• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 #define BPF_COMPLEXITY_LIMIT_STATES	64
160 
161 #define BPF_MAP_PTR_UNPRIV	1UL
162 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
163 					  POISON_POINTER_DELTA))
164 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
165 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)166 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
167 {
168 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
169 }
170 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)171 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
172 {
173 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
174 }
175 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)176 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
177 			      const struct bpf_map *map, bool unpriv)
178 {
179 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
180 	unpriv |= bpf_map_ptr_unpriv(aux);
181 	aux->map_state = (unsigned long)map |
182 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
183 }
184 
185 struct bpf_call_arg_meta {
186 	struct bpf_map *map_ptr;
187 	bool raw_mode;
188 	bool pkt_access;
189 	int regno;
190 	int access_size;
191 	u64 msize_max_value;
192 };
193 
194 static DEFINE_MUTEX(bpf_verifier_lock);
195 
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 		       va_list args)
198 {
199 	unsigned int n;
200 
201 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
202 
203 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 		  "verifier log line truncated - local buffer too short\n");
205 
206 	n = min(log->len_total - log->len_used - 1, n);
207 	log->kbuf[n] = '\0';
208 
209 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 		log->len_used += n;
211 	else
212 		log->ubuf = NULL;
213 }
214 
215 /* log_level controls verbosity level of eBPF verifier.
216  * bpf_verifier_log_write() is used to dump the verification trace to the log,
217  * so the user can figure out what's wrong with the program
218  */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 					   const char *fmt, ...)
221 {
222 	va_list args;
223 
224 	if (!bpf_verifier_log_needed(&env->log))
225 		return;
226 
227 	va_start(args, fmt);
228 	bpf_verifier_vlog(&env->log, fmt, args);
229 	va_end(args);
230 }
231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232 
verbose(void * private_data,const char * fmt,...)233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234 {
235 	struct bpf_verifier_env *env = private_data;
236 	va_list args;
237 
238 	if (!bpf_verifier_log_needed(&env->log))
239 		return;
240 
241 	va_start(args, fmt);
242 	bpf_verifier_vlog(&env->log, fmt, args);
243 	va_end(args);
244 }
245 
type_is_pkt_pointer(enum bpf_reg_type type)246 static bool type_is_pkt_pointer(enum bpf_reg_type type)
247 {
248 	return type == PTR_TO_PACKET ||
249 	       type == PTR_TO_PACKET_META;
250 }
251 
252 /* string representation of 'enum bpf_reg_type' */
253 static const char * const reg_type_str[] = {
254 	[NOT_INIT]		= "?",
255 	[SCALAR_VALUE]		= "inv",
256 	[PTR_TO_CTX]		= "ctx",
257 	[CONST_PTR_TO_MAP]	= "map_ptr",
258 	[PTR_TO_MAP_VALUE]	= "map_value",
259 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
260 	[PTR_TO_STACK]		= "fp",
261 	[PTR_TO_PACKET]		= "pkt",
262 	[PTR_TO_PACKET_META]	= "pkt_meta",
263 	[PTR_TO_PACKET_END]	= "pkt_end",
264 };
265 
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)266 static void print_liveness(struct bpf_verifier_env *env,
267 			   enum bpf_reg_liveness live)
268 {
269 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
270 	    verbose(env, "_");
271 	if (live & REG_LIVE_READ)
272 		verbose(env, "r");
273 	if (live & REG_LIVE_WRITTEN)
274 		verbose(env, "w");
275 }
276 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)277 static struct bpf_func_state *func(struct bpf_verifier_env *env,
278 				   const struct bpf_reg_state *reg)
279 {
280 	struct bpf_verifier_state *cur = env->cur_state;
281 
282 	return cur->frame[reg->frameno];
283 }
284 
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)285 static void print_verifier_state(struct bpf_verifier_env *env,
286 				 const struct bpf_func_state *state)
287 {
288 	const struct bpf_reg_state *reg;
289 	enum bpf_reg_type t;
290 	int i;
291 
292 	if (state->frameno)
293 		verbose(env, " frame%d:", state->frameno);
294 	for (i = 0; i < MAX_BPF_REG; i++) {
295 		reg = &state->regs[i];
296 		t = reg->type;
297 		if (t == NOT_INIT)
298 			continue;
299 		verbose(env, " R%d", i);
300 		print_liveness(env, reg->live);
301 		verbose(env, "=%s", reg_type_str[t]);
302 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
303 		    tnum_is_const(reg->var_off)) {
304 			/* reg->off should be 0 for SCALAR_VALUE */
305 			verbose(env, "%lld", reg->var_off.value + reg->off);
306 			if (t == PTR_TO_STACK)
307 				verbose(env, ",call_%d", func(env, reg)->callsite);
308 		} else {
309 			verbose(env, "(id=%d", reg->id);
310 			if (t != SCALAR_VALUE)
311 				verbose(env, ",off=%d", reg->off);
312 			if (type_is_pkt_pointer(t))
313 				verbose(env, ",r=%d", reg->range);
314 			else if (t == CONST_PTR_TO_MAP ||
315 				 t == PTR_TO_MAP_VALUE ||
316 				 t == PTR_TO_MAP_VALUE_OR_NULL)
317 				verbose(env, ",ks=%d,vs=%d",
318 					reg->map_ptr->key_size,
319 					reg->map_ptr->value_size);
320 			if (tnum_is_const(reg->var_off)) {
321 				/* Typically an immediate SCALAR_VALUE, but
322 				 * could be a pointer whose offset is too big
323 				 * for reg->off
324 				 */
325 				verbose(env, ",imm=%llx", reg->var_off.value);
326 			} else {
327 				if (reg->smin_value != reg->umin_value &&
328 				    reg->smin_value != S64_MIN)
329 					verbose(env, ",smin_value=%lld",
330 						(long long)reg->smin_value);
331 				if (reg->smax_value != reg->umax_value &&
332 				    reg->smax_value != S64_MAX)
333 					verbose(env, ",smax_value=%lld",
334 						(long long)reg->smax_value);
335 				if (reg->umin_value != 0)
336 					verbose(env, ",umin_value=%llu",
337 						(unsigned long long)reg->umin_value);
338 				if (reg->umax_value != U64_MAX)
339 					verbose(env, ",umax_value=%llu",
340 						(unsigned long long)reg->umax_value);
341 				if (!tnum_is_unknown(reg->var_off)) {
342 					char tn_buf[48];
343 
344 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345 					verbose(env, ",var_off=%s", tn_buf);
346 				}
347 			}
348 			verbose(env, ")");
349 		}
350 	}
351 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
353 			verbose(env, " fp%d",
354 				(-i - 1) * BPF_REG_SIZE);
355 			print_liveness(env, state->stack[i].spilled_ptr.live);
356 			verbose(env, "=%s",
357 				reg_type_str[state->stack[i].spilled_ptr.type]);
358 		}
359 		if (state->stack[i].slot_type[0] == STACK_ZERO)
360 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361 	}
362 	verbose(env, "\n");
363 }
364 
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)365 static int copy_stack_state(struct bpf_func_state *dst,
366 			    const struct bpf_func_state *src)
367 {
368 	if (!src->stack)
369 		return 0;
370 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
371 		/* internal bug, make state invalid to reject the program */
372 		memset(dst, 0, sizeof(*dst));
373 		return -EFAULT;
374 	}
375 	memcpy(dst->stack, src->stack,
376 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
377 	return 0;
378 }
379 
380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
381  * make it consume minimal amount of memory. check_stack_write() access from
382  * the program calls into realloc_func_state() to grow the stack size.
383  * Note there is a non-zero parent pointer inside each reg of bpf_verifier_state
384  * which this function copies over. It points to corresponding reg in previous
385  * bpf_verifier_state which is never reallocated
386  */
realloc_func_state(struct bpf_func_state * state,int size,bool copy_old)387 static int realloc_func_state(struct bpf_func_state *state, int size,
388 			      bool copy_old)
389 {
390 	u32 old_size = state->allocated_stack;
391 	struct bpf_stack_state *new_stack;
392 	int slot = size / BPF_REG_SIZE;
393 
394 	if (size <= old_size || !size) {
395 		if (copy_old)
396 			return 0;
397 		state->allocated_stack = slot * BPF_REG_SIZE;
398 		if (!size && old_size) {
399 			kfree(state->stack);
400 			state->stack = NULL;
401 		}
402 		return 0;
403 	}
404 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
405 				  GFP_KERNEL);
406 	if (!new_stack)
407 		return -ENOMEM;
408 	if (copy_old) {
409 		if (state->stack)
410 			memcpy(new_stack, state->stack,
411 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
412 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
413 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
414 	}
415 	state->allocated_stack = slot * BPF_REG_SIZE;
416 	kfree(state->stack);
417 	state->stack = new_stack;
418 	return 0;
419 }
420 
free_func_state(struct bpf_func_state * state)421 static void free_func_state(struct bpf_func_state *state)
422 {
423 	if (!state)
424 		return;
425 	kfree(state->stack);
426 	kfree(state);
427 }
428 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)429 static void free_verifier_state(struct bpf_verifier_state *state,
430 				bool free_self)
431 {
432 	int i;
433 
434 	for (i = 0; i <= state->curframe; i++) {
435 		free_func_state(state->frame[i]);
436 		state->frame[i] = NULL;
437 	}
438 	if (free_self)
439 		kfree(state);
440 }
441 
442 /* copy verifier state from src to dst growing dst stack space
443  * when necessary to accommodate larger src stack
444  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)445 static int copy_func_state(struct bpf_func_state *dst,
446 			   const struct bpf_func_state *src)
447 {
448 	int err;
449 
450 	err = realloc_func_state(dst, src->allocated_stack, false);
451 	if (err)
452 		return err;
453 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 	return copy_stack_state(dst, src);
455 }
456 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)457 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
458 			       const struct bpf_verifier_state *src)
459 {
460 	struct bpf_func_state *dst;
461 	int i, err;
462 
463 	/* if dst has more stack frames then src frame, free them */
464 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
465 		free_func_state(dst_state->frame[i]);
466 		dst_state->frame[i] = NULL;
467 	}
468 	dst_state->speculative = src->speculative;
469 	dst_state->curframe = src->curframe;
470 	for (i = 0; i <= src->curframe; i++) {
471 		dst = dst_state->frame[i];
472 		if (!dst) {
473 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
474 			if (!dst)
475 				return -ENOMEM;
476 			dst_state->frame[i] = dst;
477 		}
478 		err = copy_func_state(dst, src->frame[i]);
479 		if (err)
480 			return err;
481 	}
482 	return 0;
483 }
484 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx)485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
486 		     int *insn_idx)
487 {
488 	struct bpf_verifier_state *cur = env->cur_state;
489 	struct bpf_verifier_stack_elem *elem, *head = env->head;
490 	int err;
491 
492 	if (env->head == NULL)
493 		return -ENOENT;
494 
495 	if (cur) {
496 		err = copy_verifier_state(cur, &head->st);
497 		if (err)
498 			return err;
499 	}
500 	if (insn_idx)
501 		*insn_idx = head->insn_idx;
502 	if (prev_insn_idx)
503 		*prev_insn_idx = head->prev_insn_idx;
504 	elem = head->next;
505 	free_verifier_state(&head->st, false);
506 	kfree(head);
507 	env->head = elem;
508 	env->stack_size--;
509 	return 0;
510 }
511 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
513 					     int insn_idx, int prev_insn_idx,
514 					     bool speculative)
515 {
516 	struct bpf_verifier_state *cur = env->cur_state;
517 	struct bpf_verifier_stack_elem *elem;
518 	int err;
519 
520 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
521 	if (!elem)
522 		goto err;
523 
524 	elem->insn_idx = insn_idx;
525 	elem->prev_insn_idx = prev_insn_idx;
526 	elem->next = env->head;
527 	env->head = elem;
528 	env->stack_size++;
529 	err = copy_verifier_state(&elem->st, cur);
530 	if (err)
531 		goto err;
532 	elem->st.speculative |= speculative;
533 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
534 		verbose(env, "BPF program is too complex\n");
535 		goto err;
536 	}
537 	return &elem->st;
538 err:
539 	free_verifier_state(env->cur_state, true);
540 	env->cur_state = NULL;
541 	/* pop all elements and return */
542 	while (!pop_stack(env, NULL, NULL));
543 	return NULL;
544 }
545 
546 #define CALLER_SAVED_REGS 6
547 static const int caller_saved[CALLER_SAVED_REGS] = {
548 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
549 };
550 
551 static void __mark_reg_not_init(struct bpf_reg_state *reg);
552 
553 /* Mark the unknown part of a register (variable offset or scalar value) as
554  * known to have the value @imm.
555  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)556 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
557 {
558 	/* Clear id, off, and union(map_ptr, range) */
559 	memset(((u8 *)reg) + sizeof(reg->type), 0,
560 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
561 	reg->var_off = tnum_const(imm);
562 	reg->smin_value = (s64)imm;
563 	reg->smax_value = (s64)imm;
564 	reg->umin_value = imm;
565 	reg->umax_value = imm;
566 }
567 
568 /* Mark the 'variable offset' part of a register as zero.  This should be
569  * used only on registers holding a pointer type.
570  */
__mark_reg_known_zero(struct bpf_reg_state * reg)571 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
572 {
573 	__mark_reg_known(reg, 0);
574 }
575 
__mark_reg_const_zero(struct bpf_reg_state * reg)576 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
577 {
578 	__mark_reg_known(reg, 0);
579 	reg->type = SCALAR_VALUE;
580 }
581 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)582 static void mark_reg_known_zero(struct bpf_verifier_env *env,
583 				struct bpf_reg_state *regs, u32 regno)
584 {
585 	if (WARN_ON(regno >= MAX_BPF_REG)) {
586 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
587 		/* Something bad happened, let's kill all regs */
588 		for (regno = 0; regno < MAX_BPF_REG; regno++)
589 			__mark_reg_not_init(regs + regno);
590 		return;
591 	}
592 	__mark_reg_known_zero(regs + regno);
593 }
594 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)595 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
596 {
597 	return type_is_pkt_pointer(reg->type);
598 }
599 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)600 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
601 {
602 	return reg_is_pkt_pointer(reg) ||
603 	       reg->type == PTR_TO_PACKET_END;
604 }
605 
606 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)607 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
608 				    enum bpf_reg_type which)
609 {
610 	/* The register can already have a range from prior markings.
611 	 * This is fine as long as it hasn't been advanced from its
612 	 * origin.
613 	 */
614 	return reg->type == which &&
615 	       reg->id == 0 &&
616 	       reg->off == 0 &&
617 	       tnum_equals_const(reg->var_off, 0);
618 }
619 
620 /* Attempts to improve min/max values based on var_off information */
__update_reg_bounds(struct bpf_reg_state * reg)621 static void __update_reg_bounds(struct bpf_reg_state *reg)
622 {
623 	/* min signed is max(sign bit) | min(other bits) */
624 	reg->smin_value = max_t(s64, reg->smin_value,
625 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
626 	/* max signed is min(sign bit) | max(other bits) */
627 	reg->smax_value = min_t(s64, reg->smax_value,
628 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
629 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
630 	reg->umax_value = min(reg->umax_value,
631 			      reg->var_off.value | reg->var_off.mask);
632 }
633 
634 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg_deduce_bounds(struct bpf_reg_state * reg)635 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
636 {
637 	/* Learn sign from signed bounds.
638 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
639 	 * are the same, so combine.  This works even in the negative case, e.g.
640 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
641 	 */
642 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
643 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
644 							  reg->umin_value);
645 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
646 							  reg->umax_value);
647 		return;
648 	}
649 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
650 	 * boundary, so we must be careful.
651 	 */
652 	if ((s64)reg->umax_value >= 0) {
653 		/* Positive.  We can't learn anything from the smin, but smax
654 		 * is positive, hence safe.
655 		 */
656 		reg->smin_value = reg->umin_value;
657 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
658 							  reg->umax_value);
659 	} else if ((s64)reg->umin_value < 0) {
660 		/* Negative.  We can't learn anything from the smax, but smin
661 		 * is negative, hence safe.
662 		 */
663 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
664 							  reg->umin_value);
665 		reg->smax_value = reg->umax_value;
666 	}
667 }
668 
669 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)670 static void __reg_bound_offset(struct bpf_reg_state *reg)
671 {
672 	reg->var_off = tnum_intersect(reg->var_off,
673 				      tnum_range(reg->umin_value,
674 						 reg->umax_value));
675 }
676 
677 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)678 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
679 {
680 	reg->smin_value = S64_MIN;
681 	reg->smax_value = S64_MAX;
682 	reg->umin_value = 0;
683 	reg->umax_value = U64_MAX;
684 }
685 
686 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(struct bpf_reg_state * reg)687 static void __mark_reg_unknown(struct bpf_reg_state *reg)
688 {
689 	/*
690 	 * Clear type, id, off, and union(map_ptr, range) and
691 	 * padding between 'type' and union
692 	 */
693 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
694 	reg->type = SCALAR_VALUE;
695 	reg->var_off = tnum_unknown;
696 	reg->frameno = 0;
697 	__mark_reg_unbounded(reg);
698 }
699 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)700 static void mark_reg_unknown(struct bpf_verifier_env *env,
701 			     struct bpf_reg_state *regs, u32 regno)
702 {
703 	if (WARN_ON(regno >= MAX_BPF_REG)) {
704 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
705 		/* Something bad happened, let's kill all regs except FP */
706 		for (regno = 0; regno < BPF_REG_FP; regno++)
707 			__mark_reg_not_init(regs + regno);
708 		return;
709 	}
710 	__mark_reg_unknown(regs + regno);
711 }
712 
__mark_reg_not_init(struct bpf_reg_state * reg)713 static void __mark_reg_not_init(struct bpf_reg_state *reg)
714 {
715 	__mark_reg_unknown(reg);
716 	reg->type = NOT_INIT;
717 }
718 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)719 static void mark_reg_not_init(struct bpf_verifier_env *env,
720 			      struct bpf_reg_state *regs, u32 regno)
721 {
722 	if (WARN_ON(regno >= MAX_BPF_REG)) {
723 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
724 		/* Something bad happened, let's kill all regs except FP */
725 		for (regno = 0; regno < BPF_REG_FP; regno++)
726 			__mark_reg_not_init(regs + regno);
727 		return;
728 	}
729 	__mark_reg_not_init(regs + regno);
730 }
731 
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)732 static void init_reg_state(struct bpf_verifier_env *env,
733 			   struct bpf_func_state *state)
734 {
735 	struct bpf_reg_state *regs = state->regs;
736 	int i;
737 
738 	for (i = 0; i < MAX_BPF_REG; i++) {
739 		mark_reg_not_init(env, regs, i);
740 		regs[i].live = REG_LIVE_NONE;
741 		regs[i].parent = NULL;
742 	}
743 
744 	/* frame pointer */
745 	regs[BPF_REG_FP].type = PTR_TO_STACK;
746 	mark_reg_known_zero(env, regs, BPF_REG_FP);
747 	regs[BPF_REG_FP].frameno = state->frameno;
748 
749 	/* 1st arg to a function */
750 	regs[BPF_REG_1].type = PTR_TO_CTX;
751 	mark_reg_known_zero(env, regs, BPF_REG_1);
752 }
753 
754 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)755 static void init_func_state(struct bpf_verifier_env *env,
756 			    struct bpf_func_state *state,
757 			    int callsite, int frameno, int subprogno)
758 {
759 	state->callsite = callsite;
760 	state->frameno = frameno;
761 	state->subprogno = subprogno;
762 	init_reg_state(env, state);
763 }
764 
765 enum reg_arg_type {
766 	SRC_OP,		/* register is used as source operand */
767 	DST_OP,		/* register is used as destination operand */
768 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
769 };
770 
cmp_subprogs(const void * a,const void * b)771 static int cmp_subprogs(const void *a, const void *b)
772 {
773 	return ((struct bpf_subprog_info *)a)->start -
774 	       ((struct bpf_subprog_info *)b)->start;
775 }
776 
find_subprog(struct bpf_verifier_env * env,int off)777 static int find_subprog(struct bpf_verifier_env *env, int off)
778 {
779 	struct bpf_subprog_info *p;
780 
781 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
782 		    sizeof(env->subprog_info[0]), cmp_subprogs);
783 	if (!p)
784 		return -ENOENT;
785 	return p - env->subprog_info;
786 
787 }
788 
add_subprog(struct bpf_verifier_env * env,int off)789 static int add_subprog(struct bpf_verifier_env *env, int off)
790 {
791 	int insn_cnt = env->prog->len;
792 	int ret;
793 
794 	if (off >= insn_cnt || off < 0) {
795 		verbose(env, "call to invalid destination\n");
796 		return -EINVAL;
797 	}
798 	ret = find_subprog(env, off);
799 	if (ret >= 0)
800 		return 0;
801 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
802 		verbose(env, "too many subprograms\n");
803 		return -E2BIG;
804 	}
805 	env->subprog_info[env->subprog_cnt++].start = off;
806 	sort(env->subprog_info, env->subprog_cnt,
807 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
808 	return 0;
809 }
810 
check_subprogs(struct bpf_verifier_env * env)811 static int check_subprogs(struct bpf_verifier_env *env)
812 {
813 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
814 	struct bpf_subprog_info *subprog = env->subprog_info;
815 	struct bpf_insn *insn = env->prog->insnsi;
816 	int insn_cnt = env->prog->len;
817 
818 	/* Add entry function. */
819 	ret = add_subprog(env, 0);
820 	if (ret < 0)
821 		return ret;
822 
823 	/* determine subprog starts. The end is one before the next starts */
824 	for (i = 0; i < insn_cnt; i++) {
825 		if (insn[i].code != (BPF_JMP | BPF_CALL))
826 			continue;
827 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
828 			continue;
829 		if (!env->allow_ptr_leaks) {
830 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
831 			return -EPERM;
832 		}
833 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
834 			verbose(env, "function calls in offloaded programs are not supported yet\n");
835 			return -EINVAL;
836 		}
837 		ret = add_subprog(env, i + insn[i].imm + 1);
838 		if (ret < 0)
839 			return ret;
840 	}
841 
842 	/* Add a fake 'exit' subprog which could simplify subprog iteration
843 	 * logic. 'subprog_cnt' should not be increased.
844 	 */
845 	subprog[env->subprog_cnt].start = insn_cnt;
846 
847 	if (env->log.level > 1)
848 		for (i = 0; i < env->subprog_cnt; i++)
849 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
850 
851 	/* now check that all jumps are within the same subprog */
852 	subprog_start = subprog[cur_subprog].start;
853 	subprog_end = subprog[cur_subprog + 1].start;
854 	for (i = 0; i < insn_cnt; i++) {
855 		u8 code = insn[i].code;
856 
857 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
858 			goto next;
859 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
860 			goto next;
861 		off = i + insn[i].off + 1;
862 		if (off < subprog_start || off >= subprog_end) {
863 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
864 			return -EINVAL;
865 		}
866 next:
867 		if (i == subprog_end - 1) {
868 			/* to avoid fall-through from one subprog into another
869 			 * the last insn of the subprog should be either exit
870 			 * or unconditional jump back
871 			 */
872 			if (code != (BPF_JMP | BPF_EXIT) &&
873 			    code != (BPF_JMP | BPF_JA)) {
874 				verbose(env, "last insn is not an exit or jmp\n");
875 				return -EINVAL;
876 			}
877 			subprog_start = subprog_end;
878 			cur_subprog++;
879 			if (cur_subprog < env->subprog_cnt)
880 				subprog_end = subprog[cur_subprog + 1].start;
881 		}
882 	}
883 	return 0;
884 }
885 
886 /* Parentage chain of this register (or stack slot) should take care of all
887  * issues like callee-saved registers, stack slot allocation time, etc.
888  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent)889 static int mark_reg_read(struct bpf_verifier_env *env,
890 			 const struct bpf_reg_state *state,
891 			 struct bpf_reg_state *parent)
892 {
893 	bool writes = parent == state->parent; /* Observe write marks */
894 
895 	while (parent) {
896 		/* if read wasn't screened by an earlier write ... */
897 		if (writes && state->live & REG_LIVE_WRITTEN)
898 			break;
899 		/* ... then we depend on parent's value */
900 		parent->live |= REG_LIVE_READ;
901 		state = parent;
902 		parent = state->parent;
903 		writes = true;
904 	}
905 	return 0;
906 }
907 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)908 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
909 			 enum reg_arg_type t)
910 {
911 	struct bpf_verifier_state *vstate = env->cur_state;
912 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
913 	struct bpf_reg_state *regs = state->regs;
914 
915 	if (regno >= MAX_BPF_REG) {
916 		verbose(env, "R%d is invalid\n", regno);
917 		return -EINVAL;
918 	}
919 
920 	if (t == SRC_OP) {
921 		/* check whether register used as source operand can be read */
922 		if (regs[regno].type == NOT_INIT) {
923 			verbose(env, "R%d !read_ok\n", regno);
924 			return -EACCES;
925 		}
926 		/* We don't need to worry about FP liveness because it's read-only */
927 		if (regno != BPF_REG_FP)
928 			return mark_reg_read(env, &regs[regno],
929 					     regs[regno].parent);
930 	} else {
931 		/* check whether register used as dest operand can be written to */
932 		if (regno == BPF_REG_FP) {
933 			verbose(env, "frame pointer is read only\n");
934 			return -EACCES;
935 		}
936 		regs[regno].live |= REG_LIVE_WRITTEN;
937 		if (t == DST_OP)
938 			mark_reg_unknown(env, regs, regno);
939 	}
940 	return 0;
941 }
942 
is_spillable_regtype(enum bpf_reg_type type)943 static bool is_spillable_regtype(enum bpf_reg_type type)
944 {
945 	switch (type) {
946 	case PTR_TO_MAP_VALUE:
947 	case PTR_TO_MAP_VALUE_OR_NULL:
948 	case PTR_TO_STACK:
949 	case PTR_TO_CTX:
950 	case PTR_TO_PACKET:
951 	case PTR_TO_PACKET_META:
952 	case PTR_TO_PACKET_END:
953 	case CONST_PTR_TO_MAP:
954 		return true;
955 	default:
956 		return false;
957 	}
958 }
959 
960 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)961 static bool register_is_null(struct bpf_reg_state *reg)
962 {
963 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
964 }
965 
register_is_const(struct bpf_reg_state * reg)966 static bool register_is_const(struct bpf_reg_state *reg)
967 {
968 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
969 }
970 
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg)971 static void save_register_state(struct bpf_func_state *state,
972 				int spi, struct bpf_reg_state *reg)
973 {
974 	int i;
975 
976 	state->stack[spi].spilled_ptr = *reg;
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 
979 	for (i = 0; i < BPF_REG_SIZE; i++)
980 		state->stack[spi].slot_type[i] = STACK_SPILL;
981 }
982 
983 /* check_stack_read/write functions track spill/fill of registers,
984  * stack boundary and alignment are checked in check_mem_access()
985  */
check_stack_write(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)986 static int check_stack_write(struct bpf_verifier_env *env,
987 			     struct bpf_func_state *state, /* func where register points to */
988 			     int off, int size, int value_regno, int insn_idx)
989 {
990 	struct bpf_func_state *cur; /* state of the current function */
991 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
992 	struct bpf_reg_state *reg = NULL;
993 
994 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
995 				 true);
996 	if (err)
997 		return err;
998 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
999 	 * so it's aligned access and [off, off + size) are within stack limits
1000 	 */
1001 	if (!env->allow_ptr_leaks &&
1002 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1003 	    size != BPF_REG_SIZE) {
1004 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1005 		return -EACCES;
1006 	}
1007 
1008 	cur = env->cur_state->frame[env->cur_state->curframe];
1009 	if (value_regno >= 0)
1010 		reg = &cur->regs[value_regno];
1011 	if (!env->allow_ptr_leaks) {
1012 		bool sanitize = reg && is_spillable_regtype(reg->type);
1013 
1014 		for (i = 0; i < size; i++) {
1015 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
1016 				sanitize = true;
1017 				break;
1018 			}
1019 		}
1020 
1021 		if (sanitize)
1022 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
1023 	}
1024 
1025 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1026 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1027 		save_register_state(state, spi, reg);
1028 	} else if (reg && is_spillable_regtype(reg->type)) {
1029 		/* register containing pointer is being spilled into stack */
1030 		if (size != BPF_REG_SIZE) {
1031 			verbose(env, "invalid size of register spill\n");
1032 			return -EACCES;
1033 		}
1034 
1035 		if (state != cur && reg->type == PTR_TO_STACK) {
1036 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1037 			return -EINVAL;
1038 		}
1039 		save_register_state(state, spi, reg);
1040 	} else {
1041 		u8 type = STACK_MISC;
1042 
1043 		/* regular write of data into stack destroys any spilled ptr */
1044 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1045 
1046 		/* only mark the slot as written if all 8 bytes were written
1047 		 * otherwise read propagation may incorrectly stop too soon
1048 		 * when stack slots are partially written.
1049 		 * This heuristic means that read propagation will be
1050 		 * conservative, since it will add reg_live_read marks
1051 		 * to stack slots all the way to first state when programs
1052 		 * writes+reads less than 8 bytes
1053 		 */
1054 		if (size == BPF_REG_SIZE)
1055 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1056 
1057 		/* when we zero initialize stack slots mark them as such */
1058 		if (reg && register_is_null(reg))
1059 			type = STACK_ZERO;
1060 
1061 		for (i = 0; i < size; i++)
1062 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1063 				type;
1064 	}
1065 	return 0;
1066 }
1067 
check_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int value_regno)1068 static int check_stack_read(struct bpf_verifier_env *env,
1069 			    struct bpf_func_state *reg_state /* func where register points to */,
1070 			    int off, int size, int value_regno)
1071 {
1072 	struct bpf_verifier_state *vstate = env->cur_state;
1073 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1074 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1075 	struct bpf_reg_state *reg;
1076 	u8 *stype;
1077 
1078 	if (reg_state->allocated_stack <= slot) {
1079 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1080 			off, size);
1081 		return -EACCES;
1082 	}
1083 	stype = reg_state->stack[spi].slot_type;
1084 	reg = &reg_state->stack[spi].spilled_ptr;
1085 
1086 	if (stype[0] == STACK_SPILL) {
1087 		if (size != BPF_REG_SIZE) {
1088 			if (reg->type != SCALAR_VALUE) {
1089 				verbose(env, "invalid size of register fill\n");
1090 				return -EACCES;
1091 			}
1092 			if (value_regno >= 0) {
1093 				mark_reg_unknown(env, state->regs, value_regno);
1094 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1095 			}
1096 			mark_reg_read(env, reg, reg->parent);
1097 			return 0;
1098 		}
1099 		for (i = 1; i < BPF_REG_SIZE; i++) {
1100 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1101 				verbose(env, "corrupted spill memory\n");
1102 				return -EACCES;
1103 			}
1104 		}
1105 
1106 		if (value_regno >= 0) {
1107 			/* restore register state from stack */
1108 			state->regs[value_regno] = *reg;
1109 			/* mark reg as written since spilled pointer state likely
1110 			 * has its liveness marks cleared by is_state_visited()
1111 			 * which resets stack/reg liveness for state transitions
1112 			 */
1113 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1114 		}
1115 		mark_reg_read(env, reg, reg->parent);
1116 	} else {
1117 		int zeros = 0;
1118 
1119 		for (i = 0; i < size; i++) {
1120 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1121 				continue;
1122 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1123 				zeros++;
1124 				continue;
1125 			}
1126 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1127 				off, i, size);
1128 			return -EACCES;
1129 		}
1130 		mark_reg_read(env, reg, reg->parent);
1131 		if (value_regno >= 0) {
1132 			if (zeros == size) {
1133 				/* any size read into register is zero extended,
1134 				 * so the whole register == const_zero
1135 				 */
1136 				__mark_reg_const_zero(&state->regs[value_regno]);
1137 			} else {
1138 				/* have read misc data from the stack */
1139 				mark_reg_unknown(env, state->regs, value_regno);
1140 			}
1141 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1142 		}
1143 	}
1144 	return 0;
1145 }
1146 
check_stack_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size)1147 static int check_stack_access(struct bpf_verifier_env *env,
1148 			      const struct bpf_reg_state *reg,
1149 			      int off, int size)
1150 {
1151 	/* Stack accesses must be at a fixed offset, so that we
1152 	 * can determine what type of data were returned. See
1153 	 * check_stack_read().
1154 	 */
1155 	if (!tnum_is_const(reg->var_off)) {
1156 		char tn_buf[48];
1157 
1158 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1159 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1160 			tn_buf, off, size);
1161 		return -EACCES;
1162 	}
1163 
1164 	if (off >= 0 || off < -MAX_BPF_STACK) {
1165 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1166 		return -EACCES;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /* check read/write into map element returned by bpf_map_lookup_elem() */
__check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)1173 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1174 			      int size, bool zero_size_allowed)
1175 {
1176 	struct bpf_reg_state *regs = cur_regs(env);
1177 	struct bpf_map *map = regs[regno].map_ptr;
1178 
1179 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1180 	    off + size > map->value_size) {
1181 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1182 			map->value_size, off, size);
1183 		return -EACCES;
1184 	}
1185 	return 0;
1186 }
1187 
1188 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)1189 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1190 			    int off, int size, bool zero_size_allowed)
1191 {
1192 	struct bpf_verifier_state *vstate = env->cur_state;
1193 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1194 	struct bpf_reg_state *reg = &state->regs[regno];
1195 	int err;
1196 
1197 	/* We may have adjusted the register to this map value, so we
1198 	 * need to try adding each of min_value and max_value to off
1199 	 * to make sure our theoretical access will be safe.
1200 	 */
1201 	if (env->log.level)
1202 		print_verifier_state(env, state);
1203 
1204 	/* The minimum value is only important with signed
1205 	 * comparisons where we can't assume the floor of a
1206 	 * value is 0.  If we are using signed variables for our
1207 	 * index'es we need to make sure that whatever we use
1208 	 * will have a set floor within our range.
1209 	 */
1210 	if (reg->smin_value < 0 &&
1211 	    (reg->smin_value == S64_MIN ||
1212 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1213 	      reg->smin_value + off < 0)) {
1214 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1215 			regno);
1216 		return -EACCES;
1217 	}
1218 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1219 				 zero_size_allowed);
1220 	if (err) {
1221 		verbose(env, "R%d min value is outside of the array range\n",
1222 			regno);
1223 		return err;
1224 	}
1225 
1226 	/* If we haven't set a max value then we need to bail since we can't be
1227 	 * sure we won't do bad things.
1228 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1229 	 */
1230 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1231 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1232 			regno);
1233 		return -EACCES;
1234 	}
1235 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1236 				 zero_size_allowed);
1237 	if (err)
1238 		verbose(env, "R%d max value is outside of the array range\n",
1239 			regno);
1240 	return err;
1241 }
1242 
1243 #define MAX_PACKET_OFF 0xffff
1244 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)1245 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1246 				       const struct bpf_call_arg_meta *meta,
1247 				       enum bpf_access_type t)
1248 {
1249 	switch (env->prog->type) {
1250 	case BPF_PROG_TYPE_LWT_IN:
1251 	case BPF_PROG_TYPE_LWT_OUT:
1252 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1253 	case BPF_PROG_TYPE_SK_REUSEPORT:
1254 		/* dst_input() and dst_output() can't write for now */
1255 		if (t == BPF_WRITE)
1256 			return false;
1257 		/* fallthrough */
1258 	case BPF_PROG_TYPE_SCHED_CLS:
1259 	case BPF_PROG_TYPE_SCHED_ACT:
1260 	case BPF_PROG_TYPE_XDP:
1261 	case BPF_PROG_TYPE_LWT_XMIT:
1262 	case BPF_PROG_TYPE_SK_SKB:
1263 	case BPF_PROG_TYPE_SK_MSG:
1264 		if (meta)
1265 			return meta->pkt_access;
1266 
1267 		env->seen_direct_write = true;
1268 		return true;
1269 	default:
1270 		return false;
1271 	}
1272 }
1273 
__check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)1274 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1275 				 int off, int size, bool zero_size_allowed)
1276 {
1277 	struct bpf_reg_state *regs = cur_regs(env);
1278 	struct bpf_reg_state *reg = &regs[regno];
1279 
1280 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1281 	    (u64)off + size > reg->range) {
1282 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1283 			off, size, regno, reg->id, reg->off, reg->range);
1284 		return -EACCES;
1285 	}
1286 	return 0;
1287 }
1288 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)1289 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1290 			       int size, bool zero_size_allowed)
1291 {
1292 	struct bpf_reg_state *regs = cur_regs(env);
1293 	struct bpf_reg_state *reg = &regs[regno];
1294 	int err;
1295 
1296 	/* We may have added a variable offset to the packet pointer; but any
1297 	 * reg->range we have comes after that.  We are only checking the fixed
1298 	 * offset.
1299 	 */
1300 
1301 	/* We don't allow negative numbers, because we aren't tracking enough
1302 	 * detail to prove they're safe.
1303 	 */
1304 	if (reg->smin_value < 0) {
1305 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1306 			regno);
1307 		return -EACCES;
1308 	}
1309 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1310 	if (err) {
1311 		verbose(env, "R%d offset is outside of the packet\n", regno);
1312 		return err;
1313 	}
1314 	return err;
1315 }
1316 
1317 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type)1318 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1319 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1320 {
1321 	struct bpf_insn_access_aux info = {
1322 		.reg_type = *reg_type,
1323 	};
1324 
1325 	if (env->ops->is_valid_access &&
1326 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1327 		/* A non zero info.ctx_field_size indicates that this field is a
1328 		 * candidate for later verifier transformation to load the whole
1329 		 * field and then apply a mask when accessed with a narrower
1330 		 * access than actual ctx access size. A zero info.ctx_field_size
1331 		 * will only allow for whole field access and rejects any other
1332 		 * type of narrower access.
1333 		 */
1334 		*reg_type = info.reg_type;
1335 
1336 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1337 		/* remember the offset of last byte accessed in ctx */
1338 		if (env->prog->aux->max_ctx_offset < off + size)
1339 			env->prog->aux->max_ctx_offset = off + size;
1340 		return 0;
1341 	}
1342 
1343 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1344 	return -EACCES;
1345 }
1346 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)1347 static bool __is_pointer_value(bool allow_ptr_leaks,
1348 			       const struct bpf_reg_state *reg)
1349 {
1350 	if (allow_ptr_leaks)
1351 		return false;
1352 
1353 	return reg->type != SCALAR_VALUE;
1354 }
1355 
is_pointer_value(struct bpf_verifier_env * env,int regno)1356 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1357 {
1358 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1359 }
1360 
is_ctx_reg(struct bpf_verifier_env * env,int regno)1361 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1362 {
1363 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1364 
1365 	return reg->type == PTR_TO_CTX;
1366 }
1367 
is_pkt_reg(struct bpf_verifier_env * env,int regno)1368 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1369 {
1370 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1371 
1372 	return type_is_pkt_pointer(reg->type);
1373 }
1374 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)1375 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1376 				   const struct bpf_reg_state *reg,
1377 				   int off, int size, bool strict)
1378 {
1379 	struct tnum reg_off;
1380 	int ip_align;
1381 
1382 	/* Byte size accesses are always allowed. */
1383 	if (!strict || size == 1)
1384 		return 0;
1385 
1386 	/* For platforms that do not have a Kconfig enabling
1387 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1388 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1389 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1390 	 * to this code only in strict mode where we want to emulate
1391 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1392 	 * unconditional IP align value of '2'.
1393 	 */
1394 	ip_align = 2;
1395 
1396 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1397 	if (!tnum_is_aligned(reg_off, size)) {
1398 		char tn_buf[48];
1399 
1400 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1401 		verbose(env,
1402 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1403 			ip_align, tn_buf, reg->off, off, size);
1404 		return -EACCES;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)1410 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1411 				       const struct bpf_reg_state *reg,
1412 				       const char *pointer_desc,
1413 				       int off, int size, bool strict)
1414 {
1415 	struct tnum reg_off;
1416 
1417 	/* Byte size accesses are always allowed. */
1418 	if (!strict || size == 1)
1419 		return 0;
1420 
1421 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1422 	if (!tnum_is_aligned(reg_off, size)) {
1423 		char tn_buf[48];
1424 
1425 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1426 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1427 			pointer_desc, tn_buf, reg->off, off, size);
1428 		return -EACCES;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)1434 static int check_ptr_alignment(struct bpf_verifier_env *env,
1435 			       const struct bpf_reg_state *reg, int off,
1436 			       int size, bool strict_alignment_once)
1437 {
1438 	bool strict = env->strict_alignment || strict_alignment_once;
1439 	const char *pointer_desc = "";
1440 
1441 	switch (reg->type) {
1442 	case PTR_TO_PACKET:
1443 	case PTR_TO_PACKET_META:
1444 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1445 		 * right in front, treat it the very same way.
1446 		 */
1447 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1448 	case PTR_TO_MAP_VALUE:
1449 		pointer_desc = "value ";
1450 		break;
1451 	case PTR_TO_CTX:
1452 		pointer_desc = "context ";
1453 		break;
1454 	case PTR_TO_STACK:
1455 		pointer_desc = "stack ";
1456 		/* The stack spill tracking logic in check_stack_write()
1457 		 * and check_stack_read() relies on stack accesses being
1458 		 * aligned.
1459 		 */
1460 		strict = true;
1461 		break;
1462 	default:
1463 		break;
1464 	}
1465 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1466 					   strict);
1467 }
1468 
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)1469 static int update_stack_depth(struct bpf_verifier_env *env,
1470 			      const struct bpf_func_state *func,
1471 			      int off)
1472 {
1473 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1474 
1475 	if (stack >= -off)
1476 		return 0;
1477 
1478 	/* update known max for given subprogram */
1479 	env->subprog_info[func->subprogno].stack_depth = -off;
1480 	return 0;
1481 }
1482 
1483 /* starting from main bpf function walk all instructions of the function
1484  * and recursively walk all callees that given function can call.
1485  * Ignore jump and exit insns.
1486  * Since recursion is prevented by check_cfg() this algorithm
1487  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1488  */
check_max_stack_depth(struct bpf_verifier_env * env)1489 static int check_max_stack_depth(struct bpf_verifier_env *env)
1490 {
1491 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1492 	struct bpf_subprog_info *subprog = env->subprog_info;
1493 	struct bpf_insn *insn = env->prog->insnsi;
1494 	int ret_insn[MAX_CALL_FRAMES];
1495 	int ret_prog[MAX_CALL_FRAMES];
1496 
1497 process_func:
1498 	/* round up to 32-bytes, since this is granularity
1499 	 * of interpreter stack size
1500 	 */
1501 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1502 	if (depth > MAX_BPF_STACK) {
1503 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1504 			frame + 1, depth);
1505 		return -EACCES;
1506 	}
1507 continue_func:
1508 	subprog_end = subprog[idx + 1].start;
1509 	for (; i < subprog_end; i++) {
1510 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1511 			continue;
1512 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1513 			continue;
1514 		/* remember insn and function to return to */
1515 		ret_insn[frame] = i + 1;
1516 		ret_prog[frame] = idx;
1517 
1518 		/* find the callee */
1519 		i = i + insn[i].imm + 1;
1520 		idx = find_subprog(env, i);
1521 		if (idx < 0) {
1522 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1523 				  i);
1524 			return -EFAULT;
1525 		}
1526 		frame++;
1527 		if (frame >= MAX_CALL_FRAMES) {
1528 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1529 			return -EFAULT;
1530 		}
1531 		goto process_func;
1532 	}
1533 	/* end of for() loop means the last insn of the 'subprog'
1534 	 * was reached. Doesn't matter whether it was JA or EXIT
1535 	 */
1536 	if (frame == 0)
1537 		return 0;
1538 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1539 	frame--;
1540 	i = ret_insn[frame];
1541 	idx = ret_prog[frame];
1542 	goto continue_func;
1543 }
1544 
1545 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)1546 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1547 				  const struct bpf_insn *insn, int idx)
1548 {
1549 	int start = idx + insn->imm + 1, subprog;
1550 
1551 	subprog = find_subprog(env, start);
1552 	if (subprog < 0) {
1553 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1554 			  start);
1555 		return -EFAULT;
1556 	}
1557 	return env->subprog_info[subprog].stack_depth;
1558 }
1559 #endif
1560 
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)1561 static int check_ctx_reg(struct bpf_verifier_env *env,
1562 			 const struct bpf_reg_state *reg, int regno)
1563 {
1564 	/* Access to ctx or passing it to a helper is only allowed in
1565 	 * its original, unmodified form.
1566 	 */
1567 
1568 	if (reg->off) {
1569 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1570 			regno, reg->off);
1571 		return -EACCES;
1572 	}
1573 
1574 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1575 		char tn_buf[48];
1576 
1577 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1578 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1579 		return -EACCES;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /* truncate register to smaller size (in bytes)
1586  * must be called with size < BPF_REG_SIZE
1587  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)1588 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1589 {
1590 	u64 mask;
1591 
1592 	/* clear high bits in bit representation */
1593 	reg->var_off = tnum_cast(reg->var_off, size);
1594 
1595 	/* fix arithmetic bounds */
1596 	mask = ((u64)1 << (size * 8)) - 1;
1597 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1598 		reg->umin_value &= mask;
1599 		reg->umax_value &= mask;
1600 	} else {
1601 		reg->umin_value = 0;
1602 		reg->umax_value = mask;
1603 	}
1604 	reg->smin_value = reg->umin_value;
1605 	reg->smax_value = reg->umax_value;
1606 }
1607 
1608 /* check whether memory at (regno + off) is accessible for t = (read | write)
1609  * if t==write, value_regno is a register which value is stored into memory
1610  * if t==read, value_regno is a register which will receive the value from memory
1611  * if t==write && value_regno==-1, some unknown value is stored into memory
1612  * if t==read && value_regno==-1, don't care what we read from memory
1613  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)1614 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1615 			    int off, int bpf_size, enum bpf_access_type t,
1616 			    int value_regno, bool strict_alignment_once)
1617 {
1618 	struct bpf_reg_state *regs = cur_regs(env);
1619 	struct bpf_reg_state *reg = regs + regno;
1620 	struct bpf_func_state *state;
1621 	int size, err = 0;
1622 
1623 	size = bpf_size_to_bytes(bpf_size);
1624 	if (size < 0)
1625 		return size;
1626 
1627 	/* alignment checks will add in reg->off themselves */
1628 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1629 	if (err)
1630 		return err;
1631 
1632 	/* for access checks, reg->off is just part of off */
1633 	off += reg->off;
1634 
1635 	if (reg->type == PTR_TO_MAP_VALUE) {
1636 		if (t == BPF_WRITE && value_regno >= 0 &&
1637 		    is_pointer_value(env, value_regno)) {
1638 			verbose(env, "R%d leaks addr into map\n", value_regno);
1639 			return -EACCES;
1640 		}
1641 
1642 		err = check_map_access(env, regno, off, size, false);
1643 		if (!err && t == BPF_READ && value_regno >= 0)
1644 			mark_reg_unknown(env, regs, value_regno);
1645 
1646 	} else if (reg->type == PTR_TO_CTX) {
1647 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1648 
1649 		if (t == BPF_WRITE && value_regno >= 0 &&
1650 		    is_pointer_value(env, value_regno)) {
1651 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1652 			return -EACCES;
1653 		}
1654 
1655 		err = check_ctx_reg(env, reg, regno);
1656 		if (err < 0)
1657 			return err;
1658 
1659 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1660 		if (!err && t == BPF_READ && value_regno >= 0) {
1661 			/* ctx access returns either a scalar, or a
1662 			 * PTR_TO_PACKET[_META,_END]. In the latter
1663 			 * case, we know the offset is zero.
1664 			 */
1665 			if (reg_type == SCALAR_VALUE)
1666 				mark_reg_unknown(env, regs, value_regno);
1667 			else
1668 				mark_reg_known_zero(env, regs,
1669 						    value_regno);
1670 			regs[value_regno].type = reg_type;
1671 		}
1672 
1673 	} else if (reg->type == PTR_TO_STACK) {
1674 		off += reg->var_off.value;
1675 		err = check_stack_access(env, reg, off, size);
1676 		if (err)
1677 			return err;
1678 
1679 		state = func(env, reg);
1680 		err = update_stack_depth(env, state, off);
1681 		if (err)
1682 			return err;
1683 
1684 		if (t == BPF_WRITE)
1685 			err = check_stack_write(env, state, off, size,
1686 						value_regno, insn_idx);
1687 		else
1688 			err = check_stack_read(env, state, off, size,
1689 					       value_regno);
1690 	} else if (reg_is_pkt_pointer(reg)) {
1691 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1692 			verbose(env, "cannot write into packet\n");
1693 			return -EACCES;
1694 		}
1695 		if (t == BPF_WRITE && value_regno >= 0 &&
1696 		    is_pointer_value(env, value_regno)) {
1697 			verbose(env, "R%d leaks addr into packet\n",
1698 				value_regno);
1699 			return -EACCES;
1700 		}
1701 		err = check_packet_access(env, regno, off, size, false);
1702 		if (!err && t == BPF_READ && value_regno >= 0)
1703 			mark_reg_unknown(env, regs, value_regno);
1704 	} else {
1705 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1706 			reg_type_str[reg->type]);
1707 		return -EACCES;
1708 	}
1709 
1710 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1711 	    regs[value_regno].type == SCALAR_VALUE) {
1712 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1713 		coerce_reg_to_size(&regs[value_regno], size);
1714 	}
1715 	return err;
1716 }
1717 
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)1718 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1719 {
1720 	int err;
1721 
1722 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1723 	    insn->imm != 0) {
1724 		verbose(env, "BPF_XADD uses reserved fields\n");
1725 		return -EINVAL;
1726 	}
1727 
1728 	/* check src1 operand */
1729 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1730 	if (err)
1731 		return err;
1732 
1733 	/* check src2 operand */
1734 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1735 	if (err)
1736 		return err;
1737 
1738 	if (is_pointer_value(env, insn->src_reg)) {
1739 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1740 		return -EACCES;
1741 	}
1742 
1743 	if (is_ctx_reg(env, insn->dst_reg) ||
1744 	    is_pkt_reg(env, insn->dst_reg)) {
1745 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1746 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1747 			"context" : "packet");
1748 		return -EACCES;
1749 	}
1750 
1751 	/* check whether atomic_add can read the memory */
1752 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1753 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1754 	if (err)
1755 		return err;
1756 
1757 	/* check whether atomic_add can write into the same memory */
1758 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1759 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1760 }
1761 
1762 /* when register 'regno' is passed into function that will read 'access_size'
1763  * bytes from that pointer, make sure that it's within stack boundary
1764  * and all elements of stack are initialized.
1765  * Unlike most pointer bounds-checking functions, this one doesn't take an
1766  * 'off' argument, so it has to add in reg->off itself.
1767  */
check_stack_boundary(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)1768 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1769 				int access_size, bool zero_size_allowed,
1770 				struct bpf_call_arg_meta *meta)
1771 {
1772 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1773 	struct bpf_func_state *state = func(env, reg);
1774 	int off, i, j, slot, spi;
1775 
1776 	if (reg->type != PTR_TO_STACK) {
1777 		/* Allow zero-byte read from NULL, regardless of pointer type */
1778 		if (zero_size_allowed && access_size == 0 &&
1779 		    register_is_null(reg))
1780 			return 0;
1781 
1782 		verbose(env, "R%d type=%s expected=%s\n", regno,
1783 			reg_type_str[reg->type],
1784 			reg_type_str[PTR_TO_STACK]);
1785 		return -EACCES;
1786 	}
1787 
1788 	/* Only allow fixed-offset stack reads */
1789 	if (!tnum_is_const(reg->var_off)) {
1790 		char tn_buf[48];
1791 
1792 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1793 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1794 			regno, tn_buf);
1795 		return -EACCES;
1796 	}
1797 	off = reg->off + reg->var_off.value;
1798 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1799 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1800 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1801 			regno, off, access_size);
1802 		return -EACCES;
1803 	}
1804 
1805 	if (meta && meta->raw_mode) {
1806 		meta->access_size = access_size;
1807 		meta->regno = regno;
1808 		return 0;
1809 	}
1810 
1811 	for (i = 0; i < access_size; i++) {
1812 		u8 *stype;
1813 
1814 		slot = -(off + i) - 1;
1815 		spi = slot / BPF_REG_SIZE;
1816 		if (state->allocated_stack <= slot)
1817 			goto err;
1818 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1819 		if (*stype == STACK_MISC)
1820 			goto mark;
1821 		if (*stype == STACK_ZERO) {
1822 			/* helper can write anything into the stack */
1823 			*stype = STACK_MISC;
1824 			goto mark;
1825 		}
1826 
1827 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1828 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
1829 			__mark_reg_unknown(&state->stack[spi].spilled_ptr);
1830 			for (j = 0; j < BPF_REG_SIZE; j++)
1831 				state->stack[spi].slot_type[j] = STACK_MISC;
1832 			goto mark;
1833 		}
1834 
1835 
1836 err:
1837 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1838 			off, i, access_size);
1839 		return -EACCES;
1840 mark:
1841 		/* reading any byte out of 8-byte 'spill_slot' will cause
1842 		 * the whole slot to be marked as 'read'
1843 		 */
1844 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
1845 			      state->stack[spi].spilled_ptr.parent);
1846 	}
1847 	return update_stack_depth(env, state, off);
1848 }
1849 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)1850 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1851 				   int access_size, bool zero_size_allowed,
1852 				   struct bpf_call_arg_meta *meta)
1853 {
1854 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1855 
1856 	switch (reg->type) {
1857 	case PTR_TO_PACKET:
1858 	case PTR_TO_PACKET_META:
1859 		return check_packet_access(env, regno, reg->off, access_size,
1860 					   zero_size_allowed);
1861 	case PTR_TO_MAP_VALUE:
1862 		return check_map_access(env, regno, reg->off, access_size,
1863 					zero_size_allowed);
1864 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1865 		return check_stack_boundary(env, regno, access_size,
1866 					    zero_size_allowed, meta);
1867 	}
1868 }
1869 
arg_type_is_mem_ptr(enum bpf_arg_type type)1870 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1871 {
1872 	return type == ARG_PTR_TO_MEM ||
1873 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1874 	       type == ARG_PTR_TO_UNINIT_MEM;
1875 }
1876 
arg_type_is_mem_size(enum bpf_arg_type type)1877 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1878 {
1879 	return type == ARG_CONST_SIZE ||
1880 	       type == ARG_CONST_SIZE_OR_ZERO;
1881 }
1882 
check_func_arg(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,struct bpf_call_arg_meta * meta)1883 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1884 			  enum bpf_arg_type arg_type,
1885 			  struct bpf_call_arg_meta *meta)
1886 {
1887 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1888 	enum bpf_reg_type expected_type, type = reg->type;
1889 	int err = 0;
1890 
1891 	if (arg_type == ARG_DONTCARE)
1892 		return 0;
1893 
1894 	err = check_reg_arg(env, regno, SRC_OP);
1895 	if (err)
1896 		return err;
1897 
1898 	if (arg_type == ARG_ANYTHING) {
1899 		if (is_pointer_value(env, regno)) {
1900 			verbose(env, "R%d leaks addr into helper function\n",
1901 				regno);
1902 			return -EACCES;
1903 		}
1904 		return 0;
1905 	}
1906 
1907 	if (type_is_pkt_pointer(type) &&
1908 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1909 		verbose(env, "helper access to the packet is not allowed\n");
1910 		return -EACCES;
1911 	}
1912 
1913 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1914 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1915 		expected_type = PTR_TO_STACK;
1916 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1917 		    type != expected_type)
1918 			goto err_type;
1919 	} else if (arg_type == ARG_CONST_SIZE ||
1920 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1921 		expected_type = SCALAR_VALUE;
1922 		if (type != expected_type)
1923 			goto err_type;
1924 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1925 		expected_type = CONST_PTR_TO_MAP;
1926 		if (type != expected_type)
1927 			goto err_type;
1928 	} else if (arg_type == ARG_PTR_TO_CTX) {
1929 		expected_type = PTR_TO_CTX;
1930 		if (type != expected_type)
1931 			goto err_type;
1932 		err = check_ctx_reg(env, reg, regno);
1933 		if (err < 0)
1934 			return err;
1935 	} else if (arg_type_is_mem_ptr(arg_type)) {
1936 		expected_type = PTR_TO_STACK;
1937 		/* One exception here. In case function allows for NULL to be
1938 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1939 		 * happens during stack boundary checking.
1940 		 */
1941 		if (register_is_null(reg) &&
1942 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1943 			/* final test in check_stack_boundary() */;
1944 		else if (!type_is_pkt_pointer(type) &&
1945 			 type != PTR_TO_MAP_VALUE &&
1946 			 type != expected_type)
1947 			goto err_type;
1948 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1949 	} else {
1950 		verbose(env, "unsupported arg_type %d\n", arg_type);
1951 		return -EFAULT;
1952 	}
1953 
1954 	if (arg_type == ARG_CONST_MAP_PTR) {
1955 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1956 		meta->map_ptr = reg->map_ptr;
1957 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1958 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1959 		 * check that [key, key + map->key_size) are within
1960 		 * stack limits and initialized
1961 		 */
1962 		if (!meta->map_ptr) {
1963 			/* in function declaration map_ptr must come before
1964 			 * map_key, so that it's verified and known before
1965 			 * we have to check map_key here. Otherwise it means
1966 			 * that kernel subsystem misconfigured verifier
1967 			 */
1968 			verbose(env, "invalid map_ptr to access map->key\n");
1969 			return -EACCES;
1970 		}
1971 		err = check_helper_mem_access(env, regno,
1972 					      meta->map_ptr->key_size, false,
1973 					      NULL);
1974 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1975 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1976 		 * check [value, value + map->value_size) validity
1977 		 */
1978 		if (!meta->map_ptr) {
1979 			/* kernel subsystem misconfigured verifier */
1980 			verbose(env, "invalid map_ptr to access map->value\n");
1981 			return -EACCES;
1982 		}
1983 		err = check_helper_mem_access(env, regno,
1984 					      meta->map_ptr->value_size, false,
1985 					      NULL);
1986 	} else if (arg_type_is_mem_size(arg_type)) {
1987 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1988 
1989 		/* remember the mem_size which may be used later
1990 		 * to refine return values.
1991 		 */
1992 		meta->msize_max_value = reg->umax_value;
1993 
1994 		/* The register is SCALAR_VALUE; the access check
1995 		 * happens using its boundaries.
1996 		 */
1997 		if (!tnum_is_const(reg->var_off))
1998 			/* For unprivileged variable accesses, disable raw
1999 			 * mode so that the program is required to
2000 			 * initialize all the memory that the helper could
2001 			 * just partially fill up.
2002 			 */
2003 			meta = NULL;
2004 
2005 		if (reg->smin_value < 0) {
2006 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2007 				regno);
2008 			return -EACCES;
2009 		}
2010 
2011 		if (reg->umin_value == 0) {
2012 			err = check_helper_mem_access(env, regno - 1, 0,
2013 						      zero_size_allowed,
2014 						      meta);
2015 			if (err)
2016 				return err;
2017 		}
2018 
2019 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2020 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2021 				regno);
2022 			return -EACCES;
2023 		}
2024 		err = check_helper_mem_access(env, regno - 1,
2025 					      reg->umax_value,
2026 					      zero_size_allowed, meta);
2027 	}
2028 
2029 	return err;
2030 err_type:
2031 	verbose(env, "R%d type=%s expected=%s\n", regno,
2032 		reg_type_str[type], reg_type_str[expected_type]);
2033 	return -EACCES;
2034 }
2035 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)2036 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2037 					struct bpf_map *map, int func_id)
2038 {
2039 	if (!map)
2040 		return 0;
2041 
2042 	/* We need a two way check, first is from map perspective ... */
2043 	switch (map->map_type) {
2044 	case BPF_MAP_TYPE_PROG_ARRAY:
2045 		if (func_id != BPF_FUNC_tail_call)
2046 			goto error;
2047 		break;
2048 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2049 		if (func_id != BPF_FUNC_perf_event_read &&
2050 		    func_id != BPF_FUNC_perf_event_output &&
2051 		    func_id != BPF_FUNC_perf_event_read_value)
2052 			goto error;
2053 		break;
2054 	case BPF_MAP_TYPE_STACK_TRACE:
2055 		if (func_id != BPF_FUNC_get_stackid)
2056 			goto error;
2057 		break;
2058 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2059 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2060 		    func_id != BPF_FUNC_current_task_under_cgroup)
2061 			goto error;
2062 		break;
2063 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2064 		if (func_id != BPF_FUNC_get_local_storage)
2065 			goto error;
2066 		break;
2067 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2068 	 * allow to be modified from bpf side. So do not allow lookup elements
2069 	 * for now.
2070 	 */
2071 	case BPF_MAP_TYPE_DEVMAP:
2072 		if (func_id != BPF_FUNC_redirect_map)
2073 			goto error;
2074 		break;
2075 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2076 	 * appear.
2077 	 */
2078 	case BPF_MAP_TYPE_CPUMAP:
2079 	case BPF_MAP_TYPE_XSKMAP:
2080 		if (func_id != BPF_FUNC_redirect_map)
2081 			goto error;
2082 		break;
2083 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2084 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2085 		if (func_id != BPF_FUNC_map_lookup_elem)
2086 			goto error;
2087 		break;
2088 	case BPF_MAP_TYPE_SOCKMAP:
2089 		if (func_id != BPF_FUNC_sk_redirect_map &&
2090 		    func_id != BPF_FUNC_sock_map_update &&
2091 		    func_id != BPF_FUNC_map_delete_elem &&
2092 		    func_id != BPF_FUNC_msg_redirect_map)
2093 			goto error;
2094 		break;
2095 	case BPF_MAP_TYPE_SOCKHASH:
2096 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2097 		    func_id != BPF_FUNC_sock_hash_update &&
2098 		    func_id != BPF_FUNC_map_delete_elem &&
2099 		    func_id != BPF_FUNC_msg_redirect_hash)
2100 			goto error;
2101 		break;
2102 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2103 		if (func_id != BPF_FUNC_sk_select_reuseport)
2104 			goto error;
2105 		break;
2106 	default:
2107 		break;
2108 	}
2109 
2110 	/* ... and second from the function itself. */
2111 	switch (func_id) {
2112 	case BPF_FUNC_tail_call:
2113 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2114 			goto error;
2115 		if (env->subprog_cnt > 1) {
2116 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2117 			return -EINVAL;
2118 		}
2119 		break;
2120 	case BPF_FUNC_perf_event_read:
2121 	case BPF_FUNC_perf_event_output:
2122 	case BPF_FUNC_perf_event_read_value:
2123 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2124 			goto error;
2125 		break;
2126 	case BPF_FUNC_get_stackid:
2127 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2128 			goto error;
2129 		break;
2130 	case BPF_FUNC_current_task_under_cgroup:
2131 	case BPF_FUNC_skb_under_cgroup:
2132 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2133 			goto error;
2134 		break;
2135 	case BPF_FUNC_redirect_map:
2136 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2137 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2138 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2139 			goto error;
2140 		break;
2141 	case BPF_FUNC_sk_redirect_map:
2142 	case BPF_FUNC_msg_redirect_map:
2143 	case BPF_FUNC_sock_map_update:
2144 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2145 			goto error;
2146 		break;
2147 	case BPF_FUNC_sk_redirect_hash:
2148 	case BPF_FUNC_msg_redirect_hash:
2149 	case BPF_FUNC_sock_hash_update:
2150 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2151 			goto error;
2152 		break;
2153 	case BPF_FUNC_get_local_storage:
2154 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE)
2155 			goto error;
2156 		break;
2157 	case BPF_FUNC_sk_select_reuseport:
2158 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2159 			goto error;
2160 		break;
2161 	default:
2162 		break;
2163 	}
2164 
2165 	return 0;
2166 error:
2167 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2168 		map->map_type, func_id_name(func_id), func_id);
2169 	return -EINVAL;
2170 }
2171 
check_raw_mode_ok(const struct bpf_func_proto * fn)2172 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2173 {
2174 	int count = 0;
2175 
2176 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2177 		count++;
2178 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2179 		count++;
2180 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2181 		count++;
2182 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2183 		count++;
2184 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2185 		count++;
2186 
2187 	/* We only support one arg being in raw mode at the moment,
2188 	 * which is sufficient for the helper functions we have
2189 	 * right now.
2190 	 */
2191 	return count <= 1;
2192 }
2193 
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)2194 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2195 				    enum bpf_arg_type arg_next)
2196 {
2197 	return (arg_type_is_mem_ptr(arg_curr) &&
2198 	        !arg_type_is_mem_size(arg_next)) ||
2199 	       (!arg_type_is_mem_ptr(arg_curr) &&
2200 		arg_type_is_mem_size(arg_next));
2201 }
2202 
check_arg_pair_ok(const struct bpf_func_proto * fn)2203 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2204 {
2205 	/* bpf_xxx(..., buf, len) call will access 'len'
2206 	 * bytes from memory 'buf'. Both arg types need
2207 	 * to be paired, so make sure there's no buggy
2208 	 * helper function specification.
2209 	 */
2210 	if (arg_type_is_mem_size(fn->arg1_type) ||
2211 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2212 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2213 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2214 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2215 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2216 		return false;
2217 
2218 	return true;
2219 }
2220 
check_func_proto(const struct bpf_func_proto * fn)2221 static int check_func_proto(const struct bpf_func_proto *fn)
2222 {
2223 	return check_raw_mode_ok(fn) &&
2224 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2225 }
2226 
2227 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2228  * are now invalid, so turn them into unknown SCALAR_VALUE.
2229  */
__clear_all_pkt_pointers(struct bpf_verifier_env * env,struct bpf_func_state * state)2230 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2231 				     struct bpf_func_state *state)
2232 {
2233 	struct bpf_reg_state *regs = state->regs, *reg;
2234 	int i;
2235 
2236 	for (i = 0; i < MAX_BPF_REG; i++)
2237 		if (reg_is_pkt_pointer_any(&regs[i]))
2238 			mark_reg_unknown(env, regs, i);
2239 
2240 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2241 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2242 			continue;
2243 		reg = &state->stack[i].spilled_ptr;
2244 		if (reg_is_pkt_pointer_any(reg))
2245 			__mark_reg_unknown(reg);
2246 	}
2247 }
2248 
clear_all_pkt_pointers(struct bpf_verifier_env * env)2249 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2250 {
2251 	struct bpf_verifier_state *vstate = env->cur_state;
2252 	int i;
2253 
2254 	for (i = 0; i <= vstate->curframe; i++)
2255 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2256 }
2257 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)2258 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2259 			   int *insn_idx)
2260 {
2261 	struct bpf_verifier_state *state = env->cur_state;
2262 	struct bpf_func_state *caller, *callee;
2263 	int i, subprog, target_insn;
2264 
2265 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2266 		verbose(env, "the call stack of %d frames is too deep\n",
2267 			state->curframe + 2);
2268 		return -E2BIG;
2269 	}
2270 
2271 	target_insn = *insn_idx + insn->imm;
2272 	subprog = find_subprog(env, target_insn + 1);
2273 	if (subprog < 0) {
2274 		verbose(env, "verifier bug. No program starts at insn %d\n",
2275 			target_insn + 1);
2276 		return -EFAULT;
2277 	}
2278 
2279 	caller = state->frame[state->curframe];
2280 	if (state->frame[state->curframe + 1]) {
2281 		verbose(env, "verifier bug. Frame %d already allocated\n",
2282 			state->curframe + 1);
2283 		return -EFAULT;
2284 	}
2285 
2286 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2287 	if (!callee)
2288 		return -ENOMEM;
2289 	state->frame[state->curframe + 1] = callee;
2290 
2291 	/* callee cannot access r0, r6 - r9 for reading and has to write
2292 	 * into its own stack before reading from it.
2293 	 * callee can read/write into caller's stack
2294 	 */
2295 	init_func_state(env, callee,
2296 			/* remember the callsite, it will be used by bpf_exit */
2297 			*insn_idx /* callsite */,
2298 			state->curframe + 1 /* frameno within this callchain */,
2299 			subprog /* subprog number within this prog */);
2300 
2301 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2302 	 * pointers, which connects us up to the liveness chain
2303 	 */
2304 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2305 		callee->regs[i] = caller->regs[i];
2306 
2307 	/* after the call registers r0 - r5 were scratched */
2308 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2309 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2310 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2311 	}
2312 
2313 	/* only increment it after check_reg_arg() finished */
2314 	state->curframe++;
2315 
2316 	/* and go analyze first insn of the callee */
2317 	*insn_idx = target_insn;
2318 
2319 	if (env->log.level) {
2320 		verbose(env, "caller:\n");
2321 		print_verifier_state(env, caller);
2322 		verbose(env, "callee:\n");
2323 		print_verifier_state(env, callee);
2324 	}
2325 	return 0;
2326 }
2327 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)2328 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2329 {
2330 	struct bpf_verifier_state *state = env->cur_state;
2331 	struct bpf_func_state *caller, *callee;
2332 	struct bpf_reg_state *r0;
2333 
2334 	callee = state->frame[state->curframe];
2335 	r0 = &callee->regs[BPF_REG_0];
2336 	if (r0->type == PTR_TO_STACK) {
2337 		/* technically it's ok to return caller's stack pointer
2338 		 * (or caller's caller's pointer) back to the caller,
2339 		 * since these pointers are valid. Only current stack
2340 		 * pointer will be invalid as soon as function exits,
2341 		 * but let's be conservative
2342 		 */
2343 		verbose(env, "cannot return stack pointer to the caller\n");
2344 		return -EINVAL;
2345 	}
2346 
2347 	state->curframe--;
2348 	caller = state->frame[state->curframe];
2349 	/* return to the caller whatever r0 had in the callee */
2350 	caller->regs[BPF_REG_0] = *r0;
2351 
2352 	*insn_idx = callee->callsite + 1;
2353 	if (env->log.level) {
2354 		verbose(env, "returning from callee:\n");
2355 		print_verifier_state(env, callee);
2356 		verbose(env, "to caller at %d:\n", *insn_idx);
2357 		print_verifier_state(env, caller);
2358 	}
2359 	/* clear everything in the callee */
2360 	free_func_state(callee);
2361 	state->frame[state->curframe + 1] = NULL;
2362 	return 0;
2363 }
2364 
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)2365 static int do_refine_retval_range(struct bpf_verifier_env *env,
2366 				  struct bpf_reg_state *regs, int ret_type,
2367 				  int func_id, struct bpf_call_arg_meta *meta)
2368 {
2369 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2370 	struct bpf_reg_state tmp_reg = *ret_reg;
2371 	bool ret;
2372 
2373 	if (ret_type != RET_INTEGER ||
2374 	    (func_id != BPF_FUNC_get_stack &&
2375 	     func_id != BPF_FUNC_probe_read_str))
2376 		return 0;
2377 
2378 	/* Error case where ret is in interval [S32MIN, -1]. */
2379 	ret_reg->smin_value = S32_MIN;
2380 	ret_reg->smax_value = -1;
2381 
2382 	__reg_deduce_bounds(ret_reg);
2383 	__reg_bound_offset(ret_reg);
2384 	__update_reg_bounds(ret_reg);
2385 
2386 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
2387 	if (!ret)
2388 		return -EFAULT;
2389 
2390 	*ret_reg = tmp_reg;
2391 
2392 	/* Success case where ret is in range [0, msize_max_value]. */
2393 	ret_reg->smin_value = 0;
2394 	ret_reg->smax_value = meta->msize_max_value;
2395 	ret_reg->umin_value = ret_reg->smin_value;
2396 	ret_reg->umax_value = ret_reg->smax_value;
2397 
2398 	__reg_deduce_bounds(ret_reg);
2399 	__reg_bound_offset(ret_reg);
2400 	__update_reg_bounds(ret_reg);
2401 
2402 	return 0;
2403 }
2404 
2405 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)2406 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2407 		int func_id, int insn_idx)
2408 {
2409 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2410 
2411 	if (func_id != BPF_FUNC_tail_call &&
2412 	    func_id != BPF_FUNC_map_lookup_elem &&
2413 	    func_id != BPF_FUNC_map_update_elem &&
2414 	    func_id != BPF_FUNC_map_delete_elem)
2415 		return 0;
2416 
2417 	if (meta->map_ptr == NULL) {
2418 		verbose(env, "kernel subsystem misconfigured verifier\n");
2419 		return -EINVAL;
2420 	}
2421 
2422 	if (!BPF_MAP_PTR(aux->map_state))
2423 		bpf_map_ptr_store(aux, meta->map_ptr,
2424 				  meta->map_ptr->unpriv_array);
2425 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2426 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2427 				  meta->map_ptr->unpriv_array);
2428 	return 0;
2429 }
2430 
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)2431 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2432 {
2433 	const struct bpf_func_proto *fn = NULL;
2434 	struct bpf_reg_state *regs;
2435 	struct bpf_call_arg_meta meta;
2436 	bool changes_data;
2437 	int i, err;
2438 
2439 	/* find function prototype */
2440 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2441 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2442 			func_id);
2443 		return -EINVAL;
2444 	}
2445 
2446 	if (env->ops->get_func_proto)
2447 		fn = env->ops->get_func_proto(func_id, env->prog);
2448 	if (!fn) {
2449 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2450 			func_id);
2451 		return -EINVAL;
2452 	}
2453 
2454 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2455 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2456 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2461 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2462 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2463 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2464 			func_id_name(func_id), func_id);
2465 		return -EINVAL;
2466 	}
2467 
2468 	memset(&meta, 0, sizeof(meta));
2469 	meta.pkt_access = fn->pkt_access;
2470 
2471 	err = check_func_proto(fn);
2472 	if (err) {
2473 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2474 			func_id_name(func_id), func_id);
2475 		return err;
2476 	}
2477 
2478 	/* check args */
2479 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2480 	if (err)
2481 		return err;
2482 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2483 	if (err)
2484 		return err;
2485 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2486 	if (err)
2487 		return err;
2488 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2489 	if (err)
2490 		return err;
2491 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2492 	if (err)
2493 		return err;
2494 
2495 	err = record_func_map(env, &meta, func_id, insn_idx);
2496 	if (err)
2497 		return err;
2498 
2499 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2500 	 * is inferred from register state.
2501 	 */
2502 	for (i = 0; i < meta.access_size; i++) {
2503 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2504 				       BPF_WRITE, -1, false);
2505 		if (err)
2506 			return err;
2507 	}
2508 
2509 	regs = cur_regs(env);
2510 
2511 	/* check that flags argument in get_local_storage(map, flags) is 0,
2512 	 * this is required because get_local_storage() can't return an error.
2513 	 */
2514 	if (func_id == BPF_FUNC_get_local_storage &&
2515 	    !register_is_null(&regs[BPF_REG_2])) {
2516 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2517 		return -EINVAL;
2518 	}
2519 
2520 	/* reset caller saved regs */
2521 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2522 		mark_reg_not_init(env, regs, caller_saved[i]);
2523 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2524 	}
2525 
2526 	/* update return register (already marked as written above) */
2527 	if (fn->ret_type == RET_INTEGER) {
2528 		/* sets type to SCALAR_VALUE */
2529 		mark_reg_unknown(env, regs, BPF_REG_0);
2530 	} else if (fn->ret_type == RET_VOID) {
2531 		regs[BPF_REG_0].type = NOT_INIT;
2532 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2533 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2534 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2535 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2536 		else
2537 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2538 		/* There is no offset yet applied, variable or fixed */
2539 		mark_reg_known_zero(env, regs, BPF_REG_0);
2540 		/* remember map_ptr, so that check_map_access()
2541 		 * can check 'value_size' boundary of memory access
2542 		 * to map element returned from bpf_map_lookup_elem()
2543 		 */
2544 		if (meta.map_ptr == NULL) {
2545 			verbose(env,
2546 				"kernel subsystem misconfigured verifier\n");
2547 			return -EINVAL;
2548 		}
2549 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2550 		regs[BPF_REG_0].id = ++env->id_gen;
2551 	} else {
2552 		verbose(env, "unknown return type %d of func %s#%d\n",
2553 			fn->ret_type, func_id_name(func_id), func_id);
2554 		return -EINVAL;
2555 	}
2556 
2557 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
2558 	if (err)
2559 		return err;
2560 
2561 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2562 	if (err)
2563 		return err;
2564 
2565 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2566 		const char *err_str;
2567 
2568 #ifdef CONFIG_PERF_EVENTS
2569 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2570 		err_str = "cannot get callchain buffer for func %s#%d\n";
2571 #else
2572 		err = -ENOTSUPP;
2573 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2574 #endif
2575 		if (err) {
2576 			verbose(env, err_str, func_id_name(func_id), func_id);
2577 			return err;
2578 		}
2579 
2580 		env->prog->has_callchain_buf = true;
2581 	}
2582 
2583 	if (changes_data)
2584 		clear_all_pkt_pointers(env);
2585 	return 0;
2586 }
2587 
signed_add_overflows(s64 a,s64 b)2588 static bool signed_add_overflows(s64 a, s64 b)
2589 {
2590 	/* Do the add in u64, where overflow is well-defined */
2591 	s64 res = (s64)((u64)a + (u64)b);
2592 
2593 	if (b < 0)
2594 		return res > a;
2595 	return res < a;
2596 }
2597 
signed_sub_overflows(s64 a,s64 b)2598 static bool signed_sub_overflows(s64 a, s64 b)
2599 {
2600 	/* Do the sub in u64, where overflow is well-defined */
2601 	s64 res = (s64)((u64)a - (u64)b);
2602 
2603 	if (b < 0)
2604 		return res < a;
2605 	return res > a;
2606 }
2607 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)2608 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2609 				  const struct bpf_reg_state *reg,
2610 				  enum bpf_reg_type type)
2611 {
2612 	bool known = tnum_is_const(reg->var_off);
2613 	s64 val = reg->var_off.value;
2614 	s64 smin = reg->smin_value;
2615 
2616 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2617 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2618 			reg_type_str[type], val);
2619 		return false;
2620 	}
2621 
2622 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2623 		verbose(env, "%s pointer offset %d is not allowed\n",
2624 			reg_type_str[type], reg->off);
2625 		return false;
2626 	}
2627 
2628 	if (smin == S64_MIN) {
2629 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2630 			reg_type_str[type]);
2631 		return false;
2632 	}
2633 
2634 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2635 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2636 			smin, reg_type_str[type]);
2637 		return false;
2638 	}
2639 
2640 	return true;
2641 }
2642 
cur_aux(struct bpf_verifier_env * env)2643 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
2644 {
2645 	return &env->insn_aux_data[env->insn_idx];
2646 }
2647 
2648 enum {
2649 	REASON_BOUNDS	= -1,
2650 	REASON_TYPE	= -2,
2651 	REASON_PATHS	= -3,
2652 	REASON_LIMIT	= -4,
2653 	REASON_STACK	= -5,
2654 };
2655 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)2656 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
2657 			      u32 *alu_limit, bool mask_to_left)
2658 {
2659 	u32 max = 0, ptr_limit = 0;
2660 
2661 	switch (ptr_reg->type) {
2662 	case PTR_TO_STACK:
2663 		/* Offset 0 is out-of-bounds, but acceptable start for the
2664 		 * left direction, see BPF_REG_FP. Also, unknown scalar
2665 		 * offset where we would need to deal with min/max bounds is
2666 		 * currently prohibited for unprivileged.
2667 		 */
2668 		max = MAX_BPF_STACK + mask_to_left;
2669 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
2670 		break;
2671 	case PTR_TO_MAP_VALUE:
2672 		max = ptr_reg->map_ptr->value_size;
2673 		ptr_limit = (mask_to_left ?
2674 			     ptr_reg->smin_value :
2675 			     ptr_reg->umax_value) + ptr_reg->off;
2676 		break;
2677 	default:
2678 		return REASON_TYPE;
2679 	}
2680 
2681 	if (ptr_limit >= max)
2682 		return REASON_LIMIT;
2683 	*alu_limit = ptr_limit;
2684 	return 0;
2685 }
2686 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)2687 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
2688 				    const struct bpf_insn *insn)
2689 {
2690 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
2691 }
2692 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)2693 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
2694 				       u32 alu_state, u32 alu_limit)
2695 {
2696 	/* If we arrived here from different branches with different
2697 	 * state or limits to sanitize, then this won't work.
2698 	 */
2699 	if (aux->alu_state &&
2700 	    (aux->alu_state != alu_state ||
2701 	     aux->alu_limit != alu_limit))
2702 		return REASON_PATHS;
2703 
2704 	/* Corresponding fixup done in fixup_bpf_calls(). */
2705 	aux->alu_state = alu_state;
2706 	aux->alu_limit = alu_limit;
2707 	return 0;
2708 }
2709 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)2710 static int sanitize_val_alu(struct bpf_verifier_env *env,
2711 			    struct bpf_insn *insn)
2712 {
2713 	struct bpf_insn_aux_data *aux = cur_aux(env);
2714 
2715 	if (can_skip_alu_sanitation(env, insn))
2716 		return 0;
2717 
2718 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
2719 }
2720 
sanitize_needed(u8 opcode)2721 static bool sanitize_needed(u8 opcode)
2722 {
2723 	return opcode == BPF_ADD || opcode == BPF_SUB;
2724 }
2725 
2726 struct bpf_sanitize_info {
2727 	struct bpf_insn_aux_data aux;
2728 	bool mask_to_left;
2729 };
2730 
2731 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)2732 sanitize_speculative_path(struct bpf_verifier_env *env,
2733 			  const struct bpf_insn *insn,
2734 			  u32 next_idx, u32 curr_idx)
2735 {
2736 	struct bpf_verifier_state *branch;
2737 	struct bpf_reg_state *regs;
2738 
2739 	branch = push_stack(env, next_idx, curr_idx, true);
2740 	if (branch && insn) {
2741 		regs = branch->frame[branch->curframe]->regs;
2742 		if (BPF_SRC(insn->code) == BPF_K) {
2743 			mark_reg_unknown(env, regs, insn->dst_reg);
2744 		} else if (BPF_SRC(insn->code) == BPF_X) {
2745 			mark_reg_unknown(env, regs, insn->dst_reg);
2746 			mark_reg_unknown(env, regs, insn->src_reg);
2747 		}
2748 	}
2749 	return branch;
2750 }
2751 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)2752 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
2753 			    struct bpf_insn *insn,
2754 			    const struct bpf_reg_state *ptr_reg,
2755 			    const struct bpf_reg_state *off_reg,
2756 			    struct bpf_reg_state *dst_reg,
2757 			    struct bpf_sanitize_info *info,
2758 			    const bool commit_window)
2759 {
2760 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
2761 	struct bpf_verifier_state *vstate = env->cur_state;
2762 	bool off_is_imm = tnum_is_const(off_reg->var_off);
2763 	bool off_is_neg = off_reg->smin_value < 0;
2764 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
2765 	u8 opcode = BPF_OP(insn->code);
2766 	u32 alu_state, alu_limit;
2767 	struct bpf_reg_state tmp;
2768 	bool ret;
2769 	int err;
2770 
2771 	if (can_skip_alu_sanitation(env, insn))
2772 		return 0;
2773 
2774 	/* We already marked aux for masking from non-speculative
2775 	 * paths, thus we got here in the first place. We only care
2776 	 * to explore bad access from here.
2777 	 */
2778 	if (vstate->speculative)
2779 		goto do_sim;
2780 
2781 	if (!commit_window) {
2782 		if (!tnum_is_const(off_reg->var_off) &&
2783 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
2784 			return REASON_BOUNDS;
2785 
2786 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
2787 				     (opcode == BPF_SUB && !off_is_neg);
2788 	}
2789 
2790 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
2791 	if (err < 0)
2792 		return err;
2793 
2794 	if (commit_window) {
2795 		/* In commit phase we narrow the masking window based on
2796 		 * the observed pointer move after the simulated operation.
2797 		 */
2798 		alu_state = info->aux.alu_state;
2799 		alu_limit = abs(info->aux.alu_limit - alu_limit);
2800 	} else {
2801 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
2802 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
2803 		alu_state |= ptr_is_dst_reg ?
2804 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
2805 	}
2806 
2807 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
2808 	if (err < 0)
2809 		return err;
2810 do_sim:
2811 	/* If we're in commit phase, we're done here given we already
2812 	 * pushed the truncated dst_reg into the speculative verification
2813 	 * stack.
2814 	 *
2815 	 * Also, when register is a known constant, we rewrite register-based
2816 	 * operation to immediate-based, and thus do not need masking (and as
2817 	 * a consequence, do not need to simulate the zero-truncation either).
2818 	 */
2819 	if (commit_window || off_is_imm)
2820 		return 0;
2821 
2822 	/* Simulate and find potential out-of-bounds access under
2823 	 * speculative execution from truncation as a result of
2824 	 * masking when off was not within expected range. If off
2825 	 * sits in dst, then we temporarily need to move ptr there
2826 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
2827 	 * for cases where we use K-based arithmetic in one direction
2828 	 * and truncated reg-based in the other in order to explore
2829 	 * bad access.
2830 	 */
2831 	if (!ptr_is_dst_reg) {
2832 		tmp = *dst_reg;
2833 		*dst_reg = *ptr_reg;
2834 	}
2835 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
2836 					env->insn_idx);
2837 	if (!ptr_is_dst_reg && ret)
2838 		*dst_reg = tmp;
2839 	return !ret ? REASON_STACK : 0;
2840 }
2841 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)2842 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
2843 {
2844 	struct bpf_verifier_state *vstate = env->cur_state;
2845 
2846 	/* If we simulate paths under speculation, we don't update the
2847 	 * insn as 'seen' such that when we verify unreachable paths in
2848 	 * the non-speculative domain, sanitize_dead_code() can still
2849 	 * rewrite/sanitize them.
2850 	 */
2851 	if (!vstate->speculative)
2852 		env->insn_aux_data[env->insn_idx].seen = true;
2853 }
2854 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)2855 static int sanitize_err(struct bpf_verifier_env *env,
2856 			const struct bpf_insn *insn, int reason,
2857 			const struct bpf_reg_state *off_reg,
2858 			const struct bpf_reg_state *dst_reg)
2859 {
2860 	static const char *err = "pointer arithmetic with it prohibited for !root";
2861 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
2862 	u32 dst = insn->dst_reg, src = insn->src_reg;
2863 
2864 	switch (reason) {
2865 	case REASON_BOUNDS:
2866 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
2867 			off_reg == dst_reg ? dst : src, err);
2868 		break;
2869 	case REASON_TYPE:
2870 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
2871 			off_reg == dst_reg ? src : dst, err);
2872 		break;
2873 	case REASON_PATHS:
2874 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
2875 			dst, op, err);
2876 		break;
2877 	case REASON_LIMIT:
2878 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
2879 			dst, op, err);
2880 		break;
2881 	case REASON_STACK:
2882 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
2883 			dst, err);
2884 		break;
2885 	default:
2886 		verbose(env, "verifier internal error: unknown reason (%d)\n",
2887 			reason);
2888 		break;
2889 	}
2890 
2891 	return -EACCES;
2892 }
2893 
2894 /* check that stack access falls within stack limits and that 'reg' doesn't
2895  * have a variable offset.
2896  *
2897  * Variable offset is prohibited for unprivileged mode for simplicity since it
2898  * requires corresponding support in Spectre masking for stack ALU.  See also
2899  * retrieve_ptr_limit().
2900  *
2901  *
2902  * 'off' includes 'reg->off'.
2903  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)2904 static int check_stack_access_for_ptr_arithmetic(
2905 				struct bpf_verifier_env *env,
2906 				int regno,
2907 				const struct bpf_reg_state *reg,
2908 				int off)
2909 {
2910 	if (!tnum_is_const(reg->var_off)) {
2911 		char tn_buf[48];
2912 
2913 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2914 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
2915 			regno, tn_buf, off);
2916 		return -EACCES;
2917 	}
2918 
2919 	if (off >= 0 || off < -MAX_BPF_STACK) {
2920 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
2921 			"prohibited for !root; off=%d\n", regno, off);
2922 		return -EACCES;
2923 	}
2924 
2925 	return 0;
2926 }
2927 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)2928 static int sanitize_check_bounds(struct bpf_verifier_env *env,
2929 				 const struct bpf_insn *insn,
2930 				 const struct bpf_reg_state *dst_reg)
2931 {
2932 	u32 dst = insn->dst_reg;
2933 
2934 	/* For unprivileged we require that resulting offset must be in bounds
2935 	 * in order to be able to sanitize access later on.
2936 	 */
2937 	if (env->allow_ptr_leaks)
2938 		return 0;
2939 
2940 	switch (dst_reg->type) {
2941 	case PTR_TO_STACK:
2942 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
2943 					dst_reg->off + dst_reg->var_off.value))
2944 			return -EACCES;
2945 		break;
2946 	case PTR_TO_MAP_VALUE:
2947 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
2948 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
2949 				"prohibited for !root\n", dst);
2950 			return -EACCES;
2951 		}
2952 		break;
2953 	default:
2954 		break;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2961  * Caller should also handle BPF_MOV case separately.
2962  * If we return -EACCES, caller may want to try again treating pointer as a
2963  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2964  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)2965 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2966 				   struct bpf_insn *insn,
2967 				   const struct bpf_reg_state *ptr_reg,
2968 				   const struct bpf_reg_state *off_reg)
2969 {
2970 	struct bpf_verifier_state *vstate = env->cur_state;
2971 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2972 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2973 	bool known = tnum_is_const(off_reg->var_off);
2974 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2975 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2976 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2977 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2978 	struct bpf_sanitize_info info = {};
2979 	u8 opcode = BPF_OP(insn->code);
2980 	u32 dst = insn->dst_reg;
2981 	int ret;
2982 
2983 	dst_reg = &regs[dst];
2984 
2985 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2986 	    smin_val > smax_val || umin_val > umax_val) {
2987 		/* Taint dst register if offset had invalid bounds derived from
2988 		 * e.g. dead branches.
2989 		 */
2990 		__mark_reg_unknown(dst_reg);
2991 		return 0;
2992 	}
2993 
2994 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2995 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2996 		verbose(env,
2997 			"R%d 32-bit pointer arithmetic prohibited\n",
2998 			dst);
2999 		return -EACCES;
3000 	}
3001 
3002 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3003 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
3004 			dst);
3005 		return -EACCES;
3006 	}
3007 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
3008 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
3009 			dst);
3010 		return -EACCES;
3011 	}
3012 	if (ptr_reg->type == PTR_TO_PACKET_END) {
3013 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
3014 			dst);
3015 		return -EACCES;
3016 	}
3017 
3018 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3019 	 * The id may be overwritten later if we create a new variable offset.
3020 	 */
3021 	dst_reg->type = ptr_reg->type;
3022 	dst_reg->id = ptr_reg->id;
3023 
3024 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3025 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3026 		return -EINVAL;
3027 
3028 	if (sanitize_needed(opcode)) {
3029 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3030 				       &info, false);
3031 		if (ret < 0)
3032 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
3033 	}
3034 
3035 	switch (opcode) {
3036 	case BPF_ADD:
3037 		/* We can take a fixed offset as long as it doesn't overflow
3038 		 * the s32 'off' field
3039 		 */
3040 		if (known && (ptr_reg->off + smin_val ==
3041 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3042 			/* pointer += K.  Accumulate it into fixed offset */
3043 			dst_reg->smin_value = smin_ptr;
3044 			dst_reg->smax_value = smax_ptr;
3045 			dst_reg->umin_value = umin_ptr;
3046 			dst_reg->umax_value = umax_ptr;
3047 			dst_reg->var_off = ptr_reg->var_off;
3048 			dst_reg->off = ptr_reg->off + smin_val;
3049 			dst_reg->raw = ptr_reg->raw;
3050 			break;
3051 		}
3052 		/* A new variable offset is created.  Note that off_reg->off
3053 		 * == 0, since it's a scalar.
3054 		 * dst_reg gets the pointer type and since some positive
3055 		 * integer value was added to the pointer, give it a new 'id'
3056 		 * if it's a PTR_TO_PACKET.
3057 		 * this creates a new 'base' pointer, off_reg (variable) gets
3058 		 * added into the variable offset, and we copy the fixed offset
3059 		 * from ptr_reg.
3060 		 */
3061 		if (signed_add_overflows(smin_ptr, smin_val) ||
3062 		    signed_add_overflows(smax_ptr, smax_val)) {
3063 			dst_reg->smin_value = S64_MIN;
3064 			dst_reg->smax_value = S64_MAX;
3065 		} else {
3066 			dst_reg->smin_value = smin_ptr + smin_val;
3067 			dst_reg->smax_value = smax_ptr + smax_val;
3068 		}
3069 		if (umin_ptr + umin_val < umin_ptr ||
3070 		    umax_ptr + umax_val < umax_ptr) {
3071 			dst_reg->umin_value = 0;
3072 			dst_reg->umax_value = U64_MAX;
3073 		} else {
3074 			dst_reg->umin_value = umin_ptr + umin_val;
3075 			dst_reg->umax_value = umax_ptr + umax_val;
3076 		}
3077 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3078 		dst_reg->off = ptr_reg->off;
3079 		dst_reg->raw = ptr_reg->raw;
3080 		if (reg_is_pkt_pointer(ptr_reg)) {
3081 			dst_reg->id = ++env->id_gen;
3082 			/* something was added to pkt_ptr, set range to zero */
3083 			dst_reg->raw = 0;
3084 		}
3085 		break;
3086 	case BPF_SUB:
3087 		if (dst_reg == off_reg) {
3088 			/* scalar -= pointer.  Creates an unknown scalar */
3089 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3090 				dst);
3091 			return -EACCES;
3092 		}
3093 		/* We don't allow subtraction from FP, because (according to
3094 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3095 		 * be able to deal with it.
3096 		 */
3097 		if (ptr_reg->type == PTR_TO_STACK) {
3098 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3099 				dst);
3100 			return -EACCES;
3101 		}
3102 		if (known && (ptr_reg->off - smin_val ==
3103 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3104 			/* pointer -= K.  Subtract it from fixed offset */
3105 			dst_reg->smin_value = smin_ptr;
3106 			dst_reg->smax_value = smax_ptr;
3107 			dst_reg->umin_value = umin_ptr;
3108 			dst_reg->umax_value = umax_ptr;
3109 			dst_reg->var_off = ptr_reg->var_off;
3110 			dst_reg->id = ptr_reg->id;
3111 			dst_reg->off = ptr_reg->off - smin_val;
3112 			dst_reg->raw = ptr_reg->raw;
3113 			break;
3114 		}
3115 		/* A new variable offset is created.  If the subtrahend is known
3116 		 * nonnegative, then any reg->range we had before is still good.
3117 		 */
3118 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3119 		    signed_sub_overflows(smax_ptr, smin_val)) {
3120 			/* Overflow possible, we know nothing */
3121 			dst_reg->smin_value = S64_MIN;
3122 			dst_reg->smax_value = S64_MAX;
3123 		} else {
3124 			dst_reg->smin_value = smin_ptr - smax_val;
3125 			dst_reg->smax_value = smax_ptr - smin_val;
3126 		}
3127 		if (umin_ptr < umax_val) {
3128 			/* Overflow possible, we know nothing */
3129 			dst_reg->umin_value = 0;
3130 			dst_reg->umax_value = U64_MAX;
3131 		} else {
3132 			/* Cannot overflow (as long as bounds are consistent) */
3133 			dst_reg->umin_value = umin_ptr - umax_val;
3134 			dst_reg->umax_value = umax_ptr - umin_val;
3135 		}
3136 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3137 		dst_reg->off = ptr_reg->off;
3138 		dst_reg->raw = ptr_reg->raw;
3139 		if (reg_is_pkt_pointer(ptr_reg)) {
3140 			dst_reg->id = ++env->id_gen;
3141 			/* something was added to pkt_ptr, set range to zero */
3142 			if (smin_val < 0)
3143 				dst_reg->raw = 0;
3144 		}
3145 		break;
3146 	case BPF_AND:
3147 	case BPF_OR:
3148 	case BPF_XOR:
3149 		/* bitwise ops on pointers are troublesome, prohibit. */
3150 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3151 			dst, bpf_alu_string[opcode >> 4]);
3152 		return -EACCES;
3153 	default:
3154 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3155 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3156 			dst, bpf_alu_string[opcode >> 4]);
3157 		return -EACCES;
3158 	}
3159 
3160 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3161 		return -EINVAL;
3162 
3163 	__update_reg_bounds(dst_reg);
3164 	__reg_deduce_bounds(dst_reg);
3165 	__reg_bound_offset(dst_reg);
3166 
3167 
3168 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
3169 		return -EACCES;
3170 	if (sanitize_needed(opcode)) {
3171 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3172 				       &info, true);
3173 		if (ret < 0)
3174 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 /* WARNING: This function does calculations on 64-bit values, but the actual
3181  * execution may occur on 32-bit values. Therefore, things like bitshifts
3182  * need extra checks in the 32-bit case.
3183  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)3184 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3185 				      struct bpf_insn *insn,
3186 				      struct bpf_reg_state *dst_reg,
3187 				      struct bpf_reg_state src_reg)
3188 {
3189 	struct bpf_reg_state *regs = cur_regs(env);
3190 	u8 opcode = BPF_OP(insn->code);
3191 	bool src_known, dst_known;
3192 	s64 smin_val, smax_val;
3193 	u64 umin_val, umax_val;
3194 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3195 	int ret;
3196 
3197 	if (insn_bitness == 32) {
3198 		/* Relevant for 32-bit RSH: Information can propagate towards
3199 		 * LSB, so it isn't sufficient to only truncate the output to
3200 		 * 32 bits.
3201 		 */
3202 		coerce_reg_to_size(dst_reg, 4);
3203 		coerce_reg_to_size(&src_reg, 4);
3204 	}
3205 
3206 	smin_val = src_reg.smin_value;
3207 	smax_val = src_reg.smax_value;
3208 	umin_val = src_reg.umin_value;
3209 	umax_val = src_reg.umax_value;
3210 	src_known = tnum_is_const(src_reg.var_off);
3211 	dst_known = tnum_is_const(dst_reg->var_off);
3212 
3213 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3214 	    smin_val > smax_val || umin_val > umax_val) {
3215 		/* Taint dst register if offset had invalid bounds derived from
3216 		 * e.g. dead branches.
3217 		 */
3218 		__mark_reg_unknown(dst_reg);
3219 		return 0;
3220 	}
3221 
3222 	if (!src_known &&
3223 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3224 		__mark_reg_unknown(dst_reg);
3225 		return 0;
3226 	}
3227 
3228 	if (sanitize_needed(opcode)) {
3229 		ret = sanitize_val_alu(env, insn);
3230 		if (ret < 0)
3231 			return sanitize_err(env, insn, ret, NULL, NULL);
3232 	}
3233 
3234 	switch (opcode) {
3235 	case BPF_ADD:
3236 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3237 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3238 			dst_reg->smin_value = S64_MIN;
3239 			dst_reg->smax_value = S64_MAX;
3240 		} else {
3241 			dst_reg->smin_value += smin_val;
3242 			dst_reg->smax_value += smax_val;
3243 		}
3244 		if (dst_reg->umin_value + umin_val < umin_val ||
3245 		    dst_reg->umax_value + umax_val < umax_val) {
3246 			dst_reg->umin_value = 0;
3247 			dst_reg->umax_value = U64_MAX;
3248 		} else {
3249 			dst_reg->umin_value += umin_val;
3250 			dst_reg->umax_value += umax_val;
3251 		}
3252 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3253 		break;
3254 	case BPF_SUB:
3255 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3256 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3257 			/* Overflow possible, we know nothing */
3258 			dst_reg->smin_value = S64_MIN;
3259 			dst_reg->smax_value = S64_MAX;
3260 		} else {
3261 			dst_reg->smin_value -= smax_val;
3262 			dst_reg->smax_value -= smin_val;
3263 		}
3264 		if (dst_reg->umin_value < umax_val) {
3265 			/* Overflow possible, we know nothing */
3266 			dst_reg->umin_value = 0;
3267 			dst_reg->umax_value = U64_MAX;
3268 		} else {
3269 			/* Cannot overflow (as long as bounds are consistent) */
3270 			dst_reg->umin_value -= umax_val;
3271 			dst_reg->umax_value -= umin_val;
3272 		}
3273 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3274 		break;
3275 	case BPF_MUL:
3276 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3277 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3278 			/* Ain't nobody got time to multiply that sign */
3279 			__mark_reg_unbounded(dst_reg);
3280 			__update_reg_bounds(dst_reg);
3281 			break;
3282 		}
3283 		/* Both values are positive, so we can work with unsigned and
3284 		 * copy the result to signed (unless it exceeds S64_MAX).
3285 		 */
3286 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3287 			/* Potential overflow, we know nothing */
3288 			__mark_reg_unbounded(dst_reg);
3289 			/* (except what we can learn from the var_off) */
3290 			__update_reg_bounds(dst_reg);
3291 			break;
3292 		}
3293 		dst_reg->umin_value *= umin_val;
3294 		dst_reg->umax_value *= umax_val;
3295 		if (dst_reg->umax_value > S64_MAX) {
3296 			/* Overflow possible, we know nothing */
3297 			dst_reg->smin_value = S64_MIN;
3298 			dst_reg->smax_value = S64_MAX;
3299 		} else {
3300 			dst_reg->smin_value = dst_reg->umin_value;
3301 			dst_reg->smax_value = dst_reg->umax_value;
3302 		}
3303 		break;
3304 	case BPF_AND:
3305 		if (src_known && dst_known) {
3306 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3307 						  src_reg.var_off.value);
3308 			break;
3309 		}
3310 		/* We get our minimum from the var_off, since that's inherently
3311 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3312 		 */
3313 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3314 		dst_reg->umin_value = dst_reg->var_off.value;
3315 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3316 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3317 			/* Lose signed bounds when ANDing negative numbers,
3318 			 * ain't nobody got time for that.
3319 			 */
3320 			dst_reg->smin_value = S64_MIN;
3321 			dst_reg->smax_value = S64_MAX;
3322 		} else {
3323 			/* ANDing two positives gives a positive, so safe to
3324 			 * cast result into s64.
3325 			 */
3326 			dst_reg->smin_value = dst_reg->umin_value;
3327 			dst_reg->smax_value = dst_reg->umax_value;
3328 		}
3329 		/* We may learn something more from the var_off */
3330 		__update_reg_bounds(dst_reg);
3331 		break;
3332 	case BPF_OR:
3333 		if (src_known && dst_known) {
3334 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3335 						  src_reg.var_off.value);
3336 			break;
3337 		}
3338 		/* We get our maximum from the var_off, and our minimum is the
3339 		 * maximum of the operands' minima
3340 		 */
3341 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3342 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3343 		dst_reg->umax_value = dst_reg->var_off.value |
3344 				      dst_reg->var_off.mask;
3345 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3346 			/* Lose signed bounds when ORing negative numbers,
3347 			 * ain't nobody got time for that.
3348 			 */
3349 			dst_reg->smin_value = S64_MIN;
3350 			dst_reg->smax_value = S64_MAX;
3351 		} else {
3352 			/* ORing two positives gives a positive, so safe to
3353 			 * cast result into s64.
3354 			 */
3355 			dst_reg->smin_value = dst_reg->umin_value;
3356 			dst_reg->smax_value = dst_reg->umax_value;
3357 		}
3358 		/* We may learn something more from the var_off */
3359 		__update_reg_bounds(dst_reg);
3360 		break;
3361 	case BPF_LSH:
3362 		if (umax_val >= insn_bitness) {
3363 			/* Shifts greater than 31 or 63 are undefined.
3364 			 * This includes shifts by a negative number.
3365 			 */
3366 			mark_reg_unknown(env, regs, insn->dst_reg);
3367 			break;
3368 		}
3369 		/* We lose all sign bit information (except what we can pick
3370 		 * up from var_off)
3371 		 */
3372 		dst_reg->smin_value = S64_MIN;
3373 		dst_reg->smax_value = S64_MAX;
3374 		/* If we might shift our top bit out, then we know nothing */
3375 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3376 			dst_reg->umin_value = 0;
3377 			dst_reg->umax_value = U64_MAX;
3378 		} else {
3379 			dst_reg->umin_value <<= umin_val;
3380 			dst_reg->umax_value <<= umax_val;
3381 		}
3382 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3383 		/* We may learn something more from the var_off */
3384 		__update_reg_bounds(dst_reg);
3385 		break;
3386 	case BPF_RSH:
3387 		if (umax_val >= insn_bitness) {
3388 			/* Shifts greater than 31 or 63 are undefined.
3389 			 * This includes shifts by a negative number.
3390 			 */
3391 			mark_reg_unknown(env, regs, insn->dst_reg);
3392 			break;
3393 		}
3394 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3395 		 * be negative, then either:
3396 		 * 1) src_reg might be zero, so the sign bit of the result is
3397 		 *    unknown, so we lose our signed bounds
3398 		 * 2) it's known negative, thus the unsigned bounds capture the
3399 		 *    signed bounds
3400 		 * 3) the signed bounds cross zero, so they tell us nothing
3401 		 *    about the result
3402 		 * If the value in dst_reg is known nonnegative, then again the
3403 		 * unsigned bounts capture the signed bounds.
3404 		 * Thus, in all cases it suffices to blow away our signed bounds
3405 		 * and rely on inferring new ones from the unsigned bounds and
3406 		 * var_off of the result.
3407 		 */
3408 		dst_reg->smin_value = S64_MIN;
3409 		dst_reg->smax_value = S64_MAX;
3410 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3411 		dst_reg->umin_value >>= umax_val;
3412 		dst_reg->umax_value >>= umin_val;
3413 		/* We may learn something more from the var_off */
3414 		__update_reg_bounds(dst_reg);
3415 		break;
3416 	case BPF_ARSH:
3417 		if (umax_val >= insn_bitness) {
3418 			/* Shifts greater than 31 or 63 are undefined.
3419 			 * This includes shifts by a negative number.
3420 			 */
3421 			mark_reg_unknown(env, regs, insn->dst_reg);
3422 			break;
3423 		}
3424 
3425 		/* Upon reaching here, src_known is true and
3426 		 * umax_val is equal to umin_val.
3427 		 */
3428 		if (insn_bitness == 32) {
3429 			dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val);
3430 			dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val);
3431 		} else {
3432 			dst_reg->smin_value >>= umin_val;
3433 			dst_reg->smax_value >>= umin_val;
3434 		}
3435 
3436 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val,
3437 						insn_bitness);
3438 
3439 		/* blow away the dst_reg umin_value/umax_value and rely on
3440 		 * dst_reg var_off to refine the result.
3441 		 */
3442 		dst_reg->umin_value = 0;
3443 		dst_reg->umax_value = U64_MAX;
3444 		__update_reg_bounds(dst_reg);
3445 		break;
3446 	default:
3447 		mark_reg_unknown(env, regs, insn->dst_reg);
3448 		break;
3449 	}
3450 
3451 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3452 		/* 32-bit ALU ops are (32,32)->32 */
3453 		coerce_reg_to_size(dst_reg, 4);
3454 	}
3455 
3456 	__reg_deduce_bounds(dst_reg);
3457 	__reg_bound_offset(dst_reg);
3458 	return 0;
3459 }
3460 
3461 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3462  * and var_off.
3463  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)3464 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3465 				   struct bpf_insn *insn)
3466 {
3467 	struct bpf_verifier_state *vstate = env->cur_state;
3468 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3469 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3470 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3471 	u8 opcode = BPF_OP(insn->code);
3472 
3473 	dst_reg = &regs[insn->dst_reg];
3474 	src_reg = NULL;
3475 	if (dst_reg->type != SCALAR_VALUE)
3476 		ptr_reg = dst_reg;
3477 	if (BPF_SRC(insn->code) == BPF_X) {
3478 		src_reg = &regs[insn->src_reg];
3479 		if (src_reg->type != SCALAR_VALUE) {
3480 			if (dst_reg->type != SCALAR_VALUE) {
3481 				/* Combining two pointers by any ALU op yields
3482 				 * an arbitrary scalar. Disallow all math except
3483 				 * pointer subtraction
3484 				 */
3485 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3486 					mark_reg_unknown(env, regs, insn->dst_reg);
3487 					return 0;
3488 				}
3489 				verbose(env, "R%d pointer %s pointer prohibited\n",
3490 					insn->dst_reg,
3491 					bpf_alu_string[opcode >> 4]);
3492 				return -EACCES;
3493 			} else {
3494 				/* scalar += pointer
3495 				 * This is legal, but we have to reverse our
3496 				 * src/dest handling in computing the range
3497 				 */
3498 				return adjust_ptr_min_max_vals(env, insn,
3499 							       src_reg, dst_reg);
3500 			}
3501 		} else if (ptr_reg) {
3502 			/* pointer += scalar */
3503 			return adjust_ptr_min_max_vals(env, insn,
3504 						       dst_reg, src_reg);
3505 		}
3506 	} else {
3507 		/* Pretend the src is a reg with a known value, since we only
3508 		 * need to be able to read from this state.
3509 		 */
3510 		off_reg.type = SCALAR_VALUE;
3511 		__mark_reg_known(&off_reg, insn->imm);
3512 		src_reg = &off_reg;
3513 		if (ptr_reg) /* pointer += K */
3514 			return adjust_ptr_min_max_vals(env, insn,
3515 						       ptr_reg, src_reg);
3516 	}
3517 
3518 	/* Got here implies adding two SCALAR_VALUEs */
3519 	if (WARN_ON_ONCE(ptr_reg)) {
3520 		print_verifier_state(env, state);
3521 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3522 		return -EINVAL;
3523 	}
3524 	if (WARN_ON(!src_reg)) {
3525 		print_verifier_state(env, state);
3526 		verbose(env, "verifier internal error: no src_reg\n");
3527 		return -EINVAL;
3528 	}
3529 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3530 }
3531 
3532 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)3533 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3534 {
3535 	struct bpf_reg_state *regs = cur_regs(env);
3536 	u8 opcode = BPF_OP(insn->code);
3537 	int err;
3538 
3539 	if (opcode == BPF_END || opcode == BPF_NEG) {
3540 		if (opcode == BPF_NEG) {
3541 			if (BPF_SRC(insn->code) != 0 ||
3542 			    insn->src_reg != BPF_REG_0 ||
3543 			    insn->off != 0 || insn->imm != 0) {
3544 				verbose(env, "BPF_NEG uses reserved fields\n");
3545 				return -EINVAL;
3546 			}
3547 		} else {
3548 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3549 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3550 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3551 				verbose(env, "BPF_END uses reserved fields\n");
3552 				return -EINVAL;
3553 			}
3554 		}
3555 
3556 		/* check src operand */
3557 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3558 		if (err)
3559 			return err;
3560 
3561 		if (is_pointer_value(env, insn->dst_reg)) {
3562 			verbose(env, "R%d pointer arithmetic prohibited\n",
3563 				insn->dst_reg);
3564 			return -EACCES;
3565 		}
3566 
3567 		/* check dest operand */
3568 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3569 		if (err)
3570 			return err;
3571 
3572 	} else if (opcode == BPF_MOV) {
3573 
3574 		if (BPF_SRC(insn->code) == BPF_X) {
3575 			if (insn->imm != 0 || insn->off != 0) {
3576 				verbose(env, "BPF_MOV uses reserved fields\n");
3577 				return -EINVAL;
3578 			}
3579 
3580 			/* check src operand */
3581 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3582 			if (err)
3583 				return err;
3584 		} else {
3585 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3586 				verbose(env, "BPF_MOV uses reserved fields\n");
3587 				return -EINVAL;
3588 			}
3589 		}
3590 
3591 		/* check dest operand, mark as required later */
3592 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3593 		if (err)
3594 			return err;
3595 
3596 		if (BPF_SRC(insn->code) == BPF_X) {
3597 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
3598 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3599 
3600 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3601 				/* case: R1 = R2
3602 				 * copy register state to dest reg
3603 				 */
3604 				*dst_reg = *src_reg;
3605 				dst_reg->live |= REG_LIVE_WRITTEN;
3606 			} else {
3607 				/* R1 = (u32) R2 */
3608 				if (is_pointer_value(env, insn->src_reg)) {
3609 					verbose(env,
3610 						"R%d partial copy of pointer\n",
3611 						insn->src_reg);
3612 					return -EACCES;
3613 				} else if (src_reg->type == SCALAR_VALUE) {
3614 					*dst_reg = *src_reg;
3615 					dst_reg->live |= REG_LIVE_WRITTEN;
3616 				} else {
3617 					mark_reg_unknown(env, regs,
3618 							 insn->dst_reg);
3619 				}
3620 				coerce_reg_to_size(dst_reg, 4);
3621 			}
3622 		} else {
3623 			/* case: R = imm
3624 			 * remember the value we stored into this reg
3625 			 */
3626 			/* clear any state __mark_reg_known doesn't set */
3627 			mark_reg_unknown(env, regs, insn->dst_reg);
3628 			regs[insn->dst_reg].type = SCALAR_VALUE;
3629 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3630 				__mark_reg_known(regs + insn->dst_reg,
3631 						 insn->imm);
3632 			} else {
3633 				__mark_reg_known(regs + insn->dst_reg,
3634 						 (u32)insn->imm);
3635 			}
3636 		}
3637 
3638 	} else if (opcode > BPF_END) {
3639 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3640 		return -EINVAL;
3641 
3642 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3643 
3644 		if (BPF_SRC(insn->code) == BPF_X) {
3645 			if (insn->imm != 0 || insn->off != 0) {
3646 				verbose(env, "BPF_ALU uses reserved fields\n");
3647 				return -EINVAL;
3648 			}
3649 			/* check src1 operand */
3650 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3651 			if (err)
3652 				return err;
3653 		} else {
3654 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3655 				verbose(env, "BPF_ALU uses reserved fields\n");
3656 				return -EINVAL;
3657 			}
3658 		}
3659 
3660 		/* check src2 operand */
3661 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3662 		if (err)
3663 			return err;
3664 
3665 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3666 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3667 			verbose(env, "div by zero\n");
3668 			return -EINVAL;
3669 		}
3670 
3671 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3672 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3673 			return -EINVAL;
3674 		}
3675 
3676 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3677 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3678 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3679 
3680 			if (insn->imm < 0 || insn->imm >= size) {
3681 				verbose(env, "invalid shift %d\n", insn->imm);
3682 				return -EINVAL;
3683 			}
3684 		}
3685 
3686 		/* check dest operand */
3687 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3688 		if (err)
3689 			return err;
3690 
3691 		return adjust_reg_min_max_vals(env, insn);
3692 	}
3693 
3694 	return 0;
3695 }
3696 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)3697 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3698 				   struct bpf_reg_state *dst_reg,
3699 				   enum bpf_reg_type type,
3700 				   bool range_right_open)
3701 {
3702 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3703 	struct bpf_reg_state *regs = state->regs, *reg;
3704 	u16 new_range;
3705 	int i, j;
3706 
3707 	if (dst_reg->off < 0 ||
3708 	    (dst_reg->off == 0 && range_right_open))
3709 		/* This doesn't give us any range */
3710 		return;
3711 
3712 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3713 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3714 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3715 		 * than pkt_end, but that's because it's also less than pkt.
3716 		 */
3717 		return;
3718 
3719 	new_range = dst_reg->off;
3720 	if (range_right_open)
3721 		new_range--;
3722 
3723 	/* Examples for register markings:
3724 	 *
3725 	 * pkt_data in dst register:
3726 	 *
3727 	 *   r2 = r3;
3728 	 *   r2 += 8;
3729 	 *   if (r2 > pkt_end) goto <handle exception>
3730 	 *   <access okay>
3731 	 *
3732 	 *   r2 = r3;
3733 	 *   r2 += 8;
3734 	 *   if (r2 < pkt_end) goto <access okay>
3735 	 *   <handle exception>
3736 	 *
3737 	 *   Where:
3738 	 *     r2 == dst_reg, pkt_end == src_reg
3739 	 *     r2=pkt(id=n,off=8,r=0)
3740 	 *     r3=pkt(id=n,off=0,r=0)
3741 	 *
3742 	 * pkt_data in src register:
3743 	 *
3744 	 *   r2 = r3;
3745 	 *   r2 += 8;
3746 	 *   if (pkt_end >= r2) goto <access okay>
3747 	 *   <handle exception>
3748 	 *
3749 	 *   r2 = r3;
3750 	 *   r2 += 8;
3751 	 *   if (pkt_end <= r2) goto <handle exception>
3752 	 *   <access okay>
3753 	 *
3754 	 *   Where:
3755 	 *     pkt_end == dst_reg, r2 == src_reg
3756 	 *     r2=pkt(id=n,off=8,r=0)
3757 	 *     r3=pkt(id=n,off=0,r=0)
3758 	 *
3759 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3760 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3761 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3762 	 * the check.
3763 	 */
3764 
3765 	/* If our ids match, then we must have the same max_value.  And we
3766 	 * don't care about the other reg's fixed offset, since if it's too big
3767 	 * the range won't allow anything.
3768 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3769 	 */
3770 	for (i = 0; i < MAX_BPF_REG; i++)
3771 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3772 			/* keep the maximum range already checked */
3773 			regs[i].range = max(regs[i].range, new_range);
3774 
3775 	for (j = 0; j <= vstate->curframe; j++) {
3776 		state = vstate->frame[j];
3777 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3778 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3779 				continue;
3780 			reg = &state->stack[i].spilled_ptr;
3781 			if (reg->type == type && reg->id == dst_reg->id)
3782 				reg->range = max(reg->range, new_range);
3783 		}
3784 	}
3785 }
3786 
3787 /* compute branch direction of the expression "if (reg opcode val) goto target;"
3788  * and return:
3789  *  1 - branch will be taken and "goto target" will be executed
3790  *  0 - branch will not be taken and fall-through to next insn
3791  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3792  */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)3793 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
3794 			   bool is_jmp32)
3795 {
3796 	struct bpf_reg_state reg_lo;
3797 	s64 sval;
3798 
3799 	if (__is_pointer_value(false, reg))
3800 		return -1;
3801 
3802 	if (is_jmp32) {
3803 		reg_lo = *reg;
3804 		reg = &reg_lo;
3805 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
3806 		 * could truncate high bits and update umin/umax according to
3807 		 * information of low bits.
3808 		 */
3809 		coerce_reg_to_size(reg, 4);
3810 		/* smin/smax need special handling. For example, after coerce,
3811 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
3812 		 * used as operand to JMP32. It is a negative number from s32's
3813 		 * point of view, while it is a positive number when seen as
3814 		 * s64. The smin/smax are kept as s64, therefore, when used with
3815 		 * JMP32, they need to be transformed into s32, then sign
3816 		 * extended back to s64.
3817 		 *
3818 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
3819 		 * different sign bit, then min/max relationship doesn't
3820 		 * maintain after casting into s32, for this case, set smin/smax
3821 		 * to safest range.
3822 		 */
3823 		if ((reg->umax_value ^ reg->umin_value) &
3824 		    (1ULL << 31)) {
3825 			reg->smin_value = S32_MIN;
3826 			reg->smax_value = S32_MAX;
3827 		}
3828 		reg->smin_value = (s64)(s32)reg->smin_value;
3829 		reg->smax_value = (s64)(s32)reg->smax_value;
3830 
3831 		val = (u32)val;
3832 		sval = (s64)(s32)val;
3833 	} else {
3834 		sval = (s64)val;
3835 	}
3836 
3837 	switch (opcode) {
3838 	case BPF_JEQ:
3839 		if (tnum_is_const(reg->var_off))
3840 			return !!tnum_equals_const(reg->var_off, val);
3841 		break;
3842 	case BPF_JNE:
3843 		if (tnum_is_const(reg->var_off))
3844 			return !tnum_equals_const(reg->var_off, val);
3845 		break;
3846 	case BPF_JGT:
3847 		if (reg->umin_value > val)
3848 			return 1;
3849 		else if (reg->umax_value <= val)
3850 			return 0;
3851 		break;
3852 	case BPF_JSGT:
3853 		if (reg->smin_value > sval)
3854 			return 1;
3855 		else if (reg->smax_value < sval)
3856 			return 0;
3857 		break;
3858 	case BPF_JLT:
3859 		if (reg->umax_value < val)
3860 			return 1;
3861 		else if (reg->umin_value >= val)
3862 			return 0;
3863 		break;
3864 	case BPF_JSLT:
3865 		if (reg->smax_value < sval)
3866 			return 1;
3867 		else if (reg->smin_value >= sval)
3868 			return 0;
3869 		break;
3870 	case BPF_JGE:
3871 		if (reg->umin_value >= val)
3872 			return 1;
3873 		else if (reg->umax_value < val)
3874 			return 0;
3875 		break;
3876 	case BPF_JSGE:
3877 		if (reg->smin_value >= sval)
3878 			return 1;
3879 		else if (reg->smax_value < sval)
3880 			return 0;
3881 		break;
3882 	case BPF_JLE:
3883 		if (reg->umax_value <= val)
3884 			return 1;
3885 		else if (reg->umin_value > val)
3886 			return 0;
3887 		break;
3888 	case BPF_JSLE:
3889 		if (reg->smax_value <= sval)
3890 			return 1;
3891 		else if (reg->smin_value > sval)
3892 			return 0;
3893 		break;
3894 	}
3895 
3896 	return -1;
3897 }
3898 
3899 /* Generate min value of the high 32-bit from TNUM info. */
gen_hi_min(struct tnum var)3900 static u64 gen_hi_min(struct tnum var)
3901 {
3902 	return var.value & ~0xffffffffULL;
3903 }
3904 
3905 /* Generate max value of the high 32-bit from TNUM info. */
gen_hi_max(struct tnum var)3906 static u64 gen_hi_max(struct tnum var)
3907 {
3908 	return (var.value | var.mask) & ~0xffffffffULL;
3909 }
3910 
3911 /* Return true if VAL is compared with a s64 sign extended from s32, and they
3912  * are with the same signedness.
3913  */
cmp_val_with_extended_s64(s64 sval,struct bpf_reg_state * reg)3914 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
3915 {
3916 	return ((s32)sval >= 0 &&
3917 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
3918 	       ((s32)sval < 0 &&
3919 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
3920 }
3921 
3922 /* Adjusts the register min/max values in the case that the dst_reg is the
3923  * variable register that we are working on, and src_reg is a constant or we're
3924  * simply doing a BPF_K check.
3925  * In JEQ/JNE cases we also adjust the var_off values.
3926  */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode,bool is_jmp32)3927 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3928 			    struct bpf_reg_state *false_reg, u64 val,
3929 			    u8 opcode, bool is_jmp32)
3930 {
3931 	s64 sval;
3932 
3933 	/* If the dst_reg is a pointer, we can't learn anything about its
3934 	 * variable offset from the compare (unless src_reg were a pointer into
3935 	 * the same object, but we don't bother with that.
3936 	 * Since false_reg and true_reg have the same type by construction, we
3937 	 * only need to check one of them for pointerness.
3938 	 */
3939 	if (__is_pointer_value(false, false_reg))
3940 		return;
3941 	val = is_jmp32 ? (u32)val : val;
3942 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
3943 
3944 	switch (opcode) {
3945 	case BPF_JEQ:
3946 	case BPF_JNE:
3947 	{
3948 		struct bpf_reg_state *reg =
3949 			opcode == BPF_JEQ ? true_reg : false_reg;
3950 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
3951 		 * if it is true we know the value for sure. Likewise for
3952 		 * BPF_JNE.
3953 		 */
3954 		if (is_jmp32) {
3955 			u64 old_v = reg->var_off.value;
3956 			u64 hi_mask = ~0xffffffffULL;
3957 
3958 			reg->var_off.value = (old_v & hi_mask) | val;
3959 			reg->var_off.mask &= hi_mask;
3960 		} else {
3961 			__mark_reg_known(reg, val);
3962 		}
3963 		break;
3964 	}
3965 	case BPF_JGE:
3966 	case BPF_JGT:
3967 	{
3968 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
3969 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
3970 
3971 		if (is_jmp32) {
3972 			false_umax += gen_hi_max(false_reg->var_off);
3973 			true_umin += gen_hi_min(true_reg->var_off);
3974 		}
3975 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
3976 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
3977 		break;
3978 	}
3979 	case BPF_JSGE:
3980 	case BPF_JSGT:
3981 	{
3982 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
3983 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
3984 
3985 		/* If the full s64 was not sign-extended from s32 then don't
3986 		 * deduct further info.
3987 		 */
3988 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
3989 			break;
3990 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
3991 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
3992 		break;
3993 	}
3994 	case BPF_JLE:
3995 	case BPF_JLT:
3996 	{
3997 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
3998 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
3999 
4000 		if (is_jmp32) {
4001 			false_umin += gen_hi_min(false_reg->var_off);
4002 			true_umax += gen_hi_max(true_reg->var_off);
4003 		}
4004 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4005 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4006 
4007 		break;
4008 	}
4009 	case BPF_JSLE:
4010 	case BPF_JSLT:
4011 	{
4012 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4013 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4014 
4015 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4016 			break;
4017 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4018 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4019 		break;
4020 	}
4021 	default:
4022 		break;
4023 	}
4024 
4025 	__reg_deduce_bounds(false_reg);
4026 	__reg_deduce_bounds(true_reg);
4027 	/* We might have learned some bits from the bounds. */
4028 	__reg_bound_offset(false_reg);
4029 	__reg_bound_offset(true_reg);
4030 	/* Intersecting with the old var_off might have improved our bounds
4031 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4032 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4033 	 */
4034 	__update_reg_bounds(false_reg);
4035 	__update_reg_bounds(true_reg);
4036 }
4037 
4038 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4039  * the variable reg.
4040  */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode,bool is_jmp32)4041 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4042 				struct bpf_reg_state *false_reg, u64 val,
4043 				u8 opcode, bool is_jmp32)
4044 {
4045 	s64 sval;
4046 
4047 	if (__is_pointer_value(false, false_reg))
4048 		return;
4049 
4050 	val = is_jmp32 ? (u32)val : val;
4051 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4052 
4053 	switch (opcode) {
4054 	case BPF_JEQ:
4055 	case BPF_JNE:
4056 	{
4057 		struct bpf_reg_state *reg =
4058 			opcode == BPF_JEQ ? true_reg : false_reg;
4059 		if (is_jmp32) {
4060 			u64 old_v = reg->var_off.value;
4061 			u64 hi_mask = ~0xffffffffULL;
4062 
4063 			reg->var_off.value = (old_v & hi_mask) | val;
4064 			reg->var_off.mask &= hi_mask;
4065 		} else {
4066 			__mark_reg_known(reg, val);
4067 		}
4068 		break;
4069 	}
4070 	case BPF_JGE:
4071 	case BPF_JGT:
4072 	{
4073 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4074 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4075 
4076 		if (is_jmp32) {
4077 			false_umin += gen_hi_min(false_reg->var_off);
4078 			true_umax += gen_hi_max(true_reg->var_off);
4079 		}
4080 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4081 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4082 		break;
4083 	}
4084 	case BPF_JSGE:
4085 	case BPF_JSGT:
4086 	{
4087 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4088 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4089 
4090 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4091 			break;
4092 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4093 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4094 		break;
4095 	}
4096 	case BPF_JLE:
4097 	case BPF_JLT:
4098 	{
4099 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4100 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4101 
4102 		if (is_jmp32) {
4103 			false_umax += gen_hi_max(false_reg->var_off);
4104 			true_umin += gen_hi_min(true_reg->var_off);
4105 		}
4106 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4107 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4108 		break;
4109 	}
4110 	case BPF_JSLE:
4111 	case BPF_JSLT:
4112 	{
4113 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4114 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4115 
4116 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4117 			break;
4118 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4119 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4120 		break;
4121 	}
4122 	default:
4123 		break;
4124 	}
4125 
4126 	__reg_deduce_bounds(false_reg);
4127 	__reg_deduce_bounds(true_reg);
4128 	/* We might have learned some bits from the bounds. */
4129 	__reg_bound_offset(false_reg);
4130 	__reg_bound_offset(true_reg);
4131 	/* Intersecting with the old var_off might have improved our bounds
4132 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4133 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4134 	 */
4135 	__update_reg_bounds(false_reg);
4136 	__update_reg_bounds(true_reg);
4137 }
4138 
4139 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)4140 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4141 				  struct bpf_reg_state *dst_reg)
4142 {
4143 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4144 							dst_reg->umin_value);
4145 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4146 							dst_reg->umax_value);
4147 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4148 							dst_reg->smin_value);
4149 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4150 							dst_reg->smax_value);
4151 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4152 							     dst_reg->var_off);
4153 	/* We might have learned new bounds from the var_off. */
4154 	__update_reg_bounds(src_reg);
4155 	__update_reg_bounds(dst_reg);
4156 	/* We might have learned something about the sign bit. */
4157 	__reg_deduce_bounds(src_reg);
4158 	__reg_deduce_bounds(dst_reg);
4159 	/* We might have learned some bits from the bounds. */
4160 	__reg_bound_offset(src_reg);
4161 	__reg_bound_offset(dst_reg);
4162 	/* Intersecting with the old var_off might have improved our bounds
4163 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4164 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4165 	 */
4166 	__update_reg_bounds(src_reg);
4167 	__update_reg_bounds(dst_reg);
4168 }
4169 
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)4170 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4171 				struct bpf_reg_state *true_dst,
4172 				struct bpf_reg_state *false_src,
4173 				struct bpf_reg_state *false_dst,
4174 				u8 opcode)
4175 {
4176 	switch (opcode) {
4177 	case BPF_JEQ:
4178 		__reg_combine_min_max(true_src, true_dst);
4179 		break;
4180 	case BPF_JNE:
4181 		__reg_combine_min_max(false_src, false_dst);
4182 		break;
4183 	}
4184 }
4185 
mark_map_reg(struct bpf_reg_state * regs,u32 regno,u32 id,bool is_null)4186 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
4187 			 bool is_null)
4188 {
4189 	struct bpf_reg_state *reg = &regs[regno];
4190 
4191 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
4192 		/* Old offset (both fixed and variable parts) should
4193 		 * have been known-zero, because we don't allow pointer
4194 		 * arithmetic on pointers that might be NULL.
4195 		 */
4196 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4197 				 !tnum_equals_const(reg->var_off, 0) ||
4198 				 reg->off)) {
4199 			__mark_reg_known_zero(reg);
4200 			reg->off = 0;
4201 		}
4202 		if (is_null) {
4203 			reg->type = SCALAR_VALUE;
4204 		} else if (reg->map_ptr->inner_map_meta) {
4205 			reg->type = CONST_PTR_TO_MAP;
4206 			reg->map_ptr = reg->map_ptr->inner_map_meta;
4207 		} else {
4208 			reg->type = PTR_TO_MAP_VALUE;
4209 		}
4210 		/* We don't need id from this point onwards anymore, thus we
4211 		 * should better reset it, so that state pruning has chances
4212 		 * to take effect.
4213 		 */
4214 		reg->id = 0;
4215 	}
4216 }
4217 
4218 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4219  * be folded together at some point.
4220  */
mark_map_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)4221 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
4222 			  bool is_null)
4223 {
4224 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4225 	struct bpf_reg_state *regs = state->regs;
4226 	u32 id = regs[regno].id;
4227 	int i, j;
4228 
4229 	for (i = 0; i < MAX_BPF_REG; i++)
4230 		mark_map_reg(regs, i, id, is_null);
4231 
4232 	for (j = 0; j <= vstate->curframe; j++) {
4233 		state = vstate->frame[j];
4234 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4235 			if (state->stack[i].slot_type[0] != STACK_SPILL)
4236 				continue;
4237 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
4238 		}
4239 	}
4240 }
4241 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)4242 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4243 				   struct bpf_reg_state *dst_reg,
4244 				   struct bpf_reg_state *src_reg,
4245 				   struct bpf_verifier_state *this_branch,
4246 				   struct bpf_verifier_state *other_branch)
4247 {
4248 	if (BPF_SRC(insn->code) != BPF_X)
4249 		return false;
4250 
4251 	/* Pointers are always 64-bit. */
4252 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4253 		return false;
4254 
4255 	switch (BPF_OP(insn->code)) {
4256 	case BPF_JGT:
4257 		if ((dst_reg->type == PTR_TO_PACKET &&
4258 		     src_reg->type == PTR_TO_PACKET_END) ||
4259 		    (dst_reg->type == PTR_TO_PACKET_META &&
4260 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4261 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4262 			find_good_pkt_pointers(this_branch, dst_reg,
4263 					       dst_reg->type, false);
4264 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4265 			    src_reg->type == PTR_TO_PACKET) ||
4266 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4267 			    src_reg->type == PTR_TO_PACKET_META)) {
4268 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4269 			find_good_pkt_pointers(other_branch, src_reg,
4270 					       src_reg->type, true);
4271 		} else {
4272 			return false;
4273 		}
4274 		break;
4275 	case BPF_JLT:
4276 		if ((dst_reg->type == PTR_TO_PACKET &&
4277 		     src_reg->type == PTR_TO_PACKET_END) ||
4278 		    (dst_reg->type == PTR_TO_PACKET_META &&
4279 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4280 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4281 			find_good_pkt_pointers(other_branch, dst_reg,
4282 					       dst_reg->type, true);
4283 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4284 			    src_reg->type == PTR_TO_PACKET) ||
4285 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4286 			    src_reg->type == PTR_TO_PACKET_META)) {
4287 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4288 			find_good_pkt_pointers(this_branch, src_reg,
4289 					       src_reg->type, false);
4290 		} else {
4291 			return false;
4292 		}
4293 		break;
4294 	case BPF_JGE:
4295 		if ((dst_reg->type == PTR_TO_PACKET &&
4296 		     src_reg->type == PTR_TO_PACKET_END) ||
4297 		    (dst_reg->type == PTR_TO_PACKET_META &&
4298 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4299 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4300 			find_good_pkt_pointers(this_branch, dst_reg,
4301 					       dst_reg->type, true);
4302 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4303 			    src_reg->type == PTR_TO_PACKET) ||
4304 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4305 			    src_reg->type == PTR_TO_PACKET_META)) {
4306 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4307 			find_good_pkt_pointers(other_branch, src_reg,
4308 					       src_reg->type, false);
4309 		} else {
4310 			return false;
4311 		}
4312 		break;
4313 	case BPF_JLE:
4314 		if ((dst_reg->type == PTR_TO_PACKET &&
4315 		     src_reg->type == PTR_TO_PACKET_END) ||
4316 		    (dst_reg->type == PTR_TO_PACKET_META &&
4317 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4318 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4319 			find_good_pkt_pointers(other_branch, dst_reg,
4320 					       dst_reg->type, false);
4321 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4322 			    src_reg->type == PTR_TO_PACKET) ||
4323 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4324 			    src_reg->type == PTR_TO_PACKET_META)) {
4325 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4326 			find_good_pkt_pointers(this_branch, src_reg,
4327 					       src_reg->type, true);
4328 		} else {
4329 			return false;
4330 		}
4331 		break;
4332 	default:
4333 		return false;
4334 	}
4335 
4336 	return true;
4337 }
4338 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)4339 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4340 			     struct bpf_insn *insn, int *insn_idx)
4341 {
4342 	struct bpf_verifier_state *this_branch = env->cur_state;
4343 	struct bpf_verifier_state *other_branch;
4344 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4345 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
4346 	u8 opcode = BPF_OP(insn->code);
4347 	bool is_jmp32;
4348 	int pred = -1;
4349 	int err;
4350 
4351 	/* Only conditional jumps are expected to reach here. */
4352 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
4353 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
4354 		return -EINVAL;
4355 	}
4356 
4357 	if (BPF_SRC(insn->code) == BPF_X) {
4358 		if (insn->imm != 0) {
4359 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4360 			return -EINVAL;
4361 		}
4362 
4363 		/* check src1 operand */
4364 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4365 		if (err)
4366 			return err;
4367 
4368 		if (is_pointer_value(env, insn->src_reg)) {
4369 			verbose(env, "R%d pointer comparison prohibited\n",
4370 				insn->src_reg);
4371 			return -EACCES;
4372 		}
4373 		src_reg = &regs[insn->src_reg];
4374 	} else {
4375 		if (insn->src_reg != BPF_REG_0) {
4376 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4377 			return -EINVAL;
4378 		}
4379 	}
4380 
4381 	/* check src2 operand */
4382 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4383 	if (err)
4384 		return err;
4385 
4386 	dst_reg = &regs[insn->dst_reg];
4387 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
4388 
4389 	if (BPF_SRC(insn->code) == BPF_K)
4390 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
4391 	else if (src_reg->type == SCALAR_VALUE &&
4392 		 tnum_is_const(src_reg->var_off))
4393 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
4394 				       opcode, is_jmp32);
4395 
4396 	if (pred == 1) {
4397 		/* Only follow the goto, ignore fall-through. If needed, push
4398 		 * the fall-through branch for simulation under speculative
4399 		 * execution.
4400 		 */
4401 		if (!env->allow_ptr_leaks &&
4402 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
4403 					       *insn_idx))
4404 			return -EFAULT;
4405 
4406 		*insn_idx += insn->off;
4407 		return 0;
4408 	} else if (pred == 0) {
4409 		/* Only follow the fall-through branch, since that's where the
4410 		 * program will go. If needed, push the goto branch for
4411 		 * simulation under speculative execution.
4412 		 */
4413 		if (!env->allow_ptr_leaks &&
4414 		    !sanitize_speculative_path(env, insn,
4415 					       *insn_idx + insn->off + 1,
4416 					       *insn_idx))
4417 			return -EFAULT;
4418 
4419 		return 0;
4420 	}
4421 
4422 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4423 				  false);
4424 	if (!other_branch)
4425 		return -EFAULT;
4426 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4427 
4428 	/* detect if we are comparing against a constant value so we can adjust
4429 	 * our min/max values for our dst register.
4430 	 * this is only legit if both are scalars (or pointers to the same
4431 	 * object, I suppose, but we don't support that right now), because
4432 	 * otherwise the different base pointers mean the offsets aren't
4433 	 * comparable.
4434 	 */
4435 	if (BPF_SRC(insn->code) == BPF_X) {
4436 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4437 		struct bpf_reg_state lo_reg0 = *dst_reg;
4438 		struct bpf_reg_state lo_reg1 = *src_reg;
4439 		struct bpf_reg_state *src_lo, *dst_lo;
4440 
4441 		dst_lo = &lo_reg0;
4442 		src_lo = &lo_reg1;
4443 		coerce_reg_to_size(dst_lo, 4);
4444 		coerce_reg_to_size(src_lo, 4);
4445 
4446 		if (dst_reg->type == SCALAR_VALUE &&
4447 		    src_reg->type == SCALAR_VALUE) {
4448 			if (tnum_is_const(src_reg->var_off) ||
4449 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
4450 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4451 						dst_reg,
4452 						is_jmp32
4453 						? src_lo->var_off.value
4454 						: src_reg->var_off.value,
4455 						opcode, is_jmp32);
4456 			else if (tnum_is_const(dst_reg->var_off) ||
4457 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
4458 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4459 						    src_reg,
4460 						    is_jmp32
4461 						    ? dst_lo->var_off.value
4462 						    : dst_reg->var_off.value,
4463 						    opcode, is_jmp32);
4464 			else if (!is_jmp32 &&
4465 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
4466 				/* Comparing for equality, we can combine knowledge */
4467 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4468 						    &other_branch_regs[insn->dst_reg],
4469 						    src_reg, dst_reg, opcode);
4470 		}
4471 	} else if (dst_reg->type == SCALAR_VALUE) {
4472 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4473 					dst_reg, insn->imm, opcode, is_jmp32);
4474 	}
4475 
4476 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4477 	 * NOTE: these optimizations below are related with pointer comparison
4478 	 *       which will never be JMP32.
4479 	 */
4480 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
4481 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4482 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4483 		/* Mark all identical map registers in each branch as either
4484 		 * safe or unknown depending R == 0 or R != 0 conditional.
4485 		 */
4486 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
4487 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
4488 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4489 					   this_branch, other_branch) &&
4490 		   is_pointer_value(env, insn->dst_reg)) {
4491 		verbose(env, "R%d pointer comparison prohibited\n",
4492 			insn->dst_reg);
4493 		return -EACCES;
4494 	}
4495 	if (env->log.level)
4496 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4497 	return 0;
4498 }
4499 
4500 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
ld_imm64_to_map_ptr(struct bpf_insn * insn)4501 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4502 {
4503 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4504 
4505 	return (struct bpf_map *) (unsigned long) imm64;
4506 }
4507 
4508 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)4509 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4510 {
4511 	struct bpf_reg_state *regs = cur_regs(env);
4512 	int err;
4513 
4514 	if (BPF_SIZE(insn->code) != BPF_DW) {
4515 		verbose(env, "invalid BPF_LD_IMM insn\n");
4516 		return -EINVAL;
4517 	}
4518 	if (insn->off != 0) {
4519 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4520 		return -EINVAL;
4521 	}
4522 
4523 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4524 	if (err)
4525 		return err;
4526 
4527 	if (insn->src_reg == 0) {
4528 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4529 
4530 		regs[insn->dst_reg].type = SCALAR_VALUE;
4531 		__mark_reg_known(&regs[insn->dst_reg], imm);
4532 		return 0;
4533 	}
4534 
4535 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4536 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4537 
4538 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4539 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4540 	return 0;
4541 }
4542 
may_access_skb(enum bpf_prog_type type)4543 static bool may_access_skb(enum bpf_prog_type type)
4544 {
4545 	switch (type) {
4546 	case BPF_PROG_TYPE_SOCKET_FILTER:
4547 	case BPF_PROG_TYPE_SCHED_CLS:
4548 	case BPF_PROG_TYPE_SCHED_ACT:
4549 		return true;
4550 	default:
4551 		return false;
4552 	}
4553 }
4554 
4555 /* verify safety of LD_ABS|LD_IND instructions:
4556  * - they can only appear in the programs where ctx == skb
4557  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4558  *   preserve R6-R9, and store return value into R0
4559  *
4560  * Implicit input:
4561  *   ctx == skb == R6 == CTX
4562  *
4563  * Explicit input:
4564  *   SRC == any register
4565  *   IMM == 32-bit immediate
4566  *
4567  * Output:
4568  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4569  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)4570 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4571 {
4572 	struct bpf_reg_state *regs = cur_regs(env);
4573 	static const int ctx_reg = BPF_REG_6;
4574 	u8 mode = BPF_MODE(insn->code);
4575 	int i, err;
4576 
4577 	if (!may_access_skb(env->prog->type)) {
4578 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4579 		return -EINVAL;
4580 	}
4581 
4582 	if (!env->ops->gen_ld_abs) {
4583 		verbose(env, "bpf verifier is misconfigured\n");
4584 		return -EINVAL;
4585 	}
4586 
4587 	if (env->subprog_cnt > 1) {
4588 		/* when program has LD_ABS insn JITs and interpreter assume
4589 		 * that r1 == ctx == skb which is not the case for callees
4590 		 * that can have arbitrary arguments. It's problematic
4591 		 * for main prog as well since JITs would need to analyze
4592 		 * all functions in order to make proper register save/restore
4593 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4594 		 */
4595 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4596 		return -EINVAL;
4597 	}
4598 
4599 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4600 	    BPF_SIZE(insn->code) == BPF_DW ||
4601 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4602 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4603 		return -EINVAL;
4604 	}
4605 
4606 	/* check whether implicit source operand (register R6) is readable */
4607 	err = check_reg_arg(env, ctx_reg, SRC_OP);
4608 	if (err)
4609 		return err;
4610 
4611 	if (regs[ctx_reg].type != PTR_TO_CTX) {
4612 		verbose(env,
4613 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4614 		return -EINVAL;
4615 	}
4616 
4617 	if (mode == BPF_IND) {
4618 		/* check explicit source operand */
4619 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4620 		if (err)
4621 			return err;
4622 	}
4623 
4624 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
4625 	if (err < 0)
4626 		return err;
4627 
4628 	/* reset caller saved regs to unreadable */
4629 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4630 		mark_reg_not_init(env, regs, caller_saved[i]);
4631 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4632 	}
4633 
4634 	/* mark destination R0 register as readable, since it contains
4635 	 * the value fetched from the packet.
4636 	 * Already marked as written above.
4637 	 */
4638 	mark_reg_unknown(env, regs, BPF_REG_0);
4639 	return 0;
4640 }
4641 
check_return_code(struct bpf_verifier_env * env)4642 static int check_return_code(struct bpf_verifier_env *env)
4643 {
4644 	struct bpf_reg_state *reg;
4645 	struct tnum range = tnum_range(0, 1);
4646 
4647 	switch (env->prog->type) {
4648 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4649 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
4650 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
4651 			range = tnum_range(1, 1);
4652 	case BPF_PROG_TYPE_CGROUP_SKB:
4653 	case BPF_PROG_TYPE_CGROUP_SOCK:
4654 	case BPF_PROG_TYPE_SOCK_OPS:
4655 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4656 		break;
4657 	default:
4658 		return 0;
4659 	}
4660 
4661 	reg = cur_regs(env) + BPF_REG_0;
4662 	if (reg->type != SCALAR_VALUE) {
4663 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4664 			reg_type_str[reg->type]);
4665 		return -EINVAL;
4666 	}
4667 
4668 	if (!tnum_in(range, reg->var_off)) {
4669 		char tn_buf[48];
4670 
4671 		verbose(env, "At program exit the register R0 ");
4672 		if (!tnum_is_unknown(reg->var_off)) {
4673 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4674 			verbose(env, "has value %s", tn_buf);
4675 		} else {
4676 			verbose(env, "has unknown scalar value");
4677 		}
4678 		tnum_strn(tn_buf, sizeof(tn_buf), range);
4679 		verbose(env, " should have been in %s\n", tn_buf);
4680 		return -EINVAL;
4681 	}
4682 	return 0;
4683 }
4684 
4685 /* non-recursive DFS pseudo code
4686  * 1  procedure DFS-iterative(G,v):
4687  * 2      label v as discovered
4688  * 3      let S be a stack
4689  * 4      S.push(v)
4690  * 5      while S is not empty
4691  * 6            t <- S.pop()
4692  * 7            if t is what we're looking for:
4693  * 8                return t
4694  * 9            for all edges e in G.adjacentEdges(t) do
4695  * 10               if edge e is already labelled
4696  * 11                   continue with the next edge
4697  * 12               w <- G.adjacentVertex(t,e)
4698  * 13               if vertex w is not discovered and not explored
4699  * 14                   label e as tree-edge
4700  * 15                   label w as discovered
4701  * 16                   S.push(w)
4702  * 17                   continue at 5
4703  * 18               else if vertex w is discovered
4704  * 19                   label e as back-edge
4705  * 20               else
4706  * 21                   // vertex w is explored
4707  * 22                   label e as forward- or cross-edge
4708  * 23           label t as explored
4709  * 24           S.pop()
4710  *
4711  * convention:
4712  * 0x10 - discovered
4713  * 0x11 - discovered and fall-through edge labelled
4714  * 0x12 - discovered and fall-through and branch edges labelled
4715  * 0x20 - explored
4716  */
4717 
4718 enum {
4719 	DISCOVERED = 0x10,
4720 	EXPLORED = 0x20,
4721 	FALLTHROUGH = 1,
4722 	BRANCH = 2,
4723 };
4724 
4725 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4726 
4727 static int *insn_stack;	/* stack of insns to process */
4728 static int cur_stack;	/* current stack index */
4729 static int *insn_state;
4730 
4731 /* t, w, e - match pseudo-code above:
4732  * t - index of current instruction
4733  * w - next instruction
4734  * e - edge
4735  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)4736 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4737 {
4738 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4739 		return 0;
4740 
4741 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4742 		return 0;
4743 
4744 	if (w < 0 || w >= env->prog->len) {
4745 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4746 		return -EINVAL;
4747 	}
4748 
4749 	if (e == BRANCH)
4750 		/* mark branch target for state pruning */
4751 		env->explored_states[w] = STATE_LIST_MARK;
4752 
4753 	if (insn_state[w] == 0) {
4754 		/* tree-edge */
4755 		insn_state[t] = DISCOVERED | e;
4756 		insn_state[w] = DISCOVERED;
4757 		if (cur_stack >= env->prog->len)
4758 			return -E2BIG;
4759 		insn_stack[cur_stack++] = w;
4760 		return 1;
4761 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4762 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4763 		return -EINVAL;
4764 	} else if (insn_state[w] == EXPLORED) {
4765 		/* forward- or cross-edge */
4766 		insn_state[t] = DISCOVERED | e;
4767 	} else {
4768 		verbose(env, "insn state internal bug\n");
4769 		return -EFAULT;
4770 	}
4771 	return 0;
4772 }
4773 
4774 /* non-recursive depth-first-search to detect loops in BPF program
4775  * loop == back-edge in directed graph
4776  */
check_cfg(struct bpf_verifier_env * env)4777 static int check_cfg(struct bpf_verifier_env *env)
4778 {
4779 	struct bpf_insn *insns = env->prog->insnsi;
4780 	int insn_cnt = env->prog->len;
4781 	int ret = 0;
4782 	int i, t;
4783 
4784 	ret = check_subprogs(env);
4785 	if (ret < 0)
4786 		return ret;
4787 
4788 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4789 	if (!insn_state)
4790 		return -ENOMEM;
4791 
4792 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4793 	if (!insn_stack) {
4794 		kfree(insn_state);
4795 		return -ENOMEM;
4796 	}
4797 
4798 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4799 	insn_stack[0] = 0; /* 0 is the first instruction */
4800 	cur_stack = 1;
4801 
4802 peek_stack:
4803 	if (cur_stack == 0)
4804 		goto check_state;
4805 	t = insn_stack[cur_stack - 1];
4806 
4807 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
4808 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
4809 		u8 opcode = BPF_OP(insns[t].code);
4810 
4811 		if (opcode == BPF_EXIT) {
4812 			goto mark_explored;
4813 		} else if (opcode == BPF_CALL) {
4814 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4815 			if (ret == 1)
4816 				goto peek_stack;
4817 			else if (ret < 0)
4818 				goto err_free;
4819 			if (t + 1 < insn_cnt)
4820 				env->explored_states[t + 1] = STATE_LIST_MARK;
4821 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4822 				env->explored_states[t] = STATE_LIST_MARK;
4823 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4824 				if (ret == 1)
4825 					goto peek_stack;
4826 				else if (ret < 0)
4827 					goto err_free;
4828 			}
4829 		} else if (opcode == BPF_JA) {
4830 			if (BPF_SRC(insns[t].code) != BPF_K) {
4831 				ret = -EINVAL;
4832 				goto err_free;
4833 			}
4834 			/* unconditional jump with single edge */
4835 			ret = push_insn(t, t + insns[t].off + 1,
4836 					FALLTHROUGH, env);
4837 			if (ret == 1)
4838 				goto peek_stack;
4839 			else if (ret < 0)
4840 				goto err_free;
4841 			/* tell verifier to check for equivalent states
4842 			 * after every call and jump
4843 			 */
4844 			if (t + 1 < insn_cnt)
4845 				env->explored_states[t + 1] = STATE_LIST_MARK;
4846 		} else {
4847 			/* conditional jump with two edges */
4848 			env->explored_states[t] = STATE_LIST_MARK;
4849 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4850 			if (ret == 1)
4851 				goto peek_stack;
4852 			else if (ret < 0)
4853 				goto err_free;
4854 
4855 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4856 			if (ret == 1)
4857 				goto peek_stack;
4858 			else if (ret < 0)
4859 				goto err_free;
4860 		}
4861 	} else {
4862 		/* all other non-branch instructions with single
4863 		 * fall-through edge
4864 		 */
4865 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4866 		if (ret == 1)
4867 			goto peek_stack;
4868 		else if (ret < 0)
4869 			goto err_free;
4870 	}
4871 
4872 mark_explored:
4873 	insn_state[t] = EXPLORED;
4874 	if (cur_stack-- <= 0) {
4875 		verbose(env, "pop stack internal bug\n");
4876 		ret = -EFAULT;
4877 		goto err_free;
4878 	}
4879 	goto peek_stack;
4880 
4881 check_state:
4882 	for (i = 0; i < insn_cnt; i++) {
4883 		if (insn_state[i] != EXPLORED) {
4884 			verbose(env, "unreachable insn %d\n", i);
4885 			ret = -EINVAL;
4886 			goto err_free;
4887 		}
4888 	}
4889 	ret = 0; /* cfg looks good */
4890 
4891 err_free:
4892 	kfree(insn_state);
4893 	kfree(insn_stack);
4894 	return ret;
4895 }
4896 
4897 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)4898 static bool range_within(struct bpf_reg_state *old,
4899 			 struct bpf_reg_state *cur)
4900 {
4901 	return old->umin_value <= cur->umin_value &&
4902 	       old->umax_value >= cur->umax_value &&
4903 	       old->smin_value <= cur->smin_value &&
4904 	       old->smax_value >= cur->smax_value;
4905 }
4906 
4907 /* Maximum number of register states that can exist at once */
4908 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4909 struct idpair {
4910 	u32 old;
4911 	u32 cur;
4912 };
4913 
4914 /* If in the old state two registers had the same id, then they need to have
4915  * the same id in the new state as well.  But that id could be different from
4916  * the old state, so we need to track the mapping from old to new ids.
4917  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4918  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4919  * regs with a different old id could still have new id 9, we don't care about
4920  * that.
4921  * So we look through our idmap to see if this old id has been seen before.  If
4922  * so, we require the new id to match; otherwise, we add the id pair to the map.
4923  */
check_ids(u32 old_id,u32 cur_id,struct idpair * idmap)4924 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4925 {
4926 	unsigned int i;
4927 
4928 	for (i = 0; i < ID_MAP_SIZE; i++) {
4929 		if (!idmap[i].old) {
4930 			/* Reached an empty slot; haven't seen this id before */
4931 			idmap[i].old = old_id;
4932 			idmap[i].cur = cur_id;
4933 			return true;
4934 		}
4935 		if (idmap[i].old == old_id)
4936 			return idmap[i].cur == cur_id;
4937 	}
4938 	/* We ran out of idmap slots, which should be impossible */
4939 	WARN_ON_ONCE(1);
4940 	return false;
4941 }
4942 
4943 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct idpair * idmap)4944 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4945 		    struct idpair *idmap)
4946 {
4947 	bool equal;
4948 
4949 	if (!(rold->live & REG_LIVE_READ))
4950 		/* explored state didn't use this */
4951 		return true;
4952 
4953 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4954 
4955 	if (rold->type == PTR_TO_STACK)
4956 		/* two stack pointers are equal only if they're pointing to
4957 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4958 		 */
4959 		return equal && rold->frameno == rcur->frameno;
4960 
4961 	if (equal)
4962 		return true;
4963 
4964 	if (rold->type == NOT_INIT)
4965 		/* explored state can't have used this */
4966 		return true;
4967 	if (rcur->type == NOT_INIT)
4968 		return false;
4969 	switch (rold->type) {
4970 	case SCALAR_VALUE:
4971 		if (rcur->type == SCALAR_VALUE) {
4972 			/* new val must satisfy old val knowledge */
4973 			return range_within(rold, rcur) &&
4974 			       tnum_in(rold->var_off, rcur->var_off);
4975 		} else {
4976 			/* We're trying to use a pointer in place of a scalar.
4977 			 * Even if the scalar was unbounded, this could lead to
4978 			 * pointer leaks because scalars are allowed to leak
4979 			 * while pointers are not. We could make this safe in
4980 			 * special cases if root is calling us, but it's
4981 			 * probably not worth the hassle.
4982 			 */
4983 			return false;
4984 		}
4985 	case PTR_TO_MAP_VALUE:
4986 		/* If the new min/max/var_off satisfy the old ones and
4987 		 * everything else matches, we are OK.
4988 		 * We don't care about the 'id' value, because nothing
4989 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4990 		 */
4991 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4992 		       range_within(rold, rcur) &&
4993 		       tnum_in(rold->var_off, rcur->var_off);
4994 	case PTR_TO_MAP_VALUE_OR_NULL:
4995 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4996 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4997 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4998 		 * checked, doing so could have affected others with the same
4999 		 * id, and we can't check for that because we lost the id when
5000 		 * we converted to a PTR_TO_MAP_VALUE.
5001 		 */
5002 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5003 			return false;
5004 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5005 			return false;
5006 		/* Check our ids match any regs they're supposed to */
5007 		return check_ids(rold->id, rcur->id, idmap);
5008 	case PTR_TO_PACKET_META:
5009 	case PTR_TO_PACKET:
5010 		if (rcur->type != rold->type)
5011 			return false;
5012 		/* We must have at least as much range as the old ptr
5013 		 * did, so that any accesses which were safe before are
5014 		 * still safe.  This is true even if old range < old off,
5015 		 * since someone could have accessed through (ptr - k), or
5016 		 * even done ptr -= k in a register, to get a safe access.
5017 		 */
5018 		if (rold->range > rcur->range)
5019 			return false;
5020 		/* If the offsets don't match, we can't trust our alignment;
5021 		 * nor can we be sure that we won't fall out of range.
5022 		 */
5023 		if (rold->off != rcur->off)
5024 			return false;
5025 		/* id relations must be preserved */
5026 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5027 			return false;
5028 		/* new val must satisfy old val knowledge */
5029 		return range_within(rold, rcur) &&
5030 		       tnum_in(rold->var_off, rcur->var_off);
5031 	case PTR_TO_CTX:
5032 	case CONST_PTR_TO_MAP:
5033 	case PTR_TO_PACKET_END:
5034 		/* Only valid matches are exact, which memcmp() above
5035 		 * would have accepted
5036 		 */
5037 	default:
5038 		/* Don't know what's going on, just say it's not safe */
5039 		return false;
5040 	}
5041 
5042 	/* Shouldn't get here; if we do, say it's not safe */
5043 	WARN_ON_ONCE(1);
5044 	return false;
5045 }
5046 
stacksafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct idpair * idmap)5047 static bool stacksafe(struct bpf_func_state *old,
5048 		      struct bpf_func_state *cur,
5049 		      struct idpair *idmap)
5050 {
5051 	int i, spi;
5052 
5053 	/* if explored stack has more populated slots than current stack
5054 	 * such stacks are not equivalent
5055 	 */
5056 	if (old->allocated_stack > cur->allocated_stack)
5057 		return false;
5058 
5059 	/* walk slots of the explored stack and ignore any additional
5060 	 * slots in the current stack, since explored(safe) state
5061 	 * didn't use them
5062 	 */
5063 	for (i = 0; i < old->allocated_stack; i++) {
5064 		spi = i / BPF_REG_SIZE;
5065 
5066 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
5067 			/* explored state didn't use this */
5068 			continue;
5069 
5070 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5071 			continue;
5072 		/* if old state was safe with misc data in the stack
5073 		 * it will be safe with zero-initialized stack.
5074 		 * The opposite is not true
5075 		 */
5076 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5077 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5078 			continue;
5079 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5080 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5081 			/* Ex: old explored (safe) state has STACK_SPILL in
5082 			 * this stack slot, but current has has STACK_MISC ->
5083 			 * this verifier states are not equivalent,
5084 			 * return false to continue verification of this path
5085 			 */
5086 			return false;
5087 		if (i % BPF_REG_SIZE)
5088 			continue;
5089 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
5090 			continue;
5091 		if (!regsafe(&old->stack[spi].spilled_ptr,
5092 			     &cur->stack[spi].spilled_ptr,
5093 			     idmap))
5094 			/* when explored and current stack slot are both storing
5095 			 * spilled registers, check that stored pointers types
5096 			 * are the same as well.
5097 			 * Ex: explored safe path could have stored
5098 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5099 			 * but current path has stored:
5100 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5101 			 * such verifier states are not equivalent.
5102 			 * return false to continue verification of this path
5103 			 */
5104 			return false;
5105 	}
5106 	return true;
5107 }
5108 
5109 /* compare two verifier states
5110  *
5111  * all states stored in state_list are known to be valid, since
5112  * verifier reached 'bpf_exit' instruction through them
5113  *
5114  * this function is called when verifier exploring different branches of
5115  * execution popped from the state stack. If it sees an old state that has
5116  * more strict register state and more strict stack state then this execution
5117  * branch doesn't need to be explored further, since verifier already
5118  * concluded that more strict state leads to valid finish.
5119  *
5120  * Therefore two states are equivalent if register state is more conservative
5121  * and explored stack state is more conservative than the current one.
5122  * Example:
5123  *       explored                   current
5124  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5125  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5126  *
5127  * In other words if current stack state (one being explored) has more
5128  * valid slots than old one that already passed validation, it means
5129  * the verifier can stop exploring and conclude that current state is valid too
5130  *
5131  * Similarly with registers. If explored state has register type as invalid
5132  * whereas register type in current state is meaningful, it means that
5133  * the current state will reach 'bpf_exit' instruction safely
5134  */
func_states_equal(struct bpf_func_state * old,struct bpf_func_state * cur)5135 static bool func_states_equal(struct bpf_func_state *old,
5136 			      struct bpf_func_state *cur)
5137 {
5138 	struct idpair *idmap;
5139 	bool ret = false;
5140 	int i;
5141 
5142 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5143 	/* If we failed to allocate the idmap, just say it's not safe */
5144 	if (!idmap)
5145 		return false;
5146 
5147 	for (i = 0; i < MAX_BPF_REG; i++) {
5148 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
5149 			goto out_free;
5150 	}
5151 
5152 	if (!stacksafe(old, cur, idmap))
5153 		goto out_free;
5154 	ret = true;
5155 out_free:
5156 	kfree(idmap);
5157 	return ret;
5158 }
5159 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)5160 static bool states_equal(struct bpf_verifier_env *env,
5161 			 struct bpf_verifier_state *old,
5162 			 struct bpf_verifier_state *cur)
5163 {
5164 	int i;
5165 
5166 	if (old->curframe != cur->curframe)
5167 		return false;
5168 
5169 	/* Verification state from speculative execution simulation
5170 	 * must never prune a non-speculative execution one.
5171 	 */
5172 	if (old->speculative && !cur->speculative)
5173 		return false;
5174 
5175 	/* for states to be equal callsites have to be the same
5176 	 * and all frame states need to be equivalent
5177 	 */
5178 	for (i = 0; i <= old->curframe; i++) {
5179 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
5180 			return false;
5181 		if (!func_states_equal(old->frame[i], cur->frame[i]))
5182 			return false;
5183 	}
5184 	return true;
5185 }
5186 
5187 /* A write screens off any subsequent reads; but write marks come from the
5188  * straight-line code between a state and its parent.  When we arrive at an
5189  * equivalent state (jump target or such) we didn't arrive by the straight-line
5190  * code, so read marks in the state must propagate to the parent regardless
5191  * of the state's write marks. That's what 'parent == state->parent' comparison
5192  * in mark_reg_read() is for.
5193  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)5194 static int propagate_liveness(struct bpf_verifier_env *env,
5195 			      const struct bpf_verifier_state *vstate,
5196 			      struct bpf_verifier_state *vparent)
5197 {
5198 	int i, frame, err = 0;
5199 	struct bpf_func_state *state, *parent;
5200 
5201 	if (vparent->curframe != vstate->curframe) {
5202 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
5203 		     vparent->curframe, vstate->curframe);
5204 		return -EFAULT;
5205 	}
5206 	/* Propagate read liveness of registers... */
5207 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5208 	/* We don't need to worry about FP liveness because it's read-only */
5209 	for (i = 0; i < BPF_REG_FP; i++) {
5210 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
5211 			continue;
5212 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
5213 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5214 					    &vparent->frame[vstate->curframe]->regs[i]);
5215 			if (err)
5216 				return err;
5217 		}
5218 	}
5219 
5220 	/* ... and stack slots */
5221 	for (frame = 0; frame <= vstate->curframe; frame++) {
5222 		state = vstate->frame[frame];
5223 		parent = vparent->frame[frame];
5224 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5225 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
5226 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5227 				continue;
5228 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
5229 				mark_reg_read(env, &state->stack[i].spilled_ptr,
5230 					      &parent->stack[i].spilled_ptr);
5231 		}
5232 	}
5233 	return err;
5234 }
5235 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)5236 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
5237 {
5238 	struct bpf_verifier_state_list *new_sl;
5239 	struct bpf_verifier_state_list *sl;
5240 	struct bpf_verifier_state *cur = env->cur_state, *new;
5241 	int i, j, err, states_cnt = 0;
5242 
5243 	sl = env->explored_states[insn_idx];
5244 	if (!sl)
5245 		/* this 'insn_idx' instruction wasn't marked, so we will not
5246 		 * be doing state search here
5247 		 */
5248 		return 0;
5249 
5250 	while (sl != STATE_LIST_MARK) {
5251 		if (states_equal(env, &sl->state, cur)) {
5252 			/* reached equivalent register/stack state,
5253 			 * prune the search.
5254 			 * Registers read by the continuation are read by us.
5255 			 * If we have any write marks in env->cur_state, they
5256 			 * will prevent corresponding reads in the continuation
5257 			 * from reaching our parent (an explored_state).  Our
5258 			 * own state will get the read marks recorded, but
5259 			 * they'll be immediately forgotten as we're pruning
5260 			 * this state and will pop a new one.
5261 			 */
5262 			err = propagate_liveness(env, &sl->state, cur);
5263 			if (err)
5264 				return err;
5265 			return 1;
5266 		}
5267 		sl = sl->next;
5268 		states_cnt++;
5269 	}
5270 
5271 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5272 		return 0;
5273 
5274 	/* there were no equivalent states, remember current one.
5275 	 * technically the current state is not proven to be safe yet,
5276 	 * but it will either reach outer most bpf_exit (which means it's safe)
5277 	 * or it will be rejected. Since there are no loops, we won't be
5278 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5279 	 * again on the way to bpf_exit
5280 	 */
5281 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5282 	if (!new_sl)
5283 		return -ENOMEM;
5284 
5285 	/* add new state to the head of linked list */
5286 	new = &new_sl->state;
5287 	err = copy_verifier_state(new, cur);
5288 	if (err) {
5289 		free_verifier_state(new, false);
5290 		kfree(new_sl);
5291 		return err;
5292 	}
5293 	new_sl->next = env->explored_states[insn_idx];
5294 	env->explored_states[insn_idx] = new_sl;
5295 	/* connect new state to parentage chain */
5296 	for (i = 0; i < BPF_REG_FP; i++)
5297 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
5298 	/* clear write marks in current state: the writes we did are not writes
5299 	 * our child did, so they don't screen off its reads from us.
5300 	 * (There are no read marks in current state, because reads always mark
5301 	 * their parent and current state never has children yet.  Only
5302 	 * explored_states can get read marks.)
5303 	 */
5304 	for (i = 0; i < BPF_REG_FP; i++)
5305 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5306 
5307 	/* all stack frames are accessible from callee, clear them all */
5308 	for (j = 0; j <= cur->curframe; j++) {
5309 		struct bpf_func_state *frame = cur->frame[j];
5310 		struct bpf_func_state *newframe = new->frame[j];
5311 
5312 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5313 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5314 			frame->stack[i].spilled_ptr.parent =
5315 						&newframe->stack[i].spilled_ptr;
5316 		}
5317 	}
5318 	return 0;
5319 }
5320 
do_check(struct bpf_verifier_env * env)5321 static int do_check(struct bpf_verifier_env *env)
5322 {
5323 	struct bpf_verifier_state *state;
5324 	struct bpf_insn *insns = env->prog->insnsi;
5325 	struct bpf_reg_state *regs;
5326 	int insn_cnt = env->prog->len, i;
5327 	int insn_processed = 0;
5328 	bool do_print_state = false;
5329 
5330 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5331 	if (!state)
5332 		return -ENOMEM;
5333 	state->curframe = 0;
5334 	state->speculative = false;
5335 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5336 	if (!state->frame[0]) {
5337 		kfree(state);
5338 		return -ENOMEM;
5339 	}
5340 	env->cur_state = state;
5341 	init_func_state(env, state->frame[0],
5342 			BPF_MAIN_FUNC /* callsite */,
5343 			0 /* frameno */,
5344 			0 /* subprogno, zero == main subprog */);
5345 
5346 	for (;;) {
5347 		struct bpf_insn *insn;
5348 		u8 class;
5349 		int err;
5350 
5351 		if (env->insn_idx >= insn_cnt) {
5352 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5353 				env->insn_idx, insn_cnt);
5354 			return -EFAULT;
5355 		}
5356 
5357 		insn = &insns[env->insn_idx];
5358 		class = BPF_CLASS(insn->code);
5359 
5360 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5361 			verbose(env,
5362 				"BPF program is too large. Processed %d insn\n",
5363 				insn_processed);
5364 			return -E2BIG;
5365 		}
5366 
5367 		err = is_state_visited(env, env->insn_idx);
5368 		if (err < 0)
5369 			return err;
5370 		if (err == 1) {
5371 			/* found equivalent state, can prune the search */
5372 			if (env->log.level) {
5373 				if (do_print_state)
5374 					verbose(env, "\nfrom %d to %d%s: safe\n",
5375 						env->prev_insn_idx, env->insn_idx,
5376 						env->cur_state->speculative ?
5377 						" (speculative execution)" : "");
5378 				else
5379 					verbose(env, "%d: safe\n", env->insn_idx);
5380 			}
5381 			goto process_bpf_exit;
5382 		}
5383 
5384 		if (signal_pending(current))
5385 			return -EAGAIN;
5386 
5387 		if (need_resched())
5388 			cond_resched();
5389 
5390 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5391 			if (env->log.level > 1)
5392 				verbose(env, "%d:", env->insn_idx);
5393 			else
5394 				verbose(env, "\nfrom %d to %d%s:",
5395 					env->prev_insn_idx, env->insn_idx,
5396 					env->cur_state->speculative ?
5397 					" (speculative execution)" : "");
5398 			print_verifier_state(env, state->frame[state->curframe]);
5399 			do_print_state = false;
5400 		}
5401 
5402 		if (env->log.level) {
5403 			const struct bpf_insn_cbs cbs = {
5404 				.cb_print	= verbose,
5405 				.private_data	= env,
5406 			};
5407 
5408 			verbose(env, "%d: ", env->insn_idx);
5409 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5410 		}
5411 
5412 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5413 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
5414 							   env->prev_insn_idx);
5415 			if (err)
5416 				return err;
5417 		}
5418 
5419 		regs = cur_regs(env);
5420 		sanitize_mark_insn_seen(env);
5421 
5422 		if (class == BPF_ALU || class == BPF_ALU64) {
5423 			err = check_alu_op(env, insn);
5424 			if (err)
5425 				return err;
5426 
5427 		} else if (class == BPF_LDX) {
5428 			enum bpf_reg_type *prev_src_type, src_reg_type;
5429 
5430 			/* check for reserved fields is already done */
5431 
5432 			/* check src operand */
5433 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5434 			if (err)
5435 				return err;
5436 
5437 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5438 			if (err)
5439 				return err;
5440 
5441 			src_reg_type = regs[insn->src_reg].type;
5442 
5443 			/* check that memory (src_reg + off) is readable,
5444 			 * the state of dst_reg will be updated by this func
5445 			 */
5446 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
5447 					       insn->off, BPF_SIZE(insn->code),
5448 					       BPF_READ, insn->dst_reg, false);
5449 			if (err)
5450 				return err;
5451 
5452 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
5453 
5454 			if (*prev_src_type == NOT_INIT) {
5455 				/* saw a valid insn
5456 				 * dst_reg = *(u32 *)(src_reg + off)
5457 				 * save type to validate intersecting paths
5458 				 */
5459 				*prev_src_type = src_reg_type;
5460 
5461 			} else if (src_reg_type != *prev_src_type &&
5462 				   (src_reg_type == PTR_TO_CTX ||
5463 				    *prev_src_type == PTR_TO_CTX)) {
5464 				/* ABuser program is trying to use the same insn
5465 				 * dst_reg = *(u32*) (src_reg + off)
5466 				 * with different pointer types:
5467 				 * src_reg == ctx in one branch and
5468 				 * src_reg == stack|map in some other branch.
5469 				 * Reject it.
5470 				 */
5471 				verbose(env, "same insn cannot be used with different pointers\n");
5472 				return -EINVAL;
5473 			}
5474 
5475 		} else if (class == BPF_STX) {
5476 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5477 
5478 			if (BPF_MODE(insn->code) == BPF_XADD) {
5479 				err = check_xadd(env, env->insn_idx, insn);
5480 				if (err)
5481 					return err;
5482 				env->insn_idx++;
5483 				continue;
5484 			}
5485 
5486 			/* check src1 operand */
5487 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5488 			if (err)
5489 				return err;
5490 			/* check src2 operand */
5491 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5492 			if (err)
5493 				return err;
5494 
5495 			dst_reg_type = regs[insn->dst_reg].type;
5496 
5497 			/* check that memory (dst_reg + off) is writeable */
5498 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
5499 					       insn->off, BPF_SIZE(insn->code),
5500 					       BPF_WRITE, insn->src_reg, false);
5501 			if (err)
5502 				return err;
5503 
5504 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
5505 
5506 			if (*prev_dst_type == NOT_INIT) {
5507 				*prev_dst_type = dst_reg_type;
5508 			} else if (dst_reg_type != *prev_dst_type &&
5509 				   (dst_reg_type == PTR_TO_CTX ||
5510 				    *prev_dst_type == PTR_TO_CTX)) {
5511 				verbose(env, "same insn cannot be used with different pointers\n");
5512 				return -EINVAL;
5513 			}
5514 
5515 		} else if (class == BPF_ST) {
5516 			if (BPF_MODE(insn->code) != BPF_MEM ||
5517 			    insn->src_reg != BPF_REG_0) {
5518 				verbose(env, "BPF_ST uses reserved fields\n");
5519 				return -EINVAL;
5520 			}
5521 			/* check src operand */
5522 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5523 			if (err)
5524 				return err;
5525 
5526 			if (is_ctx_reg(env, insn->dst_reg)) {
5527 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
5528 					insn->dst_reg);
5529 				return -EACCES;
5530 			}
5531 
5532 			/* check that memory (dst_reg + off) is writeable */
5533 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
5534 					       insn->off, BPF_SIZE(insn->code),
5535 					       BPF_WRITE, -1, false);
5536 			if (err)
5537 				return err;
5538 
5539 		} else if (class == BPF_JMP || class == BPF_JMP32) {
5540 			u8 opcode = BPF_OP(insn->code);
5541 
5542 			if (opcode == BPF_CALL) {
5543 				if (BPF_SRC(insn->code) != BPF_K ||
5544 				    insn->off != 0 ||
5545 				    (insn->src_reg != BPF_REG_0 &&
5546 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5547 				    insn->dst_reg != BPF_REG_0 ||
5548 				    class == BPF_JMP32) {
5549 					verbose(env, "BPF_CALL uses reserved fields\n");
5550 					return -EINVAL;
5551 				}
5552 
5553 				if (insn->src_reg == BPF_PSEUDO_CALL)
5554 					err = check_func_call(env, insn, &env->insn_idx);
5555 				else
5556 					err = check_helper_call(env, insn->imm, env->insn_idx);
5557 				if (err)
5558 					return err;
5559 
5560 			} else if (opcode == BPF_JA) {
5561 				if (BPF_SRC(insn->code) != BPF_K ||
5562 				    insn->imm != 0 ||
5563 				    insn->src_reg != BPF_REG_0 ||
5564 				    insn->dst_reg != BPF_REG_0 ||
5565 				    class == BPF_JMP32) {
5566 					verbose(env, "BPF_JA uses reserved fields\n");
5567 					return -EINVAL;
5568 				}
5569 
5570 				env->insn_idx += insn->off + 1;
5571 				continue;
5572 
5573 			} else if (opcode == BPF_EXIT) {
5574 				if (BPF_SRC(insn->code) != BPF_K ||
5575 				    insn->imm != 0 ||
5576 				    insn->src_reg != BPF_REG_0 ||
5577 				    insn->dst_reg != BPF_REG_0 ||
5578 				    class == BPF_JMP32) {
5579 					verbose(env, "BPF_EXIT uses reserved fields\n");
5580 					return -EINVAL;
5581 				}
5582 
5583 				if (state->curframe) {
5584 					/* exit from nested function */
5585 					env->prev_insn_idx = env->insn_idx;
5586 					err = prepare_func_exit(env, &env->insn_idx);
5587 					if (err)
5588 						return err;
5589 					do_print_state = true;
5590 					continue;
5591 				}
5592 
5593 				/* eBPF calling convetion is such that R0 is used
5594 				 * to return the value from eBPF program.
5595 				 * Make sure that it's readable at this time
5596 				 * of bpf_exit, which means that program wrote
5597 				 * something into it earlier
5598 				 */
5599 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5600 				if (err)
5601 					return err;
5602 
5603 				if (is_pointer_value(env, BPF_REG_0)) {
5604 					verbose(env, "R0 leaks addr as return value\n");
5605 					return -EACCES;
5606 				}
5607 
5608 				err = check_return_code(env);
5609 				if (err)
5610 					return err;
5611 process_bpf_exit:
5612 				err = pop_stack(env, &env->prev_insn_idx,
5613 						&env->insn_idx);
5614 				if (err < 0) {
5615 					if (err != -ENOENT)
5616 						return err;
5617 					break;
5618 				} else {
5619 					do_print_state = true;
5620 					continue;
5621 				}
5622 			} else {
5623 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
5624 				if (err)
5625 					return err;
5626 			}
5627 		} else if (class == BPF_LD) {
5628 			u8 mode = BPF_MODE(insn->code);
5629 
5630 			if (mode == BPF_ABS || mode == BPF_IND) {
5631 				err = check_ld_abs(env, insn);
5632 				if (err)
5633 					return err;
5634 
5635 			} else if (mode == BPF_IMM) {
5636 				err = check_ld_imm(env, insn);
5637 				if (err)
5638 					return err;
5639 
5640 				env->insn_idx++;
5641 				sanitize_mark_insn_seen(env);
5642 			} else {
5643 				verbose(env, "invalid BPF_LD mode\n");
5644 				return -EINVAL;
5645 			}
5646 		} else {
5647 			verbose(env, "unknown insn class %d\n", class);
5648 			return -EINVAL;
5649 		}
5650 
5651 		env->insn_idx++;
5652 	}
5653 
5654 	verbose(env, "processed %d insns (limit %d), stack depth ",
5655 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5656 	for (i = 0; i < env->subprog_cnt; i++) {
5657 		u32 depth = env->subprog_info[i].stack_depth;
5658 
5659 		verbose(env, "%d", depth);
5660 		if (i + 1 < env->subprog_cnt)
5661 			verbose(env, "+");
5662 	}
5663 	verbose(env, "\n");
5664 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5665 	return 0;
5666 }
5667 
check_map_prealloc(struct bpf_map * map)5668 static int check_map_prealloc(struct bpf_map *map)
5669 {
5670 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5671 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5672 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5673 		!(map->map_flags & BPF_F_NO_PREALLOC);
5674 }
5675 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)5676 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5677 					struct bpf_map *map,
5678 					struct bpf_prog *prog)
5679 
5680 {
5681 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5682 	 * preallocated hash maps, since doing memory allocation
5683 	 * in overflow_handler can crash depending on where nmi got
5684 	 * triggered.
5685 	 */
5686 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5687 		if (!check_map_prealloc(map)) {
5688 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5689 			return -EINVAL;
5690 		}
5691 		if (map->inner_map_meta &&
5692 		    !check_map_prealloc(map->inner_map_meta)) {
5693 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5694 			return -EINVAL;
5695 		}
5696 	}
5697 
5698 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5699 	    !bpf_offload_prog_map_match(prog, map)) {
5700 		verbose(env, "offload device mismatch between prog and map\n");
5701 		return -EINVAL;
5702 	}
5703 
5704 	return 0;
5705 }
5706 
5707 /* look for pseudo eBPF instructions that access map FDs and
5708  * replace them with actual map pointers
5709  */
replace_map_fd_with_map_ptr(struct bpf_verifier_env * env)5710 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5711 {
5712 	struct bpf_insn *insn = env->prog->insnsi;
5713 	int insn_cnt = env->prog->len;
5714 	int i, j, err;
5715 
5716 	err = bpf_prog_calc_tag(env->prog);
5717 	if (err)
5718 		return err;
5719 
5720 	for (i = 0; i < insn_cnt; i++, insn++) {
5721 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5722 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5723 			verbose(env, "BPF_LDX uses reserved fields\n");
5724 			return -EINVAL;
5725 		}
5726 
5727 		if (BPF_CLASS(insn->code) == BPF_STX &&
5728 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5729 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5730 			verbose(env, "BPF_STX uses reserved fields\n");
5731 			return -EINVAL;
5732 		}
5733 
5734 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5735 			struct bpf_map *map;
5736 			struct fd f;
5737 
5738 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5739 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5740 			    insn[1].off != 0) {
5741 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5742 				return -EINVAL;
5743 			}
5744 
5745 			if (insn->src_reg == 0)
5746 				/* valid generic load 64-bit imm */
5747 				goto next_insn;
5748 
5749 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5750 				verbose(env,
5751 					"unrecognized bpf_ld_imm64 insn\n");
5752 				return -EINVAL;
5753 			}
5754 
5755 			f = fdget(insn->imm);
5756 			map = __bpf_map_get(f);
5757 			if (IS_ERR(map)) {
5758 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5759 					insn->imm);
5760 				return PTR_ERR(map);
5761 			}
5762 
5763 			err = check_map_prog_compatibility(env, map, env->prog);
5764 			if (err) {
5765 				fdput(f);
5766 				return err;
5767 			}
5768 
5769 			/* store map pointer inside BPF_LD_IMM64 instruction */
5770 			insn[0].imm = (u32) (unsigned long) map;
5771 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5772 
5773 			/* check whether we recorded this map already */
5774 			for (j = 0; j < env->used_map_cnt; j++)
5775 				if (env->used_maps[j] == map) {
5776 					fdput(f);
5777 					goto next_insn;
5778 				}
5779 
5780 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5781 				fdput(f);
5782 				return -E2BIG;
5783 			}
5784 
5785 			/* hold the map. If the program is rejected by verifier,
5786 			 * the map will be released by release_maps() or it
5787 			 * will be used by the valid program until it's unloaded
5788 			 * and all maps are released in free_used_maps()
5789 			 */
5790 			map = bpf_map_inc(map, false);
5791 			if (IS_ERR(map)) {
5792 				fdput(f);
5793 				return PTR_ERR(map);
5794 			}
5795 			env->used_maps[env->used_map_cnt++] = map;
5796 
5797 			if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE &&
5798 			    bpf_cgroup_storage_assign(env->prog, map)) {
5799 				verbose(env,
5800 					"only one cgroup storage is allowed\n");
5801 				fdput(f);
5802 				return -EBUSY;
5803 			}
5804 
5805 			fdput(f);
5806 next_insn:
5807 			insn++;
5808 			i++;
5809 			continue;
5810 		}
5811 
5812 		/* Basic sanity check before we invest more work here. */
5813 		if (!bpf_opcode_in_insntable(insn->code)) {
5814 			verbose(env, "unknown opcode %02x\n", insn->code);
5815 			return -EINVAL;
5816 		}
5817 	}
5818 
5819 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5820 	 * 'struct bpf_map *' into a register instead of user map_fd.
5821 	 * These pointers will be used later by verifier to validate map access.
5822 	 */
5823 	return 0;
5824 }
5825 
5826 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)5827 static void release_maps(struct bpf_verifier_env *env)
5828 {
5829 	int i;
5830 
5831 	if (env->prog->aux->cgroup_storage)
5832 		bpf_cgroup_storage_release(env->prog,
5833 					   env->prog->aux->cgroup_storage);
5834 
5835 	for (i = 0; i < env->used_map_cnt; i++)
5836 		bpf_map_put(env->used_maps[i]);
5837 }
5838 
5839 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)5840 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5841 {
5842 	struct bpf_insn *insn = env->prog->insnsi;
5843 	int insn_cnt = env->prog->len;
5844 	int i;
5845 
5846 	for (i = 0; i < insn_cnt; i++, insn++)
5847 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5848 			insn->src_reg = 0;
5849 }
5850 
5851 /* single env->prog->insni[off] instruction was replaced with the range
5852  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5853  * [0, off) and [off, end) to new locations, so the patched range stays zero
5854  */
adjust_insn_aux_data(struct bpf_verifier_env * env,u32 prog_len,u32 off,u32 cnt)5855 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5856 				u32 off, u32 cnt)
5857 {
5858 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5859 	bool old_seen = old_data[off].seen;
5860 	int i;
5861 
5862 	if (cnt == 1)
5863 		return 0;
5864 	new_data = vzalloc(array_size(prog_len,
5865 				      sizeof(struct bpf_insn_aux_data)));
5866 	if (!new_data)
5867 		return -ENOMEM;
5868 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5869 	memcpy(new_data + off + cnt - 1, old_data + off,
5870 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5871 	for (i = off; i < off + cnt - 1; i++) {
5872 		/* Expand insni[off]'s seen count to the patched range. */
5873 		new_data[i].seen = old_seen;
5874 	}
5875 	env->insn_aux_data = new_data;
5876 	vfree(old_data);
5877 	return 0;
5878 }
5879 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)5880 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5881 {
5882 	int i;
5883 
5884 	if (len == 1)
5885 		return;
5886 	/* NOTE: fake 'exit' subprog should be updated as well. */
5887 	for (i = 0; i <= env->subprog_cnt; i++) {
5888 		if (env->subprog_info[i].start <= off)
5889 			continue;
5890 		env->subprog_info[i].start += len - 1;
5891 	}
5892 }
5893 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)5894 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5895 					    const struct bpf_insn *patch, u32 len)
5896 {
5897 	struct bpf_prog *new_prog;
5898 
5899 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5900 	if (!new_prog)
5901 		return NULL;
5902 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5903 		return NULL;
5904 	adjust_subprog_starts(env, off, len);
5905 	return new_prog;
5906 }
5907 
5908 /* The verifier does more data flow analysis than llvm and will not
5909  * explore branches that are dead at run time. Malicious programs can
5910  * have dead code too. Therefore replace all dead at-run-time code
5911  * with 'ja -1'.
5912  *
5913  * Just nops are not optimal, e.g. if they would sit at the end of the
5914  * program and through another bug we would manage to jump there, then
5915  * we'd execute beyond program memory otherwise. Returning exception
5916  * code also wouldn't work since we can have subprogs where the dead
5917  * code could be located.
5918  */
sanitize_dead_code(struct bpf_verifier_env * env)5919 static void sanitize_dead_code(struct bpf_verifier_env *env)
5920 {
5921 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5922 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5923 	struct bpf_insn *insn = env->prog->insnsi;
5924 	const int insn_cnt = env->prog->len;
5925 	int i;
5926 
5927 	for (i = 0; i < insn_cnt; i++) {
5928 		if (aux_data[i].seen)
5929 			continue;
5930 		memcpy(insn + i, &trap, sizeof(trap));
5931 	}
5932 }
5933 
5934 /* convert load instructions that access fields of 'struct __sk_buff'
5935  * into sequence of instructions that access fields of 'struct sk_buff'
5936  */
convert_ctx_accesses(struct bpf_verifier_env * env)5937 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5938 {
5939 	const struct bpf_verifier_ops *ops = env->ops;
5940 	int i, cnt, size, ctx_field_size, delta = 0;
5941 	const int insn_cnt = env->prog->len;
5942 	struct bpf_insn insn_buf[16], *insn;
5943 	u32 target_size, size_default, off;
5944 	struct bpf_prog *new_prog;
5945 	enum bpf_access_type type;
5946 	bool is_narrower_load;
5947 
5948 	if (ops->gen_prologue) {
5949 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5950 					env->prog);
5951 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5952 			verbose(env, "bpf verifier is misconfigured\n");
5953 			return -EINVAL;
5954 		} else if (cnt) {
5955 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5956 			if (!new_prog)
5957 				return -ENOMEM;
5958 
5959 			env->prog = new_prog;
5960 			delta += cnt - 1;
5961 		}
5962 	}
5963 
5964 	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5965 		return 0;
5966 
5967 	insn = env->prog->insnsi + delta;
5968 
5969 	for (i = 0; i < insn_cnt; i++, insn++) {
5970 		bool ctx_access;
5971 
5972 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5973 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5974 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5975 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
5976 			type = BPF_READ;
5977 			ctx_access = true;
5978 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5979 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5980 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5981 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
5982 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
5983 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
5984 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
5985 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
5986 			type = BPF_WRITE;
5987 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
5988 		} else {
5989 			continue;
5990 		}
5991 
5992 		if (type == BPF_WRITE &&
5993 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
5994 			struct bpf_insn patch[] = {
5995 				*insn,
5996 				BPF_ST_NOSPEC(),
5997 			};
5998 
5999 			cnt = ARRAY_SIZE(patch);
6000 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
6001 			if (!new_prog)
6002 				return -ENOMEM;
6003 
6004 			delta    += cnt - 1;
6005 			env->prog = new_prog;
6006 			insn      = new_prog->insnsi + i + delta;
6007 			continue;
6008 		}
6009 
6010 		if (!ctx_access)
6011 			continue;
6012 
6013 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
6014 			continue;
6015 
6016 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
6017 		size = BPF_LDST_BYTES(insn);
6018 
6019 		/* If the read access is a narrower load of the field,
6020 		 * convert to a 4/8-byte load, to minimum program type specific
6021 		 * convert_ctx_access changes. If conversion is successful,
6022 		 * we will apply proper mask to the result.
6023 		 */
6024 		is_narrower_load = size < ctx_field_size;
6025 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
6026 		off = insn->off;
6027 		if (is_narrower_load) {
6028 			u8 size_code;
6029 
6030 			if (type == BPF_WRITE) {
6031 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
6032 				return -EINVAL;
6033 			}
6034 
6035 			size_code = BPF_H;
6036 			if (ctx_field_size == 4)
6037 				size_code = BPF_W;
6038 			else if (ctx_field_size == 8)
6039 				size_code = BPF_DW;
6040 
6041 			insn->off = off & ~(size_default - 1);
6042 			insn->code = BPF_LDX | BPF_MEM | size_code;
6043 		}
6044 
6045 		target_size = 0;
6046 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
6047 					      &target_size);
6048 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
6049 		    (ctx_field_size && !target_size)) {
6050 			verbose(env, "bpf verifier is misconfigured\n");
6051 			return -EINVAL;
6052 		}
6053 
6054 		if (is_narrower_load && size < target_size) {
6055 			u8 shift = (off & (size_default - 1)) * 8;
6056 
6057 			if (ctx_field_size <= 4) {
6058 				if (shift)
6059 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
6060 									insn->dst_reg,
6061 									shift);
6062 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
6063 								(1 << size * 8) - 1);
6064 			} else {
6065 				if (shift)
6066 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
6067 									insn->dst_reg,
6068 									shift);
6069 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
6070 								(1ULL << size * 8) - 1);
6071 			}
6072 		}
6073 
6074 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6075 		if (!new_prog)
6076 			return -ENOMEM;
6077 
6078 		delta += cnt - 1;
6079 
6080 		/* keep walking new program and skip insns we just inserted */
6081 		env->prog = new_prog;
6082 		insn      = new_prog->insnsi + i + delta;
6083 	}
6084 
6085 	return 0;
6086 }
6087 
jit_subprogs(struct bpf_verifier_env * env)6088 static int jit_subprogs(struct bpf_verifier_env *env)
6089 {
6090 	struct bpf_prog *prog = env->prog, **func, *tmp;
6091 	int i, j, subprog_start, subprog_end = 0, len, subprog;
6092 	struct bpf_insn *insn;
6093 	void *old_bpf_func;
6094 	int err = -ENOMEM;
6095 
6096 	if (env->subprog_cnt <= 1)
6097 		return 0;
6098 
6099 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6100 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6101 		    insn->src_reg != BPF_PSEUDO_CALL)
6102 			continue;
6103 		/* Upon error here we cannot fall back to interpreter but
6104 		 * need a hard reject of the program. Thus -EFAULT is
6105 		 * propagated in any case.
6106 		 */
6107 		subprog = find_subprog(env, i + insn->imm + 1);
6108 		if (subprog < 0) {
6109 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6110 				  i + insn->imm + 1);
6111 			return -EFAULT;
6112 		}
6113 		/* temporarily remember subprog id inside insn instead of
6114 		 * aux_data, since next loop will split up all insns into funcs
6115 		 */
6116 		insn->off = subprog;
6117 		/* remember original imm in case JIT fails and fallback
6118 		 * to interpreter will be needed
6119 		 */
6120 		env->insn_aux_data[i].call_imm = insn->imm;
6121 		/* point imm to __bpf_call_base+1 from JITs point of view */
6122 		insn->imm = 1;
6123 	}
6124 
6125 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
6126 	if (!func)
6127 		goto out_undo_insn;
6128 
6129 	for (i = 0; i < env->subprog_cnt; i++) {
6130 		subprog_start = subprog_end;
6131 		subprog_end = env->subprog_info[i + 1].start;
6132 
6133 		len = subprog_end - subprog_start;
6134 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
6135 		if (!func[i])
6136 			goto out_free;
6137 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
6138 		       len * sizeof(struct bpf_insn));
6139 		func[i]->type = prog->type;
6140 		func[i]->len = len;
6141 		if (bpf_prog_calc_tag(func[i]))
6142 			goto out_free;
6143 		func[i]->is_func = 1;
6144 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
6145 		 * Long term would need debug info to populate names
6146 		 */
6147 		func[i]->aux->name[0] = 'F';
6148 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
6149 		func[i]->jit_requested = 1;
6150 		func[i] = bpf_int_jit_compile(func[i]);
6151 		if (!func[i]->jited) {
6152 			err = -ENOTSUPP;
6153 			goto out_free;
6154 		}
6155 		cond_resched();
6156 	}
6157 	/* at this point all bpf functions were successfully JITed
6158 	 * now populate all bpf_calls with correct addresses and
6159 	 * run last pass of JIT
6160 	 */
6161 	for (i = 0; i < env->subprog_cnt; i++) {
6162 		insn = func[i]->insnsi;
6163 		for (j = 0; j < func[i]->len; j++, insn++) {
6164 			if (insn->code != (BPF_JMP | BPF_CALL) ||
6165 			    insn->src_reg != BPF_PSEUDO_CALL)
6166 				continue;
6167 			subprog = insn->off;
6168 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6169 				func[subprog]->bpf_func -
6170 				__bpf_call_base;
6171 		}
6172 
6173 		/* we use the aux data to keep a list of the start addresses
6174 		 * of the JITed images for each function in the program
6175 		 *
6176 		 * for some architectures, such as powerpc64, the imm field
6177 		 * might not be large enough to hold the offset of the start
6178 		 * address of the callee's JITed image from __bpf_call_base
6179 		 *
6180 		 * in such cases, we can lookup the start address of a callee
6181 		 * by using its subprog id, available from the off field of
6182 		 * the call instruction, as an index for this list
6183 		 */
6184 		func[i]->aux->func = func;
6185 		func[i]->aux->func_cnt = env->subprog_cnt;
6186 	}
6187 	for (i = 0; i < env->subprog_cnt; i++) {
6188 		old_bpf_func = func[i]->bpf_func;
6189 		tmp = bpf_int_jit_compile(func[i]);
6190 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6191 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
6192 			err = -ENOTSUPP;
6193 			goto out_free;
6194 		}
6195 		cond_resched();
6196 	}
6197 
6198 	/* finally lock prog and jit images for all functions and
6199 	 * populate kallsysm
6200 	 */
6201 	for (i = 0; i < env->subprog_cnt; i++) {
6202 		bpf_prog_lock_ro(func[i]);
6203 		bpf_prog_kallsyms_add(func[i]);
6204 	}
6205 
6206 	/* Last step: make now unused interpreter insns from main
6207 	 * prog consistent for later dump requests, so they can
6208 	 * later look the same as if they were interpreted only.
6209 	 */
6210 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6211 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6212 		    insn->src_reg != BPF_PSEUDO_CALL)
6213 			continue;
6214 		insn->off = env->insn_aux_data[i].call_imm;
6215 		subprog = find_subprog(env, i + insn->off + 1);
6216 		insn->imm = subprog;
6217 	}
6218 
6219 	prog->jited = 1;
6220 	prog->bpf_func = func[0]->bpf_func;
6221 	prog->aux->func = func;
6222 	prog->aux->func_cnt = env->subprog_cnt;
6223 	return 0;
6224 out_free:
6225 	for (i = 0; i < env->subprog_cnt; i++)
6226 		if (func[i])
6227 			bpf_jit_free(func[i]);
6228 	kfree(func);
6229 out_undo_insn:
6230 	/* cleanup main prog to be interpreted */
6231 	prog->jit_requested = 0;
6232 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6233 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6234 		    insn->src_reg != BPF_PSEUDO_CALL)
6235 			continue;
6236 		insn->off = 0;
6237 		insn->imm = env->insn_aux_data[i].call_imm;
6238 	}
6239 	return err;
6240 }
6241 
fixup_call_args(struct bpf_verifier_env * env)6242 static int fixup_call_args(struct bpf_verifier_env *env)
6243 {
6244 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6245 	struct bpf_prog *prog = env->prog;
6246 	struct bpf_insn *insn = prog->insnsi;
6247 	int i, depth;
6248 #endif
6249 	int err;
6250 
6251 	err = 0;
6252 	if (env->prog->jit_requested) {
6253 		err = jit_subprogs(env);
6254 		if (err == 0)
6255 			return 0;
6256 		if (err == -EFAULT)
6257 			return err;
6258 	}
6259 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6260 	for (i = 0; i < prog->len; i++, insn++) {
6261 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6262 		    insn->src_reg != BPF_PSEUDO_CALL)
6263 			continue;
6264 		depth = get_callee_stack_depth(env, insn, i);
6265 		if (depth < 0)
6266 			return depth;
6267 		bpf_patch_call_args(insn, depth);
6268 	}
6269 	err = 0;
6270 #endif
6271 	return err;
6272 }
6273 
6274 /* fixup insn->imm field of bpf_call instructions
6275  * and inline eligible helpers as explicit sequence of BPF instructions
6276  *
6277  * this function is called after eBPF program passed verification
6278  */
fixup_bpf_calls(struct bpf_verifier_env * env)6279 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6280 {
6281 	struct bpf_prog *prog = env->prog;
6282 	struct bpf_insn *insn = prog->insnsi;
6283 	const struct bpf_func_proto *fn;
6284 	const int insn_cnt = prog->len;
6285 	const struct bpf_map_ops *ops;
6286 	struct bpf_insn_aux_data *aux;
6287 	struct bpf_insn insn_buf[16];
6288 	struct bpf_prog *new_prog;
6289 	struct bpf_map *map_ptr;
6290 	int i, cnt, delta = 0;
6291 
6292 	for (i = 0; i < insn_cnt; i++, insn++) {
6293 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6294 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6295 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6296 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6297 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6298 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
6299 			struct bpf_insn *patchlet;
6300 			struct bpf_insn chk_and_div[] = {
6301 				/* [R,W]x div 0 -> 0 */
6302 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
6303 					     BPF_JNE | BPF_K, insn->src_reg,
6304 					     0, 2, 0),
6305 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6306 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6307 				*insn,
6308 			};
6309 			struct bpf_insn chk_and_mod[] = {
6310 				/* [R,W]x mod 0 -> [R,W]x */
6311 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
6312 					     BPF_JEQ | BPF_K, insn->src_reg,
6313 					     0, 1 + (is64 ? 0 : 1), 0),
6314 				*insn,
6315 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6316 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
6317 			};
6318 
6319 			patchlet = isdiv ? chk_and_div : chk_and_mod;
6320 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
6321 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
6322 
6323 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6324 			if (!new_prog)
6325 				return -ENOMEM;
6326 
6327 			delta    += cnt - 1;
6328 			env->prog = prog = new_prog;
6329 			insn      = new_prog->insnsi + i + delta;
6330 			continue;
6331 		}
6332 
6333 		if (BPF_CLASS(insn->code) == BPF_LD &&
6334 		    (BPF_MODE(insn->code) == BPF_ABS ||
6335 		     BPF_MODE(insn->code) == BPF_IND)) {
6336 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6337 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6338 				verbose(env, "bpf verifier is misconfigured\n");
6339 				return -EINVAL;
6340 			}
6341 
6342 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6343 			if (!new_prog)
6344 				return -ENOMEM;
6345 
6346 			delta    += cnt - 1;
6347 			env->prog = prog = new_prog;
6348 			insn      = new_prog->insnsi + i + delta;
6349 			continue;
6350 		}
6351 
6352 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
6353 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
6354 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
6355 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
6356 			struct bpf_insn insn_buf[16];
6357 			struct bpf_insn *patch = &insn_buf[0];
6358 			bool issrc, isneg, isimm;
6359 			u32 off_reg;
6360 
6361 			aux = &env->insn_aux_data[i + delta];
6362 			if (!aux->alu_state ||
6363 			    aux->alu_state == BPF_ALU_NON_POINTER)
6364 				continue;
6365 
6366 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
6367 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
6368 				BPF_ALU_SANITIZE_SRC;
6369 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
6370 
6371 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
6372 			if (isimm) {
6373 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
6374 			} else {
6375 				if (isneg)
6376 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
6377 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
6378 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
6379 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
6380 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
6381 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
6382 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
6383 			}
6384 			if (!issrc)
6385 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
6386 			insn->src_reg = BPF_REG_AX;
6387 			if (isneg)
6388 				insn->code = insn->code == code_add ?
6389 					     code_sub : code_add;
6390 			*patch++ = *insn;
6391 			if (issrc && isneg && !isimm)
6392 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
6393 			cnt = patch - insn_buf;
6394 
6395 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6396 			if (!new_prog)
6397 				return -ENOMEM;
6398 
6399 			delta    += cnt - 1;
6400 			env->prog = prog = new_prog;
6401 			insn      = new_prog->insnsi + i + delta;
6402 			continue;
6403 		}
6404 
6405 		if (insn->code != (BPF_JMP | BPF_CALL))
6406 			continue;
6407 		if (insn->src_reg == BPF_PSEUDO_CALL)
6408 			continue;
6409 
6410 		if (insn->imm == BPF_FUNC_get_route_realm)
6411 			prog->dst_needed = 1;
6412 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6413 			bpf_user_rnd_init_once();
6414 		if (insn->imm == BPF_FUNC_override_return)
6415 			prog->kprobe_override = 1;
6416 		if (insn->imm == BPF_FUNC_tail_call) {
6417 			/* If we tail call into other programs, we
6418 			 * cannot make any assumptions since they can
6419 			 * be replaced dynamically during runtime in
6420 			 * the program array.
6421 			 */
6422 			prog->cb_access = 1;
6423 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6424 
6425 			/* mark bpf_tail_call as different opcode to avoid
6426 			 * conditional branch in the interpeter for every normal
6427 			 * call and to prevent accidental JITing by JIT compiler
6428 			 * that doesn't support bpf_tail_call yet
6429 			 */
6430 			insn->imm = 0;
6431 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6432 
6433 			aux = &env->insn_aux_data[i + delta];
6434 			if (!bpf_map_ptr_unpriv(aux))
6435 				continue;
6436 
6437 			/* instead of changing every JIT dealing with tail_call
6438 			 * emit two extra insns:
6439 			 * if (index >= max_entries) goto out;
6440 			 * index &= array->index_mask;
6441 			 * to avoid out-of-bounds cpu speculation
6442 			 */
6443 			if (bpf_map_ptr_poisoned(aux)) {
6444 				verbose(env, "tail_call abusing map_ptr\n");
6445 				return -EINVAL;
6446 			}
6447 
6448 			map_ptr = BPF_MAP_PTR(aux->map_state);
6449 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6450 						  map_ptr->max_entries, 2);
6451 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6452 						    container_of(map_ptr,
6453 								 struct bpf_array,
6454 								 map)->index_mask);
6455 			insn_buf[2] = *insn;
6456 			cnt = 3;
6457 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6458 			if (!new_prog)
6459 				return -ENOMEM;
6460 
6461 			delta    += cnt - 1;
6462 			env->prog = prog = new_prog;
6463 			insn      = new_prog->insnsi + i + delta;
6464 			continue;
6465 		}
6466 
6467 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6468 		 * and other inlining handlers are currently limited to 64 bit
6469 		 * only.
6470 		 */
6471 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6472 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6473 		     insn->imm == BPF_FUNC_map_update_elem ||
6474 		     insn->imm == BPF_FUNC_map_delete_elem)) {
6475 			aux = &env->insn_aux_data[i + delta];
6476 			if (bpf_map_ptr_poisoned(aux))
6477 				goto patch_call_imm;
6478 
6479 			map_ptr = BPF_MAP_PTR(aux->map_state);
6480 			ops = map_ptr->ops;
6481 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6482 			    ops->map_gen_lookup) {
6483 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6484 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6485 					verbose(env, "bpf verifier is misconfigured\n");
6486 					return -EINVAL;
6487 				}
6488 
6489 				new_prog = bpf_patch_insn_data(env, i + delta,
6490 							       insn_buf, cnt);
6491 				if (!new_prog)
6492 					return -ENOMEM;
6493 
6494 				delta    += cnt - 1;
6495 				env->prog = prog = new_prog;
6496 				insn      = new_prog->insnsi + i + delta;
6497 				continue;
6498 			}
6499 
6500 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6501 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6502 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6503 				     (int (*)(struct bpf_map *map, void *key))NULL));
6504 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6505 				     (int (*)(struct bpf_map *map, void *key, void *value,
6506 					      u64 flags))NULL));
6507 			switch (insn->imm) {
6508 			case BPF_FUNC_map_lookup_elem:
6509 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6510 					    __bpf_call_base;
6511 				continue;
6512 			case BPF_FUNC_map_update_elem:
6513 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6514 					    __bpf_call_base;
6515 				continue;
6516 			case BPF_FUNC_map_delete_elem:
6517 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6518 					    __bpf_call_base;
6519 				continue;
6520 			}
6521 
6522 			goto patch_call_imm;
6523 		}
6524 
6525 patch_call_imm:
6526 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6527 		/* all functions that have prototype and verifier allowed
6528 		 * programs to call them, must be real in-kernel functions
6529 		 */
6530 		if (!fn->func) {
6531 			verbose(env,
6532 				"kernel subsystem misconfigured func %s#%d\n",
6533 				func_id_name(insn->imm), insn->imm);
6534 			return -EFAULT;
6535 		}
6536 		insn->imm = fn->func - __bpf_call_base;
6537 	}
6538 
6539 	return 0;
6540 }
6541 
free_states(struct bpf_verifier_env * env)6542 static void free_states(struct bpf_verifier_env *env)
6543 {
6544 	struct bpf_verifier_state_list *sl, *sln;
6545 	int i;
6546 
6547 	if (!env->explored_states)
6548 		return;
6549 
6550 	for (i = 0; i < env->prog->len; i++) {
6551 		sl = env->explored_states[i];
6552 
6553 		if (sl)
6554 			while (sl != STATE_LIST_MARK) {
6555 				sln = sl->next;
6556 				free_verifier_state(&sl->state, false);
6557 				kfree(sl);
6558 				sl = sln;
6559 			}
6560 	}
6561 
6562 	kfree(env->explored_states);
6563 }
6564 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr)6565 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6566 {
6567 	struct bpf_verifier_env *env;
6568 	struct bpf_verifier_log *log;
6569 	int ret = -EINVAL;
6570 
6571 	/* no program is valid */
6572 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6573 		return -EINVAL;
6574 
6575 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6576 	 * allocate/free it every time bpf_check() is called
6577 	 */
6578 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6579 	if (!env)
6580 		return -ENOMEM;
6581 	log = &env->log;
6582 
6583 	env->insn_aux_data =
6584 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6585 				   (*prog)->len));
6586 	ret = -ENOMEM;
6587 	if (!env->insn_aux_data)
6588 		goto err_free_env;
6589 	env->prog = *prog;
6590 	env->ops = bpf_verifier_ops[env->prog->type];
6591 
6592 	/* grab the mutex to protect few globals used by verifier */
6593 	mutex_lock(&bpf_verifier_lock);
6594 
6595 	if (attr->log_level || attr->log_buf || attr->log_size) {
6596 		/* user requested verbose verifier output
6597 		 * and supplied buffer to store the verification trace
6598 		 */
6599 		log->level = attr->log_level;
6600 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6601 		log->len_total = attr->log_size;
6602 
6603 		ret = -EINVAL;
6604 		/* log attributes have to be sane */
6605 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6606 		    !log->level || !log->ubuf)
6607 			goto err_unlock;
6608 	}
6609 
6610 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6611 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6612 		env->strict_alignment = true;
6613 
6614 	ret = replace_map_fd_with_map_ptr(env);
6615 	if (ret < 0)
6616 		goto skip_full_check;
6617 
6618 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6619 		ret = bpf_prog_offload_verifier_prep(env);
6620 		if (ret)
6621 			goto skip_full_check;
6622 	}
6623 
6624 	env->explored_states = kcalloc(env->prog->len,
6625 				       sizeof(struct bpf_verifier_state_list *),
6626 				       GFP_USER);
6627 	ret = -ENOMEM;
6628 	if (!env->explored_states)
6629 		goto skip_full_check;
6630 
6631 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6632 
6633 	ret = check_cfg(env);
6634 	if (ret < 0)
6635 		goto skip_full_check;
6636 
6637 	ret = do_check(env);
6638 	if (env->cur_state) {
6639 		free_verifier_state(env->cur_state, true);
6640 		env->cur_state = NULL;
6641 	}
6642 
6643 skip_full_check:
6644 	while (!pop_stack(env, NULL, NULL));
6645 	free_states(env);
6646 
6647 	if (ret == 0)
6648 		sanitize_dead_code(env);
6649 
6650 	if (ret == 0)
6651 		ret = check_max_stack_depth(env);
6652 
6653 	if (ret == 0)
6654 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6655 		ret = convert_ctx_accesses(env);
6656 
6657 	if (ret == 0)
6658 		ret = fixup_bpf_calls(env);
6659 
6660 	if (ret == 0)
6661 		ret = fixup_call_args(env);
6662 
6663 	if (log->level && bpf_verifier_log_full(log))
6664 		ret = -ENOSPC;
6665 	if (log->level && !log->ubuf) {
6666 		ret = -EFAULT;
6667 		goto err_release_maps;
6668 	}
6669 
6670 	if (ret == 0 && env->used_map_cnt) {
6671 		/* if program passed verifier, update used_maps in bpf_prog_info */
6672 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6673 							  sizeof(env->used_maps[0]),
6674 							  GFP_KERNEL);
6675 
6676 		if (!env->prog->aux->used_maps) {
6677 			ret = -ENOMEM;
6678 			goto err_release_maps;
6679 		}
6680 
6681 		memcpy(env->prog->aux->used_maps, env->used_maps,
6682 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6683 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6684 
6685 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6686 		 * bpf_ld_imm64 instructions
6687 		 */
6688 		convert_pseudo_ld_imm64(env);
6689 	}
6690 
6691 err_release_maps:
6692 	if (!env->prog->aux->used_maps)
6693 		/* if we didn't copy map pointers into bpf_prog_info, release
6694 		 * them now. Otherwise free_used_maps() will release them.
6695 		 */
6696 		release_maps(env);
6697 	*prog = env->prog;
6698 err_unlock:
6699 	mutex_unlock(&bpf_verifier_lock);
6700 	vfree(env->insn_aux_data);
6701 err_free_env:
6702 	kfree(env);
6703 	return ret;
6704 }
6705