1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 #include <linux/irq.h>
20 #include <linux/delay.h>
21
22 #include <asm/switch_to.h>
23 #include <asm/tlb.h>
24
25 #include "../workqueue_internal.h"
26 #include "../../fs/io-wq.h"
27 #include "../smpboot.h"
28
29 #include "pelt.h"
30 #include "smp.h"
31 #include "walt.h"
32 #include "rtg/rtg.h"
33
34 /*
35 * Export tracepoints that act as a bare tracehook (ie: have no trace event
36 * associated with them) to allow external modules to probe them.
37 */
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
48
49 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
50
51 #ifdef CONFIG_SCHED_DEBUG
52 /*
53 * Debugging: various feature bits
54 *
55 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
56 * sysctl_sched_features, defined in sched.h, to allow constants propagation
57 * at compile time and compiler optimization based on features default.
58 */
59 #define SCHED_FEAT(name, enabled) \
60 (1UL << __SCHED_FEAT_##name) * enabled |
61 const_debug unsigned int sysctl_sched_features =
62 #include "features.h"
63 0;
64 #undef SCHED_FEAT
65 #endif
66
67 /*
68 * Number of tasks to iterate in a single balance run.
69 * Limited because this is done with IRQs disabled.
70 */
71 const_debug unsigned int sysctl_sched_nr_migrate = 32;
72
73 /*
74 * period over which we measure -rt task CPU usage in us.
75 * default: 1s
76 */
77 unsigned int sysctl_sched_rt_period = 1000000;
78
79 __read_mostly int scheduler_running;
80
81 /*
82 * part of the period that we allow rt tasks to run in us.
83 * default: 0.95s
84 */
85 int sysctl_sched_rt_runtime = 950000;
86
87
88 /*
89 * Serialization rules:
90 *
91 * Lock order:
92 *
93 * p->pi_lock
94 * rq->lock
95 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
96 *
97 * rq1->lock
98 * rq2->lock where: rq1 < rq2
99 *
100 * Regular state:
101 *
102 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
103 * local CPU's rq->lock, it optionally removes the task from the runqueue and
104 * always looks at the local rq data structures to find the most elegible task
105 * to run next.
106 *
107 * Task enqueue is also under rq->lock, possibly taken from another CPU.
108 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
109 * the local CPU to avoid bouncing the runqueue state around [ see
110 * ttwu_queue_wakelist() ]
111 *
112 * Task wakeup, specifically wakeups that involve migration, are horribly
113 * complicated to avoid having to take two rq->locks.
114 *
115 * Special state:
116 *
117 * System-calls and anything external will use task_rq_lock() which acquires
118 * both p->pi_lock and rq->lock. As a consequence the state they change is
119 * stable while holding either lock:
120 *
121 * - sched_setaffinity()/
122 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
123 * - set_user_nice(): p->se.load, p->*prio
124 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
125 * p->se.load, p->rt_priority,
126 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
127 * - sched_setnuma(): p->numa_preferred_nid
128 * - sched_move_task()/
129 * cpu_cgroup_fork(): p->sched_task_group
130 * - uclamp_update_active() p->uclamp*
131 *
132 * p->state <- TASK_*:
133 *
134 * is changed locklessly using set_current_state(), __set_current_state() or
135 * set_special_state(), see their respective comments, or by
136 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
137 * concurrent self.
138 *
139 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
140 *
141 * is set by activate_task() and cleared by deactivate_task(), under
142 * rq->lock. Non-zero indicates the task is runnable, the special
143 * ON_RQ_MIGRATING state is used for migration without holding both
144 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
145 *
146 * p->on_cpu <- { 0, 1 }:
147 *
148 * is set by prepare_task() and cleared by finish_task() such that it will be
149 * set before p is scheduled-in and cleared after p is scheduled-out, both
150 * under rq->lock. Non-zero indicates the task is running on its CPU.
151 *
152 * [ The astute reader will observe that it is possible for two tasks on one
153 * CPU to have ->on_cpu = 1 at the same time. ]
154 *
155 * task_cpu(p): is changed by set_task_cpu(), the rules are:
156 *
157 * - Don't call set_task_cpu() on a blocked task:
158 *
159 * We don't care what CPU we're not running on, this simplifies hotplug,
160 * the CPU assignment of blocked tasks isn't required to be valid.
161 *
162 * - for try_to_wake_up(), called under p->pi_lock:
163 *
164 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
165 *
166 * - for migration called under rq->lock:
167 * [ see task_on_rq_migrating() in task_rq_lock() ]
168 *
169 * o move_queued_task()
170 * o detach_task()
171 *
172 * - for migration called under double_rq_lock():
173 *
174 * o __migrate_swap_task()
175 * o push_rt_task() / pull_rt_task()
176 * o push_dl_task() / pull_dl_task()
177 * o dl_task_offline_migration()
178 *
179 */
180
181 /*
182 * __task_rq_lock - lock the rq @p resides on.
183 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)184 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
185 __acquires(rq->lock)
186 {
187 struct rq *rq;
188
189 lockdep_assert_held(&p->pi_lock);
190
191 for (;;) {
192 rq = task_rq(p);
193 raw_spin_lock(&rq->lock);
194 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
195 rq_pin_lock(rq, rf);
196 return rq;
197 }
198 raw_spin_unlock(&rq->lock);
199
200 while (unlikely(task_on_rq_migrating(p)))
201 cpu_relax();
202 }
203 }
204
205 /*
206 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
207 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)208 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
209 __acquires(p->pi_lock)
210 __acquires(rq->lock)
211 {
212 struct rq *rq;
213
214 for (;;) {
215 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
216 rq = task_rq(p);
217 raw_spin_lock(&rq->lock);
218 /*
219 * move_queued_task() task_rq_lock()
220 *
221 * ACQUIRE (rq->lock)
222 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
223 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
224 * [S] ->cpu = new_cpu [L] task_rq()
225 * [L] ->on_rq
226 * RELEASE (rq->lock)
227 *
228 * If we observe the old CPU in task_rq_lock(), the acquire of
229 * the old rq->lock will fully serialize against the stores.
230 *
231 * If we observe the new CPU in task_rq_lock(), the address
232 * dependency headed by '[L] rq = task_rq()' and the acquire
233 * will pair with the WMB to ensure we then also see migrating.
234 */
235 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
236 rq_pin_lock(rq, rf);
237 return rq;
238 }
239 raw_spin_unlock(&rq->lock);
240 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
241
242 while (unlikely(task_on_rq_migrating(p)))
243 cpu_relax();
244 }
245 }
246
247 /*
248 * RQ-clock updating methods:
249 */
250
update_rq_clock_task(struct rq * rq,s64 delta)251 static void update_rq_clock_task(struct rq *rq, s64 delta)
252 {
253 /*
254 * In theory, the compile should just see 0 here, and optimize out the call
255 * to sched_rt_avg_update. But I don't trust it...
256 */
257 s64 __maybe_unused steal = 0, irq_delta = 0;
258
259 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
260 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
261
262 /*
263 * Since irq_time is only updated on {soft,}irq_exit, we might run into
264 * this case when a previous update_rq_clock() happened inside a
265 * {soft,}irq region.
266 *
267 * When this happens, we stop ->clock_task and only update the
268 * prev_irq_time stamp to account for the part that fit, so that a next
269 * update will consume the rest. This ensures ->clock_task is
270 * monotonic.
271 *
272 * It does however cause some slight miss-attribution of {soft,}irq
273 * time, a more accurate solution would be to update the irq_time using
274 * the current rq->clock timestamp, except that would require using
275 * atomic ops.
276 */
277 if (irq_delta > delta)
278 irq_delta = delta;
279
280 rq->prev_irq_time += irq_delta;
281 delta -= irq_delta;
282 #endif
283 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
284 if (static_key_false((¶virt_steal_rq_enabled))) {
285 steal = paravirt_steal_clock(cpu_of(rq));
286 steal -= rq->prev_steal_time_rq;
287
288 if (unlikely(steal > delta))
289 steal = delta;
290
291 rq->prev_steal_time_rq += steal;
292 delta -= steal;
293 }
294 #endif
295
296 rq->clock_task += delta;
297
298 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
299 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
300 update_irq_load_avg(rq, irq_delta + steal);
301 #endif
302 update_rq_clock_pelt(rq, delta);
303 }
304
update_rq_clock(struct rq * rq)305 void update_rq_clock(struct rq *rq)
306 {
307 s64 delta;
308
309 lockdep_assert_held(&rq->lock);
310
311 if (rq->clock_update_flags & RQCF_ACT_SKIP)
312 return;
313
314 #ifdef CONFIG_SCHED_DEBUG
315 if (sched_feat(WARN_DOUBLE_CLOCK))
316 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
317 rq->clock_update_flags |= RQCF_UPDATED;
318 #endif
319
320 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
321 if (delta < 0)
322 return;
323 rq->clock += delta;
324 update_rq_clock_task(rq, delta);
325 }
326
327 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)328 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
329 {
330 csd->flags = 0;
331 csd->func = func;
332 csd->info = rq;
333 }
334
335 #ifdef CONFIG_SCHED_HRTICK
336 /*
337 * Use HR-timers to deliver accurate preemption points.
338 */
339
hrtick_clear(struct rq * rq)340 static void hrtick_clear(struct rq *rq)
341 {
342 if (hrtimer_active(&rq->hrtick_timer))
343 hrtimer_cancel(&rq->hrtick_timer);
344 }
345
346 /*
347 * High-resolution timer tick.
348 * Runs from hardirq context with interrupts disabled.
349 */
hrtick(struct hrtimer * timer)350 static enum hrtimer_restart hrtick(struct hrtimer *timer)
351 {
352 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
353 struct rq_flags rf;
354
355 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
356
357 rq_lock(rq, &rf);
358 update_rq_clock(rq);
359 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
360 rq_unlock(rq, &rf);
361
362 return HRTIMER_NORESTART;
363 }
364
365 #ifdef CONFIG_SMP
366
__hrtick_restart(struct rq * rq)367 static void __hrtick_restart(struct rq *rq)
368 {
369 struct hrtimer *timer = &rq->hrtick_timer;
370 ktime_t time = rq->hrtick_time;
371
372 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
373 }
374
375 /*
376 * called from hardirq (IPI) context
377 */
__hrtick_start(void * arg)378 static void __hrtick_start(void *arg)
379 {
380 struct rq *rq = arg;
381 struct rq_flags rf;
382
383 rq_lock(rq, &rf);
384 __hrtick_restart(rq);
385 rq_unlock(rq, &rf);
386 }
387
388 /*
389 * Called to set the hrtick timer state.
390 *
391 * called with rq->lock held and irqs disabled
392 */
hrtick_start(struct rq * rq,u64 delay)393 void hrtick_start(struct rq *rq, u64 delay)
394 {
395 struct hrtimer *timer = &rq->hrtick_timer;
396 s64 delta;
397
398 /*
399 * Don't schedule slices shorter than 10000ns, that just
400 * doesn't make sense and can cause timer DoS.
401 */
402 delta = max_t(s64, delay, 10000LL);
403 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
404
405 if (rq == this_rq())
406 __hrtick_restart(rq);
407 else
408 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
409 }
410
411 #else
412 /*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
hrtick_start(struct rq * rq,u64 delay)417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 /*
420 * Don't schedule slices shorter than 10000ns, that just
421 * doesn't make sense. Rely on vruntime for fairness.
422 */
423 delay = max_t(u64, delay, 10000LL);
424 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
425 HRTIMER_MODE_REL_PINNED_HARD);
426 }
427
428 #endif /* CONFIG_SMP */
429
hrtick_rq_init(struct rq * rq)430 static void hrtick_rq_init(struct rq *rq)
431 {
432 #ifdef CONFIG_SMP
433 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
434 #endif
435 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
436 rq->hrtick_timer.function = hrtick;
437 }
438 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)439 static inline void hrtick_clear(struct rq *rq)
440 {
441 }
442
hrtick_rq_init(struct rq * rq)443 static inline void hrtick_rq_init(struct rq *rq)
444 {
445 }
446 #endif /* CONFIG_SCHED_HRTICK */
447
448 /*
449 * cmpxchg based fetch_or, macro so it works for different integer types
450 */
451 #define fetch_or(ptr, mask) \
452 ({ \
453 typeof(ptr) _ptr = (ptr); \
454 typeof(mask) _mask = (mask); \
455 typeof(*_ptr) _old, _val = *_ptr; \
456 \
457 for (;;) { \
458 _old = cmpxchg(_ptr, _val, _val | _mask); \
459 if (_old == _val) \
460 break; \
461 _val = _old; \
462 } \
463 _old; \
464 })
465
466 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
467 /*
468 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
469 * this avoids any races wrt polling state changes and thereby avoids
470 * spurious IPIs.
471 */
set_nr_and_not_polling(struct task_struct * p)472 static bool set_nr_and_not_polling(struct task_struct *p)
473 {
474 struct thread_info *ti = task_thread_info(p);
475 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
476 }
477
478 /*
479 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
480 *
481 * If this returns true, then the idle task promises to call
482 * sched_ttwu_pending() and reschedule soon.
483 */
set_nr_if_polling(struct task_struct * p)484 static bool set_nr_if_polling(struct task_struct *p)
485 {
486 struct thread_info *ti = task_thread_info(p);
487 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
488
489 for (;;) {
490 if (!(val & _TIF_POLLING_NRFLAG))
491 return false;
492 if (val & _TIF_NEED_RESCHED)
493 return true;
494 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
495 if (old == val)
496 break;
497 val = old;
498 }
499 return true;
500 }
501
502 #else
set_nr_and_not_polling(struct task_struct * p)503 static bool set_nr_and_not_polling(struct task_struct *p)
504 {
505 set_tsk_need_resched(p);
506 return true;
507 }
508
509 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)510 static bool set_nr_if_polling(struct task_struct *p)
511 {
512 return false;
513 }
514 #endif
515 #endif
516
__wake_q_add(struct wake_q_head * head,struct task_struct * task)517 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
518 {
519 struct wake_q_node *node = &task->wake_q;
520
521 /*
522 * Atomically grab the task, if ->wake_q is !nil already it means
523 * its already queued (either by us or someone else) and will get the
524 * wakeup due to that.
525 *
526 * In order to ensure that a pending wakeup will observe our pending
527 * state, even in the failed case, an explicit smp_mb() must be used.
528 */
529 smp_mb__before_atomic();
530 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
531 return false;
532
533 /*
534 * The head is context local, there can be no concurrency.
535 */
536 *head->lastp = node;
537 head->lastp = &node->next;
538 return true;
539 }
540
541 /**
542 * wake_q_add() - queue a wakeup for 'later' waking.
543 * @head: the wake_q_head to add @task to
544 * @task: the task to queue for 'later' wakeup
545 *
546 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
547 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
548 * instantly.
549 *
550 * This function must be used as-if it were wake_up_process(); IOW the task
551 * must be ready to be woken at this location.
552 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)553 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
554 {
555 if (__wake_q_add(head, task))
556 get_task_struct(task);
557 }
558
559 /**
560 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
561 * @head: the wake_q_head to add @task to
562 * @task: the task to queue for 'later' wakeup
563 *
564 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
565 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
566 * instantly.
567 *
568 * This function must be used as-if it were wake_up_process(); IOW the task
569 * must be ready to be woken at this location.
570 *
571 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
572 * that already hold reference to @task can call the 'safe' version and trust
573 * wake_q to do the right thing depending whether or not the @task is already
574 * queued for wakeup.
575 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)576 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
577 {
578 if (!__wake_q_add(head, task))
579 put_task_struct(task);
580 }
581
wake_up_q(struct wake_q_head * head)582 void wake_up_q(struct wake_q_head *head)
583 {
584 struct wake_q_node *node = head->first;
585
586 while (node != WAKE_Q_TAIL) {
587 struct task_struct *task;
588
589 task = container_of(node, struct task_struct, wake_q);
590 BUG_ON(!task);
591 /* Task can safely be re-inserted now: */
592 node = node->next;
593 task->wake_q.next = NULL;
594
595 /*
596 * wake_up_process() executes a full barrier, which pairs with
597 * the queueing in wake_q_add() so as not to miss wakeups.
598 */
599 wake_up_process(task);
600 put_task_struct(task);
601 }
602 }
603
604 /*
605 * resched_curr - mark rq's current task 'to be rescheduled now'.
606 *
607 * On UP this means the setting of the need_resched flag, on SMP it
608 * might also involve a cross-CPU call to trigger the scheduler on
609 * the target CPU.
610 */
resched_curr(struct rq * rq)611 void resched_curr(struct rq *rq)
612 {
613 struct task_struct *curr = rq->curr;
614 int cpu;
615
616 lockdep_assert_held(&rq->lock);
617
618 if (test_tsk_need_resched(curr))
619 return;
620
621 cpu = cpu_of(rq);
622
623 if (cpu == smp_processor_id()) {
624 set_tsk_need_resched(curr);
625 set_preempt_need_resched();
626 return;
627 }
628
629 if (set_nr_and_not_polling(curr))
630 smp_send_reschedule(cpu);
631 else
632 trace_sched_wake_idle_without_ipi(cpu);
633 }
634
resched_cpu(int cpu)635 void resched_cpu(int cpu)
636 {
637 struct rq *rq = cpu_rq(cpu);
638 unsigned long flags;
639
640 raw_spin_lock_irqsave(&rq->lock, flags);
641 if (cpu_online(cpu) || cpu == smp_processor_id())
642 resched_curr(rq);
643 raw_spin_unlock_irqrestore(&rq->lock, flags);
644 }
645
646 #ifdef CONFIG_SMP
647 #ifdef CONFIG_NO_HZ_COMMON
648 /*
649 * In the semi idle case, use the nearest busy CPU for migrating timers
650 * from an idle CPU. This is good for power-savings.
651 *
652 * We don't do similar optimization for completely idle system, as
653 * selecting an idle CPU will add more delays to the timers than intended
654 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
655 */
get_nohz_timer_target(void)656 int get_nohz_timer_target(void)
657 {
658 int i, cpu = smp_processor_id(), default_cpu = -1;
659 struct sched_domain *sd;
660
661 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
662 if (!idle_cpu(cpu))
663 return cpu;
664 default_cpu = cpu;
665 }
666
667 rcu_read_lock();
668 for_each_domain(cpu, sd) {
669 for_each_cpu_and(i, sched_domain_span(sd),
670 housekeeping_cpumask(HK_FLAG_TIMER)) {
671 if (cpu == i)
672 continue;
673
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
679 }
680
681 if (default_cpu == -1)
682 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
683 cpu = default_cpu;
684 unlock:
685 rcu_read_unlock();
686 return cpu;
687 }
688
689 /*
690 * When add_timer_on() enqueues a timer into the timer wheel of an
691 * idle CPU then this timer might expire before the next timer event
692 * which is scheduled to wake up that CPU. In case of a completely
693 * idle system the next event might even be infinite time into the
694 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
695 * leaves the inner idle loop so the newly added timer is taken into
696 * account when the CPU goes back to idle and evaluates the timer
697 * wheel for the next timer event.
698 */
wake_up_idle_cpu(int cpu)699 static void wake_up_idle_cpu(int cpu)
700 {
701 struct rq *rq = cpu_rq(cpu);
702
703 if (cpu == smp_processor_id())
704 return;
705
706 if (set_nr_and_not_polling(rq->idle))
707 smp_send_reschedule(cpu);
708 else
709 trace_sched_wake_idle_without_ipi(cpu);
710 }
711
wake_up_full_nohz_cpu(int cpu)712 static bool wake_up_full_nohz_cpu(int cpu)
713 {
714 /*
715 * We just need the target to call irq_exit() and re-evaluate
716 * the next tick. The nohz full kick at least implies that.
717 * If needed we can still optimize that later with an
718 * empty IRQ.
719 */
720 if (cpu_is_offline(cpu))
721 return true; /* Don't try to wake offline CPUs. */
722 if (tick_nohz_full_cpu(cpu)) {
723 if (cpu != smp_processor_id() ||
724 tick_nohz_tick_stopped())
725 tick_nohz_full_kick_cpu(cpu);
726 return true;
727 }
728
729 return false;
730 }
731
732 /*
733 * Wake up the specified CPU. If the CPU is going offline, it is the
734 * caller's responsibility to deal with the lost wakeup, for example,
735 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
736 */
wake_up_nohz_cpu(int cpu)737 void wake_up_nohz_cpu(int cpu)
738 {
739 if (!wake_up_full_nohz_cpu(cpu))
740 wake_up_idle_cpu(cpu);
741 }
742
nohz_csd_func(void * info)743 static void nohz_csd_func(void *info)
744 {
745 struct rq *rq = info;
746 int cpu = cpu_of(rq);
747 unsigned int flags;
748
749 /*
750 * Release the rq::nohz_csd.
751 */
752 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
753 WARN_ON(!(flags & NOHZ_KICK_MASK));
754
755 rq->idle_balance = idle_cpu(cpu);
756 if (rq->idle_balance && !need_resched()) {
757 rq->nohz_idle_balance = flags;
758 raise_softirq_irqoff(SCHED_SOFTIRQ);
759 }
760 }
761
762 #endif /* CONFIG_NO_HZ_COMMON */
763
764 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)765 bool sched_can_stop_tick(struct rq *rq)
766 {
767 int fifo_nr_running;
768
769 /* Deadline tasks, even if single, need the tick */
770 if (rq->dl.dl_nr_running)
771 return false;
772
773 /*
774 * If there are more than one RR tasks, we need the tick to effect the
775 * actual RR behaviour.
776 */
777 if (rq->rt.rr_nr_running) {
778 if (rq->rt.rr_nr_running == 1)
779 return true;
780 else
781 return false;
782 }
783
784 /*
785 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
786 * forced preemption between FIFO tasks.
787 */
788 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
789 if (fifo_nr_running)
790 return true;
791
792 /*
793 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
794 * if there's more than one we need the tick for involuntary
795 * preemption.
796 */
797 if (rq->nr_running > 1)
798 return false;
799
800 return true;
801 }
802 #endif /* CONFIG_NO_HZ_FULL */
803 #endif /* CONFIG_SMP */
804
805 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
806 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
807 /*
808 * Iterate task_group tree rooted at *from, calling @down when first entering a
809 * node and @up when leaving it for the final time.
810 *
811 * Caller must hold rcu_lock or sufficient equivalent.
812 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)813 int walk_tg_tree_from(struct task_group *from,
814 tg_visitor down, tg_visitor up, void *data)
815 {
816 struct task_group *parent, *child;
817 int ret;
818
819 parent = from;
820
821 down:
822 ret = (*down)(parent, data);
823 if (ret)
824 goto out;
825 list_for_each_entry_rcu(child, &parent->children, siblings) {
826 parent = child;
827 goto down;
828
829 up:
830 continue;
831 }
832 ret = (*up)(parent, data);
833 if (ret || parent == from)
834 goto out;
835
836 child = parent;
837 parent = parent->parent;
838 if (parent)
839 goto up;
840 out:
841 return ret;
842 }
843
tg_nop(struct task_group * tg,void * data)844 int tg_nop(struct task_group *tg, void *data)
845 {
846 return 0;
847 }
848 #endif
849
set_load_weight(struct task_struct * p,bool update_load)850 static void set_load_weight(struct task_struct *p, bool update_load)
851 {
852 int prio = p->static_prio - MAX_RT_PRIO;
853 struct load_weight *load = &p->se.load;
854
855 /*
856 * SCHED_IDLE tasks get minimal weight:
857 */
858 if (task_has_idle_policy(p)) {
859 load->weight = scale_load(WEIGHT_IDLEPRIO);
860 load->inv_weight = WMULT_IDLEPRIO;
861 return;
862 }
863
864 /*
865 * SCHED_OTHER tasks have to update their load when changing their
866 * weight
867 */
868 if (update_load && p->sched_class == &fair_sched_class) {
869 reweight_task(p, prio);
870 } else {
871 load->weight = scale_load(sched_prio_to_weight[prio]);
872 load->inv_weight = sched_prio_to_wmult[prio];
873 }
874 }
875
876 #ifdef CONFIG_UCLAMP_TASK
877 /*
878 * Serializes updates of utilization clamp values
879 *
880 * The (slow-path) user-space triggers utilization clamp value updates which
881 * can require updates on (fast-path) scheduler's data structures used to
882 * support enqueue/dequeue operations.
883 * While the per-CPU rq lock protects fast-path update operations, user-space
884 * requests are serialized using a mutex to reduce the risk of conflicting
885 * updates or API abuses.
886 */
887 static DEFINE_MUTEX(uclamp_mutex);
888
889 /* Max allowed minimum utilization */
890 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
891
892 /* Max allowed maximum utilization */
893 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
894
895 /*
896 * By default RT tasks run at the maximum performance point/capacity of the
897 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
898 * SCHED_CAPACITY_SCALE.
899 *
900 * This knob allows admins to change the default behavior when uclamp is being
901 * used. In battery powered devices, particularly, running at the maximum
902 * capacity and frequency will increase energy consumption and shorten the
903 * battery life.
904 *
905 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
906 *
907 * This knob will not override the system default sched_util_clamp_min defined
908 * above.
909 */
910 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
911
912 /* All clamps are required to be less or equal than these values */
913 static struct uclamp_se uclamp_default[UCLAMP_CNT];
914
915 /*
916 * This static key is used to reduce the uclamp overhead in the fast path. It
917 * primarily disables the call to uclamp_rq_{inc, dec}() in
918 * enqueue/dequeue_task().
919 *
920 * This allows users to continue to enable uclamp in their kernel config with
921 * minimum uclamp overhead in the fast path.
922 *
923 * As soon as userspace modifies any of the uclamp knobs, the static key is
924 * enabled, since we have an actual users that make use of uclamp
925 * functionality.
926 *
927 * The knobs that would enable this static key are:
928 *
929 * * A task modifying its uclamp value with sched_setattr().
930 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
931 * * An admin modifying the cgroup cpu.uclamp.{min, max}
932 */
933 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
934
935 /* Integer rounded range for each bucket */
936 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
937
938 #define for_each_clamp_id(clamp_id) \
939 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
940
uclamp_bucket_id(unsigned int clamp_value)941 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
942 {
943 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
944 }
945
uclamp_none(enum uclamp_id clamp_id)946 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
947 {
948 if (clamp_id == UCLAMP_MIN)
949 return 0;
950 return SCHED_CAPACITY_SCALE;
951 }
952
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)953 static inline void uclamp_se_set(struct uclamp_se *uc_se,
954 unsigned int value, bool user_defined)
955 {
956 uc_se->value = value;
957 uc_se->bucket_id = uclamp_bucket_id(value);
958 uc_se->user_defined = user_defined;
959 }
960
961 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)962 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
963 unsigned int clamp_value)
964 {
965 /*
966 * Avoid blocked utilization pushing up the frequency when we go
967 * idle (which drops the max-clamp) by retaining the last known
968 * max-clamp.
969 */
970 if (clamp_id == UCLAMP_MAX) {
971 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
972 return clamp_value;
973 }
974
975 return uclamp_none(UCLAMP_MIN);
976 }
977
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)978 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
979 unsigned int clamp_value)
980 {
981 /* Reset max-clamp retention only on idle exit */
982 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
983 return;
984
985 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
986 }
987
988 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)989 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
990 unsigned int clamp_value)
991 {
992 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
993 int bucket_id = UCLAMP_BUCKETS - 1;
994
995 /*
996 * Since both min and max clamps are max aggregated, find the
997 * top most bucket with tasks in.
998 */
999 for ( ; bucket_id >= 0; bucket_id--) {
1000 if (!bucket[bucket_id].tasks)
1001 continue;
1002 return bucket[bucket_id].value;
1003 }
1004
1005 /* No tasks -- default clamp values */
1006 return uclamp_idle_value(rq, clamp_id, clamp_value);
1007 }
1008
__uclamp_update_util_min_rt_default(struct task_struct * p)1009 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1010 {
1011 unsigned int default_util_min;
1012 struct uclamp_se *uc_se;
1013
1014 lockdep_assert_held(&p->pi_lock);
1015
1016 uc_se = &p->uclamp_req[UCLAMP_MIN];
1017
1018 /* Only sync if user didn't override the default */
1019 if (uc_se->user_defined)
1020 return;
1021
1022 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1023 uclamp_se_set(uc_se, default_util_min, false);
1024 }
1025
uclamp_update_util_min_rt_default(struct task_struct * p)1026 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1027 {
1028 struct rq_flags rf;
1029 struct rq *rq;
1030
1031 if (!rt_task(p))
1032 return;
1033
1034 /* Protect updates to p->uclamp_* */
1035 rq = task_rq_lock(p, &rf);
1036 __uclamp_update_util_min_rt_default(p);
1037 task_rq_unlock(rq, p, &rf);
1038 }
1039
uclamp_sync_util_min_rt_default(void)1040 static void uclamp_sync_util_min_rt_default(void)
1041 {
1042 struct task_struct *g, *p;
1043
1044 /*
1045 * copy_process() sysctl_uclamp
1046 * uclamp_min_rt = X;
1047 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1048 * // link thread smp_mb__after_spinlock()
1049 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1050 * sched_post_fork() for_each_process_thread()
1051 * __uclamp_sync_rt() __uclamp_sync_rt()
1052 *
1053 * Ensures that either sched_post_fork() will observe the new
1054 * uclamp_min_rt or for_each_process_thread() will observe the new
1055 * task.
1056 */
1057 read_lock(&tasklist_lock);
1058 smp_mb__after_spinlock();
1059 read_unlock(&tasklist_lock);
1060
1061 rcu_read_lock();
1062 for_each_process_thread(g, p)
1063 uclamp_update_util_min_rt_default(p);
1064 rcu_read_unlock();
1065 }
1066
1067 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1068 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1069 {
1070 /* Copy by value as we could modify it */
1071 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1072 #ifdef CONFIG_UCLAMP_TASK_GROUP
1073 unsigned int tg_min, tg_max, value;
1074
1075 /*
1076 * Tasks in autogroups or root task group will be
1077 * restricted by system defaults.
1078 */
1079 if (task_group_is_autogroup(task_group(p)))
1080 return uc_req;
1081 if (task_group(p) == &root_task_group)
1082 return uc_req;
1083
1084 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1085 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1086 value = uc_req.value;
1087 value = clamp(value, tg_min, tg_max);
1088 uclamp_se_set(&uc_req, value, false);
1089 #endif
1090
1091 return uc_req;
1092 }
1093
1094 /*
1095 * The effective clamp bucket index of a task depends on, by increasing
1096 * priority:
1097 * - the task specific clamp value, when explicitly requested from userspace
1098 * - the task group effective clamp value, for tasks not either in the root
1099 * group or in an autogroup
1100 * - the system default clamp value, defined by the sysadmin
1101 */
1102 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1103 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1104 {
1105 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1106 struct uclamp_se uc_max = uclamp_default[clamp_id];
1107
1108 /* System default restrictions always apply */
1109 if (unlikely(uc_req.value > uc_max.value))
1110 return uc_max;
1111
1112 return uc_req;
1113 }
1114
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1115 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1116 {
1117 struct uclamp_se uc_eff;
1118
1119 /* Task currently refcounted: use back-annotated (effective) value */
1120 if (p->uclamp[clamp_id].active)
1121 return (unsigned long)p->uclamp[clamp_id].value;
1122
1123 uc_eff = uclamp_eff_get(p, clamp_id);
1124
1125 return (unsigned long)uc_eff.value;
1126 }
1127
1128 /*
1129 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1130 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1131 * updates the rq's clamp value if required.
1132 *
1133 * Tasks can have a task-specific value requested from user-space, track
1134 * within each bucket the maximum value for tasks refcounted in it.
1135 * This "local max aggregation" allows to track the exact "requested" value
1136 * for each bucket when all its RUNNABLE tasks require the same clamp.
1137 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1138 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1139 enum uclamp_id clamp_id)
1140 {
1141 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1142 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1143 struct uclamp_bucket *bucket;
1144
1145 lockdep_assert_held(&rq->lock);
1146
1147 /* Update task effective clamp */
1148 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1149
1150 bucket = &uc_rq->bucket[uc_se->bucket_id];
1151 bucket->tasks++;
1152 uc_se->active = true;
1153
1154 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1155
1156 /*
1157 * Local max aggregation: rq buckets always track the max
1158 * "requested" clamp value of its RUNNABLE tasks.
1159 */
1160 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1161 bucket->value = uc_se->value;
1162
1163 if (uc_se->value > READ_ONCE(uc_rq->value))
1164 WRITE_ONCE(uc_rq->value, uc_se->value);
1165 }
1166
1167 /*
1168 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1169 * is released. If this is the last task reference counting the rq's max
1170 * active clamp value, then the rq's clamp value is updated.
1171 *
1172 * Both refcounted tasks and rq's cached clamp values are expected to be
1173 * always valid. If it's detected they are not, as defensive programming,
1174 * enforce the expected state and warn.
1175 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1176 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1177 enum uclamp_id clamp_id)
1178 {
1179 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1180 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1181 struct uclamp_bucket *bucket;
1182 unsigned int bkt_clamp;
1183 unsigned int rq_clamp;
1184
1185 lockdep_assert_held(&rq->lock);
1186
1187 /*
1188 * If sched_uclamp_used was enabled after task @p was enqueued,
1189 * we could end up with unbalanced call to uclamp_rq_dec_id().
1190 *
1191 * In this case the uc_se->active flag should be false since no uclamp
1192 * accounting was performed at enqueue time and we can just return
1193 * here.
1194 *
1195 * Need to be careful of the following enqeueue/dequeue ordering
1196 * problem too
1197 *
1198 * enqueue(taskA)
1199 * // sched_uclamp_used gets enabled
1200 * enqueue(taskB)
1201 * dequeue(taskA)
1202 * // Must not decrement bukcet->tasks here
1203 * dequeue(taskB)
1204 *
1205 * where we could end up with stale data in uc_se and
1206 * bucket[uc_se->bucket_id].
1207 *
1208 * The following check here eliminates the possibility of such race.
1209 */
1210 if (unlikely(!uc_se->active))
1211 return;
1212
1213 bucket = &uc_rq->bucket[uc_se->bucket_id];
1214
1215 SCHED_WARN_ON(!bucket->tasks);
1216 if (likely(bucket->tasks))
1217 bucket->tasks--;
1218
1219 uc_se->active = false;
1220
1221 /*
1222 * Keep "local max aggregation" simple and accept to (possibly)
1223 * overboost some RUNNABLE tasks in the same bucket.
1224 * The rq clamp bucket value is reset to its base value whenever
1225 * there are no more RUNNABLE tasks refcounting it.
1226 */
1227 if (likely(bucket->tasks))
1228 return;
1229
1230 rq_clamp = READ_ONCE(uc_rq->value);
1231 /*
1232 * Defensive programming: this should never happen. If it happens,
1233 * e.g. due to future modification, warn and fixup the expected value.
1234 */
1235 SCHED_WARN_ON(bucket->value > rq_clamp);
1236 if (bucket->value >= rq_clamp) {
1237 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1238 WRITE_ONCE(uc_rq->value, bkt_clamp);
1239 }
1240 }
1241
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1242 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1243 {
1244 enum uclamp_id clamp_id;
1245
1246 /*
1247 * Avoid any overhead until uclamp is actually used by the userspace.
1248 *
1249 * The condition is constructed such that a NOP is generated when
1250 * sched_uclamp_used is disabled.
1251 */
1252 if (!static_branch_unlikely(&sched_uclamp_used))
1253 return;
1254
1255 if (unlikely(!p->sched_class->uclamp_enabled))
1256 return;
1257
1258 for_each_clamp_id(clamp_id)
1259 uclamp_rq_inc_id(rq, p, clamp_id);
1260
1261 /* Reset clamp idle holding when there is one RUNNABLE task */
1262 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1263 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1264 }
1265
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1266 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1267 {
1268 enum uclamp_id clamp_id;
1269
1270 /*
1271 * Avoid any overhead until uclamp is actually used by the userspace.
1272 *
1273 * The condition is constructed such that a NOP is generated when
1274 * sched_uclamp_used is disabled.
1275 */
1276 if (!static_branch_unlikely(&sched_uclamp_used))
1277 return;
1278
1279 if (unlikely(!p->sched_class->uclamp_enabled))
1280 return;
1281
1282 for_each_clamp_id(clamp_id)
1283 uclamp_rq_dec_id(rq, p, clamp_id);
1284 }
1285
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1286 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1287 enum uclamp_id clamp_id)
1288 {
1289 if (!p->uclamp[clamp_id].active)
1290 return;
1291
1292 uclamp_rq_dec_id(rq, p, clamp_id);
1293 uclamp_rq_inc_id(rq, p, clamp_id);
1294
1295 /*
1296 * Make sure to clear the idle flag if we've transiently reached 0
1297 * active tasks on rq.
1298 */
1299 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1300 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1301 }
1302
1303 static inline void
uclamp_update_active(struct task_struct * p)1304 uclamp_update_active(struct task_struct *p)
1305 {
1306 enum uclamp_id clamp_id;
1307 struct rq_flags rf;
1308 struct rq *rq;
1309
1310 /*
1311 * Lock the task and the rq where the task is (or was) queued.
1312 *
1313 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1314 * price to pay to safely serialize util_{min,max} updates with
1315 * enqueues, dequeues and migration operations.
1316 * This is the same locking schema used by __set_cpus_allowed_ptr().
1317 */
1318 rq = task_rq_lock(p, &rf);
1319
1320 /*
1321 * Setting the clamp bucket is serialized by task_rq_lock().
1322 * If the task is not yet RUNNABLE and its task_struct is not
1323 * affecting a valid clamp bucket, the next time it's enqueued,
1324 * it will already see the updated clamp bucket value.
1325 */
1326 for_each_clamp_id(clamp_id)
1327 uclamp_rq_reinc_id(rq, p, clamp_id);
1328
1329 task_rq_unlock(rq, p, &rf);
1330 }
1331
1332 #ifdef CONFIG_UCLAMP_TASK_GROUP
1333 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1334 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1335 {
1336 struct css_task_iter it;
1337 struct task_struct *p;
1338
1339 css_task_iter_start(css, 0, &it);
1340 while ((p = css_task_iter_next(&it)))
1341 uclamp_update_active(p);
1342 css_task_iter_end(&it);
1343 }
1344
1345 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1346 static void uclamp_update_root_tg(void)
1347 {
1348 struct task_group *tg = &root_task_group;
1349
1350 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1351 sysctl_sched_uclamp_util_min, false);
1352 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1353 sysctl_sched_uclamp_util_max, false);
1354
1355 rcu_read_lock();
1356 cpu_util_update_eff(&root_task_group.css);
1357 rcu_read_unlock();
1358 }
1359 #else
uclamp_update_root_tg(void)1360 static void uclamp_update_root_tg(void) { }
1361 #endif
1362
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1363 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1364 void *buffer, size_t *lenp, loff_t *ppos)
1365 {
1366 bool update_root_tg = false;
1367 int old_min, old_max, old_min_rt;
1368 int result;
1369
1370 mutex_lock(&uclamp_mutex);
1371 old_min = sysctl_sched_uclamp_util_min;
1372 old_max = sysctl_sched_uclamp_util_max;
1373 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1374
1375 result = proc_dointvec(table, write, buffer, lenp, ppos);
1376 if (result)
1377 goto undo;
1378 if (!write)
1379 goto done;
1380
1381 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1382 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1383 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1384
1385 result = -EINVAL;
1386 goto undo;
1387 }
1388
1389 if (old_min != sysctl_sched_uclamp_util_min) {
1390 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1391 sysctl_sched_uclamp_util_min, false);
1392 update_root_tg = true;
1393 }
1394 if (old_max != sysctl_sched_uclamp_util_max) {
1395 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1396 sysctl_sched_uclamp_util_max, false);
1397 update_root_tg = true;
1398 }
1399
1400 if (update_root_tg) {
1401 static_branch_enable(&sched_uclamp_used);
1402 uclamp_update_root_tg();
1403 }
1404
1405 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1406 static_branch_enable(&sched_uclamp_used);
1407 uclamp_sync_util_min_rt_default();
1408 }
1409
1410 /*
1411 * We update all RUNNABLE tasks only when task groups are in use.
1412 * Otherwise, keep it simple and do just a lazy update at each next
1413 * task enqueue time.
1414 */
1415
1416 goto done;
1417
1418 undo:
1419 sysctl_sched_uclamp_util_min = old_min;
1420 sysctl_sched_uclamp_util_max = old_max;
1421 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1422 done:
1423 mutex_unlock(&uclamp_mutex);
1424
1425 return result;
1426 }
1427
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1428 static int uclamp_validate(struct task_struct *p,
1429 const struct sched_attr *attr)
1430 {
1431 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1432 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1433
1434 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1435 lower_bound = attr->sched_util_min;
1436 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1437 upper_bound = attr->sched_util_max;
1438
1439 if (lower_bound > upper_bound)
1440 return -EINVAL;
1441 if (upper_bound > SCHED_CAPACITY_SCALE)
1442 return -EINVAL;
1443
1444 /*
1445 * We have valid uclamp attributes; make sure uclamp is enabled.
1446 *
1447 * We need to do that here, because enabling static branches is a
1448 * blocking operation which obviously cannot be done while holding
1449 * scheduler locks.
1450 */
1451 static_branch_enable(&sched_uclamp_used);
1452
1453 return 0;
1454 }
1455
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1456 static void __setscheduler_uclamp(struct task_struct *p,
1457 const struct sched_attr *attr)
1458 {
1459 enum uclamp_id clamp_id;
1460
1461 /*
1462 * On scheduling class change, reset to default clamps for tasks
1463 * without a task-specific value.
1464 */
1465 for_each_clamp_id(clamp_id) {
1466 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1467
1468 /* Keep using defined clamps across class changes */
1469 if (uc_se->user_defined)
1470 continue;
1471
1472 /*
1473 * RT by default have a 100% boost value that could be modified
1474 * at runtime.
1475 */
1476 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1477 __uclamp_update_util_min_rt_default(p);
1478 else
1479 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1480
1481 }
1482
1483 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1484 return;
1485
1486 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1487 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1488 attr->sched_util_min, true);
1489 }
1490
1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1492 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1493 attr->sched_util_max, true);
1494 }
1495 }
1496
uclamp_fork(struct task_struct * p)1497 static void uclamp_fork(struct task_struct *p)
1498 {
1499 enum uclamp_id clamp_id;
1500
1501 /*
1502 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1503 * as the task is still at its early fork stages.
1504 */
1505 for_each_clamp_id(clamp_id)
1506 p->uclamp[clamp_id].active = false;
1507
1508 if (likely(!p->sched_reset_on_fork))
1509 return;
1510
1511 for_each_clamp_id(clamp_id) {
1512 uclamp_se_set(&p->uclamp_req[clamp_id],
1513 uclamp_none(clamp_id), false);
1514 }
1515 }
1516
uclamp_post_fork(struct task_struct * p)1517 static void uclamp_post_fork(struct task_struct *p)
1518 {
1519 uclamp_update_util_min_rt_default(p);
1520 }
1521
init_uclamp_rq(struct rq * rq)1522 static void __init init_uclamp_rq(struct rq *rq)
1523 {
1524 enum uclamp_id clamp_id;
1525 struct uclamp_rq *uc_rq = rq->uclamp;
1526
1527 for_each_clamp_id(clamp_id) {
1528 uc_rq[clamp_id] = (struct uclamp_rq) {
1529 .value = uclamp_none(clamp_id)
1530 };
1531 }
1532
1533 rq->uclamp_flags = 0;
1534 }
1535
init_uclamp(void)1536 static void __init init_uclamp(void)
1537 {
1538 struct uclamp_se uc_max = {};
1539 enum uclamp_id clamp_id;
1540 int cpu;
1541
1542 for_each_possible_cpu(cpu)
1543 init_uclamp_rq(cpu_rq(cpu));
1544
1545 for_each_clamp_id(clamp_id) {
1546 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1547 uclamp_none(clamp_id), false);
1548 }
1549
1550 /* System defaults allow max clamp values for both indexes */
1551 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1552 for_each_clamp_id(clamp_id) {
1553 uclamp_default[clamp_id] = uc_max;
1554 #ifdef CONFIG_UCLAMP_TASK_GROUP
1555 root_task_group.uclamp_req[clamp_id] = uc_max;
1556 root_task_group.uclamp[clamp_id] = uc_max;
1557 #endif
1558 }
1559 }
1560
1561 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1562 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1563 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1564 static inline int uclamp_validate(struct task_struct *p,
1565 const struct sched_attr *attr)
1566 {
1567 return -EOPNOTSUPP;
1568 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1569 static void __setscheduler_uclamp(struct task_struct *p,
1570 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1571 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1572 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1573 static inline void init_uclamp(void) { }
1574 #endif /* CONFIG_UCLAMP_TASK */
1575
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1576 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1577 {
1578 if (!(flags & ENQUEUE_NOCLOCK))
1579 update_rq_clock(rq);
1580
1581 if (!(flags & ENQUEUE_RESTORE)) {
1582 sched_info_queued(rq, p);
1583 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1584 }
1585
1586 uclamp_rq_inc(rq, p);
1587 p->sched_class->enqueue_task(rq, p, flags);
1588 }
1589
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1590 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1591 {
1592 if (!(flags & DEQUEUE_NOCLOCK))
1593 update_rq_clock(rq);
1594
1595 if (!(flags & DEQUEUE_SAVE)) {
1596 sched_info_dequeued(rq, p);
1597 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1598 }
1599
1600 uclamp_rq_dec(rq, p);
1601 p->sched_class->dequeue_task(rq, p, flags);
1602 }
1603
activate_task(struct rq * rq,struct task_struct * p,int flags)1604 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1605 {
1606 enqueue_task(rq, p, flags);
1607
1608 p->on_rq = TASK_ON_RQ_QUEUED;
1609 }
1610
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1611 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1614
1615 dequeue_task(rq, p, flags);
1616 }
1617
__normal_prio(int policy,int rt_prio,int nice)1618 static inline int __normal_prio(int policy, int rt_prio, int nice)
1619 {
1620 int prio;
1621
1622 if (dl_policy(policy))
1623 prio = MAX_DL_PRIO - 1;
1624 else if (rt_policy(policy))
1625 prio = MAX_RT_PRIO - 1 - rt_prio;
1626 else
1627 prio = NICE_TO_PRIO(nice);
1628
1629 return prio;
1630 }
1631
1632 /*
1633 * Calculate the expected normal priority: i.e. priority
1634 * without taking RT-inheritance into account. Might be
1635 * boosted by interactivity modifiers. Changes upon fork,
1636 * setprio syscalls, and whenever the interactivity
1637 * estimator recalculates.
1638 */
normal_prio(struct task_struct * p)1639 static inline int normal_prio(struct task_struct *p)
1640 {
1641 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1642 }
1643
1644 /*
1645 * Calculate the current priority, i.e. the priority
1646 * taken into account by the scheduler. This value might
1647 * be boosted by RT tasks, or might be boosted by
1648 * interactivity modifiers. Will be RT if the task got
1649 * RT-boosted. If not then it returns p->normal_prio.
1650 */
effective_prio(struct task_struct * p)1651 static int effective_prio(struct task_struct *p)
1652 {
1653 p->normal_prio = normal_prio(p);
1654 /*
1655 * If we are RT tasks or we were boosted to RT priority,
1656 * keep the priority unchanged. Otherwise, update priority
1657 * to the normal priority:
1658 */
1659 if (!rt_prio(p->prio))
1660 return p->normal_prio;
1661 return p->prio;
1662 }
1663
1664 /**
1665 * task_curr - is this task currently executing on a CPU?
1666 * @p: the task in question.
1667 *
1668 * Return: 1 if the task is currently executing. 0 otherwise.
1669 */
task_curr(const struct task_struct * p)1670 inline int task_curr(const struct task_struct *p)
1671 {
1672 return cpu_curr(task_cpu(p)) == p;
1673 }
1674
1675 /*
1676 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1677 * use the balance_callback list if you want balancing.
1678 *
1679 * this means any call to check_class_changed() must be followed by a call to
1680 * balance_callback().
1681 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1682 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1683 const struct sched_class *prev_class,
1684 int oldprio)
1685 {
1686 if (prev_class != p->sched_class) {
1687 if (prev_class->switched_from)
1688 prev_class->switched_from(rq, p);
1689
1690 p->sched_class->switched_to(rq, p);
1691 } else if (oldprio != p->prio || dl_task(p))
1692 p->sched_class->prio_changed(rq, p, oldprio);
1693 }
1694
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1695 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1696 {
1697 if (p->sched_class == rq->curr->sched_class)
1698 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1699 else if (p->sched_class > rq->curr->sched_class)
1700 resched_curr(rq);
1701
1702 /*
1703 * A queue event has occurred, and we're going to schedule. In
1704 * this case, we can save a useless back to back clock update.
1705 */
1706 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1707 rq_clock_skip_update(rq);
1708 }
1709
1710 #ifdef CONFIG_SMP
1711
1712 /*
1713 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1714 * __set_cpus_allowed_ptr() and select_fallback_rq().
1715 */
is_cpu_allowed(struct task_struct * p,int cpu)1716 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1717 {
1718 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1719 return false;
1720
1721 if (is_per_cpu_kthread(p))
1722 return cpu_online(cpu);
1723
1724 return cpu_active(cpu);
1725 }
1726
1727 /*
1728 * This is how migration works:
1729 *
1730 * 1) we invoke migration_cpu_stop() on the target CPU using
1731 * stop_one_cpu().
1732 * 2) stopper starts to run (implicitly forcing the migrated thread
1733 * off the CPU)
1734 * 3) it checks whether the migrated task is still in the wrong runqueue.
1735 * 4) if it's in the wrong runqueue then the migration thread removes
1736 * it and puts it into the right queue.
1737 * 5) stopper completes and stop_one_cpu() returns and the migration
1738 * is done.
1739 */
1740
1741 /*
1742 * move_queued_task - move a queued task to new rq.
1743 *
1744 * Returns (locked) new rq. Old rq's lock is released.
1745 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1746 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1747 struct task_struct *p, int new_cpu)
1748 {
1749 lockdep_assert_held(&rq->lock);
1750
1751 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1752 #ifdef CONFIG_SCHED_WALT
1753 double_lock_balance(rq, cpu_rq(new_cpu));
1754 if (!(rq->clock_update_flags & RQCF_UPDATED))
1755 update_rq_clock(rq);
1756 #endif
1757 set_task_cpu(p, new_cpu);
1758 #ifdef CONFIG_SCHED_WALT
1759 double_rq_unlock(cpu_rq(new_cpu), rq);
1760 #else
1761 rq_unlock(rq, rf);
1762 #endif
1763
1764 rq = cpu_rq(new_cpu);
1765
1766 rq_lock(rq, rf);
1767 BUG_ON(task_cpu(p) != new_cpu);
1768 activate_task(rq, p, 0);
1769 check_preempt_curr(rq, p, 0);
1770
1771 return rq;
1772 }
1773
1774 struct migration_arg {
1775 struct task_struct *task;
1776 int dest_cpu;
1777 };
1778
1779 /*
1780 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1781 * this because either it can't run here any more (set_cpus_allowed()
1782 * away from this CPU, or CPU going down), or because we're
1783 * attempting to rebalance this task on exec (sched_exec).
1784 *
1785 * So we race with normal scheduler movements, but that's OK, as long
1786 * as the task is no longer on this CPU.
1787 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1788 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1789 struct task_struct *p, int dest_cpu)
1790 {
1791 /* Affinity changed (again). */
1792 if (!is_cpu_allowed(p, dest_cpu))
1793 return rq;
1794
1795 update_rq_clock(rq);
1796 rq = move_queued_task(rq, rf, p, dest_cpu);
1797
1798 return rq;
1799 }
1800
1801 /*
1802 * migration_cpu_stop - this will be executed by a highprio stopper thread
1803 * and performs thread migration by bumping thread off CPU then
1804 * 'pushing' onto another runqueue.
1805 */
migration_cpu_stop(void * data)1806 static int migration_cpu_stop(void *data)
1807 {
1808 struct migration_arg *arg = data;
1809 struct task_struct *p = arg->task;
1810 struct rq *rq = this_rq();
1811 struct rq_flags rf;
1812
1813 /*
1814 * The original target CPU might have gone down and we might
1815 * be on another CPU but it doesn't matter.
1816 */
1817 local_irq_disable();
1818 /*
1819 * We need to explicitly wake pending tasks before running
1820 * __migrate_task() such that we will not miss enforcing cpus_ptr
1821 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1822 */
1823 flush_smp_call_function_from_idle();
1824
1825 raw_spin_lock(&p->pi_lock);
1826 rq_lock(rq, &rf);
1827 /*
1828 * If task_rq(p) != rq, it cannot be migrated here, because we're
1829 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1830 * we're holding p->pi_lock.
1831 */
1832 if (task_rq(p) == rq) {
1833 if (task_on_rq_queued(p))
1834 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1835 else
1836 p->wake_cpu = arg->dest_cpu;
1837 }
1838 rq_unlock(rq, &rf);
1839 raw_spin_unlock(&p->pi_lock);
1840
1841 local_irq_enable();
1842 return 0;
1843 }
1844
1845 /*
1846 * sched_class::set_cpus_allowed must do the below, but is not required to
1847 * actually call this function.
1848 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1849 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1850 {
1851 cpumask_copy(&p->cpus_mask, new_mask);
1852 p->nr_cpus_allowed = cpumask_weight(new_mask);
1853 }
1854
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1855 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1856 {
1857 struct rq *rq = task_rq(p);
1858 bool queued, running;
1859
1860 lockdep_assert_held(&p->pi_lock);
1861
1862 queued = task_on_rq_queued(p);
1863 running = task_current(rq, p);
1864
1865 if (queued) {
1866 /*
1867 * Because __kthread_bind() calls this on blocked tasks without
1868 * holding rq->lock.
1869 */
1870 lockdep_assert_held(&rq->lock);
1871 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1872 }
1873 if (running)
1874 put_prev_task(rq, p);
1875
1876 p->sched_class->set_cpus_allowed(p, new_mask);
1877
1878 if (queued)
1879 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1880 if (running)
1881 set_next_task(rq, p);
1882 }
1883
1884 /*
1885 * Change a given task's CPU affinity. Migrate the thread to a
1886 * proper CPU and schedule it away if the CPU it's executing on
1887 * is removed from the allowed bitmask.
1888 *
1889 * NOTE: the caller must have a valid reference to the task, the
1890 * task must not exit() & deallocate itself prematurely. The
1891 * call is not atomic; no spinlocks may be held.
1892 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1893 static int __set_cpus_allowed_ptr(struct task_struct *p,
1894 const struct cpumask *new_mask, bool check)
1895 {
1896 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1897 unsigned int dest_cpu;
1898 struct rq_flags rf;
1899 struct rq *rq;
1900 int ret = 0;
1901 #ifdef CONFIG_CPU_ISOLATION_OPT
1902 cpumask_t allowed_mask;
1903 #endif
1904
1905 rq = task_rq_lock(p, &rf);
1906 update_rq_clock(rq);
1907
1908 if (p->flags & PF_KTHREAD) {
1909 /*
1910 * Kernel threads are allowed on online && !active CPUs
1911 */
1912 cpu_valid_mask = cpu_online_mask;
1913 }
1914
1915 /*
1916 * Must re-check here, to close a race against __kthread_bind(),
1917 * sched_setaffinity() is not guaranteed to observe the flag.
1918 */
1919 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1920 ret = -EINVAL;
1921 goto out;
1922 }
1923
1924 if (cpumask_equal(&p->cpus_mask, new_mask))
1925 goto out;
1926
1927 #ifdef CONFIG_CPU_ISOLATION_OPT
1928 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
1929 cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
1930
1931 dest_cpu = cpumask_any(&allowed_mask);
1932 if (dest_cpu >= nr_cpu_ids) {
1933 cpumask_and(&allowed_mask, cpu_valid_mask, new_mask);
1934 dest_cpu = cpumask_any(&allowed_mask);
1935 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1936 ret = -EINVAL;
1937 goto out;
1938 }
1939 }
1940 #else
1941 /*
1942 * Picking a ~random cpu helps in cases where we are changing affinity
1943 * for groups of tasks (ie. cpuset), so that load balancing is not
1944 * immediately required to distribute the tasks within their new mask.
1945 */
1946 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1947 if (dest_cpu >= nr_cpu_ids) {
1948 ret = -EINVAL;
1949 goto out;
1950 }
1951 #endif
1952
1953 do_set_cpus_allowed(p, new_mask);
1954
1955 if (p->flags & PF_KTHREAD) {
1956 /*
1957 * For kernel threads that do indeed end up on online &&
1958 * !active we want to ensure they are strict per-CPU threads.
1959 */
1960 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1961 !cpumask_intersects(new_mask, cpu_active_mask) &&
1962 p->nr_cpus_allowed != 1);
1963 }
1964
1965 /* Can the task run on the task's current CPU? If so, we're done */
1966 #ifdef CONFIG_CPU_ISOLATION_OPT
1967 if (cpumask_test_cpu(task_cpu(p), &allowed_mask))
1968 goto out;
1969 #else
1970 if (cpumask_test_cpu(task_cpu(p), new_mask))
1971 goto out;
1972 #endif
1973
1974 if (task_running(rq, p) || p->state == TASK_WAKING) {
1975 struct migration_arg arg = { p, dest_cpu };
1976 /* Need help from migration thread: drop lock and wait. */
1977 task_rq_unlock(rq, p, &rf);
1978 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1979 return 0;
1980 } else if (task_on_rq_queued(p)) {
1981 /*
1982 * OK, since we're going to drop the lock immediately
1983 * afterwards anyway.
1984 */
1985 rq = move_queued_task(rq, &rf, p, dest_cpu);
1986 }
1987 out:
1988 task_rq_unlock(rq, p, &rf);
1989
1990 return ret;
1991 }
1992
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1993 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1994 {
1995 return __set_cpus_allowed_ptr(p, new_mask, false);
1996 }
1997 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1998
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1999 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2000 {
2001 #ifdef CONFIG_SCHED_DEBUG
2002 /*
2003 * We should never call set_task_cpu() on a blocked task,
2004 * ttwu() will sort out the placement.
2005 */
2006 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2007 !p->on_rq);
2008
2009 /*
2010 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2011 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2012 * time relying on p->on_rq.
2013 */
2014 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2015 p->sched_class == &fair_sched_class &&
2016 (p->on_rq && !task_on_rq_migrating(p)));
2017
2018 #ifdef CONFIG_LOCKDEP
2019 /*
2020 * The caller should hold either p->pi_lock or rq->lock, when changing
2021 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2022 *
2023 * sched_move_task() holds both and thus holding either pins the cgroup,
2024 * see task_group().
2025 *
2026 * Furthermore, all task_rq users should acquire both locks, see
2027 * task_rq_lock().
2028 */
2029 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2030 lockdep_is_held(&task_rq(p)->lock)));
2031 #endif
2032 /*
2033 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2034 */
2035 WARN_ON_ONCE(!cpu_online(new_cpu));
2036 #endif
2037
2038 trace_sched_migrate_task(p, new_cpu);
2039
2040 if (task_cpu(p) != new_cpu) {
2041 if (p->sched_class->migrate_task_rq)
2042 p->sched_class->migrate_task_rq(p, new_cpu);
2043 p->se.nr_migrations++;
2044 rseq_migrate(p);
2045 perf_event_task_migrate(p);
2046 fixup_busy_time(p, new_cpu);
2047 }
2048
2049 __set_task_cpu(p, new_cpu);
2050 }
2051
2052 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)2053 static void __migrate_swap_task(struct task_struct *p, int cpu)
2054 {
2055 if (task_on_rq_queued(p)) {
2056 struct rq *src_rq, *dst_rq;
2057 struct rq_flags srf, drf;
2058
2059 src_rq = task_rq(p);
2060 dst_rq = cpu_rq(cpu);
2061
2062 rq_pin_lock(src_rq, &srf);
2063 rq_pin_lock(dst_rq, &drf);
2064
2065 deactivate_task(src_rq, p, 0);
2066 set_task_cpu(p, cpu);
2067 activate_task(dst_rq, p, 0);
2068 check_preempt_curr(dst_rq, p, 0);
2069
2070 rq_unpin_lock(dst_rq, &drf);
2071 rq_unpin_lock(src_rq, &srf);
2072
2073 } else {
2074 /*
2075 * Task isn't running anymore; make it appear like we migrated
2076 * it before it went to sleep. This means on wakeup we make the
2077 * previous CPU our target instead of where it really is.
2078 */
2079 p->wake_cpu = cpu;
2080 }
2081 }
2082
2083 struct migration_swap_arg {
2084 struct task_struct *src_task, *dst_task;
2085 int src_cpu, dst_cpu;
2086 };
2087
migrate_swap_stop(void * data)2088 static int migrate_swap_stop(void *data)
2089 {
2090 struct migration_swap_arg *arg = data;
2091 struct rq *src_rq, *dst_rq;
2092 int ret = -EAGAIN;
2093
2094 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2095 return -EAGAIN;
2096
2097 src_rq = cpu_rq(arg->src_cpu);
2098 dst_rq = cpu_rq(arg->dst_cpu);
2099
2100 double_raw_lock(&arg->src_task->pi_lock,
2101 &arg->dst_task->pi_lock);
2102 double_rq_lock(src_rq, dst_rq);
2103
2104 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2105 goto unlock;
2106
2107 if (task_cpu(arg->src_task) != arg->src_cpu)
2108 goto unlock;
2109
2110 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2111 goto unlock;
2112
2113 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2114 goto unlock;
2115
2116 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2117 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2118
2119 ret = 0;
2120
2121 unlock:
2122 double_rq_unlock(src_rq, dst_rq);
2123 raw_spin_unlock(&arg->dst_task->pi_lock);
2124 raw_spin_unlock(&arg->src_task->pi_lock);
2125
2126 return ret;
2127 }
2128
2129 /*
2130 * Cross migrate two tasks
2131 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2132 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2133 int target_cpu, int curr_cpu)
2134 {
2135 struct migration_swap_arg arg;
2136 int ret = -EINVAL;
2137
2138 arg = (struct migration_swap_arg){
2139 .src_task = cur,
2140 .src_cpu = curr_cpu,
2141 .dst_task = p,
2142 .dst_cpu = target_cpu,
2143 };
2144
2145 if (arg.src_cpu == arg.dst_cpu)
2146 goto out;
2147
2148 /*
2149 * These three tests are all lockless; this is OK since all of them
2150 * will be re-checked with proper locks held further down the line.
2151 */
2152 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2153 goto out;
2154
2155 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2156 goto out;
2157
2158 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2159 goto out;
2160
2161 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2162 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2163
2164 out:
2165 return ret;
2166 }
2167 #endif /* CONFIG_NUMA_BALANCING */
2168
2169 /*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
wait_task_inactive(struct task_struct * p,long match_state)2185 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2186 {
2187 int running, queued;
2188 struct rq_flags rf;
2189 unsigned long ncsw;
2190 struct rq *rq;
2191
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
2200
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
2215 cpu_relax();
2216 }
2217
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &rf);
2224 trace_sched_wait_task(p);
2225 running = task_running(rq, p);
2226 queued = task_on_rq_queued(p);
2227 ncsw = 0;
2228 if (!match_state || p->state == match_state)
2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230 task_rq_unlock(rq, p, &rf);
2231
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
2248
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
2254 * So if it was still runnable (but just not actively
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(queued)) {
2259 ktime_t to = NSEC_PER_SEC / HZ;
2260
2261 set_current_state(TASK_UNINTERRUPTIBLE);
2262 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2263 continue;
2264 }
2265
2266 /*
2267 * Ahh, all good. It wasn't running, and it wasn't
2268 * runnable, which means that it will never become
2269 * running in the future either. We're all done!
2270 */
2271 break;
2272 }
2273
2274 return ncsw;
2275 }
2276
2277 /***
2278 * kick_process - kick a running thread to enter/exit the kernel
2279 * @p: the to-be-kicked thread
2280 *
2281 * Cause a process which is running on another CPU to enter
2282 * kernel-mode, without any delay. (to get signals handled.)
2283 *
2284 * NOTE: this function doesn't have to take the runqueue lock,
2285 * because all it wants to ensure is that the remote task enters
2286 * the kernel. If the IPI races and the task has been migrated
2287 * to another CPU then no harm is done and the purpose has been
2288 * achieved as well.
2289 */
kick_process(struct task_struct * p)2290 void kick_process(struct task_struct *p)
2291 {
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if ((cpu != smp_processor_id()) && task_curr(p))
2297 smp_send_reschedule(cpu);
2298 preempt_enable();
2299 }
2300 EXPORT_SYMBOL_GPL(kick_process);
2301
2302 /*
2303 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2304 *
2305 * A few notes on cpu_active vs cpu_online:
2306 *
2307 * - cpu_active must be a subset of cpu_online
2308 *
2309 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2310 * see __set_cpus_allowed_ptr(). At this point the newly online
2311 * CPU isn't yet part of the sched domains, and balancing will not
2312 * see it.
2313 *
2314 * - on CPU-down we clear cpu_active() to mask the sched domains and
2315 * avoid the load balancer to place new tasks on the to be removed
2316 * CPU. Existing tasks will remain running there and will be taken
2317 * off.
2318 *
2319 * This means that fallback selection must not select !active CPUs.
2320 * And can assume that any active CPU must be online. Conversely
2321 * select_task_rq() below may allow selection of !active CPUs in order
2322 * to satisfy the above rules.
2323 */
2324 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)2325 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
2326 #else
2327 static int select_fallback_rq(int cpu, struct task_struct *p)
2328 #endif
2329 {
2330 int nid = cpu_to_node(cpu);
2331 const struct cpumask *nodemask = NULL;
2332 enum { cpuset, possible, fail, bug } state = cpuset;
2333 int dest_cpu;
2334 #ifdef CONFIG_CPU_ISOLATION_OPT
2335 int isolated_candidate = -1;
2336 #endif
2337
2338 /*
2339 * If the node that the CPU is on has been offlined, cpu_to_node()
2340 * will return -1. There is no CPU on the node, and we should
2341 * select the CPU on the other node.
2342 */
2343 if (nid != -1) {
2344 nodemask = cpumask_of_node(nid);
2345
2346 /* Look for allowed, online CPU in same node. */
2347 for_each_cpu(dest_cpu, nodemask) {
2348 if (!cpu_active(dest_cpu))
2349 continue;
2350 if (cpu_isolated(dest_cpu))
2351 continue;
2352 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2353 return dest_cpu;
2354 }
2355 }
2356
2357 for (;;) {
2358 /* Any allowed, online CPU? */
2359 for_each_cpu(dest_cpu, p->cpus_ptr) {
2360 if (!is_cpu_allowed(p, dest_cpu))
2361 continue;
2362 #ifdef CONFIG_CPU_ISOLATION_OPT
2363 if (cpu_isolated(dest_cpu)) {
2364 if (allow_iso)
2365 isolated_candidate = dest_cpu;
2366 continue;
2367 }
2368 goto out;
2369 }
2370
2371 if (isolated_candidate != -1) {
2372 dest_cpu = isolated_candidate;
2373 #endif
2374 goto out;
2375 }
2376
2377 /* No more Mr. Nice Guy. */
2378 switch (state) {
2379 case cpuset:
2380 if (IS_ENABLED(CONFIG_CPUSETS)) {
2381 cpuset_cpus_allowed_fallback(p);
2382 state = possible;
2383 break;
2384 }
2385 fallthrough;
2386 case possible:
2387 do_set_cpus_allowed(p, cpu_possible_mask);
2388 state = fail;
2389 break;
2390
2391 case fail:
2392 #ifdef CONFIG_CPU_ISOLATION_OPT
2393 allow_iso = true;
2394 state = bug;
2395 break;
2396 #else
2397 /* fall through; */
2398 #endif
2399
2400 case bug:
2401 BUG();
2402 break;
2403 }
2404 }
2405
2406 out:
2407 if (state != cpuset) {
2408 /*
2409 * Don't tell them about moving exiting tasks or
2410 * kernel threads (both mm NULL), since they never
2411 * leave kernel.
2412 */
2413 if (p->mm && printk_ratelimit()) {
2414 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2415 task_pid_nr(p), p->comm, cpu);
2416 }
2417 }
2418
2419 return dest_cpu;
2420 }
2421
2422 /*
2423 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2424 */
2425 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2426 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2427 {
2428 #ifdef CONFIG_CPU_ISOLATION_OPT
2429 bool allow_isolated = (p->flags & PF_KTHREAD);
2430 #endif
2431
2432 lockdep_assert_held(&p->pi_lock);
2433
2434 if (p->nr_cpus_allowed > 1)
2435 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2436 else
2437 cpu = cpumask_any(p->cpus_ptr);
2438
2439 /*
2440 * In order not to call set_task_cpu() on a blocking task we need
2441 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2442 * CPU.
2443 *
2444 * Since this is common to all placement strategies, this lives here.
2445 *
2446 * [ this allows ->select_task() to simply return task_cpu(p) and
2447 * not worry about this generic constraint ]
2448 */
2449 #ifdef CONFIG_CPU_ISOLATION_OPT
2450 if (unlikely(!is_cpu_allowed(p, cpu)) ||
2451 (cpu_isolated(cpu) && !allow_isolated))
2452 cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
2453 #else
2454 if (unlikely(!is_cpu_allowed(p, cpu)))
2455 cpu = select_fallback_rq(task_cpu(p), p);
2456 #endif
2457
2458 return cpu;
2459 }
2460
sched_set_stop_task(int cpu,struct task_struct * stop)2461 void sched_set_stop_task(int cpu, struct task_struct *stop)
2462 {
2463 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2464 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2465
2466 if (stop) {
2467 /*
2468 * Make it appear like a SCHED_FIFO task, its something
2469 * userspace knows about and won't get confused about.
2470 *
2471 * Also, it will make PI more or less work without too
2472 * much confusion -- but then, stop work should not
2473 * rely on PI working anyway.
2474 */
2475 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2476
2477 stop->sched_class = &stop_sched_class;
2478 }
2479
2480 cpu_rq(cpu)->stop = stop;
2481
2482 if (old_stop) {
2483 /*
2484 * Reset it back to a normal scheduling class so that
2485 * it can die in pieces.
2486 */
2487 old_stop->sched_class = &rt_sched_class;
2488 }
2489 }
2490
2491 #else
2492
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2493 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2494 const struct cpumask *new_mask, bool check)
2495 {
2496 return set_cpus_allowed_ptr(p, new_mask);
2497 }
2498
2499 #endif /* CONFIG_SMP */
2500
2501 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2502 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2503 {
2504 struct rq *rq;
2505
2506 if (!schedstat_enabled())
2507 return;
2508
2509 rq = this_rq();
2510
2511 #ifdef CONFIG_SMP
2512 if (cpu == rq->cpu) {
2513 __schedstat_inc(rq->ttwu_local);
2514 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2515 } else {
2516 struct sched_domain *sd;
2517
2518 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2519 rcu_read_lock();
2520 for_each_domain(rq->cpu, sd) {
2521 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2522 __schedstat_inc(sd->ttwu_wake_remote);
2523 break;
2524 }
2525 }
2526 rcu_read_unlock();
2527 }
2528
2529 if (wake_flags & WF_MIGRATED)
2530 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2531 #endif /* CONFIG_SMP */
2532
2533 __schedstat_inc(rq->ttwu_count);
2534 __schedstat_inc(p->se.statistics.nr_wakeups);
2535
2536 if (wake_flags & WF_SYNC)
2537 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2538 }
2539
2540 /*
2541 * Mark the task runnable and perform wakeup-preemption.
2542 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2543 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2544 struct rq_flags *rf)
2545 {
2546 check_preempt_curr(rq, p, wake_flags);
2547 p->state = TASK_RUNNING;
2548 trace_sched_wakeup(p);
2549
2550 #ifdef CONFIG_SMP
2551 if (p->sched_class->task_woken) {
2552 /*
2553 * Our task @p is fully woken up and running; so its safe to
2554 * drop the rq->lock, hereafter rq is only used for statistics.
2555 */
2556 rq_unpin_lock(rq, rf);
2557 p->sched_class->task_woken(rq, p);
2558 rq_repin_lock(rq, rf);
2559 }
2560
2561 if (rq->idle_stamp) {
2562 u64 delta = rq_clock(rq) - rq->idle_stamp;
2563 u64 max = 2*rq->max_idle_balance_cost;
2564
2565 update_avg(&rq->avg_idle, delta);
2566
2567 if (rq->avg_idle > max)
2568 rq->avg_idle = max;
2569
2570 rq->idle_stamp = 0;
2571 }
2572 #endif
2573 }
2574
2575 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2576 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2577 struct rq_flags *rf)
2578 {
2579 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2580
2581 lockdep_assert_held(&rq->lock);
2582
2583 if (p->sched_contributes_to_load)
2584 rq->nr_uninterruptible--;
2585
2586 #ifdef CONFIG_SMP
2587 if (wake_flags & WF_MIGRATED)
2588 en_flags |= ENQUEUE_MIGRATED;
2589 else
2590 #endif
2591 if (p->in_iowait) {
2592 delayacct_blkio_end(p);
2593 atomic_dec(&task_rq(p)->nr_iowait);
2594 }
2595
2596 activate_task(rq, p, en_flags);
2597 ttwu_do_wakeup(rq, p, wake_flags, rf);
2598 }
2599
2600 /*
2601 * Consider @p being inside a wait loop:
2602 *
2603 * for (;;) {
2604 * set_current_state(TASK_UNINTERRUPTIBLE);
2605 *
2606 * if (CONDITION)
2607 * break;
2608 *
2609 * schedule();
2610 * }
2611 * __set_current_state(TASK_RUNNING);
2612 *
2613 * between set_current_state() and schedule(). In this case @p is still
2614 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2615 * an atomic manner.
2616 *
2617 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2618 * then schedule() must still happen and p->state can be changed to
2619 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2620 * need to do a full wakeup with enqueue.
2621 *
2622 * Returns: %true when the wakeup is done,
2623 * %false otherwise.
2624 */
ttwu_runnable(struct task_struct * p,int wake_flags)2625 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2626 {
2627 struct rq_flags rf;
2628 struct rq *rq;
2629 int ret = 0;
2630
2631 rq = __task_rq_lock(p, &rf);
2632 if (task_on_rq_queued(p)) {
2633 /* check_preempt_curr() may use rq clock */
2634 update_rq_clock(rq);
2635 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2636 ret = 1;
2637 }
2638 __task_rq_unlock(rq, &rf);
2639
2640 return ret;
2641 }
2642
2643 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2644 void sched_ttwu_pending(void *arg)
2645 {
2646 struct llist_node *llist = arg;
2647 struct rq *rq = this_rq();
2648 struct task_struct *p, *t;
2649 struct rq_flags rf;
2650
2651 if (!llist)
2652 return;
2653
2654 /*
2655 * rq::ttwu_pending racy indication of out-standing wakeups.
2656 * Races such that false-negatives are possible, since they
2657 * are shorter lived that false-positives would be.
2658 */
2659 WRITE_ONCE(rq->ttwu_pending, 0);
2660
2661 rq_lock_irqsave(rq, &rf);
2662 update_rq_clock(rq);
2663
2664 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2665 if (WARN_ON_ONCE(p->on_cpu))
2666 smp_cond_load_acquire(&p->on_cpu, !VAL);
2667
2668 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2669 set_task_cpu(p, cpu_of(rq));
2670
2671 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2672 }
2673
2674 rq_unlock_irqrestore(rq, &rf);
2675 }
2676
send_call_function_single_ipi(int cpu)2677 void send_call_function_single_ipi(int cpu)
2678 {
2679 struct rq *rq = cpu_rq(cpu);
2680
2681 if (!set_nr_if_polling(rq->idle))
2682 arch_send_call_function_single_ipi(cpu);
2683 else
2684 trace_sched_wake_idle_without_ipi(cpu);
2685 }
2686
2687 /*
2688 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2689 * necessary. The wakee CPU on receipt of the IPI will queue the task
2690 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2691 * of the wakeup instead of the waker.
2692 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2693 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2694 {
2695 struct rq *rq = cpu_rq(cpu);
2696
2697 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2698
2699 WRITE_ONCE(rq->ttwu_pending, 1);
2700 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2701 }
2702
wake_up_if_idle(int cpu)2703 void wake_up_if_idle(int cpu)
2704 {
2705 struct rq *rq = cpu_rq(cpu);
2706 struct rq_flags rf;
2707
2708 rcu_read_lock();
2709
2710 if (!is_idle_task(rcu_dereference(rq->curr)))
2711 goto out;
2712
2713 if (set_nr_if_polling(rq->idle)) {
2714 trace_sched_wake_idle_without_ipi(cpu);
2715 } else {
2716 rq_lock_irqsave(rq, &rf);
2717 if (is_idle_task(rq->curr))
2718 smp_send_reschedule(cpu);
2719 /* Else CPU is not idle, do nothing here: */
2720 rq_unlock_irqrestore(rq, &rf);
2721 }
2722
2723 out:
2724 rcu_read_unlock();
2725 }
2726
cpus_share_cache(int this_cpu,int that_cpu)2727 bool cpus_share_cache(int this_cpu, int that_cpu)
2728 {
2729 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2730 }
2731
ttwu_queue_cond(int cpu,int wake_flags)2732 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2733 {
2734 /*
2735 * If the CPU does not share cache, then queue the task on the
2736 * remote rqs wakelist to avoid accessing remote data.
2737 */
2738 if (!cpus_share_cache(smp_processor_id(), cpu))
2739 return true;
2740
2741 /*
2742 * If the task is descheduling and the only running task on the
2743 * CPU then use the wakelist to offload the task activation to
2744 * the soon-to-be-idle CPU as the current CPU is likely busy.
2745 * nr_running is checked to avoid unnecessary task stacking.
2746 */
2747 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2748 return true;
2749
2750 return false;
2751 }
2752
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2753 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2754 {
2755 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2756 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2757 return false;
2758
2759 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2760 __ttwu_queue_wakelist(p, cpu, wake_flags);
2761 return true;
2762 }
2763
2764 return false;
2765 }
2766
2767 #else /* !CONFIG_SMP */
2768
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2769 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2770 {
2771 return false;
2772 }
2773
2774 #endif /* CONFIG_SMP */
2775
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2776 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2777 {
2778 struct rq *rq = cpu_rq(cpu);
2779 struct rq_flags rf;
2780
2781 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2782 return;
2783
2784 rq_lock(rq, &rf);
2785 update_rq_clock(rq);
2786 ttwu_do_activate(rq, p, wake_flags, &rf);
2787 rq_unlock(rq, &rf);
2788 }
2789
2790 /*
2791 * Notes on Program-Order guarantees on SMP systems.
2792 *
2793 * MIGRATION
2794 *
2795 * The basic program-order guarantee on SMP systems is that when a task [t]
2796 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2797 * execution on its new CPU [c1].
2798 *
2799 * For migration (of runnable tasks) this is provided by the following means:
2800 *
2801 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2802 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2803 * rq(c1)->lock (if not at the same time, then in that order).
2804 * C) LOCK of the rq(c1)->lock scheduling in task
2805 *
2806 * Release/acquire chaining guarantees that B happens after A and C after B.
2807 * Note: the CPU doing B need not be c0 or c1
2808 *
2809 * Example:
2810 *
2811 * CPU0 CPU1 CPU2
2812 *
2813 * LOCK rq(0)->lock
2814 * sched-out X
2815 * sched-in Y
2816 * UNLOCK rq(0)->lock
2817 *
2818 * LOCK rq(0)->lock // orders against CPU0
2819 * dequeue X
2820 * UNLOCK rq(0)->lock
2821 *
2822 * LOCK rq(1)->lock
2823 * enqueue X
2824 * UNLOCK rq(1)->lock
2825 *
2826 * LOCK rq(1)->lock // orders against CPU2
2827 * sched-out Z
2828 * sched-in X
2829 * UNLOCK rq(1)->lock
2830 *
2831 *
2832 * BLOCKING -- aka. SLEEP + WAKEUP
2833 *
2834 * For blocking we (obviously) need to provide the same guarantee as for
2835 * migration. However the means are completely different as there is no lock
2836 * chain to provide order. Instead we do:
2837 *
2838 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2839 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2840 *
2841 * Example:
2842 *
2843 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2844 *
2845 * LOCK rq(0)->lock LOCK X->pi_lock
2846 * dequeue X
2847 * sched-out X
2848 * smp_store_release(X->on_cpu, 0);
2849 *
2850 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2851 * X->state = WAKING
2852 * set_task_cpu(X,2)
2853 *
2854 * LOCK rq(2)->lock
2855 * enqueue X
2856 * X->state = RUNNING
2857 * UNLOCK rq(2)->lock
2858 *
2859 * LOCK rq(2)->lock // orders against CPU1
2860 * sched-out Z
2861 * sched-in X
2862 * UNLOCK rq(2)->lock
2863 *
2864 * UNLOCK X->pi_lock
2865 * UNLOCK rq(0)->lock
2866 *
2867 *
2868 * However, for wakeups there is a second guarantee we must provide, namely we
2869 * must ensure that CONDITION=1 done by the caller can not be reordered with
2870 * accesses to the task state; see try_to_wake_up() and set_current_state().
2871 */
2872
2873 #ifdef CONFIG_SMP
2874 #ifdef CONFIG_SCHED_WALT
2875 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)2876 static inline void walt_try_to_wake_up(struct task_struct *p)
2877 {
2878 struct rq *rq = cpu_rq(task_cpu(p));
2879 struct rq_flags rf;
2880 u64 wallclock;
2881
2882 rq_lock_irqsave(rq, &rf);
2883 wallclock = sched_ktime_clock();
2884 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2885 update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2886 rq_unlock_irqrestore(rq, &rf);
2887 }
2888 #else
2889 #define walt_try_to_wake_up(a) {}
2890 #endif
2891 #endif
2892
2893 /**
2894 * try_to_wake_up - wake up a thread
2895 * @p: the thread to be awakened
2896 * @state: the mask of task states that can be woken
2897 * @wake_flags: wake modifier flags (WF_*)
2898 *
2899 * Conceptually does:
2900 *
2901 * If (@state & @p->state) @p->state = TASK_RUNNING.
2902 *
2903 * If the task was not queued/runnable, also place it back on a runqueue.
2904 *
2905 * This function is atomic against schedule() which would dequeue the task.
2906 *
2907 * It issues a full memory barrier before accessing @p->state, see the comment
2908 * with set_current_state().
2909 *
2910 * Uses p->pi_lock to serialize against concurrent wake-ups.
2911 *
2912 * Relies on p->pi_lock stabilizing:
2913 * - p->sched_class
2914 * - p->cpus_ptr
2915 * - p->sched_task_group
2916 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2917 *
2918 * Tries really hard to only take one task_rq(p)->lock for performance.
2919 * Takes rq->lock in:
2920 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2921 * - ttwu_queue() -- new rq, for enqueue of the task;
2922 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2923 *
2924 * As a consequence we race really badly with just about everything. See the
2925 * many memory barriers and their comments for details.
2926 *
2927 * Return: %true if @p->state changes (an actual wakeup was done),
2928 * %false otherwise.
2929 */
2930 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2931 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2932 {
2933 unsigned long flags;
2934 int cpu, success = 0;
2935
2936 preempt_disable();
2937 if (p == current) {
2938 /*
2939 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2940 * == smp_processor_id()'. Together this means we can special
2941 * case the whole 'p->on_rq && ttwu_runnable()' case below
2942 * without taking any locks.
2943 *
2944 * In particular:
2945 * - we rely on Program-Order guarantees for all the ordering,
2946 * - we're serialized against set_special_state() by virtue of
2947 * it disabling IRQs (this allows not taking ->pi_lock).
2948 */
2949 if (!(p->state & state))
2950 goto out;
2951
2952 success = 1;
2953 trace_sched_waking(p);
2954 p->state = TASK_RUNNING;
2955 trace_sched_wakeup(p);
2956 goto out;
2957 }
2958
2959 /*
2960 * If we are going to wake up a thread waiting for CONDITION we
2961 * need to ensure that CONDITION=1 done by the caller can not be
2962 * reordered with p->state check below. This pairs with smp_store_mb()
2963 * in set_current_state() that the waiting thread does.
2964 */
2965 raw_spin_lock_irqsave(&p->pi_lock, flags);
2966 smp_mb__after_spinlock();
2967 if (!(p->state & state))
2968 goto unlock;
2969
2970 trace_sched_waking(p);
2971
2972 /* We're going to change ->state: */
2973 success = 1;
2974
2975 /*
2976 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2977 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2978 * in smp_cond_load_acquire() below.
2979 *
2980 * sched_ttwu_pending() try_to_wake_up()
2981 * STORE p->on_rq = 1 LOAD p->state
2982 * UNLOCK rq->lock
2983 *
2984 * __schedule() (switch to task 'p')
2985 * LOCK rq->lock smp_rmb();
2986 * smp_mb__after_spinlock();
2987 * UNLOCK rq->lock
2988 *
2989 * [task p]
2990 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2991 *
2992 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2993 * __schedule(). See the comment for smp_mb__after_spinlock().
2994 *
2995 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2996 */
2997 smp_rmb();
2998 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2999 goto unlock;
3000
3001 #ifdef CONFIG_SMP
3002 /*
3003 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3004 * possible to, falsely, observe p->on_cpu == 0.
3005 *
3006 * One must be running (->on_cpu == 1) in order to remove oneself
3007 * from the runqueue.
3008 *
3009 * __schedule() (switch to task 'p') try_to_wake_up()
3010 * STORE p->on_cpu = 1 LOAD p->on_rq
3011 * UNLOCK rq->lock
3012 *
3013 * __schedule() (put 'p' to sleep)
3014 * LOCK rq->lock smp_rmb();
3015 * smp_mb__after_spinlock();
3016 * STORE p->on_rq = 0 LOAD p->on_cpu
3017 *
3018 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3019 * __schedule(). See the comment for smp_mb__after_spinlock().
3020 *
3021 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3022 * schedule()'s deactivate_task() has 'happened' and p will no longer
3023 * care about it's own p->state. See the comment in __schedule().
3024 */
3025 smp_acquire__after_ctrl_dep();
3026
3027 walt_try_to_wake_up(p);
3028
3029 /*
3030 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3031 * == 0), which means we need to do an enqueue, change p->state to
3032 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3033 * enqueue, such as ttwu_queue_wakelist().
3034 */
3035 p->state = TASK_WAKING;
3036
3037 /*
3038 * If the owning (remote) CPU is still in the middle of schedule() with
3039 * this task as prev, considering queueing p on the remote CPUs wake_list
3040 * which potentially sends an IPI instead of spinning on p->on_cpu to
3041 * let the waker make forward progress. This is safe because IRQs are
3042 * disabled and the IPI will deliver after on_cpu is cleared.
3043 *
3044 * Ensure we load task_cpu(p) after p->on_cpu:
3045 *
3046 * set_task_cpu(p, cpu);
3047 * STORE p->cpu = @cpu
3048 * __schedule() (switch to task 'p')
3049 * LOCK rq->lock
3050 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3051 * STORE p->on_cpu = 1 LOAD p->cpu
3052 *
3053 * to ensure we observe the correct CPU on which the task is currently
3054 * scheduling.
3055 */
3056 if (smp_load_acquire(&p->on_cpu) &&
3057 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3058 goto unlock;
3059
3060 /*
3061 * If the owning (remote) CPU is still in the middle of schedule() with
3062 * this task as prev, wait until its done referencing the task.
3063 *
3064 * Pairs with the smp_store_release() in finish_task().
3065 *
3066 * This ensures that tasks getting woken will be fully ordered against
3067 * their previous state and preserve Program Order.
3068 */
3069 smp_cond_load_acquire(&p->on_cpu, !VAL);
3070
3071 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3072 if (task_cpu(p) != cpu) {
3073 if (p->in_iowait) {
3074 delayacct_blkio_end(p);
3075 atomic_dec(&task_rq(p)->nr_iowait);
3076 }
3077
3078 wake_flags |= WF_MIGRATED;
3079 psi_ttwu_dequeue(p);
3080 set_task_cpu(p, cpu);
3081 }
3082 #else
3083 cpu = task_cpu(p);
3084 #endif /* CONFIG_SMP */
3085
3086 ttwu_queue(p, cpu, wake_flags);
3087 unlock:
3088 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3089 out:
3090 if (success)
3091 ttwu_stat(p, task_cpu(p), wake_flags);
3092 preempt_enable();
3093
3094 return success;
3095 }
3096
3097 /**
3098 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3099 * @p: Process for which the function is to be invoked, can be @current.
3100 * @func: Function to invoke.
3101 * @arg: Argument to function.
3102 *
3103 * If the specified task can be quickly locked into a definite state
3104 * (either sleeping or on a given runqueue), arrange to keep it in that
3105 * state while invoking @func(@arg). This function can use ->on_rq and
3106 * task_curr() to work out what the state is, if required. Given that
3107 * @func can be invoked with a runqueue lock held, it had better be quite
3108 * lightweight.
3109 *
3110 * Returns:
3111 * @false if the task slipped out from under the locks.
3112 * @true if the task was locked onto a runqueue or is sleeping.
3113 * However, @func can override this by returning @false.
3114 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3115 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3116 {
3117 struct rq_flags rf;
3118 bool ret = false;
3119 struct rq *rq;
3120
3121 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3122 if (p->on_rq) {
3123 rq = __task_rq_lock(p, &rf);
3124 if (task_rq(p) == rq)
3125 ret = func(p, arg);
3126 rq_unlock(rq, &rf);
3127 } else {
3128 switch (p->state) {
3129 case TASK_RUNNING:
3130 case TASK_WAKING:
3131 break;
3132 default:
3133 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3134 if (!p->on_rq)
3135 ret = func(p, arg);
3136 }
3137 }
3138 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3139 return ret;
3140 }
3141
3142 /**
3143 * wake_up_process - Wake up a specific process
3144 * @p: The process to be woken up.
3145 *
3146 * Attempt to wake up the nominated process and move it to the set of runnable
3147 * processes.
3148 *
3149 * Return: 1 if the process was woken up, 0 if it was already running.
3150 *
3151 * This function executes a full memory barrier before accessing the task state.
3152 */
wake_up_process(struct task_struct * p)3153 int wake_up_process(struct task_struct *p)
3154 {
3155 return try_to_wake_up(p, TASK_NORMAL, 0);
3156 }
3157 EXPORT_SYMBOL(wake_up_process);
3158
wake_up_state(struct task_struct * p,unsigned int state)3159 int wake_up_state(struct task_struct *p, unsigned int state)
3160 {
3161 return try_to_wake_up(p, state, 0);
3162 }
3163
3164 /*
3165 * Perform scheduler related setup for a newly forked process p.
3166 * p is forked by current.
3167 *
3168 * __sched_fork() is basic setup used by init_idle() too:
3169 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3170 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3171 {
3172 p->on_rq = 0;
3173
3174 p->se.on_rq = 0;
3175 p->se.exec_start = 0;
3176 p->se.sum_exec_runtime = 0;
3177 p->se.prev_sum_exec_runtime = 0;
3178 p->se.nr_migrations = 0;
3179 p->se.vruntime = 0;
3180 INIT_LIST_HEAD(&p->se.group_node);
3181
3182 #ifdef CONFIG_FAIR_GROUP_SCHED
3183 p->se.cfs_rq = NULL;
3184 #endif
3185
3186 #ifdef CONFIG_SCHEDSTATS
3187 /* Even if schedstat is disabled, there should not be garbage */
3188 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3189 #endif
3190
3191 RB_CLEAR_NODE(&p->dl.rb_node);
3192 init_dl_task_timer(&p->dl);
3193 init_dl_inactive_task_timer(&p->dl);
3194 __dl_clear_params(p);
3195
3196 INIT_LIST_HEAD(&p->rt.run_list);
3197 p->rt.timeout = 0;
3198 p->rt.time_slice = sched_rr_timeslice;
3199 p->rt.on_rq = 0;
3200 p->rt.on_list = 0;
3201
3202 #ifdef CONFIG_PREEMPT_NOTIFIERS
3203 INIT_HLIST_HEAD(&p->preempt_notifiers);
3204 #endif
3205
3206 #ifdef CONFIG_COMPACTION
3207 p->capture_control = NULL;
3208 #endif
3209 init_numa_balancing(clone_flags, p);
3210 #ifdef CONFIG_SMP
3211 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3212 #endif
3213 #ifdef CONFIG_SCHED_RTG
3214 p->rtg_depth = 0;
3215 #endif
3216 }
3217
3218 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3219
3220 #ifdef CONFIG_NUMA_BALANCING
3221
set_numabalancing_state(bool enabled)3222 void set_numabalancing_state(bool enabled)
3223 {
3224 if (enabled)
3225 static_branch_enable(&sched_numa_balancing);
3226 else
3227 static_branch_disable(&sched_numa_balancing);
3228 }
3229
3230 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3231 int sysctl_numa_balancing(struct ctl_table *table, int write,
3232 void *buffer, size_t *lenp, loff_t *ppos)
3233 {
3234 struct ctl_table t;
3235 int err;
3236 int state = static_branch_likely(&sched_numa_balancing);
3237
3238 if (write && !capable(CAP_SYS_ADMIN))
3239 return -EPERM;
3240
3241 t = *table;
3242 t.data = &state;
3243 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3244 if (err < 0)
3245 return err;
3246 if (write)
3247 set_numabalancing_state(state);
3248 return err;
3249 }
3250 #endif
3251 #endif
3252
3253 #ifdef CONFIG_SCHEDSTATS
3254
3255 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3256 static bool __initdata __sched_schedstats = false;
3257
set_schedstats(bool enabled)3258 static void set_schedstats(bool enabled)
3259 {
3260 if (enabled)
3261 static_branch_enable(&sched_schedstats);
3262 else
3263 static_branch_disable(&sched_schedstats);
3264 }
3265
force_schedstat_enabled(void)3266 void force_schedstat_enabled(void)
3267 {
3268 if (!schedstat_enabled()) {
3269 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3270 static_branch_enable(&sched_schedstats);
3271 }
3272 }
3273
setup_schedstats(char * str)3274 static int __init setup_schedstats(char *str)
3275 {
3276 int ret = 0;
3277 if (!str)
3278 goto out;
3279
3280 /*
3281 * This code is called before jump labels have been set up, so we can't
3282 * change the static branch directly just yet. Instead set a temporary
3283 * variable so init_schedstats() can do it later.
3284 */
3285 if (!strcmp(str, "enable")) {
3286 __sched_schedstats = true;
3287 ret = 1;
3288 } else if (!strcmp(str, "disable")) {
3289 __sched_schedstats = false;
3290 ret = 1;
3291 }
3292 out:
3293 if (!ret)
3294 pr_warn("Unable to parse schedstats=\n");
3295
3296 return ret;
3297 }
3298 __setup("schedstats=", setup_schedstats);
3299
init_schedstats(void)3300 static void __init init_schedstats(void)
3301 {
3302 set_schedstats(__sched_schedstats);
3303 }
3304
3305 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3306 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3307 size_t *lenp, loff_t *ppos)
3308 {
3309 struct ctl_table t;
3310 int err;
3311 int state = static_branch_likely(&sched_schedstats);
3312
3313 if (write && !capable(CAP_SYS_ADMIN))
3314 return -EPERM;
3315
3316 t = *table;
3317 t.data = &state;
3318 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3319 if (err < 0)
3320 return err;
3321 if (write)
3322 set_schedstats(state);
3323 return err;
3324 }
3325 #endif /* CONFIG_PROC_SYSCTL */
3326 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3327 static inline void init_schedstats(void) {}
3328 #endif /* CONFIG_SCHEDSTATS */
3329
3330 /*
3331 * fork()/clone()-time setup:
3332 */
sched_fork(unsigned long clone_flags,struct task_struct * p)3333 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3334 {
3335 unsigned long flags;
3336
3337 init_new_task_load(p);
3338 __sched_fork(clone_flags, p);
3339 /*
3340 * We mark the process as NEW here. This guarantees that
3341 * nobody will actually run it, and a signal or other external
3342 * event cannot wake it up and insert it on the runqueue either.
3343 */
3344 p->state = TASK_NEW;
3345
3346 /*
3347 * Make sure we do not leak PI boosting priority to the child.
3348 */
3349 p->prio = current->normal_prio;
3350
3351 uclamp_fork(p);
3352
3353 /*
3354 * Revert to default priority/policy on fork if requested.
3355 */
3356 if (unlikely(p->sched_reset_on_fork)) {
3357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3358 p->policy = SCHED_NORMAL;
3359 #ifdef CONFIG_SCHED_RTG
3360 if (current->rtg_depth != 0)
3361 p->static_prio = current->static_prio;
3362 else
3363 p->static_prio = NICE_TO_PRIO(0);
3364 #else
3365 p->static_prio = NICE_TO_PRIO(0);
3366 #endif
3367 p->rt_priority = 0;
3368 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3369 p->static_prio = NICE_TO_PRIO(0);
3370
3371 p->prio = p->normal_prio = p->static_prio;
3372 set_load_weight(p, false);
3373
3374 /*
3375 * We don't need the reset flag anymore after the fork. It has
3376 * fulfilled its duty:
3377 */
3378 p->sched_reset_on_fork = 0;
3379 }
3380
3381 if (dl_prio(p->prio))
3382 return -EAGAIN;
3383 else if (rt_prio(p->prio))
3384 p->sched_class = &rt_sched_class;
3385 else
3386 p->sched_class = &fair_sched_class;
3387
3388 init_entity_runnable_average(&p->se);
3389
3390 /*
3391 * The child is not yet in the pid-hash so no cgroup attach races,
3392 * and the cgroup is pinned to this child due to cgroup_fork()
3393 * is ran before sched_fork().
3394 *
3395 * Silence PROVE_RCU.
3396 */
3397 raw_spin_lock_irqsave(&p->pi_lock, flags);
3398 rseq_migrate(p);
3399 /*
3400 * We're setting the CPU for the first time, we don't migrate,
3401 * so use __set_task_cpu().
3402 */
3403 __set_task_cpu(p, smp_processor_id());
3404 if (p->sched_class->task_fork)
3405 p->sched_class->task_fork(p);
3406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3407
3408 #ifdef CONFIG_SCHED_INFO
3409 if (likely(sched_info_on()))
3410 memset(&p->sched_info, 0, sizeof(p->sched_info));
3411 #endif
3412 #if defined(CONFIG_SMP)
3413 p->on_cpu = 0;
3414 #endif
3415 init_task_preempt_count(p);
3416 #ifdef CONFIG_SMP
3417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3419 #endif
3420 return 0;
3421 }
3422
sched_post_fork(struct task_struct * p)3423 void sched_post_fork(struct task_struct *p)
3424 {
3425 uclamp_post_fork(p);
3426 }
3427
to_ratio(u64 period,u64 runtime)3428 unsigned long to_ratio(u64 period, u64 runtime)
3429 {
3430 if (runtime == RUNTIME_INF)
3431 return BW_UNIT;
3432
3433 /*
3434 * Doing this here saves a lot of checks in all
3435 * the calling paths, and returning zero seems
3436 * safe for them anyway.
3437 */
3438 if (period == 0)
3439 return 0;
3440
3441 return div64_u64(runtime << BW_SHIFT, period);
3442 }
3443
3444 /*
3445 * wake_up_new_task - wake up a newly created task for the first time.
3446 *
3447 * This function will do some initial scheduler statistics housekeeping
3448 * that must be done for every newly created context, then puts the task
3449 * on the runqueue and wakes it.
3450 */
wake_up_new_task(struct task_struct * p)3451 void wake_up_new_task(struct task_struct *p)
3452 {
3453 struct rq_flags rf;
3454 struct rq *rq;
3455
3456 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3457 add_new_task_to_grp(p);
3458
3459 p->state = TASK_RUNNING;
3460 #ifdef CONFIG_SMP
3461 /*
3462 * Fork balancing, do it here and not earlier because:
3463 * - cpus_ptr can change in the fork path
3464 * - any previously selected CPU might disappear through hotplug
3465 *
3466 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3467 * as we're not fully set-up yet.
3468 */
3469 p->recent_used_cpu = task_cpu(p);
3470 rseq_migrate(p);
3471 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3472 #endif
3473 rq = __task_rq_lock(p, &rf);
3474 update_rq_clock(rq);
3475 post_init_entity_util_avg(p);
3476
3477 mark_task_starting(p);
3478
3479 activate_task(rq, p, ENQUEUE_NOCLOCK);
3480 trace_sched_wakeup_new(p);
3481 check_preempt_curr(rq, p, WF_FORK);
3482 #ifdef CONFIG_SMP
3483 if (p->sched_class->task_woken) {
3484 /*
3485 * Nothing relies on rq->lock after this, so its fine to
3486 * drop it.
3487 */
3488 rq_unpin_lock(rq, &rf);
3489 p->sched_class->task_woken(rq, p);
3490 rq_repin_lock(rq, &rf);
3491 }
3492 #endif
3493 task_rq_unlock(rq, p, &rf);
3494 }
3495
3496 #ifdef CONFIG_PREEMPT_NOTIFIERS
3497
3498 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3499
preempt_notifier_inc(void)3500 void preempt_notifier_inc(void)
3501 {
3502 static_branch_inc(&preempt_notifier_key);
3503 }
3504 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3505
preempt_notifier_dec(void)3506 void preempt_notifier_dec(void)
3507 {
3508 static_branch_dec(&preempt_notifier_key);
3509 }
3510 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3511
3512 /**
3513 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3514 * @notifier: notifier struct to register
3515 */
preempt_notifier_register(struct preempt_notifier * notifier)3516 void preempt_notifier_register(struct preempt_notifier *notifier)
3517 {
3518 if (!static_branch_unlikely(&preempt_notifier_key))
3519 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3520
3521 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3522 }
3523 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3524
3525 /**
3526 * preempt_notifier_unregister - no longer interested in preemption notifications
3527 * @notifier: notifier struct to unregister
3528 *
3529 * This is *not* safe to call from within a preemption notifier.
3530 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3531 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3532 {
3533 hlist_del(¬ifier->link);
3534 }
3535 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3536
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3537 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3538 {
3539 struct preempt_notifier *notifier;
3540
3541 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3542 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3543 }
3544
fire_sched_in_preempt_notifiers(struct task_struct * curr)3545 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3546 {
3547 if (static_branch_unlikely(&preempt_notifier_key))
3548 __fire_sched_in_preempt_notifiers(curr);
3549 }
3550
3551 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3552 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3553 struct task_struct *next)
3554 {
3555 struct preempt_notifier *notifier;
3556
3557 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3558 notifier->ops->sched_out(notifier, next);
3559 }
3560
3561 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3562 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3563 struct task_struct *next)
3564 {
3565 if (static_branch_unlikely(&preempt_notifier_key))
3566 __fire_sched_out_preempt_notifiers(curr, next);
3567 }
3568
3569 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3570
fire_sched_in_preempt_notifiers(struct task_struct * curr)3571 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3572 {
3573 }
3574
3575 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3576 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3577 struct task_struct *next)
3578 {
3579 }
3580
3581 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3582
prepare_task(struct task_struct * next)3583 static inline void prepare_task(struct task_struct *next)
3584 {
3585 #ifdef CONFIG_SMP
3586 /*
3587 * Claim the task as running, we do this before switching to it
3588 * such that any running task will have this set.
3589 *
3590 * See the ttwu() WF_ON_CPU case and its ordering comment.
3591 */
3592 WRITE_ONCE(next->on_cpu, 1);
3593 #endif
3594 }
3595
finish_task(struct task_struct * prev)3596 static inline void finish_task(struct task_struct *prev)
3597 {
3598 #ifdef CONFIG_SMP
3599 /*
3600 * This must be the very last reference to @prev from this CPU. After
3601 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3602 * must ensure this doesn't happen until the switch is completely
3603 * finished.
3604 *
3605 * In particular, the load of prev->state in finish_task_switch() must
3606 * happen before this.
3607 *
3608 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3609 */
3610 smp_store_release(&prev->on_cpu, 0);
3611 #endif
3612 }
3613
3614 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3615 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3616 {
3617 /*
3618 * Since the runqueue lock will be released by the next
3619 * task (which is an invalid locking op but in the case
3620 * of the scheduler it's an obvious special-case), so we
3621 * do an early lockdep release here:
3622 */
3623 rq_unpin_lock(rq, rf);
3624 spin_release(&rq->lock.dep_map, _THIS_IP_);
3625 #ifdef CONFIG_DEBUG_SPINLOCK
3626 /* this is a valid case when another task releases the spinlock */
3627 rq->lock.owner = next;
3628 #endif
3629 }
3630
finish_lock_switch(struct rq * rq)3631 static inline void finish_lock_switch(struct rq *rq)
3632 {
3633 /*
3634 * If we are tracking spinlock dependencies then we have to
3635 * fix up the runqueue lock - which gets 'carried over' from
3636 * prev into current:
3637 */
3638 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3639 raw_spin_unlock_irq(&rq->lock);
3640 }
3641
3642 /*
3643 * NOP if the arch has not defined these:
3644 */
3645
3646 #ifndef prepare_arch_switch
3647 # define prepare_arch_switch(next) do { } while (0)
3648 #endif
3649
3650 #ifndef finish_arch_post_lock_switch
3651 # define finish_arch_post_lock_switch() do { } while (0)
3652 #endif
3653
3654 /**
3655 * prepare_task_switch - prepare to switch tasks
3656 * @rq: the runqueue preparing to switch
3657 * @prev: the current task that is being switched out
3658 * @next: the task we are going to switch to.
3659 *
3660 * This is called with the rq lock held and interrupts off. It must
3661 * be paired with a subsequent finish_task_switch after the context
3662 * switch.
3663 *
3664 * prepare_task_switch sets up locking and calls architecture specific
3665 * hooks.
3666 */
3667 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3668 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3669 struct task_struct *next)
3670 {
3671 kcov_prepare_switch(prev);
3672 sched_info_switch(rq, prev, next);
3673 perf_event_task_sched_out(prev, next);
3674 rseq_preempt(prev);
3675 fire_sched_out_preempt_notifiers(prev, next);
3676 prepare_task(next);
3677 prepare_arch_switch(next);
3678 }
3679
3680 /**
3681 * finish_task_switch - clean up after a task-switch
3682 * @prev: the thread we just switched away from.
3683 *
3684 * finish_task_switch must be called after the context switch, paired
3685 * with a prepare_task_switch call before the context switch.
3686 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3687 * and do any other architecture-specific cleanup actions.
3688 *
3689 * Note that we may have delayed dropping an mm in context_switch(). If
3690 * so, we finish that here outside of the runqueue lock. (Doing it
3691 * with the lock held can cause deadlocks; see schedule() for
3692 * details.)
3693 *
3694 * The context switch have flipped the stack from under us and restored the
3695 * local variables which were saved when this task called schedule() in the
3696 * past. prev == current is still correct but we need to recalculate this_rq
3697 * because prev may have moved to another CPU.
3698 */
finish_task_switch(struct task_struct * prev)3699 static struct rq *finish_task_switch(struct task_struct *prev)
3700 __releases(rq->lock)
3701 {
3702 struct rq *rq = this_rq();
3703 struct mm_struct *mm = rq->prev_mm;
3704 long prev_state;
3705
3706 /*
3707 * The previous task will have left us with a preempt_count of 2
3708 * because it left us after:
3709 *
3710 * schedule()
3711 * preempt_disable(); // 1
3712 * __schedule()
3713 * raw_spin_lock_irq(&rq->lock) // 2
3714 *
3715 * Also, see FORK_PREEMPT_COUNT.
3716 */
3717 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3718 "corrupted preempt_count: %s/%d/0x%x\n",
3719 current->comm, current->pid, preempt_count()))
3720 preempt_count_set(FORK_PREEMPT_COUNT);
3721
3722 rq->prev_mm = NULL;
3723
3724 /*
3725 * A task struct has one reference for the use as "current".
3726 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3727 * schedule one last time. The schedule call will never return, and
3728 * the scheduled task must drop that reference.
3729 *
3730 * We must observe prev->state before clearing prev->on_cpu (in
3731 * finish_task), otherwise a concurrent wakeup can get prev
3732 * running on another CPU and we could rave with its RUNNING -> DEAD
3733 * transition, resulting in a double drop.
3734 */
3735 prev_state = prev->state;
3736 vtime_task_switch(prev);
3737 perf_event_task_sched_in(prev, current);
3738 finish_task(prev);
3739 finish_lock_switch(rq);
3740 finish_arch_post_lock_switch();
3741 kcov_finish_switch(current);
3742
3743 fire_sched_in_preempt_notifiers(current);
3744 /*
3745 * When switching through a kernel thread, the loop in
3746 * membarrier_{private,global}_expedited() may have observed that
3747 * kernel thread and not issued an IPI. It is therefore possible to
3748 * schedule between user->kernel->user threads without passing though
3749 * switch_mm(). Membarrier requires a barrier after storing to
3750 * rq->curr, before returning to userspace, so provide them here:
3751 *
3752 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3753 * provided by mmdrop(),
3754 * - a sync_core for SYNC_CORE.
3755 */
3756 if (mm) {
3757 membarrier_mm_sync_core_before_usermode(mm);
3758 mmdrop(mm);
3759 }
3760 if (unlikely(prev_state == TASK_DEAD)) {
3761 if (prev->sched_class->task_dead)
3762 prev->sched_class->task_dead(prev);
3763
3764 /*
3765 * Remove function-return probe instances associated with this
3766 * task and put them back on the free list.
3767 */
3768 kprobe_flush_task(prev);
3769
3770 /* Task is done with its stack. */
3771 put_task_stack(prev);
3772
3773 put_task_struct_rcu_user(prev);
3774 }
3775
3776 tick_nohz_task_switch();
3777 return rq;
3778 }
3779
3780 #ifdef CONFIG_SMP
3781
3782 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3783 static void __balance_callback(struct rq *rq)
3784 {
3785 struct callback_head *head, *next;
3786 void (*func)(struct rq *rq);
3787 unsigned long flags;
3788
3789 raw_spin_lock_irqsave(&rq->lock, flags);
3790 head = rq->balance_callback;
3791 rq->balance_callback = NULL;
3792 while (head) {
3793 func = (void (*)(struct rq *))head->func;
3794 next = head->next;
3795 head->next = NULL;
3796 head = next;
3797
3798 func(rq);
3799 }
3800 raw_spin_unlock_irqrestore(&rq->lock, flags);
3801 }
3802
balance_callback(struct rq * rq)3803 static inline void balance_callback(struct rq *rq)
3804 {
3805 if (unlikely(rq->balance_callback))
3806 __balance_callback(rq);
3807 }
3808
3809 #else
3810
balance_callback(struct rq * rq)3811 static inline void balance_callback(struct rq *rq)
3812 {
3813 }
3814
3815 #endif
3816
3817 /**
3818 * schedule_tail - first thing a freshly forked thread must call.
3819 * @prev: the thread we just switched away from.
3820 */
schedule_tail(struct task_struct * prev)3821 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3822 __releases(rq->lock)
3823 {
3824 struct rq *rq;
3825
3826 /*
3827 * New tasks start with FORK_PREEMPT_COUNT, see there and
3828 * finish_task_switch() for details.
3829 *
3830 * finish_task_switch() will drop rq->lock() and lower preempt_count
3831 * and the preempt_enable() will end up enabling preemption (on
3832 * PREEMPT_COUNT kernels).
3833 */
3834
3835 rq = finish_task_switch(prev);
3836 balance_callback(rq);
3837 preempt_enable();
3838
3839 if (current->set_child_tid)
3840 put_user(task_pid_vnr(current), current->set_child_tid);
3841
3842 calculate_sigpending();
3843 }
3844
3845 /*
3846 * context_switch - switch to the new MM and the new thread's register state.
3847 */
3848 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3849 context_switch(struct rq *rq, struct task_struct *prev,
3850 struct task_struct *next, struct rq_flags *rf)
3851 {
3852 prepare_task_switch(rq, prev, next);
3853
3854 /*
3855 * For paravirt, this is coupled with an exit in switch_to to
3856 * combine the page table reload and the switch backend into
3857 * one hypercall.
3858 */
3859 arch_start_context_switch(prev);
3860
3861 /*
3862 * kernel -> kernel lazy + transfer active
3863 * user -> kernel lazy + mmgrab() active
3864 *
3865 * kernel -> user switch + mmdrop() active
3866 * user -> user switch
3867 */
3868 if (!next->mm) { // to kernel
3869 enter_lazy_tlb(prev->active_mm, next);
3870
3871 next->active_mm = prev->active_mm;
3872 if (prev->mm) // from user
3873 mmgrab(prev->active_mm);
3874 else
3875 prev->active_mm = NULL;
3876 } else { // to user
3877 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3878 /*
3879 * sys_membarrier() requires an smp_mb() between setting
3880 * rq->curr / membarrier_switch_mm() and returning to userspace.
3881 *
3882 * The below provides this either through switch_mm(), or in
3883 * case 'prev->active_mm == next->mm' through
3884 * finish_task_switch()'s mmdrop().
3885 */
3886 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3887
3888 if (!prev->mm) { // from kernel
3889 /* will mmdrop() in finish_task_switch(). */
3890 rq->prev_mm = prev->active_mm;
3891 prev->active_mm = NULL;
3892 }
3893 }
3894
3895 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3896
3897 prepare_lock_switch(rq, next, rf);
3898
3899 /* Here we just switch the register state and the stack. */
3900 switch_to(prev, next, prev);
3901 barrier();
3902
3903 return finish_task_switch(prev);
3904 }
3905
3906 /*
3907 * nr_running and nr_context_switches:
3908 *
3909 * externally visible scheduler statistics: current number of runnable
3910 * threads, total number of context switches performed since bootup.
3911 */
nr_running(void)3912 unsigned long nr_running(void)
3913 {
3914 unsigned long i, sum = 0;
3915
3916 for_each_online_cpu(i)
3917 sum += cpu_rq(i)->nr_running;
3918
3919 return sum;
3920 }
3921
3922 /*
3923 * Check if only the current task is running on the CPU.
3924 *
3925 * Caution: this function does not check that the caller has disabled
3926 * preemption, thus the result might have a time-of-check-to-time-of-use
3927 * race. The caller is responsible to use it correctly, for example:
3928 *
3929 * - from a non-preemptible section (of course)
3930 *
3931 * - from a thread that is bound to a single CPU
3932 *
3933 * - in a loop with very short iterations (e.g. a polling loop)
3934 */
single_task_running(void)3935 bool single_task_running(void)
3936 {
3937 return raw_rq()->nr_running == 1;
3938 }
3939 EXPORT_SYMBOL(single_task_running);
3940
nr_context_switches(void)3941 unsigned long long nr_context_switches(void)
3942 {
3943 int i;
3944 unsigned long long sum = 0;
3945
3946 for_each_possible_cpu(i)
3947 sum += cpu_rq(i)->nr_switches;
3948
3949 return sum;
3950 }
3951
3952 /*
3953 * Consumers of these two interfaces, like for example the cpuidle menu
3954 * governor, are using nonsensical data. Preferring shallow idle state selection
3955 * for a CPU that has IO-wait which might not even end up running the task when
3956 * it does become runnable.
3957 */
3958
nr_iowait_cpu(int cpu)3959 unsigned long nr_iowait_cpu(int cpu)
3960 {
3961 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3962 }
3963
3964 /*
3965 * IO-wait accounting, and how its mostly bollocks (on SMP).
3966 *
3967 * The idea behind IO-wait account is to account the idle time that we could
3968 * have spend running if it were not for IO. That is, if we were to improve the
3969 * storage performance, we'd have a proportional reduction in IO-wait time.
3970 *
3971 * This all works nicely on UP, where, when a task blocks on IO, we account
3972 * idle time as IO-wait, because if the storage were faster, it could've been
3973 * running and we'd not be idle.
3974 *
3975 * This has been extended to SMP, by doing the same for each CPU. This however
3976 * is broken.
3977 *
3978 * Imagine for instance the case where two tasks block on one CPU, only the one
3979 * CPU will have IO-wait accounted, while the other has regular idle. Even
3980 * though, if the storage were faster, both could've ran at the same time,
3981 * utilising both CPUs.
3982 *
3983 * This means, that when looking globally, the current IO-wait accounting on
3984 * SMP is a lower bound, by reason of under accounting.
3985 *
3986 * Worse, since the numbers are provided per CPU, they are sometimes
3987 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3988 * associated with any one particular CPU, it can wake to another CPU than it
3989 * blocked on. This means the per CPU IO-wait number is meaningless.
3990 *
3991 * Task CPU affinities can make all that even more 'interesting'.
3992 */
3993
nr_iowait(void)3994 unsigned long nr_iowait(void)
3995 {
3996 unsigned long i, sum = 0;
3997
3998 for_each_possible_cpu(i)
3999 sum += nr_iowait_cpu(i);
4000
4001 return sum;
4002 }
4003
4004 #ifdef CONFIG_SMP
4005
4006 /*
4007 * sched_exec - execve() is a valuable balancing opportunity, because at
4008 * this point the task has the smallest effective memory and cache footprint.
4009 */
sched_exec(void)4010 void sched_exec(void)
4011 {
4012 struct task_struct *p = current;
4013 unsigned long flags;
4014 int dest_cpu;
4015
4016 raw_spin_lock_irqsave(&p->pi_lock, flags);
4017 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4018 if (dest_cpu == smp_processor_id())
4019 goto unlock;
4020
4021 if (likely(cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu)))) {
4022 struct migration_arg arg = { p, dest_cpu };
4023
4024 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4025 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4026 return;
4027 }
4028 unlock:
4029 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4030 }
4031
4032 #endif
4033
4034 DEFINE_PER_CPU(struct kernel_stat, kstat);
4035 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4036
4037 EXPORT_PER_CPU_SYMBOL(kstat);
4038 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4039
4040 /*
4041 * The function fair_sched_class.update_curr accesses the struct curr
4042 * and its field curr->exec_start; when called from task_sched_runtime(),
4043 * we observe a high rate of cache misses in practice.
4044 * Prefetching this data results in improved performance.
4045 */
prefetch_curr_exec_start(struct task_struct * p)4046 static inline void prefetch_curr_exec_start(struct task_struct *p)
4047 {
4048 #ifdef CONFIG_FAIR_GROUP_SCHED
4049 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4050 #else
4051 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4052 #endif
4053 prefetch(curr);
4054 prefetch(&curr->exec_start);
4055 }
4056
4057 /*
4058 * Return accounted runtime for the task.
4059 * In case the task is currently running, return the runtime plus current's
4060 * pending runtime that have not been accounted yet.
4061 */
task_sched_runtime(struct task_struct * p)4062 unsigned long long task_sched_runtime(struct task_struct *p)
4063 {
4064 struct rq_flags rf;
4065 struct rq *rq;
4066 u64 ns;
4067
4068 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4069 /*
4070 * 64-bit doesn't need locks to atomically read a 64-bit value.
4071 * So we have a optimization chance when the task's delta_exec is 0.
4072 * Reading ->on_cpu is racy, but this is ok.
4073 *
4074 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4075 * If we race with it entering CPU, unaccounted time is 0. This is
4076 * indistinguishable from the read occurring a few cycles earlier.
4077 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4078 * been accounted, so we're correct here as well.
4079 */
4080 if (!p->on_cpu || !task_on_rq_queued(p))
4081 return p->se.sum_exec_runtime;
4082 #endif
4083
4084 rq = task_rq_lock(p, &rf);
4085 /*
4086 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4087 * project cycles that may never be accounted to this
4088 * thread, breaking clock_gettime().
4089 */
4090 if (task_current(rq, p) && task_on_rq_queued(p)) {
4091 prefetch_curr_exec_start(p);
4092 update_rq_clock(rq);
4093 p->sched_class->update_curr(rq);
4094 }
4095 ns = p->se.sum_exec_runtime;
4096 task_rq_unlock(rq, p, &rf);
4097
4098 return ns;
4099 }
4100
4101 /*
4102 * This function gets called by the timer code, with HZ frequency.
4103 * We call it with interrupts disabled.
4104 */
scheduler_tick(void)4105 void scheduler_tick(void)
4106 {
4107 int cpu = smp_processor_id();
4108 struct rq *rq = cpu_rq(cpu);
4109 struct task_struct *curr = rq->curr;
4110 struct rq_flags rf;
4111 u64 wallclock;
4112 unsigned long thermal_pressure;
4113
4114 arch_scale_freq_tick();
4115 sched_clock_tick();
4116
4117 rq_lock(rq, &rf);
4118
4119 set_window_start(rq);
4120 wallclock = sched_ktime_clock();
4121 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4122 update_rq_clock(rq);
4123 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4124 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4125 curr->sched_class->task_tick(rq, curr, 0);
4126 calc_global_load_tick(rq);
4127 psi_task_tick(rq);
4128
4129 rq_unlock(rq, &rf);
4130
4131 #ifdef CONFIG_SCHED_RTG
4132 sched_update_rtg_tick(curr);
4133 #endif
4134 perf_event_task_tick();
4135
4136 #ifdef CONFIG_SMP
4137 rq->idle_balance = idle_cpu(cpu);
4138 trigger_load_balance(rq);
4139
4140 #ifdef CONFIG_SCHED_EAS
4141 if (curr->sched_class->check_for_migration)
4142 curr->sched_class->check_for_migration(rq, curr);
4143 #endif
4144 #endif
4145 }
4146
4147 #ifdef CONFIG_NO_HZ_FULL
4148
4149 struct tick_work {
4150 int cpu;
4151 atomic_t state;
4152 struct delayed_work work;
4153 };
4154 /* Values for ->state, see diagram below. */
4155 #define TICK_SCHED_REMOTE_OFFLINE 0
4156 #define TICK_SCHED_REMOTE_OFFLINING 1
4157 #define TICK_SCHED_REMOTE_RUNNING 2
4158
4159 /*
4160 * State diagram for ->state:
4161 *
4162 *
4163 * TICK_SCHED_REMOTE_OFFLINE
4164 * | ^
4165 * | |
4166 * | | sched_tick_remote()
4167 * | |
4168 * | |
4169 * +--TICK_SCHED_REMOTE_OFFLINING
4170 * | ^
4171 * | |
4172 * sched_tick_start() | | sched_tick_stop()
4173 * | |
4174 * V |
4175 * TICK_SCHED_REMOTE_RUNNING
4176 *
4177 *
4178 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4179 * and sched_tick_start() are happy to leave the state in RUNNING.
4180 */
4181
4182 static struct tick_work __percpu *tick_work_cpu;
4183
sched_tick_remote(struct work_struct * work)4184 static void sched_tick_remote(struct work_struct *work)
4185 {
4186 struct delayed_work *dwork = to_delayed_work(work);
4187 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4188 int cpu = twork->cpu;
4189 struct rq *rq = cpu_rq(cpu);
4190 struct task_struct *curr;
4191 struct rq_flags rf;
4192 u64 delta;
4193 int os;
4194
4195 /*
4196 * Handle the tick only if it appears the remote CPU is running in full
4197 * dynticks mode. The check is racy by nature, but missing a tick or
4198 * having one too much is no big deal because the scheduler tick updates
4199 * statistics and checks timeslices in a time-independent way, regardless
4200 * of when exactly it is running.
4201 */
4202 if (!tick_nohz_tick_stopped_cpu(cpu))
4203 goto out_requeue;
4204
4205 rq_lock_irq(rq, &rf);
4206 curr = rq->curr;
4207 if (cpu_is_offline(cpu))
4208 goto out_unlock;
4209
4210 update_rq_clock(rq);
4211
4212 if (!is_idle_task(curr)) {
4213 /*
4214 * Make sure the next tick runs within a reasonable
4215 * amount of time.
4216 */
4217 delta = rq_clock_task(rq) - curr->se.exec_start;
4218 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4219 }
4220 curr->sched_class->task_tick(rq, curr, 0);
4221
4222 calc_load_nohz_remote(rq);
4223 out_unlock:
4224 rq_unlock_irq(rq, &rf);
4225 out_requeue:
4226
4227 /*
4228 * Run the remote tick once per second (1Hz). This arbitrary
4229 * frequency is large enough to avoid overload but short enough
4230 * to keep scheduler internal stats reasonably up to date. But
4231 * first update state to reflect hotplug activity if required.
4232 */
4233 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4234 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4235 if (os == TICK_SCHED_REMOTE_RUNNING)
4236 queue_delayed_work(system_unbound_wq, dwork, HZ);
4237 }
4238
sched_tick_start(int cpu)4239 static void sched_tick_start(int cpu)
4240 {
4241 int os;
4242 struct tick_work *twork;
4243
4244 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4245 return;
4246
4247 WARN_ON_ONCE(!tick_work_cpu);
4248
4249 twork = per_cpu_ptr(tick_work_cpu, cpu);
4250 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4251 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4252 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4253 twork->cpu = cpu;
4254 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4255 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4256 }
4257 }
4258
4259 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4260 static void sched_tick_stop(int cpu)
4261 {
4262 struct tick_work *twork;
4263 int os;
4264
4265 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4266 return;
4267
4268 WARN_ON_ONCE(!tick_work_cpu);
4269
4270 twork = per_cpu_ptr(tick_work_cpu, cpu);
4271 /* There cannot be competing actions, but don't rely on stop-machine. */
4272 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4273 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4274 /* Don't cancel, as this would mess up the state machine. */
4275 }
4276 #endif /* CONFIG_HOTPLUG_CPU */
4277
sched_tick_offload_init(void)4278 int __init sched_tick_offload_init(void)
4279 {
4280 tick_work_cpu = alloc_percpu(struct tick_work);
4281 BUG_ON(!tick_work_cpu);
4282 return 0;
4283 }
4284
4285 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4286 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4287 static inline void sched_tick_stop(int cpu) { }
4288 #endif
4289
4290 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4292 /*
4293 * If the value passed in is equal to the current preempt count
4294 * then we just disabled preemption. Start timing the latency.
4295 */
preempt_latency_start(int val)4296 static inline void preempt_latency_start(int val)
4297 {
4298 if (preempt_count() == val) {
4299 unsigned long ip = get_lock_parent_ip();
4300 #ifdef CONFIG_DEBUG_PREEMPT
4301 current->preempt_disable_ip = ip;
4302 #endif
4303 trace_preempt_off(CALLER_ADDR0, ip);
4304 }
4305 }
4306
preempt_count_add(int val)4307 void preempt_count_add(int val)
4308 {
4309 #ifdef CONFIG_DEBUG_PREEMPT
4310 /*
4311 * Underflow?
4312 */
4313 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4314 return;
4315 #endif
4316 __preempt_count_add(val);
4317 #ifdef CONFIG_DEBUG_PREEMPT
4318 /*
4319 * Spinlock count overflowing soon?
4320 */
4321 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4322 PREEMPT_MASK - 10);
4323 #endif
4324 preempt_latency_start(val);
4325 }
4326 EXPORT_SYMBOL(preempt_count_add);
4327 NOKPROBE_SYMBOL(preempt_count_add);
4328
4329 /*
4330 * If the value passed in equals to the current preempt count
4331 * then we just enabled preemption. Stop timing the latency.
4332 */
preempt_latency_stop(int val)4333 static inline void preempt_latency_stop(int val)
4334 {
4335 if (preempt_count() == val)
4336 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4337 }
4338
preempt_count_sub(int val)4339 void preempt_count_sub(int val)
4340 {
4341 #ifdef CONFIG_DEBUG_PREEMPT
4342 /*
4343 * Underflow?
4344 */
4345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4346 return;
4347 /*
4348 * Is the spinlock portion underflowing?
4349 */
4350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4351 !(preempt_count() & PREEMPT_MASK)))
4352 return;
4353 #endif
4354
4355 preempt_latency_stop(val);
4356 __preempt_count_sub(val);
4357 }
4358 EXPORT_SYMBOL(preempt_count_sub);
4359 NOKPROBE_SYMBOL(preempt_count_sub);
4360
4361 #else
preempt_latency_start(int val)4362 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4363 static inline void preempt_latency_stop(int val) { }
4364 #endif
4365
get_preempt_disable_ip(struct task_struct * p)4366 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4367 {
4368 #ifdef CONFIG_DEBUG_PREEMPT
4369 return p->preempt_disable_ip;
4370 #else
4371 return 0;
4372 #endif
4373 }
4374
4375 /*
4376 * Print scheduling while atomic bug:
4377 */
__schedule_bug(struct task_struct * prev)4378 static noinline void __schedule_bug(struct task_struct *prev)
4379 {
4380 /* Save this before calling printk(), since that will clobber it */
4381 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4382
4383 if (oops_in_progress)
4384 return;
4385
4386 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4387 prev->comm, prev->pid, preempt_count());
4388
4389 debug_show_held_locks(prev);
4390 print_modules();
4391 if (irqs_disabled())
4392 print_irqtrace_events(prev);
4393 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4394 && in_atomic_preempt_off()) {
4395 pr_err("Preemption disabled at:");
4396 print_ip_sym(KERN_ERR, preempt_disable_ip);
4397 }
4398 if (panic_on_warn)
4399 panic("scheduling while atomic\n");
4400
4401 dump_stack();
4402 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4403 }
4404
4405 /*
4406 * Various schedule()-time debugging checks and statistics:
4407 */
schedule_debug(struct task_struct * prev,bool preempt)4408 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4409 {
4410 #ifdef CONFIG_SCHED_STACK_END_CHECK
4411 if (task_stack_end_corrupted(prev))
4412 panic("corrupted stack end detected inside scheduler\n");
4413
4414 if (task_scs_end_corrupted(prev))
4415 panic("corrupted shadow stack detected inside scheduler\n");
4416 #endif
4417
4418 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4419 if (!preempt && prev->state && prev->non_block_count) {
4420 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4421 prev->comm, prev->pid, prev->non_block_count);
4422 dump_stack();
4423 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4424 }
4425 #endif
4426
4427 if (unlikely(in_atomic_preempt_off())) {
4428 __schedule_bug(prev);
4429 preempt_count_set(PREEMPT_DISABLED);
4430 }
4431 rcu_sleep_check();
4432
4433 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4434
4435 schedstat_inc(this_rq()->sched_count);
4436 }
4437
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4438 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4439 struct rq_flags *rf)
4440 {
4441 #ifdef CONFIG_SMP
4442 const struct sched_class *class;
4443 /*
4444 * We must do the balancing pass before put_prev_task(), such
4445 * that when we release the rq->lock the task is in the same
4446 * state as before we took rq->lock.
4447 *
4448 * We can terminate the balance pass as soon as we know there is
4449 * a runnable task of @class priority or higher.
4450 */
4451 for_class_range(class, prev->sched_class, &idle_sched_class) {
4452 if (class->balance(rq, prev, rf))
4453 break;
4454 }
4455 #endif
4456
4457 put_prev_task(rq, prev);
4458 }
4459
4460 /*
4461 * Pick up the highest-prio task:
4462 */
4463 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4464 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4465 {
4466 const struct sched_class *class;
4467 struct task_struct *p;
4468
4469 /*
4470 * Optimization: we know that if all tasks are in the fair class we can
4471 * call that function directly, but only if the @prev task wasn't of a
4472 * higher scheduling class, because otherwise those loose the
4473 * opportunity to pull in more work from other CPUs.
4474 */
4475 if (likely(prev->sched_class <= &fair_sched_class &&
4476 rq->nr_running == rq->cfs.h_nr_running)) {
4477
4478 p = pick_next_task_fair(rq, prev, rf);
4479 if (unlikely(p == RETRY_TASK))
4480 goto restart;
4481
4482 /* Assumes fair_sched_class->next == idle_sched_class */
4483 if (!p) {
4484 put_prev_task(rq, prev);
4485 p = pick_next_task_idle(rq);
4486 }
4487
4488 return p;
4489 }
4490
4491 restart:
4492 put_prev_task_balance(rq, prev, rf);
4493
4494 for_each_class(class) {
4495 p = class->pick_next_task(rq);
4496 if (p)
4497 return p;
4498 }
4499
4500 /* The idle class should always have a runnable task: */
4501 BUG();
4502 }
4503
4504 /*
4505 * __schedule() is the main scheduler function.
4506 *
4507 * The main means of driving the scheduler and thus entering this function are:
4508 *
4509 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4510 *
4511 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4512 * paths. For example, see arch/x86/entry_64.S.
4513 *
4514 * To drive preemption between tasks, the scheduler sets the flag in timer
4515 * interrupt handler scheduler_tick().
4516 *
4517 * 3. Wakeups don't really cause entry into schedule(). They add a
4518 * task to the run-queue and that's it.
4519 *
4520 * Now, if the new task added to the run-queue preempts the current
4521 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4522 * called on the nearest possible occasion:
4523 *
4524 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4525 *
4526 * - in syscall or exception context, at the next outmost
4527 * preempt_enable(). (this might be as soon as the wake_up()'s
4528 * spin_unlock()!)
4529 *
4530 * - in IRQ context, return from interrupt-handler to
4531 * preemptible context
4532 *
4533 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4534 * then at the next:
4535 *
4536 * - cond_resched() call
4537 * - explicit schedule() call
4538 * - return from syscall or exception to user-space
4539 * - return from interrupt-handler to user-space
4540 *
4541 * WARNING: must be called with preemption disabled!
4542 */
__schedule(bool preempt)4543 static void __sched notrace __schedule(bool preempt)
4544 {
4545 struct task_struct *prev, *next;
4546 unsigned long *switch_count;
4547 unsigned long prev_state;
4548 struct rq_flags rf;
4549 struct rq *rq;
4550 int cpu;
4551 u64 wallclock;
4552
4553 cpu = smp_processor_id();
4554 rq = cpu_rq(cpu);
4555 prev = rq->curr;
4556
4557 schedule_debug(prev, preempt);
4558
4559 if (sched_feat(HRTICK))
4560 hrtick_clear(rq);
4561
4562 local_irq_disable();
4563 rcu_note_context_switch(preempt);
4564
4565 /*
4566 * Make sure that signal_pending_state()->signal_pending() below
4567 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4568 * done by the caller to avoid the race with signal_wake_up():
4569 *
4570 * __set_current_state(@state) signal_wake_up()
4571 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4572 * wake_up_state(p, state)
4573 * LOCK rq->lock LOCK p->pi_state
4574 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4575 * if (signal_pending_state()) if (p->state & @state)
4576 *
4577 * Also, the membarrier system call requires a full memory barrier
4578 * after coming from user-space, before storing to rq->curr.
4579 */
4580 rq_lock(rq, &rf);
4581 smp_mb__after_spinlock();
4582
4583 /* Promote REQ to ACT */
4584 rq->clock_update_flags <<= 1;
4585 update_rq_clock(rq);
4586
4587 switch_count = &prev->nivcsw;
4588
4589 /*
4590 * We must load prev->state once (task_struct::state is volatile), such
4591 * that:
4592 *
4593 * - we form a control dependency vs deactivate_task() below.
4594 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4595 */
4596 prev_state = prev->state;
4597 if (!preempt && prev_state) {
4598 if (signal_pending_state(prev_state, prev)) {
4599 prev->state = TASK_RUNNING;
4600 } else {
4601 prev->sched_contributes_to_load =
4602 (prev_state & TASK_UNINTERRUPTIBLE) &&
4603 !(prev_state & TASK_NOLOAD) &&
4604 !(prev->flags & PF_FROZEN);
4605
4606 if (prev->sched_contributes_to_load)
4607 rq->nr_uninterruptible++;
4608
4609 /*
4610 * __schedule() ttwu()
4611 * prev_state = prev->state; if (p->on_rq && ...)
4612 * if (prev_state) goto out;
4613 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4614 * p->state = TASK_WAKING
4615 *
4616 * Where __schedule() and ttwu() have matching control dependencies.
4617 *
4618 * After this, schedule() must not care about p->state any more.
4619 */
4620 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4621
4622 if (prev->in_iowait) {
4623 atomic_inc(&rq->nr_iowait);
4624 delayacct_blkio_start();
4625 }
4626 }
4627 switch_count = &prev->nvcsw;
4628 }
4629
4630 next = pick_next_task(rq, prev, &rf);
4631 clear_tsk_need_resched(prev);
4632 clear_preempt_need_resched();
4633
4634 wallclock = sched_ktime_clock();
4635 if (likely(prev != next)) {
4636 #ifdef CONFIG_SCHED_WALT
4637 if (!prev->on_rq)
4638 prev->last_sleep_ts = wallclock;
4639 #endif
4640 update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
4641 update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
4642 rq->nr_switches++;
4643 /*
4644 * RCU users of rcu_dereference(rq->curr) may not see
4645 * changes to task_struct made by pick_next_task().
4646 */
4647 RCU_INIT_POINTER(rq->curr, next);
4648 /*
4649 * The membarrier system call requires each architecture
4650 * to have a full memory barrier after updating
4651 * rq->curr, before returning to user-space.
4652 *
4653 * Here are the schemes providing that barrier on the
4654 * various architectures:
4655 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4656 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4657 * - finish_lock_switch() for weakly-ordered
4658 * architectures where spin_unlock is a full barrier,
4659 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4660 * is a RELEASE barrier),
4661 */
4662 ++*switch_count;
4663
4664 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4665
4666 trace_sched_switch(preempt, prev, next);
4667
4668 /* Also unlocks the rq: */
4669 rq = context_switch(rq, prev, next, &rf);
4670 } else {
4671 update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
4672 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4673 rq_unlock_irq(rq, &rf);
4674 }
4675
4676 balance_callback(rq);
4677 }
4678
do_task_dead(void)4679 void __noreturn do_task_dead(void)
4680 {
4681 /* Causes final put_task_struct in finish_task_switch(): */
4682 set_special_state(TASK_DEAD);
4683
4684 /* Tell freezer to ignore us: */
4685 current->flags |= PF_NOFREEZE;
4686
4687 __schedule(false);
4688 BUG();
4689
4690 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4691 for (;;)
4692 cpu_relax();
4693 }
4694
sched_submit_work(struct task_struct * tsk)4695 static inline void sched_submit_work(struct task_struct *tsk)
4696 {
4697 unsigned int task_flags;
4698
4699 if (!tsk->state)
4700 return;
4701
4702 task_flags = tsk->flags;
4703 /*
4704 * If a worker went to sleep, notify and ask workqueue whether
4705 * it wants to wake up a task to maintain concurrency.
4706 * As this function is called inside the schedule() context,
4707 * we disable preemption to avoid it calling schedule() again
4708 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4709 * requires it.
4710 */
4711 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4712 preempt_disable();
4713 if (task_flags & PF_WQ_WORKER)
4714 wq_worker_sleeping(tsk);
4715 else
4716 io_wq_worker_sleeping(tsk);
4717 preempt_enable_no_resched();
4718 }
4719
4720 if (tsk_is_pi_blocked(tsk))
4721 return;
4722
4723 /*
4724 * If we are going to sleep and we have plugged IO queued,
4725 * make sure to submit it to avoid deadlocks.
4726 */
4727 if (blk_needs_flush_plug(tsk))
4728 blk_schedule_flush_plug(tsk);
4729 }
4730
sched_update_worker(struct task_struct * tsk)4731 static void sched_update_worker(struct task_struct *tsk)
4732 {
4733 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4734 if (tsk->flags & PF_WQ_WORKER)
4735 wq_worker_running(tsk);
4736 else
4737 io_wq_worker_running(tsk);
4738 }
4739 }
4740
schedule(void)4741 asmlinkage __visible void __sched schedule(void)
4742 {
4743 struct task_struct *tsk = current;
4744
4745 sched_submit_work(tsk);
4746 do {
4747 preempt_disable();
4748 __schedule(false);
4749 sched_preempt_enable_no_resched();
4750 } while (need_resched());
4751 sched_update_worker(tsk);
4752 }
4753 EXPORT_SYMBOL(schedule);
4754
4755 /*
4756 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4757 * state (have scheduled out non-voluntarily) by making sure that all
4758 * tasks have either left the run queue or have gone into user space.
4759 * As idle tasks do not do either, they must not ever be preempted
4760 * (schedule out non-voluntarily).
4761 *
4762 * schedule_idle() is similar to schedule_preempt_disable() except that it
4763 * never enables preemption because it does not call sched_submit_work().
4764 */
schedule_idle(void)4765 void __sched schedule_idle(void)
4766 {
4767 /*
4768 * As this skips calling sched_submit_work(), which the idle task does
4769 * regardless because that function is a nop when the task is in a
4770 * TASK_RUNNING state, make sure this isn't used someplace that the
4771 * current task can be in any other state. Note, idle is always in the
4772 * TASK_RUNNING state.
4773 */
4774 WARN_ON_ONCE(current->state);
4775 do {
4776 __schedule(false);
4777 } while (need_resched());
4778 }
4779
4780 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4781 asmlinkage __visible void __sched schedule_user(void)
4782 {
4783 /*
4784 * If we come here after a random call to set_need_resched(),
4785 * or we have been woken up remotely but the IPI has not yet arrived,
4786 * we haven't yet exited the RCU idle mode. Do it here manually until
4787 * we find a better solution.
4788 *
4789 * NB: There are buggy callers of this function. Ideally we
4790 * should warn if prev_state != CONTEXT_USER, but that will trigger
4791 * too frequently to make sense yet.
4792 */
4793 enum ctx_state prev_state = exception_enter();
4794 schedule();
4795 exception_exit(prev_state);
4796 }
4797 #endif
4798
4799 /**
4800 * schedule_preempt_disabled - called with preemption disabled
4801 *
4802 * Returns with preemption disabled. Note: preempt_count must be 1
4803 */
schedule_preempt_disabled(void)4804 void __sched schedule_preempt_disabled(void)
4805 {
4806 sched_preempt_enable_no_resched();
4807 schedule();
4808 preempt_disable();
4809 }
4810
preempt_schedule_common(void)4811 static void __sched notrace preempt_schedule_common(void)
4812 {
4813 do {
4814 /*
4815 * Because the function tracer can trace preempt_count_sub()
4816 * and it also uses preempt_enable/disable_notrace(), if
4817 * NEED_RESCHED is set, the preempt_enable_notrace() called
4818 * by the function tracer will call this function again and
4819 * cause infinite recursion.
4820 *
4821 * Preemption must be disabled here before the function
4822 * tracer can trace. Break up preempt_disable() into two
4823 * calls. One to disable preemption without fear of being
4824 * traced. The other to still record the preemption latency,
4825 * which can also be traced by the function tracer.
4826 */
4827 preempt_disable_notrace();
4828 preempt_latency_start(1);
4829 __schedule(true);
4830 preempt_latency_stop(1);
4831 preempt_enable_no_resched_notrace();
4832
4833 /*
4834 * Check again in case we missed a preemption opportunity
4835 * between schedule and now.
4836 */
4837 } while (need_resched());
4838 }
4839
4840 #ifdef CONFIG_PREEMPTION
4841 /*
4842 * This is the entry point to schedule() from in-kernel preemption
4843 * off of preempt_enable.
4844 */
preempt_schedule(void)4845 asmlinkage __visible void __sched notrace preempt_schedule(void)
4846 {
4847 /*
4848 * If there is a non-zero preempt_count or interrupts are disabled,
4849 * we do not want to preempt the current task. Just return..
4850 */
4851 if (likely(!preemptible()))
4852 return;
4853
4854 preempt_schedule_common();
4855 }
4856 NOKPROBE_SYMBOL(preempt_schedule);
4857 EXPORT_SYMBOL(preempt_schedule);
4858
4859 /**
4860 * preempt_schedule_notrace - preempt_schedule called by tracing
4861 *
4862 * The tracing infrastructure uses preempt_enable_notrace to prevent
4863 * recursion and tracing preempt enabling caused by the tracing
4864 * infrastructure itself. But as tracing can happen in areas coming
4865 * from userspace or just about to enter userspace, a preempt enable
4866 * can occur before user_exit() is called. This will cause the scheduler
4867 * to be called when the system is still in usermode.
4868 *
4869 * To prevent this, the preempt_enable_notrace will use this function
4870 * instead of preempt_schedule() to exit user context if needed before
4871 * calling the scheduler.
4872 */
preempt_schedule_notrace(void)4873 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4874 {
4875 enum ctx_state prev_ctx;
4876
4877 if (likely(!preemptible()))
4878 return;
4879
4880 do {
4881 /*
4882 * Because the function tracer can trace preempt_count_sub()
4883 * and it also uses preempt_enable/disable_notrace(), if
4884 * NEED_RESCHED is set, the preempt_enable_notrace() called
4885 * by the function tracer will call this function again and
4886 * cause infinite recursion.
4887 *
4888 * Preemption must be disabled here before the function
4889 * tracer can trace. Break up preempt_disable() into two
4890 * calls. One to disable preemption without fear of being
4891 * traced. The other to still record the preemption latency,
4892 * which can also be traced by the function tracer.
4893 */
4894 preempt_disable_notrace();
4895 preempt_latency_start(1);
4896 /*
4897 * Needs preempt disabled in case user_exit() is traced
4898 * and the tracer calls preempt_enable_notrace() causing
4899 * an infinite recursion.
4900 */
4901 prev_ctx = exception_enter();
4902 __schedule(true);
4903 exception_exit(prev_ctx);
4904
4905 preempt_latency_stop(1);
4906 preempt_enable_no_resched_notrace();
4907 } while (need_resched());
4908 }
4909 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4910
4911 #endif /* CONFIG_PREEMPTION */
4912
4913 /*
4914 * This is the entry point to schedule() from kernel preemption
4915 * off of irq context.
4916 * Note, that this is called and return with irqs disabled. This will
4917 * protect us against recursive calling from irq.
4918 */
preempt_schedule_irq(void)4919 asmlinkage __visible void __sched preempt_schedule_irq(void)
4920 {
4921 enum ctx_state prev_state;
4922
4923 /* Catch callers which need to be fixed */
4924 BUG_ON(preempt_count() || !irqs_disabled());
4925
4926 prev_state = exception_enter();
4927
4928 do {
4929 preempt_disable();
4930 local_irq_enable();
4931 __schedule(true);
4932 local_irq_disable();
4933 sched_preempt_enable_no_resched();
4934 } while (need_resched());
4935
4936 exception_exit(prev_state);
4937 }
4938
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4939 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4940 void *key)
4941 {
4942 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4943 return try_to_wake_up(curr->private, mode, wake_flags);
4944 }
4945 EXPORT_SYMBOL(default_wake_function);
4946
__setscheduler_prio(struct task_struct * p,int prio)4947 static void __setscheduler_prio(struct task_struct *p, int prio)
4948 {
4949 if (dl_prio(prio))
4950 p->sched_class = &dl_sched_class;
4951 else if (rt_prio(prio))
4952 p->sched_class = &rt_sched_class;
4953 else
4954 p->sched_class = &fair_sched_class;
4955
4956 p->prio = prio;
4957 }
4958
4959 #ifdef CONFIG_RT_MUTEXES
4960
__rt_effective_prio(struct task_struct * pi_task,int prio)4961 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4962 {
4963 if (pi_task)
4964 prio = min(prio, pi_task->prio);
4965
4966 return prio;
4967 }
4968
rt_effective_prio(struct task_struct * p,int prio)4969 static inline int rt_effective_prio(struct task_struct *p, int prio)
4970 {
4971 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4972
4973 return __rt_effective_prio(pi_task, prio);
4974 }
4975
4976 /*
4977 * rt_mutex_setprio - set the current priority of a task
4978 * @p: task to boost
4979 * @pi_task: donor task
4980 *
4981 * This function changes the 'effective' priority of a task. It does
4982 * not touch ->normal_prio like __setscheduler().
4983 *
4984 * Used by the rt_mutex code to implement priority inheritance
4985 * logic. Call site only calls if the priority of the task changed.
4986 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)4987 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4988 {
4989 int prio, oldprio, queued, running, queue_flag =
4990 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4991 const struct sched_class *prev_class;
4992 struct rq_flags rf;
4993 struct rq *rq;
4994
4995 /* XXX used to be waiter->prio, not waiter->task->prio */
4996 prio = __rt_effective_prio(pi_task, p->normal_prio);
4997
4998 /*
4999 * If nothing changed; bail early.
5000 */
5001 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5002 return;
5003
5004 rq = __task_rq_lock(p, &rf);
5005 update_rq_clock(rq);
5006 /*
5007 * Set under pi_lock && rq->lock, such that the value can be used under
5008 * either lock.
5009 *
5010 * Note that there is loads of tricky to make this pointer cache work
5011 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5012 * ensure a task is de-boosted (pi_task is set to NULL) before the
5013 * task is allowed to run again (and can exit). This ensures the pointer
5014 * points to a blocked task -- which guaratees the task is present.
5015 */
5016 p->pi_top_task = pi_task;
5017
5018 /*
5019 * For FIFO/RR we only need to set prio, if that matches we're done.
5020 */
5021 if (prio == p->prio && !dl_prio(prio))
5022 goto out_unlock;
5023
5024 /*
5025 * Idle task boosting is a nono in general. There is one
5026 * exception, when PREEMPT_RT and NOHZ is active:
5027 *
5028 * The idle task calls get_next_timer_interrupt() and holds
5029 * the timer wheel base->lock on the CPU and another CPU wants
5030 * to access the timer (probably to cancel it). We can safely
5031 * ignore the boosting request, as the idle CPU runs this code
5032 * with interrupts disabled and will complete the lock
5033 * protected section without being interrupted. So there is no
5034 * real need to boost.
5035 */
5036 if (unlikely(p == rq->idle)) {
5037 WARN_ON(p != rq->curr);
5038 WARN_ON(p->pi_blocked_on);
5039 goto out_unlock;
5040 }
5041
5042 trace_sched_pi_setprio(p, pi_task);
5043 oldprio = p->prio;
5044
5045 if (oldprio == prio)
5046 queue_flag &= ~DEQUEUE_MOVE;
5047
5048 prev_class = p->sched_class;
5049 queued = task_on_rq_queued(p);
5050 running = task_current(rq, p);
5051 if (queued)
5052 dequeue_task(rq, p, queue_flag);
5053 if (running)
5054 put_prev_task(rq, p);
5055
5056 /*
5057 * Boosting condition are:
5058 * 1. -rt task is running and holds mutex A
5059 * --> -dl task blocks on mutex A
5060 *
5061 * 2. -dl task is running and holds mutex A
5062 * --> -dl task blocks on mutex A and could preempt the
5063 * running task
5064 */
5065 if (dl_prio(prio)) {
5066 if (!dl_prio(p->normal_prio) ||
5067 (pi_task && dl_prio(pi_task->prio) &&
5068 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5069 p->dl.pi_se = pi_task->dl.pi_se;
5070 queue_flag |= ENQUEUE_REPLENISH;
5071 } else {
5072 p->dl.pi_se = &p->dl;
5073 }
5074 } else if (rt_prio(prio)) {
5075 if (dl_prio(oldprio))
5076 p->dl.pi_se = &p->dl;
5077 if (oldprio < prio)
5078 queue_flag |= ENQUEUE_HEAD;
5079 } else {
5080 if (dl_prio(oldprio))
5081 p->dl.pi_se = &p->dl;
5082 if (rt_prio(oldprio))
5083 p->rt.timeout = 0;
5084 }
5085
5086 __setscheduler_prio(p, prio);
5087
5088 if (queued)
5089 enqueue_task(rq, p, queue_flag);
5090 if (running)
5091 set_next_task(rq, p);
5092
5093 check_class_changed(rq, p, prev_class, oldprio);
5094 out_unlock:
5095 /* Avoid rq from going away on us: */
5096 preempt_disable();
5097 __task_rq_unlock(rq, &rf);
5098
5099 balance_callback(rq);
5100 preempt_enable();
5101 }
5102 #else
rt_effective_prio(struct task_struct * p,int prio)5103 static inline int rt_effective_prio(struct task_struct *p, int prio)
5104 {
5105 return prio;
5106 }
5107 #endif
5108
set_user_nice(struct task_struct * p,long nice)5109 void set_user_nice(struct task_struct *p, long nice)
5110 {
5111 bool queued, running;
5112 int old_prio;
5113 struct rq_flags rf;
5114 struct rq *rq;
5115
5116 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5117 return;
5118 /*
5119 * We have to be careful, if called from sys_setpriority(),
5120 * the task might be in the middle of scheduling on another CPU.
5121 */
5122 rq = task_rq_lock(p, &rf);
5123 update_rq_clock(rq);
5124
5125 /*
5126 * The RT priorities are set via sched_setscheduler(), but we still
5127 * allow the 'normal' nice value to be set - but as expected
5128 * it wont have any effect on scheduling until the task is
5129 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5130 */
5131 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5132 p->static_prio = NICE_TO_PRIO(nice);
5133 goto out_unlock;
5134 }
5135 queued = task_on_rq_queued(p);
5136 running = task_current(rq, p);
5137 if (queued)
5138 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5139 if (running)
5140 put_prev_task(rq, p);
5141
5142 p->static_prio = NICE_TO_PRIO(nice);
5143 set_load_weight(p, true);
5144 old_prio = p->prio;
5145 p->prio = effective_prio(p);
5146
5147 if (queued)
5148 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5149 if (running)
5150 set_next_task(rq, p);
5151
5152 /*
5153 * If the task increased its priority or is running and
5154 * lowered its priority, then reschedule its CPU:
5155 */
5156 p->sched_class->prio_changed(rq, p, old_prio);
5157
5158 out_unlock:
5159 task_rq_unlock(rq, p, &rf);
5160 }
5161 EXPORT_SYMBOL(set_user_nice);
5162
5163 /*
5164 * can_nice - check if a task can reduce its nice value
5165 * @p: task
5166 * @nice: nice value
5167 */
can_nice(const struct task_struct * p,const int nice)5168 int can_nice(const struct task_struct *p, const int nice)
5169 {
5170 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5171 int nice_rlim = nice_to_rlimit(nice);
5172
5173 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5174 capable(CAP_SYS_NICE));
5175 }
5176
5177 #ifdef __ARCH_WANT_SYS_NICE
5178
5179 /*
5180 * sys_nice - change the priority of the current process.
5181 * @increment: priority increment
5182 *
5183 * sys_setpriority is a more generic, but much slower function that
5184 * does similar things.
5185 */
SYSCALL_DEFINE1(nice,int,increment)5186 SYSCALL_DEFINE1(nice, int, increment)
5187 {
5188 long nice, retval;
5189
5190 /*
5191 * Setpriority might change our priority at the same moment.
5192 * We don't have to worry. Conceptually one call occurs first
5193 * and we have a single winner.
5194 */
5195 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5196 nice = task_nice(current) + increment;
5197
5198 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5199 if (increment < 0 && !can_nice(current, nice))
5200 return -EPERM;
5201
5202 retval = security_task_setnice(current, nice);
5203 if (retval)
5204 return retval;
5205
5206 set_user_nice(current, nice);
5207 return 0;
5208 }
5209
5210 #endif
5211
5212 /**
5213 * task_prio - return the priority value of a given task.
5214 * @p: the task in question.
5215 *
5216 * Return: The priority value as seen by users in /proc.
5217 * RT tasks are offset by -200. Normal tasks are centered
5218 * around 0, value goes from -16 to +15.
5219 */
task_prio(const struct task_struct * p)5220 int task_prio(const struct task_struct *p)
5221 {
5222 return p->prio - MAX_RT_PRIO;
5223 }
5224
5225 /**
5226 * idle_cpu - is a given CPU idle currently?
5227 * @cpu: the processor in question.
5228 *
5229 * Return: 1 if the CPU is currently idle. 0 otherwise.
5230 */
idle_cpu(int cpu)5231 int idle_cpu(int cpu)
5232 {
5233 struct rq *rq = cpu_rq(cpu);
5234
5235 if (rq->curr != rq->idle)
5236 return 0;
5237
5238 if (rq->nr_running)
5239 return 0;
5240
5241 #ifdef CONFIG_SMP
5242 if (rq->ttwu_pending)
5243 return 0;
5244 #endif
5245
5246 return 1;
5247 }
5248
5249 /**
5250 * available_idle_cpu - is a given CPU idle for enqueuing work.
5251 * @cpu: the CPU in question.
5252 *
5253 * Return: 1 if the CPU is currently idle. 0 otherwise.
5254 */
available_idle_cpu(int cpu)5255 int available_idle_cpu(int cpu)
5256 {
5257 if (!idle_cpu(cpu))
5258 return 0;
5259
5260 if (vcpu_is_preempted(cpu))
5261 return 0;
5262
5263 return 1;
5264 }
5265
5266 /**
5267 * idle_task - return the idle task for a given CPU.
5268 * @cpu: the processor in question.
5269 *
5270 * Return: The idle task for the CPU @cpu.
5271 */
idle_task(int cpu)5272 struct task_struct *idle_task(int cpu)
5273 {
5274 return cpu_rq(cpu)->idle;
5275 }
5276
5277 /**
5278 * find_process_by_pid - find a process with a matching PID value.
5279 * @pid: the pid in question.
5280 *
5281 * The task of @pid, if found. %NULL otherwise.
5282 */
find_process_by_pid(pid_t pid)5283 static struct task_struct *find_process_by_pid(pid_t pid)
5284 {
5285 return pid ? find_task_by_vpid(pid) : current;
5286 }
5287
5288 /*
5289 * sched_setparam() passes in -1 for its policy, to let the functions
5290 * it calls know not to change it.
5291 */
5292 #define SETPARAM_POLICY -1
5293
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5294 static void __setscheduler_params(struct task_struct *p,
5295 const struct sched_attr *attr)
5296 {
5297 int policy = attr->sched_policy;
5298
5299 if (policy == SETPARAM_POLICY)
5300 policy = p->policy;
5301
5302 p->policy = policy;
5303
5304 if (dl_policy(policy))
5305 __setparam_dl(p, attr);
5306 else if (fair_policy(policy))
5307 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5308
5309 /*
5310 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5311 * !rt_policy. Always setting this ensures that things like
5312 * getparam()/getattr() don't report silly values for !rt tasks.
5313 */
5314 p->rt_priority = attr->sched_priority;
5315 p->normal_prio = normal_prio(p);
5316 set_load_weight(p, true);
5317 }
5318
5319 /*
5320 * Check the target process has a UID that matches the current process's:
5321 */
check_same_owner(struct task_struct * p)5322 static bool check_same_owner(struct task_struct *p)
5323 {
5324 const struct cred *cred = current_cred(), *pcred;
5325 bool match;
5326
5327 rcu_read_lock();
5328 pcred = __task_cred(p);
5329 match = (uid_eq(cred->euid, pcred->euid) ||
5330 uid_eq(cred->euid, pcred->uid));
5331 rcu_read_unlock();
5332 return match;
5333 }
5334
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5335 static int __sched_setscheduler(struct task_struct *p,
5336 const struct sched_attr *attr,
5337 bool user, bool pi)
5338 {
5339 int oldpolicy = -1, policy = attr->sched_policy;
5340 int retval, oldprio, newprio, queued, running;
5341 const struct sched_class *prev_class;
5342 struct rq_flags rf;
5343 int reset_on_fork;
5344 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5345 struct rq *rq;
5346
5347 /* The pi code expects interrupts enabled */
5348 BUG_ON(pi && in_interrupt());
5349 recheck:
5350 /* Double check policy once rq lock held: */
5351 if (policy < 0) {
5352 reset_on_fork = p->sched_reset_on_fork;
5353 policy = oldpolicy = p->policy;
5354 } else {
5355 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5356
5357 if (!valid_policy(policy))
5358 return -EINVAL;
5359 }
5360
5361 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5362 return -EINVAL;
5363
5364 /*
5365 * Valid priorities for SCHED_FIFO and SCHED_RR are
5366 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5367 * SCHED_BATCH and SCHED_IDLE is 0.
5368 */
5369 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5370 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5371 return -EINVAL;
5372 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5373 (rt_policy(policy) != (attr->sched_priority != 0)))
5374 return -EINVAL;
5375
5376 /*
5377 * Allow unprivileged RT tasks to decrease priority:
5378 */
5379 if (user && !capable(CAP_SYS_NICE)) {
5380 if (fair_policy(policy)) {
5381 if (attr->sched_nice < task_nice(p) &&
5382 !can_nice(p, attr->sched_nice))
5383 return -EPERM;
5384 }
5385
5386 if (rt_policy(policy)) {
5387 unsigned long rlim_rtprio =
5388 task_rlimit(p, RLIMIT_RTPRIO);
5389
5390 /* Can't set/change the rt policy: */
5391 if (policy != p->policy && !rlim_rtprio)
5392 return -EPERM;
5393
5394 /* Can't increase priority: */
5395 if (attr->sched_priority > p->rt_priority &&
5396 attr->sched_priority > rlim_rtprio)
5397 return -EPERM;
5398 }
5399
5400 /*
5401 * Can't set/change SCHED_DEADLINE policy at all for now
5402 * (safest behavior); in the future we would like to allow
5403 * unprivileged DL tasks to increase their relative deadline
5404 * or reduce their runtime (both ways reducing utilization)
5405 */
5406 if (dl_policy(policy))
5407 return -EPERM;
5408
5409 /*
5410 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5411 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5412 */
5413 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5414 if (!can_nice(p, task_nice(p)))
5415 return -EPERM;
5416 }
5417
5418 /* Can't change other user's priorities: */
5419 if (!check_same_owner(p))
5420 return -EPERM;
5421
5422 /* Normal users shall not reset the sched_reset_on_fork flag: */
5423 if (p->sched_reset_on_fork && !reset_on_fork)
5424 return -EPERM;
5425 }
5426
5427 if (user) {
5428 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5429 return -EINVAL;
5430
5431 retval = security_task_setscheduler(p);
5432 if (retval)
5433 return retval;
5434 }
5435
5436 /* Update task specific "requested" clamps */
5437 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5438 retval = uclamp_validate(p, attr);
5439 if (retval)
5440 return retval;
5441 }
5442
5443 if (pi)
5444 cpuset_read_lock();
5445
5446 /*
5447 * Make sure no PI-waiters arrive (or leave) while we are
5448 * changing the priority of the task:
5449 *
5450 * To be able to change p->policy safely, the appropriate
5451 * runqueue lock must be held.
5452 */
5453 rq = task_rq_lock(p, &rf);
5454 update_rq_clock(rq);
5455
5456 /*
5457 * Changing the policy of the stop threads its a very bad idea:
5458 */
5459 if (p == rq->stop) {
5460 retval = -EINVAL;
5461 goto unlock;
5462 }
5463
5464 /*
5465 * If not changing anything there's no need to proceed further,
5466 * but store a possible modification of reset_on_fork.
5467 */
5468 if (unlikely(policy == p->policy)) {
5469 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5470 goto change;
5471 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5472 goto change;
5473 if (dl_policy(policy) && dl_param_changed(p, attr))
5474 goto change;
5475 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5476 goto change;
5477
5478 p->sched_reset_on_fork = reset_on_fork;
5479 retval = 0;
5480 goto unlock;
5481 }
5482 change:
5483
5484 if (user) {
5485 #ifdef CONFIG_RT_GROUP_SCHED
5486 /*
5487 * Do not allow realtime tasks into groups that have no runtime
5488 * assigned.
5489 */
5490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5491 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5492 !task_group_is_autogroup(task_group(p))) {
5493 retval = -EPERM;
5494 goto unlock;
5495 }
5496 #endif
5497 #ifdef CONFIG_SMP
5498 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5499 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5500 cpumask_t *span = rq->rd->span;
5501
5502 /*
5503 * Don't allow tasks with an affinity mask smaller than
5504 * the entire root_domain to become SCHED_DEADLINE. We
5505 * will also fail if there's no bandwidth available.
5506 */
5507 if (!cpumask_subset(span, p->cpus_ptr) ||
5508 rq->rd->dl_bw.bw == 0) {
5509 retval = -EPERM;
5510 goto unlock;
5511 }
5512 }
5513 #endif
5514 }
5515
5516 /* Re-check policy now with rq lock held: */
5517 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5518 policy = oldpolicy = -1;
5519 task_rq_unlock(rq, p, &rf);
5520 if (pi)
5521 cpuset_read_unlock();
5522 goto recheck;
5523 }
5524
5525 /*
5526 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5527 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5528 * is available.
5529 */
5530 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5531 retval = -EBUSY;
5532 goto unlock;
5533 }
5534
5535 p->sched_reset_on_fork = reset_on_fork;
5536 oldprio = p->prio;
5537
5538 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5539 if (pi) {
5540 /*
5541 * Take priority boosted tasks into account. If the new
5542 * effective priority is unchanged, we just store the new
5543 * normal parameters and do not touch the scheduler class and
5544 * the runqueue. This will be done when the task deboost
5545 * itself.
5546 */
5547 newprio = rt_effective_prio(p, newprio);
5548 if (newprio == oldprio)
5549 queue_flags &= ~DEQUEUE_MOVE;
5550 }
5551
5552 queued = task_on_rq_queued(p);
5553 running = task_current(rq, p);
5554 if (queued)
5555 dequeue_task(rq, p, queue_flags);
5556 if (running)
5557 put_prev_task(rq, p);
5558
5559 prev_class = p->sched_class;
5560
5561 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5562 __setscheduler_params(p, attr);
5563 __setscheduler_prio(p, newprio);
5564 }
5565 __setscheduler_uclamp(p, attr);
5566
5567 if (queued) {
5568 /*
5569 * We enqueue to tail when the priority of a task is
5570 * increased (user space view).
5571 */
5572 if (oldprio < p->prio)
5573 queue_flags |= ENQUEUE_HEAD;
5574
5575 enqueue_task(rq, p, queue_flags);
5576 }
5577 if (running)
5578 set_next_task(rq, p);
5579
5580 check_class_changed(rq, p, prev_class, oldprio);
5581
5582 /* Avoid rq from going away on us: */
5583 preempt_disable();
5584 task_rq_unlock(rq, p, &rf);
5585
5586 if (pi) {
5587 cpuset_read_unlock();
5588 rt_mutex_adjust_pi(p);
5589 }
5590
5591 /* Run balance callbacks after we've adjusted the PI chain: */
5592 balance_callback(rq);
5593 preempt_enable();
5594
5595 return 0;
5596
5597 unlock:
5598 task_rq_unlock(rq, p, &rf);
5599 if (pi)
5600 cpuset_read_unlock();
5601 return retval;
5602 }
5603
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5604 static int _sched_setscheduler(struct task_struct *p, int policy,
5605 const struct sched_param *param, bool check)
5606 {
5607 struct sched_attr attr = {
5608 .sched_policy = policy,
5609 .sched_priority = param->sched_priority,
5610 .sched_nice = PRIO_TO_NICE(p->static_prio),
5611 };
5612
5613 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5614 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5615 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5616 policy &= ~SCHED_RESET_ON_FORK;
5617 attr.sched_policy = policy;
5618 }
5619
5620 return __sched_setscheduler(p, &attr, check, true);
5621 }
5622 /**
5623 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5624 * @p: the task in question.
5625 * @policy: new policy.
5626 * @param: structure containing the new RT priority.
5627 *
5628 * Use sched_set_fifo(), read its comment.
5629 *
5630 * Return: 0 on success. An error code otherwise.
5631 *
5632 * NOTE that the task may be already dead.
5633 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5634 int sched_setscheduler(struct task_struct *p, int policy,
5635 const struct sched_param *param)
5636 {
5637 return _sched_setscheduler(p, policy, param, true);
5638 }
5639
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5640 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5641 {
5642 return __sched_setscheduler(p, attr, true, true);
5643 }
5644
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5645 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5646 {
5647 return __sched_setscheduler(p, attr, false, true);
5648 }
5649
5650 /**
5651 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5652 * @p: the task in question.
5653 * @policy: new policy.
5654 * @param: structure containing the new RT priority.
5655 *
5656 * Just like sched_setscheduler, only don't bother checking if the
5657 * current context has permission. For example, this is needed in
5658 * stop_machine(): we create temporary high priority worker threads,
5659 * but our caller might not have that capability.
5660 *
5661 * Return: 0 on success. An error code otherwise.
5662 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5663 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5664 const struct sched_param *param)
5665 {
5666 return _sched_setscheduler(p, policy, param, false);
5667 }
5668
5669 /*
5670 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5671 * incapable of resource management, which is the one thing an OS really should
5672 * be doing.
5673 *
5674 * This is of course the reason it is limited to privileged users only.
5675 *
5676 * Worse still; it is fundamentally impossible to compose static priority
5677 * workloads. You cannot take two correctly working static prio workloads
5678 * and smash them together and still expect them to work.
5679 *
5680 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5681 *
5682 * MAX_RT_PRIO / 2
5683 *
5684 * The administrator _MUST_ configure the system, the kernel simply doesn't
5685 * know enough information to make a sensible choice.
5686 */
sched_set_fifo(struct task_struct * p)5687 void sched_set_fifo(struct task_struct *p)
5688 {
5689 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5690 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5691 }
5692 EXPORT_SYMBOL_GPL(sched_set_fifo);
5693
5694 /*
5695 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5696 */
sched_set_fifo_low(struct task_struct * p)5697 void sched_set_fifo_low(struct task_struct *p)
5698 {
5699 struct sched_param sp = { .sched_priority = 1 };
5700 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5701 }
5702 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5703
sched_set_normal(struct task_struct * p,int nice)5704 void sched_set_normal(struct task_struct *p, int nice)
5705 {
5706 struct sched_attr attr = {
5707 .sched_policy = SCHED_NORMAL,
5708 .sched_nice = nice,
5709 };
5710 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5711 }
5712 EXPORT_SYMBOL_GPL(sched_set_normal);
5713
5714 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5715 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5716 {
5717 struct sched_param lparam;
5718 struct task_struct *p;
5719 int retval;
5720
5721 if (!param || pid < 0)
5722 return -EINVAL;
5723 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5724 return -EFAULT;
5725
5726 rcu_read_lock();
5727 retval = -ESRCH;
5728 p = find_process_by_pid(pid);
5729 if (likely(p))
5730 get_task_struct(p);
5731 rcu_read_unlock();
5732
5733 if (likely(p)) {
5734 retval = sched_setscheduler(p, policy, &lparam);
5735 put_task_struct(p);
5736 }
5737
5738 return retval;
5739 }
5740
5741 /*
5742 * Mimics kernel/events/core.c perf_copy_attr().
5743 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5744 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5745 {
5746 u32 size;
5747 int ret;
5748
5749 /* Zero the full structure, so that a short copy will be nice: */
5750 memset(attr, 0, sizeof(*attr));
5751
5752 ret = get_user(size, &uattr->size);
5753 if (ret)
5754 return ret;
5755
5756 /* ABI compatibility quirk: */
5757 if (!size)
5758 size = SCHED_ATTR_SIZE_VER0;
5759 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5760 goto err_size;
5761
5762 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5763 if (ret) {
5764 if (ret == -E2BIG)
5765 goto err_size;
5766 return ret;
5767 }
5768
5769 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5770 size < SCHED_ATTR_SIZE_VER1)
5771 return -EINVAL;
5772
5773 /*
5774 * XXX: Do we want to be lenient like existing syscalls; or do we want
5775 * to be strict and return an error on out-of-bounds values?
5776 */
5777 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5778
5779 return 0;
5780
5781 err_size:
5782 put_user(sizeof(*attr), &uattr->size);
5783 return -E2BIG;
5784 }
5785
5786 /**
5787 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5788 * @pid: the pid in question.
5789 * @policy: new policy.
5790 * @param: structure containing the new RT priority.
5791 *
5792 * Return: 0 on success. An error code otherwise.
5793 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5794 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5795 {
5796 if (policy < 0)
5797 return -EINVAL;
5798
5799 return do_sched_setscheduler(pid, policy, param);
5800 }
5801
5802 /**
5803 * sys_sched_setparam - set/change the RT priority of a thread
5804 * @pid: the pid in question.
5805 * @param: structure containing the new RT priority.
5806 *
5807 * Return: 0 on success. An error code otherwise.
5808 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5809 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5810 {
5811 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5812 }
5813
5814 /**
5815 * sys_sched_setattr - same as above, but with extended sched_attr
5816 * @pid: the pid in question.
5817 * @uattr: structure containing the extended parameters.
5818 * @flags: for future extension.
5819 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5820 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5821 unsigned int, flags)
5822 {
5823 struct sched_attr attr;
5824 struct task_struct *p;
5825 int retval;
5826
5827 if (!uattr || pid < 0 || flags)
5828 return -EINVAL;
5829
5830 retval = sched_copy_attr(uattr, &attr);
5831 if (retval)
5832 return retval;
5833
5834 if ((int)attr.sched_policy < 0)
5835 return -EINVAL;
5836 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5837 attr.sched_policy = SETPARAM_POLICY;
5838
5839 rcu_read_lock();
5840 retval = -ESRCH;
5841 p = find_process_by_pid(pid);
5842 if (likely(p))
5843 get_task_struct(p);
5844 rcu_read_unlock();
5845
5846 if (likely(p)) {
5847 retval = sched_setattr(p, &attr);
5848 put_task_struct(p);
5849 }
5850
5851 return retval;
5852 }
5853
5854 /**
5855 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5856 * @pid: the pid in question.
5857 *
5858 * Return: On success, the policy of the thread. Otherwise, a negative error
5859 * code.
5860 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5861 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5862 {
5863 struct task_struct *p;
5864 int retval;
5865
5866 if (pid < 0)
5867 return -EINVAL;
5868
5869 retval = -ESRCH;
5870 rcu_read_lock();
5871 p = find_process_by_pid(pid);
5872 if (p) {
5873 retval = security_task_getscheduler(p);
5874 if (!retval)
5875 retval = p->policy
5876 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5877 }
5878 rcu_read_unlock();
5879 return retval;
5880 }
5881
5882 /**
5883 * sys_sched_getparam - get the RT priority of a thread
5884 * @pid: the pid in question.
5885 * @param: structure containing the RT priority.
5886 *
5887 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5888 * code.
5889 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5890 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5891 {
5892 struct sched_param lp = { .sched_priority = 0 };
5893 struct task_struct *p;
5894 int retval;
5895
5896 if (!param || pid < 0)
5897 return -EINVAL;
5898
5899 rcu_read_lock();
5900 p = find_process_by_pid(pid);
5901 retval = -ESRCH;
5902 if (!p)
5903 goto out_unlock;
5904
5905 retval = security_task_getscheduler(p);
5906 if (retval)
5907 goto out_unlock;
5908
5909 if (task_has_rt_policy(p))
5910 lp.sched_priority = p->rt_priority;
5911 rcu_read_unlock();
5912
5913 /*
5914 * This one might sleep, we cannot do it with a spinlock held ...
5915 */
5916 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5917
5918 return retval;
5919
5920 out_unlock:
5921 rcu_read_unlock();
5922 return retval;
5923 }
5924
5925 /*
5926 * Copy the kernel size attribute structure (which might be larger
5927 * than what user-space knows about) to user-space.
5928 *
5929 * Note that all cases are valid: user-space buffer can be larger or
5930 * smaller than the kernel-space buffer. The usual case is that both
5931 * have the same size.
5932 */
5933 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)5934 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5935 struct sched_attr *kattr,
5936 unsigned int usize)
5937 {
5938 unsigned int ksize = sizeof(*kattr);
5939
5940 if (!access_ok(uattr, usize))
5941 return -EFAULT;
5942
5943 /*
5944 * sched_getattr() ABI forwards and backwards compatibility:
5945 *
5946 * If usize == ksize then we just copy everything to user-space and all is good.
5947 *
5948 * If usize < ksize then we only copy as much as user-space has space for,
5949 * this keeps ABI compatibility as well. We skip the rest.
5950 *
5951 * If usize > ksize then user-space is using a newer version of the ABI,
5952 * which part the kernel doesn't know about. Just ignore it - tooling can
5953 * detect the kernel's knowledge of attributes from the attr->size value
5954 * which is set to ksize in this case.
5955 */
5956 kattr->size = min(usize, ksize);
5957
5958 if (copy_to_user(uattr, kattr, kattr->size))
5959 return -EFAULT;
5960
5961 return 0;
5962 }
5963
5964 /**
5965 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5966 * @pid: the pid in question.
5967 * @uattr: structure containing the extended parameters.
5968 * @usize: sizeof(attr) for fwd/bwd comp.
5969 * @flags: for future extension.
5970 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)5971 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5972 unsigned int, usize, unsigned int, flags)
5973 {
5974 struct sched_attr kattr = { };
5975 struct task_struct *p;
5976 int retval;
5977
5978 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5979 usize < SCHED_ATTR_SIZE_VER0 || flags)
5980 return -EINVAL;
5981
5982 rcu_read_lock();
5983 p = find_process_by_pid(pid);
5984 retval = -ESRCH;
5985 if (!p)
5986 goto out_unlock;
5987
5988 retval = security_task_getscheduler(p);
5989 if (retval)
5990 goto out_unlock;
5991
5992 kattr.sched_policy = p->policy;
5993 if (p->sched_reset_on_fork)
5994 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5995 if (task_has_dl_policy(p))
5996 __getparam_dl(p, &kattr);
5997 else if (task_has_rt_policy(p))
5998 kattr.sched_priority = p->rt_priority;
5999 else
6000 kattr.sched_nice = task_nice(p);
6001
6002 #ifdef CONFIG_UCLAMP_TASK
6003 /*
6004 * This could race with another potential updater, but this is fine
6005 * because it'll correctly read the old or the new value. We don't need
6006 * to guarantee who wins the race as long as it doesn't return garbage.
6007 */
6008 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6009 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6010 #endif
6011
6012 rcu_read_unlock();
6013
6014 return sched_attr_copy_to_user(uattr, &kattr, usize);
6015
6016 out_unlock:
6017 rcu_read_unlock();
6018 return retval;
6019 }
6020
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6021 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6022 {
6023 cpumask_var_t cpus_allowed, new_mask;
6024 struct task_struct *p;
6025 int retval;
6026 #ifdef CONFIG_CPU_ISOLATION_OPT
6027 int dest_cpu;
6028 cpumask_t allowed_mask;
6029 #endif
6030
6031 rcu_read_lock();
6032
6033 p = find_process_by_pid(pid);
6034 if (!p) {
6035 rcu_read_unlock();
6036 return -ESRCH;
6037 }
6038
6039 /* Prevent p going away */
6040 get_task_struct(p);
6041 rcu_read_unlock();
6042
6043 if (p->flags & PF_NO_SETAFFINITY) {
6044 retval = -EINVAL;
6045 goto out_put_task;
6046 }
6047 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6048 retval = -ENOMEM;
6049 goto out_put_task;
6050 }
6051 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6052 retval = -ENOMEM;
6053 goto out_free_cpus_allowed;
6054 }
6055 retval = -EPERM;
6056 if (!check_same_owner(p)) {
6057 rcu_read_lock();
6058 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6059 rcu_read_unlock();
6060 goto out_free_new_mask;
6061 }
6062 rcu_read_unlock();
6063 }
6064
6065 retval = security_task_setscheduler(p);
6066 if (retval)
6067 goto out_free_new_mask;
6068
6069
6070 cpuset_cpus_allowed(p, cpus_allowed);
6071 cpumask_and(new_mask, in_mask, cpus_allowed);
6072
6073 /*
6074 * Since bandwidth control happens on root_domain basis,
6075 * if admission test is enabled, we only admit -deadline
6076 * tasks allowed to run on all the CPUs in the task's
6077 * root_domain.
6078 */
6079 #ifdef CONFIG_SMP
6080 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6081 rcu_read_lock();
6082 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6083 retval = -EBUSY;
6084 rcu_read_unlock();
6085 goto out_free_new_mask;
6086 }
6087 rcu_read_unlock();
6088 }
6089 #endif
6090 again:
6091 #ifdef CONFIG_CPU_ISOLATION_OPT
6092 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
6093 dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
6094 if (dest_cpu < nr_cpu_ids) {
6095 #endif
6096 retval = __set_cpus_allowed_ptr(p, new_mask, true);
6097 if (!retval) {
6098 cpuset_cpus_allowed(p, cpus_allowed);
6099 if (!cpumask_subset(new_mask, cpus_allowed)) {
6100 /*
6101 * We must have raced with a concurrent cpuset
6102 * update. Just reset the cpus_allowed to the
6103 * cpuset's cpus_allowed
6104 */
6105 cpumask_copy(new_mask, cpus_allowed);
6106 goto again;
6107 }
6108 }
6109 #ifdef CONFIG_CPU_ISOLATION_OPT
6110 } else {
6111 retval = -EINVAL;
6112 }
6113 #endif
6114
6115 out_free_new_mask:
6116 free_cpumask_var(new_mask);
6117 out_free_cpus_allowed:
6118 free_cpumask_var(cpus_allowed);
6119 out_put_task:
6120 put_task_struct(p);
6121 return retval;
6122 }
6123
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6124 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6125 struct cpumask *new_mask)
6126 {
6127 if (len < cpumask_size())
6128 cpumask_clear(new_mask);
6129 else if (len > cpumask_size())
6130 len = cpumask_size();
6131
6132 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6133 }
6134
6135 /**
6136 * sys_sched_setaffinity - set the CPU affinity of a process
6137 * @pid: pid of the process
6138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6139 * @user_mask_ptr: user-space pointer to the new CPU mask
6140 *
6141 * Return: 0 on success. An error code otherwise.
6142 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6143 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6144 unsigned long __user *, user_mask_ptr)
6145 {
6146 cpumask_var_t new_mask;
6147 int retval;
6148
6149 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6150 return -ENOMEM;
6151
6152 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6153 if (retval == 0)
6154 retval = sched_setaffinity(pid, new_mask);
6155 free_cpumask_var(new_mask);
6156 return retval;
6157 }
6158
sched_getaffinity(pid_t pid,struct cpumask * mask)6159 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6160 {
6161 struct task_struct *p;
6162 unsigned long flags;
6163 int retval;
6164
6165 rcu_read_lock();
6166
6167 retval = -ESRCH;
6168 p = find_process_by_pid(pid);
6169 if (!p)
6170 goto out_unlock;
6171
6172 retval = security_task_getscheduler(p);
6173 if (retval)
6174 goto out_unlock;
6175
6176 raw_spin_lock_irqsave(&p->pi_lock, flags);
6177 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6178
6179 #ifdef CONFIG_CPU_ISOLATION_OPT
6180 /* The userspace tasks are forbidden to run on
6181 * isolated CPUs. So exclude isolated CPUs from
6182 * the getaffinity.
6183 */
6184 if (!(p->flags & PF_KTHREAD))
6185 cpumask_andnot(mask, mask, cpu_isolated_mask);
6186 #endif
6187
6188 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6189
6190 out_unlock:
6191 rcu_read_unlock();
6192
6193 return retval;
6194 }
6195
6196 /**
6197 * sys_sched_getaffinity - get the CPU affinity of a process
6198 * @pid: pid of the process
6199 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6200 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6201 *
6202 * Return: size of CPU mask copied to user_mask_ptr on success. An
6203 * error code otherwise.
6204 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6205 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6206 unsigned long __user *, user_mask_ptr)
6207 {
6208 int ret;
6209 cpumask_var_t mask;
6210
6211 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6212 return -EINVAL;
6213 if (len & (sizeof(unsigned long)-1))
6214 return -EINVAL;
6215
6216 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6217 return -ENOMEM;
6218
6219 ret = sched_getaffinity(pid, mask);
6220 if (ret == 0) {
6221 unsigned int retlen = min(len, cpumask_size());
6222
6223 if (copy_to_user(user_mask_ptr, mask, retlen))
6224 ret = -EFAULT;
6225 else
6226 ret = retlen;
6227 }
6228 free_cpumask_var(mask);
6229
6230 return ret;
6231 }
6232
6233 /**
6234 * sys_sched_yield - yield the current processor to other threads.
6235 *
6236 * This function yields the current CPU to other tasks. If there are no
6237 * other threads running on this CPU then this function will return.
6238 *
6239 * Return: 0.
6240 */
do_sched_yield(void)6241 static void do_sched_yield(void)
6242 {
6243 struct rq_flags rf;
6244 struct rq *rq;
6245
6246 rq = this_rq_lock_irq(&rf);
6247
6248 schedstat_inc(rq->yld_count);
6249 current->sched_class->yield_task(rq);
6250
6251 preempt_disable();
6252 rq_unlock_irq(rq, &rf);
6253 sched_preempt_enable_no_resched();
6254
6255 schedule();
6256 }
6257
SYSCALL_DEFINE0(sched_yield)6258 SYSCALL_DEFINE0(sched_yield)
6259 {
6260 do_sched_yield();
6261 return 0;
6262 }
6263
6264 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6265 int __sched _cond_resched(void)
6266 {
6267 if (should_resched(0)) {
6268 preempt_schedule_common();
6269 return 1;
6270 }
6271 rcu_all_qs();
6272 return 0;
6273 }
6274 EXPORT_SYMBOL(_cond_resched);
6275 #endif
6276
6277 /*
6278 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6279 * call schedule, and on return reacquire the lock.
6280 *
6281 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6282 * operations here to prevent schedule() from being called twice (once via
6283 * spin_unlock(), once by hand).
6284 */
__cond_resched_lock(spinlock_t * lock)6285 int __cond_resched_lock(spinlock_t *lock)
6286 {
6287 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6288 int ret = 0;
6289
6290 lockdep_assert_held(lock);
6291
6292 if (spin_needbreak(lock) || resched) {
6293 spin_unlock(lock);
6294 if (resched)
6295 preempt_schedule_common();
6296 else
6297 cpu_relax();
6298 ret = 1;
6299 spin_lock(lock);
6300 }
6301 return ret;
6302 }
6303 EXPORT_SYMBOL(__cond_resched_lock);
6304
6305 /**
6306 * yield - yield the current processor to other threads.
6307 *
6308 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6309 *
6310 * The scheduler is at all times free to pick the calling task as the most
6311 * eligible task to run, if removing the yield() call from your code breaks
6312 * it, its already broken.
6313 *
6314 * Typical broken usage is:
6315 *
6316 * while (!event)
6317 * yield();
6318 *
6319 * where one assumes that yield() will let 'the other' process run that will
6320 * make event true. If the current task is a SCHED_FIFO task that will never
6321 * happen. Never use yield() as a progress guarantee!!
6322 *
6323 * If you want to use yield() to wait for something, use wait_event().
6324 * If you want to use yield() to be 'nice' for others, use cond_resched().
6325 * If you still want to use yield(), do not!
6326 */
yield(void)6327 void __sched yield(void)
6328 {
6329 set_current_state(TASK_RUNNING);
6330 do_sched_yield();
6331 }
6332 EXPORT_SYMBOL(yield);
6333
6334 /**
6335 * yield_to - yield the current processor to another thread in
6336 * your thread group, or accelerate that thread toward the
6337 * processor it's on.
6338 * @p: target task
6339 * @preempt: whether task preemption is allowed or not
6340 *
6341 * It's the caller's job to ensure that the target task struct
6342 * can't go away on us before we can do any checks.
6343 *
6344 * Return:
6345 * true (>0) if we indeed boosted the target task.
6346 * false (0) if we failed to boost the target.
6347 * -ESRCH if there's no task to yield to.
6348 */
yield_to(struct task_struct * p,bool preempt)6349 int __sched yield_to(struct task_struct *p, bool preempt)
6350 {
6351 struct task_struct *curr = current;
6352 struct rq *rq, *p_rq;
6353 unsigned long flags;
6354 int yielded = 0;
6355
6356 local_irq_save(flags);
6357 rq = this_rq();
6358
6359 again:
6360 p_rq = task_rq(p);
6361 /*
6362 * If we're the only runnable task on the rq and target rq also
6363 * has only one task, there's absolutely no point in yielding.
6364 */
6365 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6366 yielded = -ESRCH;
6367 goto out_irq;
6368 }
6369
6370 double_rq_lock(rq, p_rq);
6371 if (task_rq(p) != p_rq) {
6372 double_rq_unlock(rq, p_rq);
6373 goto again;
6374 }
6375
6376 if (!curr->sched_class->yield_to_task)
6377 goto out_unlock;
6378
6379 if (curr->sched_class != p->sched_class)
6380 goto out_unlock;
6381
6382 if (task_running(p_rq, p) || p->state)
6383 goto out_unlock;
6384
6385 yielded = curr->sched_class->yield_to_task(rq, p);
6386 if (yielded) {
6387 schedstat_inc(rq->yld_count);
6388 /*
6389 * Make p's CPU reschedule; pick_next_entity takes care of
6390 * fairness.
6391 */
6392 if (preempt && rq != p_rq)
6393 resched_curr(p_rq);
6394 }
6395
6396 out_unlock:
6397 double_rq_unlock(rq, p_rq);
6398 out_irq:
6399 local_irq_restore(flags);
6400
6401 if (yielded > 0)
6402 schedule();
6403
6404 return yielded;
6405 }
6406 EXPORT_SYMBOL_GPL(yield_to);
6407
io_schedule_prepare(void)6408 int io_schedule_prepare(void)
6409 {
6410 int old_iowait = current->in_iowait;
6411
6412 current->in_iowait = 1;
6413 blk_schedule_flush_plug(current);
6414
6415 return old_iowait;
6416 }
6417
io_schedule_finish(int token)6418 void io_schedule_finish(int token)
6419 {
6420 current->in_iowait = token;
6421 }
6422
6423 /*
6424 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6425 * that process accounting knows that this is a task in IO wait state.
6426 */
io_schedule_timeout(long timeout)6427 long __sched io_schedule_timeout(long timeout)
6428 {
6429 int token;
6430 long ret;
6431
6432 token = io_schedule_prepare();
6433 ret = schedule_timeout(timeout);
6434 io_schedule_finish(token);
6435
6436 return ret;
6437 }
6438 EXPORT_SYMBOL(io_schedule_timeout);
6439
io_schedule(void)6440 void __sched io_schedule(void)
6441 {
6442 int token;
6443
6444 token = io_schedule_prepare();
6445 schedule();
6446 io_schedule_finish(token);
6447 }
6448 EXPORT_SYMBOL(io_schedule);
6449
6450 /**
6451 * sys_sched_get_priority_max - return maximum RT priority.
6452 * @policy: scheduling class.
6453 *
6454 * Return: On success, this syscall returns the maximum
6455 * rt_priority that can be used by a given scheduling class.
6456 * On failure, a negative error code is returned.
6457 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6458 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6459 {
6460 int ret = -EINVAL;
6461
6462 switch (policy) {
6463 case SCHED_FIFO:
6464 case SCHED_RR:
6465 ret = MAX_USER_RT_PRIO-1;
6466 break;
6467 case SCHED_DEADLINE:
6468 case SCHED_NORMAL:
6469 case SCHED_BATCH:
6470 case SCHED_IDLE:
6471 ret = 0;
6472 break;
6473 }
6474 return ret;
6475 }
6476
6477 /**
6478 * sys_sched_get_priority_min - return minimum RT priority.
6479 * @policy: scheduling class.
6480 *
6481 * Return: On success, this syscall returns the minimum
6482 * rt_priority that can be used by a given scheduling class.
6483 * On failure, a negative error code is returned.
6484 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6485 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6486 {
6487 int ret = -EINVAL;
6488
6489 switch (policy) {
6490 case SCHED_FIFO:
6491 case SCHED_RR:
6492 ret = 1;
6493 break;
6494 case SCHED_DEADLINE:
6495 case SCHED_NORMAL:
6496 case SCHED_BATCH:
6497 case SCHED_IDLE:
6498 ret = 0;
6499 }
6500 return ret;
6501 }
6502
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6503 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6504 {
6505 struct task_struct *p;
6506 unsigned int time_slice;
6507 struct rq_flags rf;
6508 struct rq *rq;
6509 int retval;
6510
6511 if (pid < 0)
6512 return -EINVAL;
6513
6514 retval = -ESRCH;
6515 rcu_read_lock();
6516 p = find_process_by_pid(pid);
6517 if (!p)
6518 goto out_unlock;
6519
6520 retval = security_task_getscheduler(p);
6521 if (retval)
6522 goto out_unlock;
6523
6524 rq = task_rq_lock(p, &rf);
6525 time_slice = 0;
6526 if (p->sched_class->get_rr_interval)
6527 time_slice = p->sched_class->get_rr_interval(rq, p);
6528 task_rq_unlock(rq, p, &rf);
6529
6530 rcu_read_unlock();
6531 jiffies_to_timespec64(time_slice, t);
6532 return 0;
6533
6534 out_unlock:
6535 rcu_read_unlock();
6536 return retval;
6537 }
6538
6539 /**
6540 * sys_sched_rr_get_interval - return the default timeslice of a process.
6541 * @pid: pid of the process.
6542 * @interval: userspace pointer to the timeslice value.
6543 *
6544 * this syscall writes the default timeslice value of a given process
6545 * into the user-space timespec buffer. A value of '0' means infinity.
6546 *
6547 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6548 * an error code.
6549 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6550 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6551 struct __kernel_timespec __user *, interval)
6552 {
6553 struct timespec64 t;
6554 int retval = sched_rr_get_interval(pid, &t);
6555
6556 if (retval == 0)
6557 retval = put_timespec64(&t, interval);
6558
6559 return retval;
6560 }
6561
6562 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6563 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6564 struct old_timespec32 __user *, interval)
6565 {
6566 struct timespec64 t;
6567 int retval = sched_rr_get_interval(pid, &t);
6568
6569 if (retval == 0)
6570 retval = put_old_timespec32(&t, interval);
6571 return retval;
6572 }
6573 #endif
6574
sched_show_task(struct task_struct * p)6575 void sched_show_task(struct task_struct *p)
6576 {
6577 unsigned long free = 0;
6578 int ppid;
6579
6580 if (!try_get_task_stack(p))
6581 return;
6582
6583 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6584
6585 if (p->state == TASK_RUNNING)
6586 pr_cont(" running task ");
6587 #ifdef CONFIG_DEBUG_STACK_USAGE
6588 free = stack_not_used(p);
6589 #endif
6590 ppid = 0;
6591 rcu_read_lock();
6592 if (pid_alive(p))
6593 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6594 rcu_read_unlock();
6595 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6596 free, task_pid_nr(p), ppid,
6597 (unsigned long)task_thread_info(p)->flags);
6598
6599 print_worker_info(KERN_INFO, p);
6600 show_stack(p, NULL, KERN_INFO);
6601 put_task_stack(p);
6602 }
6603 EXPORT_SYMBOL_GPL(sched_show_task);
6604
6605 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6606 state_filter_match(unsigned long state_filter, struct task_struct *p)
6607 {
6608 /* no filter, everything matches */
6609 if (!state_filter)
6610 return true;
6611
6612 /* filter, but doesn't match */
6613 if (!(p->state & state_filter))
6614 return false;
6615
6616 /*
6617 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6618 * TASK_KILLABLE).
6619 */
6620 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6621 return false;
6622
6623 return true;
6624 }
6625
6626
show_state_filter(unsigned long state_filter)6627 void show_state_filter(unsigned long state_filter)
6628 {
6629 struct task_struct *g, *p;
6630
6631 rcu_read_lock();
6632 for_each_process_thread(g, p) {
6633 /*
6634 * reset the NMI-timeout, listing all files on a slow
6635 * console might take a lot of time:
6636 * Also, reset softlockup watchdogs on all CPUs, because
6637 * another CPU might be blocked waiting for us to process
6638 * an IPI.
6639 */
6640 touch_nmi_watchdog();
6641 touch_all_softlockup_watchdogs();
6642 if (state_filter_match(state_filter, p))
6643 sched_show_task(p);
6644 }
6645
6646 #ifdef CONFIG_SCHED_DEBUG
6647 if (!state_filter)
6648 sysrq_sched_debug_show();
6649 #endif
6650 rcu_read_unlock();
6651 /*
6652 * Only show locks if all tasks are dumped:
6653 */
6654 if (!state_filter)
6655 debug_show_all_locks();
6656 }
6657
6658 /**
6659 * init_idle - set up an idle thread for a given CPU
6660 * @idle: task in question
6661 * @cpu: CPU the idle task belongs to
6662 *
6663 * NOTE: this function does not set the idle thread's NEED_RESCHED
6664 * flag, to make booting more robust.
6665 */
init_idle(struct task_struct * idle,int cpu)6666 void __init init_idle(struct task_struct *idle, int cpu)
6667 {
6668 struct rq *rq = cpu_rq(cpu);
6669 unsigned long flags;
6670
6671 __sched_fork(0, idle);
6672
6673 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6674 raw_spin_lock(&rq->lock);
6675
6676 idle->state = TASK_RUNNING;
6677 idle->se.exec_start = sched_clock();
6678 idle->flags |= PF_IDLE;
6679
6680 scs_task_reset(idle);
6681 kasan_unpoison_task_stack(idle);
6682
6683 #ifdef CONFIG_SMP
6684 /*
6685 * Its possible that init_idle() gets called multiple times on a task,
6686 * in that case do_set_cpus_allowed() will not do the right thing.
6687 *
6688 * And since this is boot we can forgo the serialization.
6689 */
6690 set_cpus_allowed_common(idle, cpumask_of(cpu));
6691 #endif
6692 /*
6693 * We're having a chicken and egg problem, even though we are
6694 * holding rq->lock, the CPU isn't yet set to this CPU so the
6695 * lockdep check in task_group() will fail.
6696 *
6697 * Similar case to sched_fork(). / Alternatively we could
6698 * use task_rq_lock() here and obtain the other rq->lock.
6699 *
6700 * Silence PROVE_RCU
6701 */
6702 rcu_read_lock();
6703 __set_task_cpu(idle, cpu);
6704 rcu_read_unlock();
6705
6706 rq->idle = idle;
6707 rcu_assign_pointer(rq->curr, idle);
6708 idle->on_rq = TASK_ON_RQ_QUEUED;
6709 #ifdef CONFIG_SMP
6710 idle->on_cpu = 1;
6711 #endif
6712 raw_spin_unlock(&rq->lock);
6713 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6714
6715 /* Set the preempt count _outside_ the spinlocks! */
6716 init_idle_preempt_count(idle, cpu);
6717
6718 /*
6719 * The idle tasks have their own, simple scheduling class:
6720 */
6721 idle->sched_class = &idle_sched_class;
6722 ftrace_graph_init_idle_task(idle, cpu);
6723 vtime_init_idle(idle, cpu);
6724 #ifdef CONFIG_SMP
6725 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6726 #endif
6727 }
6728
6729 #ifdef CONFIG_SMP
6730
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6731 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6732 const struct cpumask *trial)
6733 {
6734 int ret = 1;
6735
6736 if (!cpumask_weight(cur))
6737 return ret;
6738
6739 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6740
6741 return ret;
6742 }
6743
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6744 int task_can_attach(struct task_struct *p,
6745 const struct cpumask *cs_cpus_allowed)
6746 {
6747 int ret = 0;
6748
6749 /*
6750 * Kthreads which disallow setaffinity shouldn't be moved
6751 * to a new cpuset; we don't want to change their CPU
6752 * affinity and isolating such threads by their set of
6753 * allowed nodes is unnecessary. Thus, cpusets are not
6754 * applicable for such threads. This prevents checking for
6755 * success of set_cpus_allowed_ptr() on all attached tasks
6756 * before cpus_mask may be changed.
6757 */
6758 if (p->flags & PF_NO_SETAFFINITY) {
6759 ret = -EINVAL;
6760 goto out;
6761 }
6762
6763 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6764 cs_cpus_allowed))
6765 ret = dl_task_can_attach(p, cs_cpus_allowed);
6766
6767 out:
6768 return ret;
6769 }
6770
6771 bool sched_smp_initialized __read_mostly;
6772
6773 #ifdef CONFIG_NUMA_BALANCING
6774 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6775 int migrate_task_to(struct task_struct *p, int target_cpu)
6776 {
6777 struct migration_arg arg = { p, target_cpu };
6778 int curr_cpu = task_cpu(p);
6779
6780 if (curr_cpu == target_cpu)
6781 return 0;
6782
6783 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6784 return -EINVAL;
6785
6786 /* TODO: This is not properly updating schedstats */
6787
6788 trace_sched_move_numa(p, curr_cpu, target_cpu);
6789 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6790 }
6791
6792 /*
6793 * Requeue a task on a given node and accurately track the number of NUMA
6794 * tasks on the runqueues
6795 */
sched_setnuma(struct task_struct * p,int nid)6796 void sched_setnuma(struct task_struct *p, int nid)
6797 {
6798 bool queued, running;
6799 struct rq_flags rf;
6800 struct rq *rq;
6801
6802 rq = task_rq_lock(p, &rf);
6803 queued = task_on_rq_queued(p);
6804 running = task_current(rq, p);
6805
6806 if (queued)
6807 dequeue_task(rq, p, DEQUEUE_SAVE);
6808 if (running)
6809 put_prev_task(rq, p);
6810
6811 p->numa_preferred_nid = nid;
6812
6813 if (queued)
6814 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6815 if (running)
6816 set_next_task(rq, p);
6817 task_rq_unlock(rq, p, &rf);
6818 }
6819 #endif /* CONFIG_NUMA_BALANCING */
6820
6821 #ifdef CONFIG_HOTPLUG_CPU
6822 /*
6823 * Ensure that the idle task is using init_mm right before its CPU goes
6824 * offline.
6825 */
idle_task_exit(void)6826 void idle_task_exit(void)
6827 {
6828 struct mm_struct *mm = current->active_mm;
6829
6830 BUG_ON(cpu_online(smp_processor_id()));
6831 BUG_ON(current != this_rq()->idle);
6832
6833 if (mm != &init_mm) {
6834 switch_mm(mm, &init_mm, current);
6835 finish_arch_post_lock_switch();
6836 }
6837
6838 scs_task_reset(current);
6839 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6840 }
6841
6842 /*
6843 * Since this CPU is going 'away' for a while, fold any nr_active delta
6844 * we might have. Assumes we're called after migrate_tasks() so that the
6845 * nr_active count is stable. We need to take the teardown thread which
6846 * is calling this into account, so we hand in adjust = 1 to the load
6847 * calculation.
6848 *
6849 * Also see the comment "Global load-average calculations".
6850 */
calc_load_migrate(struct rq * rq)6851 static void calc_load_migrate(struct rq *rq)
6852 {
6853 long delta = calc_load_fold_active(rq, 1);
6854 if (delta)
6855 atomic_long_add(delta, &calc_load_tasks);
6856 }
6857
__pick_migrate_task(struct rq * rq)6858 static struct task_struct *__pick_migrate_task(struct rq *rq)
6859 {
6860 const struct sched_class *class;
6861 struct task_struct *next;
6862
6863 for_each_class(class) {
6864 next = class->pick_next_task(rq);
6865 if (next) {
6866 next->sched_class->put_prev_task(rq, next);
6867 return next;
6868 }
6869 }
6870
6871 /* The idle class should always have a runnable task */
6872 BUG();
6873 }
6874
6875 #ifdef CONFIG_CPU_ISOLATION_OPT
6876 /*
6877 * Remove a task from the runqueue and pretend that it's migrating. This
6878 * should prevent migrations for the detached task and disallow further
6879 * changes to tsk_cpus_allowed.
6880 */
6881 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6882 detach_one_task_core(struct task_struct *p, struct rq *rq,
6883 struct list_head *tasks)
6884 {
6885 lockdep_assert_held(&rq->lock);
6886
6887 p->on_rq = TASK_ON_RQ_MIGRATING;
6888 deactivate_task(rq, p, 0);
6889 list_add(&p->se.group_node, tasks);
6890 }
6891
attach_tasks_core(struct list_head * tasks,struct rq * rq)6892 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6893 {
6894 struct task_struct *p;
6895
6896 lockdep_assert_held(&rq->lock);
6897
6898 while (!list_empty(tasks)) {
6899 p = list_first_entry(tasks, struct task_struct, se.group_node);
6900 list_del_init(&p->se.group_node);
6901
6902 BUG_ON(task_rq(p) != rq);
6903 activate_task(rq, p, 0);
6904 p->on_rq = TASK_ON_RQ_QUEUED;
6905 }
6906 }
6907
6908 #else
6909
6910 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6911 detach_one_task_core(struct task_struct *p, struct rq *rq,
6912 struct list_head *tasks)
6913 {
6914 }
6915
attach_tasks_core(struct list_head * tasks,struct rq * rq)6916 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6917 {
6918 }
6919
6920 #endif /* CONFIG_CPU_ISOLATION_OPT */
6921
6922 /*
6923 * Migrate all tasks (not pinned if pinned argument say so) from the rq,
6924 * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
6925 *
6926 * Called with rq->lock held even though we'er in stop_machine() and
6927 * there's no concurrency possible, we hold the required locks anyway
6928 * because of lock validation efforts.
6929 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)6930 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
6931 bool migrate_pinned_tasks)
6932 {
6933 struct rq *rq = dead_rq;
6934 struct task_struct *next, *stop = rq->stop;
6935 struct rq_flags orf = *rf;
6936 int dest_cpu;
6937 unsigned int num_pinned_kthreads = 1; /* this thread */
6938 LIST_HEAD(tasks);
6939 cpumask_t avail_cpus;
6940
6941 #ifdef CONFIG_CPU_ISOLATION_OPT
6942 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
6943 #else
6944 cpumask_copy(&avail_cpus, cpu_online_mask);
6945 #endif
6946
6947 /*
6948 * Fudge the rq selection such that the below task selection loop
6949 * doesn't get stuck on the currently eligible stop task.
6950 *
6951 * We're currently inside stop_machine() and the rq is either stuck
6952 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6953 * either way we should never end up calling schedule() until we're
6954 * done here.
6955 */
6956 rq->stop = NULL;
6957
6958 /*
6959 * put_prev_task() and pick_next_task() sched
6960 * class method both need to have an up-to-date
6961 * value of rq->clock[_task]
6962 */
6963 update_rq_clock(rq);
6964
6965 for (;;) {
6966 /*
6967 * There's this thread running, bail when that's the only
6968 * remaining thread.
6969 */
6970 if (rq->nr_running == 1)
6971 break;
6972
6973 next = __pick_migrate_task(rq);
6974
6975 if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
6976 !cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
6977 detach_one_task_core(next, rq, &tasks);
6978 num_pinned_kthreads += 1;
6979 continue;
6980 }
6981
6982 /*
6983 * Rules for changing task_struct::cpus_mask are holding
6984 * both pi_lock and rq->lock, such that holding either
6985 * stabilizes the mask.
6986 *
6987 * Drop rq->lock is not quite as disastrous as it usually is
6988 * because !cpu_active at this point, which means load-balance
6989 * will not interfere. Also, stop-machine.
6990 */
6991 rq_unlock(rq, rf);
6992 raw_spin_lock(&next->pi_lock);
6993 rq_relock(rq, rf);
6994 if (!(rq->clock_update_flags & RQCF_UPDATED))
6995 update_rq_clock(rq);
6996
6997 /*
6998 * Since we're inside stop-machine, _nothing_ should have
6999 * changed the task, WARN if weird stuff happened, because in
7000 * that case the above rq->lock drop is a fail too.
7001 * However, during cpu isolation the load balancer might have
7002 * interferred since we don't stop all CPUs. Ignore warning for
7003 * this case.
7004 */
7005 if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7006 WARN_ON(migrate_pinned_tasks);
7007 raw_spin_unlock(&next->pi_lock);
7008 continue;
7009 }
7010
7011 /* Find suitable destination for @next, with force if needed. */
7012 #ifdef CONFIG_CPU_ISOLATION_OPT
7013 dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
7014 #else
7015 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7016 #endif
7017 rq = __migrate_task(rq, rf, next, dest_cpu);
7018 if (rq != dead_rq) {
7019 rq_unlock(rq, rf);
7020 rq = dead_rq;
7021 *rf = orf;
7022 rq_relock(rq, rf);
7023 if (!(rq->clock_update_flags & RQCF_UPDATED))
7024 update_rq_clock(rq);
7025 }
7026 raw_spin_unlock(&next->pi_lock);
7027 }
7028
7029 rq->stop = stop;
7030
7031 if (num_pinned_kthreads > 1)
7032 attach_tasks_core(&tasks, rq);
7033 }
7034
7035 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)7036 static void clear_eas_migration_request(int cpu)
7037 {
7038 struct rq *rq = cpu_rq(cpu);
7039 unsigned long flags;
7040
7041 clear_reserved(cpu);
7042 if (rq->push_task) {
7043 struct task_struct *push_task = NULL;
7044
7045 raw_spin_lock_irqsave(&rq->lock, flags);
7046 if (rq->push_task) {
7047 clear_reserved(rq->push_cpu);
7048 push_task = rq->push_task;
7049 rq->push_task = NULL;
7050 }
7051 rq->active_balance = 0;
7052 raw_spin_unlock_irqrestore(&rq->lock, flags);
7053 if (push_task)
7054 put_task_struct(push_task);
7055 }
7056 }
7057 #else
clear_eas_migration_request(int cpu)7058 static inline void clear_eas_migration_request(int cpu) {}
7059 #endif
7060
7061 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)7062 int do_isolation_work_cpu_stop(void *data)
7063 {
7064 unsigned int cpu = smp_processor_id();
7065 struct rq *rq = cpu_rq(cpu);
7066 struct rq_flags rf;
7067
7068 watchdog_disable(cpu);
7069
7070 local_irq_disable();
7071
7072 irq_migrate_all_off_this_cpu();
7073
7074 flush_smp_call_function_from_idle();
7075
7076 /* Update our root-domain */
7077 rq_lock(rq, &rf);
7078
7079 /*
7080 * Temporarily mark the rq as offline. This will allow us to
7081 * move tasks off the CPU.
7082 */
7083 if (rq->rd) {
7084 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7085 set_rq_offline(rq);
7086 }
7087
7088 migrate_tasks(rq, &rf, false);
7089
7090 if (rq->rd)
7091 set_rq_online(rq);
7092 rq_unlock(rq, &rf);
7093
7094 clear_eas_migration_request(cpu);
7095 local_irq_enable();
7096 return 0;
7097 }
7098
do_unisolation_work_cpu_stop(void * data)7099 int do_unisolation_work_cpu_stop(void *data)
7100 {
7101 watchdog_enable(smp_processor_id());
7102 return 0;
7103 }
7104
sched_update_group_capacities(int cpu)7105 static void sched_update_group_capacities(int cpu)
7106 {
7107 struct sched_domain *sd;
7108
7109 mutex_lock(&sched_domains_mutex);
7110 rcu_read_lock();
7111
7112 for_each_domain(cpu, sd) {
7113 int balance_cpu = group_balance_cpu(sd->groups);
7114
7115 init_sched_groups_capacity(cpu, sd);
7116 /*
7117 * Need to ensure this is also called with balancing
7118 * cpu.
7119 */
7120 if (cpu != balance_cpu)
7121 init_sched_groups_capacity(balance_cpu, sd);
7122 }
7123
7124 rcu_read_unlock();
7125 mutex_unlock(&sched_domains_mutex);
7126 }
7127
7128 static unsigned int cpu_isolation_vote[NR_CPUS];
7129
sched_isolate_count(const cpumask_t * mask,bool include_offline)7130 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
7131 {
7132 cpumask_t count_mask = CPU_MASK_NONE;
7133
7134 if (include_offline) {
7135 cpumask_complement(&count_mask, cpu_online_mask);
7136 cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
7137 cpumask_and(&count_mask, &count_mask, mask);
7138 } else {
7139 cpumask_and(&count_mask, mask, cpu_isolated_mask);
7140 }
7141
7142 return cpumask_weight(&count_mask);
7143 }
7144
7145 /*
7146 * 1) CPU is isolated and cpu is offlined:
7147 * Unisolate the core.
7148 * 2) CPU is not isolated and CPU is offlined:
7149 * No action taken.
7150 * 3) CPU is offline and request to isolate
7151 * Request ignored.
7152 * 4) CPU is offline and isolated:
7153 * Not a possible state.
7154 * 5) CPU is online and request to isolate
7155 * Normal case: Isolate the CPU
7156 * 6) CPU is not isolated and comes back online
7157 * Nothing to do
7158 *
7159 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7160 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7161 * Client is also responsible for unisolating when a core goes offline
7162 * (after CPU is marked offline).
7163 */
sched_isolate_cpu(int cpu)7164 int sched_isolate_cpu(int cpu)
7165 {
7166 struct rq *rq;
7167 cpumask_t avail_cpus;
7168 int ret_code = 0;
7169 u64 start_time = 0;
7170
7171 if (trace_sched_isolate_enabled())
7172 start_time = sched_clock();
7173
7174 cpu_maps_update_begin();
7175
7176 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7177
7178 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
7179 !cpu_online(cpu) || cpu >= NR_CPUS) {
7180 ret_code = -EINVAL;
7181 goto out;
7182 }
7183
7184 rq = cpu_rq(cpu);
7185
7186 if (++cpu_isolation_vote[cpu] > 1)
7187 goto out;
7188
7189 /* We cannot isolate ALL cpus in the system */
7190 if (cpumask_weight(&avail_cpus) == 1) {
7191 --cpu_isolation_vote[cpu];
7192 ret_code = -EINVAL;
7193 goto out;
7194 }
7195
7196 /*
7197 * There is a race between watchdog being enabled by hotplug and
7198 * core isolation disabling the watchdog. When a CPU is hotplugged in
7199 * and the hotplug lock has been released the watchdog thread might
7200 * not have run yet to enable the watchdog.
7201 * We have to wait for the watchdog to be enabled before proceeding.
7202 */
7203 if (!watchdog_configured(cpu)) {
7204 msleep(20);
7205 if (!watchdog_configured(cpu)) {
7206 --cpu_isolation_vote[cpu];
7207 ret_code = -EBUSY;
7208 goto out;
7209 }
7210 }
7211
7212 set_cpu_isolated(cpu, true);
7213 cpumask_clear_cpu(cpu, &avail_cpus);
7214
7215 /* Migrate timers */
7216 smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
7217 smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
7218
7219 watchdog_disable(cpu);
7220 irq_lock_sparse();
7221 stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
7222 irq_unlock_sparse();
7223
7224 calc_load_migrate(rq);
7225 update_max_interval();
7226 sched_update_group_capacities(cpu);
7227
7228 out:
7229 cpu_maps_update_done();
7230 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7231 start_time, 1);
7232 return ret_code;
7233 }
7234
7235 /*
7236 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7237 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7238 * Client is also responsible for unisolating when a core goes offline
7239 * (after CPU is marked offline).
7240 */
sched_unisolate_cpu_unlocked(int cpu)7241 int sched_unisolate_cpu_unlocked(int cpu)
7242 {
7243 int ret_code = 0;
7244 u64 start_time = 0;
7245
7246 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
7247 || cpu >= NR_CPUS) {
7248 ret_code = -EINVAL;
7249 goto out;
7250 }
7251
7252 if (trace_sched_isolate_enabled())
7253 start_time = sched_clock();
7254
7255 if (!cpu_isolation_vote[cpu]) {
7256 ret_code = -EINVAL;
7257 goto out;
7258 }
7259
7260 if (--cpu_isolation_vote[cpu])
7261 goto out;
7262
7263 set_cpu_isolated(cpu, false);
7264 update_max_interval();
7265 sched_update_group_capacities(cpu);
7266
7267 if (cpu_online(cpu)) {
7268 stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
7269
7270 /* Kick CPU to immediately do load balancing */
7271 if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
7272 smp_send_reschedule(cpu);
7273 }
7274
7275 out:
7276 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7277 start_time, 0);
7278 return ret_code;
7279 }
7280
sched_unisolate_cpu(int cpu)7281 int sched_unisolate_cpu(int cpu)
7282 {
7283 int ret_code;
7284
7285 cpu_maps_update_begin();
7286 ret_code = sched_unisolate_cpu_unlocked(cpu);
7287 cpu_maps_update_done();
7288 return ret_code;
7289 }
7290
7291 #endif /* CONFIG_CPU_ISOLATION_OPT */
7292
7293 #endif /* CONFIG_HOTPLUG_CPU */
7294
set_rq_online(struct rq * rq)7295 void set_rq_online(struct rq *rq)
7296 {
7297 if (!rq->online) {
7298 const struct sched_class *class;
7299
7300 cpumask_set_cpu(rq->cpu, rq->rd->online);
7301 rq->online = 1;
7302
7303 for_each_class(class) {
7304 if (class->rq_online)
7305 class->rq_online(rq);
7306 }
7307 }
7308 }
7309
set_rq_offline(struct rq * rq)7310 void set_rq_offline(struct rq *rq)
7311 {
7312 if (rq->online) {
7313 const struct sched_class *class;
7314
7315 for_each_class(class) {
7316 if (class->rq_offline)
7317 class->rq_offline(rq);
7318 }
7319
7320 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7321 rq->online = 0;
7322 }
7323 }
7324
7325 /*
7326 * used to mark begin/end of suspend/resume:
7327 */
7328 static int num_cpus_frozen;
7329
7330 /*
7331 * Update cpusets according to cpu_active mask. If cpusets are
7332 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7333 * around partition_sched_domains().
7334 *
7335 * If we come here as part of a suspend/resume, don't touch cpusets because we
7336 * want to restore it back to its original state upon resume anyway.
7337 */
cpuset_cpu_active(void)7338 static void cpuset_cpu_active(void)
7339 {
7340 if (cpuhp_tasks_frozen) {
7341 /*
7342 * num_cpus_frozen tracks how many CPUs are involved in suspend
7343 * resume sequence. As long as this is not the last online
7344 * operation in the resume sequence, just build a single sched
7345 * domain, ignoring cpusets.
7346 */
7347 partition_sched_domains(1, NULL, NULL);
7348 if (--num_cpus_frozen)
7349 return;
7350 /*
7351 * This is the last CPU online operation. So fall through and
7352 * restore the original sched domains by considering the
7353 * cpuset configurations.
7354 */
7355 cpuset_force_rebuild();
7356 }
7357 cpuset_update_active_cpus();
7358 }
7359
cpuset_cpu_inactive(unsigned int cpu)7360 static int cpuset_cpu_inactive(unsigned int cpu)
7361 {
7362 if (!cpuhp_tasks_frozen) {
7363 if (dl_cpu_busy(cpu))
7364 return -EBUSY;
7365 cpuset_update_active_cpus();
7366 } else {
7367 num_cpus_frozen++;
7368 partition_sched_domains(1, NULL, NULL);
7369 }
7370 return 0;
7371 }
7372
sched_cpu_activate(unsigned int cpu)7373 int sched_cpu_activate(unsigned int cpu)
7374 {
7375 struct rq *rq = cpu_rq(cpu);
7376 struct rq_flags rf;
7377
7378 #ifdef CONFIG_SCHED_SMT
7379 /*
7380 * When going up, increment the number of cores with SMT present.
7381 */
7382 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7383 static_branch_inc_cpuslocked(&sched_smt_present);
7384 #endif
7385 set_cpu_active(cpu, true);
7386
7387 if (sched_smp_initialized) {
7388 sched_domains_numa_masks_set(cpu);
7389 cpuset_cpu_active();
7390 }
7391
7392 /*
7393 * Put the rq online, if not already. This happens:
7394 *
7395 * 1) In the early boot process, because we build the real domains
7396 * after all CPUs have been brought up.
7397 *
7398 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7399 * domains.
7400 */
7401 rq_lock_irqsave(rq, &rf);
7402 if (rq->rd) {
7403 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7404 set_rq_online(rq);
7405 }
7406 rq_unlock_irqrestore(rq, &rf);
7407
7408 return 0;
7409 }
7410
sched_cpu_deactivate(unsigned int cpu)7411 int sched_cpu_deactivate(unsigned int cpu)
7412 {
7413 int ret;
7414
7415 set_cpu_active(cpu, false);
7416 /*
7417 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7418 * users of this state to go away such that all new such users will
7419 * observe it.
7420 *
7421 * Do sync before park smpboot threads to take care the rcu boost case.
7422 */
7423 synchronize_rcu();
7424
7425 #ifdef CONFIG_SCHED_SMT
7426 /*
7427 * When going down, decrement the number of cores with SMT present.
7428 */
7429 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7430 static_branch_dec_cpuslocked(&sched_smt_present);
7431 #endif
7432
7433 if (!sched_smp_initialized)
7434 return 0;
7435
7436 ret = cpuset_cpu_inactive(cpu);
7437 if (ret) {
7438 set_cpu_active(cpu, true);
7439 return ret;
7440 }
7441 sched_domains_numa_masks_clear(cpu);
7442 return 0;
7443 }
7444
sched_rq_cpu_starting(unsigned int cpu)7445 static void sched_rq_cpu_starting(unsigned int cpu)
7446 {
7447 struct rq *rq = cpu_rq(cpu);
7448 unsigned long flags;
7449
7450 raw_spin_lock_irqsave(&rq->lock, flags);
7451 set_window_start(rq);
7452 raw_spin_unlock_irqrestore(&rq->lock, flags);
7453
7454 rq->calc_load_update = calc_load_update;
7455 update_max_interval();
7456 }
7457
sched_cpu_starting(unsigned int cpu)7458 int sched_cpu_starting(unsigned int cpu)
7459 {
7460 sched_rq_cpu_starting(cpu);
7461 sched_tick_start(cpu);
7462 clear_eas_migration_request(cpu);
7463 return 0;
7464 }
7465
7466 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7467 int sched_cpu_dying(unsigned int cpu)
7468 {
7469 struct rq *rq = cpu_rq(cpu);
7470 struct rq_flags rf;
7471
7472 /* Handle pending wakeups and then migrate everything off */
7473 sched_tick_stop(cpu);
7474
7475 rq_lock_irqsave(rq, &rf);
7476
7477 if (rq->rd) {
7478 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7479 set_rq_offline(rq);
7480 }
7481 migrate_tasks(rq, &rf, true);
7482 BUG_ON(rq->nr_running != 1);
7483 rq_unlock_irqrestore(rq, &rf);
7484
7485 clear_eas_migration_request(cpu);
7486
7487 calc_load_migrate(rq);
7488 update_max_interval();
7489 nohz_balance_exit_idle(rq);
7490 hrtick_clear(rq);
7491 return 0;
7492 }
7493 #endif
7494
sched_init_smp(void)7495 void __init sched_init_smp(void)
7496 {
7497 sched_init_numa();
7498
7499 /*
7500 * There's no userspace yet to cause hotplug operations; hence all the
7501 * CPU masks are stable and all blatant races in the below code cannot
7502 * happen.
7503 */
7504 mutex_lock(&sched_domains_mutex);
7505 sched_init_domains(cpu_active_mask);
7506 mutex_unlock(&sched_domains_mutex);
7507
7508 update_cluster_topology();
7509
7510 /* Move init over to a non-isolated CPU */
7511 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7512 BUG();
7513 sched_init_granularity();
7514
7515 init_sched_rt_class();
7516 init_sched_dl_class();
7517
7518 sched_smp_initialized = true;
7519 }
7520
migration_init(void)7521 static int __init migration_init(void)
7522 {
7523 sched_cpu_starting(smp_processor_id());
7524 return 0;
7525 }
7526 early_initcall(migration_init);
7527
7528 #else
sched_init_smp(void)7529 void __init sched_init_smp(void)
7530 {
7531 sched_init_granularity();
7532 }
7533 #endif /* CONFIG_SMP */
7534
in_sched_functions(unsigned long addr)7535 int in_sched_functions(unsigned long addr)
7536 {
7537 return in_lock_functions(addr) ||
7538 (addr >= (unsigned long)__sched_text_start
7539 && addr < (unsigned long)__sched_text_end);
7540 }
7541
7542 #ifdef CONFIG_CGROUP_SCHED
7543 /*
7544 * Default task group.
7545 * Every task in system belongs to this group at bootup.
7546 */
7547 struct task_group root_task_group;
7548 LIST_HEAD(task_groups);
7549
7550 /* Cacheline aligned slab cache for task_group */
7551 static struct kmem_cache *task_group_cache __read_mostly;
7552 #endif
7553
7554 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7555 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7556
sched_init(void)7557 void __init sched_init(void)
7558 {
7559 unsigned long ptr = 0;
7560 int i;
7561
7562 /* Make sure the linker didn't screw up */
7563 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7564 &fair_sched_class + 1 != &rt_sched_class ||
7565 &rt_sched_class + 1 != &dl_sched_class);
7566 #ifdef CONFIG_SMP
7567 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7568 #endif
7569
7570 wait_bit_init();
7571
7572 init_clusters();
7573
7574 #ifdef CONFIG_FAIR_GROUP_SCHED
7575 ptr += 2 * nr_cpu_ids * sizeof(void **);
7576 #endif
7577 #ifdef CONFIG_RT_GROUP_SCHED
7578 ptr += 2 * nr_cpu_ids * sizeof(void **);
7579 #endif
7580 if (ptr) {
7581 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7582
7583 #ifdef CONFIG_FAIR_GROUP_SCHED
7584 root_task_group.se = (struct sched_entity **)ptr;
7585 ptr += nr_cpu_ids * sizeof(void **);
7586
7587 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7588 ptr += nr_cpu_ids * sizeof(void **);
7589
7590 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7591 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7592 #endif /* CONFIG_FAIR_GROUP_SCHED */
7593 #ifdef CONFIG_RT_GROUP_SCHED
7594 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7595 ptr += nr_cpu_ids * sizeof(void **);
7596
7597 root_task_group.rt_rq = (struct rt_rq **)ptr;
7598 ptr += nr_cpu_ids * sizeof(void **);
7599
7600 #endif /* CONFIG_RT_GROUP_SCHED */
7601 }
7602 #ifdef CONFIG_CPUMASK_OFFSTACK
7603 for_each_possible_cpu(i) {
7604 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7605 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7606 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7607 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7608 }
7609 #endif /* CONFIG_CPUMASK_OFFSTACK */
7610
7611 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7612 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7613
7614 #ifdef CONFIG_SMP
7615 init_defrootdomain();
7616 #endif
7617
7618 #ifdef CONFIG_RT_GROUP_SCHED
7619 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7620 global_rt_period(), global_rt_runtime());
7621 #endif /* CONFIG_RT_GROUP_SCHED */
7622
7623 #ifdef CONFIG_CGROUP_SCHED
7624 task_group_cache = KMEM_CACHE(task_group, 0);
7625
7626 list_add(&root_task_group.list, &task_groups);
7627 INIT_LIST_HEAD(&root_task_group.children);
7628 INIT_LIST_HEAD(&root_task_group.siblings);
7629 autogroup_init(&init_task);
7630 #endif /* CONFIG_CGROUP_SCHED */
7631
7632 for_each_possible_cpu(i) {
7633 struct rq *rq;
7634
7635 rq = cpu_rq(i);
7636 raw_spin_lock_init(&rq->lock);
7637 rq->nr_running = 0;
7638 rq->calc_load_active = 0;
7639 rq->calc_load_update = jiffies + LOAD_FREQ;
7640 init_cfs_rq(&rq->cfs);
7641 init_rt_rq(&rq->rt);
7642 init_dl_rq(&rq->dl);
7643 #ifdef CONFIG_FAIR_GROUP_SCHED
7644 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7645 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7646 /*
7647 * How much CPU bandwidth does root_task_group get?
7648 *
7649 * In case of task-groups formed thr' the cgroup filesystem, it
7650 * gets 100% of the CPU resources in the system. This overall
7651 * system CPU resource is divided among the tasks of
7652 * root_task_group and its child task-groups in a fair manner,
7653 * based on each entity's (task or task-group's) weight
7654 * (se->load.weight).
7655 *
7656 * In other words, if root_task_group has 10 tasks of weight
7657 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7658 * then A0's share of the CPU resource is:
7659 *
7660 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7661 *
7662 * We achieve this by letting root_task_group's tasks sit
7663 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7664 */
7665 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7666 #endif /* CONFIG_FAIR_GROUP_SCHED */
7667
7668 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7669 #ifdef CONFIG_RT_GROUP_SCHED
7670 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7671 #endif
7672 #ifdef CONFIG_SMP
7673 rq->sd = NULL;
7674 rq->rd = NULL;
7675 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7676 rq->balance_callback = NULL;
7677 rq->active_balance = 0;
7678 rq->next_balance = jiffies;
7679 rq->push_cpu = 0;
7680 rq->cpu = i;
7681 rq->online = 0;
7682 rq->idle_stamp = 0;
7683 rq->avg_idle = 2*sysctl_sched_migration_cost;
7684 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7685 walt_sched_init_rq(rq);
7686
7687 INIT_LIST_HEAD(&rq->cfs_tasks);
7688
7689 rq_attach_root(rq, &def_root_domain);
7690 #ifdef CONFIG_NO_HZ_COMMON
7691 rq->last_blocked_load_update_tick = jiffies;
7692 atomic_set(&rq->nohz_flags, 0);
7693
7694 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7695 #endif
7696 #endif /* CONFIG_SMP */
7697 hrtick_rq_init(rq);
7698 atomic_set(&rq->nr_iowait, 0);
7699 }
7700
7701 BUG_ON(alloc_related_thread_groups());
7702 set_load_weight(&init_task, false);
7703
7704 /*
7705 * The boot idle thread does lazy MMU switching as well:
7706 */
7707 mmgrab(&init_mm);
7708 enter_lazy_tlb(&init_mm, current);
7709
7710 /*
7711 * Make us the idle thread. Technically, schedule() should not be
7712 * called from this thread, however somewhere below it might be,
7713 * but because we are the idle thread, we just pick up running again
7714 * when this runqueue becomes "idle".
7715 */
7716 init_idle(current, smp_processor_id());
7717 init_new_task_load(current);
7718
7719 calc_load_update = jiffies + LOAD_FREQ;
7720
7721 #ifdef CONFIG_SMP
7722 idle_thread_set_boot_cpu();
7723 #endif
7724 init_sched_fair_class();
7725
7726 init_schedstats();
7727
7728 psi_init();
7729
7730 init_uclamp();
7731
7732 scheduler_running = 1;
7733 }
7734
7735 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7736 static inline int preempt_count_equals(int preempt_offset)
7737 {
7738 int nested = preempt_count() + rcu_preempt_depth();
7739
7740 return (nested == preempt_offset);
7741 }
7742
__might_sleep(const char * file,int line,int preempt_offset)7743 void __might_sleep(const char *file, int line, int preempt_offset)
7744 {
7745 /*
7746 * Blocking primitives will set (and therefore destroy) current->state,
7747 * since we will exit with TASK_RUNNING make sure we enter with it,
7748 * otherwise we will destroy state.
7749 */
7750 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7751 "do not call blocking ops when !TASK_RUNNING; "
7752 "state=%lx set at [<%p>] %pS\n",
7753 current->state,
7754 (void *)current->task_state_change,
7755 (void *)current->task_state_change);
7756
7757 ___might_sleep(file, line, preempt_offset);
7758 }
7759 EXPORT_SYMBOL(__might_sleep);
7760
___might_sleep(const char * file,int line,int preempt_offset)7761 void ___might_sleep(const char *file, int line, int preempt_offset)
7762 {
7763 /* Ratelimiting timestamp: */
7764 static unsigned long prev_jiffy;
7765
7766 unsigned long preempt_disable_ip;
7767
7768 /* WARN_ON_ONCE() by default, no rate limit required: */
7769 rcu_sleep_check();
7770
7771 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7772 !is_idle_task(current) && !current->non_block_count) ||
7773 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7774 oops_in_progress)
7775 return;
7776
7777 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7778 return;
7779 prev_jiffy = jiffies;
7780
7781 /* Save this before calling printk(), since that will clobber it: */
7782 preempt_disable_ip = get_preempt_disable_ip(current);
7783
7784 printk(KERN_ERR
7785 "BUG: sleeping function called from invalid context at %s:%d\n",
7786 file, line);
7787 printk(KERN_ERR
7788 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7789 in_atomic(), irqs_disabled(), current->non_block_count,
7790 current->pid, current->comm);
7791
7792 if (task_stack_end_corrupted(current))
7793 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7794
7795 debug_show_held_locks(current);
7796 if (irqs_disabled())
7797 print_irqtrace_events(current);
7798 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7799 && !preempt_count_equals(preempt_offset)) {
7800 pr_err("Preemption disabled at:");
7801 print_ip_sym(KERN_ERR, preempt_disable_ip);
7802 }
7803 dump_stack();
7804 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7805 }
7806 EXPORT_SYMBOL(___might_sleep);
7807
__cant_sleep(const char * file,int line,int preempt_offset)7808 void __cant_sleep(const char *file, int line, int preempt_offset)
7809 {
7810 static unsigned long prev_jiffy;
7811
7812 if (irqs_disabled())
7813 return;
7814
7815 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7816 return;
7817
7818 if (preempt_count() > preempt_offset)
7819 return;
7820
7821 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7822 return;
7823 prev_jiffy = jiffies;
7824
7825 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7826 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7827 in_atomic(), irqs_disabled(),
7828 current->pid, current->comm);
7829
7830 debug_show_held_locks(current);
7831 dump_stack();
7832 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7833 }
7834 EXPORT_SYMBOL_GPL(__cant_sleep);
7835 #endif
7836
7837 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7838 void normalize_rt_tasks(void)
7839 {
7840 struct task_struct *g, *p;
7841 struct sched_attr attr = {
7842 .sched_policy = SCHED_NORMAL,
7843 };
7844
7845 read_lock(&tasklist_lock);
7846 for_each_process_thread(g, p) {
7847 /*
7848 * Only normalize user tasks:
7849 */
7850 if (p->flags & PF_KTHREAD)
7851 continue;
7852
7853 p->se.exec_start = 0;
7854 schedstat_set(p->se.statistics.wait_start, 0);
7855 schedstat_set(p->se.statistics.sleep_start, 0);
7856 schedstat_set(p->se.statistics.block_start, 0);
7857
7858 if (!dl_task(p) && !rt_task(p)) {
7859 /*
7860 * Renice negative nice level userspace
7861 * tasks back to 0:
7862 */
7863 if (task_nice(p) < 0)
7864 set_user_nice(p, 0);
7865 continue;
7866 }
7867
7868 __sched_setscheduler(p, &attr, false, false);
7869 }
7870 read_unlock(&tasklist_lock);
7871 }
7872
7873 #endif /* CONFIG_MAGIC_SYSRQ */
7874
7875 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7876 /*
7877 * These functions are only useful for the IA64 MCA handling, or kdb.
7878 *
7879 * They can only be called when the whole system has been
7880 * stopped - every CPU needs to be quiescent, and no scheduling
7881 * activity can take place. Using them for anything else would
7882 * be a serious bug, and as a result, they aren't even visible
7883 * under any other configuration.
7884 */
7885
7886 /**
7887 * curr_task - return the current task for a given CPU.
7888 * @cpu: the processor in question.
7889 *
7890 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7891 *
7892 * Return: The current task for @cpu.
7893 */
curr_task(int cpu)7894 struct task_struct *curr_task(int cpu)
7895 {
7896 return cpu_curr(cpu);
7897 }
7898
7899 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7900
7901 #ifdef CONFIG_IA64
7902 /**
7903 * ia64_set_curr_task - set the current task for a given CPU.
7904 * @cpu: the processor in question.
7905 * @p: the task pointer to set.
7906 *
7907 * Description: This function must only be used when non-maskable interrupts
7908 * are serviced on a separate stack. It allows the architecture to switch the
7909 * notion of the current task on a CPU in a non-blocking manner. This function
7910 * must be called with all CPU's synchronized, and interrupts disabled, the
7911 * and caller must save the original value of the current task (see
7912 * curr_task() above) and restore that value before reenabling interrupts and
7913 * re-starting the system.
7914 *
7915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7916 */
ia64_set_curr_task(int cpu,struct task_struct * p)7917 void ia64_set_curr_task(int cpu, struct task_struct *p)
7918 {
7919 cpu_curr(cpu) = p;
7920 }
7921
7922 #endif
7923
7924 #ifdef CONFIG_CGROUP_SCHED
7925 /* task_group_lock serializes the addition/removal of task groups */
7926 static DEFINE_SPINLOCK(task_group_lock);
7927
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)7928 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7929 struct task_group *parent)
7930 {
7931 #ifdef CONFIG_UCLAMP_TASK_GROUP
7932 enum uclamp_id clamp_id;
7933
7934 for_each_clamp_id(clamp_id) {
7935 uclamp_se_set(&tg->uclamp_req[clamp_id],
7936 uclamp_none(clamp_id), false);
7937 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7938 }
7939 #endif
7940 }
7941
sched_free_group(struct task_group * tg)7942 static void sched_free_group(struct task_group *tg)
7943 {
7944 free_fair_sched_group(tg);
7945 free_rt_sched_group(tg);
7946 autogroup_free(tg);
7947 kmem_cache_free(task_group_cache, tg);
7948 }
7949
7950 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7951 struct task_group *sched_create_group(struct task_group *parent)
7952 {
7953 struct task_group *tg;
7954
7955 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7956 if (!tg)
7957 return ERR_PTR(-ENOMEM);
7958
7959 if (!alloc_fair_sched_group(tg, parent))
7960 goto err;
7961
7962 if (!alloc_rt_sched_group(tg, parent))
7963 goto err;
7964
7965 alloc_uclamp_sched_group(tg, parent);
7966
7967 return tg;
7968
7969 err:
7970 sched_free_group(tg);
7971 return ERR_PTR(-ENOMEM);
7972 }
7973
sched_online_group(struct task_group * tg,struct task_group * parent)7974 void sched_online_group(struct task_group *tg, struct task_group *parent)
7975 {
7976 unsigned long flags;
7977
7978 spin_lock_irqsave(&task_group_lock, flags);
7979 list_add_rcu(&tg->list, &task_groups);
7980
7981 /* Root should already exist: */
7982 WARN_ON(!parent);
7983
7984 tg->parent = parent;
7985 INIT_LIST_HEAD(&tg->children);
7986 list_add_rcu(&tg->siblings, &parent->children);
7987 spin_unlock_irqrestore(&task_group_lock, flags);
7988
7989 online_fair_sched_group(tg);
7990 }
7991
7992 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7993 static void sched_free_group_rcu(struct rcu_head *rhp)
7994 {
7995 /* Now it should be safe to free those cfs_rqs: */
7996 sched_free_group(container_of(rhp, struct task_group, rcu));
7997 }
7998
sched_destroy_group(struct task_group * tg)7999 void sched_destroy_group(struct task_group *tg)
8000 {
8001 /* Wait for possible concurrent references to cfs_rqs complete: */
8002 call_rcu(&tg->rcu, sched_free_group_rcu);
8003 }
8004
sched_offline_group(struct task_group * tg)8005 void sched_offline_group(struct task_group *tg)
8006 {
8007 unsigned long flags;
8008
8009 /* End participation in shares distribution: */
8010 unregister_fair_sched_group(tg);
8011
8012 spin_lock_irqsave(&task_group_lock, flags);
8013 list_del_rcu(&tg->list);
8014 list_del_rcu(&tg->siblings);
8015 spin_unlock_irqrestore(&task_group_lock, flags);
8016 }
8017
sched_change_group(struct task_struct * tsk,int type)8018 static void sched_change_group(struct task_struct *tsk, int type)
8019 {
8020 struct task_group *tg;
8021
8022 /*
8023 * All callers are synchronized by task_rq_lock(); we do not use RCU
8024 * which is pointless here. Thus, we pass "true" to task_css_check()
8025 * to prevent lockdep warnings.
8026 */
8027 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8028 struct task_group, css);
8029 tg = autogroup_task_group(tsk, tg);
8030 tsk->sched_task_group = tg;
8031
8032 #ifdef CONFIG_FAIR_GROUP_SCHED
8033 if (tsk->sched_class->task_change_group)
8034 tsk->sched_class->task_change_group(tsk, type);
8035 else
8036 #endif
8037 set_task_rq(tsk, task_cpu(tsk));
8038 }
8039
8040 /*
8041 * Change task's runqueue when it moves between groups.
8042 *
8043 * The caller of this function should have put the task in its new group by
8044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8045 * its new group.
8046 */
sched_move_task(struct task_struct * tsk)8047 void sched_move_task(struct task_struct *tsk)
8048 {
8049 int queued, running, queue_flags =
8050 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8051 struct rq_flags rf;
8052 struct rq *rq;
8053
8054 rq = task_rq_lock(tsk, &rf);
8055 update_rq_clock(rq);
8056
8057 running = task_current(rq, tsk);
8058 queued = task_on_rq_queued(tsk);
8059
8060 if (queued)
8061 dequeue_task(rq, tsk, queue_flags);
8062 if (running)
8063 put_prev_task(rq, tsk);
8064
8065 sched_change_group(tsk, TASK_MOVE_GROUP);
8066
8067 if (queued)
8068 enqueue_task(rq, tsk, queue_flags);
8069 if (running) {
8070 set_next_task(rq, tsk);
8071 /*
8072 * After changing group, the running task may have joined a
8073 * throttled one but it's still the running task. Trigger a
8074 * resched to make sure that task can still run.
8075 */
8076 resched_curr(rq);
8077 }
8078
8079 task_rq_unlock(rq, tsk, &rf);
8080 }
8081
css_tg(struct cgroup_subsys_state * css)8082 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8083 {
8084 return css ? container_of(css, struct task_group, css) : NULL;
8085 }
8086
8087 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8088 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8089 {
8090 struct task_group *parent = css_tg(parent_css);
8091 struct task_group *tg;
8092
8093 if (!parent) {
8094 /* This is early initialization for the top cgroup */
8095 return &root_task_group.css;
8096 }
8097
8098 tg = sched_create_group(parent);
8099 if (IS_ERR(tg))
8100 return ERR_PTR(-ENOMEM);
8101
8102 #ifdef CONFIG_SCHED_RTG_CGROUP
8103 tg->colocate = false;
8104 tg->colocate_update_disabled = false;
8105 #endif
8106
8107 return &tg->css;
8108 }
8109
8110 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8111 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8112 {
8113 struct task_group *tg = css_tg(css);
8114 struct task_group *parent = css_tg(css->parent);
8115
8116 if (parent)
8117 sched_online_group(tg, parent);
8118
8119 #ifdef CONFIG_UCLAMP_TASK_GROUP
8120 /* Propagate the effective uclamp value for the new group */
8121 mutex_lock(&uclamp_mutex);
8122 rcu_read_lock();
8123 cpu_util_update_eff(css);
8124 rcu_read_unlock();
8125 mutex_unlock(&uclamp_mutex);
8126 #endif
8127
8128 return 0;
8129 }
8130
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8131 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8132 {
8133 struct task_group *tg = css_tg(css);
8134
8135 sched_offline_group(tg);
8136 }
8137
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8138 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8139 {
8140 struct task_group *tg = css_tg(css);
8141
8142 /*
8143 * Relies on the RCU grace period between css_released() and this.
8144 */
8145 sched_free_group(tg);
8146 }
8147
8148 /*
8149 * This is called before wake_up_new_task(), therefore we really only
8150 * have to set its group bits, all the other stuff does not apply.
8151 */
cpu_cgroup_fork(struct task_struct * task)8152 static void cpu_cgroup_fork(struct task_struct *task)
8153 {
8154 struct rq_flags rf;
8155 struct rq *rq;
8156
8157 rq = task_rq_lock(task, &rf);
8158
8159 update_rq_clock(rq);
8160 sched_change_group(task, TASK_SET_GROUP);
8161
8162 task_rq_unlock(rq, task, &rf);
8163 }
8164
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8165 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8166 {
8167 struct task_struct *task;
8168 struct cgroup_subsys_state *css;
8169 int ret = 0;
8170
8171 cgroup_taskset_for_each(task, css, tset) {
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 if (!sched_rt_can_attach(css_tg(css), task))
8174 return -EINVAL;
8175 #endif
8176 /*
8177 * Serialize against wake_up_new_task() such that if its
8178 * running, we're sure to observe its full state.
8179 */
8180 raw_spin_lock_irq(&task->pi_lock);
8181 /*
8182 * Avoid calling sched_move_task() before wake_up_new_task()
8183 * has happened. This would lead to problems with PELT, due to
8184 * move wanting to detach+attach while we're not attached yet.
8185 */
8186 if (task->state == TASK_NEW)
8187 ret = -EINVAL;
8188 raw_spin_unlock_irq(&task->pi_lock);
8189
8190 if (ret)
8191 break;
8192 }
8193 return ret;
8194 }
8195
8196 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)8197 static void schedgp_attach(struct cgroup_taskset *tset)
8198 {
8199 struct task_struct *task;
8200 struct cgroup_subsys_state *css;
8201 bool colocate;
8202 struct task_group *tg;
8203
8204 cgroup_taskset_first(tset, &css);
8205 tg = css_tg(css);
8206
8207 colocate = tg->colocate;
8208
8209 cgroup_taskset_for_each(task, css, tset)
8210 sync_cgroup_colocation(task, colocate);
8211 }
8212 #else
schedgp_attach(struct cgroup_taskset * tset)8213 static void schedgp_attach(struct cgroup_taskset *tset) { }
8214 #endif
cpu_cgroup_attach(struct cgroup_taskset * tset)8215 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8216 {
8217 struct task_struct *task;
8218 struct cgroup_subsys_state *css;
8219
8220 cgroup_taskset_for_each(task, css, tset)
8221 sched_move_task(task);
8222
8223 schedgp_attach(tset);
8224 }
8225
8226 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8227 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8228 {
8229 struct cgroup_subsys_state *top_css = css;
8230 struct uclamp_se *uc_parent = NULL;
8231 struct uclamp_se *uc_se = NULL;
8232 unsigned int eff[UCLAMP_CNT];
8233 enum uclamp_id clamp_id;
8234 unsigned int clamps;
8235
8236 lockdep_assert_held(&uclamp_mutex);
8237 SCHED_WARN_ON(!rcu_read_lock_held());
8238
8239 css_for_each_descendant_pre(css, top_css) {
8240 uc_parent = css_tg(css)->parent
8241 ? css_tg(css)->parent->uclamp : NULL;
8242
8243 for_each_clamp_id(clamp_id) {
8244 /* Assume effective clamps matches requested clamps */
8245 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8246 /* Cap effective clamps with parent's effective clamps */
8247 if (uc_parent &&
8248 eff[clamp_id] > uc_parent[clamp_id].value) {
8249 eff[clamp_id] = uc_parent[clamp_id].value;
8250 }
8251 }
8252 /* Ensure protection is always capped by limit */
8253 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8254
8255 /* Propagate most restrictive effective clamps */
8256 clamps = 0x0;
8257 uc_se = css_tg(css)->uclamp;
8258 for_each_clamp_id(clamp_id) {
8259 if (eff[clamp_id] == uc_se[clamp_id].value)
8260 continue;
8261 uc_se[clamp_id].value = eff[clamp_id];
8262 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8263 clamps |= (0x1 << clamp_id);
8264 }
8265 if (!clamps) {
8266 css = css_rightmost_descendant(css);
8267 continue;
8268 }
8269
8270 /* Immediately update descendants RUNNABLE tasks */
8271 uclamp_update_active_tasks(css);
8272 }
8273 }
8274
8275 /*
8276 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8277 * C expression. Since there is no way to convert a macro argument (N) into a
8278 * character constant, use two levels of macros.
8279 */
8280 #define _POW10(exp) ((unsigned int)1e##exp)
8281 #define POW10(exp) _POW10(exp)
8282
8283 struct uclamp_request {
8284 #define UCLAMP_PERCENT_SHIFT 2
8285 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8286 s64 percent;
8287 u64 util;
8288 int ret;
8289 };
8290
8291 static inline struct uclamp_request
capacity_from_percent(char * buf)8292 capacity_from_percent(char *buf)
8293 {
8294 struct uclamp_request req = {
8295 .percent = UCLAMP_PERCENT_SCALE,
8296 .util = SCHED_CAPACITY_SCALE,
8297 .ret = 0,
8298 };
8299
8300 buf = strim(buf);
8301 if (strcmp(buf, "max")) {
8302 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8303 &req.percent);
8304 if (req.ret)
8305 return req;
8306 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8307 req.ret = -ERANGE;
8308 return req;
8309 }
8310
8311 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8312 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8313 }
8314
8315 return req;
8316 }
8317
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8318 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8319 size_t nbytes, loff_t off,
8320 enum uclamp_id clamp_id)
8321 {
8322 struct uclamp_request req;
8323 struct task_group *tg;
8324
8325 req = capacity_from_percent(buf);
8326 if (req.ret)
8327 return req.ret;
8328
8329 static_branch_enable(&sched_uclamp_used);
8330
8331 mutex_lock(&uclamp_mutex);
8332 rcu_read_lock();
8333
8334 tg = css_tg(of_css(of));
8335 if (tg->uclamp_req[clamp_id].value != req.util)
8336 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8337
8338 /*
8339 * Because of not recoverable conversion rounding we keep track of the
8340 * exact requested value
8341 */
8342 tg->uclamp_pct[clamp_id] = req.percent;
8343
8344 /* Update effective clamps to track the most restrictive value */
8345 cpu_util_update_eff(of_css(of));
8346
8347 rcu_read_unlock();
8348 mutex_unlock(&uclamp_mutex);
8349
8350 return nbytes;
8351 }
8352
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8353 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8354 char *buf, size_t nbytes,
8355 loff_t off)
8356 {
8357 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8358 }
8359
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8360 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8361 char *buf, size_t nbytes,
8362 loff_t off)
8363 {
8364 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8365 }
8366
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8367 static inline void cpu_uclamp_print(struct seq_file *sf,
8368 enum uclamp_id clamp_id)
8369 {
8370 struct task_group *tg;
8371 u64 util_clamp;
8372 u64 percent;
8373 u32 rem;
8374
8375 rcu_read_lock();
8376 tg = css_tg(seq_css(sf));
8377 util_clamp = tg->uclamp_req[clamp_id].value;
8378 rcu_read_unlock();
8379
8380 if (util_clamp == SCHED_CAPACITY_SCALE) {
8381 seq_puts(sf, "max\n");
8382 return;
8383 }
8384
8385 percent = tg->uclamp_pct[clamp_id];
8386 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8387 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8388 }
8389
cpu_uclamp_min_show(struct seq_file * sf,void * v)8390 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8391 {
8392 cpu_uclamp_print(sf, UCLAMP_MIN);
8393 return 0;
8394 }
8395
cpu_uclamp_max_show(struct seq_file * sf,void * v)8396 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8397 {
8398 cpu_uclamp_print(sf, UCLAMP_MAX);
8399 return 0;
8400 }
8401
8402 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)8403 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
8404 struct cftype *cft)
8405 {
8406 struct task_group *tg = css_tg(css);
8407
8408 return (u64) tg->colocate;
8409 }
8410
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)8411 static int sched_colocate_write(struct cgroup_subsys_state *css,
8412 struct cftype *cft, u64 colocate)
8413 {
8414 struct task_group *tg = css_tg(css);
8415
8416 if (tg->colocate_update_disabled)
8417 return -EPERM;
8418
8419 tg->colocate = !!colocate;
8420 tg->colocate_update_disabled = true;
8421
8422 return 0;
8423 }
8424 #endif /* CONFIG_SCHED_RTG_CGROUP */
8425 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8426
8427 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8428 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8429 struct cftype *cftype, u64 shareval)
8430 {
8431 if (shareval > scale_load_down(ULONG_MAX))
8432 shareval = MAX_SHARES;
8433 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8434 }
8435
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8436 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8437 struct cftype *cft)
8438 {
8439 struct task_group *tg = css_tg(css);
8440
8441 return (u64) scale_load_down(tg->shares);
8442 }
8443
8444 #ifdef CONFIG_CFS_BANDWIDTH
8445 static DEFINE_MUTEX(cfs_constraints_mutex);
8446
8447 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8448 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8449 /* More than 203 days if BW_SHIFT equals 20. */
8450 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8451
8452 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8453
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8454 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8455 {
8456 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8457 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8458
8459 if (tg == &root_task_group)
8460 return -EINVAL;
8461
8462 /*
8463 * Ensure we have at some amount of bandwidth every period. This is
8464 * to prevent reaching a state of large arrears when throttled via
8465 * entity_tick() resulting in prolonged exit starvation.
8466 */
8467 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8468 return -EINVAL;
8469
8470 /*
8471 * Likewise, bound things on the otherside by preventing insane quota
8472 * periods. This also allows us to normalize in computing quota
8473 * feasibility.
8474 */
8475 if (period > max_cfs_quota_period)
8476 return -EINVAL;
8477
8478 /*
8479 * Bound quota to defend quota against overflow during bandwidth shift.
8480 */
8481 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8482 return -EINVAL;
8483
8484 /*
8485 * Prevent race between setting of cfs_rq->runtime_enabled and
8486 * unthrottle_offline_cfs_rqs().
8487 */
8488 get_online_cpus();
8489 mutex_lock(&cfs_constraints_mutex);
8490 ret = __cfs_schedulable(tg, period, quota);
8491 if (ret)
8492 goto out_unlock;
8493
8494 runtime_enabled = quota != RUNTIME_INF;
8495 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8496 /*
8497 * If we need to toggle cfs_bandwidth_used, off->on must occur
8498 * before making related changes, and on->off must occur afterwards
8499 */
8500 if (runtime_enabled && !runtime_was_enabled)
8501 cfs_bandwidth_usage_inc();
8502 raw_spin_lock_irq(&cfs_b->lock);
8503 cfs_b->period = ns_to_ktime(period);
8504 cfs_b->quota = quota;
8505
8506 __refill_cfs_bandwidth_runtime(cfs_b);
8507
8508 /* Restart the period timer (if active) to handle new period expiry: */
8509 if (runtime_enabled)
8510 start_cfs_bandwidth(cfs_b);
8511
8512 raw_spin_unlock_irq(&cfs_b->lock);
8513
8514 for_each_online_cpu(i) {
8515 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8516 struct rq *rq = cfs_rq->rq;
8517 struct rq_flags rf;
8518
8519 rq_lock_irq(rq, &rf);
8520 cfs_rq->runtime_enabled = runtime_enabled;
8521 cfs_rq->runtime_remaining = 0;
8522
8523 if (cfs_rq->throttled)
8524 unthrottle_cfs_rq(cfs_rq);
8525 rq_unlock_irq(rq, &rf);
8526 }
8527 if (runtime_was_enabled && !runtime_enabled)
8528 cfs_bandwidth_usage_dec();
8529 out_unlock:
8530 mutex_unlock(&cfs_constraints_mutex);
8531 put_online_cpus();
8532
8533 return ret;
8534 }
8535
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8536 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8537 {
8538 u64 quota, period;
8539
8540 period = ktime_to_ns(tg->cfs_bandwidth.period);
8541 if (cfs_quota_us < 0)
8542 quota = RUNTIME_INF;
8543 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8544 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8545 else
8546 return -EINVAL;
8547
8548 return tg_set_cfs_bandwidth(tg, period, quota);
8549 }
8550
tg_get_cfs_quota(struct task_group * tg)8551 static long tg_get_cfs_quota(struct task_group *tg)
8552 {
8553 u64 quota_us;
8554
8555 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8556 return -1;
8557
8558 quota_us = tg->cfs_bandwidth.quota;
8559 do_div(quota_us, NSEC_PER_USEC);
8560
8561 return quota_us;
8562 }
8563
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8564 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8565 {
8566 u64 quota, period;
8567
8568 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8569 return -EINVAL;
8570
8571 period = (u64)cfs_period_us * NSEC_PER_USEC;
8572 quota = tg->cfs_bandwidth.quota;
8573
8574 return tg_set_cfs_bandwidth(tg, period, quota);
8575 }
8576
tg_get_cfs_period(struct task_group * tg)8577 static long tg_get_cfs_period(struct task_group *tg)
8578 {
8579 u64 cfs_period_us;
8580
8581 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8582 do_div(cfs_period_us, NSEC_PER_USEC);
8583
8584 return cfs_period_us;
8585 }
8586
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8587 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8588 struct cftype *cft)
8589 {
8590 return tg_get_cfs_quota(css_tg(css));
8591 }
8592
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8593 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8594 struct cftype *cftype, s64 cfs_quota_us)
8595 {
8596 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8597 }
8598
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8599 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8600 struct cftype *cft)
8601 {
8602 return tg_get_cfs_period(css_tg(css));
8603 }
8604
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8605 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8606 struct cftype *cftype, u64 cfs_period_us)
8607 {
8608 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8609 }
8610
8611 struct cfs_schedulable_data {
8612 struct task_group *tg;
8613 u64 period, quota;
8614 };
8615
8616 /*
8617 * normalize group quota/period to be quota/max_period
8618 * note: units are usecs
8619 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8620 static u64 normalize_cfs_quota(struct task_group *tg,
8621 struct cfs_schedulable_data *d)
8622 {
8623 u64 quota, period;
8624
8625 if (tg == d->tg) {
8626 period = d->period;
8627 quota = d->quota;
8628 } else {
8629 period = tg_get_cfs_period(tg);
8630 quota = tg_get_cfs_quota(tg);
8631 }
8632
8633 /* note: these should typically be equivalent */
8634 if (quota == RUNTIME_INF || quota == -1)
8635 return RUNTIME_INF;
8636
8637 return to_ratio(period, quota);
8638 }
8639
tg_cfs_schedulable_down(struct task_group * tg,void * data)8640 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8641 {
8642 struct cfs_schedulable_data *d = data;
8643 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8644 s64 quota = 0, parent_quota = -1;
8645
8646 if (!tg->parent) {
8647 quota = RUNTIME_INF;
8648 } else {
8649 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8650
8651 quota = normalize_cfs_quota(tg, d);
8652 parent_quota = parent_b->hierarchical_quota;
8653
8654 /*
8655 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8656 * always take the min. On cgroup1, only inherit when no
8657 * limit is set:
8658 */
8659 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8660 quota = min(quota, parent_quota);
8661 } else {
8662 if (quota == RUNTIME_INF)
8663 quota = parent_quota;
8664 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8665 return -EINVAL;
8666 }
8667 }
8668 cfs_b->hierarchical_quota = quota;
8669
8670 return 0;
8671 }
8672
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8673 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8674 {
8675 int ret;
8676 struct cfs_schedulable_data data = {
8677 .tg = tg,
8678 .period = period,
8679 .quota = quota,
8680 };
8681
8682 if (quota != RUNTIME_INF) {
8683 do_div(data.period, NSEC_PER_USEC);
8684 do_div(data.quota, NSEC_PER_USEC);
8685 }
8686
8687 rcu_read_lock();
8688 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8689 rcu_read_unlock();
8690
8691 return ret;
8692 }
8693
cpu_cfs_stat_show(struct seq_file * sf,void * v)8694 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8695 {
8696 struct task_group *tg = css_tg(seq_css(sf));
8697 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8698
8699 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8700 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8701 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8702
8703 if (schedstat_enabled() && tg != &root_task_group) {
8704 u64 ws = 0;
8705 int i;
8706
8707 for_each_possible_cpu(i)
8708 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8709
8710 seq_printf(sf, "wait_sum %llu\n", ws);
8711 }
8712
8713 return 0;
8714 }
8715 #endif /* CONFIG_CFS_BANDWIDTH */
8716 #endif /* CONFIG_FAIR_GROUP_SCHED */
8717
8718 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8719 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8720 struct cftype *cft, s64 val)
8721 {
8722 return sched_group_set_rt_runtime(css_tg(css), val);
8723 }
8724
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8725 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8726 struct cftype *cft)
8727 {
8728 return sched_group_rt_runtime(css_tg(css));
8729 }
8730
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8731 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8732 struct cftype *cftype, u64 rt_period_us)
8733 {
8734 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8735 }
8736
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8737 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8738 struct cftype *cft)
8739 {
8740 return sched_group_rt_period(css_tg(css));
8741 }
8742 #endif /* CONFIG_RT_GROUP_SCHED */
8743
8744 static struct cftype cpu_legacy_files[] = {
8745 #ifdef CONFIG_FAIR_GROUP_SCHED
8746 {
8747 .name = "shares",
8748 .read_u64 = cpu_shares_read_u64,
8749 .write_u64 = cpu_shares_write_u64,
8750 },
8751 #endif
8752 #ifdef CONFIG_CFS_BANDWIDTH
8753 {
8754 .name = "cfs_quota_us",
8755 .read_s64 = cpu_cfs_quota_read_s64,
8756 .write_s64 = cpu_cfs_quota_write_s64,
8757 },
8758 {
8759 .name = "cfs_period_us",
8760 .read_u64 = cpu_cfs_period_read_u64,
8761 .write_u64 = cpu_cfs_period_write_u64,
8762 },
8763 {
8764 .name = "stat",
8765 .seq_show = cpu_cfs_stat_show,
8766 },
8767 #endif
8768 #ifdef CONFIG_RT_GROUP_SCHED
8769 {
8770 .name = "rt_runtime_us",
8771 .read_s64 = cpu_rt_runtime_read,
8772 .write_s64 = cpu_rt_runtime_write,
8773 },
8774 {
8775 .name = "rt_period_us",
8776 .read_u64 = cpu_rt_period_read_uint,
8777 .write_u64 = cpu_rt_period_write_uint,
8778 },
8779 #endif
8780 #ifdef CONFIG_UCLAMP_TASK_GROUP
8781 {
8782 .name = "uclamp.min",
8783 .flags = CFTYPE_NOT_ON_ROOT,
8784 .seq_show = cpu_uclamp_min_show,
8785 .write = cpu_uclamp_min_write,
8786 },
8787 {
8788 .name = "uclamp.max",
8789 .flags = CFTYPE_NOT_ON_ROOT,
8790 .seq_show = cpu_uclamp_max_show,
8791 .write = cpu_uclamp_max_write,
8792 },
8793 #ifdef CONFIG_SCHED_RTG_CGROUP
8794 {
8795 .name = "uclamp.colocate",
8796 .flags = CFTYPE_NOT_ON_ROOT,
8797 .read_u64 = sched_colocate_read,
8798 .write_u64 = sched_colocate_write,
8799 },
8800 #endif
8801 #endif
8802 { } /* Terminate */
8803 };
8804
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8805 static int cpu_extra_stat_show(struct seq_file *sf,
8806 struct cgroup_subsys_state *css)
8807 {
8808 #ifdef CONFIG_CFS_BANDWIDTH
8809 {
8810 struct task_group *tg = css_tg(css);
8811 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8812 u64 throttled_usec;
8813
8814 throttled_usec = cfs_b->throttled_time;
8815 do_div(throttled_usec, NSEC_PER_USEC);
8816
8817 seq_printf(sf, "nr_periods %d\n"
8818 "nr_throttled %d\n"
8819 "throttled_usec %llu\n",
8820 cfs_b->nr_periods, cfs_b->nr_throttled,
8821 throttled_usec);
8822 }
8823 #endif
8824 return 0;
8825 }
8826
8827 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8828 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8829 struct cftype *cft)
8830 {
8831 struct task_group *tg = css_tg(css);
8832 u64 weight = scale_load_down(tg->shares);
8833
8834 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8835 }
8836
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8837 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8838 struct cftype *cft, u64 weight)
8839 {
8840 /*
8841 * cgroup weight knobs should use the common MIN, DFL and MAX
8842 * values which are 1, 100 and 10000 respectively. While it loses
8843 * a bit of range on both ends, it maps pretty well onto the shares
8844 * value used by scheduler and the round-trip conversions preserve
8845 * the original value over the entire range.
8846 */
8847 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8848 return -ERANGE;
8849
8850 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8851
8852 return sched_group_set_shares(css_tg(css), scale_load(weight));
8853 }
8854
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8855 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8856 struct cftype *cft)
8857 {
8858 unsigned long weight = scale_load_down(css_tg(css)->shares);
8859 int last_delta = INT_MAX;
8860 int prio, delta;
8861
8862 /* find the closest nice value to the current weight */
8863 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8864 delta = abs(sched_prio_to_weight[prio] - weight);
8865 if (delta >= last_delta)
8866 break;
8867 last_delta = delta;
8868 }
8869
8870 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8871 }
8872
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8873 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8874 struct cftype *cft, s64 nice)
8875 {
8876 unsigned long weight;
8877 int idx;
8878
8879 if (nice < MIN_NICE || nice > MAX_NICE)
8880 return -ERANGE;
8881
8882 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8883 idx = array_index_nospec(idx, 40);
8884 weight = sched_prio_to_weight[idx];
8885
8886 return sched_group_set_shares(css_tg(css), scale_load(weight));
8887 }
8888 #endif
8889
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8890 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8891 long period, long quota)
8892 {
8893 if (quota < 0)
8894 seq_puts(sf, "max");
8895 else
8896 seq_printf(sf, "%ld", quota);
8897
8898 seq_printf(sf, " %ld\n", period);
8899 }
8900
8901 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8902 static int __maybe_unused cpu_period_quota_parse(char *buf,
8903 u64 *periodp, u64 *quotap)
8904 {
8905 char tok[21]; /* U64_MAX */
8906
8907 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8908 return -EINVAL;
8909
8910 *periodp *= NSEC_PER_USEC;
8911
8912 if (sscanf(tok, "%llu", quotap))
8913 *quotap *= NSEC_PER_USEC;
8914 else if (!strcmp(tok, "max"))
8915 *quotap = RUNTIME_INF;
8916 else
8917 return -EINVAL;
8918
8919 return 0;
8920 }
8921
8922 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)8923 static int cpu_max_show(struct seq_file *sf, void *v)
8924 {
8925 struct task_group *tg = css_tg(seq_css(sf));
8926
8927 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8928 return 0;
8929 }
8930
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8931 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8932 char *buf, size_t nbytes, loff_t off)
8933 {
8934 struct task_group *tg = css_tg(of_css(of));
8935 u64 period = tg_get_cfs_period(tg);
8936 u64 quota;
8937 int ret;
8938
8939 ret = cpu_period_quota_parse(buf, &period, "a);
8940 if (!ret)
8941 ret = tg_set_cfs_bandwidth(tg, period, quota);
8942 return ret ?: nbytes;
8943 }
8944 #endif
8945
8946 static struct cftype cpu_files[] = {
8947 #ifdef CONFIG_FAIR_GROUP_SCHED
8948 {
8949 .name = "weight",
8950 .flags = CFTYPE_NOT_ON_ROOT,
8951 .read_u64 = cpu_weight_read_u64,
8952 .write_u64 = cpu_weight_write_u64,
8953 },
8954 {
8955 .name = "weight.nice",
8956 .flags = CFTYPE_NOT_ON_ROOT,
8957 .read_s64 = cpu_weight_nice_read_s64,
8958 .write_s64 = cpu_weight_nice_write_s64,
8959 },
8960 #endif
8961 #ifdef CONFIG_CFS_BANDWIDTH
8962 {
8963 .name = "max",
8964 .flags = CFTYPE_NOT_ON_ROOT,
8965 .seq_show = cpu_max_show,
8966 .write = cpu_max_write,
8967 },
8968 #endif
8969 #ifdef CONFIG_UCLAMP_TASK_GROUP
8970 {
8971 .name = "uclamp.min",
8972 .flags = CFTYPE_NOT_ON_ROOT,
8973 .seq_show = cpu_uclamp_min_show,
8974 .write = cpu_uclamp_min_write,
8975 },
8976 {
8977 .name = "uclamp.max",
8978 .flags = CFTYPE_NOT_ON_ROOT,
8979 .seq_show = cpu_uclamp_max_show,
8980 .write = cpu_uclamp_max_write,
8981 },
8982 #endif
8983 { } /* terminate */
8984 };
8985
8986 struct cgroup_subsys cpu_cgrp_subsys = {
8987 .css_alloc = cpu_cgroup_css_alloc,
8988 .css_online = cpu_cgroup_css_online,
8989 .css_released = cpu_cgroup_css_released,
8990 .css_free = cpu_cgroup_css_free,
8991 .css_extra_stat_show = cpu_extra_stat_show,
8992 .fork = cpu_cgroup_fork,
8993 .can_attach = cpu_cgroup_can_attach,
8994 .attach = cpu_cgroup_attach,
8995 .legacy_cftypes = cpu_legacy_files,
8996 .dfl_cftypes = cpu_files,
8997 .early_init = true,
8998 .threaded = true,
8999 };
9000
9001 #endif /* CONFIG_CGROUP_SCHED */
9002
dump_cpu_task(int cpu)9003 void dump_cpu_task(int cpu)
9004 {
9005 pr_info("Task dump for CPU %d:\n", cpu);
9006 sched_show_task(cpu_curr(cpu));
9007 }
9008
9009 /*
9010 * Nice levels are multiplicative, with a gentle 10% change for every
9011 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9012 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9013 * that remained on nice 0.
9014 *
9015 * The "10% effect" is relative and cumulative: from _any_ nice level,
9016 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9017 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9018 * If a task goes up by ~10% and another task goes down by ~10% then
9019 * the relative distance between them is ~25%.)
9020 */
9021 const int sched_prio_to_weight[40] = {
9022 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9023 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9024 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9025 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9026 /* 0 */ 1024, 820, 655, 526, 423,
9027 /* 5 */ 335, 272, 215, 172, 137,
9028 /* 10 */ 110, 87, 70, 56, 45,
9029 /* 15 */ 36, 29, 23, 18, 15,
9030 };
9031
9032 /*
9033 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9034 *
9035 * In cases where the weight does not change often, we can use the
9036 * precalculated inverse to speed up arithmetics by turning divisions
9037 * into multiplications:
9038 */
9039 const u32 sched_prio_to_wmult[40] = {
9040 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9041 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9042 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9043 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9044 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9045 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9046 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9047 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9048 };
9049
call_trace_sched_update_nr_running(struct rq * rq,int count)9050 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9051 {
9052 trace_sched_update_nr_running_tp(rq, count);
9053 }
9054
9055 #ifdef CONFIG_SCHED_WALT
9056 /*
9057 * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
9058 *
9059 * Stop accounting (exiting) task's future cpu usage
9060 *
9061 * We need this so that reset_all_windows_stats() can function correctly.
9062 * reset_all_window_stats() depends on do_each_thread/for_each_thread task
9063 * iterators to reset *all* task's statistics. Exiting tasks however become
9064 * invisible to those iterators. sched_exit() is called on a exiting task prior
9065 * to being removed from task_list, which will let reset_all_window_stats()
9066 * function correctly.
9067 */
sched_exit(struct task_struct * p)9068 void sched_exit(struct task_struct *p)
9069 {
9070 struct rq_flags rf;
9071 struct rq *rq;
9072 u64 wallclock;
9073
9074 #ifdef CONFIG_SCHED_RTG
9075 sched_set_group_id(p, 0);
9076 #endif
9077
9078 rq = task_rq_lock(p, &rf);
9079
9080 /* rq->curr == p */
9081 wallclock = sched_ktime_clock();
9082 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
9083 dequeue_task(rq, p, 0);
9084 /*
9085 * task's contribution is already removed from the
9086 * cumulative window demand in dequeue. As the
9087 * task's stats are reset, the next enqueue does
9088 * not change the cumulative window demand.
9089 */
9090 reset_task_stats(p);
9091 p->ravg.mark_start = wallclock;
9092 p->ravg.sum_history[0] = EXITING_TASK_MARKER;
9093
9094 enqueue_task(rq, p, 0);
9095 task_rq_unlock(rq, p, &rf);
9096 free_task_load_ptrs(p);
9097 }
9098 #endif /* CONFIG_SCHED_WALT */
9099