• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *	Fenghua Yu <fenghua.yu@intel.com>
13  *	Bibo Mao <bibo.mao@intel.com>
14  *	Chandramouli Narayanan <mouli@linux.intel.com>
15  *	Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *	Skip non-WB memory and ignore empty memory ranges.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <linux/memblock.h>
42 #include <linux/spinlock.h>
43 #include <linux/uaccess.h>
44 #include <linux/time.h>
45 #include <linux/io.h>
46 #include <linux/reboot.h>
47 #include <linux/bcd.h>
48 
49 #include <asm/setup.h>
50 #include <asm/efi.h>
51 #include <asm/e820/api.h>
52 #include <asm/time.h>
53 #include <asm/set_memory.h>
54 #include <asm/tlbflush.h>
55 #include <asm/x86_init.h>
56 #include <asm/uv/uv.h>
57 
58 static struct efi efi_phys __initdata;
59 static efi_system_table_t efi_systab __initdata;
60 
61 static efi_config_table_type_t arch_tables[] __initdata = {
62 #ifdef CONFIG_X86_UV
63 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
64 #endif
65 	{NULL_GUID, NULL, NULL},
66 };
67 
68 u64 efi_setup;		/* efi setup_data physical address */
69 
70 static int add_efi_memmap __initdata;
setup_add_efi_memmap(char * arg)71 static int __init setup_add_efi_memmap(char *arg)
72 {
73 	add_efi_memmap = 1;
74 	return 0;
75 }
76 early_param("add_efi_memmap", setup_add_efi_memmap);
77 
phys_efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map)78 static efi_status_t __init phys_efi_set_virtual_address_map(
79 	unsigned long memory_map_size,
80 	unsigned long descriptor_size,
81 	u32 descriptor_version,
82 	efi_memory_desc_t *virtual_map)
83 {
84 	efi_status_t status;
85 	unsigned long flags;
86 	pgd_t *save_pgd;
87 
88 	save_pgd = efi_call_phys_prolog();
89 	if (!save_pgd)
90 		return EFI_ABORTED;
91 
92 	/* Disable interrupts around EFI calls: */
93 	local_irq_save(flags);
94 	status = efi_call_phys(efi_phys.set_virtual_address_map,
95 			       memory_map_size, descriptor_size,
96 			       descriptor_version, virtual_map);
97 	local_irq_restore(flags);
98 
99 	efi_call_phys_epilog(save_pgd);
100 
101 	return status;
102 }
103 
efi_find_mirror(void)104 void __init efi_find_mirror(void)
105 {
106 	efi_memory_desc_t *md;
107 	u64 mirror_size = 0, total_size = 0;
108 
109 	for_each_efi_memory_desc(md) {
110 		unsigned long long start = md->phys_addr;
111 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
112 
113 		total_size += size;
114 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
115 			memblock_mark_mirror(start, size);
116 			mirror_size += size;
117 		}
118 	}
119 	if (mirror_size)
120 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
121 			mirror_size>>20, total_size>>20);
122 }
123 
124 /*
125  * Tell the kernel about the EFI memory map.  This might include
126  * more than the max 128 entries that can fit in the e820 legacy
127  * (zeropage) memory map.
128  */
129 
do_add_efi_memmap(void)130 static void __init do_add_efi_memmap(void)
131 {
132 	efi_memory_desc_t *md;
133 
134 	for_each_efi_memory_desc(md) {
135 		unsigned long long start = md->phys_addr;
136 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
137 		int e820_type;
138 
139 		switch (md->type) {
140 		case EFI_LOADER_CODE:
141 		case EFI_LOADER_DATA:
142 		case EFI_BOOT_SERVICES_CODE:
143 		case EFI_BOOT_SERVICES_DATA:
144 		case EFI_CONVENTIONAL_MEMORY:
145 			if (md->attribute & EFI_MEMORY_WB)
146 				e820_type = E820_TYPE_RAM;
147 			else
148 				e820_type = E820_TYPE_RESERVED;
149 			break;
150 		case EFI_ACPI_RECLAIM_MEMORY:
151 			e820_type = E820_TYPE_ACPI;
152 			break;
153 		case EFI_ACPI_MEMORY_NVS:
154 			e820_type = E820_TYPE_NVS;
155 			break;
156 		case EFI_UNUSABLE_MEMORY:
157 			e820_type = E820_TYPE_UNUSABLE;
158 			break;
159 		case EFI_PERSISTENT_MEMORY:
160 			e820_type = E820_TYPE_PMEM;
161 			break;
162 		default:
163 			/*
164 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
165 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
166 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
167 			 */
168 			e820_type = E820_TYPE_RESERVED;
169 			break;
170 		}
171 		e820__range_add(start, size, e820_type);
172 	}
173 	e820__update_table(e820_table);
174 }
175 
efi_memblock_x86_reserve_range(void)176 int __init efi_memblock_x86_reserve_range(void)
177 {
178 	struct efi_info *e = &boot_params.efi_info;
179 	struct efi_memory_map_data data;
180 	phys_addr_t pmap;
181 	int rv;
182 
183 	if (efi_enabled(EFI_PARAVIRT))
184 		return 0;
185 
186 #ifdef CONFIG_X86_32
187 	/* Can't handle data above 4GB at this time */
188 	if (e->efi_memmap_hi) {
189 		pr_err("Memory map is above 4GB, disabling EFI.\n");
190 		return -EINVAL;
191 	}
192 	pmap =  e->efi_memmap;
193 #else
194 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
195 #endif
196 	data.phys_map		= pmap;
197 	data.size 		= e->efi_memmap_size;
198 	data.desc_size		= e->efi_memdesc_size;
199 	data.desc_version	= e->efi_memdesc_version;
200 
201 	rv = efi_memmap_init_early(&data);
202 	if (rv)
203 		return rv;
204 
205 	if (add_efi_memmap)
206 		do_add_efi_memmap();
207 
208 	WARN(efi.memmap.desc_version != 1,
209 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
210 	     efi.memmap.desc_version);
211 
212 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
213 
214 	return 0;
215 }
216 
217 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
218 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
219 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
220 
efi_memmap_entry_valid(const efi_memory_desc_t * md,int i)221 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
222 {
223 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
224 	u64 end_hi = 0;
225 	char buf[64];
226 
227 	if (md->num_pages == 0) {
228 		end = 0;
229 	} else if (md->num_pages > EFI_PAGES_MAX ||
230 		   EFI_PAGES_MAX - md->num_pages <
231 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
232 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
233 			>> OVERFLOW_ADDR_SHIFT;
234 
235 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
236 			end_hi += 1;
237 	} else {
238 		return true;
239 	}
240 
241 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
242 
243 	if (end_hi) {
244 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
245 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
246 			md->phys_addr, end_hi, end);
247 	} else {
248 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
249 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
250 			md->phys_addr, end);
251 	}
252 	return false;
253 }
254 
efi_clean_memmap(void)255 static void __init efi_clean_memmap(void)
256 {
257 	efi_memory_desc_t *out = efi.memmap.map;
258 	const efi_memory_desc_t *in = out;
259 	const efi_memory_desc_t *end = efi.memmap.map_end;
260 	int i, n_removal;
261 
262 	for (i = n_removal = 0; in < end; i++) {
263 		if (efi_memmap_entry_valid(in, i)) {
264 			if (out != in)
265 				memcpy(out, in, efi.memmap.desc_size);
266 			out = (void *)out + efi.memmap.desc_size;
267 		} else {
268 			n_removal++;
269 		}
270 		in = (void *)in + efi.memmap.desc_size;
271 	}
272 
273 	if (n_removal > 0) {
274 		u64 size = efi.memmap.nr_map - n_removal;
275 
276 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
277 		efi_memmap_install(efi.memmap.phys_map, size);
278 	}
279 }
280 
efi_print_memmap(void)281 void __init efi_print_memmap(void)
282 {
283 	efi_memory_desc_t *md;
284 	int i = 0;
285 
286 	for_each_efi_memory_desc(md) {
287 		char buf[64];
288 
289 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
290 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
291 			md->phys_addr,
292 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
293 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
294 	}
295 }
296 
efi_systab_init(void * phys)297 static int __init efi_systab_init(void *phys)
298 {
299 	if (efi_enabled(EFI_64BIT)) {
300 		efi_system_table_64_t *systab64;
301 		struct efi_setup_data *data = NULL;
302 		u64 tmp = 0;
303 
304 		if (efi_setup) {
305 			data = early_memremap(efi_setup, sizeof(*data));
306 			if (!data)
307 				return -ENOMEM;
308 		}
309 		systab64 = early_memremap((unsigned long)phys,
310 					 sizeof(*systab64));
311 		if (systab64 == NULL) {
312 			pr_err("Couldn't map the system table!\n");
313 			if (data)
314 				early_memunmap(data, sizeof(*data));
315 			return -ENOMEM;
316 		}
317 
318 		efi_systab.hdr = systab64->hdr;
319 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
320 					      systab64->fw_vendor;
321 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
322 		efi_systab.fw_revision = systab64->fw_revision;
323 		efi_systab.con_in_handle = systab64->con_in_handle;
324 		tmp |= systab64->con_in_handle;
325 		efi_systab.con_in = systab64->con_in;
326 		tmp |= systab64->con_in;
327 		efi_systab.con_out_handle = systab64->con_out_handle;
328 		tmp |= systab64->con_out_handle;
329 		efi_systab.con_out = systab64->con_out;
330 		tmp |= systab64->con_out;
331 		efi_systab.stderr_handle = systab64->stderr_handle;
332 		tmp |= systab64->stderr_handle;
333 		efi_systab.stderr = systab64->stderr;
334 		tmp |= systab64->stderr;
335 		efi_systab.runtime = data ?
336 				     (void *)(unsigned long)data->runtime :
337 				     (void *)(unsigned long)systab64->runtime;
338 		tmp |= data ? data->runtime : systab64->runtime;
339 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
340 		tmp |= systab64->boottime;
341 		efi_systab.nr_tables = systab64->nr_tables;
342 		efi_systab.tables = data ? (unsigned long)data->tables :
343 					   systab64->tables;
344 		tmp |= data ? data->tables : systab64->tables;
345 
346 		early_memunmap(systab64, sizeof(*systab64));
347 		if (data)
348 			early_memunmap(data, sizeof(*data));
349 #ifdef CONFIG_X86_32
350 		if (tmp >> 32) {
351 			pr_err("EFI data located above 4GB, disabling EFI.\n");
352 			return -EINVAL;
353 		}
354 #endif
355 	} else {
356 		efi_system_table_32_t *systab32;
357 
358 		systab32 = early_memremap((unsigned long)phys,
359 					 sizeof(*systab32));
360 		if (systab32 == NULL) {
361 			pr_err("Couldn't map the system table!\n");
362 			return -ENOMEM;
363 		}
364 
365 		efi_systab.hdr = systab32->hdr;
366 		efi_systab.fw_vendor = systab32->fw_vendor;
367 		efi_systab.fw_revision = systab32->fw_revision;
368 		efi_systab.con_in_handle = systab32->con_in_handle;
369 		efi_systab.con_in = systab32->con_in;
370 		efi_systab.con_out_handle = systab32->con_out_handle;
371 		efi_systab.con_out = systab32->con_out;
372 		efi_systab.stderr_handle = systab32->stderr_handle;
373 		efi_systab.stderr = systab32->stderr;
374 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
375 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
376 		efi_systab.nr_tables = systab32->nr_tables;
377 		efi_systab.tables = systab32->tables;
378 
379 		early_memunmap(systab32, sizeof(*systab32));
380 	}
381 
382 	efi.systab = &efi_systab;
383 
384 	/*
385 	 * Verify the EFI Table
386 	 */
387 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
388 		pr_err("System table signature incorrect!\n");
389 		return -EINVAL;
390 	}
391 	if ((efi.systab->hdr.revision >> 16) == 0)
392 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
393 		       efi.systab->hdr.revision >> 16,
394 		       efi.systab->hdr.revision & 0xffff);
395 
396 	return 0;
397 }
398 
efi_runtime_init32(void)399 static int __init efi_runtime_init32(void)
400 {
401 	efi_runtime_services_32_t *runtime;
402 
403 	runtime = early_memremap((unsigned long)efi.systab->runtime,
404 			sizeof(efi_runtime_services_32_t));
405 	if (!runtime) {
406 		pr_err("Could not map the runtime service table!\n");
407 		return -ENOMEM;
408 	}
409 
410 	/*
411 	 * We will only need *early* access to the SetVirtualAddressMap
412 	 * EFI runtime service. All other runtime services will be called
413 	 * via the virtual mapping.
414 	 */
415 	efi_phys.set_virtual_address_map =
416 			(efi_set_virtual_address_map_t *)
417 			(unsigned long)runtime->set_virtual_address_map;
418 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
419 
420 	return 0;
421 }
422 
efi_runtime_init64(void)423 static int __init efi_runtime_init64(void)
424 {
425 	efi_runtime_services_64_t *runtime;
426 
427 	runtime = early_memremap((unsigned long)efi.systab->runtime,
428 			sizeof(efi_runtime_services_64_t));
429 	if (!runtime) {
430 		pr_err("Could not map the runtime service table!\n");
431 		return -ENOMEM;
432 	}
433 
434 	/*
435 	 * We will only need *early* access to the SetVirtualAddressMap
436 	 * EFI runtime service. All other runtime services will be called
437 	 * via the virtual mapping.
438 	 */
439 	efi_phys.set_virtual_address_map =
440 			(efi_set_virtual_address_map_t *)
441 			(unsigned long)runtime->set_virtual_address_map;
442 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
443 
444 	return 0;
445 }
446 
efi_runtime_init(void)447 static int __init efi_runtime_init(void)
448 {
449 	int rv;
450 
451 	/*
452 	 * Check out the runtime services table. We need to map
453 	 * the runtime services table so that we can grab the physical
454 	 * address of several of the EFI runtime functions, needed to
455 	 * set the firmware into virtual mode.
456 	 *
457 	 * When EFI_PARAVIRT is in force then we could not map runtime
458 	 * service memory region because we do not have direct access to it.
459 	 * However, runtime services are available through proxy functions
460 	 * (e.g. in case of Xen dom0 EFI implementation they call special
461 	 * hypercall which executes relevant EFI functions) and that is why
462 	 * they are always enabled.
463 	 */
464 
465 	if (!efi_enabled(EFI_PARAVIRT)) {
466 		if (efi_enabled(EFI_64BIT))
467 			rv = efi_runtime_init64();
468 		else
469 			rv = efi_runtime_init32();
470 
471 		if (rv)
472 			return rv;
473 	}
474 
475 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
476 
477 	return 0;
478 }
479 
efi_init(void)480 void __init efi_init(void)
481 {
482 	efi_char16_t *c16;
483 	char vendor[100] = "unknown";
484 	int i = 0;
485 
486 #ifdef CONFIG_X86_32
487 	if (boot_params.efi_info.efi_systab_hi ||
488 	    boot_params.efi_info.efi_memmap_hi) {
489 		pr_info("Table located above 4GB, disabling EFI.\n");
490 		return;
491 	}
492 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
493 #else
494 	efi_phys.systab = (efi_system_table_t *)
495 			  (boot_params.efi_info.efi_systab |
496 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
497 #endif
498 
499 	if (efi_systab_init(efi_phys.systab))
500 		return;
501 
502 	efi.config_table = (unsigned long)efi.systab->tables;
503 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
504 	efi.runtime	 = (unsigned long)efi.systab->runtime;
505 
506 	/*
507 	 * Show what we know for posterity
508 	 */
509 	c16 = early_memremap_ro(efi.systab->fw_vendor,
510 				sizeof(vendor) * sizeof(efi_char16_t));
511 	if (c16) {
512 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
513 			vendor[i] = c16[i];
514 		vendor[i] = '\0';
515 		early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t));
516 	} else {
517 		pr_err("Could not map the firmware vendor!\n");
518 	}
519 
520 	pr_info("EFI v%u.%.02u by %s\n",
521 		efi.systab->hdr.revision >> 16,
522 		efi.systab->hdr.revision & 0xffff, vendor);
523 
524 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
525 		return;
526 
527 	if (efi_config_init(arch_tables))
528 		return;
529 
530 	/*
531 	 * Note: We currently don't support runtime services on an EFI
532 	 * that doesn't match the kernel 32/64-bit mode.
533 	 */
534 
535 	if (!efi_runtime_supported())
536 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
537 	else {
538 		if (efi_runtime_disabled() || efi_runtime_init()) {
539 			efi_memmap_unmap();
540 			return;
541 		}
542 	}
543 
544 	efi_clean_memmap();
545 
546 	if (efi_enabled(EFI_DBG))
547 		efi_print_memmap();
548 }
549 
efi_set_executable(efi_memory_desc_t * md,bool executable)550 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
551 {
552 	u64 addr, npages;
553 
554 	addr = md->virt_addr;
555 	npages = md->num_pages;
556 
557 	memrange_efi_to_native(&addr, &npages);
558 
559 	if (executable)
560 		set_memory_x(addr, npages);
561 	else
562 		set_memory_nx(addr, npages);
563 }
564 
runtime_code_page_mkexec(void)565 void __init runtime_code_page_mkexec(void)
566 {
567 	efi_memory_desc_t *md;
568 
569 	/* Make EFI runtime service code area executable */
570 	for_each_efi_memory_desc(md) {
571 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
572 			continue;
573 
574 		efi_set_executable(md, true);
575 	}
576 }
577 
efi_memory_uc(u64 addr,unsigned long size)578 void __init efi_memory_uc(u64 addr, unsigned long size)
579 {
580 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
581 	u64 npages;
582 
583 	npages = round_up(size, page_shift) / page_shift;
584 	memrange_efi_to_native(&addr, &npages);
585 	set_memory_uc(addr, npages);
586 }
587 
old_map_region(efi_memory_desc_t * md)588 void __init old_map_region(efi_memory_desc_t *md)
589 {
590 	u64 start_pfn, end_pfn, end;
591 	unsigned long size;
592 	void *va;
593 
594 	start_pfn = PFN_DOWN(md->phys_addr);
595 	size	  = md->num_pages << PAGE_SHIFT;
596 	end	  = md->phys_addr + size;
597 	end_pfn   = PFN_UP(end);
598 
599 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
600 		va = __va(md->phys_addr);
601 
602 		if (!(md->attribute & EFI_MEMORY_WB))
603 			efi_memory_uc((u64)(unsigned long)va, size);
604 	} else
605 		va = efi_ioremap(md->phys_addr, size,
606 				 md->type, md->attribute);
607 
608 	md->virt_addr = (u64) (unsigned long) va;
609 	if (!va)
610 		pr_err("ioremap of 0x%llX failed!\n",
611 		       (unsigned long long)md->phys_addr);
612 }
613 
614 /* Merge contiguous regions of the same type and attribute */
efi_merge_regions(void)615 static void __init efi_merge_regions(void)
616 {
617 	efi_memory_desc_t *md, *prev_md = NULL;
618 
619 	for_each_efi_memory_desc(md) {
620 		u64 prev_size;
621 
622 		if (!prev_md) {
623 			prev_md = md;
624 			continue;
625 		}
626 
627 		if (prev_md->type != md->type ||
628 		    prev_md->attribute != md->attribute) {
629 			prev_md = md;
630 			continue;
631 		}
632 
633 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
634 
635 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
636 			prev_md->num_pages += md->num_pages;
637 			md->type = EFI_RESERVED_TYPE;
638 			md->attribute = 0;
639 			continue;
640 		}
641 		prev_md = md;
642 	}
643 }
644 
get_systab_virt_addr(efi_memory_desc_t * md)645 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
646 {
647 	unsigned long size;
648 	u64 end, systab;
649 
650 	size = md->num_pages << EFI_PAGE_SHIFT;
651 	end = md->phys_addr + size;
652 	systab = (u64)(unsigned long)efi_phys.systab;
653 	if (md->phys_addr <= systab && systab < end) {
654 		systab += md->virt_addr - md->phys_addr;
655 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
656 	}
657 }
658 
realloc_pages(void * old_memmap,int old_shift)659 static void *realloc_pages(void *old_memmap, int old_shift)
660 {
661 	void *ret;
662 
663 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
664 	if (!ret)
665 		goto out;
666 
667 	/*
668 	 * A first-time allocation doesn't have anything to copy.
669 	 */
670 	if (!old_memmap)
671 		return ret;
672 
673 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
674 
675 out:
676 	free_pages((unsigned long)old_memmap, old_shift);
677 	return ret;
678 }
679 
680 /*
681  * Iterate the EFI memory map in reverse order because the regions
682  * will be mapped top-down. The end result is the same as if we had
683  * mapped things forward, but doesn't require us to change the
684  * existing implementation of efi_map_region().
685  */
efi_map_next_entry_reverse(void * entry)686 static inline void *efi_map_next_entry_reverse(void *entry)
687 {
688 	/* Initial call */
689 	if (!entry)
690 		return efi.memmap.map_end - efi.memmap.desc_size;
691 
692 	entry -= efi.memmap.desc_size;
693 	if (entry < efi.memmap.map)
694 		return NULL;
695 
696 	return entry;
697 }
698 
699 /*
700  * efi_map_next_entry - Return the next EFI memory map descriptor
701  * @entry: Previous EFI memory map descriptor
702  *
703  * This is a helper function to iterate over the EFI memory map, which
704  * we do in different orders depending on the current configuration.
705  *
706  * To begin traversing the memory map @entry must be %NULL.
707  *
708  * Returns %NULL when we reach the end of the memory map.
709  */
efi_map_next_entry(void * entry)710 static void *efi_map_next_entry(void *entry)
711 {
712 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
713 		/*
714 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
715 		 * config table feature requires us to map all entries
716 		 * in the same order as they appear in the EFI memory
717 		 * map. That is to say, entry N must have a lower
718 		 * virtual address than entry N+1. This is because the
719 		 * firmware toolchain leaves relative references in
720 		 * the code/data sections, which are split and become
721 		 * separate EFI memory regions. Mapping things
722 		 * out-of-order leads to the firmware accessing
723 		 * unmapped addresses.
724 		 *
725 		 * Since we need to map things this way whether or not
726 		 * the kernel actually makes use of
727 		 * EFI_PROPERTIES_TABLE, let's just switch to this
728 		 * scheme by default for 64-bit.
729 		 */
730 		return efi_map_next_entry_reverse(entry);
731 	}
732 
733 	/* Initial call */
734 	if (!entry)
735 		return efi.memmap.map;
736 
737 	entry += efi.memmap.desc_size;
738 	if (entry >= efi.memmap.map_end)
739 		return NULL;
740 
741 	return entry;
742 }
743 
should_map_region(efi_memory_desc_t * md)744 static bool should_map_region(efi_memory_desc_t *md)
745 {
746 	/*
747 	 * Runtime regions always require runtime mappings (obviously).
748 	 */
749 	if (md->attribute & EFI_MEMORY_RUNTIME)
750 		return true;
751 
752 	/*
753 	 * 32-bit EFI doesn't suffer from the bug that requires us to
754 	 * reserve boot services regions, and mixed mode support
755 	 * doesn't exist for 32-bit kernels.
756 	 */
757 	if (IS_ENABLED(CONFIG_X86_32))
758 		return false;
759 
760 	/*
761 	 * Map all of RAM so that we can access arguments in the 1:1
762 	 * mapping when making EFI runtime calls.
763 	 */
764 	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
765 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
766 		    md->type == EFI_LOADER_DATA ||
767 		    md->type == EFI_LOADER_CODE)
768 			return true;
769 	}
770 
771 	/*
772 	 * Map boot services regions as a workaround for buggy
773 	 * firmware that accesses them even when they shouldn't.
774 	 *
775 	 * See efi_{reserve,free}_boot_services().
776 	 */
777 	if (md->type == EFI_BOOT_SERVICES_CODE ||
778 	    md->type == EFI_BOOT_SERVICES_DATA)
779 		return true;
780 
781 	return false;
782 }
783 
784 /*
785  * Map the efi memory ranges of the runtime services and update new_mmap with
786  * virtual addresses.
787  */
efi_map_regions(int * count,int * pg_shift)788 static void * __init efi_map_regions(int *count, int *pg_shift)
789 {
790 	void *p, *new_memmap = NULL;
791 	unsigned long left = 0;
792 	unsigned long desc_size;
793 	efi_memory_desc_t *md;
794 
795 	desc_size = efi.memmap.desc_size;
796 
797 	p = NULL;
798 	while ((p = efi_map_next_entry(p))) {
799 		md = p;
800 
801 		if (!should_map_region(md))
802 			continue;
803 
804 		efi_map_region(md);
805 		get_systab_virt_addr(md);
806 
807 		if (left < desc_size) {
808 			new_memmap = realloc_pages(new_memmap, *pg_shift);
809 			if (!new_memmap)
810 				return NULL;
811 
812 			left += PAGE_SIZE << *pg_shift;
813 			(*pg_shift)++;
814 		}
815 
816 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
817 
818 		left -= desc_size;
819 		(*count)++;
820 	}
821 
822 	return new_memmap;
823 }
824 
kexec_enter_virtual_mode(void)825 static void __init kexec_enter_virtual_mode(void)
826 {
827 #ifdef CONFIG_KEXEC_CORE
828 	efi_memory_desc_t *md;
829 	unsigned int num_pages;
830 
831 	efi.systab = NULL;
832 
833 	/*
834 	 * We don't do virtual mode, since we don't do runtime services, on
835 	 * non-native EFI. With efi=old_map, we don't do runtime services in
836 	 * kexec kernel because in the initial boot something else might
837 	 * have been mapped at these virtual addresses.
838 	 */
839 	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
840 		efi_memmap_unmap();
841 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
842 		return;
843 	}
844 
845 	if (efi_alloc_page_tables()) {
846 		pr_err("Failed to allocate EFI page tables\n");
847 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
848 		return;
849 	}
850 
851 	/*
852 	* Map efi regions which were passed via setup_data. The virt_addr is a
853 	* fixed addr which was used in first kernel of a kexec boot.
854 	*/
855 	for_each_efi_memory_desc(md) {
856 		efi_map_region_fixed(md); /* FIXME: add error handling */
857 		get_systab_virt_addr(md);
858 	}
859 
860 	/*
861 	 * Unregister the early EFI memmap from efi_init() and install
862 	 * the new EFI memory map.
863 	 */
864 	efi_memmap_unmap();
865 
866 	if (efi_memmap_init_late(efi.memmap.phys_map,
867 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
868 		pr_err("Failed to remap late EFI memory map\n");
869 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
870 		return;
871 	}
872 
873 	BUG_ON(!efi.systab);
874 
875 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
876 	num_pages >>= PAGE_SHIFT;
877 
878 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
879 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880 		return;
881 	}
882 
883 	efi_sync_low_kernel_mappings();
884 
885 	/*
886 	 * Now that EFI is in virtual mode, update the function
887 	 * pointers in the runtime service table to the new virtual addresses.
888 	 *
889 	 * Call EFI services through wrapper functions.
890 	 */
891 	efi.runtime_version = efi_systab.hdr.revision;
892 
893 	efi_native_runtime_setup();
894 
895 	efi.set_virtual_address_map = NULL;
896 
897 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
898 		runtime_code_page_mkexec();
899 #endif
900 }
901 
902 /*
903  * This function will switch the EFI runtime services to virtual mode.
904  * Essentially, we look through the EFI memmap and map every region that
905  * has the runtime attribute bit set in its memory descriptor into the
906  * efi_pgd page table.
907  *
908  * The old method which used to update that memory descriptor with the
909  * virtual address obtained from ioremap() is still supported when the
910  * kernel is booted with efi=old_map on its command line. Same old
911  * method enabled the runtime services to be called without having to
912  * thunk back into physical mode for every invocation.
913  *
914  * The new method does a pagetable switch in a preemption-safe manner
915  * so that we're in a different address space when calling a runtime
916  * function. For function arguments passing we do copy the PUDs of the
917  * kernel page table into efi_pgd prior to each call.
918  *
919  * Specially for kexec boot, efi runtime maps in previous kernel should
920  * be passed in via setup_data. In that case runtime ranges will be mapped
921  * to the same virtual addresses as the first kernel, see
922  * kexec_enter_virtual_mode().
923  */
__efi_enter_virtual_mode(void)924 static void __init __efi_enter_virtual_mode(void)
925 {
926 	int count = 0, pg_shift = 0;
927 	void *new_memmap = NULL;
928 	efi_status_t status;
929 	unsigned long pa;
930 
931 	efi.systab = NULL;
932 
933 	if (efi_alloc_page_tables()) {
934 		pr_err("Failed to allocate EFI page tables\n");
935 		goto err;
936 	}
937 
938 	efi_merge_regions();
939 	new_memmap = efi_map_regions(&count, &pg_shift);
940 	if (!new_memmap) {
941 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
942 		goto err;
943 	}
944 
945 	pa = __pa(new_memmap);
946 
947 	/*
948 	 * Unregister the early EFI memmap from efi_init() and install
949 	 * the new EFI memory map that we are about to pass to the
950 	 * firmware via SetVirtualAddressMap().
951 	 */
952 	efi_memmap_unmap();
953 
954 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
955 		pr_err("Failed to remap late EFI memory map\n");
956 		goto err;
957 	}
958 
959 	if (efi_enabled(EFI_DBG)) {
960 		pr_info("EFI runtime memory map:\n");
961 		efi_print_memmap();
962 	}
963 
964 	if (WARN_ON(!efi.systab))
965 		goto err;
966 
967 	if (efi_setup_page_tables(pa, 1 << pg_shift))
968 		goto err;
969 
970 	efi_sync_low_kernel_mappings();
971 
972 	if (efi_is_native()) {
973 		status = phys_efi_set_virtual_address_map(
974 				efi.memmap.desc_size * count,
975 				efi.memmap.desc_size,
976 				efi.memmap.desc_version,
977 				(efi_memory_desc_t *)pa);
978 	} else {
979 		status = efi_thunk_set_virtual_address_map(
980 				efi_phys.set_virtual_address_map,
981 				efi.memmap.desc_size * count,
982 				efi.memmap.desc_size,
983 				efi.memmap.desc_version,
984 				(efi_memory_desc_t *)pa);
985 	}
986 
987 	if (status != EFI_SUCCESS) {
988 		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
989 		       status);
990 		goto err;
991 	}
992 
993 	/*
994 	 * Now that EFI is in virtual mode, update the function
995 	 * pointers in the runtime service table to the new virtual addresses.
996 	 *
997 	 * Call EFI services through wrapper functions.
998 	 */
999 	efi.runtime_version = efi_systab.hdr.revision;
1000 
1001 	if (efi_is_native())
1002 		efi_native_runtime_setup();
1003 	else
1004 		efi_thunk_runtime_setup();
1005 
1006 	efi.set_virtual_address_map = NULL;
1007 
1008 	/*
1009 	 * Apply more restrictive page table mapping attributes now that
1010 	 * SVAM() has been called and the firmware has performed all
1011 	 * necessary relocation fixups for the new virtual addresses.
1012 	 */
1013 	efi_runtime_update_mappings();
1014 
1015 	/* clean DUMMY object */
1016 	efi_delete_dummy_variable();
1017 	return;
1018 
1019 err:
1020 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
1021 }
1022 
efi_enter_virtual_mode(void)1023 void __init efi_enter_virtual_mode(void)
1024 {
1025 	if (efi_enabled(EFI_PARAVIRT))
1026 		return;
1027 
1028 	if (efi_setup)
1029 		kexec_enter_virtual_mode();
1030 	else
1031 		__efi_enter_virtual_mode();
1032 
1033 	efi_dump_pagetable();
1034 }
1035 
arch_parse_efi_cmdline(char * str)1036 static int __init arch_parse_efi_cmdline(char *str)
1037 {
1038 	if (!str) {
1039 		pr_warn("need at least one option\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	if (parse_option_str(str, "old_map"))
1044 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1045 
1046 	return 0;
1047 }
1048 early_param("efi", arch_parse_efi_cmdline);
1049