• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/setup.h>
10 #include <linux/pkeys.h>
11 #include <linux/of_device.h>
12 
13 DEFINE_STATIC_KEY_TRUE(pkey_disabled);
14 bool pkey_execute_disable_supported;
15 int  pkeys_total;		/* Total pkeys as per device tree */
16 bool pkeys_devtree_defined;	/* pkey property exported by device tree */
17 u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */
18 u32  reserved_allocation_mask;  /* Bits set for reserved keys */
19 u64  pkey_amr_mask;		/* Bits in AMR not to be touched */
20 u64  pkey_iamr_mask;		/* Bits in AMR not to be touched */
21 u64  pkey_uamor_mask;		/* Bits in UMOR not to be touched */
22 int  execute_only_key = 2;
23 
24 #define AMR_BITS_PER_PKEY 2
25 #define AMR_RD_BIT 0x1UL
26 #define AMR_WR_BIT 0x2UL
27 #define IAMR_EX_BIT 0x1UL
28 #define PKEY_REG_BITS (sizeof(u64)*8)
29 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
30 
scan_pkey_feature(void)31 static void scan_pkey_feature(void)
32 {
33 	u32 vals[2];
34 	struct device_node *cpu;
35 
36 	cpu = of_find_node_by_type(NULL, "cpu");
37 	if (!cpu)
38 		return;
39 
40 	if (of_property_read_u32_array(cpu,
41 			"ibm,processor-storage-keys", vals, 2))
42 		return;
43 
44 	/*
45 	 * Since any pkey can be used for data or execute, we will just treat
46 	 * all keys as equal and track them as one entity.
47 	 */
48 	pkeys_total = vals[0];
49 	pkeys_devtree_defined = true;
50 }
51 
pkey_mmu_enabled(void)52 static inline bool pkey_mmu_enabled(void)
53 {
54 	if (firmware_has_feature(FW_FEATURE_LPAR))
55 		return pkeys_total;
56 	else
57 		return cpu_has_feature(CPU_FTR_PKEY);
58 }
59 
pkey_initialize(void)60 int pkey_initialize(void)
61 {
62 	int os_reserved, i;
63 
64 	/*
65 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
66 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
67 	 * Ensure that the bits a distinct.
68 	 */
69 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
70 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
71 
72 	/*
73 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
74 	 * in the vmaflag. Make sure that is really the case.
75 	 */
76 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
77 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
78 				!= (sizeof(u64) * BITS_PER_BYTE));
79 
80 	/* scan the device tree for pkey feature */
81 	scan_pkey_feature();
82 
83 	/*
84 	 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
85 	 * tree. We make this exception since some version of skiboot forgot to
86 	 * expose this property on power8/9.
87 	 */
88 	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR)) {
89 		unsigned long pvr = mfspr(SPRN_PVR);
90 
91 		if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
92 		    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
93 			pkeys_total = 32;
94 	}
95 
96 	/*
97 	 * Adjust the upper limit, based on the number of bits supported by
98 	 * arch-neutral code.
99 	 */
100 	pkeys_total = min_t(int, pkeys_total,
101 			((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
102 
103 	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
104 		static_branch_enable(&pkey_disabled);
105 	else
106 		static_branch_disable(&pkey_disabled);
107 
108 	if (static_branch_likely(&pkey_disabled))
109 		return 0;
110 
111 	/*
112 	 * The device tree cannot be relied to indicate support for
113 	 * execute_disable support. Instead we use a PVR check.
114 	 */
115 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
116 		pkey_execute_disable_supported = false;
117 	else
118 		pkey_execute_disable_supported = true;
119 
120 #ifdef CONFIG_PPC_4K_PAGES
121 	/*
122 	 * The OS can manage only 8 pkeys due to its inability to represent them
123 	 * in the Linux 4K PTE.
124 	 */
125 	os_reserved = pkeys_total - 8;
126 #else
127 	os_reserved = 0;
128 #endif
129 	/* Bits are in LE format. */
130 	reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
131 
132 	/* register mask is in BE format */
133 	pkey_amr_mask = ~0x0ul;
134 	pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
135 
136 	pkey_iamr_mask = ~0x0ul;
137 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
138 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
139 
140 	pkey_uamor_mask = ~0x0ul;
141 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
142 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
143 
144 	/* mark the rest of the keys as reserved and hence unavailable */
145 	for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
146 		reserved_allocation_mask |= (0x1 << i);
147 		pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
148 	}
149 	initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
150 
151 	if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
152 		/*
153 		 * Insufficient number of keys to support
154 		 * execute only key. Mark it unavailable.
155 		 * Any AMR, UAMOR, IAMR bit set for
156 		 * this key is irrelevant since this key
157 		 * can never be allocated.
158 		 */
159 		execute_only_key = -1;
160 	}
161 
162 	return 0;
163 }
164 
165 arch_initcall(pkey_initialize);
166 
pkey_mm_init(struct mm_struct * mm)167 void pkey_mm_init(struct mm_struct *mm)
168 {
169 	if (static_branch_likely(&pkey_disabled))
170 		return;
171 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
172 	mm->context.execute_only_pkey = execute_only_key;
173 }
174 
read_amr(void)175 static inline u64 read_amr(void)
176 {
177 	return mfspr(SPRN_AMR);
178 }
179 
write_amr(u64 value)180 static inline void write_amr(u64 value)
181 {
182 	mtspr(SPRN_AMR, value);
183 }
184 
read_iamr(void)185 static inline u64 read_iamr(void)
186 {
187 	if (!likely(pkey_execute_disable_supported))
188 		return 0x0UL;
189 
190 	return mfspr(SPRN_IAMR);
191 }
192 
write_iamr(u64 value)193 static inline void write_iamr(u64 value)
194 {
195 	if (!likely(pkey_execute_disable_supported))
196 		return;
197 
198 	mtspr(SPRN_IAMR, value);
199 }
200 
read_uamor(void)201 static inline u64 read_uamor(void)
202 {
203 	return mfspr(SPRN_UAMOR);
204 }
205 
write_uamor(u64 value)206 static inline void write_uamor(u64 value)
207 {
208 	mtspr(SPRN_UAMOR, value);
209 }
210 
is_pkey_enabled(int pkey)211 static bool is_pkey_enabled(int pkey)
212 {
213 	u64 uamor = read_uamor();
214 	u64 pkey_bits = 0x3ul << pkeyshift(pkey);
215 	u64 uamor_pkey_bits = (uamor & pkey_bits);
216 
217 	/*
218 	 * Both the bits in UAMOR corresponding to the key should be set or
219 	 * reset.
220 	 */
221 	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
222 	return !!(uamor_pkey_bits);
223 }
224 
init_amr(int pkey,u8 init_bits)225 static inline void init_amr(int pkey, u8 init_bits)
226 {
227 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
228 	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
229 
230 	write_amr(old_amr | new_amr_bits);
231 }
232 
init_iamr(int pkey,u8 init_bits)233 static inline void init_iamr(int pkey, u8 init_bits)
234 {
235 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
236 	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
237 
238 	write_iamr(old_iamr | new_iamr_bits);
239 }
240 
241 /*
242  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
243  * specified in @init_val.
244  */
__arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)245 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
246 				unsigned long init_val)
247 {
248 	u64 new_amr_bits = 0x0ul;
249 	u64 new_iamr_bits = 0x0ul;
250 
251 	if (!is_pkey_enabled(pkey))
252 		return -EINVAL;
253 
254 	if (init_val & PKEY_DISABLE_EXECUTE) {
255 		if (!pkey_execute_disable_supported)
256 			return -EINVAL;
257 		new_iamr_bits |= IAMR_EX_BIT;
258 	}
259 	init_iamr(pkey, new_iamr_bits);
260 
261 	/* Set the bits we need in AMR: */
262 	if (init_val & PKEY_DISABLE_ACCESS)
263 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
264 	else if (init_val & PKEY_DISABLE_WRITE)
265 		new_amr_bits |= AMR_WR_BIT;
266 
267 	init_amr(pkey, new_amr_bits);
268 	return 0;
269 }
270 
thread_pkey_regs_save(struct thread_struct * thread)271 void thread_pkey_regs_save(struct thread_struct *thread)
272 {
273 	if (static_branch_likely(&pkey_disabled))
274 		return;
275 
276 	/*
277 	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
278 	 */
279 	thread->amr = read_amr();
280 	thread->iamr = read_iamr();
281 	thread->uamor = read_uamor();
282 }
283 
thread_pkey_regs_restore(struct thread_struct * new_thread,struct thread_struct * old_thread)284 void thread_pkey_regs_restore(struct thread_struct *new_thread,
285 			      struct thread_struct *old_thread)
286 {
287 	if (static_branch_likely(&pkey_disabled))
288 		return;
289 
290 	if (old_thread->amr != new_thread->amr)
291 		write_amr(new_thread->amr);
292 	if (old_thread->iamr != new_thread->iamr)
293 		write_iamr(new_thread->iamr);
294 	if (old_thread->uamor != new_thread->uamor)
295 		write_uamor(new_thread->uamor);
296 }
297 
thread_pkey_regs_init(struct thread_struct * thread)298 void thread_pkey_regs_init(struct thread_struct *thread)
299 {
300 	if (static_branch_likely(&pkey_disabled))
301 		return;
302 
303 	thread->amr = pkey_amr_mask;
304 	thread->iamr = pkey_iamr_mask;
305 	thread->uamor = pkey_uamor_mask;
306 
307 	write_uamor(pkey_uamor_mask);
308 	write_amr(pkey_amr_mask);
309 	write_iamr(pkey_iamr_mask);
310 }
311 
pkey_allows_readwrite(int pkey)312 static inline bool pkey_allows_readwrite(int pkey)
313 {
314 	int pkey_shift = pkeyshift(pkey);
315 
316 	if (!is_pkey_enabled(pkey))
317 		return true;
318 
319 	return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
320 }
321 
__execute_only_pkey(struct mm_struct * mm)322 int __execute_only_pkey(struct mm_struct *mm)
323 {
324 	return mm->context.execute_only_pkey;
325 }
326 
vma_is_pkey_exec_only(struct vm_area_struct * vma)327 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
328 {
329 	/* Do this check first since the vm_flags should be hot */
330 	if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
331 		return false;
332 
333 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
334 }
335 
336 /*
337  * This should only be called for *plain* mprotect calls.
338  */
__arch_override_mprotect_pkey(struct vm_area_struct * vma,int prot,int pkey)339 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
340 				  int pkey)
341 {
342 	/*
343 	 * If the currently associated pkey is execute-only, but the requested
344 	 * protection is not execute-only, move it back to the default pkey.
345 	 */
346 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
347 		return 0;
348 
349 	/*
350 	 * The requested protection is execute-only. Hence let's use an
351 	 * execute-only pkey.
352 	 */
353 	if (prot == PROT_EXEC) {
354 		pkey = execute_only_pkey(vma->vm_mm);
355 		if (pkey > 0)
356 			return pkey;
357 	}
358 
359 	/* Nothing to override. */
360 	return vma_pkey(vma);
361 }
362 
pkey_access_permitted(int pkey,bool write,bool execute)363 static bool pkey_access_permitted(int pkey, bool write, bool execute)
364 {
365 	int pkey_shift;
366 	u64 amr;
367 
368 	if (!is_pkey_enabled(pkey))
369 		return true;
370 
371 	pkey_shift = pkeyshift(pkey);
372 	if (execute)
373 		return !(read_iamr() & (IAMR_EX_BIT << pkey_shift));
374 
375 	amr = read_amr();
376 	if (write)
377 		return !(amr & (AMR_WR_BIT << pkey_shift));
378 
379 	return !(amr & (AMR_RD_BIT << pkey_shift));
380 }
381 
arch_pte_access_permitted(u64 pte,bool write,bool execute)382 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
383 {
384 	if (static_branch_likely(&pkey_disabled))
385 		return true;
386 
387 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
388 }
389 
390 /*
391  * We only want to enforce protection keys on the current thread because we
392  * effectively have no access to AMR/IAMR for other threads or any way to tell
393  * which AMR/IAMR in a threaded process we could use.
394  *
395  * So do not enforce things if the VMA is not from the current mm, or if we are
396  * in a kernel thread.
397  */
vma_is_foreign(struct vm_area_struct * vma)398 static inline bool vma_is_foreign(struct vm_area_struct *vma)
399 {
400 	if (!current->mm)
401 		return true;
402 
403 	/* if it is not our ->mm, it has to be foreign */
404 	if (current->mm != vma->vm_mm)
405 		return true;
406 
407 	return false;
408 }
409 
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)410 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
411 			       bool execute, bool foreign)
412 {
413 	if (static_branch_likely(&pkey_disabled))
414 		return true;
415 	/*
416 	 * Do not enforce our key-permissions on a foreign vma.
417 	 */
418 	if (foreign || vma_is_foreign(vma))
419 		return true;
420 
421 	return pkey_access_permitted(vma_pkey(vma), write, execute);
422 }
423 
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)424 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
425 {
426 	if (static_branch_likely(&pkey_disabled))
427 		return;
428 
429 	/* Duplicate the oldmm pkey state in mm: */
430 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
431 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
432 }
433