is cancelled and the pending work is queued for
3179 * immediate execution. Like flush_work(), this function only
3180 * considers the last queueing instance of @dwork.
3181 *
3182 * Return:
3183 * %true if flush_work() waited for the work to finish execution,
3184 * %false if it was already idle.
3185 */
flush_delayed_work(struct delayed_work * dwork)3186 bool flush_delayed_work(struct delayed_work *dwork)
3187 {
3188 local_irq_disable();
3189 if (del_timer_sync(&dwork->timer))
3190 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3191 local_irq_enable();
3192 return flush_work(&dwork->work);
3193 }
3194 EXPORT_SYMBOL(flush_delayed_work);
3195
3196 /**
3197 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3198 * @rwork: the rcu work to flush
3199 *
3200 * Return:
3201 * %true if flush_rcu_work() waited for the work to finish execution,
3202 * %false if it was already idle.
3203 */
flush_rcu_work(struct rcu_work * rwork)3204 bool flush_rcu_work(struct rcu_work *rwork)
3205 {
3206 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3207 rcu_barrier();
3208 flush_work(&rwork->work);
3209 return true;
3210 } else {
3211 return flush_work(&rwork->work);
3212 }
3213 }
3214 EXPORT_SYMBOL(flush_rcu_work);
3215
__cancel_work(struct work_struct * work,bool is_dwork)3216 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3217 {
3218 unsigned long flags;
3219 int ret;
3220
3221 do {
3222 ret = try_to_grab_pending(work, is_dwork, &flags);
3223 } while (unlikely(ret == -EAGAIN));
3224
3225 if (unlikely(ret < 0))
3226 return false;
3227
3228 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3229 local_irq_restore(flags);
3230 return ret;
3231 }
3232
3233 /**
3234 * cancel_delayed_work - cancel a delayed work
3235 * @dwork: delayed_work to cancel
3236 *
3237 * Kill off a pending delayed_work.
3238 *
3239 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3240 * pending.
3241 *
3242 * Note:
3243 * The work callback function may still be running on return, unless
3244 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3245 * use cancel_delayed_work_sync() to wait on it.
3246 *
3247 * This function is safe to call from any context including IRQ handler.
3248 */
cancel_delayed_work(struct delayed_work * dwork)3249 bool cancel_delayed_work(struct delayed_work *dwork)
3250 {
3251 return __cancel_work(&dwork->work, true);
3252 }
3253 EXPORT_SYMBOL(cancel_delayed_work);
3254
3255 /**
3256 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3257 * @dwork: the delayed work cancel
3258 *
3259 * This is cancel_work_sync() for delayed works.
3260 *
3261 * Return:
3262 * %true if @dwork was pending, %false otherwise.
3263 */
cancel_delayed_work_sync(struct delayed_work * dwork)3264 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3265 {
3266 return __cancel_work_timer(&dwork->work, true);
3267 }
3268 EXPORT_SYMBOL(cancel_delayed_work_sync);
3269
3270 /**
3271 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3272 * @func: the function to call
3273 *
3274 * schedule_on_each_cpu() executes @func on each online CPU using the
3275 * system workqueue and blocks until all CPUs have completed.
3276 * schedule_on_each_cpu() is very slow.
3277 *
3278 * Return:
3279 * 0 on success, -errno on failure.
3280 */
schedule_on_each_cpu(work_func_t func)3281 int schedule_on_each_cpu(work_func_t func)
3282 {
3283 int cpu;
3284 struct work_struct __percpu *works;
3285
3286 works = alloc_percpu(struct work_struct);
3287 if (!works)
3288 return -ENOMEM;
3289
3290 get_online_cpus();
3291
3292 for_each_online_cpu(cpu) {
3293 struct work_struct *work = per_cpu_ptr(works, cpu);
3294
3295 INIT_WORK(work, func);
3296 schedule_work_on(cpu, work);
3297 }
3298
3299 for_each_online_cpu(cpu)
3300 flush_work(per_cpu_ptr(works, cpu));
3301
3302 put_online_cpus();
3303 free_percpu(works);
3304 return 0;
3305 }
3306
3307 /**
3308 * execute_in_process_context - reliably execute the routine with user context
3309 * @fn: the function to execute
3310 * @ew: guaranteed storage for the execute work structure (must
3311 * be available when the work executes)
3312 *
3313 * Executes the function immediately if process context is available,
3314 * otherwise schedules the function for delayed execution.
3315 *
3316 * Return: 0 - function was executed
3317 * 1 - function was scheduled for execution
3318 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3319 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3320 {
3321 if (!in_interrupt()) {
3322 fn(&ew->work);
3323 return 0;
3324 }
3325
3326 INIT_WORK(&ew->work, fn);
3327 schedule_work(&ew->work);
3328
3329 return 1;
3330 }
3331 EXPORT_SYMBOL_GPL(execute_in_process_context);
3332
3333 /**
3334 * free_workqueue_attrs - free a workqueue_attrs
3335 * @attrs: workqueue_attrs to free
3336 *
3337 * Undo alloc_workqueue_attrs().
3338 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3339 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3340 {
3341 if (attrs) {
3342 free_cpumask_var(attrs->cpumask);
3343 kfree(attrs);
3344 }
3345 }
3346
3347 /**
3348 * alloc_workqueue_attrs - allocate a workqueue_attrs
3349 *
3350 * Allocate a new workqueue_attrs, initialize with default settings and
3351 * return it.
3352 *
3353 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3354 */
alloc_workqueue_attrs(void)3355 struct workqueue_attrs *alloc_workqueue_attrs(void)
3356 {
3357 struct workqueue_attrs *attrs;
3358
3359 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3360 if (!attrs)
3361 goto fail;
3362 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3363 goto fail;
3364
3365 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3366 return attrs;
3367 fail:
3368 free_workqueue_attrs(attrs);
3369 return NULL;
3370 }
3371
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3372 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3373 const struct workqueue_attrs *from)
3374 {
3375 to->nice = from->nice;
3376 cpumask_copy(to->cpumask, from->cpumask);
3377 /*
3378 * Unlike hash and equality test, this function doesn't ignore
3379 * ->no_numa as it is used for both pool and wq attrs. Instead,
3380 * get_unbound_pool() explicitly clears ->no_numa after copying.
3381 */
3382 to->no_numa = from->no_numa;
3383 }
3384
3385 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3386 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3387 {
3388 u32 hash = 0;
3389
3390 hash = jhash_1word(attrs->nice, hash);
3391 hash = jhash(cpumask_bits(attrs->cpumask),
3392 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3393 return hash;
3394 }
3395
3396 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3397 static bool wqattrs_equal(const struct workqueue_attrs *a,
3398 const struct workqueue_attrs *b)
3399 {
3400 if (a->nice != b->nice)
3401 return false;
3402 if (!cpumask_equal(a->cpumask, b->cpumask))
3403 return false;
3404 return true;
3405 }
3406
3407 /**
3408 * init_worker_pool - initialize a newly zalloc'd worker_pool
3409 * @pool: worker_pool to initialize
3410 *
3411 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3412 *
3413 * Return: 0 on success, -errno on failure. Even on failure, all fields
3414 * inside @pool proper are initialized and put_unbound_pool() can be called
3415 * on @pool safely to release it.
3416 */
init_worker_pool(struct worker_pool * pool)3417 static int init_worker_pool(struct worker_pool *pool)
3418 {
3419 raw_spin_lock_init(&pool->lock);
3420 pool->id = -1;
3421 pool->cpu = -1;
3422 pool->node = NUMA_NO_NODE;
3423 pool->flags |= POOL_DISASSOCIATED;
3424 pool->watchdog_ts = jiffies;
3425 INIT_LIST_HEAD(&pool->worklist);
3426 INIT_LIST_HEAD(&pool->idle_list);
3427 hash_init(pool->busy_hash);
3428
3429 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3430
3431 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3432
3433 INIT_LIST_HEAD(&pool->workers);
3434
3435 ida_init(&pool->worker_ida);
3436 INIT_HLIST_NODE(&pool->hash_node);
3437 pool->refcnt = 1;
3438
3439 /* shouldn't fail above this point */
3440 pool->attrs = alloc_workqueue_attrs();
3441 if (!pool->attrs)
3442 return -ENOMEM;
3443 return 0;
3444 }
3445
3446 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3447 static void wq_init_lockdep(struct workqueue_struct *wq)
3448 {
3449 char *lock_name;
3450
3451 lockdep_register_key(&wq->key);
3452 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3453 if (!lock_name)
3454 lock_name = wq->name;
3455
3456 wq->lock_name = lock_name;
3457 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3458 }
3459
wq_unregister_lockdep(struct workqueue_struct * wq)3460 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3461 {
3462 lockdep_unregister_key(&wq->key);
3463 }
3464
wq_free_lockdep(struct workqueue_struct * wq)3465 static void wq_free_lockdep(struct workqueue_struct *wq)
3466 {
3467 if (wq->lock_name != wq->name)
3468 kfree(wq->lock_name);
3469 }
3470 #else
wq_init_lockdep(struct workqueue_struct * wq)3471 static void wq_init_lockdep(struct workqueue_struct *wq)
3472 {
3473 }
3474
wq_unregister_lockdep(struct workqueue_struct * wq)3475 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3476 {
3477 }
3478
wq_free_lockdep(struct workqueue_struct * wq)3479 static void wq_free_lockdep(struct workqueue_struct *wq)
3480 {
3481 }
3482 #endif
3483
rcu_free_wq(struct rcu_head * rcu)3484 static void rcu_free_wq(struct rcu_head *rcu)
3485 {
3486 struct workqueue_struct *wq =
3487 container_of(rcu, struct workqueue_struct, rcu);
3488
3489 wq_free_lockdep(wq);
3490
3491 if (!(wq->flags & WQ_UNBOUND))
3492 free_percpu(wq->cpu_pwqs);
3493 else
3494 free_workqueue_attrs(wq->unbound_attrs);
3495
3496 kfree(wq);
3497 }
3498
rcu_free_pool(struct rcu_head * rcu)3499 static void rcu_free_pool(struct rcu_head *rcu)
3500 {
3501 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3502
3503 ida_destroy(&pool->worker_ida);
3504 free_workqueue_attrs(pool->attrs);
3505 kfree(pool);
3506 }
3507
3508 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3509 static bool wq_manager_inactive(struct worker_pool *pool)
3510 {
3511 raw_spin_lock_irq(&pool->lock);
3512
3513 if (pool->flags & POOL_MANAGER_ACTIVE) {
3514 raw_spin_unlock_irq(&pool->lock);
3515 return false;
3516 }
3517 return true;
3518 }
3519
3520 /**
3521 * put_unbound_pool - put a worker_pool
3522 * @pool: worker_pool to put
3523 *
3524 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3525 * safe manner. get_unbound_pool() calls this function on its failure path
3526 * and this function should be able to release pools which went through,
3527 * successfully or not, init_worker_pool().
3528 *
3529 * Should be called with wq_pool_mutex held.
3530 */
put_unbound_pool(struct worker_pool * pool)3531 static void put_unbound_pool(struct worker_pool *pool)
3532 {
3533 DECLARE_COMPLETION_ONSTACK(detach_completion);
3534 struct worker *worker;
3535
3536 lockdep_assert_held(&wq_pool_mutex);
3537
3538 if (--pool->refcnt)
3539 return;
3540
3541 /* sanity checks */
3542 if (WARN_ON(!(pool->cpu < 0)) ||
3543 WARN_ON(!list_empty(&pool->worklist)))
3544 return;
3545
3546 /* release id and unhash */
3547 if (pool->id >= 0)
3548 idr_remove(&worker_pool_idr, pool->id);
3549 hash_del(&pool->hash_node);
3550
3551 /*
3552 * Become the manager and destroy all workers. This prevents
3553 * @pool's workers from blocking on attach_mutex. We're the last
3554 * manager and @pool gets freed with the flag set.
3555 * Because of how wq_manager_inactive() works, we will hold the
3556 * spinlock after a successful wait.
3557 */
3558 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3559 TASK_UNINTERRUPTIBLE);
3560 pool->flags |= POOL_MANAGER_ACTIVE;
3561
3562 while ((worker = first_idle_worker(pool)))
3563 destroy_worker(worker);
3564 WARN_ON(pool->nr_workers || pool->nr_idle);
3565 raw_spin_unlock_irq(&pool->lock);
3566
3567 mutex_lock(&wq_pool_attach_mutex);
3568 if (!list_empty(&pool->workers))
3569 pool->detach_completion = &detach_completion;
3570 mutex_unlock(&wq_pool_attach_mutex);
3571
3572 if (pool->detach_completion)
3573 wait_for_completion(pool->detach_completion);
3574
3575 /* shut down the timers */
3576 del_timer_sync(&pool->idle_timer);
3577 del_timer_sync(&pool->mayday_timer);
3578
3579 /* RCU protected to allow dereferences from get_work_pool() */
3580 call_rcu(&pool->rcu, rcu_free_pool);
3581 }
3582
3583 /**
3584 * get_unbound_pool - get a worker_pool with the specified attributes
3585 * @attrs: the attributes of the worker_pool to get
3586 *
3587 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3588 * reference count and return it. If there already is a matching
3589 * worker_pool, it will be used; otherwise, this function attempts to
3590 * create a new one.
3591 *
3592 * Should be called with wq_pool_mutex held.
3593 *
3594 * Return: On success, a worker_pool with the same attributes as @attrs.
3595 * On failure, %NULL.
3596 */
get_unbound_pool(const struct workqueue_attrs * attrs)3597 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3598 {
3599 u32 hash = wqattrs_hash(attrs);
3600 struct worker_pool *pool;
3601 int node;
3602 int target_node = NUMA_NO_NODE;
3603
3604 lockdep_assert_held(&wq_pool_mutex);
3605
3606 /* do we already have a matching pool? */
3607 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3608 if (wqattrs_equal(pool->attrs, attrs)) {
3609 pool->refcnt++;
3610 return pool;
3611 }
3612 }
3613
3614 /* if cpumask is contained inside a NUMA node, we belong to that node */
3615 if (wq_numa_enabled) {
3616 for_each_node(node) {
3617 if (cpumask_subset(attrs->cpumask,
3618 wq_numa_possible_cpumask[node])) {
3619 target_node = node;
3620 break;
3621 }
3622 }
3623 }
3624
3625 /* nope, create a new one */
3626 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3627 if (!pool || init_worker_pool(pool) < 0)
3628 goto fail;
3629
3630 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3631 copy_workqueue_attrs(pool->attrs, attrs);
3632 pool->node = target_node;
3633
3634 /*
3635 * no_numa isn't a worker_pool attribute, always clear it. See
3636 * 'struct workqueue_attrs' comments for detail.
3637 */
3638 pool->attrs->no_numa = false;
3639
3640 if (worker_pool_assign_id(pool) < 0)
3641 goto fail;
3642
3643 /* create and start the initial worker */
3644 if (wq_online && !create_worker(pool))
3645 goto fail;
3646
3647 /* install */
3648 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3649
3650 return pool;
3651 fail:
3652 if (pool)
3653 put_unbound_pool(pool);
3654 return NULL;
3655 }
3656
rcu_free_pwq(struct rcu_head * rcu)3657 static void rcu_free_pwq(struct rcu_head *rcu)
3658 {
3659 kmem_cache_free(pwq_cache,
3660 container_of(rcu, struct pool_workqueue, rcu));
3661 }
3662
3663 /*
3664 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3665 * and needs to be destroyed.
3666 */
pwq_unbound_release_workfn(struct work_struct * work)3667 static void pwq_unbound_release_workfn(struct work_struct *work)
3668 {
3669 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3670 unbound_release_work);
3671 struct workqueue_struct *wq = pwq->wq;
3672 struct worker_pool *pool = pwq->pool;
3673 bool is_last = false;
3674
3675 /*
3676 * when @pwq is not linked, it doesn't hold any reference to the
3677 * @wq, and @wq is invalid to access.
3678 */
3679 if (!list_empty(&pwq->pwqs_node)) {
3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 return;
3682
3683 mutex_lock(&wq->mutex);
3684 list_del_rcu(&pwq->pwqs_node);
3685 is_last = list_empty(&wq->pwqs);
3686 mutex_unlock(&wq->mutex);
3687 }
3688
3689 mutex_lock(&wq_pool_mutex);
3690 put_unbound_pool(pool);
3691 mutex_unlock(&wq_pool_mutex);
3692
3693 call_rcu(&pwq->rcu, rcu_free_pwq);
3694
3695 /*
3696 * If we're the last pwq going away, @wq is already dead and no one
3697 * is gonna access it anymore. Schedule RCU free.
3698 */
3699 if (is_last) {
3700 wq_unregister_lockdep(wq);
3701 call_rcu(&wq->rcu, rcu_free_wq);
3702 }
3703 }
3704
3705 /**
3706 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3707 * @pwq: target pool_workqueue
3708 *
3709 * If @pwq isn't freezing, set @pwq->max_active to the associated
3710 * workqueue's saved_max_active and activate delayed work items
3711 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3712 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3713 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3714 {
3715 struct workqueue_struct *wq = pwq->wq;
3716 bool freezable = wq->flags & WQ_FREEZABLE;
3717 unsigned long flags;
3718
3719 /* for @wq->saved_max_active */
3720 lockdep_assert_held(&wq->mutex);
3721
3722 /* fast exit for non-freezable wqs */
3723 if (!freezable && pwq->max_active == wq->saved_max_active)
3724 return;
3725
3726 /* this function can be called during early boot w/ irq disabled */
3727 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3728
3729 /*
3730 * During [un]freezing, the caller is responsible for ensuring that
3731 * this function is called at least once after @workqueue_freezing
3732 * is updated and visible.
3733 */
3734 if (!freezable || !workqueue_freezing) {
3735 bool kick = false;
3736
3737 pwq->max_active = wq->saved_max_active;
3738
3739 while (!list_empty(&pwq->delayed_works) &&
3740 pwq->nr_active < pwq->max_active) {
3741 pwq_activate_first_delayed(pwq);
3742 kick = true;
3743 }
3744
3745 /*
3746 * Need to kick a worker after thawed or an unbound wq's
3747 * max_active is bumped. In realtime scenarios, always kicking a
3748 * worker will cause interference on the isolated cpu cores, so
3749 * let's kick iff work items were activated.
3750 */
3751 if (kick)
3752 wake_up_worker(pwq->pool);
3753 } else {
3754 pwq->max_active = 0;
3755 }
3756
3757 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3758 }
3759
3760 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3761 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3762 struct worker_pool *pool)
3763 {
3764 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3765
3766 memset(pwq, 0, sizeof(*pwq));
3767
3768 pwq->pool = pool;
3769 pwq->wq = wq;
3770 pwq->flush_color = -1;
3771 pwq->refcnt = 1;
3772 INIT_LIST_HEAD(&pwq->delayed_works);
3773 INIT_LIST_HEAD(&pwq->pwqs_node);
3774 INIT_LIST_HEAD(&pwq->mayday_node);
3775 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3776 }
3777
3778 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3779 static void link_pwq(struct pool_workqueue *pwq)
3780 {
3781 struct workqueue_struct *wq = pwq->wq;
3782
3783 lockdep_assert_held(&wq->mutex);
3784
3785 /* may be called multiple times, ignore if already linked */
3786 if (!list_empty(&pwq->pwqs_node))
3787 return;
3788
3789 /* set the matching work_color */
3790 pwq->work_color = wq->work_color;
3791
3792 /* sync max_active to the current setting */
3793 pwq_adjust_max_active(pwq);
3794
3795 /* link in @pwq */
3796 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3797 }
3798
3799 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3800 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3801 const struct workqueue_attrs *attrs)
3802 {
3803 struct worker_pool *pool;
3804 struct pool_workqueue *pwq;
3805
3806 lockdep_assert_held(&wq_pool_mutex);
3807
3808 pool = get_unbound_pool(attrs);
3809 if (!pool)
3810 return NULL;
3811
3812 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3813 if (!pwq) {
3814 put_unbound_pool(pool);
3815 return NULL;
3816 }
3817
3818 init_pwq(pwq, wq, pool);
3819 return pwq;
3820 }
3821
3822 /**
3823 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3824 * @attrs: the wq_attrs of the default pwq of the target workqueue
3825 * @node: the target NUMA node
3826 * @cpu_going_down: if >= 0, the CPU to consider as offline
3827 * @cpumask: outarg, the resulting cpumask
3828 *
3829 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3830 * @cpu_going_down is >= 0, that cpu is considered offline during
3831 * calculation. The result is stored in @cpumask.
3832 *
3833 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3834 * enabled and @node has online CPUs requested by @attrs, the returned
3835 * cpumask is the intersection of the possible CPUs of @node and
3836 * @attrs->cpumask.
3837 *
3838 * The caller is responsible for ensuring that the cpumask of @node stays
3839 * stable.
3840 *
3841 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3842 * %false if equal.
3843 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3844 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3845 int cpu_going_down, cpumask_t *cpumask)
3846 {
3847 if (!wq_numa_enabled || attrs->no_numa)
3848 goto use_dfl;
3849
3850 /* does @node have any online CPUs @attrs wants? */
3851 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3852 if (cpu_going_down >= 0)
3853 cpumask_clear_cpu(cpu_going_down, cpumask);
3854
3855 if (cpumask_empty(cpumask))
3856 goto use_dfl;
3857
3858 /* yeap, return possible CPUs in @node that @attrs wants */
3859 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3860
3861 if (cpumask_empty(cpumask)) {
3862 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3863 "possible intersect\n");
3864 return false;
3865 }
3866
3867 return !cpumask_equal(cpumask, attrs->cpumask);
3868
3869 use_dfl:
3870 cpumask_copy(cpumask, attrs->cpumask);
3871 return false;
3872 }
3873
3874 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3875 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3876 int node,
3877 struct pool_workqueue *pwq)
3878 {
3879 struct pool_workqueue *old_pwq;
3880
3881 lockdep_assert_held(&wq_pool_mutex);
3882 lockdep_assert_held(&wq->mutex);
3883
3884 /* link_pwq() can handle duplicate calls */
3885 link_pwq(pwq);
3886
3887 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3888 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3889 return old_pwq;
3890 }
3891
3892 /* context to store the prepared attrs & pwqs before applying */
3893 struct apply_wqattrs_ctx {
3894 struct workqueue_struct *wq; /* target workqueue */
3895 struct workqueue_attrs *attrs; /* attrs to apply */
3896 struct list_head list; /* queued for batching commit */
3897 struct pool_workqueue *dfl_pwq;
3898 struct pool_workqueue *pwq_tbl[];
3899 };
3900
3901 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3902 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3903 {
3904 if (ctx) {
3905 int node;
3906
3907 for_each_node(node)
3908 put_pwq_unlocked(ctx->pwq_tbl[node]);
3909 put_pwq_unlocked(ctx->dfl_pwq);
3910
3911 free_workqueue_attrs(ctx->attrs);
3912
3913 kfree(ctx);
3914 }
3915 }
3916
3917 /* allocate the attrs and pwqs for later installation */
3918 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3919 apply_wqattrs_prepare(struct workqueue_struct *wq,
3920 const struct workqueue_attrs *attrs)
3921 {
3922 struct apply_wqattrs_ctx *ctx;
3923 struct workqueue_attrs *new_attrs, *tmp_attrs;
3924 int node;
3925
3926 lockdep_assert_held(&wq_pool_mutex);
3927
3928 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3929
3930 new_attrs = alloc_workqueue_attrs();
3931 tmp_attrs = alloc_workqueue_attrs();
3932 if (!ctx || !new_attrs || !tmp_attrs)
3933 goto out_free;
3934
3935 /*
3936 * Calculate the attrs of the default pwq.
3937 * If the user configured cpumask doesn't overlap with the
3938 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3939 */
3940 copy_workqueue_attrs(new_attrs, attrs);
3941 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3942 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3943 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3944
3945 /*
3946 * We may create multiple pwqs with differing cpumasks. Make a
3947 * copy of @new_attrs which will be modified and used to obtain
3948 * pools.
3949 */
3950 copy_workqueue_attrs(tmp_attrs, new_attrs);
3951
3952 /*
3953 * If something goes wrong during CPU up/down, we'll fall back to
3954 * the default pwq covering whole @attrs->cpumask. Always create
3955 * it even if we don't use it immediately.
3956 */
3957 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3958 if (!ctx->dfl_pwq)
3959 goto out_free;
3960
3961 for_each_node(node) {
3962 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3963 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3964 if (!ctx->pwq_tbl[node])
3965 goto out_free;
3966 } else {
3967 ctx->dfl_pwq->refcnt++;
3968 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3969 }
3970 }
3971
3972 /* save the user configured attrs and sanitize it. */
3973 copy_workqueue_attrs(new_attrs, attrs);
3974 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3975 ctx->attrs = new_attrs;
3976
3977 ctx->wq = wq;
3978 free_workqueue_attrs(tmp_attrs);
3979 return ctx;
3980
3981 out_free:
3982 free_workqueue_attrs(tmp_attrs);
3983 free_workqueue_attrs(new_attrs);
3984 apply_wqattrs_cleanup(ctx);
3985 return NULL;
3986 }
3987
3988 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3989 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3990 {
3991 int node;
3992
3993 /* all pwqs have been created successfully, let's install'em */
3994 mutex_lock(&ctx->wq->mutex);
3995
3996 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3997
3998 /* save the previous pwq and install the new one */
3999 for_each_node(node)
4000 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4001 ctx->pwq_tbl[node]);
4002
4003 /* @dfl_pwq might not have been used, ensure it's linked */
4004 link_pwq(ctx->dfl_pwq);
4005 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4006
4007 mutex_unlock(&ctx->wq->mutex);
4008 }
4009
apply_wqattrs_lock(void)4010 static void apply_wqattrs_lock(void)
4011 {
4012 /* CPUs should stay stable across pwq creations and installations */
4013 get_online_cpus();
4014 mutex_lock(&wq_pool_mutex);
4015 }
4016
apply_wqattrs_unlock(void)4017 static void apply_wqattrs_unlock(void)
4018 {
4019 mutex_unlock(&wq_pool_mutex);
4020 put_online_cpus();
4021 }
4022
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4023 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4024 const struct workqueue_attrs *attrs)
4025 {
4026 struct apply_wqattrs_ctx *ctx;
4027
4028 /* only unbound workqueues can change attributes */
4029 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4030 return -EINVAL;
4031
4032 /* creating multiple pwqs breaks ordering guarantee */
4033 if (!list_empty(&wq->pwqs)) {
4034 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4035 return -EINVAL;
4036
4037 wq->flags &= ~__WQ_ORDERED;
4038 }
4039
4040 ctx = apply_wqattrs_prepare(wq, attrs);
4041 if (!ctx)
4042 return -ENOMEM;
4043
4044 /* the ctx has been prepared successfully, let's commit it */
4045 apply_wqattrs_commit(ctx);
4046 apply_wqattrs_cleanup(ctx);
4047
4048 return 0;
4049 }
4050
4051 /**
4052 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4053 * @wq: the target workqueue
4054 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4055 *
4056 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4057 * machines, this function maps a separate pwq to each NUMA node with
4058 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4059 * NUMA node it was issued on. Older pwqs are released as in-flight work
4060 * items finish. Note that a work item which repeatedly requeues itself
4061 * back-to-back will stay on its current pwq.
4062 *
4063 * Performs GFP_KERNEL allocations.
4064 *
4065 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4066 *
4067 * Return: 0 on success and -errno on failure.
4068 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4069 int apply_workqueue_attrs(struct workqueue_struct *wq,
4070 const struct workqueue_attrs *attrs)
4071 {
4072 int ret;
4073
4074 lockdep_assert_cpus_held();
4075
4076 mutex_lock(&wq_pool_mutex);
4077 ret = apply_workqueue_attrs_locked(wq, attrs);
4078 mutex_unlock(&wq_pool_mutex);
4079
4080 return ret;
4081 }
4082
4083 /**
4084 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4085 * @wq: the target workqueue
4086 * @cpu: the CPU coming up or going down
4087 * @online: whether @cpu is coming up or going down
4088 *
4089 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4090 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4091 * @wq accordingly.
4092 *
4093 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4094 * falls back to @wq->dfl_pwq which may not be optimal but is always
4095 * correct.
4096 *
4097 * Note that when the last allowed CPU of a NUMA node goes offline for a
4098 * workqueue with a cpumask spanning multiple nodes, the workers which were
4099 * already executing the work items for the workqueue will lose their CPU
4100 * affinity and may execute on any CPU. This is similar to how per-cpu
4101 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4102 * affinity, it's the user's responsibility to flush the work item from
4103 * CPU_DOWN_PREPARE.
4104 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4105 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4106 bool online)
4107 {
4108 int node = cpu_to_node(cpu);
4109 int cpu_off = online ? -1 : cpu;
4110 struct pool_workqueue *old_pwq = NULL, *pwq;
4111 struct workqueue_attrs *target_attrs;
4112 cpumask_t *cpumask;
4113
4114 lockdep_assert_held(&wq_pool_mutex);
4115
4116 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4117 wq->unbound_attrs->no_numa)
4118 return;
4119
4120 /*
4121 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4122 * Let's use a preallocated one. The following buf is protected by
4123 * CPU hotplug exclusion.
4124 */
4125 target_attrs = wq_update_unbound_numa_attrs_buf;
4126 cpumask = target_attrs->cpumask;
4127
4128 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4129 pwq = unbound_pwq_by_node(wq, node);
4130
4131 /*
4132 * Let's determine what needs to be done. If the target cpumask is
4133 * different from the default pwq's, we need to compare it to @pwq's
4134 * and create a new one if they don't match. If the target cpumask
4135 * equals the default pwq's, the default pwq should be used.
4136 */
4137 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4138 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4139 return;
4140 } else {
4141 goto use_dfl_pwq;
4142 }
4143
4144 /* create a new pwq */
4145 pwq = alloc_unbound_pwq(wq, target_attrs);
4146 if (!pwq) {
4147 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4148 wq->name);
4149 goto use_dfl_pwq;
4150 }
4151
4152 /* Install the new pwq. */
4153 mutex_lock(&wq->mutex);
4154 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4155 goto out_unlock;
4156
4157 use_dfl_pwq:
4158 mutex_lock(&wq->mutex);
4159 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4160 get_pwq(wq->dfl_pwq);
4161 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4162 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4163 out_unlock:
4164 mutex_unlock(&wq->mutex);
4165 put_pwq_unlocked(old_pwq);
4166 }
4167
alloc_and_link_pwqs(struct workqueue_struct * wq)4168 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4169 {
4170 bool highpri = wq->flags & WQ_HIGHPRI;
4171 int cpu, ret;
4172
4173 if (!(wq->flags & WQ_UNBOUND)) {
4174 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4175 if (!wq->cpu_pwqs)
4176 return -ENOMEM;
4177
4178 for_each_possible_cpu(cpu) {
4179 struct pool_workqueue *pwq =
4180 per_cpu_ptr(wq->cpu_pwqs, cpu);
4181 struct worker_pool *cpu_pools =
4182 per_cpu(cpu_worker_pools, cpu);
4183
4184 init_pwq(pwq, wq, &cpu_pools[highpri]);
4185
4186 mutex_lock(&wq->mutex);
4187 link_pwq(pwq);
4188 mutex_unlock(&wq->mutex);
4189 }
4190 return 0;
4191 }
4192
4193 get_online_cpus();
4194 if (wq->flags & __WQ_ORDERED) {
4195 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4196 /* there should only be single pwq for ordering guarantee */
4197 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4198 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4199 "ordering guarantee broken for workqueue %s\n", wq->name);
4200 } else {
4201 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4202 }
4203 put_online_cpus();
4204
4205 return ret;
4206 }
4207
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4208 static int wq_clamp_max_active(int max_active, unsigned int flags,
4209 const char *name)
4210 {
4211 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4212
4213 if (max_active < 1 || max_active > lim)
4214 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4215 max_active, name, 1, lim);
4216
4217 return clamp_val(max_active, 1, lim);
4218 }
4219
4220 /*
4221 * Workqueues which may be used during memory reclaim should have a rescuer
4222 * to guarantee forward progress.
4223 */
init_rescuer(struct workqueue_struct * wq)4224 static int init_rescuer(struct workqueue_struct *wq)
4225 {
4226 struct worker *rescuer;
4227 int ret;
4228
4229 if (!(wq->flags & WQ_MEM_RECLAIM))
4230 return 0;
4231
4232 rescuer = alloc_worker(NUMA_NO_NODE);
4233 if (!rescuer)
4234 return -ENOMEM;
4235
4236 rescuer->rescue_wq = wq;
4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4238 if (IS_ERR(rescuer->task)) {
4239 ret = PTR_ERR(rescuer->task);
4240 kfree(rescuer);
4241 return ret;
4242 }
4243
4244 wq->rescuer = rescuer;
4245 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4246 wake_up_process(rescuer->task);
4247
4248 return 0;
4249 }
4250
4251 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4252 struct workqueue_struct *alloc_workqueue(const char *fmt,
4253 unsigned int flags,
4254 int max_active, ...)
4255 {
4256 size_t tbl_size = 0;
4257 va_list args;
4258 struct workqueue_struct *wq;
4259 struct pool_workqueue *pwq;
4260
4261 /*
4262 * Unbound && max_active == 1 used to imply ordered, which is no
4263 * longer the case on NUMA machines due to per-node pools. While
4264 * alloc_ordered_workqueue() is the right way to create an ordered
4265 * workqueue, keep the previous behavior to avoid subtle breakages
4266 * on NUMA.
4267 */
4268 if ((flags & WQ_UNBOUND) && max_active == 1)
4269 flags |= __WQ_ORDERED;
4270
4271 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4272 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4273 flags |= WQ_UNBOUND;
4274
4275 /* allocate wq and format name */
4276 if (flags & WQ_UNBOUND)
4277 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4278
4279 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4280 if (!wq)
4281 return NULL;
4282
4283 if (flags & WQ_UNBOUND) {
4284 wq->unbound_attrs = alloc_workqueue_attrs();
4285 if (!wq->unbound_attrs)
4286 goto err_free_wq;
4287 }
4288
4289 va_start(args, max_active);
4290 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4291 va_end(args);
4292
4293 max_active = max_active ?: WQ_DFL_ACTIVE;
4294 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4295
4296 /* init wq */
4297 wq->flags = flags;
4298 wq->saved_max_active = max_active;
4299 mutex_init(&wq->mutex);
4300 atomic_set(&wq->nr_pwqs_to_flush, 0);
4301 INIT_LIST_HEAD(&wq->pwqs);
4302 INIT_LIST_HEAD(&wq->flusher_queue);
4303 INIT_LIST_HEAD(&wq->flusher_overflow);
4304 INIT_LIST_HEAD(&wq->maydays);
4305
4306 wq_init_lockdep(wq);
4307 INIT_LIST_HEAD(&wq->list);
4308
4309 if (alloc_and_link_pwqs(wq) < 0)
4310 goto err_unreg_lockdep;
4311
4312 if (wq_online && init_rescuer(wq) < 0)
4313 goto err_destroy;
4314
4315 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4316 goto err_destroy;
4317
4318 /*
4319 * wq_pool_mutex protects global freeze state and workqueues list.
4320 * Grab it, adjust max_active and add the new @wq to workqueues
4321 * list.
4322 */
4323 mutex_lock(&wq_pool_mutex);
4324
4325 mutex_lock(&wq->mutex);
4326 for_each_pwq(pwq, wq)
4327 pwq_adjust_max_active(pwq);
4328 mutex_unlock(&wq->mutex);
4329
4330 list_add_tail_rcu(&wq->list, &workqueues);
4331
4332 mutex_unlock(&wq_pool_mutex);
4333
4334 return wq;
4335
4336 err_unreg_lockdep:
4337 wq_unregister_lockdep(wq);
4338 wq_free_lockdep(wq);
4339 err_free_wq:
4340 free_workqueue_attrs(wq->unbound_attrs);
4341 kfree(wq);
4342 return NULL;
4343 err_destroy:
4344 destroy_workqueue(wq);
4345 return NULL;
4346 }
4347 EXPORT_SYMBOL_GPL(alloc_workqueue);
4348
pwq_busy(struct pool_workqueue * pwq)4349 static bool pwq_busy(struct pool_workqueue *pwq)
4350 {
4351 int i;
4352
4353 for (i = 0; i < WORK_NR_COLORS; i++)
4354 if (pwq->nr_in_flight[i])
4355 return true;
4356
4357 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4358 return true;
4359 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4360 return true;
4361
4362 return false;
4363 }
4364
4365 /**
4366 * destroy_workqueue - safely terminate a workqueue
4367 * @wq: target workqueue
4368 *
4369 * Safely destroy a workqueue. All work currently pending will be done first.
4370 */
destroy_workqueue(struct workqueue_struct * wq)4371 void destroy_workqueue(struct workqueue_struct *wq)
4372 {
4373 struct pool_workqueue *pwq;
4374 int node;
4375
4376 /*
4377 * Remove it from sysfs first so that sanity check failure doesn't
4378 * lead to sysfs name conflicts.
4379 */
4380 workqueue_sysfs_unregister(wq);
4381
4382 /* drain it before proceeding with destruction */
4383 drain_workqueue(wq);
4384
4385 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4386 if (wq->rescuer) {
4387 struct worker *rescuer = wq->rescuer;
4388
4389 /* this prevents new queueing */
4390 raw_spin_lock_irq(&wq_mayday_lock);
4391 wq->rescuer = NULL;
4392 raw_spin_unlock_irq(&wq_mayday_lock);
4393
4394 /* rescuer will empty maydays list before exiting */
4395 kthread_stop(rescuer->task);
4396 kfree(rescuer);
4397 }
4398
4399 /*
4400 * Sanity checks - grab all the locks so that we wait for all
4401 * in-flight operations which may do put_pwq().
4402 */
4403 mutex_lock(&wq_pool_mutex);
4404 mutex_lock(&wq->mutex);
4405 for_each_pwq(pwq, wq) {
4406 raw_spin_lock_irq(&pwq->pool->lock);
4407 if (WARN_ON(pwq_busy(pwq))) {
4408 pr_warn("%s: %s has the following busy pwq\n",
4409 __func__, wq->name);
4410 show_pwq(pwq);
4411 raw_spin_unlock_irq(&pwq->pool->lock);
4412 mutex_unlock(&wq->mutex);
4413 mutex_unlock(&wq_pool_mutex);
4414 show_workqueue_state();
4415 return;
4416 }
4417 raw_spin_unlock_irq(&pwq->pool->lock);
4418 }
4419 mutex_unlock(&wq->mutex);
4420
4421 /*
4422 * wq list is used to freeze wq, remove from list after
4423 * flushing is complete in case freeze races us.
4424 */
4425 list_del_rcu(&wq->list);
4426 mutex_unlock(&wq_pool_mutex);
4427
4428 if (!(wq->flags & WQ_UNBOUND)) {
4429 wq_unregister_lockdep(wq);
4430 /*
4431 * The base ref is never dropped on per-cpu pwqs. Directly
4432 * schedule RCU free.
4433 */
4434 call_rcu(&wq->rcu, rcu_free_wq);
4435 } else {
4436 /*
4437 * We're the sole accessor of @wq at this point. Directly
4438 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4439 * @wq will be freed when the last pwq is released.
4440 */
4441 for_each_node(node) {
4442 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4443 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4444 put_pwq_unlocked(pwq);
4445 }
4446
4447 /*
4448 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4449 * put. Don't access it afterwards.
4450 */
4451 pwq = wq->dfl_pwq;
4452 wq->dfl_pwq = NULL;
4453 put_pwq_unlocked(pwq);
4454 }
4455 }
4456 EXPORT_SYMBOL_GPL(destroy_workqueue);
4457
4458 /**
4459 * workqueue_set_max_active - adjust max_active of a workqueue
4460 * @wq: target workqueue
4461 * @max_active: new max_active value.
4462 *
4463 * Set max_active of @wq to @max_active.
4464 *
4465 * CONTEXT:
4466 * Don't call from IRQ context.
4467 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4468 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4469 {
4470 struct pool_workqueue *pwq;
4471
4472 /* disallow meddling with max_active for ordered workqueues */
4473 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4474 return;
4475
4476 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4477
4478 mutex_lock(&wq->mutex);
4479
4480 wq->flags &= ~__WQ_ORDERED;
4481 wq->saved_max_active = max_active;
4482
4483 for_each_pwq(pwq, wq)
4484 pwq_adjust_max_active(pwq);
4485
4486 mutex_unlock(&wq->mutex);
4487 }
4488 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4489
4490 /**
4491 * current_work - retrieve %current task's work struct
4492 *
4493 * Determine if %current task is a workqueue worker and what it's working on.
4494 * Useful to find out the context that the %current task is running in.
4495 *
4496 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4497 */
current_work(void)4498 struct work_struct *current_work(void)
4499 {
4500 struct worker *worker = current_wq_worker();
4501
4502 return worker ? worker->current_work : NULL;
4503 }
4504 EXPORT_SYMBOL(current_work);
4505
4506 /**
4507 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4508 *
4509 * Determine whether %current is a workqueue rescuer. Can be used from
4510 * work functions to determine whether it's being run off the rescuer task.
4511 *
4512 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4513 */
current_is_workqueue_rescuer(void)4514 bool current_is_workqueue_rescuer(void)
4515 {
4516 struct worker *worker = current_wq_worker();
4517
4518 return worker && worker->rescue_wq;
4519 }
4520
4521 /**
4522 * workqueue_congested - test whether a workqueue is congested
4523 * @cpu: CPU in question
4524 * @wq: target workqueue
4525 *
4526 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4527 * no synchronization around this function and the test result is
4528 * unreliable and only useful as advisory hints or for debugging.
4529 *
4530 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4531 * Note that both per-cpu and unbound workqueues may be associated with
4532 * multiple pool_workqueues which have separate congested states. A
4533 * workqueue being congested on one CPU doesn't mean the workqueue is also
4534 * contested on other CPUs / NUMA nodes.
4535 *
4536 * Return:
4537 * %true if congested, %false otherwise.
4538 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4539 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4540 {
4541 struct pool_workqueue *pwq;
4542 bool ret;
4543
4544 rcu_read_lock();
4545 preempt_disable();
4546
4547 if (cpu == WORK_CPU_UNBOUND)
4548 cpu = smp_processor_id();
4549
4550 if (!(wq->flags & WQ_UNBOUND))
4551 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4552 else
4553 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4554
4555 ret = !list_empty(&pwq->delayed_works);
4556 preempt_enable();
4557 rcu_read_unlock();
4558
4559 return ret;
4560 }
4561 EXPORT_SYMBOL_GPL(workqueue_congested);
4562
4563 /**
4564 * work_busy - test whether a work is currently pending or running
4565 * @work: the work to be tested
4566 *
4567 * Test whether @work is currently pending or running. There is no
4568 * synchronization around this function and the test result is
4569 * unreliable and only useful as advisory hints or for debugging.
4570 *
4571 * Return:
4572 * OR'd bitmask of WORK_BUSY_* bits.
4573 */
work_busy(struct work_struct * work)4574 unsigned int work_busy(struct work_struct *work)
4575 {
4576 struct worker_pool *pool;
4577 unsigned long flags;
4578 unsigned int ret = 0;
4579
4580 if (work_pending(work))
4581 ret |= WORK_BUSY_PENDING;
4582
4583 rcu_read_lock();
4584 pool = get_work_pool(work);
4585 if (pool) {
4586 raw_spin_lock_irqsave(&pool->lock, flags);
4587 if (find_worker_executing_work(pool, work))
4588 ret |= WORK_BUSY_RUNNING;
4589 raw_spin_unlock_irqrestore(&pool->lock, flags);
4590 }
4591 rcu_read_unlock();
4592
4593 return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(work_busy);
4596
4597 /**
4598 * set_worker_desc - set description for the current work item
4599 * @fmt: printf-style format string
4600 * @...: arguments for the format string
4601 *
4602 * This function can be called by a running work function to describe what
4603 * the work item is about. If the worker task gets dumped, this
4604 * information will be printed out together to help debugging. The
4605 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4606 */
set_worker_desc(const char * fmt,...)4607 void set_worker_desc(const char *fmt, ...)
4608 {
4609 struct worker *worker = current_wq_worker();
4610 va_list args;
4611
4612 if (worker) {
4613 va_start(args, fmt);
4614 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4615 va_end(args);
4616 }
4617 }
4618 EXPORT_SYMBOL_GPL(set_worker_desc);
4619
4620 /**
4621 * print_worker_info - print out worker information and description
4622 * @log_lvl: the log level to use when printing
4623 * @task: target task
4624 *
4625 * If @task is a worker and currently executing a work item, print out the
4626 * name of the workqueue being serviced and worker description set with
4627 * set_worker_desc() by the currently executing work item.
4628 *
4629 * This function can be safely called on any task as long as the
4630 * task_struct itself is accessible. While safe, this function isn't
4631 * synchronized and may print out mixups or garbages of limited length.
4632 */
print_worker_info(const char * log_lvl,struct task_struct * task)4633 void print_worker_info(const char *log_lvl, struct task_struct *task)
4634 {
4635 work_func_t *fn = NULL;
4636 char name[WQ_NAME_LEN] = { };
4637 char desc[WORKER_DESC_LEN] = { };
4638 struct pool_workqueue *pwq = NULL;
4639 struct workqueue_struct *wq = NULL;
4640 struct worker *worker;
4641
4642 if (!(task->flags & PF_WQ_WORKER))
4643 return;
4644
4645 /*
4646 * This function is called without any synchronization and @task
4647 * could be in any state. Be careful with dereferences.
4648 */
4649 worker = kthread_probe_data(task);
4650
4651 /*
4652 * Carefully copy the associated workqueue's workfn, name and desc.
4653 * Keep the original last '\0' in case the original is garbage.
4654 */
4655 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4656 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4657 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4658 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4659 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4660
4661 if (fn || name[0] || desc[0]) {
4662 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4663 if (strcmp(name, desc))
4664 pr_cont(" (%s)", desc);
4665 pr_cont("\n");
4666 }
4667 }
4668
pr_cont_pool_info(struct worker_pool * pool)4669 static void pr_cont_pool_info(struct worker_pool *pool)
4670 {
4671 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4672 if (pool->node != NUMA_NO_NODE)
4673 pr_cont(" node=%d", pool->node);
4674 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4675 }
4676
pr_cont_work(bool comma,struct work_struct * work)4677 static void pr_cont_work(bool comma, struct work_struct *work)
4678 {
4679 if (work->func == wq_barrier_func) {
4680 struct wq_barrier *barr;
4681
4682 barr = container_of(work, struct wq_barrier, work);
4683
4684 pr_cont("%s BAR(%d)", comma ? "," : "",
4685 task_pid_nr(barr->task));
4686 } else {
4687 pr_cont("%s %ps", comma ? "," : "", work->func);
4688 }
4689 }
4690
show_pwq(struct pool_workqueue * pwq)4691 static void show_pwq(struct pool_workqueue *pwq)
4692 {
4693 struct worker_pool *pool = pwq->pool;
4694 struct work_struct *work;
4695 struct worker *worker;
4696 bool has_in_flight = false, has_pending = false;
4697 int bkt;
4698
4699 pr_info(" pwq %d:", pool->id);
4700 pr_cont_pool_info(pool);
4701
4702 pr_cont(" active=%d/%d refcnt=%d%s\n",
4703 pwq->nr_active, pwq->max_active, pwq->refcnt,
4704 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4705
4706 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4707 if (worker->current_pwq == pwq) {
4708 has_in_flight = true;
4709 break;
4710 }
4711 }
4712 if (has_in_flight) {
4713 bool comma = false;
4714
4715 pr_info(" in-flight:");
4716 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4717 if (worker->current_pwq != pwq)
4718 continue;
4719
4720 pr_cont("%s %d%s:%ps", comma ? "," : "",
4721 task_pid_nr(worker->task),
4722 worker->rescue_wq ? "(RESCUER)" : "",
4723 worker->current_func);
4724 list_for_each_entry(work, &worker->scheduled, entry)
4725 pr_cont_work(false, work);
4726 comma = true;
4727 }
4728 pr_cont("\n");
4729 }
4730
4731 list_for_each_entry(work, &pool->worklist, entry) {
4732 if (get_work_pwq(work) == pwq) {
4733 has_pending = true;
4734 break;
4735 }
4736 }
4737 if (has_pending) {
4738 bool comma = false;
4739
4740 pr_info(" pending:");
4741 list_for_each_entry(work, &pool->worklist, entry) {
4742 if (get_work_pwq(work) != pwq)
4743 continue;
4744
4745 pr_cont_work(comma, work);
4746 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4747 }
4748 pr_cont("\n");
4749 }
4750
4751 if (!list_empty(&pwq->delayed_works)) {
4752 bool comma = false;
4753
4754 pr_info(" delayed:");
4755 list_for_each_entry(work, &pwq->delayed_works, entry) {
4756 pr_cont_work(comma, work);
4757 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4758 }
4759 pr_cont("\n");
4760 }
4761 }
4762
4763 /**
4764 * show_workqueue_state - dump workqueue state
4765 *
4766 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4767 * all busy workqueues and pools.
4768 */
show_workqueue_state(void)4769 void show_workqueue_state(void)
4770 {
4771 struct workqueue_struct *wq;
4772 struct worker_pool *pool;
4773 unsigned long flags;
4774 int pi;
4775
4776 rcu_read_lock();
4777
4778 pr_info("Showing busy workqueues and worker pools:\n");
4779
4780 list_for_each_entry_rcu(wq, &workqueues, list) {
4781 struct pool_workqueue *pwq;
4782 bool idle = true;
4783
4784 for_each_pwq(pwq, wq) {
4785 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4786 idle = false;
4787 break;
4788 }
4789 }
4790 if (idle)
4791 continue;
4792
4793 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4794
4795 for_each_pwq(pwq, wq) {
4796 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4797 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4798 show_pwq(pwq);
4799 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4800 /*
4801 * We could be printing a lot from atomic context, e.g.
4802 * sysrq-t -> show_workqueue_state(). Avoid triggering
4803 * hard lockup.
4804 */
4805 touch_nmi_watchdog();
4806 }
4807 }
4808
4809 for_each_pool(pool, pi) {
4810 struct worker *worker;
4811 bool first = true;
4812
4813 raw_spin_lock_irqsave(&pool->lock, flags);
4814 if (pool->nr_workers == pool->nr_idle)
4815 goto next_pool;
4816
4817 pr_info("pool %d:", pool->id);
4818 pr_cont_pool_info(pool);
4819 pr_cont(" hung=%us workers=%d",
4820 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4821 pool->nr_workers);
4822 if (pool->manager)
4823 pr_cont(" manager: %d",
4824 task_pid_nr(pool->manager->task));
4825 list_for_each_entry(worker, &pool->idle_list, entry) {
4826 pr_cont(" %s%d", first ? "idle: " : "",
4827 task_pid_nr(worker->task));
4828 first = false;
4829 }
4830 pr_cont("\n");
4831 next_pool:
4832 raw_spin_unlock_irqrestore(&pool->lock, flags);
4833 /*
4834 * We could be printing a lot from atomic context, e.g.
4835 * sysrq-t -> show_workqueue_state(). Avoid triggering
4836 * hard lockup.
4837 */
4838 touch_nmi_watchdog();
4839 }
4840
4841 rcu_read_unlock();
4842 }
4843
4844 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4845 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4846 {
4847 int off;
4848
4849 /* always show the actual comm */
4850 off = strscpy(buf, task->comm, size);
4851 if (off < 0)
4852 return;
4853
4854 /* stabilize PF_WQ_WORKER and worker pool association */
4855 mutex_lock(&wq_pool_attach_mutex);
4856
4857 if (task->flags & PF_WQ_WORKER) {
4858 struct worker *worker = kthread_data(task);
4859 struct worker_pool *pool = worker->pool;
4860
4861 if (pool) {
4862 raw_spin_lock_irq(&pool->lock);
4863 /*
4864 * ->desc tracks information (wq name or
4865 * set_worker_desc()) for the latest execution. If
4866 * current, prepend '+', otherwise '-'.
4867 */
4868 if (worker->desc[0] != '\0') {
4869 if (worker->current_work)
4870 scnprintf(buf + off, size - off, "+%s",
4871 worker->desc);
4872 else
4873 scnprintf(buf + off, size - off, "-%s",
4874 worker->desc);
4875 }
4876 raw_spin_unlock_irq(&pool->lock);
4877 }
4878 }
4879
4880 mutex_unlock(&wq_pool_attach_mutex);
4881 }
4882
4883 #ifdef CONFIG_SMP
4884
4885 /*
4886 * CPU hotplug.
4887 *
4888 * There are two challenges in supporting CPU hotplug. Firstly, there
4889 * are a lot of assumptions on strong associations among work, pwq and
4890 * pool which make migrating pending and scheduled works very
4891 * difficult to implement without impacting hot paths. Secondly,
4892 * worker pools serve mix of short, long and very long running works making
4893 * blocked draining impractical.
4894 *
4895 * This is solved by allowing the pools to be disassociated from the CPU
4896 * running as an unbound one and allowing it to be reattached later if the
4897 * cpu comes back online.
4898 */
4899
unbind_workers(int cpu)4900 static void unbind_workers(int cpu)
4901 {
4902 struct worker_pool *pool;
4903 struct worker *worker;
4904
4905 for_each_cpu_worker_pool(pool, cpu) {
4906 mutex_lock(&wq_pool_attach_mutex);
4907 raw_spin_lock_irq(&pool->lock);
4908
4909 /*
4910 * We've blocked all attach/detach operations. Make all workers
4911 * unbound and set DISASSOCIATED. Before this, all workers
4912 * except for the ones which are still executing works from
4913 * before the last CPU down must be on the cpu. After
4914 * this, they may become diasporas.
4915 */
4916 for_each_pool_worker(worker, pool)
4917 worker->flags |= WORKER_UNBOUND;
4918
4919 pool->flags |= POOL_DISASSOCIATED;
4920
4921 raw_spin_unlock_irq(&pool->lock);
4922 mutex_unlock(&wq_pool_attach_mutex);
4923
4924 /*
4925 * Call schedule() so that we cross rq->lock and thus can
4926 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4927 * This is necessary as scheduler callbacks may be invoked
4928 * from other cpus.
4929 */
4930 schedule();
4931
4932 /*
4933 * Sched callbacks are disabled now. Zap nr_running.
4934 * After this, nr_running stays zero and need_more_worker()
4935 * and keep_working() are always true as long as the
4936 * worklist is not empty. This pool now behaves as an
4937 * unbound (in terms of concurrency management) pool which
4938 * are served by workers tied to the pool.
4939 */
4940 atomic_set(&pool->nr_running, 0);
4941
4942 /*
4943 * With concurrency management just turned off, a busy
4944 * worker blocking could lead to lengthy stalls. Kick off
4945 * unbound chain execution of currently pending work items.
4946 */
4947 raw_spin_lock_irq(&pool->lock);
4948 wake_up_worker(pool);
4949 raw_spin_unlock_irq(&pool->lock);
4950 }
4951 }
4952
4953 /**
4954 * rebind_workers - rebind all workers of a pool to the associated CPU
4955 * @pool: pool of interest
4956 *
4957 * @pool->cpu is coming online. Rebind all workers to the CPU.
4958 */
rebind_workers(struct worker_pool * pool)4959 static void rebind_workers(struct worker_pool *pool)
4960 {
4961 struct worker *worker;
4962
4963 lockdep_assert_held(&wq_pool_attach_mutex);
4964
4965 /*
4966 * Restore CPU affinity of all workers. As all idle workers should
4967 * be on the run-queue of the associated CPU before any local
4968 * wake-ups for concurrency management happen, restore CPU affinity
4969 * of all workers first and then clear UNBOUND. As we're called
4970 * from CPU_ONLINE, the following shouldn't fail.
4971 */
4972 for_each_pool_worker(worker, pool)
4973 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4974 pool->attrs->cpumask) < 0);
4975
4976 raw_spin_lock_irq(&pool->lock);
4977
4978 pool->flags &= ~POOL_DISASSOCIATED;
4979
4980 for_each_pool_worker(worker, pool) {
4981 unsigned int worker_flags = worker->flags;
4982
4983 /*
4984 * A bound idle worker should actually be on the runqueue
4985 * of the associated CPU for local wake-ups targeting it to
4986 * work. Kick all idle workers so that they migrate to the
4987 * associated CPU. Doing this in the same loop as
4988 * replacing UNBOUND with REBOUND is safe as no worker will
4989 * be bound before @pool->lock is released.
4990 */
4991 if (worker_flags & WORKER_IDLE)
4992 wake_up_process(worker->task);
4993
4994 /*
4995 * We want to clear UNBOUND but can't directly call
4996 * worker_clr_flags() or adjust nr_running. Atomically
4997 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4998 * @worker will clear REBOUND using worker_clr_flags() when
4999 * it initiates the next execution cycle thus restoring
5000 * concurrency management. Note that when or whether
5001 * @worker clears REBOUND doesn't affect correctness.
5002 *
5003 * WRITE_ONCE() is necessary because @worker->flags may be
5004 * tested without holding any lock in
5005 * wq_worker_running(). Without it, NOT_RUNNING test may
5006 * fail incorrectly leading to premature concurrency
5007 * management operations.
5008 */
5009 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5010 worker_flags |= WORKER_REBOUND;
5011 worker_flags &= ~WORKER_UNBOUND;
5012 WRITE_ONCE(worker->flags, worker_flags);
5013 }
5014
5015 raw_spin_unlock_irq(&pool->lock);
5016 }
5017
5018 /**
5019 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5020 * @pool: unbound pool of interest
5021 * @cpu: the CPU which is coming up
5022 *
5023 * An unbound pool may end up with a cpumask which doesn't have any online
5024 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5025 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5026 * online CPU before, cpus_allowed of all its workers should be restored.
5027 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5028 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5029 {
5030 static cpumask_t cpumask;
5031 struct worker *worker;
5032
5033 lockdep_assert_held(&wq_pool_attach_mutex);
5034
5035 /* is @cpu allowed for @pool? */
5036 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5037 return;
5038
5039 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5040
5041 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5042 for_each_pool_worker(worker, pool)
5043 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5044 }
5045
workqueue_prepare_cpu(unsigned int cpu)5046 int workqueue_prepare_cpu(unsigned int cpu)
5047 {
5048 struct worker_pool *pool;
5049
5050 for_each_cpu_worker_pool(pool, cpu) {
5051 if (pool->nr_workers)
5052 continue;
5053 if (!create_worker(pool))
5054 return -ENOMEM;
5055 }
5056 return 0;
5057 }
5058
workqueue_online_cpu(unsigned int cpu)5059 int workqueue_online_cpu(unsigned int cpu)
5060 {
5061 struct worker_pool *pool;
5062 struct workqueue_struct *wq;
5063 int pi;
5064
5065 mutex_lock(&wq_pool_mutex);
5066
5067 for_each_pool(pool, pi) {
5068 mutex_lock(&wq_pool_attach_mutex);
5069
5070 if (pool->cpu == cpu)
5071 rebind_workers(pool);
5072 else if (pool->cpu < 0)
5073 restore_unbound_workers_cpumask(pool, cpu);
5074
5075 mutex_unlock(&wq_pool_attach_mutex);
5076 }
5077
5078 /* update NUMA affinity of unbound workqueues */
5079 list_for_each_entry(wq, &workqueues, list)
5080 wq_update_unbound_numa(wq, cpu, true);
5081
5082 mutex_unlock(&wq_pool_mutex);
5083 return 0;
5084 }
5085
workqueue_offline_cpu(unsigned int cpu)5086 int workqueue_offline_cpu(unsigned int cpu)
5087 {
5088 struct workqueue_struct *wq;
5089
5090 /* unbinding per-cpu workers should happen on the local CPU */
5091 if (WARN_ON(cpu != smp_processor_id()))
5092 return -1;
5093
5094 unbind_workers(cpu);
5095
5096 /* update NUMA affinity of unbound workqueues */
5097 mutex_lock(&wq_pool_mutex);
5098 list_for_each_entry(wq, &workqueues, list)
5099 wq_update_unbound_numa(wq, cpu, false);
5100 mutex_unlock(&wq_pool_mutex);
5101
5102 return 0;
5103 }
5104
5105 struct work_for_cpu {
5106 struct work_struct work;
5107 long (*fn)(void *);
5108 void *arg;
5109 long ret;
5110 };
5111
work_for_cpu_fn(struct work_struct * work)5112 static void work_for_cpu_fn(struct work_struct *work)
5113 {
5114 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5115
5116 wfc->ret = wfc->fn(wfc->arg);
5117 }
5118
5119 /**
5120 * work_on_cpu - run a function in thread context on a particular cpu
5121 * @cpu: the cpu to run on
5122 * @fn: the function to run
5123 * @arg: the function arg
5124 *
5125 * It is up to the caller to ensure that the cpu doesn't go offline.
5126 * The caller must not hold any locks which would prevent @fn from completing.
5127 *
5128 * Return: The value @fn returns.
5129 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5130 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5131 {
5132 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5133
5134 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5135 schedule_work_on(cpu, &wfc.work);
5136 flush_work(&wfc.work);
5137 destroy_work_on_stack(&wfc.work);
5138 return wfc.ret;
5139 }
5140 EXPORT_SYMBOL_GPL(work_on_cpu);
5141
5142 /**
5143 * work_on_cpu_safe - run a function in thread context on a particular cpu
5144 * @cpu: the cpu to run on
5145 * @fn: the function to run
5146 * @arg: the function argument
5147 *
5148 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5149 * any locks which would prevent @fn from completing.
5150 *
5151 * Return: The value @fn returns.
5152 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5153 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5154 {
5155 long ret = -ENODEV;
5156
5157 get_online_cpus();
5158 if (cpu_online(cpu))
5159 ret = work_on_cpu(cpu, fn, arg);
5160 put_online_cpus();
5161 return ret;
5162 }
5163 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5164 #endif /* CONFIG_SMP */
5165
5166 #ifdef CONFIG_FREEZER
5167
5168 /**
5169 * freeze_workqueues_begin - begin freezing workqueues
5170 *
5171 * Start freezing workqueues. After this function returns, all freezable
5172 * workqueues will queue new works to their delayed_works list instead of
5173 * pool->worklist.
5174 *
5175 * CONTEXT:
5176 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5177 */
freeze_workqueues_begin(void)5178 void freeze_workqueues_begin(void)
5179 {
5180 struct workqueue_struct *wq;
5181 struct pool_workqueue *pwq;
5182
5183 mutex_lock(&wq_pool_mutex);
5184
5185 WARN_ON_ONCE(workqueue_freezing);
5186 workqueue_freezing = true;
5187
5188 list_for_each_entry(wq, &workqueues, list) {
5189 mutex_lock(&wq->mutex);
5190 for_each_pwq(pwq, wq)
5191 pwq_adjust_max_active(pwq);
5192 mutex_unlock(&wq->mutex);
5193 }
5194
5195 mutex_unlock(&wq_pool_mutex);
5196 }
5197
5198 /**
5199 * freeze_workqueues_busy - are freezable workqueues still busy?
5200 *
5201 * Check whether freezing is complete. This function must be called
5202 * between freeze_workqueues_begin() and thaw_workqueues().
5203 *
5204 * CONTEXT:
5205 * Grabs and releases wq_pool_mutex.
5206 *
5207 * Return:
5208 * %true if some freezable workqueues are still busy. %false if freezing
5209 * is complete.
5210 */
freeze_workqueues_busy(void)5211 bool freeze_workqueues_busy(void)
5212 {
5213 bool busy = false;
5214 struct workqueue_struct *wq;
5215 struct pool_workqueue *pwq;
5216
5217 mutex_lock(&wq_pool_mutex);
5218
5219 WARN_ON_ONCE(!workqueue_freezing);
5220
5221 list_for_each_entry(wq, &workqueues, list) {
5222 if (!(wq->flags & WQ_FREEZABLE))
5223 continue;
5224 /*
5225 * nr_active is monotonically decreasing. It's safe
5226 * to peek without lock.
5227 */
5228 rcu_read_lock();
5229 for_each_pwq(pwq, wq) {
5230 WARN_ON_ONCE(pwq->nr_active < 0);
5231 if (pwq->nr_active) {
5232 busy = true;
5233 rcu_read_unlock();
5234 goto out_unlock;
5235 }
5236 }
5237 rcu_read_unlock();
5238 }
5239 out_unlock:
5240 mutex_unlock(&wq_pool_mutex);
5241 return busy;
5242 }
5243
5244 /**
5245 * thaw_workqueues - thaw workqueues
5246 *
5247 * Thaw workqueues. Normal queueing is restored and all collected
5248 * frozen works are transferred to their respective pool worklists.
5249 *
5250 * CONTEXT:
5251 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5252 */
thaw_workqueues(void)5253 void thaw_workqueues(void)
5254 {
5255 struct workqueue_struct *wq;
5256 struct pool_workqueue *pwq;
5257
5258 mutex_lock(&wq_pool_mutex);
5259
5260 if (!workqueue_freezing)
5261 goto out_unlock;
5262
5263 workqueue_freezing = false;
5264
5265 /* restore max_active and repopulate worklist */
5266 list_for_each_entry(wq, &workqueues, list) {
5267 mutex_lock(&wq->mutex);
5268 for_each_pwq(pwq, wq)
5269 pwq_adjust_max_active(pwq);
5270 mutex_unlock(&wq->mutex);
5271 }
5272
5273 out_unlock:
5274 mutex_unlock(&wq_pool_mutex);
5275 }
5276 #endif /* CONFIG_FREEZER */
5277
workqueue_apply_unbound_cpumask(void)5278 static int workqueue_apply_unbound_cpumask(void)
5279 {
5280 LIST_HEAD(ctxs);
5281 int ret = 0;
5282 struct workqueue_struct *wq;
5283 struct apply_wqattrs_ctx *ctx, *n;
5284
5285 lockdep_assert_held(&wq_pool_mutex);
5286
5287 list_for_each_entry(wq, &workqueues, list) {
5288 if (!(wq->flags & WQ_UNBOUND))
5289 continue;
5290 /* creating multiple pwqs breaks ordering guarantee */
5291 if (wq->flags & __WQ_ORDERED)
5292 continue;
5293
5294 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5295 if (!ctx) {
5296 ret = -ENOMEM;
5297 break;
5298 }
5299
5300 list_add_tail(&ctx->list, &ctxs);
5301 }
5302
5303 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5304 if (!ret)
5305 apply_wqattrs_commit(ctx);
5306 apply_wqattrs_cleanup(ctx);
5307 }
5308
5309 return ret;
5310 }
5311
5312 /**
5313 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5314 * @cpumask: the cpumask to set
5315 *
5316 * The low-level workqueues cpumask is a global cpumask that limits
5317 * the affinity of all unbound workqueues. This function check the @cpumask
5318 * and apply it to all unbound workqueues and updates all pwqs of them.
5319 *
5320 * Retun: 0 - Success
5321 * -EINVAL - Invalid @cpumask
5322 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5323 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5324 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5325 {
5326 int ret = -EINVAL;
5327 cpumask_var_t saved_cpumask;
5328
5329 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5330 return -ENOMEM;
5331
5332 /*
5333 * Not excluding isolated cpus on purpose.
5334 * If the user wishes to include them, we allow that.
5335 */
5336 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5337 if (!cpumask_empty(cpumask)) {
5338 apply_wqattrs_lock();
5339
5340 /* save the old wq_unbound_cpumask. */
5341 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5342
5343 /* update wq_unbound_cpumask at first and apply it to wqs. */
5344 cpumask_copy(wq_unbound_cpumask, cpumask);
5345 ret = workqueue_apply_unbound_cpumask();
5346
5347 /* restore the wq_unbound_cpumask when failed. */
5348 if (ret < 0)
5349 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5350
5351 apply_wqattrs_unlock();
5352 }
5353
5354 free_cpumask_var(saved_cpumask);
5355 return ret;
5356 }
5357
5358 #ifdef CONFIG_SYSFS
5359 /*
5360 * Workqueues with WQ_SYSFS flag set is visible to userland via
5361 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5362 * following attributes.
5363 *
5364 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5365 * max_active RW int : maximum number of in-flight work items
5366 *
5367 * Unbound workqueues have the following extra attributes.
5368 *
5369 * pool_ids RO int : the associated pool IDs for each node
5370 * nice RW int : nice value of the workers
5371 * cpumask RW mask : bitmask of allowed CPUs for the workers
5372 * numa RW bool : whether enable NUMA affinity
5373 */
5374 struct wq_device {
5375 struct workqueue_struct *wq;
5376 struct device dev;
5377 };
5378
dev_to_wq(struct device * dev)5379 static struct workqueue_struct *dev_to_wq(struct device *dev)
5380 {
5381 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5382
5383 return wq_dev->wq;
5384 }
5385
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5386 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5387 char *buf)
5388 {
5389 struct workqueue_struct *wq = dev_to_wq(dev);
5390
5391 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5392 }
5393 static DEVICE_ATTR_RO(per_cpu);
5394
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5395 static ssize_t max_active_show(struct device *dev,
5396 struct device_attribute *attr, char *buf)
5397 {
5398 struct workqueue_struct *wq = dev_to_wq(dev);
5399
5400 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5401 }
5402
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5403 static ssize_t max_active_store(struct device *dev,
5404 struct device_attribute *attr, const char *buf,
5405 size_t count)
5406 {
5407 struct workqueue_struct *wq = dev_to_wq(dev);
5408 int val;
5409
5410 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5411 return -EINVAL;
5412
5413 workqueue_set_max_active(wq, val);
5414 return count;
5415 }
5416 static DEVICE_ATTR_RW(max_active);
5417
5418 static struct attribute *wq_sysfs_attrs[] = {
5419 &dev_attr_per_cpu.attr,
5420 &dev_attr_max_active.attr,
5421 NULL,
5422 };
5423 ATTRIBUTE_GROUPS(wq_sysfs);
5424
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5425 static ssize_t wq_pool_ids_show(struct device *dev,
5426 struct device_attribute *attr, char *buf)
5427 {
5428 struct workqueue_struct *wq = dev_to_wq(dev);
5429 const char *delim = "";
5430 int node, written = 0;
5431
5432 get_online_cpus();
5433 rcu_read_lock();
5434 for_each_node(node) {
5435 written += scnprintf(buf + written, PAGE_SIZE - written,
5436 "%s%d:%d", delim, node,
5437 unbound_pwq_by_node(wq, node)->pool->id);
5438 delim = " ";
5439 }
5440 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5441 rcu_read_unlock();
5442 put_online_cpus();
5443
5444 return written;
5445 }
5446
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5447 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5448 char *buf)
5449 {
5450 struct workqueue_struct *wq = dev_to_wq(dev);
5451 int written;
5452
5453 mutex_lock(&wq->mutex);
5454 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5455 mutex_unlock(&wq->mutex);
5456
5457 return written;
5458 }
5459
5460 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5461 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5462 {
5463 struct workqueue_attrs *attrs;
5464
5465 lockdep_assert_held(&wq_pool_mutex);
5466
5467 attrs = alloc_workqueue_attrs();
5468 if (!attrs)
5469 return NULL;
5470
5471 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5472 return attrs;
5473 }
5474
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5475 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5476 const char *buf, size_t count)
5477 {
5478 struct workqueue_struct *wq = dev_to_wq(dev);
5479 struct workqueue_attrs *attrs;
5480 int ret = -ENOMEM;
5481
5482 apply_wqattrs_lock();
5483
5484 attrs = wq_sysfs_prep_attrs(wq);
5485 if (!attrs)
5486 goto out_unlock;
5487
5488 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5489 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5490 ret = apply_workqueue_attrs_locked(wq, attrs);
5491 else
5492 ret = -EINVAL;
5493
5494 out_unlock:
5495 apply_wqattrs_unlock();
5496 free_workqueue_attrs(attrs);
5497 return ret ?: count;
5498 }
5499
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5500 static ssize_t wq_cpumask_show(struct device *dev,
5501 struct device_attribute *attr, char *buf)
5502 {
5503 struct workqueue_struct *wq = dev_to_wq(dev);
5504 int written;
5505
5506 mutex_lock(&wq->mutex);
5507 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5508 cpumask_pr_args(wq->unbound_attrs->cpumask));
5509 mutex_unlock(&wq->mutex);
5510 return written;
5511 }
5512
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5513 static ssize_t wq_cpumask_store(struct device *dev,
5514 struct device_attribute *attr,
5515 const char *buf, size_t count)
5516 {
5517 struct workqueue_struct *wq = dev_to_wq(dev);
5518 struct workqueue_attrs *attrs;
5519 int ret = -ENOMEM;
5520
5521 apply_wqattrs_lock();
5522
5523 attrs = wq_sysfs_prep_attrs(wq);
5524 if (!attrs)
5525 goto out_unlock;
5526
5527 ret = cpumask_parse(buf, attrs->cpumask);
5528 if (!ret)
5529 ret = apply_workqueue_attrs_locked(wq, attrs);
5530
5531 out_unlock:
5532 apply_wqattrs_unlock();
5533 free_workqueue_attrs(attrs);
5534 return ret ?: count;
5535 }
5536
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5537 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5538 char *buf)
5539 {
5540 struct workqueue_struct *wq = dev_to_wq(dev);
5541 int written;
5542
5543 mutex_lock(&wq->mutex);
5544 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5545 !wq->unbound_attrs->no_numa);
5546 mutex_unlock(&wq->mutex);
5547
5548 return written;
5549 }
5550
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5551 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5552 const char *buf, size_t count)
5553 {
5554 struct workqueue_struct *wq = dev_to_wq(dev);
5555 struct workqueue_attrs *attrs;
5556 int v, ret = -ENOMEM;
5557
5558 apply_wqattrs_lock();
5559
5560 attrs = wq_sysfs_prep_attrs(wq);
5561 if (!attrs)
5562 goto out_unlock;
5563
5564 ret = -EINVAL;
5565 if (sscanf(buf, "%d", &v) == 1) {
5566 attrs->no_numa = !v;
5567 ret = apply_workqueue_attrs_locked(wq, attrs);
5568 }
5569
5570 out_unlock:
5571 apply_wqattrs_unlock();
5572 free_workqueue_attrs(attrs);
5573 return ret ?: count;
5574 }
5575
5576 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5577 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5578 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5579 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5580 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5581 __ATTR_NULL,
5582 };
5583
5584 static struct bus_type wq_subsys = {
5585 .name = "workqueue",
5586 .dev_groups = wq_sysfs_groups,
5587 };
5588
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5589 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5590 struct device_attribute *attr, char *buf)
5591 {
5592 int written;
5593
5594 mutex_lock(&wq_pool_mutex);
5595 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5596 cpumask_pr_args(wq_unbound_cpumask));
5597 mutex_unlock(&wq_pool_mutex);
5598
5599 return written;
5600 }
5601
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5602 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5603 struct device_attribute *attr, const char *buf, size_t count)
5604 {
5605 cpumask_var_t cpumask;
5606 int ret;
5607
5608 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5609 return -ENOMEM;
5610
5611 ret = cpumask_parse(buf, cpumask);
5612 if (!ret)
5613 ret = workqueue_set_unbound_cpumask(cpumask);
5614
5615 free_cpumask_var(cpumask);
5616 return ret ? ret : count;
5617 }
5618
5619 static struct device_attribute wq_sysfs_cpumask_attr =
5620 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5621 wq_unbound_cpumask_store);
5622
wq_sysfs_init(void)5623 static int __init wq_sysfs_init(void)
5624 {
5625 int err;
5626
5627 err = subsys_virtual_register(&wq_subsys, NULL);
5628 if (err)
5629 return err;
5630
5631 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5632 }
5633 core_initcall(wq_sysfs_init);
5634
wq_device_release(struct device * dev)5635 static void wq_device_release(struct device *dev)
5636 {
5637 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5638
5639 kfree(wq_dev);
5640 }
5641
5642 /**
5643 * workqueue_sysfs_register - make a workqueue visible in sysfs
5644 * @wq: the workqueue to register
5645 *
5646 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5647 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5648 * which is the preferred method.
5649 *
5650 * Workqueue user should use this function directly iff it wants to apply
5651 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5652 * apply_workqueue_attrs() may race against userland updating the
5653 * attributes.
5654 *
5655 * Return: 0 on success, -errno on failure.
5656 */
workqueue_sysfs_register(struct workqueue_struct * wq)5657 int workqueue_sysfs_register(struct workqueue_struct *wq)
5658 {
5659 struct wq_device *wq_dev;
5660 int ret;
5661
5662 /*
5663 * Adjusting max_active or creating new pwqs by applying
5664 * attributes breaks ordering guarantee. Disallow exposing ordered
5665 * workqueues.
5666 */
5667 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5668 return -EINVAL;
5669
5670 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5671 if (!wq_dev)
5672 return -ENOMEM;
5673
5674 wq_dev->wq = wq;
5675 wq_dev->dev.bus = &wq_subsys;
5676 wq_dev->dev.release = wq_device_release;
5677 dev_set_name(&wq_dev->dev, "%s", wq->name);
5678
5679 /*
5680 * unbound_attrs are created separately. Suppress uevent until
5681 * everything is ready.
5682 */
5683 dev_set_uevent_suppress(&wq_dev->dev, true);
5684
5685 ret = device_register(&wq_dev->dev);
5686 if (ret) {
5687 put_device(&wq_dev->dev);
5688 wq->wq_dev = NULL;
5689 return ret;
5690 }
5691
5692 if (wq->flags & WQ_UNBOUND) {
5693 struct device_attribute *attr;
5694
5695 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5696 ret = device_create_file(&wq_dev->dev, attr);
5697 if (ret) {
5698 device_unregister(&wq_dev->dev);
5699 wq->wq_dev = NULL;
5700 return ret;
5701 }
5702 }
5703 }
5704
5705 dev_set_uevent_suppress(&wq_dev->dev, false);
5706 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5707 return 0;
5708 }
5709
5710 /**
5711 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5712 * @wq: the workqueue to unregister
5713 *
5714 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5715 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5716 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5717 {
5718 struct wq_device *wq_dev = wq->wq_dev;
5719
5720 if (!wq->wq_dev)
5721 return;
5722
5723 wq->wq_dev = NULL;
5724 device_unregister(&wq_dev->dev);
5725 }
5726 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5727 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5728 #endif /* CONFIG_SYSFS */
5729
5730 /*
5731 * Workqueue watchdog.
5732 *
5733 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5734 * flush dependency, a concurrency managed work item which stays RUNNING
5735 * indefinitely. Workqueue stalls can be very difficult to debug as the
5736 * usual warning mechanisms don't trigger and internal workqueue state is
5737 * largely opaque.
5738 *
5739 * Workqueue watchdog monitors all worker pools periodically and dumps
5740 * state if some pools failed to make forward progress for a while where
5741 * forward progress is defined as the first item on ->worklist changing.
5742 *
5743 * This mechanism is controlled through the kernel parameter
5744 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5745 * corresponding sysfs parameter file.
5746 */
5747 #ifdef CONFIG_WQ_WATCHDOG
5748
5749 static unsigned long wq_watchdog_thresh = 30;
5750 static struct timer_list wq_watchdog_timer;
5751
5752 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5753 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5754
wq_watchdog_reset_touched(void)5755 static void wq_watchdog_reset_touched(void)
5756 {
5757 int cpu;
5758
5759 wq_watchdog_touched = jiffies;
5760 for_each_possible_cpu(cpu)
5761 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5762 }
5763
wq_watchdog_timer_fn(struct timer_list * unused)5764 static void wq_watchdog_timer_fn(struct timer_list *unused)
5765 {
5766 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5767 bool lockup_detected = false;
5768 unsigned long now = jiffies;
5769 struct worker_pool *pool;
5770 int pi;
5771
5772 if (!thresh)
5773 return;
5774
5775 rcu_read_lock();
5776
5777 for_each_pool(pool, pi) {
5778 unsigned long pool_ts, touched, ts;
5779
5780 if (list_empty(&pool->worklist))
5781 continue;
5782
5783 /*
5784 * If a virtual machine is stopped by the host it can look to
5785 * the watchdog like a stall.
5786 */
5787 kvm_check_and_clear_guest_paused();
5788
5789 /* get the latest of pool and touched timestamps */
5790 pool_ts = READ_ONCE(pool->watchdog_ts);
5791 touched = READ_ONCE(wq_watchdog_touched);
5792
5793 if (time_after(pool_ts, touched))
5794 ts = pool_ts;
5795 else
5796 ts = touched;
5797
5798 if (pool->cpu >= 0) {
5799 unsigned long cpu_touched =
5800 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5801 pool->cpu));
5802 if (time_after(cpu_touched, ts))
5803 ts = cpu_touched;
5804 }
5805
5806 /* did we stall? */
5807 if (time_after(now, ts + thresh)) {
5808 lockup_detected = true;
5809 pr_emerg("BUG: workqueue lockup - pool");
5810 pr_cont_pool_info(pool);
5811 pr_cont(" stuck for %us!\n",
5812 jiffies_to_msecs(now - pool_ts) / 1000);
5813 }
5814 }
5815
5816 rcu_read_unlock();
5817
5818 if (lockup_detected)
5819 show_workqueue_state();
5820
5821 wq_watchdog_reset_touched();
5822 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5823 }
5824
wq_watchdog_touch(int cpu)5825 notrace void wq_watchdog_touch(int cpu)
5826 {
5827 if (cpu >= 0)
5828 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5829 else
5830 wq_watchdog_touched = jiffies;
5831 }
5832
wq_watchdog_set_thresh(unsigned long thresh)5833 static void wq_watchdog_set_thresh(unsigned long thresh)
5834 {
5835 wq_watchdog_thresh = 0;
5836 del_timer_sync(&wq_watchdog_timer);
5837
5838 if (thresh) {
5839 wq_watchdog_thresh = thresh;
5840 wq_watchdog_reset_touched();
5841 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5842 }
5843 }
5844
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5845 static int wq_watchdog_param_set_thresh(const char *val,
5846 const struct kernel_param *kp)
5847 {
5848 unsigned long thresh;
5849 int ret;
5850
5851 ret = kstrtoul(val, 0, &thresh);
5852 if (ret)
5853 return ret;
5854
5855 if (system_wq)
5856 wq_watchdog_set_thresh(thresh);
5857 else
5858 wq_watchdog_thresh = thresh;
5859
5860 return 0;
5861 }
5862
5863 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5864 .set = wq_watchdog_param_set_thresh,
5865 .get = param_get_ulong,
5866 };
5867
5868 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5869 0644);
5870
wq_watchdog_init(void)5871 static void wq_watchdog_init(void)
5872 {
5873 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5874 wq_watchdog_set_thresh(wq_watchdog_thresh);
5875 }
5876
5877 #else /* CONFIG_WQ_WATCHDOG */
5878
wq_watchdog_init(void)5879 static inline void wq_watchdog_init(void) { }
5880
5881 #endif /* CONFIG_WQ_WATCHDOG */
5882
wq_numa_init(void)5883 static void __init wq_numa_init(void)
5884 {
5885 cpumask_var_t *tbl;
5886 int node, cpu;
5887
5888 if (num_possible_nodes() <= 1)
5889 return;
5890
5891 if (wq_disable_numa) {
5892 pr_info("workqueue: NUMA affinity support disabled\n");
5893 return;
5894 }
5895
5896 for_each_possible_cpu(cpu) {
5897 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5898 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5899 return;
5900 }
5901 }
5902
5903 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5904 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5905
5906 /*
5907 * We want masks of possible CPUs of each node which isn't readily
5908 * available. Build one from cpu_to_node() which should have been
5909 * fully initialized by now.
5910 */
5911 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5912 BUG_ON(!tbl);
5913
5914 for_each_node(node)
5915 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5916 node_online(node) ? node : NUMA_NO_NODE));
5917
5918 for_each_possible_cpu(cpu) {
5919 node = cpu_to_node(cpu);
5920 cpumask_set_cpu(cpu, tbl[node]);
5921 }
5922
5923 wq_numa_possible_cpumask = tbl;
5924 wq_numa_enabled = true;
5925 }
5926
5927 /**
5928 * workqueue_init_early - early init for workqueue subsystem
5929 *
5930 * This is the first half of two-staged workqueue subsystem initialization
5931 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5932 * idr are up. It sets up all the data structures and system workqueues
5933 * and allows early boot code to create workqueues and queue/cancel work
5934 * items. Actual work item execution starts only after kthreads can be
5935 * created and scheduled right before early initcalls.
5936 */
workqueue_init_early(void)5937 void __init workqueue_init_early(void)
5938 {
5939 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5940 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5941 int i, cpu;
5942
5943 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5944
5945 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5946 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5947
5948 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5949
5950 /* initialize CPU pools */
5951 for_each_possible_cpu(cpu) {
5952 struct worker_pool *pool;
5953
5954 i = 0;
5955 for_each_cpu_worker_pool(pool, cpu) {
5956 BUG_ON(init_worker_pool(pool));
5957 pool->cpu = cpu;
5958 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5959 pool->attrs->nice = std_nice[i++];
5960 pool->node = cpu_to_node(cpu);
5961
5962 /* alloc pool ID */
5963 mutex_lock(&wq_pool_mutex);
5964 BUG_ON(worker_pool_assign_id(pool));
5965 mutex_unlock(&wq_pool_mutex);
5966 }
5967 }
5968
5969 /* create default unbound and ordered wq attrs */
5970 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5971 struct workqueue_attrs *attrs;
5972
5973 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5974 attrs->nice = std_nice[i];
5975 unbound_std_wq_attrs[i] = attrs;
5976
5977 /*
5978 * An ordered wq should have only one pwq as ordering is
5979 * guaranteed by max_active which is enforced by pwqs.
5980 * Turn off NUMA so that dfl_pwq is used for all nodes.
5981 */
5982 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5983 attrs->nice = std_nice[i];
5984 attrs->no_numa = true;
5985 ordered_wq_attrs[i] = attrs;
5986 }
5987
5988 system_wq = alloc_workqueue("events", 0, 0);
5989 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5990 system_long_wq = alloc_workqueue("events_long", 0, 0);
5991 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5992 WQ_UNBOUND_MAX_ACTIVE);
5993 system_freezable_wq = alloc_workqueue("events_freezable",
5994 WQ_FREEZABLE, 0);
5995 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5996 WQ_POWER_EFFICIENT, 0);
5997 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5998 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5999 0);
6000 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6001 !system_unbound_wq || !system_freezable_wq ||
6002 !system_power_efficient_wq ||
6003 !system_freezable_power_efficient_wq);
6004 }
6005
6006 /**
6007 * workqueue_init - bring workqueue subsystem fully online
6008 *
6009 * This is the latter half of two-staged workqueue subsystem initialization
6010 * and invoked as soon as kthreads can be created and scheduled.
6011 * Workqueues have been created and work items queued on them, but there
6012 * are no kworkers executing the work items yet. Populate the worker pools
6013 * with the initial workers and enable future kworker creations.
6014 */
workqueue_init(void)6015 void __init workqueue_init(void)
6016 {
6017 struct workqueue_struct *wq;
6018 struct worker_pool *pool;
6019 int cpu, bkt;
6020
6021 /*
6022 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6023 * CPU to node mapping may not be available that early on some
6024 * archs such as power and arm64. As per-cpu pools created
6025 * previously could be missing node hint and unbound pools NUMA
6026 * affinity, fix them up.
6027 *
6028 * Also, while iterating workqueues, create rescuers if requested.
6029 */
6030 wq_numa_init();
6031
6032 mutex_lock(&wq_pool_mutex);
6033
6034 for_each_possible_cpu(cpu) {
6035 for_each_cpu_worker_pool(pool, cpu) {
6036 pool->node = cpu_to_node(cpu);
6037 }
6038 }
6039
6040 list_for_each_entry(wq, &workqueues, list) {
6041 wq_update_unbound_numa(wq, smp_processor_id(), true);
6042 WARN(init_rescuer(wq),
6043 "workqueue: failed to create early rescuer for %s",
6044 wq->name);
6045 }
6046
6047 mutex_unlock(&wq_pool_mutex);
6048
6049 /* create the initial workers */
6050 for_each_online_cpu(cpu) {
6051 for_each_cpu_worker_pool(pool, cpu) {
6052 pool->flags &= ~POOL_DISASSOCIATED;
6053 BUG_ON(!create_worker(pool));
6054 }
6055 }
6056
6057 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6058 BUG_ON(!create_worker(pool));
6059
6060 wq_online = true;
6061 wq_watchdog_init();
6062 }
6063