1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24 #include "walt.h"
25 #include "rtg/rtg.h"
26
27 #ifdef CONFIG_SCHED_WALT
28 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
29 u16 updated_demand_scaled);
30 #endif
31
32 #if defined(CONFIG_SCHED_WALT) && defined(CONFIG_CFS_BANDWIDTH)
33 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq);
34 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq,
35 struct task_struct *p);
36 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq,
37 struct task_struct *p);
38 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
39 struct cfs_rq *cfs_rq);
40 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
41 struct cfs_rq *cfs_rq);
42 #else
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)43 static inline void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq) {}
44 static inline void
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)45 walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
46 static inline void
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)47 walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
48
49 #define walt_inc_throttled_cfs_rq_stats(...)
50 #define walt_dec_throttled_cfs_rq_stats(...)
51
52 #endif
53
54 /*
55 * Targeted preemption latency for CPU-bound tasks:
56 *
57 * NOTE: this latency value is not the same as the concept of
58 * 'timeslice length' - timeslices in CFS are of variable length
59 * and have no persistent notion like in traditional, time-slice
60 * based scheduling concepts.
61 *
62 * (to see the precise effective timeslice length of your workload,
63 * run vmstat and monitor the context-switches (cs) field)
64 *
65 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
66 */
67 unsigned int sysctl_sched_latency = 6000000ULL;
68 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
69
70 /*
71 * The initial- and re-scaling of tunables is configurable
72 *
73 * Options are:
74 *
75 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
76 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
77 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
78 *
79 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
80 */
81 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
82
83 /*
84 * Minimal preemption granularity for CPU-bound tasks:
85 *
86 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 */
88 unsigned int sysctl_sched_min_granularity = 750000ULL;
89 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
90
91 /*
92 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
93 */
94 static unsigned int sched_nr_latency = 8;
95
96 /*
97 * After fork, child runs first. If set to 0 (default) then
98 * parent will (try to) run first.
99 */
100 unsigned int sysctl_sched_child_runs_first __read_mostly;
101
102 /*
103 * SCHED_OTHER wake-up granularity.
104 *
105 * This option delays the preemption effects of decoupled workloads
106 * and reduces their over-scheduling. Synchronous workloads will still
107 * have immediate wakeup/sleep latencies.
108 *
109 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
110 */
111 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
112 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
113
114 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
115
116 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)117 static int __init setup_sched_thermal_decay_shift(char *str)
118 {
119 int _shift = 0;
120
121 if (kstrtoint(str, 0, &_shift))
122 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
123
124 sched_thermal_decay_shift = clamp(_shift, 0, 10);
125 return 1;
126 }
127 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
128
129 #ifdef CONFIG_SMP
130 /*
131 * For asym packing, by default the lower numbered CPU has higher priority.
132 */
arch_asym_cpu_priority(int cpu)133 int __weak arch_asym_cpu_priority(int cpu)
134 {
135 return -cpu;
136 }
137
138 /*
139 * The margin used when comparing utilization with CPU capacity.
140 *
141 * (default: ~20%)
142 */
143 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
144
145 #endif
146
147 #ifdef CONFIG_CFS_BANDWIDTH
148 /*
149 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
150 * each time a cfs_rq requests quota.
151 *
152 * Note: in the case that the slice exceeds the runtime remaining (either due
153 * to consumption or the quota being specified to be smaller than the slice)
154 * we will always only issue the remaining available time.
155 *
156 * (default: 5 msec, units: microseconds)
157 */
158 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
159 #endif
160
update_load_add(struct load_weight * lw,unsigned long inc)161 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
162 {
163 lw->weight += inc;
164 lw->inv_weight = 0;
165 }
166
update_load_sub(struct load_weight * lw,unsigned long dec)167 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
168 {
169 lw->weight -= dec;
170 lw->inv_weight = 0;
171 }
172
update_load_set(struct load_weight * lw,unsigned long w)173 static inline void update_load_set(struct load_weight *lw, unsigned long w)
174 {
175 lw->weight = w;
176 lw->inv_weight = 0;
177 }
178
179 /*
180 * Increase the granularity value when there are more CPUs,
181 * because with more CPUs the 'effective latency' as visible
182 * to users decreases. But the relationship is not linear,
183 * so pick a second-best guess by going with the log2 of the
184 * number of CPUs.
185 *
186 * This idea comes from the SD scheduler of Con Kolivas:
187 */
get_update_sysctl_factor(void)188 static unsigned int get_update_sysctl_factor(void)
189 {
190 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
191 unsigned int factor;
192
193 switch (sysctl_sched_tunable_scaling) {
194 case SCHED_TUNABLESCALING_NONE:
195 factor = 1;
196 break;
197 case SCHED_TUNABLESCALING_LINEAR:
198 factor = cpus;
199 break;
200 case SCHED_TUNABLESCALING_LOG:
201 default:
202 factor = 1 + ilog2(cpus);
203 break;
204 }
205
206 return factor;
207 }
208
update_sysctl(void)209 static void update_sysctl(void)
210 {
211 unsigned int factor = get_update_sysctl_factor();
212
213 #define SET_SYSCTL(name) \
214 (sysctl_##name = (factor) * normalized_sysctl_##name)
215 SET_SYSCTL(sched_min_granularity);
216 SET_SYSCTL(sched_latency);
217 SET_SYSCTL(sched_wakeup_granularity);
218 #undef SET_SYSCTL
219 }
220
sched_init_granularity(void)221 void __init sched_init_granularity(void)
222 {
223 update_sysctl();
224 }
225
226 #define WMULT_CONST (~0U)
227 #define WMULT_SHIFT 32
228
__update_inv_weight(struct load_weight * lw)229 static void __update_inv_weight(struct load_weight *lw)
230 {
231 unsigned long w;
232
233 if (likely(lw->inv_weight))
234 return;
235
236 w = scale_load_down(lw->weight);
237
238 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
239 lw->inv_weight = 1;
240 else if (unlikely(!w))
241 lw->inv_weight = WMULT_CONST;
242 else
243 lw->inv_weight = WMULT_CONST / w;
244 }
245
246 /*
247 * delta_exec * weight / lw.weight
248 * OR
249 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
250 *
251 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
252 * we're guaranteed shift stays positive because inv_weight is guaranteed to
253 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
254 *
255 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
256 * weight/lw.weight <= 1, and therefore our shift will also be positive.
257 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)258 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
259 {
260 u64 fact = scale_load_down(weight);
261 int shift = WMULT_SHIFT;
262
263 __update_inv_weight(lw);
264
265 if (unlikely(fact >> 32)) {
266 while (fact >> 32) {
267 fact >>= 1;
268 shift--;
269 }
270 }
271
272 fact = mul_u32_u32(fact, lw->inv_weight);
273
274 while (fact >> 32) {
275 fact >>= 1;
276 shift--;
277 }
278
279 return mul_u64_u32_shr(delta_exec, fact, shift);
280 }
281
282
283 const struct sched_class fair_sched_class;
284
285 /**************************************************************
286 * CFS operations on generic schedulable entities:
287 */
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)290 static inline struct task_struct *task_of(struct sched_entity *se)
291 {
292 SCHED_WARN_ON(!entity_is_task(se));
293 return container_of(se, struct task_struct, se);
294 }
295
296 /* Walk up scheduling entities hierarchy */
297 #define for_each_sched_entity(se) \
298 for (; se; se = se->parent)
299
task_cfs_rq(struct task_struct * p)300 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
301 {
302 return p->se.cfs_rq;
303 }
304
305 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)306 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
307 {
308 return se->cfs_rq;
309 }
310
311 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)312 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
313 {
314 return grp->my_q;
315 }
316
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)317 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
318 {
319 if (!path)
320 return;
321
322 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
323 autogroup_path(cfs_rq->tg, path, len);
324 else if (cfs_rq && cfs_rq->tg->css.cgroup)
325 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
326 else
327 strlcpy(path, "(null)", len);
328 }
329
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)330 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
331 {
332 struct rq *rq = rq_of(cfs_rq);
333 int cpu = cpu_of(rq);
334
335 if (cfs_rq->on_list)
336 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
337
338 cfs_rq->on_list = 1;
339
340 /*
341 * Ensure we either appear before our parent (if already
342 * enqueued) or force our parent to appear after us when it is
343 * enqueued. The fact that we always enqueue bottom-up
344 * reduces this to two cases and a special case for the root
345 * cfs_rq. Furthermore, it also means that we will always reset
346 * tmp_alone_branch either when the branch is connected
347 * to a tree or when we reach the top of the tree
348 */
349 if (cfs_rq->tg->parent &&
350 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
351 /*
352 * If parent is already on the list, we add the child
353 * just before. Thanks to circular linked property of
354 * the list, this means to put the child at the tail
355 * of the list that starts by parent.
356 */
357 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
358 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
359 /*
360 * The branch is now connected to its tree so we can
361 * reset tmp_alone_branch to the beginning of the
362 * list.
363 */
364 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
365 return true;
366 }
367
368 if (!cfs_rq->tg->parent) {
369 /*
370 * cfs rq without parent should be put
371 * at the tail of the list.
372 */
373 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
374 &rq->leaf_cfs_rq_list);
375 /*
376 * We have reach the top of a tree so we can reset
377 * tmp_alone_branch to the beginning of the list.
378 */
379 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
380 return true;
381 }
382
383 /*
384 * The parent has not already been added so we want to
385 * make sure that it will be put after us.
386 * tmp_alone_branch points to the begin of the branch
387 * where we will add parent.
388 */
389 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
390 /*
391 * update tmp_alone_branch to points to the new begin
392 * of the branch
393 */
394 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
395 return false;
396 }
397
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)398 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 if (cfs_rq->on_list) {
401 struct rq *rq = rq_of(cfs_rq);
402
403 /*
404 * With cfs_rq being unthrottled/throttled during an enqueue,
405 * it can happen the tmp_alone_branch points the a leaf that
406 * we finally want to del. In this case, tmp_alone_branch moves
407 * to the prev element but it will point to rq->leaf_cfs_rq_list
408 * at the end of the enqueue.
409 */
410 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
411 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
412
413 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
414 cfs_rq->on_list = 0;
415 }
416 }
417
assert_list_leaf_cfs_rq(struct rq * rq)418 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
419 {
420 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
421 }
422
423 /* Iterate thr' all leaf cfs_rq's on a runqueue */
424 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
425 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
426 leaf_cfs_rq_list)
427
428 /* Do the two (enqueued) entities belong to the same group ? */
429 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 if (se->cfs_rq == pse->cfs_rq)
433 return se->cfs_rq;
434
435 return NULL;
436 }
437
parent_entity(struct sched_entity * se)438 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 {
440 return se->parent;
441 }
442
443 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)444 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 {
446 int se_depth, pse_depth;
447
448 /*
449 * preemption test can be made between sibling entities who are in the
450 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
451 * both tasks until we find their ancestors who are siblings of common
452 * parent.
453 */
454
455 /* First walk up until both entities are at same depth */
456 se_depth = (*se)->depth;
457 pse_depth = (*pse)->depth;
458
459 while (se_depth > pse_depth) {
460 se_depth--;
461 *se = parent_entity(*se);
462 }
463
464 while (pse_depth > se_depth) {
465 pse_depth--;
466 *pse = parent_entity(*pse);
467 }
468
469 while (!is_same_group(*se, *pse)) {
470 *se = parent_entity(*se);
471 *pse = parent_entity(*pse);
472 }
473 }
474
475 #else /* !CONFIG_FAIR_GROUP_SCHED */
476
task_of(struct sched_entity * se)477 static inline struct task_struct *task_of(struct sched_entity *se)
478 {
479 return container_of(se, struct task_struct, se);
480 }
481
482 #define for_each_sched_entity(se) \
483 for (; se; se = NULL)
484
task_cfs_rq(struct task_struct * p)485 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
486 {
487 return &task_rq(p)->cfs;
488 }
489
cfs_rq_of(struct sched_entity * se)490 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
491 {
492 struct task_struct *p = task_of(se);
493 struct rq *rq = task_rq(p);
494
495 return &rq->cfs;
496 }
497
498 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)499 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
500 {
501 return NULL;
502 }
503
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)504 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
505 {
506 if (path)
507 strlcpy(path, "(null)", len);
508 }
509
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)510 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
511 {
512 return true;
513 }
514
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)515 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 }
518
assert_list_leaf_cfs_rq(struct rq * rq)519 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
520 {
521 }
522
523 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
524 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
525
parent_entity(struct sched_entity * se)526 static inline struct sched_entity *parent_entity(struct sched_entity *se)
527 {
528 return NULL;
529 }
530
531 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)532 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
533 {
534 }
535
536 #endif /* CONFIG_FAIR_GROUP_SCHED */
537
538 static __always_inline
539 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
540
541 /**************************************************************
542 * Scheduling class tree data structure manipulation methods:
543 */
544
max_vruntime(u64 max_vruntime,u64 vruntime)545 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
546 {
547 s64 delta = (s64)(vruntime - max_vruntime);
548 if (delta > 0)
549 max_vruntime = vruntime;
550
551 return max_vruntime;
552 }
553
min_vruntime(u64 min_vruntime,u64 vruntime)554 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
555 {
556 s64 delta = (s64)(vruntime - min_vruntime);
557 if (delta < 0)
558 min_vruntime = vruntime;
559
560 return min_vruntime;
561 }
562
entity_before(struct sched_entity * a,struct sched_entity * b)563 static inline int entity_before(struct sched_entity *a,
564 struct sched_entity *b)
565 {
566 return (s64)(a->vruntime - b->vruntime) < 0;
567 }
568
update_min_vruntime(struct cfs_rq * cfs_rq)569 static void update_min_vruntime(struct cfs_rq *cfs_rq)
570 {
571 struct sched_entity *curr = cfs_rq->curr;
572 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
573
574 u64 vruntime = cfs_rq->min_vruntime;
575
576 if (curr) {
577 if (curr->on_rq)
578 vruntime = curr->vruntime;
579 else
580 curr = NULL;
581 }
582
583 if (leftmost) { /* non-empty tree */
584 struct sched_entity *se;
585 se = rb_entry(leftmost, struct sched_entity, run_node);
586
587 if (!curr)
588 vruntime = se->vruntime;
589 else
590 vruntime = min_vruntime(vruntime, se->vruntime);
591 }
592
593 /* ensure we never gain time by being placed backwards. */
594 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
595 #ifndef CONFIG_64BIT
596 smp_wmb();
597 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
598 #endif
599 }
600
601 /*
602 * Enqueue an entity into the rb-tree:
603 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)604 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
607 struct rb_node *parent = NULL;
608 struct sched_entity *entry;
609 bool leftmost = true;
610
611 /*
612 * Find the right place in the rbtree:
613 */
614 while (*link) {
615 parent = *link;
616 entry = rb_entry(parent, struct sched_entity, run_node);
617 /*
618 * We dont care about collisions. Nodes with
619 * the same key stay together.
620 */
621 if (entity_before(se, entry)) {
622 link = &parent->rb_left;
623 } else {
624 link = &parent->rb_right;
625 leftmost = false;
626 }
627 }
628
629 rb_link_node(&se->run_node, parent, link);
630 rb_insert_color_cached(&se->run_node,
631 &cfs_rq->tasks_timeline, leftmost);
632 }
633
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)634 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
637 }
638
__pick_first_entity(struct cfs_rq * cfs_rq)639 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
640 {
641 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
642
643 if (!left)
644 return NULL;
645
646 return rb_entry(left, struct sched_entity, run_node);
647 }
648
__pick_next_entity(struct sched_entity * se)649 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
650 {
651 struct rb_node *next = rb_next(&se->run_node);
652
653 if (!next)
654 return NULL;
655
656 return rb_entry(next, struct sched_entity, run_node);
657 }
658
659 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)660 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
661 {
662 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
663
664 if (!last)
665 return NULL;
666
667 return rb_entry(last, struct sched_entity, run_node);
668 }
669
670 /**************************************************************
671 * Scheduling class statistics methods:
672 */
673
sched_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)674 int sched_proc_update_handler(struct ctl_table *table, int write,
675 void *buffer, size_t *lenp, loff_t *ppos)
676 {
677 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
678 unsigned int factor = get_update_sysctl_factor();
679
680 if (ret || !write)
681 return ret;
682
683 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
684 sysctl_sched_min_granularity);
685
686 #define WRT_SYSCTL(name) \
687 (normalized_sysctl_##name = sysctl_##name / (factor))
688 WRT_SYSCTL(sched_min_granularity);
689 WRT_SYSCTL(sched_latency);
690 WRT_SYSCTL(sched_wakeup_granularity);
691 #undef WRT_SYSCTL
692
693 return 0;
694 }
695 #endif
696
697 /*
698 * delta /= w
699 */
calc_delta_fair(u64 delta,struct sched_entity * se)700 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
701 {
702 if (unlikely(se->load.weight != NICE_0_LOAD))
703 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
704
705 return delta;
706 }
707
708 /*
709 * The idea is to set a period in which each task runs once.
710 *
711 * When there are too many tasks (sched_nr_latency) we have to stretch
712 * this period because otherwise the slices get too small.
713 *
714 * p = (nr <= nl) ? l : l*nr/nl
715 */
__sched_period(unsigned long nr_running)716 static u64 __sched_period(unsigned long nr_running)
717 {
718 if (unlikely(nr_running > sched_nr_latency))
719 return nr_running * sysctl_sched_min_granularity;
720 else
721 return sysctl_sched_latency;
722 }
723
724 /*
725 * We calculate the wall-time slice from the period by taking a part
726 * proportional to the weight.
727 *
728 * s = p*P[w/rw]
729 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)730 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 unsigned int nr_running = cfs_rq->nr_running;
733 u64 slice;
734
735 if (sched_feat(ALT_PERIOD))
736 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
737
738 slice = __sched_period(nr_running + !se->on_rq);
739
740 for_each_sched_entity(se) {
741 struct load_weight *load;
742 struct load_weight lw;
743
744 cfs_rq = cfs_rq_of(se);
745 load = &cfs_rq->load;
746
747 if (unlikely(!se->on_rq)) {
748 lw = cfs_rq->load;
749
750 update_load_add(&lw, se->load.weight);
751 load = &lw;
752 }
753 slice = __calc_delta(slice, se->load.weight, load);
754 }
755
756 if (sched_feat(BASE_SLICE))
757 slice = max(slice, (u64)sysctl_sched_min_granularity);
758
759 return slice;
760 }
761
762 /*
763 * We calculate the vruntime slice of a to-be-inserted task.
764 *
765 * vs = s/w
766 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)767 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 return calc_delta_fair(sched_slice(cfs_rq, se), se);
770 }
771
772 #include "pelt.h"
773 #ifdef CONFIG_SMP
774
775 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
776 static unsigned long task_h_load(struct task_struct *p);
777
778 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)779 void init_entity_runnable_average(struct sched_entity *se)
780 {
781 struct sched_avg *sa = &se->avg;
782
783 memset(sa, 0, sizeof(*sa));
784
785 /*
786 * Tasks are initialized with full load to be seen as heavy tasks until
787 * they get a chance to stabilize to their real load level.
788 * Group entities are initialized with zero load to reflect the fact that
789 * nothing has been attached to the task group yet.
790 */
791 if (entity_is_task(se))
792 sa->load_avg = scale_load_down(se->load.weight);
793
794 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
795 }
796
797 static void attach_entity_cfs_rq(struct sched_entity *se);
798
799 /*
800 * With new tasks being created, their initial util_avgs are extrapolated
801 * based on the cfs_rq's current util_avg:
802 *
803 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
804 *
805 * However, in many cases, the above util_avg does not give a desired
806 * value. Moreover, the sum of the util_avgs may be divergent, such
807 * as when the series is a harmonic series.
808 *
809 * To solve this problem, we also cap the util_avg of successive tasks to
810 * only 1/2 of the left utilization budget:
811 *
812 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
813 *
814 * where n denotes the nth task and cpu_scale the CPU capacity.
815 *
816 * For example, for a CPU with 1024 of capacity, a simplest series from
817 * the beginning would be like:
818 *
819 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
820 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
821 *
822 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
823 * if util_avg > util_avg_cap.
824 */
post_init_entity_util_avg(struct task_struct * p)825 void post_init_entity_util_avg(struct task_struct *p)
826 {
827 struct sched_entity *se = &p->se;
828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
829 struct sched_avg *sa = &se->avg;
830 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
831 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
832
833 if (cap > 0) {
834 if (cfs_rq->avg.util_avg != 0) {
835 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
836 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
837
838 if (sa->util_avg > cap)
839 sa->util_avg = cap;
840 } else {
841 sa->util_avg = cap;
842 }
843 }
844
845 sa->runnable_avg = sa->util_avg;
846
847 if (p->sched_class != &fair_sched_class) {
848 /*
849 * For !fair tasks do:
850 *
851 update_cfs_rq_load_avg(now, cfs_rq);
852 attach_entity_load_avg(cfs_rq, se);
853 switched_from_fair(rq, p);
854 *
855 * such that the next switched_to_fair() has the
856 * expected state.
857 */
858 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
859 return;
860 }
861
862 attach_entity_cfs_rq(se);
863 }
864
865 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)866 void init_entity_runnable_average(struct sched_entity *se)
867 {
868 }
post_init_entity_util_avg(struct task_struct * p)869 void post_init_entity_util_avg(struct task_struct *p)
870 {
871 }
update_tg_load_avg(struct cfs_rq * cfs_rq)872 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
873 {
874 }
875 #endif /* CONFIG_SMP */
876
877 /*
878 * Update the current task's runtime statistics.
879 */
update_curr(struct cfs_rq * cfs_rq)880 static void update_curr(struct cfs_rq *cfs_rq)
881 {
882 struct sched_entity *curr = cfs_rq->curr;
883 u64 now = rq_clock_task(rq_of(cfs_rq));
884 u64 delta_exec;
885
886 if (unlikely(!curr))
887 return;
888
889 delta_exec = now - curr->exec_start;
890 if (unlikely((s64)delta_exec <= 0))
891 return;
892
893 curr->exec_start = now;
894
895 schedstat_set(curr->statistics.exec_max,
896 max(delta_exec, curr->statistics.exec_max));
897
898 curr->sum_exec_runtime += delta_exec;
899 schedstat_add(cfs_rq->exec_clock, delta_exec);
900
901 curr->vruntime += calc_delta_fair(delta_exec, curr);
902 update_min_vruntime(cfs_rq);
903
904 if (entity_is_task(curr)) {
905 struct task_struct *curtask = task_of(curr);
906
907 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
908 cgroup_account_cputime(curtask, delta_exec);
909 account_group_exec_runtime(curtask, delta_exec);
910 }
911
912 account_cfs_rq_runtime(cfs_rq, delta_exec);
913 }
914
update_curr_fair(struct rq * rq)915 static void update_curr_fair(struct rq *rq)
916 {
917 update_curr(cfs_rq_of(&rq->curr->se));
918 }
919
920 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)921 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 u64 wait_start, prev_wait_start;
924
925 if (!schedstat_enabled())
926 return;
927
928 wait_start = rq_clock(rq_of(cfs_rq));
929 prev_wait_start = schedstat_val(se->statistics.wait_start);
930
931 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
932 likely(wait_start > prev_wait_start))
933 wait_start -= prev_wait_start;
934
935 __schedstat_set(se->statistics.wait_start, wait_start);
936 }
937
938 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)939 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 struct task_struct *p;
942 u64 delta;
943
944 if (!schedstat_enabled())
945 return;
946
947 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
948
949 if (entity_is_task(se)) {
950 p = task_of(se);
951 if (task_on_rq_migrating(p)) {
952 /*
953 * Preserve migrating task's wait time so wait_start
954 * time stamp can be adjusted to accumulate wait time
955 * prior to migration.
956 */
957 __schedstat_set(se->statistics.wait_start, delta);
958 return;
959 }
960 trace_sched_stat_wait(p, delta);
961 }
962
963 __schedstat_set(se->statistics.wait_max,
964 max(schedstat_val(se->statistics.wait_max), delta));
965 __schedstat_inc(se->statistics.wait_count);
966 __schedstat_add(se->statistics.wait_sum, delta);
967 __schedstat_set(se->statistics.wait_start, 0);
968 }
969
970 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)971 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 struct task_struct *tsk = NULL;
974 u64 sleep_start, block_start;
975
976 if (!schedstat_enabled())
977 return;
978
979 sleep_start = schedstat_val(se->statistics.sleep_start);
980 block_start = schedstat_val(se->statistics.block_start);
981
982 if (entity_is_task(se))
983 tsk = task_of(se);
984
985 if (sleep_start) {
986 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
987
988 if ((s64)delta < 0)
989 delta = 0;
990
991 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
992 __schedstat_set(se->statistics.sleep_max, delta);
993
994 __schedstat_set(se->statistics.sleep_start, 0);
995 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
996
997 if (tsk) {
998 account_scheduler_latency(tsk, delta >> 10, 1);
999 trace_sched_stat_sleep(tsk, delta);
1000 }
1001 }
1002 if (block_start) {
1003 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1004
1005 if ((s64)delta < 0)
1006 delta = 0;
1007
1008 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
1009 __schedstat_set(se->statistics.block_max, delta);
1010
1011 __schedstat_set(se->statistics.block_start, 0);
1012 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1013
1014 if (tsk) {
1015 if (tsk->in_iowait) {
1016 __schedstat_add(se->statistics.iowait_sum, delta);
1017 __schedstat_inc(se->statistics.iowait_count);
1018 trace_sched_stat_iowait(tsk, delta);
1019 }
1020
1021 trace_sched_stat_blocked(tsk, delta);
1022
1023 /*
1024 * Blocking time is in units of nanosecs, so shift by
1025 * 20 to get a milliseconds-range estimation of the
1026 * amount of time that the task spent sleeping:
1027 */
1028 if (unlikely(prof_on == SLEEP_PROFILING)) {
1029 profile_hits(SLEEP_PROFILING,
1030 (void *)get_wchan(tsk),
1031 delta >> 20);
1032 }
1033 account_scheduler_latency(tsk, delta >> 10, 0);
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Task is being enqueued - update stats:
1040 */
1041 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1042 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1043 {
1044 if (!schedstat_enabled())
1045 return;
1046
1047 /*
1048 * Are we enqueueing a waiting task? (for current tasks
1049 * a dequeue/enqueue event is a NOP)
1050 */
1051 if (se != cfs_rq->curr)
1052 update_stats_wait_start(cfs_rq, se);
1053
1054 if (flags & ENQUEUE_WAKEUP)
1055 update_stats_enqueue_sleeper(cfs_rq, se);
1056 }
1057
1058 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1059 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1060 {
1061
1062 if (!schedstat_enabled())
1063 return;
1064
1065 /*
1066 * Mark the end of the wait period if dequeueing a
1067 * waiting task:
1068 */
1069 if (se != cfs_rq->curr)
1070 update_stats_wait_end(cfs_rq, se);
1071
1072 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1073 struct task_struct *tsk = task_of(se);
1074
1075 if (tsk->state & TASK_INTERRUPTIBLE)
1076 __schedstat_set(se->statistics.sleep_start,
1077 rq_clock(rq_of(cfs_rq)));
1078 if (tsk->state & TASK_UNINTERRUPTIBLE)
1079 __schedstat_set(se->statistics.block_start,
1080 rq_clock(rq_of(cfs_rq)));
1081 }
1082 }
1083
1084 /*
1085 * We are picking a new current task - update its stats:
1086 */
1087 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1088 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1089 {
1090 /*
1091 * We are starting a new run period:
1092 */
1093 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1094 }
1095
1096 /**************************************************
1097 * Scheduling class queueing methods:
1098 */
1099
1100 #ifdef CONFIG_NUMA_BALANCING
1101 /*
1102 * Approximate time to scan a full NUMA task in ms. The task scan period is
1103 * calculated based on the tasks virtual memory size and
1104 * numa_balancing_scan_size.
1105 */
1106 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1107 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1108
1109 /* Portion of address space to scan in MB */
1110 unsigned int sysctl_numa_balancing_scan_size = 256;
1111
1112 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1113 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1114
1115 struct numa_group {
1116 refcount_t refcount;
1117
1118 spinlock_t lock; /* nr_tasks, tasks */
1119 int nr_tasks;
1120 pid_t gid;
1121 int active_nodes;
1122
1123 struct rcu_head rcu;
1124 unsigned long total_faults;
1125 unsigned long max_faults_cpu;
1126 /*
1127 * Faults_cpu is used to decide whether memory should move
1128 * towards the CPU. As a consequence, these stats are weighted
1129 * more by CPU use than by memory faults.
1130 */
1131 unsigned long *faults_cpu;
1132 unsigned long faults[];
1133 };
1134
1135 /*
1136 * For functions that can be called in multiple contexts that permit reading
1137 * ->numa_group (see struct task_struct for locking rules).
1138 */
deref_task_numa_group(struct task_struct * p)1139 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1140 {
1141 return rcu_dereference_check(p->numa_group, p == current ||
1142 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1143 }
1144
deref_curr_numa_group(struct task_struct * p)1145 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1146 {
1147 return rcu_dereference_protected(p->numa_group, p == current);
1148 }
1149
1150 static inline unsigned long group_faults_priv(struct numa_group *ng);
1151 static inline unsigned long group_faults_shared(struct numa_group *ng);
1152
task_nr_scan_windows(struct task_struct * p)1153 static unsigned int task_nr_scan_windows(struct task_struct *p)
1154 {
1155 unsigned long rss = 0;
1156 unsigned long nr_scan_pages;
1157
1158 /*
1159 * Calculations based on RSS as non-present and empty pages are skipped
1160 * by the PTE scanner and NUMA hinting faults should be trapped based
1161 * on resident pages
1162 */
1163 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1164 rss = get_mm_rss(p->mm);
1165 if (!rss)
1166 rss = nr_scan_pages;
1167
1168 rss = round_up(rss, nr_scan_pages);
1169 return rss / nr_scan_pages;
1170 }
1171
1172 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1173 #define MAX_SCAN_WINDOW 2560
1174
task_scan_min(struct task_struct * p)1175 static unsigned int task_scan_min(struct task_struct *p)
1176 {
1177 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1178 unsigned int scan, floor;
1179 unsigned int windows = 1;
1180
1181 if (scan_size < MAX_SCAN_WINDOW)
1182 windows = MAX_SCAN_WINDOW / scan_size;
1183 floor = 1000 / windows;
1184
1185 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1186 return max_t(unsigned int, floor, scan);
1187 }
1188
task_scan_start(struct task_struct * p)1189 static unsigned int task_scan_start(struct task_struct *p)
1190 {
1191 unsigned long smin = task_scan_min(p);
1192 unsigned long period = smin;
1193 struct numa_group *ng;
1194
1195 /* Scale the maximum scan period with the amount of shared memory. */
1196 rcu_read_lock();
1197 ng = rcu_dereference(p->numa_group);
1198 if (ng) {
1199 unsigned long shared = group_faults_shared(ng);
1200 unsigned long private = group_faults_priv(ng);
1201
1202 period *= refcount_read(&ng->refcount);
1203 period *= shared + 1;
1204 period /= private + shared + 1;
1205 }
1206 rcu_read_unlock();
1207
1208 return max(smin, period);
1209 }
1210
task_scan_max(struct task_struct * p)1211 static unsigned int task_scan_max(struct task_struct *p)
1212 {
1213 unsigned long smin = task_scan_min(p);
1214 unsigned long smax;
1215 struct numa_group *ng;
1216
1217 /* Watch for min being lower than max due to floor calculations */
1218 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1219
1220 /* Scale the maximum scan period with the amount of shared memory. */
1221 ng = deref_curr_numa_group(p);
1222 if (ng) {
1223 unsigned long shared = group_faults_shared(ng);
1224 unsigned long private = group_faults_priv(ng);
1225 unsigned long period = smax;
1226
1227 period *= refcount_read(&ng->refcount);
1228 period *= shared + 1;
1229 period /= private + shared + 1;
1230
1231 smax = max(smax, period);
1232 }
1233
1234 return max(smin, smax);
1235 }
1236
account_numa_enqueue(struct rq * rq,struct task_struct * p)1237 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1238 {
1239 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1240 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1241 }
1242
account_numa_dequeue(struct rq * rq,struct task_struct * p)1243 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1244 {
1245 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1246 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1247 }
1248
1249 /* Shared or private faults. */
1250 #define NR_NUMA_HINT_FAULT_TYPES 2
1251
1252 /* Memory and CPU locality */
1253 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1254
1255 /* Averaged statistics, and temporary buffers. */
1256 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1257
task_numa_group_id(struct task_struct * p)1258 pid_t task_numa_group_id(struct task_struct *p)
1259 {
1260 struct numa_group *ng;
1261 pid_t gid = 0;
1262
1263 rcu_read_lock();
1264 ng = rcu_dereference(p->numa_group);
1265 if (ng)
1266 gid = ng->gid;
1267 rcu_read_unlock();
1268
1269 return gid;
1270 }
1271
1272 /*
1273 * The averaged statistics, shared & private, memory & CPU,
1274 * occupy the first half of the array. The second half of the
1275 * array is for current counters, which are averaged into the
1276 * first set by task_numa_placement.
1277 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1278 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1279 {
1280 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1281 }
1282
task_faults(struct task_struct * p,int nid)1283 static inline unsigned long task_faults(struct task_struct *p, int nid)
1284 {
1285 if (!p->numa_faults)
1286 return 0;
1287
1288 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1289 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1290 }
1291
group_faults(struct task_struct * p,int nid)1292 static inline unsigned long group_faults(struct task_struct *p, int nid)
1293 {
1294 struct numa_group *ng = deref_task_numa_group(p);
1295
1296 if (!ng)
1297 return 0;
1298
1299 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1300 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1301 }
1302
group_faults_cpu(struct numa_group * group,int nid)1303 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1304 {
1305 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1306 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1307 }
1308
group_faults_priv(struct numa_group * ng)1309 static inline unsigned long group_faults_priv(struct numa_group *ng)
1310 {
1311 unsigned long faults = 0;
1312 int node;
1313
1314 for_each_online_node(node) {
1315 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1316 }
1317
1318 return faults;
1319 }
1320
group_faults_shared(struct numa_group * ng)1321 static inline unsigned long group_faults_shared(struct numa_group *ng)
1322 {
1323 unsigned long faults = 0;
1324 int node;
1325
1326 for_each_online_node(node) {
1327 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1328 }
1329
1330 return faults;
1331 }
1332
1333 /*
1334 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1335 * considered part of a numa group's pseudo-interleaving set. Migrations
1336 * between these nodes are slowed down, to allow things to settle down.
1337 */
1338 #define ACTIVE_NODE_FRACTION 3
1339
numa_is_active_node(int nid,struct numa_group * ng)1340 static bool numa_is_active_node(int nid, struct numa_group *ng)
1341 {
1342 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1343 }
1344
1345 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1346 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1347 int maxdist, bool task)
1348 {
1349 unsigned long score = 0;
1350 int node;
1351
1352 /*
1353 * All nodes are directly connected, and the same distance
1354 * from each other. No need for fancy placement algorithms.
1355 */
1356 if (sched_numa_topology_type == NUMA_DIRECT)
1357 return 0;
1358
1359 /*
1360 * This code is called for each node, introducing N^2 complexity,
1361 * which should be ok given the number of nodes rarely exceeds 8.
1362 */
1363 for_each_online_node(node) {
1364 unsigned long faults;
1365 int dist = node_distance(nid, node);
1366
1367 /*
1368 * The furthest away nodes in the system are not interesting
1369 * for placement; nid was already counted.
1370 */
1371 if (dist == sched_max_numa_distance || node == nid)
1372 continue;
1373
1374 /*
1375 * On systems with a backplane NUMA topology, compare groups
1376 * of nodes, and move tasks towards the group with the most
1377 * memory accesses. When comparing two nodes at distance
1378 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 * of each group. Skip other nodes.
1380 */
1381 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1382 dist >= maxdist)
1383 continue;
1384
1385 /* Add up the faults from nearby nodes. */
1386 if (task)
1387 faults = task_faults(p, node);
1388 else
1389 faults = group_faults(p, node);
1390
1391 /*
1392 * On systems with a glueless mesh NUMA topology, there are
1393 * no fixed "groups of nodes". Instead, nodes that are not
1394 * directly connected bounce traffic through intermediate
1395 * nodes; a numa_group can occupy any set of nodes.
1396 * The further away a node is, the less the faults count.
1397 * This seems to result in good task placement.
1398 */
1399 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1400 faults *= (sched_max_numa_distance - dist);
1401 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1402 }
1403
1404 score += faults;
1405 }
1406
1407 return score;
1408 }
1409
1410 /*
1411 * These return the fraction of accesses done by a particular task, or
1412 * task group, on a particular numa node. The group weight is given a
1413 * larger multiplier, in order to group tasks together that are almost
1414 * evenly spread out between numa nodes.
1415 */
task_weight(struct task_struct * p,int nid,int dist)1416 static inline unsigned long task_weight(struct task_struct *p, int nid,
1417 int dist)
1418 {
1419 unsigned long faults, total_faults;
1420
1421 if (!p->numa_faults)
1422 return 0;
1423
1424 total_faults = p->total_numa_faults;
1425
1426 if (!total_faults)
1427 return 0;
1428
1429 faults = task_faults(p, nid);
1430 faults += score_nearby_nodes(p, nid, dist, true);
1431
1432 return 1000 * faults / total_faults;
1433 }
1434
group_weight(struct task_struct * p,int nid,int dist)1435 static inline unsigned long group_weight(struct task_struct *p, int nid,
1436 int dist)
1437 {
1438 struct numa_group *ng = deref_task_numa_group(p);
1439 unsigned long faults, total_faults;
1440
1441 if (!ng)
1442 return 0;
1443
1444 total_faults = ng->total_faults;
1445
1446 if (!total_faults)
1447 return 0;
1448
1449 faults = group_faults(p, nid);
1450 faults += score_nearby_nodes(p, nid, dist, false);
1451
1452 return 1000 * faults / total_faults;
1453 }
1454
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1455 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1456 int src_nid, int dst_cpu)
1457 {
1458 struct numa_group *ng = deref_curr_numa_group(p);
1459 int dst_nid = cpu_to_node(dst_cpu);
1460 int last_cpupid, this_cpupid;
1461
1462 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1463 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1464
1465 /*
1466 * Allow first faults or private faults to migrate immediately early in
1467 * the lifetime of a task. The magic number 4 is based on waiting for
1468 * two full passes of the "multi-stage node selection" test that is
1469 * executed below.
1470 */
1471 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1472 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1473 return true;
1474
1475 /*
1476 * Multi-stage node selection is used in conjunction with a periodic
1477 * migration fault to build a temporal task<->page relation. By using
1478 * a two-stage filter we remove short/unlikely relations.
1479 *
1480 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1481 * a task's usage of a particular page (n_p) per total usage of this
1482 * page (n_t) (in a given time-span) to a probability.
1483 *
1484 * Our periodic faults will sample this probability and getting the
1485 * same result twice in a row, given these samples are fully
1486 * independent, is then given by P(n)^2, provided our sample period
1487 * is sufficiently short compared to the usage pattern.
1488 *
1489 * This quadric squishes small probabilities, making it less likely we
1490 * act on an unlikely task<->page relation.
1491 */
1492 if (!cpupid_pid_unset(last_cpupid) &&
1493 cpupid_to_nid(last_cpupid) != dst_nid)
1494 return false;
1495
1496 /* Always allow migrate on private faults */
1497 if (cpupid_match_pid(p, last_cpupid))
1498 return true;
1499
1500 /* A shared fault, but p->numa_group has not been set up yet. */
1501 if (!ng)
1502 return true;
1503
1504 /*
1505 * Destination node is much more heavily used than the source
1506 * node? Allow migration.
1507 */
1508 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1509 ACTIVE_NODE_FRACTION)
1510 return true;
1511
1512 /*
1513 * Distribute memory according to CPU & memory use on each node,
1514 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1515 *
1516 * faults_cpu(dst) 3 faults_cpu(src)
1517 * --------------- * - > ---------------
1518 * faults_mem(dst) 4 faults_mem(src)
1519 */
1520 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1521 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1522 }
1523
1524 /*
1525 * 'numa_type' describes the node at the moment of load balancing.
1526 */
1527 enum numa_type {
1528 /* The node has spare capacity that can be used to run more tasks. */
1529 node_has_spare = 0,
1530 /*
1531 * The node is fully used and the tasks don't compete for more CPU
1532 * cycles. Nevertheless, some tasks might wait before running.
1533 */
1534 node_fully_busy,
1535 /*
1536 * The node is overloaded and can't provide expected CPU cycles to all
1537 * tasks.
1538 */
1539 node_overloaded
1540 };
1541
1542 /* Cached statistics for all CPUs within a node */
1543 struct numa_stats {
1544 unsigned long load;
1545 unsigned long runnable;
1546 unsigned long util;
1547 /* Total compute capacity of CPUs on a node */
1548 unsigned long compute_capacity;
1549 unsigned int nr_running;
1550 unsigned int weight;
1551 enum numa_type node_type;
1552 int idle_cpu;
1553 };
1554
is_core_idle(int cpu)1555 static inline bool is_core_idle(int cpu)
1556 {
1557 #ifdef CONFIG_SCHED_SMT
1558 int sibling;
1559
1560 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1561 if (cpu == sibling)
1562 continue;
1563
1564 if (!idle_cpu(sibling))
1565 return false;
1566 }
1567 #endif
1568
1569 return true;
1570 }
1571
1572 struct task_numa_env {
1573 struct task_struct *p;
1574
1575 int src_cpu, src_nid;
1576 int dst_cpu, dst_nid;
1577
1578 struct numa_stats src_stats, dst_stats;
1579
1580 int imbalance_pct;
1581 int dist;
1582
1583 struct task_struct *best_task;
1584 long best_imp;
1585 int best_cpu;
1586 };
1587
1588 static unsigned long cpu_load(struct rq *rq);
1589 static unsigned long cpu_runnable(struct rq *rq);
1590 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1591
1592 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1593 numa_type numa_classify(unsigned int imbalance_pct,
1594 struct numa_stats *ns)
1595 {
1596 if ((ns->nr_running > ns->weight) &&
1597 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1598 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1599 return node_overloaded;
1600
1601 if ((ns->nr_running < ns->weight) ||
1602 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1603 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1604 return node_has_spare;
1605
1606 return node_fully_busy;
1607 }
1608
1609 #ifdef CONFIG_SCHED_SMT
1610 /* Forward declarations of select_idle_sibling helpers */
1611 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1612 static inline int numa_idle_core(int idle_core, int cpu)
1613 {
1614 if (!static_branch_likely(&sched_smt_present) ||
1615 idle_core >= 0 || !test_idle_cores(cpu, false))
1616 return idle_core;
1617
1618 /*
1619 * Prefer cores instead of packing HT siblings
1620 * and triggering future load balancing.
1621 */
1622 if (is_core_idle(cpu))
1623 idle_core = cpu;
1624
1625 return idle_core;
1626 }
1627 #else
numa_idle_core(int idle_core,int cpu)1628 static inline int numa_idle_core(int idle_core, int cpu)
1629 {
1630 return idle_core;
1631 }
1632 #endif
1633
1634 /*
1635 * Gather all necessary information to make NUMA balancing placement
1636 * decisions that are compatible with standard load balancer. This
1637 * borrows code and logic from update_sg_lb_stats but sharing a
1638 * common implementation is impractical.
1639 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1640 static void update_numa_stats(struct task_numa_env *env,
1641 struct numa_stats *ns, int nid,
1642 bool find_idle)
1643 {
1644 int cpu, idle_core = -1;
1645
1646 memset(ns, 0, sizeof(*ns));
1647 ns->idle_cpu = -1;
1648
1649 rcu_read_lock();
1650 for_each_cpu(cpu, cpumask_of_node(nid)) {
1651 struct rq *rq = cpu_rq(cpu);
1652
1653 ns->load += cpu_load(rq);
1654 ns->runnable += cpu_runnable(rq);
1655 ns->util += cpu_util(cpu);
1656 ns->nr_running += rq->cfs.h_nr_running;
1657 ns->compute_capacity += capacity_of(cpu);
1658
1659 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1660 if (READ_ONCE(rq->numa_migrate_on) ||
1661 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1662 continue;
1663
1664 if (ns->idle_cpu == -1)
1665 ns->idle_cpu = cpu;
1666
1667 idle_core = numa_idle_core(idle_core, cpu);
1668 }
1669 }
1670 rcu_read_unlock();
1671
1672 ns->weight = cpumask_weight(cpumask_of_node(nid));
1673
1674 ns->node_type = numa_classify(env->imbalance_pct, ns);
1675
1676 if (idle_core >= 0)
1677 ns->idle_cpu = idle_core;
1678 }
1679
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1680 static void task_numa_assign(struct task_numa_env *env,
1681 struct task_struct *p, long imp)
1682 {
1683 struct rq *rq = cpu_rq(env->dst_cpu);
1684
1685 /* Check if run-queue part of active NUMA balance. */
1686 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1687 int cpu;
1688 int start = env->dst_cpu;
1689
1690 /* Find alternative idle CPU. */
1691 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1692 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1693 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1694 continue;
1695 }
1696
1697 env->dst_cpu = cpu;
1698 rq = cpu_rq(env->dst_cpu);
1699 if (!xchg(&rq->numa_migrate_on, 1))
1700 goto assign;
1701 }
1702
1703 /* Failed to find an alternative idle CPU */
1704 return;
1705 }
1706
1707 assign:
1708 /*
1709 * Clear previous best_cpu/rq numa-migrate flag, since task now
1710 * found a better CPU to move/swap.
1711 */
1712 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1713 rq = cpu_rq(env->best_cpu);
1714 WRITE_ONCE(rq->numa_migrate_on, 0);
1715 }
1716
1717 if (env->best_task)
1718 put_task_struct(env->best_task);
1719 if (p)
1720 get_task_struct(p);
1721
1722 env->best_task = p;
1723 env->best_imp = imp;
1724 env->best_cpu = env->dst_cpu;
1725 }
1726
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1727 static bool load_too_imbalanced(long src_load, long dst_load,
1728 struct task_numa_env *env)
1729 {
1730 long imb, old_imb;
1731 long orig_src_load, orig_dst_load;
1732 long src_capacity, dst_capacity;
1733
1734 /*
1735 * The load is corrected for the CPU capacity available on each node.
1736 *
1737 * src_load dst_load
1738 * ------------ vs ---------
1739 * src_capacity dst_capacity
1740 */
1741 src_capacity = env->src_stats.compute_capacity;
1742 dst_capacity = env->dst_stats.compute_capacity;
1743
1744 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1745
1746 orig_src_load = env->src_stats.load;
1747 orig_dst_load = env->dst_stats.load;
1748
1749 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1750
1751 /* Would this change make things worse? */
1752 return (imb > old_imb);
1753 }
1754
1755 /*
1756 * Maximum NUMA importance can be 1998 (2*999);
1757 * SMALLIMP @ 30 would be close to 1998/64.
1758 * Used to deter task migration.
1759 */
1760 #define SMALLIMP 30
1761
1762 /*
1763 * This checks if the overall compute and NUMA accesses of the system would
1764 * be improved if the source tasks was migrated to the target dst_cpu taking
1765 * into account that it might be best if task running on the dst_cpu should
1766 * be exchanged with the source task
1767 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1768 static bool task_numa_compare(struct task_numa_env *env,
1769 long taskimp, long groupimp, bool maymove)
1770 {
1771 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1772 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1773 long imp = p_ng ? groupimp : taskimp;
1774 struct task_struct *cur;
1775 long src_load, dst_load;
1776 int dist = env->dist;
1777 long moveimp = imp;
1778 long load;
1779 bool stopsearch = false;
1780
1781 if (READ_ONCE(dst_rq->numa_migrate_on))
1782 return false;
1783
1784 rcu_read_lock();
1785 cur = rcu_dereference(dst_rq->curr);
1786 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1787 cur = NULL;
1788
1789 /*
1790 * Because we have preemption enabled we can get migrated around and
1791 * end try selecting ourselves (current == env->p) as a swap candidate.
1792 */
1793 if (cur == env->p) {
1794 stopsearch = true;
1795 goto unlock;
1796 }
1797
1798 if (!cur) {
1799 if (maymove && moveimp >= env->best_imp)
1800 goto assign;
1801 else
1802 goto unlock;
1803 }
1804
1805 /* Skip this swap candidate if cannot move to the source cpu. */
1806 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1807 goto unlock;
1808
1809 /*
1810 * Skip this swap candidate if it is not moving to its preferred
1811 * node and the best task is.
1812 */
1813 if (env->best_task &&
1814 env->best_task->numa_preferred_nid == env->src_nid &&
1815 cur->numa_preferred_nid != env->src_nid) {
1816 goto unlock;
1817 }
1818
1819 /*
1820 * "imp" is the fault differential for the source task between the
1821 * source and destination node. Calculate the total differential for
1822 * the source task and potential destination task. The more negative
1823 * the value is, the more remote accesses that would be expected to
1824 * be incurred if the tasks were swapped.
1825 *
1826 * If dst and source tasks are in the same NUMA group, or not
1827 * in any group then look only at task weights.
1828 */
1829 cur_ng = rcu_dereference(cur->numa_group);
1830 if (cur_ng == p_ng) {
1831 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1832 task_weight(cur, env->dst_nid, dist);
1833 /*
1834 * Add some hysteresis to prevent swapping the
1835 * tasks within a group over tiny differences.
1836 */
1837 if (cur_ng)
1838 imp -= imp / 16;
1839 } else {
1840 /*
1841 * Compare the group weights. If a task is all by itself
1842 * (not part of a group), use the task weight instead.
1843 */
1844 if (cur_ng && p_ng)
1845 imp += group_weight(cur, env->src_nid, dist) -
1846 group_weight(cur, env->dst_nid, dist);
1847 else
1848 imp += task_weight(cur, env->src_nid, dist) -
1849 task_weight(cur, env->dst_nid, dist);
1850 }
1851
1852 /* Discourage picking a task already on its preferred node */
1853 if (cur->numa_preferred_nid == env->dst_nid)
1854 imp -= imp / 16;
1855
1856 /*
1857 * Encourage picking a task that moves to its preferred node.
1858 * This potentially makes imp larger than it's maximum of
1859 * 1998 (see SMALLIMP and task_weight for why) but in this
1860 * case, it does not matter.
1861 */
1862 if (cur->numa_preferred_nid == env->src_nid)
1863 imp += imp / 8;
1864
1865 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1866 imp = moveimp;
1867 cur = NULL;
1868 goto assign;
1869 }
1870
1871 /*
1872 * Prefer swapping with a task moving to its preferred node over a
1873 * task that is not.
1874 */
1875 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1876 env->best_task->numa_preferred_nid != env->src_nid) {
1877 goto assign;
1878 }
1879
1880 /*
1881 * If the NUMA importance is less than SMALLIMP,
1882 * task migration might only result in ping pong
1883 * of tasks and also hurt performance due to cache
1884 * misses.
1885 */
1886 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1887 goto unlock;
1888
1889 /*
1890 * In the overloaded case, try and keep the load balanced.
1891 */
1892 load = task_h_load(env->p) - task_h_load(cur);
1893 if (!load)
1894 goto assign;
1895
1896 dst_load = env->dst_stats.load + load;
1897 src_load = env->src_stats.load - load;
1898
1899 if (load_too_imbalanced(src_load, dst_load, env))
1900 goto unlock;
1901
1902 assign:
1903 /* Evaluate an idle CPU for a task numa move. */
1904 if (!cur) {
1905 int cpu = env->dst_stats.idle_cpu;
1906
1907 /* Nothing cached so current CPU went idle since the search. */
1908 if (cpu < 0)
1909 cpu = env->dst_cpu;
1910
1911 /*
1912 * If the CPU is no longer truly idle and the previous best CPU
1913 * is, keep using it.
1914 */
1915 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1916 idle_cpu(env->best_cpu)) {
1917 cpu = env->best_cpu;
1918 }
1919
1920 env->dst_cpu = cpu;
1921 }
1922
1923 task_numa_assign(env, cur, imp);
1924
1925 /*
1926 * If a move to idle is allowed because there is capacity or load
1927 * balance improves then stop the search. While a better swap
1928 * candidate may exist, a search is not free.
1929 */
1930 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1931 stopsearch = true;
1932
1933 /*
1934 * If a swap candidate must be identified and the current best task
1935 * moves its preferred node then stop the search.
1936 */
1937 if (!maymove && env->best_task &&
1938 env->best_task->numa_preferred_nid == env->src_nid) {
1939 stopsearch = true;
1940 }
1941 unlock:
1942 rcu_read_unlock();
1943
1944 return stopsearch;
1945 }
1946
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1947 static void task_numa_find_cpu(struct task_numa_env *env,
1948 long taskimp, long groupimp)
1949 {
1950 bool maymove = false;
1951 int cpu;
1952
1953 /*
1954 * If dst node has spare capacity, then check if there is an
1955 * imbalance that would be overruled by the load balancer.
1956 */
1957 if (env->dst_stats.node_type == node_has_spare) {
1958 unsigned int imbalance;
1959 int src_running, dst_running;
1960
1961 /*
1962 * Would movement cause an imbalance? Note that if src has
1963 * more running tasks that the imbalance is ignored as the
1964 * move improves the imbalance from the perspective of the
1965 * CPU load balancer.
1966 * */
1967 src_running = env->src_stats.nr_running - 1;
1968 dst_running = env->dst_stats.nr_running + 1;
1969 imbalance = max(0, dst_running - src_running);
1970 imbalance = adjust_numa_imbalance(imbalance, dst_running);
1971
1972 /* Use idle CPU if there is no imbalance */
1973 if (!imbalance) {
1974 maymove = true;
1975 if (env->dst_stats.idle_cpu >= 0) {
1976 env->dst_cpu = env->dst_stats.idle_cpu;
1977 task_numa_assign(env, NULL, 0);
1978 return;
1979 }
1980 }
1981 } else {
1982 long src_load, dst_load, load;
1983 /*
1984 * If the improvement from just moving env->p direction is better
1985 * than swapping tasks around, check if a move is possible.
1986 */
1987 load = task_h_load(env->p);
1988 dst_load = env->dst_stats.load + load;
1989 src_load = env->src_stats.load - load;
1990 maymove = !load_too_imbalanced(src_load, dst_load, env);
1991 }
1992
1993 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1994 /* Skip this CPU if the source task cannot migrate */
1995 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1996 continue;
1997
1998 env->dst_cpu = cpu;
1999 if (task_numa_compare(env, taskimp, groupimp, maymove))
2000 break;
2001 }
2002 }
2003
task_numa_migrate(struct task_struct * p)2004 static int task_numa_migrate(struct task_struct *p)
2005 {
2006 struct task_numa_env env = {
2007 .p = p,
2008
2009 .src_cpu = task_cpu(p),
2010 .src_nid = task_node(p),
2011
2012 .imbalance_pct = 112,
2013
2014 .best_task = NULL,
2015 .best_imp = 0,
2016 .best_cpu = -1,
2017 };
2018 unsigned long taskweight, groupweight;
2019 struct sched_domain *sd;
2020 long taskimp, groupimp;
2021 struct numa_group *ng;
2022 struct rq *best_rq;
2023 int nid, ret, dist;
2024
2025 /*
2026 * Pick the lowest SD_NUMA domain, as that would have the smallest
2027 * imbalance and would be the first to start moving tasks about.
2028 *
2029 * And we want to avoid any moving of tasks about, as that would create
2030 * random movement of tasks -- counter the numa conditions we're trying
2031 * to satisfy here.
2032 */
2033 rcu_read_lock();
2034 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2035 if (sd)
2036 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2037 rcu_read_unlock();
2038
2039 /*
2040 * Cpusets can break the scheduler domain tree into smaller
2041 * balance domains, some of which do not cross NUMA boundaries.
2042 * Tasks that are "trapped" in such domains cannot be migrated
2043 * elsewhere, so there is no point in (re)trying.
2044 */
2045 if (unlikely(!sd)) {
2046 sched_setnuma(p, task_node(p));
2047 return -EINVAL;
2048 }
2049
2050 env.dst_nid = p->numa_preferred_nid;
2051 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2052 taskweight = task_weight(p, env.src_nid, dist);
2053 groupweight = group_weight(p, env.src_nid, dist);
2054 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2055 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2056 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2057 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2058
2059 /* Try to find a spot on the preferred nid. */
2060 task_numa_find_cpu(&env, taskimp, groupimp);
2061
2062 /*
2063 * Look at other nodes in these cases:
2064 * - there is no space available on the preferred_nid
2065 * - the task is part of a numa_group that is interleaved across
2066 * multiple NUMA nodes; in order to better consolidate the group,
2067 * we need to check other locations.
2068 */
2069 ng = deref_curr_numa_group(p);
2070 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2071 for_each_online_node(nid) {
2072 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2073 continue;
2074
2075 dist = node_distance(env.src_nid, env.dst_nid);
2076 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2077 dist != env.dist) {
2078 taskweight = task_weight(p, env.src_nid, dist);
2079 groupweight = group_weight(p, env.src_nid, dist);
2080 }
2081
2082 /* Only consider nodes where both task and groups benefit */
2083 taskimp = task_weight(p, nid, dist) - taskweight;
2084 groupimp = group_weight(p, nid, dist) - groupweight;
2085 if (taskimp < 0 && groupimp < 0)
2086 continue;
2087
2088 env.dist = dist;
2089 env.dst_nid = nid;
2090 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2091 task_numa_find_cpu(&env, taskimp, groupimp);
2092 }
2093 }
2094
2095 /*
2096 * If the task is part of a workload that spans multiple NUMA nodes,
2097 * and is migrating into one of the workload's active nodes, remember
2098 * this node as the task's preferred numa node, so the workload can
2099 * settle down.
2100 * A task that migrated to a second choice node will be better off
2101 * trying for a better one later. Do not set the preferred node here.
2102 */
2103 if (ng) {
2104 if (env.best_cpu == -1)
2105 nid = env.src_nid;
2106 else
2107 nid = cpu_to_node(env.best_cpu);
2108
2109 if (nid != p->numa_preferred_nid)
2110 sched_setnuma(p, nid);
2111 }
2112
2113 /* No better CPU than the current one was found. */
2114 if (env.best_cpu == -1) {
2115 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2116 return -EAGAIN;
2117 }
2118
2119 best_rq = cpu_rq(env.best_cpu);
2120 if (env.best_task == NULL) {
2121 ret = migrate_task_to(p, env.best_cpu);
2122 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2123 if (ret != 0)
2124 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2125 return ret;
2126 }
2127
2128 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2129 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2130
2131 if (ret != 0)
2132 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2133 put_task_struct(env.best_task);
2134 return ret;
2135 }
2136
2137 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2138 static void numa_migrate_preferred(struct task_struct *p)
2139 {
2140 unsigned long interval = HZ;
2141
2142 /* This task has no NUMA fault statistics yet */
2143 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2144 return;
2145
2146 /* Periodically retry migrating the task to the preferred node */
2147 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2148 p->numa_migrate_retry = jiffies + interval;
2149
2150 /* Success if task is already running on preferred CPU */
2151 if (task_node(p) == p->numa_preferred_nid)
2152 return;
2153
2154 /* Otherwise, try migrate to a CPU on the preferred node */
2155 task_numa_migrate(p);
2156 }
2157
2158 /*
2159 * Find out how many nodes on the workload is actively running on. Do this by
2160 * tracking the nodes from which NUMA hinting faults are triggered. This can
2161 * be different from the set of nodes where the workload's memory is currently
2162 * located.
2163 */
numa_group_count_active_nodes(struct numa_group * numa_group)2164 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2165 {
2166 unsigned long faults, max_faults = 0;
2167 int nid, active_nodes = 0;
2168
2169 for_each_online_node(nid) {
2170 faults = group_faults_cpu(numa_group, nid);
2171 if (faults > max_faults)
2172 max_faults = faults;
2173 }
2174
2175 for_each_online_node(nid) {
2176 faults = group_faults_cpu(numa_group, nid);
2177 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2178 active_nodes++;
2179 }
2180
2181 numa_group->max_faults_cpu = max_faults;
2182 numa_group->active_nodes = active_nodes;
2183 }
2184
2185 /*
2186 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2187 * increments. The more local the fault statistics are, the higher the scan
2188 * period will be for the next scan window. If local/(local+remote) ratio is
2189 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2190 * the scan period will decrease. Aim for 70% local accesses.
2191 */
2192 #define NUMA_PERIOD_SLOTS 10
2193 #define NUMA_PERIOD_THRESHOLD 7
2194
2195 /*
2196 * Increase the scan period (slow down scanning) if the majority of
2197 * our memory is already on our local node, or if the majority of
2198 * the page accesses are shared with other processes.
2199 * Otherwise, decrease the scan period.
2200 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2201 static void update_task_scan_period(struct task_struct *p,
2202 unsigned long shared, unsigned long private)
2203 {
2204 unsigned int period_slot;
2205 int lr_ratio, ps_ratio;
2206 int diff;
2207
2208 unsigned long remote = p->numa_faults_locality[0];
2209 unsigned long local = p->numa_faults_locality[1];
2210
2211 /*
2212 * If there were no record hinting faults then either the task is
2213 * completely idle or all activity is areas that are not of interest
2214 * to automatic numa balancing. Related to that, if there were failed
2215 * migration then it implies we are migrating too quickly or the local
2216 * node is overloaded. In either case, scan slower
2217 */
2218 if (local + shared == 0 || p->numa_faults_locality[2]) {
2219 p->numa_scan_period = min(p->numa_scan_period_max,
2220 p->numa_scan_period << 1);
2221
2222 p->mm->numa_next_scan = jiffies +
2223 msecs_to_jiffies(p->numa_scan_period);
2224
2225 return;
2226 }
2227
2228 /*
2229 * Prepare to scale scan period relative to the current period.
2230 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2231 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2232 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2233 */
2234 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2235 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2236 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2237
2238 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2239 /*
2240 * Most memory accesses are local. There is no need to
2241 * do fast NUMA scanning, since memory is already local.
2242 */
2243 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2244 if (!slot)
2245 slot = 1;
2246 diff = slot * period_slot;
2247 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2248 /*
2249 * Most memory accesses are shared with other tasks.
2250 * There is no point in continuing fast NUMA scanning,
2251 * since other tasks may just move the memory elsewhere.
2252 */
2253 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2254 if (!slot)
2255 slot = 1;
2256 diff = slot * period_slot;
2257 } else {
2258 /*
2259 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2260 * yet they are not on the local NUMA node. Speed up
2261 * NUMA scanning to get the memory moved over.
2262 */
2263 int ratio = max(lr_ratio, ps_ratio);
2264 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2265 }
2266
2267 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2268 task_scan_min(p), task_scan_max(p));
2269 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2270 }
2271
2272 /*
2273 * Get the fraction of time the task has been running since the last
2274 * NUMA placement cycle. The scheduler keeps similar statistics, but
2275 * decays those on a 32ms period, which is orders of magnitude off
2276 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2277 * stats only if the task is so new there are no NUMA statistics yet.
2278 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2279 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2280 {
2281 u64 runtime, delta, now;
2282 /* Use the start of this time slice to avoid calculations. */
2283 now = p->se.exec_start;
2284 runtime = p->se.sum_exec_runtime;
2285
2286 if (p->last_task_numa_placement) {
2287 delta = runtime - p->last_sum_exec_runtime;
2288 *period = now - p->last_task_numa_placement;
2289
2290 /* Avoid time going backwards, prevent potential divide error: */
2291 if (unlikely((s64)*period < 0))
2292 *period = 0;
2293 } else {
2294 delta = p->se.avg.load_sum;
2295 *period = LOAD_AVG_MAX;
2296 }
2297
2298 p->last_sum_exec_runtime = runtime;
2299 p->last_task_numa_placement = now;
2300
2301 return delta;
2302 }
2303
2304 /*
2305 * Determine the preferred nid for a task in a numa_group. This needs to
2306 * be done in a way that produces consistent results with group_weight,
2307 * otherwise workloads might not converge.
2308 */
preferred_group_nid(struct task_struct * p,int nid)2309 static int preferred_group_nid(struct task_struct *p, int nid)
2310 {
2311 nodemask_t nodes;
2312 int dist;
2313
2314 /* Direct connections between all NUMA nodes. */
2315 if (sched_numa_topology_type == NUMA_DIRECT)
2316 return nid;
2317
2318 /*
2319 * On a system with glueless mesh NUMA topology, group_weight
2320 * scores nodes according to the number of NUMA hinting faults on
2321 * both the node itself, and on nearby nodes.
2322 */
2323 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2324 unsigned long score, max_score = 0;
2325 int node, max_node = nid;
2326
2327 dist = sched_max_numa_distance;
2328
2329 for_each_online_node(node) {
2330 score = group_weight(p, node, dist);
2331 if (score > max_score) {
2332 max_score = score;
2333 max_node = node;
2334 }
2335 }
2336 return max_node;
2337 }
2338
2339 /*
2340 * Finding the preferred nid in a system with NUMA backplane
2341 * interconnect topology is more involved. The goal is to locate
2342 * tasks from numa_groups near each other in the system, and
2343 * untangle workloads from different sides of the system. This requires
2344 * searching down the hierarchy of node groups, recursively searching
2345 * inside the highest scoring group of nodes. The nodemask tricks
2346 * keep the complexity of the search down.
2347 */
2348 nodes = node_online_map;
2349 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2350 unsigned long max_faults = 0;
2351 nodemask_t max_group = NODE_MASK_NONE;
2352 int a, b;
2353
2354 /* Are there nodes at this distance from each other? */
2355 if (!find_numa_distance(dist))
2356 continue;
2357
2358 for_each_node_mask(a, nodes) {
2359 unsigned long faults = 0;
2360 nodemask_t this_group;
2361 nodes_clear(this_group);
2362
2363 /* Sum group's NUMA faults; includes a==b case. */
2364 for_each_node_mask(b, nodes) {
2365 if (node_distance(a, b) < dist) {
2366 faults += group_faults(p, b);
2367 node_set(b, this_group);
2368 node_clear(b, nodes);
2369 }
2370 }
2371
2372 /* Remember the top group. */
2373 if (faults > max_faults) {
2374 max_faults = faults;
2375 max_group = this_group;
2376 /*
2377 * subtle: at the smallest distance there is
2378 * just one node left in each "group", the
2379 * winner is the preferred nid.
2380 */
2381 nid = a;
2382 }
2383 }
2384 /* Next round, evaluate the nodes within max_group. */
2385 if (!max_faults)
2386 break;
2387 nodes = max_group;
2388 }
2389 return nid;
2390 }
2391
task_numa_placement(struct task_struct * p)2392 static void task_numa_placement(struct task_struct *p)
2393 {
2394 int seq, nid, max_nid = NUMA_NO_NODE;
2395 unsigned long max_faults = 0;
2396 unsigned long fault_types[2] = { 0, 0 };
2397 unsigned long total_faults;
2398 u64 runtime, period;
2399 spinlock_t *group_lock = NULL;
2400 struct numa_group *ng;
2401
2402 /*
2403 * The p->mm->numa_scan_seq field gets updated without
2404 * exclusive access. Use READ_ONCE() here to ensure
2405 * that the field is read in a single access:
2406 */
2407 seq = READ_ONCE(p->mm->numa_scan_seq);
2408 if (p->numa_scan_seq == seq)
2409 return;
2410 p->numa_scan_seq = seq;
2411 p->numa_scan_period_max = task_scan_max(p);
2412
2413 total_faults = p->numa_faults_locality[0] +
2414 p->numa_faults_locality[1];
2415 runtime = numa_get_avg_runtime(p, &period);
2416
2417 /* If the task is part of a group prevent parallel updates to group stats */
2418 ng = deref_curr_numa_group(p);
2419 if (ng) {
2420 group_lock = &ng->lock;
2421 spin_lock_irq(group_lock);
2422 }
2423
2424 /* Find the node with the highest number of faults */
2425 for_each_online_node(nid) {
2426 /* Keep track of the offsets in numa_faults array */
2427 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2428 unsigned long faults = 0, group_faults = 0;
2429 int priv;
2430
2431 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2432 long diff, f_diff, f_weight;
2433
2434 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2435 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2436 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2437 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2438
2439 /* Decay existing window, copy faults since last scan */
2440 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2441 fault_types[priv] += p->numa_faults[membuf_idx];
2442 p->numa_faults[membuf_idx] = 0;
2443
2444 /*
2445 * Normalize the faults_from, so all tasks in a group
2446 * count according to CPU use, instead of by the raw
2447 * number of faults. Tasks with little runtime have
2448 * little over-all impact on throughput, and thus their
2449 * faults are less important.
2450 */
2451 f_weight = div64_u64(runtime << 16, period + 1);
2452 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2453 (total_faults + 1);
2454 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2455 p->numa_faults[cpubuf_idx] = 0;
2456
2457 p->numa_faults[mem_idx] += diff;
2458 p->numa_faults[cpu_idx] += f_diff;
2459 faults += p->numa_faults[mem_idx];
2460 p->total_numa_faults += diff;
2461 if (ng) {
2462 /*
2463 * safe because we can only change our own group
2464 *
2465 * mem_idx represents the offset for a given
2466 * nid and priv in a specific region because it
2467 * is at the beginning of the numa_faults array.
2468 */
2469 ng->faults[mem_idx] += diff;
2470 ng->faults_cpu[mem_idx] += f_diff;
2471 ng->total_faults += diff;
2472 group_faults += ng->faults[mem_idx];
2473 }
2474 }
2475
2476 if (!ng) {
2477 if (faults > max_faults) {
2478 max_faults = faults;
2479 max_nid = nid;
2480 }
2481 } else if (group_faults > max_faults) {
2482 max_faults = group_faults;
2483 max_nid = nid;
2484 }
2485 }
2486
2487 if (ng) {
2488 numa_group_count_active_nodes(ng);
2489 spin_unlock_irq(group_lock);
2490 max_nid = preferred_group_nid(p, max_nid);
2491 }
2492
2493 if (max_faults) {
2494 /* Set the new preferred node */
2495 if (max_nid != p->numa_preferred_nid)
2496 sched_setnuma(p, max_nid);
2497 }
2498
2499 update_task_scan_period(p, fault_types[0], fault_types[1]);
2500 }
2501
get_numa_group(struct numa_group * grp)2502 static inline int get_numa_group(struct numa_group *grp)
2503 {
2504 return refcount_inc_not_zero(&grp->refcount);
2505 }
2506
put_numa_group(struct numa_group * grp)2507 static inline void put_numa_group(struct numa_group *grp)
2508 {
2509 if (refcount_dec_and_test(&grp->refcount))
2510 kfree_rcu(grp, rcu);
2511 }
2512
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2513 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2514 int *priv)
2515 {
2516 struct numa_group *grp, *my_grp;
2517 struct task_struct *tsk;
2518 bool join = false;
2519 int cpu = cpupid_to_cpu(cpupid);
2520 int i;
2521
2522 if (unlikely(!deref_curr_numa_group(p))) {
2523 unsigned int size = sizeof(struct numa_group) +
2524 4*nr_node_ids*sizeof(unsigned long);
2525
2526 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2527 if (!grp)
2528 return;
2529
2530 refcount_set(&grp->refcount, 1);
2531 grp->active_nodes = 1;
2532 grp->max_faults_cpu = 0;
2533 spin_lock_init(&grp->lock);
2534 grp->gid = p->pid;
2535 /* Second half of the array tracks nids where faults happen */
2536 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2537 nr_node_ids;
2538
2539 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2540 grp->faults[i] = p->numa_faults[i];
2541
2542 grp->total_faults = p->total_numa_faults;
2543
2544 grp->nr_tasks++;
2545 rcu_assign_pointer(p->numa_group, grp);
2546 }
2547
2548 rcu_read_lock();
2549 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2550
2551 if (!cpupid_match_pid(tsk, cpupid))
2552 goto no_join;
2553
2554 grp = rcu_dereference(tsk->numa_group);
2555 if (!grp)
2556 goto no_join;
2557
2558 my_grp = deref_curr_numa_group(p);
2559 if (grp == my_grp)
2560 goto no_join;
2561
2562 /*
2563 * Only join the other group if its bigger; if we're the bigger group,
2564 * the other task will join us.
2565 */
2566 if (my_grp->nr_tasks > grp->nr_tasks)
2567 goto no_join;
2568
2569 /*
2570 * Tie-break on the grp address.
2571 */
2572 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2573 goto no_join;
2574
2575 /* Always join threads in the same process. */
2576 if (tsk->mm == current->mm)
2577 join = true;
2578
2579 /* Simple filter to avoid false positives due to PID collisions */
2580 if (flags & TNF_SHARED)
2581 join = true;
2582
2583 /* Update priv based on whether false sharing was detected */
2584 *priv = !join;
2585
2586 if (join && !get_numa_group(grp))
2587 goto no_join;
2588
2589 rcu_read_unlock();
2590
2591 if (!join)
2592 return;
2593
2594 BUG_ON(irqs_disabled());
2595 double_lock_irq(&my_grp->lock, &grp->lock);
2596
2597 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2598 my_grp->faults[i] -= p->numa_faults[i];
2599 grp->faults[i] += p->numa_faults[i];
2600 }
2601 my_grp->total_faults -= p->total_numa_faults;
2602 grp->total_faults += p->total_numa_faults;
2603
2604 my_grp->nr_tasks--;
2605 grp->nr_tasks++;
2606
2607 spin_unlock(&my_grp->lock);
2608 spin_unlock_irq(&grp->lock);
2609
2610 rcu_assign_pointer(p->numa_group, grp);
2611
2612 put_numa_group(my_grp);
2613 return;
2614
2615 no_join:
2616 rcu_read_unlock();
2617 return;
2618 }
2619
2620 /*
2621 * Get rid of NUMA staticstics associated with a task (either current or dead).
2622 * If @final is set, the task is dead and has reached refcount zero, so we can
2623 * safely free all relevant data structures. Otherwise, there might be
2624 * concurrent reads from places like load balancing and procfs, and we should
2625 * reset the data back to default state without freeing ->numa_faults.
2626 */
task_numa_free(struct task_struct * p,bool final)2627 void task_numa_free(struct task_struct *p, bool final)
2628 {
2629 /* safe: p either is current or is being freed by current */
2630 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2631 unsigned long *numa_faults = p->numa_faults;
2632 unsigned long flags;
2633 int i;
2634
2635 if (!numa_faults)
2636 return;
2637
2638 if (grp) {
2639 spin_lock_irqsave(&grp->lock, flags);
2640 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2641 grp->faults[i] -= p->numa_faults[i];
2642 grp->total_faults -= p->total_numa_faults;
2643
2644 grp->nr_tasks--;
2645 spin_unlock_irqrestore(&grp->lock, flags);
2646 RCU_INIT_POINTER(p->numa_group, NULL);
2647 put_numa_group(grp);
2648 }
2649
2650 if (final) {
2651 p->numa_faults = NULL;
2652 kfree(numa_faults);
2653 } else {
2654 p->total_numa_faults = 0;
2655 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2656 numa_faults[i] = 0;
2657 }
2658 }
2659
2660 /*
2661 * Got a PROT_NONE fault for a page on @node.
2662 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2663 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2664 {
2665 struct task_struct *p = current;
2666 bool migrated = flags & TNF_MIGRATED;
2667 int cpu_node = task_node(current);
2668 int local = !!(flags & TNF_FAULT_LOCAL);
2669 struct numa_group *ng;
2670 int priv;
2671
2672 if (!static_branch_likely(&sched_numa_balancing))
2673 return;
2674
2675 /* for example, ksmd faulting in a user's mm */
2676 if (!p->mm)
2677 return;
2678
2679 /* Allocate buffer to track faults on a per-node basis */
2680 if (unlikely(!p->numa_faults)) {
2681 int size = sizeof(*p->numa_faults) *
2682 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2683
2684 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2685 if (!p->numa_faults)
2686 return;
2687
2688 p->total_numa_faults = 0;
2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691
2692 /*
2693 * First accesses are treated as private, otherwise consider accesses
2694 * to be private if the accessing pid has not changed
2695 */
2696 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2697 priv = 1;
2698 } else {
2699 priv = cpupid_match_pid(p, last_cpupid);
2700 if (!priv && !(flags & TNF_NO_GROUP))
2701 task_numa_group(p, last_cpupid, flags, &priv);
2702 }
2703
2704 /*
2705 * If a workload spans multiple NUMA nodes, a shared fault that
2706 * occurs wholly within the set of nodes that the workload is
2707 * actively using should be counted as local. This allows the
2708 * scan rate to slow down when a workload has settled down.
2709 */
2710 ng = deref_curr_numa_group(p);
2711 if (!priv && !local && ng && ng->active_nodes > 1 &&
2712 numa_is_active_node(cpu_node, ng) &&
2713 numa_is_active_node(mem_node, ng))
2714 local = 1;
2715
2716 /*
2717 * Retry to migrate task to preferred node periodically, in case it
2718 * previously failed, or the scheduler moved us.
2719 */
2720 if (time_after(jiffies, p->numa_migrate_retry)) {
2721 task_numa_placement(p);
2722 numa_migrate_preferred(p);
2723 }
2724
2725 if (migrated)
2726 p->numa_pages_migrated += pages;
2727 if (flags & TNF_MIGRATE_FAIL)
2728 p->numa_faults_locality[2] += pages;
2729
2730 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2731 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2732 p->numa_faults_locality[local] += pages;
2733 }
2734
reset_ptenuma_scan(struct task_struct * p)2735 static void reset_ptenuma_scan(struct task_struct *p)
2736 {
2737 /*
2738 * We only did a read acquisition of the mmap sem, so
2739 * p->mm->numa_scan_seq is written to without exclusive access
2740 * and the update is not guaranteed to be atomic. That's not
2741 * much of an issue though, since this is just used for
2742 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2743 * expensive, to avoid any form of compiler optimizations:
2744 */
2745 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2746 p->mm->numa_scan_offset = 0;
2747 }
2748
2749 /*
2750 * The expensive part of numa migration is done from task_work context.
2751 * Triggered from task_tick_numa().
2752 */
task_numa_work(struct callback_head * work)2753 static void task_numa_work(struct callback_head *work)
2754 {
2755 unsigned long migrate, next_scan, now = jiffies;
2756 struct task_struct *p = current;
2757 struct mm_struct *mm = p->mm;
2758 u64 runtime = p->se.sum_exec_runtime;
2759 struct vm_area_struct *vma;
2760 unsigned long start, end;
2761 unsigned long nr_pte_updates = 0;
2762 long pages, virtpages;
2763
2764 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2765
2766 work->next = work;
2767 /*
2768 * Who cares about NUMA placement when they're dying.
2769 *
2770 * NOTE: make sure not to dereference p->mm before this check,
2771 * exit_task_work() happens _after_ exit_mm() so we could be called
2772 * without p->mm even though we still had it when we enqueued this
2773 * work.
2774 */
2775 if (p->flags & PF_EXITING)
2776 return;
2777
2778 if (!mm->numa_next_scan) {
2779 mm->numa_next_scan = now +
2780 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2781 }
2782
2783 /*
2784 * Enforce maximal scan/migration frequency..
2785 */
2786 migrate = mm->numa_next_scan;
2787 if (time_before(now, migrate))
2788 return;
2789
2790 if (p->numa_scan_period == 0) {
2791 p->numa_scan_period_max = task_scan_max(p);
2792 p->numa_scan_period = task_scan_start(p);
2793 }
2794
2795 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2796 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2797 return;
2798
2799 /*
2800 * Delay this task enough that another task of this mm will likely win
2801 * the next time around.
2802 */
2803 p->node_stamp += 2 * TICK_NSEC;
2804
2805 start = mm->numa_scan_offset;
2806 pages = sysctl_numa_balancing_scan_size;
2807 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2808 virtpages = pages * 8; /* Scan up to this much virtual space */
2809 if (!pages)
2810 return;
2811
2812
2813 if (!mmap_read_trylock(mm))
2814 return;
2815 vma = find_vma(mm, start);
2816 if (!vma) {
2817 reset_ptenuma_scan(p);
2818 start = 0;
2819 vma = mm->mmap;
2820 }
2821 for (; vma; vma = vma->vm_next) {
2822 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2823 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2824 continue;
2825 }
2826
2827 /*
2828 * Shared library pages mapped by multiple processes are not
2829 * migrated as it is expected they are cache replicated. Avoid
2830 * hinting faults in read-only file-backed mappings or the vdso
2831 * as migrating the pages will be of marginal benefit.
2832 */
2833 if (!vma->vm_mm ||
2834 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2835 continue;
2836
2837 /*
2838 * Skip inaccessible VMAs to avoid any confusion between
2839 * PROT_NONE and NUMA hinting ptes
2840 */
2841 if (!vma_is_accessible(vma))
2842 continue;
2843
2844 do {
2845 start = max(start, vma->vm_start);
2846 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2847 end = min(end, vma->vm_end);
2848 nr_pte_updates = change_prot_numa(vma, start, end);
2849
2850 /*
2851 * Try to scan sysctl_numa_balancing_size worth of
2852 * hpages that have at least one present PTE that
2853 * is not already pte-numa. If the VMA contains
2854 * areas that are unused or already full of prot_numa
2855 * PTEs, scan up to virtpages, to skip through those
2856 * areas faster.
2857 */
2858 if (nr_pte_updates)
2859 pages -= (end - start) >> PAGE_SHIFT;
2860 virtpages -= (end - start) >> PAGE_SHIFT;
2861
2862 start = end;
2863 if (pages <= 0 || virtpages <= 0)
2864 goto out;
2865
2866 cond_resched();
2867 } while (end != vma->vm_end);
2868 }
2869
2870 out:
2871 /*
2872 * It is possible to reach the end of the VMA list but the last few
2873 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2874 * would find the !migratable VMA on the next scan but not reset the
2875 * scanner to the start so check it now.
2876 */
2877 if (vma)
2878 mm->numa_scan_offset = start;
2879 else
2880 reset_ptenuma_scan(p);
2881 mmap_read_unlock(mm);
2882
2883 /*
2884 * Make sure tasks use at least 32x as much time to run other code
2885 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2886 * Usually update_task_scan_period slows down scanning enough; on an
2887 * overloaded system we need to limit overhead on a per task basis.
2888 */
2889 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2890 u64 diff = p->se.sum_exec_runtime - runtime;
2891 p->node_stamp += 32 * diff;
2892 }
2893 }
2894
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2895 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2896 {
2897 int mm_users = 0;
2898 struct mm_struct *mm = p->mm;
2899
2900 if (mm) {
2901 mm_users = atomic_read(&mm->mm_users);
2902 if (mm_users == 1) {
2903 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2904 mm->numa_scan_seq = 0;
2905 }
2906 }
2907 p->node_stamp = 0;
2908 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2909 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2910 /* Protect against double add, see task_tick_numa and task_numa_work */
2911 p->numa_work.next = &p->numa_work;
2912 p->numa_faults = NULL;
2913 RCU_INIT_POINTER(p->numa_group, NULL);
2914 p->last_task_numa_placement = 0;
2915 p->last_sum_exec_runtime = 0;
2916
2917 init_task_work(&p->numa_work, task_numa_work);
2918
2919 /* New address space, reset the preferred nid */
2920 if (!(clone_flags & CLONE_VM)) {
2921 p->numa_preferred_nid = NUMA_NO_NODE;
2922 return;
2923 }
2924
2925 /*
2926 * New thread, keep existing numa_preferred_nid which should be copied
2927 * already by arch_dup_task_struct but stagger when scans start.
2928 */
2929 if (mm) {
2930 unsigned int delay;
2931
2932 delay = min_t(unsigned int, task_scan_max(current),
2933 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2934 delay += 2 * TICK_NSEC;
2935 p->node_stamp = delay;
2936 }
2937 }
2938
2939 /*
2940 * Drive the periodic memory faults..
2941 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2942 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2943 {
2944 struct callback_head *work = &curr->numa_work;
2945 u64 period, now;
2946
2947 /*
2948 * We don't care about NUMA placement if we don't have memory.
2949 */
2950 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2951 return;
2952
2953 /*
2954 * Using runtime rather than walltime has the dual advantage that
2955 * we (mostly) drive the selection from busy threads and that the
2956 * task needs to have done some actual work before we bother with
2957 * NUMA placement.
2958 */
2959 now = curr->se.sum_exec_runtime;
2960 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2961
2962 if (now > curr->node_stamp + period) {
2963 if (!curr->node_stamp)
2964 curr->numa_scan_period = task_scan_start(curr);
2965 curr->node_stamp += period;
2966
2967 if (!time_before(jiffies, curr->mm->numa_next_scan))
2968 task_work_add(curr, work, TWA_RESUME);
2969 }
2970 }
2971
update_scan_period(struct task_struct * p,int new_cpu)2972 static void update_scan_period(struct task_struct *p, int new_cpu)
2973 {
2974 int src_nid = cpu_to_node(task_cpu(p));
2975 int dst_nid = cpu_to_node(new_cpu);
2976
2977 if (!static_branch_likely(&sched_numa_balancing))
2978 return;
2979
2980 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2981 return;
2982
2983 if (src_nid == dst_nid)
2984 return;
2985
2986 /*
2987 * Allow resets if faults have been trapped before one scan
2988 * has completed. This is most likely due to a new task that
2989 * is pulled cross-node due to wakeups or load balancing.
2990 */
2991 if (p->numa_scan_seq) {
2992 /*
2993 * Avoid scan adjustments if moving to the preferred
2994 * node or if the task was not previously running on
2995 * the preferred node.
2996 */
2997 if (dst_nid == p->numa_preferred_nid ||
2998 (p->numa_preferred_nid != NUMA_NO_NODE &&
2999 src_nid != p->numa_preferred_nid))
3000 return;
3001 }
3002
3003 p->numa_scan_period = task_scan_start(p);
3004 }
3005
3006 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3007 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3008 {
3009 }
3010
account_numa_enqueue(struct rq * rq,struct task_struct * p)3011 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3012 {
3013 }
3014
account_numa_dequeue(struct rq * rq,struct task_struct * p)3015 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3016 {
3017 }
3018
update_scan_period(struct task_struct * p,int new_cpu)3019 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3020 {
3021 }
3022
3023 #endif /* CONFIG_NUMA_BALANCING */
3024
3025 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3026 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3027 {
3028 update_load_add(&cfs_rq->load, se->load.weight);
3029 #ifdef CONFIG_SMP
3030 if (entity_is_task(se)) {
3031 struct rq *rq = rq_of(cfs_rq);
3032
3033 account_numa_enqueue(rq, task_of(se));
3034 list_add(&se->group_node, &rq->cfs_tasks);
3035 }
3036 #endif
3037 cfs_rq->nr_running++;
3038 }
3039
3040 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3041 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3042 {
3043 update_load_sub(&cfs_rq->load, se->load.weight);
3044 #ifdef CONFIG_SMP
3045 if (entity_is_task(se)) {
3046 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3047 list_del_init(&se->group_node);
3048 }
3049 #endif
3050 cfs_rq->nr_running--;
3051 }
3052
3053 /*
3054 * Signed add and clamp on underflow.
3055 *
3056 * Explicitly do a load-store to ensure the intermediate value never hits
3057 * memory. This allows lockless observations without ever seeing the negative
3058 * values.
3059 */
3060 #define add_positive(_ptr, _val) do { \
3061 typeof(_ptr) ptr = (_ptr); \
3062 typeof(_val) val = (_val); \
3063 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3064 \
3065 res = var + val; \
3066 \
3067 if (val < 0 && res > var) \
3068 res = 0; \
3069 \
3070 WRITE_ONCE(*ptr, res); \
3071 } while (0)
3072
3073 /*
3074 * Unsigned subtract and clamp on underflow.
3075 *
3076 * Explicitly do a load-store to ensure the intermediate value never hits
3077 * memory. This allows lockless observations without ever seeing the negative
3078 * values.
3079 */
3080 #define sub_positive(_ptr, _val) do { \
3081 typeof(_ptr) ptr = (_ptr); \
3082 typeof(*ptr) val = (_val); \
3083 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3084 res = var - val; \
3085 if (res > var) \
3086 res = 0; \
3087 WRITE_ONCE(*ptr, res); \
3088 } while (0)
3089
3090 /*
3091 * Remove and clamp on negative, from a local variable.
3092 *
3093 * A variant of sub_positive(), which does not use explicit load-store
3094 * and is thus optimized for local variable updates.
3095 */
3096 #define lsub_positive(_ptr, _val) do { \
3097 typeof(_ptr) ptr = (_ptr); \
3098 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3099 } while (0)
3100
3101 #ifdef CONFIG_SMP
3102 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3103 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3104 {
3105 cfs_rq->avg.load_avg += se->avg.load_avg;
3106 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3107 }
3108
3109 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3110 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3111 {
3112 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3113 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3114 }
3115 #else
3116 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3117 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3118 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3119 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3120 #endif
3121
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3122 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3123 unsigned long weight)
3124 {
3125 if (se->on_rq) {
3126 /* commit outstanding execution time */
3127 if (cfs_rq->curr == se)
3128 update_curr(cfs_rq);
3129 update_load_sub(&cfs_rq->load, se->load.weight);
3130 }
3131 dequeue_load_avg(cfs_rq, se);
3132
3133 update_load_set(&se->load, weight);
3134
3135 #ifdef CONFIG_SMP
3136 do {
3137 u32 divider = get_pelt_divider(&se->avg);
3138
3139 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3140 } while (0);
3141 #endif
3142
3143 enqueue_load_avg(cfs_rq, se);
3144 if (se->on_rq)
3145 update_load_add(&cfs_rq->load, se->load.weight);
3146
3147 }
3148
reweight_task(struct task_struct * p,int prio)3149 void reweight_task(struct task_struct *p, int prio)
3150 {
3151 struct sched_entity *se = &p->se;
3152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3153 struct load_weight *load = &se->load;
3154 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3155
3156 reweight_entity(cfs_rq, se, weight);
3157 load->inv_weight = sched_prio_to_wmult[prio];
3158 }
3159
3160 #ifdef CONFIG_FAIR_GROUP_SCHED
3161 #ifdef CONFIG_SMP
3162 /*
3163 * All this does is approximate the hierarchical proportion which includes that
3164 * global sum we all love to hate.
3165 *
3166 * That is, the weight of a group entity, is the proportional share of the
3167 * group weight based on the group runqueue weights. That is:
3168 *
3169 * tg->weight * grq->load.weight
3170 * ge->load.weight = ----------------------------- (1)
3171 * \Sum grq->load.weight
3172 *
3173 * Now, because computing that sum is prohibitively expensive to compute (been
3174 * there, done that) we approximate it with this average stuff. The average
3175 * moves slower and therefore the approximation is cheaper and more stable.
3176 *
3177 * So instead of the above, we substitute:
3178 *
3179 * grq->load.weight -> grq->avg.load_avg (2)
3180 *
3181 * which yields the following:
3182 *
3183 * tg->weight * grq->avg.load_avg
3184 * ge->load.weight = ------------------------------ (3)
3185 * tg->load_avg
3186 *
3187 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3188 *
3189 * That is shares_avg, and it is right (given the approximation (2)).
3190 *
3191 * The problem with it is that because the average is slow -- it was designed
3192 * to be exactly that of course -- this leads to transients in boundary
3193 * conditions. In specific, the case where the group was idle and we start the
3194 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3195 * yielding bad latency etc..
3196 *
3197 * Now, in that special case (1) reduces to:
3198 *
3199 * tg->weight * grq->load.weight
3200 * ge->load.weight = ----------------------------- = tg->weight (4)
3201 * grp->load.weight
3202 *
3203 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3204 *
3205 * So what we do is modify our approximation (3) to approach (4) in the (near)
3206 * UP case, like:
3207 *
3208 * ge->load.weight =
3209 *
3210 * tg->weight * grq->load.weight
3211 * --------------------------------------------------- (5)
3212 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3213 *
3214 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3215 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3216 *
3217 *
3218 * tg->weight * grq->load.weight
3219 * ge->load.weight = ----------------------------- (6)
3220 * tg_load_avg'
3221 *
3222 * Where:
3223 *
3224 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3225 * max(grq->load.weight, grq->avg.load_avg)
3226 *
3227 * And that is shares_weight and is icky. In the (near) UP case it approaches
3228 * (4) while in the normal case it approaches (3). It consistently
3229 * overestimates the ge->load.weight and therefore:
3230 *
3231 * \Sum ge->load.weight >= tg->weight
3232 *
3233 * hence icky!
3234 */
calc_group_shares(struct cfs_rq * cfs_rq)3235 static long calc_group_shares(struct cfs_rq *cfs_rq)
3236 {
3237 long tg_weight, tg_shares, load, shares;
3238 struct task_group *tg = cfs_rq->tg;
3239
3240 tg_shares = READ_ONCE(tg->shares);
3241
3242 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3243
3244 tg_weight = atomic_long_read(&tg->load_avg);
3245
3246 /* Ensure tg_weight >= load */
3247 tg_weight -= cfs_rq->tg_load_avg_contrib;
3248 tg_weight += load;
3249
3250 shares = (tg_shares * load);
3251 if (tg_weight)
3252 shares /= tg_weight;
3253
3254 /*
3255 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3256 * of a group with small tg->shares value. It is a floor value which is
3257 * assigned as a minimum load.weight to the sched_entity representing
3258 * the group on a CPU.
3259 *
3260 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3261 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3262 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3263 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3264 * instead of 0.
3265 */
3266 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3267 }
3268 #endif /* CONFIG_SMP */
3269
3270 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3271
3272 /*
3273 * Recomputes the group entity based on the current state of its group
3274 * runqueue.
3275 */
update_cfs_group(struct sched_entity * se)3276 static void update_cfs_group(struct sched_entity *se)
3277 {
3278 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3279 long shares;
3280
3281 if (!gcfs_rq)
3282 return;
3283
3284 if (throttled_hierarchy(gcfs_rq))
3285 return;
3286
3287 #ifndef CONFIG_SMP
3288 shares = READ_ONCE(gcfs_rq->tg->shares);
3289
3290 if (likely(se->load.weight == shares))
3291 return;
3292 #else
3293 shares = calc_group_shares(gcfs_rq);
3294 #endif
3295
3296 reweight_entity(cfs_rq_of(se), se, shares);
3297 }
3298
3299 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3300 static inline void update_cfs_group(struct sched_entity *se)
3301 {
3302 }
3303 #endif /* CONFIG_FAIR_GROUP_SCHED */
3304
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3305 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3306 {
3307 struct rq *rq = rq_of(cfs_rq);
3308
3309 if (&rq->cfs == cfs_rq) {
3310 /*
3311 * There are a few boundary cases this might miss but it should
3312 * get called often enough that that should (hopefully) not be
3313 * a real problem.
3314 *
3315 * It will not get called when we go idle, because the idle
3316 * thread is a different class (!fair), nor will the utilization
3317 * number include things like RT tasks.
3318 *
3319 * As is, the util number is not freq-invariant (we'd have to
3320 * implement arch_scale_freq_capacity() for that).
3321 *
3322 * See cpu_util().
3323 */
3324 cpufreq_update_util(rq, flags);
3325 }
3326 }
3327
3328 #ifdef CONFIG_SMP
3329 #ifdef CONFIG_FAIR_GROUP_SCHED
3330 /**
3331 * update_tg_load_avg - update the tg's load avg
3332 * @cfs_rq: the cfs_rq whose avg changed
3333 *
3334 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3335 * However, because tg->load_avg is a global value there are performance
3336 * considerations.
3337 *
3338 * In order to avoid having to look at the other cfs_rq's, we use a
3339 * differential update where we store the last value we propagated. This in
3340 * turn allows skipping updates if the differential is 'small'.
3341 *
3342 * Updating tg's load_avg is necessary before update_cfs_share().
3343 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3345 {
3346 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3347
3348 /*
3349 * No need to update load_avg for root_task_group as it is not used.
3350 */
3351 if (cfs_rq->tg == &root_task_group)
3352 return;
3353
3354 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3355 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3356 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3357 }
3358 }
3359
3360 /*
3361 * Called within set_task_rq() right before setting a task's CPU. The
3362 * caller only guarantees p->pi_lock is held; no other assumptions,
3363 * including the state of rq->lock, should be made.
3364 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3365 void set_task_rq_fair(struct sched_entity *se,
3366 struct cfs_rq *prev, struct cfs_rq *next)
3367 {
3368 u64 p_last_update_time;
3369 u64 n_last_update_time;
3370
3371 if (!sched_feat(ATTACH_AGE_LOAD))
3372 return;
3373
3374 /*
3375 * We are supposed to update the task to "current" time, then its up to
3376 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3377 * getting what current time is, so simply throw away the out-of-date
3378 * time. This will result in the wakee task is less decayed, but giving
3379 * the wakee more load sounds not bad.
3380 */
3381 if (!(se->avg.last_update_time && prev))
3382 return;
3383
3384 #ifndef CONFIG_64BIT
3385 {
3386 u64 p_last_update_time_copy;
3387 u64 n_last_update_time_copy;
3388
3389 do {
3390 p_last_update_time_copy = prev->load_last_update_time_copy;
3391 n_last_update_time_copy = next->load_last_update_time_copy;
3392
3393 smp_rmb();
3394
3395 p_last_update_time = prev->avg.last_update_time;
3396 n_last_update_time = next->avg.last_update_time;
3397
3398 } while (p_last_update_time != p_last_update_time_copy ||
3399 n_last_update_time != n_last_update_time_copy);
3400 }
3401 #else
3402 p_last_update_time = prev->avg.last_update_time;
3403 n_last_update_time = next->avg.last_update_time;
3404 #endif
3405 __update_load_avg_blocked_se(p_last_update_time, se);
3406 se->avg.last_update_time = n_last_update_time;
3407 }
3408
3409
3410 /*
3411 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3412 * propagate its contribution. The key to this propagation is the invariant
3413 * that for each group:
3414 *
3415 * ge->avg == grq->avg (1)
3416 *
3417 * _IFF_ we look at the pure running and runnable sums. Because they
3418 * represent the very same entity, just at different points in the hierarchy.
3419 *
3420 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3421 * and simply copies the running/runnable sum over (but still wrong, because
3422 * the group entity and group rq do not have their PELT windows aligned).
3423 *
3424 * However, update_tg_cfs_load() is more complex. So we have:
3425 *
3426 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3427 *
3428 * And since, like util, the runnable part should be directly transferable,
3429 * the following would _appear_ to be the straight forward approach:
3430 *
3431 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3432 *
3433 * And per (1) we have:
3434 *
3435 * ge->avg.runnable_avg == grq->avg.runnable_avg
3436 *
3437 * Which gives:
3438 *
3439 * ge->load.weight * grq->avg.load_avg
3440 * ge->avg.load_avg = ----------------------------------- (4)
3441 * grq->load.weight
3442 *
3443 * Except that is wrong!
3444 *
3445 * Because while for entities historical weight is not important and we
3446 * really only care about our future and therefore can consider a pure
3447 * runnable sum, runqueues can NOT do this.
3448 *
3449 * We specifically want runqueues to have a load_avg that includes
3450 * historical weights. Those represent the blocked load, the load we expect
3451 * to (shortly) return to us. This only works by keeping the weights as
3452 * integral part of the sum. We therefore cannot decompose as per (3).
3453 *
3454 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3455 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3456 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3457 * runnable section of these tasks overlap (or not). If they were to perfectly
3458 * align the rq as a whole would be runnable 2/3 of the time. If however we
3459 * always have at least 1 runnable task, the rq as a whole is always runnable.
3460 *
3461 * So we'll have to approximate.. :/
3462 *
3463 * Given the constraint:
3464 *
3465 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3466 *
3467 * We can construct a rule that adds runnable to a rq by assuming minimal
3468 * overlap.
3469 *
3470 * On removal, we'll assume each task is equally runnable; which yields:
3471 *
3472 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3473 *
3474 * XXX: only do this for the part of runnable > running ?
3475 *
3476 */
3477
3478 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3479 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3480 {
3481 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3482 u32 divider;
3483
3484 /* Nothing to update */
3485 if (!delta)
3486 return;
3487
3488 /*
3489 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3490 * See ___update_load_avg() for details.
3491 */
3492 divider = get_pelt_divider(&cfs_rq->avg);
3493
3494 /* Set new sched_entity's utilization */
3495 se->avg.util_avg = gcfs_rq->avg.util_avg;
3496 se->avg.util_sum = se->avg.util_avg * divider;
3497
3498 /* Update parent cfs_rq utilization */
3499 add_positive(&cfs_rq->avg.util_avg, delta);
3500 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3501 }
3502
3503 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3504 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3505 {
3506 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3507 u32 divider;
3508
3509 /* Nothing to update */
3510 if (!delta)
3511 return;
3512
3513 /*
3514 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3515 * See ___update_load_avg() for details.
3516 */
3517 divider = get_pelt_divider(&cfs_rq->avg);
3518
3519 /* Set new sched_entity's runnable */
3520 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3521 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3522
3523 /* Update parent cfs_rq runnable */
3524 add_positive(&cfs_rq->avg.runnable_avg, delta);
3525 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3526 }
3527
3528 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3529 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3530 {
3531 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3532 unsigned long load_avg;
3533 u64 load_sum = 0;
3534 u32 divider;
3535
3536 if (!runnable_sum)
3537 return;
3538
3539 gcfs_rq->prop_runnable_sum = 0;
3540
3541 /*
3542 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3543 * See ___update_load_avg() for details.
3544 */
3545 divider = get_pelt_divider(&cfs_rq->avg);
3546
3547 if (runnable_sum >= 0) {
3548 /*
3549 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3550 * the CPU is saturated running == runnable.
3551 */
3552 runnable_sum += se->avg.load_sum;
3553 runnable_sum = min_t(long, runnable_sum, divider);
3554 } else {
3555 /*
3556 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3557 * assuming all tasks are equally runnable.
3558 */
3559 if (scale_load_down(gcfs_rq->load.weight)) {
3560 load_sum = div_s64(gcfs_rq->avg.load_sum,
3561 scale_load_down(gcfs_rq->load.weight));
3562 }
3563
3564 /* But make sure to not inflate se's runnable */
3565 runnable_sum = min(se->avg.load_sum, load_sum);
3566 }
3567
3568 /*
3569 * runnable_sum can't be lower than running_sum
3570 * Rescale running sum to be in the same range as runnable sum
3571 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3572 * runnable_sum is in [0 : LOAD_AVG_MAX]
3573 */
3574 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3575 runnable_sum = max(runnable_sum, running_sum);
3576
3577 load_sum = (s64)se_weight(se) * runnable_sum;
3578 load_avg = div_s64(load_sum, divider);
3579
3580 delta = load_avg - se->avg.load_avg;
3581
3582 se->avg.load_sum = runnable_sum;
3583 se->avg.load_avg = load_avg;
3584
3585 add_positive(&cfs_rq->avg.load_avg, delta);
3586 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3587 }
3588
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3589 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3590 {
3591 cfs_rq->propagate = 1;
3592 cfs_rq->prop_runnable_sum += runnable_sum;
3593 }
3594
3595 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3596 static inline int propagate_entity_load_avg(struct sched_entity *se)
3597 {
3598 struct cfs_rq *cfs_rq, *gcfs_rq;
3599
3600 if (entity_is_task(se))
3601 return 0;
3602
3603 gcfs_rq = group_cfs_rq(se);
3604 if (!gcfs_rq->propagate)
3605 return 0;
3606
3607 gcfs_rq->propagate = 0;
3608
3609 cfs_rq = cfs_rq_of(se);
3610
3611 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3612
3613 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3614 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3615 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3616
3617 trace_pelt_cfs_tp(cfs_rq);
3618 trace_pelt_se_tp(se);
3619
3620 return 1;
3621 }
3622
3623 /*
3624 * Check if we need to update the load and the utilization of a blocked
3625 * group_entity:
3626 */
skip_blocked_update(struct sched_entity * se)3627 static inline bool skip_blocked_update(struct sched_entity *se)
3628 {
3629 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3630
3631 /*
3632 * If sched_entity still have not zero load or utilization, we have to
3633 * decay it:
3634 */
3635 if (se->avg.load_avg || se->avg.util_avg)
3636 return false;
3637
3638 /*
3639 * If there is a pending propagation, we have to update the load and
3640 * the utilization of the sched_entity:
3641 */
3642 if (gcfs_rq->propagate)
3643 return false;
3644
3645 /*
3646 * Otherwise, the load and the utilization of the sched_entity is
3647 * already zero and there is no pending propagation, so it will be a
3648 * waste of time to try to decay it:
3649 */
3650 return true;
3651 }
3652
3653 #else /* CONFIG_FAIR_GROUP_SCHED */
3654
update_tg_load_avg(struct cfs_rq * cfs_rq)3655 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3656
propagate_entity_load_avg(struct sched_entity * se)3657 static inline int propagate_entity_load_avg(struct sched_entity *se)
3658 {
3659 return 0;
3660 }
3661
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3662 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3663
3664 #endif /* CONFIG_FAIR_GROUP_SCHED */
3665
3666 /**
3667 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3668 * @now: current time, as per cfs_rq_clock_pelt()
3669 * @cfs_rq: cfs_rq to update
3670 *
3671 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3672 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3673 * post_init_entity_util_avg().
3674 *
3675 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3676 *
3677 * Returns true if the load decayed or we removed load.
3678 *
3679 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3680 * call update_tg_load_avg() when this function returns true.
3681 */
3682 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3683 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3684 {
3685 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3686 struct sched_avg *sa = &cfs_rq->avg;
3687 int decayed = 0;
3688
3689 if (cfs_rq->removed.nr) {
3690 unsigned long r;
3691 u32 divider = get_pelt_divider(&cfs_rq->avg);
3692
3693 raw_spin_lock(&cfs_rq->removed.lock);
3694 swap(cfs_rq->removed.util_avg, removed_util);
3695 swap(cfs_rq->removed.load_avg, removed_load);
3696 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3697 cfs_rq->removed.nr = 0;
3698 raw_spin_unlock(&cfs_rq->removed.lock);
3699
3700 r = removed_load;
3701 sub_positive(&sa->load_avg, r);
3702 sa->load_sum = sa->load_avg * divider;
3703
3704 r = removed_util;
3705 sub_positive(&sa->util_avg, r);
3706 sa->util_sum = sa->util_avg * divider;
3707
3708 r = removed_runnable;
3709 sub_positive(&sa->runnable_avg, r);
3710 sa->runnable_sum = sa->runnable_avg * divider;
3711
3712 /*
3713 * removed_runnable is the unweighted version of removed_load so we
3714 * can use it to estimate removed_load_sum.
3715 */
3716 add_tg_cfs_propagate(cfs_rq,
3717 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3718
3719 decayed = 1;
3720 }
3721
3722 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3723
3724 #ifndef CONFIG_64BIT
3725 smp_wmb();
3726 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3727 #endif
3728
3729 return decayed;
3730 }
3731
3732 /**
3733 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3734 * @cfs_rq: cfs_rq to attach to
3735 * @se: sched_entity to attach
3736 *
3737 * Must call update_cfs_rq_load_avg() before this, since we rely on
3738 * cfs_rq->avg.last_update_time being current.
3739 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3740 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3741 {
3742 /*
3743 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3744 * See ___update_load_avg() for details.
3745 */
3746 u32 divider = get_pelt_divider(&cfs_rq->avg);
3747
3748 /*
3749 * When we attach the @se to the @cfs_rq, we must align the decay
3750 * window because without that, really weird and wonderful things can
3751 * happen.
3752 *
3753 * XXX illustrate
3754 */
3755 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3756 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3757
3758 /*
3759 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3760 * period_contrib. This isn't strictly correct, but since we're
3761 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3762 * _sum a little.
3763 */
3764 se->avg.util_sum = se->avg.util_avg * divider;
3765
3766 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3767
3768 se->avg.load_sum = divider;
3769 if (se_weight(se)) {
3770 se->avg.load_sum =
3771 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3772 }
3773
3774 enqueue_load_avg(cfs_rq, se);
3775 cfs_rq->avg.util_avg += se->avg.util_avg;
3776 cfs_rq->avg.util_sum += se->avg.util_sum;
3777 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3778 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3779
3780 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3781
3782 cfs_rq_util_change(cfs_rq, 0);
3783
3784 trace_pelt_cfs_tp(cfs_rq);
3785 }
3786
3787 /**
3788 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3789 * @cfs_rq: cfs_rq to detach from
3790 * @se: sched_entity to detach
3791 *
3792 * Must call update_cfs_rq_load_avg() before this, since we rely on
3793 * cfs_rq->avg.last_update_time being current.
3794 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3795 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3796 {
3797 /*
3798 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3799 * See ___update_load_avg() for details.
3800 */
3801 u32 divider = get_pelt_divider(&cfs_rq->avg);
3802
3803 dequeue_load_avg(cfs_rq, se);
3804 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3805 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3806 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3807 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3808
3809 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3810
3811 cfs_rq_util_change(cfs_rq, 0);
3812
3813 trace_pelt_cfs_tp(cfs_rq);
3814 }
3815
3816 /*
3817 * Optional action to be done while updating the load average
3818 */
3819 #define UPDATE_TG 0x1
3820 #define SKIP_AGE_LOAD 0x2
3821 #define DO_ATTACH 0x4
3822
3823 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3825 {
3826 u64 now = cfs_rq_clock_pelt(cfs_rq);
3827 int decayed;
3828
3829 /*
3830 * Track task load average for carrying it to new CPU after migrated, and
3831 * track group sched_entity load average for task_h_load calc in migration
3832 */
3833 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3834 __update_load_avg_se(now, cfs_rq, se);
3835
3836 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3837 decayed |= propagate_entity_load_avg(se);
3838
3839 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3840
3841 /*
3842 * DO_ATTACH means we're here from enqueue_entity().
3843 * !last_update_time means we've passed through
3844 * migrate_task_rq_fair() indicating we migrated.
3845 *
3846 * IOW we're enqueueing a task on a new CPU.
3847 */
3848 attach_entity_load_avg(cfs_rq, se);
3849 update_tg_load_avg(cfs_rq);
3850
3851 } else if (decayed) {
3852 cfs_rq_util_change(cfs_rq, 0);
3853
3854 if (flags & UPDATE_TG)
3855 update_tg_load_avg(cfs_rq);
3856 }
3857 }
3858
3859 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3860 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3861 {
3862 u64 last_update_time_copy;
3863 u64 last_update_time;
3864
3865 do {
3866 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3867 smp_rmb();
3868 last_update_time = cfs_rq->avg.last_update_time;
3869 } while (last_update_time != last_update_time_copy);
3870
3871 return last_update_time;
3872 }
3873 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3874 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3875 {
3876 return cfs_rq->avg.last_update_time;
3877 }
3878 #endif
3879
3880 /*
3881 * Synchronize entity load avg of dequeued entity without locking
3882 * the previous rq.
3883 */
sync_entity_load_avg(struct sched_entity * se)3884 static void sync_entity_load_avg(struct sched_entity *se)
3885 {
3886 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887 u64 last_update_time;
3888
3889 last_update_time = cfs_rq_last_update_time(cfs_rq);
3890 __update_load_avg_blocked_se(last_update_time, se);
3891 }
3892
3893 /*
3894 * Task first catches up with cfs_rq, and then subtract
3895 * itself from the cfs_rq (task must be off the queue now).
3896 */
remove_entity_load_avg(struct sched_entity * se)3897 static void remove_entity_load_avg(struct sched_entity *se)
3898 {
3899 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3900 unsigned long flags;
3901
3902 /*
3903 * tasks cannot exit without having gone through wake_up_new_task() ->
3904 * post_init_entity_util_avg() which will have added things to the
3905 * cfs_rq, so we can remove unconditionally.
3906 */
3907
3908 sync_entity_load_avg(se);
3909
3910 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3911 ++cfs_rq->removed.nr;
3912 cfs_rq->removed.util_avg += se->avg.util_avg;
3913 cfs_rq->removed.load_avg += se->avg.load_avg;
3914 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3915 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3916 }
3917
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3918 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3919 {
3920 return cfs_rq->avg.runnable_avg;
3921 }
3922
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3923 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3924 {
3925 return cfs_rq->avg.load_avg;
3926 }
3927
3928 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3929
task_util(struct task_struct * p)3930 static inline unsigned long task_util(struct task_struct *p)
3931 {
3932 #ifdef CONFIG_SCHED_WALT
3933 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3934 return p->ravg.demand_scaled;
3935 #endif
3936 return READ_ONCE(p->se.avg.util_avg);
3937 }
3938
_task_util_est(struct task_struct * p)3939 static inline unsigned long _task_util_est(struct task_struct *p)
3940 {
3941 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3942
3943 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3944 }
3945
task_util_est(struct task_struct * p)3946 static inline unsigned long task_util_est(struct task_struct *p)
3947 {
3948 #ifdef CONFIG_SCHED_WALT
3949 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3950 return p->ravg.demand_scaled;
3951 #endif
3952 return max(task_util(p), _task_util_est(p));
3953 }
3954
3955 #ifdef CONFIG_UCLAMP_TASK
3956 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)3957 unsigned long uclamp_task_util(struct task_struct *p)
3958 #else
3959 static inline unsigned long uclamp_task_util(struct task_struct *p)
3960 #endif
3961 {
3962 return clamp(task_util_est(p),
3963 uclamp_eff_value(p, UCLAMP_MIN),
3964 uclamp_eff_value(p, UCLAMP_MAX));
3965 }
3966 #else
3967 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)3968 unsigned long uclamp_task_util(struct task_struct *p)
3969 #else
3970 static inline unsigned long uclamp_task_util(struct task_struct *p)
3971 #endif
3972 {
3973 return task_util_est(p);
3974 }
3975 #endif
3976
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3977 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3978 struct task_struct *p)
3979 {
3980 unsigned int enqueued;
3981
3982 if (!sched_feat(UTIL_EST))
3983 return;
3984
3985 /* Update root cfs_rq's estimated utilization */
3986 enqueued = cfs_rq->avg.util_est.enqueued;
3987 enqueued += _task_util_est(p);
3988 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3989
3990 trace_sched_util_est_cfs_tp(cfs_rq);
3991 }
3992
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)3993 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3994 struct task_struct *p)
3995 {
3996 unsigned int enqueued;
3997
3998 if (!sched_feat(UTIL_EST))
3999 return;
4000
4001 /* Update root cfs_rq's estimated utilization */
4002 enqueued = cfs_rq->avg.util_est.enqueued;
4003 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4004 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4005
4006 trace_sched_util_est_cfs_tp(cfs_rq);
4007 }
4008
4009 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4010
4011 /*
4012 * Check if a (signed) value is within a specified (unsigned) margin,
4013 * based on the observation that:
4014 *
4015 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4016 *
4017 * NOTE: this only works when value + maring < INT_MAX.
4018 */
within_margin(int value,int margin)4019 static inline bool within_margin(int value, int margin)
4020 {
4021 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4022 }
4023
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4024 static inline void util_est_update(struct cfs_rq *cfs_rq,
4025 struct task_struct *p,
4026 bool task_sleep)
4027 {
4028 long last_ewma_diff, last_enqueued_diff;
4029 struct util_est ue;
4030
4031 if (!sched_feat(UTIL_EST))
4032 return;
4033
4034 /*
4035 * Skip update of task's estimated utilization when the task has not
4036 * yet completed an activation, e.g. being migrated.
4037 */
4038 if (!task_sleep)
4039 return;
4040
4041 /*
4042 * If the PELT values haven't changed since enqueue time,
4043 * skip the util_est update.
4044 */
4045 ue = p->se.avg.util_est;
4046 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4047 return;
4048
4049 last_enqueued_diff = ue.enqueued;
4050
4051 /*
4052 * Reset EWMA on utilization increases, the moving average is used only
4053 * to smooth utilization decreases.
4054 */
4055 ue.enqueued = task_util(p);
4056 if (sched_feat(UTIL_EST_FASTUP)) {
4057 if (ue.ewma < ue.enqueued) {
4058 ue.ewma = ue.enqueued;
4059 goto done;
4060 }
4061 }
4062
4063 /*
4064 * Skip update of task's estimated utilization when its members are
4065 * already ~1% close to its last activation value.
4066 */
4067 last_ewma_diff = ue.enqueued - ue.ewma;
4068 last_enqueued_diff -= ue.enqueued;
4069 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4070 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4071 goto done;
4072
4073 return;
4074 }
4075
4076 /*
4077 * To avoid overestimation of actual task utilization, skip updates if
4078 * we cannot grant there is idle time in this CPU.
4079 */
4080 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4081 return;
4082
4083 /*
4084 * Update Task's estimated utilization
4085 *
4086 * When *p completes an activation we can consolidate another sample
4087 * of the task size. This is done by storing the current PELT value
4088 * as ue.enqueued and by using this value to update the Exponential
4089 * Weighted Moving Average (EWMA):
4090 *
4091 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4092 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4093 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4094 * = w * ( last_ewma_diff ) + ewma(t-1)
4095 * = w * (last_ewma_diff + ewma(t-1) / w)
4096 *
4097 * Where 'w' is the weight of new samples, which is configured to be
4098 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4099 */
4100 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4101 ue.ewma += last_ewma_diff;
4102 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4103 done:
4104 ue.enqueued |= UTIL_AVG_UNCHANGED;
4105 WRITE_ONCE(p->se.avg.util_est, ue);
4106
4107 trace_sched_util_est_se_tp(&p->se);
4108 }
4109
task_fits_capacity(struct task_struct * p,long capacity)4110 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4111 {
4112 return fits_capacity(uclamp_task_util(p), capacity);
4113 }
4114
4115 #ifdef CONFIG_SCHED_RTG
task_fits_max(struct task_struct * p,int cpu)4116 bool task_fits_max(struct task_struct *p, int cpu)
4117 {
4118 unsigned long capacity = capacity_orig_of(cpu);
4119 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
4120
4121 if (capacity == max_capacity)
4122 return true;
4123
4124 return task_fits_capacity(p, capacity);
4125 }
4126 #endif
4127
update_misfit_status(struct task_struct * p,struct rq * rq)4128 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4129 {
4130 bool task_fits = false;
4131 #ifdef CONFIG_SCHED_RTG
4132 int cpu = cpu_of(rq);
4133 struct cpumask *rtg_target = NULL;
4134 #endif
4135
4136 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4137 return;
4138
4139 if (!p || p->nr_cpus_allowed == 1) {
4140 rq->misfit_task_load = 0;
4141 return;
4142 }
4143
4144 #ifdef CONFIG_SCHED_RTG
4145 rtg_target = find_rtg_target(p);
4146 if (rtg_target)
4147 task_fits = capacity_orig_of(cpu) >=
4148 capacity_orig_of(cpumask_first(rtg_target));
4149 else
4150 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4151 #else
4152 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4153 #endif
4154 if (task_fits) {
4155 rq->misfit_task_load = 0;
4156 return;
4157 }
4158
4159 /*
4160 * Make sure that misfit_task_load will not be null even if
4161 * task_h_load() returns 0.
4162 */
4163 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4164 }
4165
4166 #else /* CONFIG_SMP */
4167
4168 #define UPDATE_TG 0x0
4169 #define SKIP_AGE_LOAD 0x0
4170 #define DO_ATTACH 0x0
4171
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4172 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4173 {
4174 cfs_rq_util_change(cfs_rq, 0);
4175 }
4176
remove_entity_load_avg(struct sched_entity * se)4177 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4178
4179 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4180 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4181 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4182 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4183
newidle_balance(struct rq * rq,struct rq_flags * rf)4184 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4185 {
4186 return 0;
4187 }
4188
4189 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4190 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4191
4192 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4193 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4194
4195 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4196 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4197 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4198 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4199
4200 #endif /* CONFIG_SMP */
4201
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4202 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4203 {
4204 #ifdef CONFIG_SCHED_DEBUG
4205 s64 d = se->vruntime - cfs_rq->min_vruntime;
4206
4207 if (d < 0)
4208 d = -d;
4209
4210 if (d > 3*sysctl_sched_latency)
4211 schedstat_inc(cfs_rq->nr_spread_over);
4212 #endif
4213 }
4214
4215 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4216 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4217 {
4218 u64 vruntime = cfs_rq->min_vruntime;
4219
4220 /*
4221 * The 'current' period is already promised to the current tasks,
4222 * however the extra weight of the new task will slow them down a
4223 * little, place the new task so that it fits in the slot that
4224 * stays open at the end.
4225 */
4226 if (initial && sched_feat(START_DEBIT))
4227 vruntime += sched_vslice(cfs_rq, se);
4228
4229 /* sleeps up to a single latency don't count. */
4230 if (!initial) {
4231 unsigned long thresh = sysctl_sched_latency;
4232
4233 /*
4234 * Halve their sleep time's effect, to allow
4235 * for a gentler effect of sleepers:
4236 */
4237 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4238 thresh >>= 1;
4239
4240 vruntime -= thresh;
4241 }
4242
4243 /* ensure we never gain time by being placed backwards. */
4244 se->vruntime = max_vruntime(se->vruntime, vruntime);
4245 }
4246
4247 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4248
check_schedstat_required(void)4249 static inline void check_schedstat_required(void)
4250 {
4251 #ifdef CONFIG_SCHEDSTATS
4252 if (schedstat_enabled())
4253 return;
4254
4255 /* Force schedstat enabled if a dependent tracepoint is active */
4256 if (trace_sched_stat_wait_enabled() ||
4257 trace_sched_stat_sleep_enabled() ||
4258 trace_sched_stat_iowait_enabled() ||
4259 trace_sched_stat_blocked_enabled() ||
4260 trace_sched_stat_runtime_enabled()) {
4261 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4262 "stat_blocked and stat_runtime require the "
4263 "kernel parameter schedstats=enable or "
4264 "kernel.sched_schedstats=1\n");
4265 }
4266 #endif
4267 }
4268
4269 static inline bool cfs_bandwidth_used(void);
4270
4271 /*
4272 * MIGRATION
4273 *
4274 * dequeue
4275 * update_curr()
4276 * update_min_vruntime()
4277 * vruntime -= min_vruntime
4278 *
4279 * enqueue
4280 * update_curr()
4281 * update_min_vruntime()
4282 * vruntime += min_vruntime
4283 *
4284 * this way the vruntime transition between RQs is done when both
4285 * min_vruntime are up-to-date.
4286 *
4287 * WAKEUP (remote)
4288 *
4289 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4290 * vruntime -= min_vruntime
4291 *
4292 * enqueue
4293 * update_curr()
4294 * update_min_vruntime()
4295 * vruntime += min_vruntime
4296 *
4297 * this way we don't have the most up-to-date min_vruntime on the originating
4298 * CPU and an up-to-date min_vruntime on the destination CPU.
4299 */
4300
4301 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4302 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4303 {
4304 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4305 bool curr = cfs_rq->curr == se;
4306
4307 /*
4308 * If we're the current task, we must renormalise before calling
4309 * update_curr().
4310 */
4311 if (renorm && curr)
4312 se->vruntime += cfs_rq->min_vruntime;
4313
4314 update_curr(cfs_rq);
4315
4316 /*
4317 * Otherwise, renormalise after, such that we're placed at the current
4318 * moment in time, instead of some random moment in the past. Being
4319 * placed in the past could significantly boost this task to the
4320 * fairness detriment of existing tasks.
4321 */
4322 if (renorm && !curr)
4323 se->vruntime += cfs_rq->min_vruntime;
4324
4325 /*
4326 * When enqueuing a sched_entity, we must:
4327 * - Update loads to have both entity and cfs_rq synced with now.
4328 * - Add its load to cfs_rq->runnable_avg
4329 * - For group_entity, update its weight to reflect the new share of
4330 * its group cfs_rq
4331 * - Add its new weight to cfs_rq->load.weight
4332 */
4333 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4334 se_update_runnable(se);
4335 update_cfs_group(se);
4336 account_entity_enqueue(cfs_rq, se);
4337
4338 if (flags & ENQUEUE_WAKEUP)
4339 place_entity(cfs_rq, se, 0);
4340
4341 check_schedstat_required();
4342 update_stats_enqueue(cfs_rq, se, flags);
4343 check_spread(cfs_rq, se);
4344 if (!curr)
4345 __enqueue_entity(cfs_rq, se);
4346 se->on_rq = 1;
4347
4348 /*
4349 * When bandwidth control is enabled, cfs might have been removed
4350 * because of a parent been throttled but cfs->nr_running > 1. Try to
4351 * add it unconditionnally.
4352 */
4353 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4354 list_add_leaf_cfs_rq(cfs_rq);
4355
4356 if (cfs_rq->nr_running == 1)
4357 check_enqueue_throttle(cfs_rq);
4358 }
4359
__clear_buddies_last(struct sched_entity * se)4360 static void __clear_buddies_last(struct sched_entity *se)
4361 {
4362 for_each_sched_entity(se) {
4363 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4364 if (cfs_rq->last != se)
4365 break;
4366
4367 cfs_rq->last = NULL;
4368 }
4369 }
4370
__clear_buddies_next(struct sched_entity * se)4371 static void __clear_buddies_next(struct sched_entity *se)
4372 {
4373 for_each_sched_entity(se) {
4374 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4375 if (cfs_rq->next != se)
4376 break;
4377
4378 cfs_rq->next = NULL;
4379 }
4380 }
4381
__clear_buddies_skip(struct sched_entity * se)4382 static void __clear_buddies_skip(struct sched_entity *se)
4383 {
4384 for_each_sched_entity(se) {
4385 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4386 if (cfs_rq->skip != se)
4387 break;
4388
4389 cfs_rq->skip = NULL;
4390 }
4391 }
4392
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4393 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4394 {
4395 if (cfs_rq->last == se)
4396 __clear_buddies_last(se);
4397
4398 if (cfs_rq->next == se)
4399 __clear_buddies_next(se);
4400
4401 if (cfs_rq->skip == se)
4402 __clear_buddies_skip(se);
4403 }
4404
4405 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4406
4407 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4408 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4409 {
4410 /*
4411 * Update run-time statistics of the 'current'.
4412 */
4413 update_curr(cfs_rq);
4414
4415 /*
4416 * When dequeuing a sched_entity, we must:
4417 * - Update loads to have both entity and cfs_rq synced with now.
4418 * - Subtract its load from the cfs_rq->runnable_avg.
4419 * - Subtract its previous weight from cfs_rq->load.weight.
4420 * - For group entity, update its weight to reflect the new share
4421 * of its group cfs_rq.
4422 */
4423 update_load_avg(cfs_rq, se, UPDATE_TG);
4424 se_update_runnable(se);
4425
4426 update_stats_dequeue(cfs_rq, se, flags);
4427
4428 clear_buddies(cfs_rq, se);
4429
4430 if (se != cfs_rq->curr)
4431 __dequeue_entity(cfs_rq, se);
4432 se->on_rq = 0;
4433 account_entity_dequeue(cfs_rq, se);
4434
4435 /*
4436 * Normalize after update_curr(); which will also have moved
4437 * min_vruntime if @se is the one holding it back. But before doing
4438 * update_min_vruntime() again, which will discount @se's position and
4439 * can move min_vruntime forward still more.
4440 */
4441 if (!(flags & DEQUEUE_SLEEP))
4442 se->vruntime -= cfs_rq->min_vruntime;
4443
4444 /* return excess runtime on last dequeue */
4445 return_cfs_rq_runtime(cfs_rq);
4446
4447 update_cfs_group(se);
4448
4449 /*
4450 * Now advance min_vruntime if @se was the entity holding it back,
4451 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4452 * put back on, and if we advance min_vruntime, we'll be placed back
4453 * further than we started -- ie. we'll be penalized.
4454 */
4455 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4456 update_min_vruntime(cfs_rq);
4457 }
4458
4459 /*
4460 * Preempt the current task with a newly woken task if needed:
4461 */
4462 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4463 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4464 {
4465 unsigned long ideal_runtime, delta_exec;
4466 struct sched_entity *se;
4467 s64 delta;
4468
4469 ideal_runtime = sched_slice(cfs_rq, curr);
4470 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4471 if (delta_exec > ideal_runtime) {
4472 resched_curr(rq_of(cfs_rq));
4473 /*
4474 * The current task ran long enough, ensure it doesn't get
4475 * re-elected due to buddy favours.
4476 */
4477 clear_buddies(cfs_rq, curr);
4478 return;
4479 }
4480
4481 /*
4482 * Ensure that a task that missed wakeup preemption by a
4483 * narrow margin doesn't have to wait for a full slice.
4484 * This also mitigates buddy induced latencies under load.
4485 */
4486 if (delta_exec < sysctl_sched_min_granularity)
4487 return;
4488
4489 se = __pick_first_entity(cfs_rq);
4490 delta = curr->vruntime - se->vruntime;
4491
4492 if (delta < 0)
4493 return;
4494
4495 if (delta > ideal_runtime)
4496 resched_curr(rq_of(cfs_rq));
4497 }
4498
4499 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4500 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4501 {
4502 /* 'current' is not kept within the tree. */
4503 if (se->on_rq) {
4504 /*
4505 * Any task has to be enqueued before it get to execute on
4506 * a CPU. So account for the time it spent waiting on the
4507 * runqueue.
4508 */
4509 update_stats_wait_end(cfs_rq, se);
4510 __dequeue_entity(cfs_rq, se);
4511 update_load_avg(cfs_rq, se, UPDATE_TG);
4512 }
4513
4514 update_stats_curr_start(cfs_rq, se);
4515 cfs_rq->curr = se;
4516
4517 /*
4518 * Track our maximum slice length, if the CPU's load is at
4519 * least twice that of our own weight (i.e. dont track it
4520 * when there are only lesser-weight tasks around):
4521 */
4522 if (schedstat_enabled() &&
4523 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4524 schedstat_set(se->statistics.slice_max,
4525 max((u64)schedstat_val(se->statistics.slice_max),
4526 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4527 }
4528
4529 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4530 }
4531
4532 static int
4533 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4534
4535 /*
4536 * Pick the next process, keeping these things in mind, in this order:
4537 * 1) keep things fair between processes/task groups
4538 * 2) pick the "next" process, since someone really wants that to run
4539 * 3) pick the "last" process, for cache locality
4540 * 4) do not run the "skip" process, if something else is available
4541 */
4542 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4543 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4544 {
4545 struct sched_entity *left = __pick_first_entity(cfs_rq);
4546 struct sched_entity *se;
4547
4548 /*
4549 * If curr is set we have to see if its left of the leftmost entity
4550 * still in the tree, provided there was anything in the tree at all.
4551 */
4552 if (!left || (curr && entity_before(curr, left)))
4553 left = curr;
4554
4555 se = left; /* ideally we run the leftmost entity */
4556
4557 /*
4558 * Avoid running the skip buddy, if running something else can
4559 * be done without getting too unfair.
4560 */
4561 if (cfs_rq->skip == se) {
4562 struct sched_entity *second;
4563
4564 if (se == curr) {
4565 second = __pick_first_entity(cfs_rq);
4566 } else {
4567 second = __pick_next_entity(se);
4568 if (!second || (curr && entity_before(curr, second)))
4569 second = curr;
4570 }
4571
4572 if (second && wakeup_preempt_entity(second, left) < 1)
4573 se = second;
4574 }
4575
4576 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4577 /*
4578 * Someone really wants this to run. If it's not unfair, run it.
4579 */
4580 se = cfs_rq->next;
4581 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4582 /*
4583 * Prefer last buddy, try to return the CPU to a preempted task.
4584 */
4585 se = cfs_rq->last;
4586 }
4587
4588 clear_buddies(cfs_rq, se);
4589
4590 return se;
4591 }
4592
4593 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4594
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4595 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4596 {
4597 /*
4598 * If still on the runqueue then deactivate_task()
4599 * was not called and update_curr() has to be done:
4600 */
4601 if (prev->on_rq)
4602 update_curr(cfs_rq);
4603
4604 /* throttle cfs_rqs exceeding runtime */
4605 check_cfs_rq_runtime(cfs_rq);
4606
4607 check_spread(cfs_rq, prev);
4608
4609 if (prev->on_rq) {
4610 update_stats_wait_start(cfs_rq, prev);
4611 /* Put 'current' back into the tree. */
4612 __enqueue_entity(cfs_rq, prev);
4613 /* in !on_rq case, update occurred at dequeue */
4614 update_load_avg(cfs_rq, prev, 0);
4615 }
4616 cfs_rq->curr = NULL;
4617 }
4618
4619 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4620 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4621 {
4622 /*
4623 * Update run-time statistics of the 'current'.
4624 */
4625 update_curr(cfs_rq);
4626
4627 /*
4628 * Ensure that runnable average is periodically updated.
4629 */
4630 update_load_avg(cfs_rq, curr, UPDATE_TG);
4631 update_cfs_group(curr);
4632
4633 #ifdef CONFIG_SCHED_HRTICK
4634 /*
4635 * queued ticks are scheduled to match the slice, so don't bother
4636 * validating it and just reschedule.
4637 */
4638 if (queued) {
4639 resched_curr(rq_of(cfs_rq));
4640 return;
4641 }
4642 /*
4643 * don't let the period tick interfere with the hrtick preemption
4644 */
4645 if (!sched_feat(DOUBLE_TICK) &&
4646 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4647 return;
4648 #endif
4649
4650 if (cfs_rq->nr_running > 1)
4651 check_preempt_tick(cfs_rq, curr);
4652 }
4653
4654
4655 /**************************************************
4656 * CFS bandwidth control machinery
4657 */
4658
4659 #ifdef CONFIG_CFS_BANDWIDTH
4660
4661 #ifdef CONFIG_JUMP_LABEL
4662 static struct static_key __cfs_bandwidth_used;
4663
cfs_bandwidth_used(void)4664 static inline bool cfs_bandwidth_used(void)
4665 {
4666 return static_key_false(&__cfs_bandwidth_used);
4667 }
4668
cfs_bandwidth_usage_inc(void)4669 void cfs_bandwidth_usage_inc(void)
4670 {
4671 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4672 }
4673
cfs_bandwidth_usage_dec(void)4674 void cfs_bandwidth_usage_dec(void)
4675 {
4676 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4677 }
4678 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4679 static bool cfs_bandwidth_used(void)
4680 {
4681 return true;
4682 }
4683
cfs_bandwidth_usage_inc(void)4684 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4685 void cfs_bandwidth_usage_dec(void) {}
4686 #endif /* CONFIG_JUMP_LABEL */
4687
4688 /*
4689 * default period for cfs group bandwidth.
4690 * default: 0.1s, units: nanoseconds
4691 */
default_cfs_period(void)4692 static inline u64 default_cfs_period(void)
4693 {
4694 return 100000000ULL;
4695 }
4696
sched_cfs_bandwidth_slice(void)4697 static inline u64 sched_cfs_bandwidth_slice(void)
4698 {
4699 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4700 }
4701
4702 /*
4703 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4704 * directly instead of rq->clock to avoid adding additional synchronization
4705 * around rq->lock.
4706 *
4707 * requires cfs_b->lock
4708 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4709 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4710 {
4711 if (cfs_b->quota != RUNTIME_INF)
4712 cfs_b->runtime = cfs_b->quota;
4713 }
4714
tg_cfs_bandwidth(struct task_group * tg)4715 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4716 {
4717 return &tg->cfs_bandwidth;
4718 }
4719
4720 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4721 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4722 struct cfs_rq *cfs_rq, u64 target_runtime)
4723 {
4724 u64 min_amount, amount = 0;
4725
4726 lockdep_assert_held(&cfs_b->lock);
4727
4728 /* note: this is a positive sum as runtime_remaining <= 0 */
4729 min_amount = target_runtime - cfs_rq->runtime_remaining;
4730
4731 if (cfs_b->quota == RUNTIME_INF)
4732 amount = min_amount;
4733 else {
4734 start_cfs_bandwidth(cfs_b);
4735
4736 if (cfs_b->runtime > 0) {
4737 amount = min(cfs_b->runtime, min_amount);
4738 cfs_b->runtime -= amount;
4739 cfs_b->idle = 0;
4740 }
4741 }
4742
4743 cfs_rq->runtime_remaining += amount;
4744
4745 return cfs_rq->runtime_remaining > 0;
4746 }
4747
4748 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4749 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4750 {
4751 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4752 int ret;
4753
4754 raw_spin_lock(&cfs_b->lock);
4755 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4756 raw_spin_unlock(&cfs_b->lock);
4757
4758 return ret;
4759 }
4760
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4761 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4762 {
4763 /* dock delta_exec before expiring quota (as it could span periods) */
4764 cfs_rq->runtime_remaining -= delta_exec;
4765
4766 if (likely(cfs_rq->runtime_remaining > 0))
4767 return;
4768
4769 if (cfs_rq->throttled)
4770 return;
4771 /*
4772 * if we're unable to extend our runtime we resched so that the active
4773 * hierarchy can be throttled
4774 */
4775 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4776 resched_curr(rq_of(cfs_rq));
4777 }
4778
4779 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4780 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4781 {
4782 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4783 return;
4784
4785 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4786 }
4787
cfs_rq_throttled(struct cfs_rq * cfs_rq)4788 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4789 {
4790 return cfs_bandwidth_used() && cfs_rq->throttled;
4791 }
4792
4793 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4794 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4795 {
4796 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4797 }
4798
4799 /*
4800 * Ensure that neither of the group entities corresponding to src_cpu or
4801 * dest_cpu are members of a throttled hierarchy when performing group
4802 * load-balance operations.
4803 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4804 static inline int throttled_lb_pair(struct task_group *tg,
4805 int src_cpu, int dest_cpu)
4806 {
4807 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4808
4809 src_cfs_rq = tg->cfs_rq[src_cpu];
4810 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4811
4812 return throttled_hierarchy(src_cfs_rq) ||
4813 throttled_hierarchy(dest_cfs_rq);
4814 }
4815
tg_unthrottle_up(struct task_group * tg,void * data)4816 static int tg_unthrottle_up(struct task_group *tg, void *data)
4817 {
4818 struct rq *rq = data;
4819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4820
4821 cfs_rq->throttle_count--;
4822 if (!cfs_rq->throttle_count) {
4823 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4824 cfs_rq->throttled_clock_task;
4825
4826 /* Add cfs_rq with already running entity in the list */
4827 if (cfs_rq->nr_running >= 1)
4828 list_add_leaf_cfs_rq(cfs_rq);
4829 }
4830
4831 return 0;
4832 }
4833
tg_throttle_down(struct task_group * tg,void * data)4834 static int tg_throttle_down(struct task_group *tg, void *data)
4835 {
4836 struct rq *rq = data;
4837 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4838
4839 /* group is entering throttled state, stop time */
4840 if (!cfs_rq->throttle_count) {
4841 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4842 list_del_leaf_cfs_rq(cfs_rq);
4843 }
4844 cfs_rq->throttle_count++;
4845
4846 return 0;
4847 }
4848
throttle_cfs_rq(struct cfs_rq * cfs_rq)4849 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4850 {
4851 struct rq *rq = rq_of(cfs_rq);
4852 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4853 struct sched_entity *se;
4854 long task_delta, idle_task_delta, dequeue = 1;
4855
4856 raw_spin_lock(&cfs_b->lock);
4857 /* This will start the period timer if necessary */
4858 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4859 /*
4860 * We have raced with bandwidth becoming available, and if we
4861 * actually throttled the timer might not unthrottle us for an
4862 * entire period. We additionally needed to make sure that any
4863 * subsequent check_cfs_rq_runtime calls agree not to throttle
4864 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4865 * for 1ns of runtime rather than just check cfs_b.
4866 */
4867 dequeue = 0;
4868 } else {
4869 list_add_tail_rcu(&cfs_rq->throttled_list,
4870 &cfs_b->throttled_cfs_rq);
4871 }
4872 raw_spin_unlock(&cfs_b->lock);
4873
4874 if (!dequeue)
4875 return false; /* Throttle no longer required. */
4876
4877 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4878
4879 /* freeze hierarchy runnable averages while throttled */
4880 rcu_read_lock();
4881 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4882 rcu_read_unlock();
4883
4884 task_delta = cfs_rq->h_nr_running;
4885 idle_task_delta = cfs_rq->idle_h_nr_running;
4886 for_each_sched_entity(se) {
4887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4888 /* throttled entity or throttle-on-deactivate */
4889 if (!se->on_rq)
4890 break;
4891
4892 if (dequeue) {
4893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4894 } else {
4895 update_load_avg(qcfs_rq, se, 0);
4896 se_update_runnable(se);
4897 }
4898
4899 qcfs_rq->h_nr_running -= task_delta;
4900 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4901 walt_dec_throttled_cfs_rq_stats(&qcfs_rq->walt_stats, cfs_rq);
4902
4903 if (qcfs_rq->load.weight)
4904 dequeue = 0;
4905 }
4906
4907 if (!se) {
4908 sub_nr_running(rq, task_delta);
4909 walt_dec_throttled_cfs_rq_stats(&rq->walt_stats, cfs_rq);
4910 }
4911
4912 /*
4913 * Note: distribution will already see us throttled via the
4914 * throttled-list. rq->lock protects completion.
4915 */
4916 cfs_rq->throttled = 1;
4917 cfs_rq->throttled_clock = rq_clock(rq);
4918 return true;
4919 }
4920
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4921 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4922 {
4923 struct rq *rq = rq_of(cfs_rq);
4924 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4925 struct sched_entity *se;
4926 long task_delta, idle_task_delta;
4927 struct cfs_rq *tcfs_rq __maybe_unused = cfs_rq;
4928
4929 se = cfs_rq->tg->se[cpu_of(rq)];
4930
4931 cfs_rq->throttled = 0;
4932
4933 update_rq_clock(rq);
4934
4935 raw_spin_lock(&cfs_b->lock);
4936 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4937 list_del_rcu(&cfs_rq->throttled_list);
4938 raw_spin_unlock(&cfs_b->lock);
4939
4940 /* update hierarchical throttle state */
4941 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4942
4943 if (!cfs_rq->load.weight)
4944 return;
4945
4946 task_delta = cfs_rq->h_nr_running;
4947 idle_task_delta = cfs_rq->idle_h_nr_running;
4948 for_each_sched_entity(se) {
4949 if (se->on_rq)
4950 break;
4951 cfs_rq = cfs_rq_of(se);
4952 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4953
4954 cfs_rq->h_nr_running += task_delta;
4955 cfs_rq->idle_h_nr_running += idle_task_delta;
4956 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
4957
4958 /* end evaluation on encountering a throttled cfs_rq */
4959 if (cfs_rq_throttled(cfs_rq))
4960 goto unthrottle_throttle;
4961 }
4962
4963 for_each_sched_entity(se) {
4964 cfs_rq = cfs_rq_of(se);
4965
4966 update_load_avg(cfs_rq, se, UPDATE_TG);
4967 se_update_runnable(se);
4968
4969 cfs_rq->h_nr_running += task_delta;
4970 cfs_rq->idle_h_nr_running += idle_task_delta;
4971 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
4972
4973 /* end evaluation on encountering a throttled cfs_rq */
4974 if (cfs_rq_throttled(cfs_rq))
4975 goto unthrottle_throttle;
4976
4977 /*
4978 * One parent has been throttled and cfs_rq removed from the
4979 * list. Add it back to not break the leaf list.
4980 */
4981 if (throttled_hierarchy(cfs_rq))
4982 list_add_leaf_cfs_rq(cfs_rq);
4983 }
4984
4985 /* At this point se is NULL and we are at root level*/
4986 add_nr_running(rq, task_delta);
4987 walt_inc_throttled_cfs_rq_stats(&rq->walt_stats, tcfs_rq);
4988
4989 unthrottle_throttle:
4990 /*
4991 * The cfs_rq_throttled() breaks in the above iteration can result in
4992 * incomplete leaf list maintenance, resulting in triggering the
4993 * assertion below.
4994 */
4995 for_each_sched_entity(se) {
4996 cfs_rq = cfs_rq_of(se);
4997
4998 if (list_add_leaf_cfs_rq(cfs_rq))
4999 break;
5000 }
5001
5002 assert_list_leaf_cfs_rq(rq);
5003
5004 /* Determine whether we need to wake up potentially idle CPU: */
5005 if (rq->curr == rq->idle && rq->cfs.nr_running)
5006 resched_curr(rq);
5007 }
5008
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5009 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5010 {
5011 struct cfs_rq *cfs_rq;
5012 u64 runtime, remaining = 1;
5013
5014 rcu_read_lock();
5015 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5016 throttled_list) {
5017 struct rq *rq = rq_of(cfs_rq);
5018 struct rq_flags rf;
5019
5020 rq_lock_irqsave(rq, &rf);
5021 if (!cfs_rq_throttled(cfs_rq))
5022 goto next;
5023
5024 /* By the above check, this should never be true */
5025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5026
5027 raw_spin_lock(&cfs_b->lock);
5028 runtime = -cfs_rq->runtime_remaining + 1;
5029 if (runtime > cfs_b->runtime)
5030 runtime = cfs_b->runtime;
5031 cfs_b->runtime -= runtime;
5032 remaining = cfs_b->runtime;
5033 raw_spin_unlock(&cfs_b->lock);
5034
5035 cfs_rq->runtime_remaining += runtime;
5036
5037 /* we check whether we're throttled above */
5038 if (cfs_rq->runtime_remaining > 0)
5039 unthrottle_cfs_rq(cfs_rq);
5040
5041 next:
5042 rq_unlock_irqrestore(rq, &rf);
5043
5044 if (!remaining)
5045 break;
5046 }
5047 rcu_read_unlock();
5048 }
5049
5050 /*
5051 * Responsible for refilling a task_group's bandwidth and unthrottling its
5052 * cfs_rqs as appropriate. If there has been no activity within the last
5053 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5054 * used to track this state.
5055 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5056 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5057 {
5058 int throttled;
5059
5060 /* no need to continue the timer with no bandwidth constraint */
5061 if (cfs_b->quota == RUNTIME_INF)
5062 goto out_deactivate;
5063
5064 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5065 cfs_b->nr_periods += overrun;
5066
5067 /*
5068 * idle depends on !throttled (for the case of a large deficit), and if
5069 * we're going inactive then everything else can be deferred
5070 */
5071 if (cfs_b->idle && !throttled)
5072 goto out_deactivate;
5073
5074 __refill_cfs_bandwidth_runtime(cfs_b);
5075
5076 if (!throttled) {
5077 /* mark as potentially idle for the upcoming period */
5078 cfs_b->idle = 1;
5079 return 0;
5080 }
5081
5082 /* account preceding periods in which throttling occurred */
5083 cfs_b->nr_throttled += overrun;
5084
5085 /*
5086 * This check is repeated as we release cfs_b->lock while we unthrottle.
5087 */
5088 while (throttled && cfs_b->runtime > 0) {
5089 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5090 /* we can't nest cfs_b->lock while distributing bandwidth */
5091 distribute_cfs_runtime(cfs_b);
5092 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5093
5094 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5095 }
5096
5097 /*
5098 * While we are ensured activity in the period following an
5099 * unthrottle, this also covers the case in which the new bandwidth is
5100 * insufficient to cover the existing bandwidth deficit. (Forcing the
5101 * timer to remain active while there are any throttled entities.)
5102 */
5103 cfs_b->idle = 0;
5104
5105 return 0;
5106
5107 out_deactivate:
5108 return 1;
5109 }
5110
5111 /* a cfs_rq won't donate quota below this amount */
5112 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5113 /* minimum remaining period time to redistribute slack quota */
5114 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5115 /* how long we wait to gather additional slack before distributing */
5116 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5117
5118 /*
5119 * Are we near the end of the current quota period?
5120 *
5121 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5122 * hrtimer base being cleared by hrtimer_start. In the case of
5123 * migrate_hrtimers, base is never cleared, so we are fine.
5124 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5125 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5126 {
5127 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5128 s64 remaining;
5129
5130 /* if the call-back is running a quota refresh is already occurring */
5131 if (hrtimer_callback_running(refresh_timer))
5132 return 1;
5133
5134 /* is a quota refresh about to occur? */
5135 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5136 if (remaining < (s64)min_expire)
5137 return 1;
5138
5139 return 0;
5140 }
5141
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5142 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5143 {
5144 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5145
5146 /* if there's a quota refresh soon don't bother with slack */
5147 if (runtime_refresh_within(cfs_b, min_left))
5148 return;
5149
5150 /* don't push forwards an existing deferred unthrottle */
5151 if (cfs_b->slack_started)
5152 return;
5153 cfs_b->slack_started = true;
5154
5155 hrtimer_start(&cfs_b->slack_timer,
5156 ns_to_ktime(cfs_bandwidth_slack_period),
5157 HRTIMER_MODE_REL);
5158 }
5159
5160 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5161 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5162 {
5163 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5164 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5165
5166 if (slack_runtime <= 0)
5167 return;
5168
5169 raw_spin_lock(&cfs_b->lock);
5170 if (cfs_b->quota != RUNTIME_INF) {
5171 cfs_b->runtime += slack_runtime;
5172
5173 /* we are under rq->lock, defer unthrottling using a timer */
5174 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5175 !list_empty(&cfs_b->throttled_cfs_rq))
5176 start_cfs_slack_bandwidth(cfs_b);
5177 }
5178 raw_spin_unlock(&cfs_b->lock);
5179
5180 /* even if it's not valid for return we don't want to try again */
5181 cfs_rq->runtime_remaining -= slack_runtime;
5182 }
5183
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5184 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5185 {
5186 if (!cfs_bandwidth_used())
5187 return;
5188
5189 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5190 return;
5191
5192 __return_cfs_rq_runtime(cfs_rq);
5193 }
5194
5195 /*
5196 * This is done with a timer (instead of inline with bandwidth return) since
5197 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5198 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5199 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5200 {
5201 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5202 unsigned long flags;
5203
5204 /* confirm we're still not at a refresh boundary */
5205 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5206 cfs_b->slack_started = false;
5207
5208 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5209 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5210 return;
5211 }
5212
5213 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5214 runtime = cfs_b->runtime;
5215
5216 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5217
5218 if (!runtime)
5219 return;
5220
5221 distribute_cfs_runtime(cfs_b);
5222
5223 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5224 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5225 }
5226
5227 /*
5228 * When a group wakes up we want to make sure that its quota is not already
5229 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5230 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5231 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5232 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5233 {
5234 if (!cfs_bandwidth_used())
5235 return;
5236
5237 /* an active group must be handled by the update_curr()->put() path */
5238 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5239 return;
5240
5241 /* ensure the group is not already throttled */
5242 if (cfs_rq_throttled(cfs_rq))
5243 return;
5244
5245 /* update runtime allocation */
5246 account_cfs_rq_runtime(cfs_rq, 0);
5247 if (cfs_rq->runtime_remaining <= 0)
5248 throttle_cfs_rq(cfs_rq);
5249 }
5250
sync_throttle(struct task_group * tg,int cpu)5251 static void sync_throttle(struct task_group *tg, int cpu)
5252 {
5253 struct cfs_rq *pcfs_rq, *cfs_rq;
5254
5255 if (!cfs_bandwidth_used())
5256 return;
5257
5258 if (!tg->parent)
5259 return;
5260
5261 cfs_rq = tg->cfs_rq[cpu];
5262 pcfs_rq = tg->parent->cfs_rq[cpu];
5263
5264 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5265 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5266 }
5267
5268 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5269 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5270 {
5271 if (!cfs_bandwidth_used())
5272 return false;
5273
5274 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5275 return false;
5276
5277 /*
5278 * it's possible for a throttled entity to be forced into a running
5279 * state (e.g. set_curr_task), in this case we're finished.
5280 */
5281 if (cfs_rq_throttled(cfs_rq))
5282 return true;
5283
5284 return throttle_cfs_rq(cfs_rq);
5285 }
5286
sched_cfs_slack_timer(struct hrtimer * timer)5287 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5288 {
5289 struct cfs_bandwidth *cfs_b =
5290 container_of(timer, struct cfs_bandwidth, slack_timer);
5291
5292 do_sched_cfs_slack_timer(cfs_b);
5293
5294 return HRTIMER_NORESTART;
5295 }
5296
5297 extern const u64 max_cfs_quota_period;
5298
sched_cfs_period_timer(struct hrtimer * timer)5299 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5300 {
5301 struct cfs_bandwidth *cfs_b =
5302 container_of(timer, struct cfs_bandwidth, period_timer);
5303 unsigned long flags;
5304 int overrun;
5305 int idle = 0;
5306 int count = 0;
5307
5308 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5309 for (;;) {
5310 overrun = hrtimer_forward_now(timer, cfs_b->period);
5311 if (!overrun)
5312 break;
5313
5314 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5315
5316 if (++count > 3) {
5317 u64 new, old = ktime_to_ns(cfs_b->period);
5318
5319 /*
5320 * Grow period by a factor of 2 to avoid losing precision.
5321 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5322 * to fail.
5323 */
5324 new = old * 2;
5325 if (new < max_cfs_quota_period) {
5326 cfs_b->period = ns_to_ktime(new);
5327 cfs_b->quota *= 2;
5328
5329 pr_warn_ratelimited(
5330 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5331 smp_processor_id(),
5332 div_u64(new, NSEC_PER_USEC),
5333 div_u64(cfs_b->quota, NSEC_PER_USEC));
5334 } else {
5335 pr_warn_ratelimited(
5336 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5337 smp_processor_id(),
5338 div_u64(old, NSEC_PER_USEC),
5339 div_u64(cfs_b->quota, NSEC_PER_USEC));
5340 }
5341
5342 /* reset count so we don't come right back in here */
5343 count = 0;
5344 }
5345 }
5346 if (idle)
5347 cfs_b->period_active = 0;
5348 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5349
5350 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5351 }
5352
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5353 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5354 {
5355 raw_spin_lock_init(&cfs_b->lock);
5356 cfs_b->runtime = 0;
5357 cfs_b->quota = RUNTIME_INF;
5358 cfs_b->period = ns_to_ktime(default_cfs_period());
5359
5360 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5361 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5362 cfs_b->period_timer.function = sched_cfs_period_timer;
5363 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5364 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5365 cfs_b->slack_started = false;
5366 }
5367
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5368 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5369 {
5370 cfs_rq->runtime_enabled = 0;
5371 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5372 walt_init_cfs_rq_stats(cfs_rq);
5373 }
5374
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5375 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5376 {
5377 lockdep_assert_held(&cfs_b->lock);
5378
5379 if (cfs_b->period_active)
5380 return;
5381
5382 cfs_b->period_active = 1;
5383 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5384 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5385 }
5386
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5387 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5388 {
5389 /* init_cfs_bandwidth() was not called */
5390 if (!cfs_b->throttled_cfs_rq.next)
5391 return;
5392
5393 hrtimer_cancel(&cfs_b->period_timer);
5394 hrtimer_cancel(&cfs_b->slack_timer);
5395 }
5396
5397 /*
5398 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5399 *
5400 * The race is harmless, since modifying bandwidth settings of unhooked group
5401 * bits doesn't do much.
5402 */
5403
5404 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5405 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5406 {
5407 struct task_group *tg;
5408
5409 lockdep_assert_held(&rq->lock);
5410
5411 rcu_read_lock();
5412 list_for_each_entry_rcu(tg, &task_groups, list) {
5413 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5414 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5415
5416 raw_spin_lock(&cfs_b->lock);
5417 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5418 raw_spin_unlock(&cfs_b->lock);
5419 }
5420 rcu_read_unlock();
5421 }
5422
5423 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5424 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5425 {
5426 struct task_group *tg;
5427
5428 lockdep_assert_held(&rq->lock);
5429
5430 rcu_read_lock();
5431 list_for_each_entry_rcu(tg, &task_groups, list) {
5432 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5433
5434 if (!cfs_rq->runtime_enabled)
5435 continue;
5436
5437 /*
5438 * clock_task is not advancing so we just need to make sure
5439 * there's some valid quota amount
5440 */
5441 cfs_rq->runtime_remaining = 1;
5442 /*
5443 * Offline rq is schedulable till CPU is completely disabled
5444 * in take_cpu_down(), so we prevent new cfs throttling here.
5445 */
5446 cfs_rq->runtime_enabled = 0;
5447
5448 if (cfs_rq_throttled(cfs_rq))
5449 unthrottle_cfs_rq(cfs_rq);
5450 }
5451 rcu_read_unlock();
5452 }
5453
5454 #else /* CONFIG_CFS_BANDWIDTH */
5455
cfs_bandwidth_used(void)5456 static inline bool cfs_bandwidth_used(void)
5457 {
5458 return false;
5459 }
5460
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5461 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5463 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5464 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5465 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5466
cfs_rq_throttled(struct cfs_rq * cfs_rq)5467 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5468 {
5469 return 0;
5470 }
5471
throttled_hierarchy(struct cfs_rq * cfs_rq)5472 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5473 {
5474 return 0;
5475 }
5476
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5477 static inline int throttled_lb_pair(struct task_group *tg,
5478 int src_cpu, int dest_cpu)
5479 {
5480 return 0;
5481 }
5482
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5483 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5484
5485 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5486 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5487 #endif
5488
tg_cfs_bandwidth(struct task_group * tg)5489 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5490 {
5491 return NULL;
5492 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5493 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5494 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5495 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5496
5497 #endif /* CONFIG_CFS_BANDWIDTH */
5498
5499 /**************************************************
5500 * CFS operations on tasks:
5501 */
5502
5503 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5504 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5505 {
5506 struct sched_entity *se = &p->se;
5507 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5508
5509 SCHED_WARN_ON(task_rq(p) != rq);
5510
5511 if (rq->cfs.h_nr_running > 1) {
5512 u64 slice = sched_slice(cfs_rq, se);
5513 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5514 s64 delta = slice - ran;
5515
5516 if (delta < 0) {
5517 if (rq->curr == p)
5518 resched_curr(rq);
5519 return;
5520 }
5521 hrtick_start(rq, delta);
5522 }
5523 }
5524
5525 /*
5526 * called from enqueue/dequeue and updates the hrtick when the
5527 * current task is from our class and nr_running is low enough
5528 * to matter.
5529 */
hrtick_update(struct rq * rq)5530 static void hrtick_update(struct rq *rq)
5531 {
5532 struct task_struct *curr = rq->curr;
5533
5534 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5535 return;
5536
5537 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5538 hrtick_start_fair(rq, curr);
5539 }
5540 #else /* !CONFIG_SCHED_HRTICK */
5541 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5542 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5543 {
5544 }
5545
hrtick_update(struct rq * rq)5546 static inline void hrtick_update(struct rq *rq)
5547 {
5548 }
5549 #endif
5550
5551 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5552 static inline bool cpu_overutilized(int cpu)
5553 {
5554 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5555 }
5556
update_overutilized_status(struct rq * rq)5557 static inline void update_overutilized_status(struct rq *rq)
5558 {
5559 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5560 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5561 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5562 }
5563 }
5564 #else
update_overutilized_status(struct rq * rq)5565 static inline void update_overutilized_status(struct rq *rq) { }
5566 #endif
5567
5568 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5569 static int sched_idle_rq(struct rq *rq)
5570 {
5571 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5572 rq->nr_running);
5573 }
5574
5575 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5576 static int sched_idle_cpu(int cpu)
5577 {
5578 return sched_idle_rq(cpu_rq(cpu));
5579 }
5580 #endif
5581
5582 /*
5583 * The enqueue_task method is called before nr_running is
5584 * increased. Here we update the fair scheduling stats and
5585 * then put the task into the rbtree:
5586 */
5587 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5588 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5589 {
5590 struct cfs_rq *cfs_rq;
5591 struct sched_entity *se = &p->se;
5592 int idle_h_nr_running = task_has_idle_policy(p);
5593 int task_new = !(flags & ENQUEUE_WAKEUP);
5594
5595 /*
5596 * The code below (indirectly) updates schedutil which looks at
5597 * the cfs_rq utilization to select a frequency.
5598 * Let's add the task's estimated utilization to the cfs_rq's
5599 * estimated utilization, before we update schedutil.
5600 */
5601 util_est_enqueue(&rq->cfs, p);
5602
5603 /*
5604 * If in_iowait is set, the code below may not trigger any cpufreq
5605 * utilization updates, so do it here explicitly with the IOWAIT flag
5606 * passed.
5607 */
5608 if (p->in_iowait)
5609 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5610
5611 for_each_sched_entity(se) {
5612 if (se->on_rq)
5613 break;
5614 cfs_rq = cfs_rq_of(se);
5615 enqueue_entity(cfs_rq, se, flags);
5616
5617 cfs_rq->h_nr_running++;
5618 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5619 walt_inc_cfs_rq_stats(cfs_rq, p);
5620
5621 /* end evaluation on encountering a throttled cfs_rq */
5622 if (cfs_rq_throttled(cfs_rq))
5623 goto enqueue_throttle;
5624
5625 flags = ENQUEUE_WAKEUP;
5626 }
5627
5628 for_each_sched_entity(se) {
5629 cfs_rq = cfs_rq_of(se);
5630
5631 update_load_avg(cfs_rq, se, UPDATE_TG);
5632 se_update_runnable(se);
5633 update_cfs_group(se);
5634
5635 cfs_rq->h_nr_running++;
5636 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5637 walt_inc_cfs_rq_stats(cfs_rq, p);
5638
5639 /* end evaluation on encountering a throttled cfs_rq */
5640 if (cfs_rq_throttled(cfs_rq))
5641 goto enqueue_throttle;
5642
5643 /*
5644 * One parent has been throttled and cfs_rq removed from the
5645 * list. Add it back to not break the leaf list.
5646 */
5647 if (throttled_hierarchy(cfs_rq))
5648 list_add_leaf_cfs_rq(cfs_rq);
5649 }
5650
5651 /* At this point se is NULL and we are at root level*/
5652 add_nr_running(rq, 1);
5653 inc_rq_walt_stats(rq, p);
5654 /*
5655 * Since new tasks are assigned an initial util_avg equal to
5656 * half of the spare capacity of their CPU, tiny tasks have the
5657 * ability to cross the overutilized threshold, which will
5658 * result in the load balancer ruining all the task placement
5659 * done by EAS. As a way to mitigate that effect, do not account
5660 * for the first enqueue operation of new tasks during the
5661 * overutilized flag detection.
5662 *
5663 * A better way of solving this problem would be to wait for
5664 * the PELT signals of tasks to converge before taking them
5665 * into account, but that is not straightforward to implement,
5666 * and the following generally works well enough in practice.
5667 */
5668 if (!task_new)
5669 update_overutilized_status(rq);
5670
5671 enqueue_throttle:
5672 if (cfs_bandwidth_used()) {
5673 /*
5674 * When bandwidth control is enabled; the cfs_rq_throttled()
5675 * breaks in the above iteration can result in incomplete
5676 * leaf list maintenance, resulting in triggering the assertion
5677 * below.
5678 */
5679 for_each_sched_entity(se) {
5680 cfs_rq = cfs_rq_of(se);
5681
5682 if (list_add_leaf_cfs_rq(cfs_rq))
5683 break;
5684 }
5685 }
5686
5687 assert_list_leaf_cfs_rq(rq);
5688
5689 hrtick_update(rq);
5690 }
5691
5692 static void set_next_buddy(struct sched_entity *se);
5693
5694 /*
5695 * The dequeue_task method is called before nr_running is
5696 * decreased. We remove the task from the rbtree and
5697 * update the fair scheduling stats:
5698 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5699 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5700 {
5701 struct cfs_rq *cfs_rq;
5702 struct sched_entity *se = &p->se;
5703 int task_sleep = flags & DEQUEUE_SLEEP;
5704 int idle_h_nr_running = task_has_idle_policy(p);
5705 bool was_sched_idle = sched_idle_rq(rq);
5706
5707 util_est_dequeue(&rq->cfs, p);
5708
5709 for_each_sched_entity(se) {
5710 cfs_rq = cfs_rq_of(se);
5711 dequeue_entity(cfs_rq, se, flags);
5712
5713 cfs_rq->h_nr_running--;
5714 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5715 walt_dec_cfs_rq_stats(cfs_rq, p);
5716
5717 /* end evaluation on encountering a throttled cfs_rq */
5718 if (cfs_rq_throttled(cfs_rq))
5719 goto dequeue_throttle;
5720
5721 /* Don't dequeue parent if it has other entities besides us */
5722 if (cfs_rq->load.weight) {
5723 /* Avoid re-evaluating load for this entity: */
5724 se = parent_entity(se);
5725 /*
5726 * Bias pick_next to pick a task from this cfs_rq, as
5727 * p is sleeping when it is within its sched_slice.
5728 */
5729 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5730 set_next_buddy(se);
5731 break;
5732 }
5733 flags |= DEQUEUE_SLEEP;
5734 }
5735
5736 for_each_sched_entity(se) {
5737 cfs_rq = cfs_rq_of(se);
5738
5739 update_load_avg(cfs_rq, se, UPDATE_TG);
5740 se_update_runnable(se);
5741 update_cfs_group(se);
5742
5743 cfs_rq->h_nr_running--;
5744 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5745 walt_dec_cfs_rq_stats(cfs_rq, p);
5746
5747 /* end evaluation on encountering a throttled cfs_rq */
5748 if (cfs_rq_throttled(cfs_rq))
5749 goto dequeue_throttle;
5750
5751 }
5752
5753 /* At this point se is NULL and we are at root level*/
5754 sub_nr_running(rq, 1);
5755 dec_rq_walt_stats(rq, p);
5756
5757 /* balance early to pull high priority tasks */
5758 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5759 rq->next_balance = jiffies;
5760
5761 dequeue_throttle:
5762 util_est_update(&rq->cfs, p, task_sleep);
5763 hrtick_update(rq);
5764 }
5765
5766 #ifdef CONFIG_SMP
5767
5768 /* Working cpumask for: load_balance, load_balance_newidle. */
5769 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5770 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5771
5772 #ifdef CONFIG_NO_HZ_COMMON
5773
5774 static struct {
5775 cpumask_var_t idle_cpus_mask;
5776 atomic_t nr_cpus;
5777 int has_blocked; /* Idle CPUS has blocked load */
5778 unsigned long next_balance; /* in jiffy units */
5779 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5780 } nohz ____cacheline_aligned;
5781
5782 #endif /* CONFIG_NO_HZ_COMMON */
5783
cpu_load(struct rq * rq)5784 static unsigned long cpu_load(struct rq *rq)
5785 {
5786 return cfs_rq_load_avg(&rq->cfs);
5787 }
5788
5789 /*
5790 * cpu_load_without - compute CPU load without any contributions from *p
5791 * @cpu: the CPU which load is requested
5792 * @p: the task which load should be discounted
5793 *
5794 * The load of a CPU is defined by the load of tasks currently enqueued on that
5795 * CPU as well as tasks which are currently sleeping after an execution on that
5796 * CPU.
5797 *
5798 * This method returns the load of the specified CPU by discounting the load of
5799 * the specified task, whenever the task is currently contributing to the CPU
5800 * load.
5801 */
cpu_load_without(struct rq * rq,struct task_struct * p)5802 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5803 {
5804 struct cfs_rq *cfs_rq;
5805 unsigned int load;
5806
5807 /* Task has no contribution or is new */
5808 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5809 return cpu_load(rq);
5810
5811 cfs_rq = &rq->cfs;
5812 load = READ_ONCE(cfs_rq->avg.load_avg);
5813
5814 /* Discount task's util from CPU's util */
5815 lsub_positive(&load, task_h_load(p));
5816
5817 return load;
5818 }
5819
cpu_runnable(struct rq * rq)5820 static unsigned long cpu_runnable(struct rq *rq)
5821 {
5822 return cfs_rq_runnable_avg(&rq->cfs);
5823 }
5824
cpu_runnable_without(struct rq * rq,struct task_struct * p)5825 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5826 {
5827 struct cfs_rq *cfs_rq;
5828 unsigned int runnable;
5829
5830 /* Task has no contribution or is new */
5831 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5832 return cpu_runnable(rq);
5833
5834 cfs_rq = &rq->cfs;
5835 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5836
5837 /* Discount task's runnable from CPU's runnable */
5838 lsub_positive(&runnable, p->se.avg.runnable_avg);
5839
5840 return runnable;
5841 }
5842
record_wakee(struct task_struct * p)5843 static void record_wakee(struct task_struct *p)
5844 {
5845 /*
5846 * Only decay a single time; tasks that have less then 1 wakeup per
5847 * jiffy will not have built up many flips.
5848 */
5849 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5850 current->wakee_flips >>= 1;
5851 current->wakee_flip_decay_ts = jiffies;
5852 }
5853
5854 if (current->last_wakee != p) {
5855 current->last_wakee = p;
5856 current->wakee_flips++;
5857 }
5858 }
5859
5860 /*
5861 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5862 *
5863 * A waker of many should wake a different task than the one last awakened
5864 * at a frequency roughly N times higher than one of its wakees.
5865 *
5866 * In order to determine whether we should let the load spread vs consolidating
5867 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5868 * partner, and a factor of lls_size higher frequency in the other.
5869 *
5870 * With both conditions met, we can be relatively sure that the relationship is
5871 * non-monogamous, with partner count exceeding socket size.
5872 *
5873 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5874 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5875 * socket size.
5876 */
wake_wide(struct task_struct * p)5877 static int wake_wide(struct task_struct *p)
5878 {
5879 unsigned int master = current->wakee_flips;
5880 unsigned int slave = p->wakee_flips;
5881 int factor = __this_cpu_read(sd_llc_size);
5882
5883 if (master < slave)
5884 swap(master, slave);
5885 if (slave < factor || master < slave * factor)
5886 return 0;
5887 return 1;
5888 }
5889
5890 /*
5891 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5892 * soonest. For the purpose of speed we only consider the waking and previous
5893 * CPU.
5894 *
5895 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5896 * cache-affine and is (or will be) idle.
5897 *
5898 * wake_affine_weight() - considers the weight to reflect the average
5899 * scheduling latency of the CPUs. This seems to work
5900 * for the overloaded case.
5901 */
5902 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)5903 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5904 {
5905 /*
5906 * If this_cpu is idle, it implies the wakeup is from interrupt
5907 * context. Only allow the move if cache is shared. Otherwise an
5908 * interrupt intensive workload could force all tasks onto one
5909 * node depending on the IO topology or IRQ affinity settings.
5910 *
5911 * If the prev_cpu is idle and cache affine then avoid a migration.
5912 * There is no guarantee that the cache hot data from an interrupt
5913 * is more important than cache hot data on the prev_cpu and from
5914 * a cpufreq perspective, it's better to have higher utilisation
5915 * on one CPU.
5916 */
5917 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5918 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5919
5920 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5921 return this_cpu;
5922
5923 return nr_cpumask_bits;
5924 }
5925
5926 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5927 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5928 int this_cpu, int prev_cpu, int sync)
5929 {
5930 s64 this_eff_load, prev_eff_load;
5931 unsigned long task_load;
5932
5933 this_eff_load = cpu_load(cpu_rq(this_cpu));
5934
5935 if (sync) {
5936 unsigned long current_load = task_h_load(current);
5937
5938 if (current_load > this_eff_load)
5939 return this_cpu;
5940
5941 this_eff_load -= current_load;
5942 }
5943
5944 task_load = task_h_load(p);
5945
5946 this_eff_load += task_load;
5947 if (sched_feat(WA_BIAS))
5948 this_eff_load *= 100;
5949 this_eff_load *= capacity_of(prev_cpu);
5950
5951 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5952 prev_eff_load -= task_load;
5953 if (sched_feat(WA_BIAS))
5954 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5955 prev_eff_load *= capacity_of(this_cpu);
5956
5957 /*
5958 * If sync, adjust the weight of prev_eff_load such that if
5959 * prev_eff == this_eff that select_idle_sibling() will consider
5960 * stacking the wakee on top of the waker if no other CPU is
5961 * idle.
5962 */
5963 if (sync)
5964 prev_eff_load += 1;
5965
5966 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5967 }
5968
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5969 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5970 int this_cpu, int prev_cpu, int sync)
5971 {
5972 int target = nr_cpumask_bits;
5973
5974 if (sched_feat(WA_IDLE))
5975 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5976
5977 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5978 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5979
5980 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5981 if (target == nr_cpumask_bits)
5982 return prev_cpu;
5983
5984 schedstat_inc(sd->ttwu_move_affine);
5985 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5986 return target;
5987 }
5988
5989 static struct sched_group *
5990 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5991
5992 /*
5993 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5994 */
5995 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)5996 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5997 {
5998 unsigned long load, min_load = ULONG_MAX;
5999 unsigned int min_exit_latency = UINT_MAX;
6000 u64 latest_idle_timestamp = 0;
6001 int least_loaded_cpu = this_cpu;
6002 int shallowest_idle_cpu = -1;
6003 int i;
6004
6005 /* Check if we have any choice: */
6006 if (group->group_weight == 1)
6007 return cpumask_first(sched_group_span(group));
6008
6009 /* Traverse only the allowed CPUs */
6010 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6011 if (cpu_isolated(i))
6012 continue;
6013
6014 if (sched_idle_cpu(i))
6015 return i;
6016
6017 if (available_idle_cpu(i)) {
6018 struct rq *rq = cpu_rq(i);
6019 struct cpuidle_state *idle = idle_get_state(rq);
6020 if (idle && idle->exit_latency < min_exit_latency) {
6021 /*
6022 * We give priority to a CPU whose idle state
6023 * has the smallest exit latency irrespective
6024 * of any idle timestamp.
6025 */
6026 min_exit_latency = idle->exit_latency;
6027 latest_idle_timestamp = rq->idle_stamp;
6028 shallowest_idle_cpu = i;
6029 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6030 rq->idle_stamp > latest_idle_timestamp) {
6031 /*
6032 * If equal or no active idle state, then
6033 * the most recently idled CPU might have
6034 * a warmer cache.
6035 */
6036 latest_idle_timestamp = rq->idle_stamp;
6037 shallowest_idle_cpu = i;
6038 }
6039 } else if (shallowest_idle_cpu == -1) {
6040 load = cpu_load(cpu_rq(i));
6041 if (load < min_load) {
6042 min_load = load;
6043 least_loaded_cpu = i;
6044 }
6045 }
6046 }
6047
6048 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6049 }
6050
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6051 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6052 int cpu, int prev_cpu, int sd_flag)
6053 {
6054 int new_cpu = cpu;
6055
6056 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6057 return prev_cpu;
6058
6059 /*
6060 * We need task's util for cpu_util_without, sync it up to
6061 * prev_cpu's last_update_time.
6062 */
6063 if (!(sd_flag & SD_BALANCE_FORK))
6064 sync_entity_load_avg(&p->se);
6065
6066 while (sd) {
6067 struct sched_group *group;
6068 struct sched_domain *tmp;
6069 int weight;
6070
6071 if (!(sd->flags & sd_flag)) {
6072 sd = sd->child;
6073 continue;
6074 }
6075
6076 group = find_idlest_group(sd, p, cpu);
6077 if (!group) {
6078 sd = sd->child;
6079 continue;
6080 }
6081
6082 new_cpu = find_idlest_group_cpu(group, p, cpu);
6083 if (new_cpu == cpu) {
6084 /* Now try balancing at a lower domain level of 'cpu': */
6085 sd = sd->child;
6086 continue;
6087 }
6088
6089 /* Now try balancing at a lower domain level of 'new_cpu': */
6090 cpu = new_cpu;
6091 weight = sd->span_weight;
6092 sd = NULL;
6093 for_each_domain(cpu, tmp) {
6094 if (weight <= tmp->span_weight)
6095 break;
6096 if (tmp->flags & sd_flag)
6097 sd = tmp;
6098 }
6099 }
6100
6101 return new_cpu;
6102 }
6103
6104 #ifdef CONFIG_SCHED_SMT
6105 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6106 EXPORT_SYMBOL_GPL(sched_smt_present);
6107
set_idle_cores(int cpu,int val)6108 static inline void set_idle_cores(int cpu, int val)
6109 {
6110 struct sched_domain_shared *sds;
6111
6112 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6113 if (sds)
6114 WRITE_ONCE(sds->has_idle_cores, val);
6115 }
6116
test_idle_cores(int cpu,bool def)6117 static inline bool test_idle_cores(int cpu, bool def)
6118 {
6119 struct sched_domain_shared *sds;
6120
6121 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6122 if (sds)
6123 return READ_ONCE(sds->has_idle_cores);
6124
6125 return def;
6126 }
6127
6128 /*
6129 * Scans the local SMT mask to see if the entire core is idle, and records this
6130 * information in sd_llc_shared->has_idle_cores.
6131 *
6132 * Since SMT siblings share all cache levels, inspecting this limited remote
6133 * state should be fairly cheap.
6134 */
__update_idle_core(struct rq * rq)6135 void __update_idle_core(struct rq *rq)
6136 {
6137 int core = cpu_of(rq);
6138 int cpu;
6139
6140 rcu_read_lock();
6141 if (test_idle_cores(core, true))
6142 goto unlock;
6143
6144 for_each_cpu(cpu, cpu_smt_mask(core)) {
6145 if (cpu == core)
6146 continue;
6147
6148 if (!available_idle_cpu(cpu))
6149 goto unlock;
6150 }
6151
6152 set_idle_cores(core, 1);
6153 unlock:
6154 rcu_read_unlock();
6155 }
6156
6157 /*
6158 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6159 * there are no idle cores left in the system; tracked through
6160 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6161 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6162 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6163 {
6164 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6165 int core, cpu;
6166
6167 if (!static_branch_likely(&sched_smt_present))
6168 return -1;
6169
6170 if (!test_idle_cores(target, false))
6171 return -1;
6172
6173 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6174 #ifdef CONFIG_CPU_ISOLATION_OPT
6175 cpumask_andnot(cpus, cpus, cpu_isolated_mask);
6176 #endif
6177
6178 for_each_cpu_wrap(core, cpus, target) {
6179 bool idle = true;
6180
6181 for_each_cpu(cpu, cpu_smt_mask(core)) {
6182 if (!available_idle_cpu(cpu)) {
6183 idle = false;
6184 break;
6185 }
6186 }
6187 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6188
6189 if (idle)
6190 return core;
6191 }
6192
6193 /*
6194 * Failed to find an idle core; stop looking for one.
6195 */
6196 set_idle_cores(target, 0);
6197
6198 return -1;
6199 }
6200
6201 /*
6202 * Scan the local SMT mask for idle CPUs.
6203 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6204 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6205 {
6206 int cpu;
6207
6208 if (!static_branch_likely(&sched_smt_present))
6209 return -1;
6210
6211 for_each_cpu(cpu, cpu_smt_mask(target)) {
6212 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6213 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6214 continue;
6215 if (cpu_isolated(cpu))
6216 continue;
6217 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6218 return cpu;
6219 }
6220
6221 return -1;
6222 }
6223
6224 #else /* CONFIG_SCHED_SMT */
6225
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6226 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6227 {
6228 return -1;
6229 }
6230
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6231 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6232 {
6233 return -1;
6234 }
6235
6236 #endif /* CONFIG_SCHED_SMT */
6237
6238 /*
6239 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6240 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6241 * average idle time for this rq (as found in rq->avg_idle).
6242 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6243 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6244 {
6245 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6246 struct sched_domain *this_sd;
6247 u64 avg_cost, avg_idle;
6248 u64 time;
6249 int this = smp_processor_id();
6250 int cpu, nr = INT_MAX;
6251
6252 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6253 if (!this_sd)
6254 return -1;
6255
6256 /*
6257 * Due to large variance we need a large fuzz factor; hackbench in
6258 * particularly is sensitive here.
6259 */
6260 avg_idle = this_rq()->avg_idle / 512;
6261 avg_cost = this_sd->avg_scan_cost + 1;
6262
6263 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6264 return -1;
6265
6266 if (sched_feat(SIS_PROP)) {
6267 u64 span_avg = sd->span_weight * avg_idle;
6268 if (span_avg > 4*avg_cost)
6269 nr = div_u64(span_avg, avg_cost);
6270 else
6271 nr = 4;
6272 }
6273
6274 time = cpu_clock(this);
6275
6276 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6277
6278 for_each_cpu_wrap(cpu, cpus, target) {
6279 if (!--nr)
6280 return -1;
6281 if (cpu_isolated(cpu))
6282 continue;
6283 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6284 break;
6285 }
6286
6287 time = cpu_clock(this) - time;
6288 update_avg(&this_sd->avg_scan_cost, time);
6289
6290 return cpu;
6291 }
6292
6293 /*
6294 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6295 * the task fits. If no CPU is big enough, but there are idle ones, try to
6296 * maximize capacity.
6297 */
6298 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6299 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6300 {
6301 unsigned long task_util, best_cap = 0;
6302 int cpu, best_cpu = -1;
6303 struct cpumask *cpus;
6304
6305 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6306 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6307
6308 task_util = uclamp_task_util(p);
6309
6310 for_each_cpu_wrap(cpu, cpus, target) {
6311 unsigned long cpu_cap = capacity_of(cpu);
6312
6313 if (cpu_isolated(cpu))
6314 continue;
6315
6316 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6317 continue;
6318 if (fits_capacity(task_util, cpu_cap))
6319 return cpu;
6320
6321 if (cpu_cap > best_cap) {
6322 best_cap = cpu_cap;
6323 best_cpu = cpu;
6324 }
6325 }
6326
6327 return best_cpu;
6328 }
6329
asym_fits_capacity(int task_util,int cpu)6330 static inline bool asym_fits_capacity(int task_util, int cpu)
6331 {
6332 if (static_branch_unlikely(&sched_asym_cpucapacity))
6333 return fits_capacity(task_util, capacity_of(cpu));
6334
6335 return true;
6336 }
6337
6338 /*
6339 * Try and locate an idle core/thread in the LLC cache domain.
6340 */
select_idle_sibling(struct task_struct * p,int prev,int target)6341 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6342 {
6343 struct sched_domain *sd;
6344 unsigned long task_util;
6345 int i, recent_used_cpu;
6346
6347 /*
6348 * On asymmetric system, update task utilization because we will check
6349 * that the task fits with cpu's capacity.
6350 */
6351 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6352 sync_entity_load_avg(&p->se);
6353 task_util = uclamp_task_util(p);
6354 }
6355
6356 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6357 !cpu_isolated(target) && asym_fits_capacity(task_util, target))
6358 return target;
6359
6360 /*
6361 * If the previous CPU is cache affine and idle, don't be stupid:
6362 */
6363 if (prev != target && cpus_share_cache(prev, target) &&
6364 ((available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6365 !cpu_isolated(target) && asym_fits_capacity(task_util, prev)))
6366 return prev;
6367
6368 /*
6369 * Allow a per-cpu kthread to stack with the wakee if the
6370 * kworker thread and the tasks previous CPUs are the same.
6371 * The assumption is that the wakee queued work for the
6372 * per-cpu kthread that is now complete and the wakeup is
6373 * essentially a sync wakeup. An obvious example of this
6374 * pattern is IO completions.
6375 */
6376 if (is_per_cpu_kthread(current) &&
6377 prev == smp_processor_id() &&
6378 this_rq()->nr_running <= 1) {
6379 return prev;
6380 }
6381
6382 /* Check a recently used CPU as a potential idle candidate: */
6383 recent_used_cpu = p->recent_used_cpu;
6384 if (recent_used_cpu != prev &&
6385 recent_used_cpu != target &&
6386 cpus_share_cache(recent_used_cpu, target) &&
6387 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6388 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6389 asym_fits_capacity(task_util, recent_used_cpu)) {
6390 /*
6391 * Replace recent_used_cpu with prev as it is a potential
6392 * candidate for the next wake:
6393 */
6394 p->recent_used_cpu = prev;
6395 return recent_used_cpu;
6396 }
6397
6398 /*
6399 * For asymmetric CPU capacity systems, our domain of interest is
6400 * sd_asym_cpucapacity rather than sd_llc.
6401 */
6402 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6403 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6404 /*
6405 * On an asymmetric CPU capacity system where an exclusive
6406 * cpuset defines a symmetric island (i.e. one unique
6407 * capacity_orig value through the cpuset), the key will be set
6408 * but the CPUs within that cpuset will not have a domain with
6409 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6410 * capacity path.
6411 */
6412 if (sd) {
6413 i = select_idle_capacity(p, sd, target);
6414 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6415 }
6416 }
6417
6418 sd = rcu_dereference(per_cpu(sd_llc, target));
6419 if (!sd)
6420 return target;
6421
6422 i = select_idle_core(p, sd, target);
6423 if ((unsigned)i < nr_cpumask_bits)
6424 return i;
6425
6426 i = select_idle_cpu(p, sd, target);
6427 if ((unsigned)i < nr_cpumask_bits)
6428 return i;
6429
6430 i = select_idle_smt(p, sd, target);
6431 if ((unsigned)i < nr_cpumask_bits)
6432 return i;
6433
6434 return target;
6435 }
6436
6437 /**
6438 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6439 * @cpu: the CPU to get the utilization of
6440 *
6441 * The unit of the return value must be the one of capacity so we can compare
6442 * the utilization with the capacity of the CPU that is available for CFS task
6443 * (ie cpu_capacity).
6444 *
6445 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6446 * recent utilization of currently non-runnable tasks on a CPU. It represents
6447 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6448 * capacity_orig is the cpu_capacity available at the highest frequency
6449 * (arch_scale_freq_capacity()).
6450 * The utilization of a CPU converges towards a sum equal to or less than the
6451 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6452 * the running time on this CPU scaled by capacity_curr.
6453 *
6454 * The estimated utilization of a CPU is defined to be the maximum between its
6455 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6456 * currently RUNNABLE on that CPU.
6457 * This allows to properly represent the expected utilization of a CPU which
6458 * has just got a big task running since a long sleep period. At the same time
6459 * however it preserves the benefits of the "blocked utilization" in
6460 * describing the potential for other tasks waking up on the same CPU.
6461 *
6462 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6463 * higher than capacity_orig because of unfortunate rounding in
6464 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6465 * the average stabilizes with the new running time. We need to check that the
6466 * utilization stays within the range of [0..capacity_orig] and cap it if
6467 * necessary. Without utilization capping, a group could be seen as overloaded
6468 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6469 * available capacity. We allow utilization to overshoot capacity_curr (but not
6470 * capacity_orig) as it useful for predicting the capacity required after task
6471 * migrations (scheduler-driven DVFS).
6472 *
6473 * Return: the (estimated) utilization for the specified CPU
6474 */
cpu_util(int cpu)6475 unsigned long cpu_util(int cpu)
6476 {
6477 struct cfs_rq *cfs_rq;
6478 unsigned int util;
6479
6480 #ifdef CONFIG_SCHED_WALT
6481 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6482 u64 walt_cpu_util =
6483 cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
6484
6485 return min_t(unsigned long, walt_cpu_util,
6486 capacity_orig_of(cpu));
6487 }
6488 #endif
6489
6490 cfs_rq = &cpu_rq(cpu)->cfs;
6491 util = READ_ONCE(cfs_rq->avg.util_avg);
6492
6493 if (sched_feat(UTIL_EST))
6494 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6495
6496 return min_t(unsigned long, util, capacity_orig_of(cpu));
6497 }
6498
6499 /*
6500 * cpu_util_without: compute cpu utilization without any contributions from *p
6501 * @cpu: the CPU which utilization is requested
6502 * @p: the task which utilization should be discounted
6503 *
6504 * The utilization of a CPU is defined by the utilization of tasks currently
6505 * enqueued on that CPU as well as tasks which are currently sleeping after an
6506 * execution on that CPU.
6507 *
6508 * This method returns the utilization of the specified CPU by discounting the
6509 * utilization of the specified task, whenever the task is currently
6510 * contributing to the CPU utilization.
6511 */
cpu_util_without(int cpu,struct task_struct * p)6512 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6513 {
6514 struct cfs_rq *cfs_rq;
6515 unsigned int util;
6516
6517 #ifdef CONFIG_SCHED_WALT
6518 /*
6519 * WALT does not decay idle tasks in the same manner
6520 * as PELT, so it makes little sense to subtract task
6521 * utilization from cpu utilization. Instead just use
6522 * cpu_util for this case.
6523 */
6524 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util) &&
6525 p->state == TASK_WAKING)
6526 return cpu_util(cpu);
6527 #endif
6528
6529 /* Task has no contribution or is new */
6530 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6531 return cpu_util(cpu);
6532
6533 #ifdef CONFIG_SCHED_WALT
6534 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6535 util = max_t(long, cpu_util(cpu) - task_util(p), 0);
6536 return min_t(unsigned long, util, capacity_orig_of(cpu));
6537 }
6538 #endif
6539
6540 cfs_rq = &cpu_rq(cpu)->cfs;
6541 util = READ_ONCE(cfs_rq->avg.util_avg);
6542
6543 /* Discount task's util from CPU's util */
6544 lsub_positive(&util, task_util(p));
6545
6546 /*
6547 * Covered cases:
6548 *
6549 * a) if *p is the only task sleeping on this CPU, then:
6550 * cpu_util (== task_util) > util_est (== 0)
6551 * and thus we return:
6552 * cpu_util_without = (cpu_util - task_util) = 0
6553 *
6554 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6555 * IDLE, then:
6556 * cpu_util >= task_util
6557 * cpu_util > util_est (== 0)
6558 * and thus we discount *p's blocked utilization to return:
6559 * cpu_util_without = (cpu_util - task_util) >= 0
6560 *
6561 * c) if other tasks are RUNNABLE on that CPU and
6562 * util_est > cpu_util
6563 * then we use util_est since it returns a more restrictive
6564 * estimation of the spare capacity on that CPU, by just
6565 * considering the expected utilization of tasks already
6566 * runnable on that CPU.
6567 *
6568 * Cases a) and b) are covered by the above code, while case c) is
6569 * covered by the following code when estimated utilization is
6570 * enabled.
6571 */
6572 if (sched_feat(UTIL_EST)) {
6573 unsigned int estimated =
6574 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6575
6576 /*
6577 * Despite the following checks we still have a small window
6578 * for a possible race, when an execl's select_task_rq_fair()
6579 * races with LB's detach_task():
6580 *
6581 * detach_task()
6582 * p->on_rq = TASK_ON_RQ_MIGRATING;
6583 * ---------------------------------- A
6584 * deactivate_task() \
6585 * dequeue_task() + RaceTime
6586 * util_est_dequeue() /
6587 * ---------------------------------- B
6588 *
6589 * The additional check on "current == p" it's required to
6590 * properly fix the execl regression and it helps in further
6591 * reducing the chances for the above race.
6592 */
6593 if (unlikely(task_on_rq_queued(p) || current == p))
6594 lsub_positive(&estimated, _task_util_est(p));
6595
6596 util = max(util, estimated);
6597 }
6598
6599 /*
6600 * Utilization (estimated) can exceed the CPU capacity, thus let's
6601 * clamp to the maximum CPU capacity to ensure consistency with
6602 * the cpu_util call.
6603 */
6604 return min_t(unsigned long, util, capacity_orig_of(cpu));
6605 }
6606
6607 #ifdef CONFIG_SCHED_RTG
capacity_spare_without(int cpu,struct task_struct * p)6608 unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6609 {
6610 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6611 }
6612 #endif
6613 /*
6614 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6615 * to @dst_cpu.
6616 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6617 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6618 {
6619 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6620 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6621
6622 /*
6623 * If @p migrates from @cpu to another, remove its contribution. Or,
6624 * if @p migrates from another CPU to @cpu, add its contribution. In
6625 * the other cases, @cpu is not impacted by the migration, so the
6626 * util_avg should already be correct.
6627 */
6628 if (task_cpu(p) == cpu && dst_cpu != cpu)
6629 sub_positive(&util, task_util(p));
6630 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6631 util += task_util(p);
6632
6633 if (sched_feat(UTIL_EST)) {
6634 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6635
6636 /*
6637 * During wake-up, the task isn't enqueued yet and doesn't
6638 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6639 * so just add it (if needed) to "simulate" what will be
6640 * cpu_util() after the task has been enqueued.
6641 */
6642 if (dst_cpu == cpu)
6643 util_est += _task_util_est(p);
6644
6645 util = max(util, util_est);
6646 }
6647
6648 return min(util, capacity_orig_of(cpu));
6649 }
6650
6651 /*
6652 * Returns the current capacity of cpu after applying both
6653 * cpu and freq scaling.
6654 */
capacity_curr_of(int cpu)6655 unsigned long capacity_curr_of(int cpu)
6656 {
6657 unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
6658 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
6659
6660 return cap_scale(max_cap, scale_freq);
6661 }
6662
6663 /*
6664 * compute_energy(): Estimates the energy that @pd would consume if @p was
6665 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6666 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6667 * to compute what would be the energy if we decided to actually migrate that
6668 * task.
6669 */
6670 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6671 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6672 {
6673 struct cpumask *pd_mask = perf_domain_span(pd);
6674 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6675 unsigned long max_util = 0, sum_util = 0;
6676 int cpu;
6677
6678 /*
6679 * The capacity state of CPUs of the current rd can be driven by CPUs
6680 * of another rd if they belong to the same pd. So, account for the
6681 * utilization of these CPUs too by masking pd with cpu_online_mask
6682 * instead of the rd span.
6683 *
6684 * If an entire pd is outside of the current rd, it will not appear in
6685 * its pd list and will not be accounted by compute_energy().
6686 */
6687 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6688 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6689 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6690
6691 /*
6692 * Busy time computation: utilization clamping is not
6693 * required since the ratio (sum_util / cpu_capacity)
6694 * is already enough to scale the EM reported power
6695 * consumption at the (eventually clamped) cpu_capacity.
6696 */
6697 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6698 ENERGY_UTIL, NULL);
6699
6700 /*
6701 * Performance domain frequency: utilization clamping
6702 * must be considered since it affects the selection
6703 * of the performance domain frequency.
6704 * NOTE: in case RT tasks are running, by default the
6705 * FREQUENCY_UTIL's utilization can be max OPP.
6706 */
6707 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6708 FREQUENCY_UTIL, tsk);
6709 max_util = max(max_util, cpu_util);
6710 }
6711
6712 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6713 }
6714
6715 /*
6716 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6717 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6718 * spare capacity in each performance domain and uses it as a potential
6719 * candidate to execute the task. Then, it uses the Energy Model to figure
6720 * out which of the CPU candidates is the most energy-efficient.
6721 *
6722 * The rationale for this heuristic is as follows. In a performance domain,
6723 * all the most energy efficient CPU candidates (according to the Energy
6724 * Model) are those for which we'll request a low frequency. When there are
6725 * several CPUs for which the frequency request will be the same, we don't
6726 * have enough data to break the tie between them, because the Energy Model
6727 * only includes active power costs. With this model, if we assume that
6728 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6729 * the maximum spare capacity in a performance domain is guaranteed to be among
6730 * the best candidates of the performance domain.
6731 *
6732 * In practice, it could be preferable from an energy standpoint to pack
6733 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6734 * but that could also hurt our chances to go cluster idle, and we have no
6735 * ways to tell with the current Energy Model if this is actually a good
6736 * idea or not. So, find_energy_efficient_cpu() basically favors
6737 * cluster-packing, and spreading inside a cluster. That should at least be
6738 * a good thing for latency, and this is consistent with the idea that most
6739 * of the energy savings of EAS come from the asymmetry of the system, and
6740 * not so much from breaking the tie between identical CPUs. That's also the
6741 * reason why EAS is enabled in the topology code only for systems where
6742 * SD_ASYM_CPUCAPACITY is set.
6743 *
6744 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6745 * they don't have any useful utilization data yet and it's not possible to
6746 * forecast their impact on energy consumption. Consequently, they will be
6747 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6748 * to be energy-inefficient in some use-cases. The alternative would be to
6749 * bias new tasks towards specific types of CPUs first, or to try to infer
6750 * their util_avg from the parent task, but those heuristics could hurt
6751 * other use-cases too. So, until someone finds a better way to solve this,
6752 * let's keep things simple by re-using the existing slow path.
6753 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)6754 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6755 {
6756 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6757 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6758 unsigned long cpu_cap, util, base_energy = 0;
6759 int cpu, best_energy_cpu = prev_cpu;
6760 struct sched_domain *sd;
6761 struct perf_domain *pd;
6762
6763 rcu_read_lock();
6764 pd = rcu_dereference(rd->pd);
6765 if (!pd || READ_ONCE(rd->overutilized))
6766 goto fail;
6767
6768 /*
6769 * Energy-aware wake-up happens on the lowest sched_domain starting
6770 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6771 */
6772 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6773 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6774 sd = sd->parent;
6775 if (!sd)
6776 goto fail;
6777
6778 sync_entity_load_avg(&p->se);
6779 if (!task_util_est(p))
6780 goto unlock;
6781
6782 for (; pd; pd = pd->next) {
6783 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6784 unsigned long base_energy_pd;
6785 int max_spare_cap_cpu = -1;
6786
6787 /* Compute the 'base' energy of the pd, without @p */
6788 base_energy_pd = compute_energy(p, -1, pd);
6789 base_energy += base_energy_pd;
6790
6791 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6792 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6793 continue;
6794
6795 util = cpu_util_next(cpu, p, cpu);
6796 cpu_cap = capacity_of(cpu);
6797 spare_cap = cpu_cap;
6798 lsub_positive(&spare_cap, util);
6799
6800 /*
6801 * Skip CPUs that cannot satisfy the capacity request.
6802 * IOW, placing the task there would make the CPU
6803 * overutilized. Take uclamp into account to see how
6804 * much capacity we can get out of the CPU; this is
6805 * aligned with schedutil_cpu_util().
6806 */
6807 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6808 if (!fits_capacity(util, cpu_cap))
6809 continue;
6810
6811 /* Always use prev_cpu as a candidate. */
6812 if (cpu == prev_cpu) {
6813 prev_delta = compute_energy(p, prev_cpu, pd);
6814 prev_delta -= base_energy_pd;
6815 best_delta = min(best_delta, prev_delta);
6816 }
6817
6818 /*
6819 * Find the CPU with the maximum spare capacity in
6820 * the performance domain
6821 */
6822 if (spare_cap > max_spare_cap) {
6823 max_spare_cap = spare_cap;
6824 max_spare_cap_cpu = cpu;
6825 }
6826 }
6827
6828 /* Evaluate the energy impact of using this CPU. */
6829 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6830 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6831 cur_delta -= base_energy_pd;
6832 if (cur_delta < best_delta) {
6833 best_delta = cur_delta;
6834 best_energy_cpu = max_spare_cap_cpu;
6835 }
6836 }
6837 }
6838 unlock:
6839 rcu_read_unlock();
6840
6841 /*
6842 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6843 * least 6% of the energy used by prev_cpu.
6844 */
6845 if (prev_delta == ULONG_MAX)
6846 return best_energy_cpu;
6847
6848 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6849 return best_energy_cpu;
6850
6851 return prev_cpu;
6852
6853 fail:
6854 rcu_read_unlock();
6855
6856 return -1;
6857 }
6858
6859 /*
6860 * select_task_rq_fair: Select target runqueue for the waking task in domains
6861 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6862 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6863 *
6864 * Balances load by selecting the idlest CPU in the idlest group, or under
6865 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6866 *
6867 * Returns the target CPU number.
6868 *
6869 * preempt must be disabled.
6870 */
6871 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)6872 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6873 {
6874 struct sched_domain *tmp, *sd = NULL;
6875 int cpu = smp_processor_id();
6876 int new_cpu = prev_cpu;
6877 int want_affine = 0;
6878 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6879 #ifdef CONFIG_SCHED_RTG
6880 int target_cpu = -1;
6881 target_cpu = find_rtg_cpu(p);
6882 if (target_cpu >= 0)
6883 return target_cpu;
6884 #endif
6885
6886 if (sd_flag & SD_BALANCE_WAKE) {
6887 record_wakee(p);
6888
6889 if (sched_energy_enabled()) {
6890 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6891 if (new_cpu >= 0)
6892 return new_cpu;
6893 new_cpu = prev_cpu;
6894 }
6895
6896 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6897 }
6898
6899 rcu_read_lock();
6900 for_each_domain(cpu, tmp) {
6901 /*
6902 * If both 'cpu' and 'prev_cpu' are part of this domain,
6903 * cpu is a valid SD_WAKE_AFFINE target.
6904 */
6905 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6906 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6907 if (cpu != prev_cpu)
6908 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6909
6910 sd = NULL; /* Prefer wake_affine over balance flags */
6911 break;
6912 }
6913
6914 if (tmp->flags & sd_flag)
6915 sd = tmp;
6916 else if (!want_affine)
6917 break;
6918 }
6919
6920 if (unlikely(sd)) {
6921 /* Slow path */
6922 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6923 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6924 /* Fast path */
6925
6926 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6927
6928 if (want_affine)
6929 current->recent_used_cpu = cpu;
6930 }
6931 rcu_read_unlock();
6932
6933 return new_cpu;
6934 }
6935
6936 static void detach_entity_cfs_rq(struct sched_entity *se);
6937
6938 /*
6939 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6940 * cfs_rq_of(p) references at time of call are still valid and identify the
6941 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6942 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)6943 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6944 {
6945 /*
6946 * As blocked tasks retain absolute vruntime the migration needs to
6947 * deal with this by subtracting the old and adding the new
6948 * min_vruntime -- the latter is done by enqueue_entity() when placing
6949 * the task on the new runqueue.
6950 */
6951 if (p->state == TASK_WAKING) {
6952 struct sched_entity *se = &p->se;
6953 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6954 u64 min_vruntime;
6955
6956 #ifndef CONFIG_64BIT
6957 u64 min_vruntime_copy;
6958
6959 do {
6960 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6961 smp_rmb();
6962 min_vruntime = cfs_rq->min_vruntime;
6963 } while (min_vruntime != min_vruntime_copy);
6964 #else
6965 min_vruntime = cfs_rq->min_vruntime;
6966 #endif
6967
6968 se->vruntime -= min_vruntime;
6969 }
6970
6971 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6972 /*
6973 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6974 * rq->lock and can modify state directly.
6975 */
6976 lockdep_assert_held(&task_rq(p)->lock);
6977 detach_entity_cfs_rq(&p->se);
6978
6979 } else {
6980 /*
6981 * We are supposed to update the task to "current" time, then
6982 * its up to date and ready to go to new CPU/cfs_rq. But we
6983 * have difficulty in getting what current time is, so simply
6984 * throw away the out-of-date time. This will result in the
6985 * wakee task is less decayed, but giving the wakee more load
6986 * sounds not bad.
6987 */
6988 remove_entity_load_avg(&p->se);
6989 }
6990
6991 /* Tell new CPU we are migrated */
6992 p->se.avg.last_update_time = 0;
6993
6994 /* We have migrated, no longer consider this task hot */
6995 p->se.exec_start = 0;
6996
6997 update_scan_period(p, new_cpu);
6998 }
6999
task_dead_fair(struct task_struct * p)7000 static void task_dead_fair(struct task_struct *p)
7001 {
7002 remove_entity_load_avg(&p->se);
7003 }
7004
7005 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7006 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7007 {
7008 if (rq->nr_running)
7009 return 1;
7010
7011 return newidle_balance(rq, rf) != 0;
7012 }
7013 #endif /* CONFIG_SMP */
7014
wakeup_gran(struct sched_entity * se)7015 static unsigned long wakeup_gran(struct sched_entity *se)
7016 {
7017 unsigned long gran = sysctl_sched_wakeup_granularity;
7018
7019 /*
7020 * Since its curr running now, convert the gran from real-time
7021 * to virtual-time in his units.
7022 *
7023 * By using 'se' instead of 'curr' we penalize light tasks, so
7024 * they get preempted easier. That is, if 'se' < 'curr' then
7025 * the resulting gran will be larger, therefore penalizing the
7026 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7027 * be smaller, again penalizing the lighter task.
7028 *
7029 * This is especially important for buddies when the leftmost
7030 * task is higher priority than the buddy.
7031 */
7032 return calc_delta_fair(gran, se);
7033 }
7034
7035 /*
7036 * Should 'se' preempt 'curr'.
7037 *
7038 * |s1
7039 * |s2
7040 * |s3
7041 * g
7042 * |<--->|c
7043 *
7044 * w(c, s1) = -1
7045 * w(c, s2) = 0
7046 * w(c, s3) = 1
7047 *
7048 */
7049 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7050 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7051 {
7052 s64 gran, vdiff = curr->vruntime - se->vruntime;
7053
7054 if (vdiff <= 0)
7055 return -1;
7056
7057 gran = wakeup_gran(se);
7058 if (vdiff > gran)
7059 return 1;
7060
7061 return 0;
7062 }
7063
set_last_buddy(struct sched_entity * se)7064 static void set_last_buddy(struct sched_entity *se)
7065 {
7066 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7067 return;
7068
7069 for_each_sched_entity(se) {
7070 if (SCHED_WARN_ON(!se->on_rq))
7071 return;
7072 cfs_rq_of(se)->last = se;
7073 }
7074 }
7075
set_next_buddy(struct sched_entity * se)7076 static void set_next_buddy(struct sched_entity *se)
7077 {
7078 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7079 return;
7080
7081 for_each_sched_entity(se) {
7082 if (SCHED_WARN_ON(!se->on_rq))
7083 return;
7084 cfs_rq_of(se)->next = se;
7085 }
7086 }
7087
set_skip_buddy(struct sched_entity * se)7088 static void set_skip_buddy(struct sched_entity *se)
7089 {
7090 for_each_sched_entity(se)
7091 cfs_rq_of(se)->skip = se;
7092 }
7093
7094 /*
7095 * Preempt the current task with a newly woken task if needed:
7096 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7097 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7098 {
7099 struct task_struct *curr = rq->curr;
7100 struct sched_entity *se = &curr->se, *pse = &p->se;
7101 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7102 int scale = cfs_rq->nr_running >= sched_nr_latency;
7103 int next_buddy_marked = 0;
7104
7105 if (unlikely(se == pse))
7106 return;
7107
7108 /*
7109 * This is possible from callers such as attach_tasks(), in which we
7110 * unconditionally check_prempt_curr() after an enqueue (which may have
7111 * lead to a throttle). This both saves work and prevents false
7112 * next-buddy nomination below.
7113 */
7114 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7115 return;
7116
7117 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7118 set_next_buddy(pse);
7119 next_buddy_marked = 1;
7120 }
7121
7122 /*
7123 * We can come here with TIF_NEED_RESCHED already set from new task
7124 * wake up path.
7125 *
7126 * Note: this also catches the edge-case of curr being in a throttled
7127 * group (e.g. via set_curr_task), since update_curr() (in the
7128 * enqueue of curr) will have resulted in resched being set. This
7129 * prevents us from potentially nominating it as a false LAST_BUDDY
7130 * below.
7131 */
7132 if (test_tsk_need_resched(curr))
7133 return;
7134
7135 /* Idle tasks are by definition preempted by non-idle tasks. */
7136 if (unlikely(task_has_idle_policy(curr)) &&
7137 likely(!task_has_idle_policy(p)))
7138 goto preempt;
7139
7140 /*
7141 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7142 * is driven by the tick):
7143 */
7144 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7145 return;
7146
7147 find_matching_se(&se, &pse);
7148 update_curr(cfs_rq_of(se));
7149 BUG_ON(!pse);
7150 if (wakeup_preempt_entity(se, pse) == 1) {
7151 /*
7152 * Bias pick_next to pick the sched entity that is
7153 * triggering this preemption.
7154 */
7155 if (!next_buddy_marked)
7156 set_next_buddy(pse);
7157 goto preempt;
7158 }
7159
7160 return;
7161
7162 preempt:
7163 resched_curr(rq);
7164 /*
7165 * Only set the backward buddy when the current task is still
7166 * on the rq. This can happen when a wakeup gets interleaved
7167 * with schedule on the ->pre_schedule() or idle_balance()
7168 * point, either of which can * drop the rq lock.
7169 *
7170 * Also, during early boot the idle thread is in the fair class,
7171 * for obvious reasons its a bad idea to schedule back to it.
7172 */
7173 if (unlikely(!se->on_rq || curr == rq->idle))
7174 return;
7175
7176 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7177 set_last_buddy(se);
7178 }
7179
7180 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7181 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7182 {
7183 struct cfs_rq *cfs_rq = &rq->cfs;
7184 struct sched_entity *se;
7185 struct task_struct *p;
7186 int new_tasks;
7187
7188 again:
7189 if (!sched_fair_runnable(rq))
7190 goto idle;
7191
7192 #ifdef CONFIG_FAIR_GROUP_SCHED
7193 if (!prev || prev->sched_class != &fair_sched_class)
7194 goto simple;
7195
7196 /*
7197 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7198 * likely that a next task is from the same cgroup as the current.
7199 *
7200 * Therefore attempt to avoid putting and setting the entire cgroup
7201 * hierarchy, only change the part that actually changes.
7202 */
7203
7204 do {
7205 struct sched_entity *curr = cfs_rq->curr;
7206
7207 /*
7208 * Since we got here without doing put_prev_entity() we also
7209 * have to consider cfs_rq->curr. If it is still a runnable
7210 * entity, update_curr() will update its vruntime, otherwise
7211 * forget we've ever seen it.
7212 */
7213 if (curr) {
7214 if (curr->on_rq)
7215 update_curr(cfs_rq);
7216 else
7217 curr = NULL;
7218
7219 /*
7220 * This call to check_cfs_rq_runtime() will do the
7221 * throttle and dequeue its entity in the parent(s).
7222 * Therefore the nr_running test will indeed
7223 * be correct.
7224 */
7225 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7226 cfs_rq = &rq->cfs;
7227
7228 if (!cfs_rq->nr_running)
7229 goto idle;
7230
7231 goto simple;
7232 }
7233 }
7234
7235 se = pick_next_entity(cfs_rq, curr);
7236 cfs_rq = group_cfs_rq(se);
7237 } while (cfs_rq);
7238
7239 p = task_of(se);
7240
7241 /*
7242 * Since we haven't yet done put_prev_entity and if the selected task
7243 * is a different task than we started out with, try and touch the
7244 * least amount of cfs_rqs.
7245 */
7246 if (prev != p) {
7247 struct sched_entity *pse = &prev->se;
7248
7249 while (!(cfs_rq = is_same_group(se, pse))) {
7250 int se_depth = se->depth;
7251 int pse_depth = pse->depth;
7252
7253 if (se_depth <= pse_depth) {
7254 put_prev_entity(cfs_rq_of(pse), pse);
7255 pse = parent_entity(pse);
7256 }
7257 if (se_depth >= pse_depth) {
7258 set_next_entity(cfs_rq_of(se), se);
7259 se = parent_entity(se);
7260 }
7261 }
7262
7263 put_prev_entity(cfs_rq, pse);
7264 set_next_entity(cfs_rq, se);
7265 }
7266
7267 goto done;
7268 simple:
7269 #endif
7270 if (prev)
7271 put_prev_task(rq, prev);
7272
7273 do {
7274 se = pick_next_entity(cfs_rq, NULL);
7275 set_next_entity(cfs_rq, se);
7276 cfs_rq = group_cfs_rq(se);
7277 } while (cfs_rq);
7278
7279 p = task_of(se);
7280
7281 done: __maybe_unused;
7282 #ifdef CONFIG_SMP
7283 /*
7284 * Move the next running task to the front of
7285 * the list, so our cfs_tasks list becomes MRU
7286 * one.
7287 */
7288 list_move(&p->se.group_node, &rq->cfs_tasks);
7289 #endif
7290
7291 if (hrtick_enabled(rq))
7292 hrtick_start_fair(rq, p);
7293
7294 update_misfit_status(p, rq);
7295
7296 return p;
7297
7298 idle:
7299 if (!rf)
7300 return NULL;
7301
7302 new_tasks = newidle_balance(rq, rf);
7303
7304 /*
7305 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7306 * possible for any higher priority task to appear. In that case we
7307 * must re-start the pick_next_entity() loop.
7308 */
7309 if (new_tasks < 0)
7310 return RETRY_TASK;
7311
7312 if (new_tasks > 0)
7313 goto again;
7314
7315 /*
7316 * rq is about to be idle, check if we need to update the
7317 * lost_idle_time of clock_pelt
7318 */
7319 update_idle_rq_clock_pelt(rq);
7320
7321 return NULL;
7322 }
7323
__pick_next_task_fair(struct rq * rq)7324 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7325 {
7326 return pick_next_task_fair(rq, NULL, NULL);
7327 }
7328
7329 /*
7330 * Account for a descheduled task:
7331 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7332 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7333 {
7334 struct sched_entity *se = &prev->se;
7335 struct cfs_rq *cfs_rq;
7336
7337 for_each_sched_entity(se) {
7338 cfs_rq = cfs_rq_of(se);
7339 put_prev_entity(cfs_rq, se);
7340 }
7341 }
7342
7343 /*
7344 * sched_yield() is very simple
7345 *
7346 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7347 */
yield_task_fair(struct rq * rq)7348 static void yield_task_fair(struct rq *rq)
7349 {
7350 struct task_struct *curr = rq->curr;
7351 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7352 struct sched_entity *se = &curr->se;
7353
7354 /*
7355 * Are we the only task in the tree?
7356 */
7357 if (unlikely(rq->nr_running == 1))
7358 return;
7359
7360 clear_buddies(cfs_rq, se);
7361
7362 if (curr->policy != SCHED_BATCH) {
7363 update_rq_clock(rq);
7364 /*
7365 * Update run-time statistics of the 'current'.
7366 */
7367 update_curr(cfs_rq);
7368 /*
7369 * Tell update_rq_clock() that we've just updated,
7370 * so we don't do microscopic update in schedule()
7371 * and double the fastpath cost.
7372 */
7373 rq_clock_skip_update(rq);
7374 }
7375
7376 set_skip_buddy(se);
7377 }
7378
yield_to_task_fair(struct rq * rq,struct task_struct * p)7379 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7380 {
7381 struct sched_entity *se = &p->se;
7382
7383 /* throttled hierarchies are not runnable */
7384 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7385 return false;
7386
7387 /* Tell the scheduler that we'd really like pse to run next. */
7388 set_next_buddy(se);
7389
7390 yield_task_fair(rq);
7391
7392 return true;
7393 }
7394
7395 #ifdef CONFIG_SMP
7396 /**************************************************
7397 * Fair scheduling class load-balancing methods.
7398 *
7399 * BASICS
7400 *
7401 * The purpose of load-balancing is to achieve the same basic fairness the
7402 * per-CPU scheduler provides, namely provide a proportional amount of compute
7403 * time to each task. This is expressed in the following equation:
7404 *
7405 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7406 *
7407 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7408 * W_i,0 is defined as:
7409 *
7410 * W_i,0 = \Sum_j w_i,j (2)
7411 *
7412 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7413 * is derived from the nice value as per sched_prio_to_weight[].
7414 *
7415 * The weight average is an exponential decay average of the instantaneous
7416 * weight:
7417 *
7418 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7419 *
7420 * C_i is the compute capacity of CPU i, typically it is the
7421 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7422 * can also include other factors [XXX].
7423 *
7424 * To achieve this balance we define a measure of imbalance which follows
7425 * directly from (1):
7426 *
7427 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7428 *
7429 * We them move tasks around to minimize the imbalance. In the continuous
7430 * function space it is obvious this converges, in the discrete case we get
7431 * a few fun cases generally called infeasible weight scenarios.
7432 *
7433 * [XXX expand on:
7434 * - infeasible weights;
7435 * - local vs global optima in the discrete case. ]
7436 *
7437 *
7438 * SCHED DOMAINS
7439 *
7440 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7441 * for all i,j solution, we create a tree of CPUs that follows the hardware
7442 * topology where each level pairs two lower groups (or better). This results
7443 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7444 * tree to only the first of the previous level and we decrease the frequency
7445 * of load-balance at each level inv. proportional to the number of CPUs in
7446 * the groups.
7447 *
7448 * This yields:
7449 *
7450 * log_2 n 1 n
7451 * \Sum { --- * --- * 2^i } = O(n) (5)
7452 * i = 0 2^i 2^i
7453 * `- size of each group
7454 * | | `- number of CPUs doing load-balance
7455 * | `- freq
7456 * `- sum over all levels
7457 *
7458 * Coupled with a limit on how many tasks we can migrate every balance pass,
7459 * this makes (5) the runtime complexity of the balancer.
7460 *
7461 * An important property here is that each CPU is still (indirectly) connected
7462 * to every other CPU in at most O(log n) steps:
7463 *
7464 * The adjacency matrix of the resulting graph is given by:
7465 *
7466 * log_2 n
7467 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7468 * k = 0
7469 *
7470 * And you'll find that:
7471 *
7472 * A^(log_2 n)_i,j != 0 for all i,j (7)
7473 *
7474 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7475 * The task movement gives a factor of O(m), giving a convergence complexity
7476 * of:
7477 *
7478 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7479 *
7480 *
7481 * WORK CONSERVING
7482 *
7483 * In order to avoid CPUs going idle while there's still work to do, new idle
7484 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7485 * tree itself instead of relying on other CPUs to bring it work.
7486 *
7487 * This adds some complexity to both (5) and (8) but it reduces the total idle
7488 * time.
7489 *
7490 * [XXX more?]
7491 *
7492 *
7493 * CGROUPS
7494 *
7495 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7496 *
7497 * s_k,i
7498 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7499 * S_k
7500 *
7501 * Where
7502 *
7503 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7504 *
7505 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7506 *
7507 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7508 * property.
7509 *
7510 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7511 * rewrite all of this once again.]
7512 */
7513
7514 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7515
7516 enum fbq_type { regular, remote, all };
7517
7518 /*
7519 * 'group_type' describes the group of CPUs at the moment of load balancing.
7520 *
7521 * The enum is ordered by pulling priority, with the group with lowest priority
7522 * first so the group_type can simply be compared when selecting the busiest
7523 * group. See update_sd_pick_busiest().
7524 */
7525 enum group_type {
7526 /* The group has spare capacity that can be used to run more tasks. */
7527 group_has_spare = 0,
7528 /*
7529 * The group is fully used and the tasks don't compete for more CPU
7530 * cycles. Nevertheless, some tasks might wait before running.
7531 */
7532 group_fully_busy,
7533 /*
7534 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7535 * and must be migrated to a more powerful CPU.
7536 */
7537 group_misfit_task,
7538 /*
7539 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7540 * and the task should be migrated to it instead of running on the
7541 * current CPU.
7542 */
7543 group_asym_packing,
7544 /*
7545 * The tasks' affinity constraints previously prevented the scheduler
7546 * from balancing the load across the system.
7547 */
7548 group_imbalanced,
7549 /*
7550 * The CPU is overloaded and can't provide expected CPU cycles to all
7551 * tasks.
7552 */
7553 group_overloaded
7554 };
7555
7556 enum migration_type {
7557 migrate_load = 0,
7558 migrate_util,
7559 migrate_task,
7560 migrate_misfit
7561 };
7562
7563 #define LBF_ALL_PINNED 0x01
7564 #define LBF_NEED_BREAK 0x02
7565 #define LBF_DST_PINNED 0x04
7566 #define LBF_SOME_PINNED 0x08
7567 #define LBF_NOHZ_STATS 0x10
7568 #define LBF_NOHZ_AGAIN 0x20
7569 #define LBF_IGNORE_PREFERRED_CLUSTER_TASKS 0x200
7570
7571 struct lb_env {
7572 struct sched_domain *sd;
7573
7574 struct rq *src_rq;
7575 int src_cpu;
7576
7577 int dst_cpu;
7578 struct rq *dst_rq;
7579
7580 struct cpumask *dst_grpmask;
7581 int new_dst_cpu;
7582 enum cpu_idle_type idle;
7583 long imbalance;
7584 /* The set of CPUs under consideration for load-balancing */
7585 struct cpumask *cpus;
7586
7587 unsigned int flags;
7588
7589 unsigned int loop;
7590 unsigned int loop_break;
7591 unsigned int loop_max;
7592
7593 enum fbq_type fbq_type;
7594 enum migration_type migration_type;
7595 struct list_head tasks;
7596 };
7597
7598 /*
7599 * Is this task likely cache-hot:
7600 */
task_hot(struct task_struct * p,struct lb_env * env)7601 static int task_hot(struct task_struct *p, struct lb_env *env)
7602 {
7603 s64 delta;
7604
7605 lockdep_assert_held(&env->src_rq->lock);
7606
7607 if (p->sched_class != &fair_sched_class)
7608 return 0;
7609
7610 if (unlikely(task_has_idle_policy(p)))
7611 return 0;
7612
7613 /* SMT siblings share cache */
7614 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7615 return 0;
7616
7617 /*
7618 * Buddy candidates are cache hot:
7619 */
7620 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7621 (&p->se == cfs_rq_of(&p->se)->next ||
7622 &p->se == cfs_rq_of(&p->se)->last))
7623 return 1;
7624
7625 if (sysctl_sched_migration_cost == -1)
7626 return 1;
7627 if (sysctl_sched_migration_cost == 0)
7628 return 0;
7629
7630 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7631
7632 return delta < (s64)sysctl_sched_migration_cost;
7633 }
7634
7635 #ifdef CONFIG_NUMA_BALANCING
7636 /*
7637 * Returns 1, if task migration degrades locality
7638 * Returns 0, if task migration improves locality i.e migration preferred.
7639 * Returns -1, if task migration is not affected by locality.
7640 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7641 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7642 {
7643 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7644 unsigned long src_weight, dst_weight;
7645 int src_nid, dst_nid, dist;
7646
7647 if (!static_branch_likely(&sched_numa_balancing))
7648 return -1;
7649
7650 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7651 return -1;
7652
7653 src_nid = cpu_to_node(env->src_cpu);
7654 dst_nid = cpu_to_node(env->dst_cpu);
7655
7656 if (src_nid == dst_nid)
7657 return -1;
7658
7659 /* Migrating away from the preferred node is always bad. */
7660 if (src_nid == p->numa_preferred_nid) {
7661 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7662 return 1;
7663 else
7664 return -1;
7665 }
7666
7667 /* Encourage migration to the preferred node. */
7668 if (dst_nid == p->numa_preferred_nid)
7669 return 0;
7670
7671 /* Leaving a core idle is often worse than degrading locality. */
7672 if (env->idle == CPU_IDLE)
7673 return -1;
7674
7675 dist = node_distance(src_nid, dst_nid);
7676 if (numa_group) {
7677 src_weight = group_weight(p, src_nid, dist);
7678 dst_weight = group_weight(p, dst_nid, dist);
7679 } else {
7680 src_weight = task_weight(p, src_nid, dist);
7681 dst_weight = task_weight(p, dst_nid, dist);
7682 }
7683
7684 return dst_weight < src_weight;
7685 }
7686
7687 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7688 static inline int migrate_degrades_locality(struct task_struct *p,
7689 struct lb_env *env)
7690 {
7691 return -1;
7692 }
7693 #endif
7694
7695 /*
7696 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7697 */
7698 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7699 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7700 {
7701 int tsk_cache_hot;
7702
7703 lockdep_assert_held(&env->src_rq->lock);
7704
7705 /*
7706 * We do not migrate tasks that are:
7707 * 1) throttled_lb_pair, or
7708 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7709 * 3) running (obviously), or
7710 * 4) are cache-hot on their current CPU.
7711 */
7712 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7713 return 0;
7714
7715 /* Disregard pcpu kthreads; they are where they need to be. */
7716 if (kthread_is_per_cpu(p))
7717 return 0;
7718
7719 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7720 int cpu;
7721
7722 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7723
7724 env->flags |= LBF_SOME_PINNED;
7725
7726 /*
7727 * Remember if this task can be migrated to any other CPU in
7728 * our sched_group. We may want to revisit it if we couldn't
7729 * meet load balance goals by pulling other tasks on src_cpu.
7730 *
7731 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7732 * already computed one in current iteration.
7733 */
7734 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7735 return 0;
7736
7737 /* Prevent to re-select dst_cpu via env's CPUs: */
7738 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7739 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7740 env->flags |= LBF_DST_PINNED;
7741 env->new_dst_cpu = cpu;
7742 break;
7743 }
7744 }
7745
7746 return 0;
7747 }
7748
7749 /* Record that we found atleast one task that could run on dst_cpu */
7750 env->flags &= ~LBF_ALL_PINNED;
7751
7752
7753 #ifdef CONFIG_SCHED_RTG
7754 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS &&
7755 !preferred_cluster(cpu_rq(env->dst_cpu)->cluster, p))
7756 return 0;
7757 #endif
7758
7759 if (task_running(env->src_rq, p)) {
7760 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7761 return 0;
7762 }
7763
7764 /*
7765 * Aggressive migration if:
7766 * 1) destination numa is preferred
7767 * 2) task is cache cold, or
7768 * 3) too many balance attempts have failed.
7769 */
7770 tsk_cache_hot = migrate_degrades_locality(p, env);
7771 if (tsk_cache_hot == -1)
7772 tsk_cache_hot = task_hot(p, env);
7773
7774 if (tsk_cache_hot <= 0 ||
7775 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7776 if (tsk_cache_hot == 1) {
7777 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7778 schedstat_inc(p->se.statistics.nr_forced_migrations);
7779 }
7780 return 1;
7781 }
7782
7783 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7784 return 0;
7785 }
7786
7787 /*
7788 * detach_task() -- detach the task for the migration specified in env
7789 */
detach_task(struct task_struct * p,struct lb_env * env)7790 static void detach_task(struct task_struct *p, struct lb_env *env)
7791 {
7792 lockdep_assert_held(&env->src_rq->lock);
7793
7794 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7795 #ifdef CONFIG_SCHED_WALT
7796 double_lock_balance(env->src_rq, env->dst_rq);
7797 if (!(env->src_rq->clock_update_flags & RQCF_UPDATED))
7798 update_rq_clock(env->src_rq);
7799 #endif
7800 set_task_cpu(p, env->dst_cpu);
7801 #ifdef CONFIG_SCHED_WALT
7802 double_unlock_balance(env->src_rq, env->dst_rq);
7803 #endif
7804 }
7805
7806 /*
7807 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7808 * part of active balancing operations within "domain".
7809 *
7810 * Returns a task if successful and NULL otherwise.
7811 */
detach_one_task(struct lb_env * env)7812 static struct task_struct *detach_one_task(struct lb_env *env)
7813 {
7814 struct task_struct *p;
7815
7816 lockdep_assert_held(&env->src_rq->lock);
7817
7818 list_for_each_entry_reverse(p,
7819 &env->src_rq->cfs_tasks, se.group_node) {
7820 if (!can_migrate_task(p, env))
7821 continue;
7822
7823 detach_task(p, env);
7824
7825 /*
7826 * Right now, this is only the second place where
7827 * lb_gained[env->idle] is updated (other is detach_tasks)
7828 * so we can safely collect stats here rather than
7829 * inside detach_tasks().
7830 */
7831 schedstat_inc(env->sd->lb_gained[env->idle]);
7832 return p;
7833 }
7834 return NULL;
7835 }
7836
7837 static const unsigned int sched_nr_migrate_break = 32;
7838
7839 /*
7840 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7841 * busiest_rq, as part of a balancing operation within domain "sd".
7842 *
7843 * Returns number of detached tasks if successful and 0 otherwise.
7844 */
detach_tasks(struct lb_env * env)7845 static int detach_tasks(struct lb_env *env)
7846 {
7847 struct list_head *tasks = &env->src_rq->cfs_tasks;
7848 unsigned long util, load;
7849 struct task_struct *p;
7850 int detached = 0;
7851 #ifdef CONFIG_SCHED_RTG
7852 int orig_loop = env->loop;
7853 #endif
7854
7855 lockdep_assert_held(&env->src_rq->lock);
7856
7857 if (env->imbalance <= 0)
7858 return 0;
7859
7860 #ifdef CONFIG_SCHED_RTG
7861 if (!same_cluster(env->dst_cpu, env->src_cpu))
7862 env->flags |= LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
7863
7864 redo:
7865 #endif
7866 while (!list_empty(tasks)) {
7867 /*
7868 * We don't want to steal all, otherwise we may be treated likewise,
7869 * which could at worst lead to a livelock crash.
7870 */
7871 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7872 break;
7873
7874 p = list_last_entry(tasks, struct task_struct, se.group_node);
7875
7876 env->loop++;
7877 /* We've more or less seen every task there is, call it quits */
7878 if (env->loop > env->loop_max)
7879 break;
7880
7881 /* take a breather every nr_migrate tasks */
7882 if (env->loop > env->loop_break) {
7883 env->loop_break += sched_nr_migrate_break;
7884 env->flags |= LBF_NEED_BREAK;
7885 break;
7886 }
7887
7888 if (!can_migrate_task(p, env))
7889 goto next;
7890
7891 switch (env->migration_type) {
7892 case migrate_load:
7893 /*
7894 * Depending of the number of CPUs and tasks and the
7895 * cgroup hierarchy, task_h_load() can return a null
7896 * value. Make sure that env->imbalance decreases
7897 * otherwise detach_tasks() will stop only after
7898 * detaching up to loop_max tasks.
7899 */
7900 load = max_t(unsigned long, task_h_load(p), 1);
7901
7902 if (sched_feat(LB_MIN) &&
7903 load < 16 && !env->sd->nr_balance_failed)
7904 goto next;
7905
7906 /*
7907 * Make sure that we don't migrate too much load.
7908 * Nevertheless, let relax the constraint if
7909 * scheduler fails to find a good waiting task to
7910 * migrate.
7911 */
7912 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7913 goto next;
7914
7915 env->imbalance -= load;
7916 break;
7917
7918 case migrate_util:
7919 util = task_util_est(p);
7920
7921 if (util > env->imbalance)
7922 goto next;
7923
7924 env->imbalance -= util;
7925 break;
7926
7927 case migrate_task:
7928 env->imbalance--;
7929 break;
7930
7931 case migrate_misfit:
7932 /* This is not a misfit task */
7933 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7934 goto next;
7935
7936 env->imbalance = 0;
7937 break;
7938 }
7939
7940 detach_task(p, env);
7941 list_add(&p->se.group_node, &env->tasks);
7942
7943 detached++;
7944
7945 #ifdef CONFIG_PREEMPTION
7946 /*
7947 * NEWIDLE balancing is a source of latency, so preemptible
7948 * kernels will stop after the first task is detached to minimize
7949 * the critical section.
7950 */
7951 if (env->idle == CPU_NEWLY_IDLE)
7952 break;
7953 #endif
7954
7955 /*
7956 * We only want to steal up to the prescribed amount of
7957 * load/util/tasks.
7958 */
7959 if (env->imbalance <= 0)
7960 break;
7961
7962 continue;
7963 next:
7964 list_move(&p->se.group_node, tasks);
7965 }
7966
7967 #ifdef CONFIG_SCHED_RTG
7968 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !detached) {
7969 tasks = &env->src_rq->cfs_tasks;
7970 env->flags &= ~LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
7971 env->loop = orig_loop;
7972 goto redo;
7973 }
7974 #endif
7975
7976 /*
7977 * Right now, this is one of only two places we collect this stat
7978 * so we can safely collect detach_one_task() stats here rather
7979 * than inside detach_one_task().
7980 */
7981 schedstat_add(env->sd->lb_gained[env->idle], detached);
7982
7983 return detached;
7984 }
7985
7986 /*
7987 * attach_task() -- attach the task detached by detach_task() to its new rq.
7988 */
attach_task(struct rq * rq,struct task_struct * p)7989 static void attach_task(struct rq *rq, struct task_struct *p)
7990 {
7991 lockdep_assert_held(&rq->lock);
7992
7993 BUG_ON(task_rq(p) != rq);
7994 activate_task(rq, p, ENQUEUE_NOCLOCK);
7995 check_preempt_curr(rq, p, 0);
7996 }
7997
7998 /*
7999 * attach_one_task() -- attaches the task returned from detach_one_task() to
8000 * its new rq.
8001 */
attach_one_task(struct rq * rq,struct task_struct * p)8002 static void attach_one_task(struct rq *rq, struct task_struct *p)
8003 {
8004 struct rq_flags rf;
8005
8006 rq_lock(rq, &rf);
8007 update_rq_clock(rq);
8008 attach_task(rq, p);
8009 rq_unlock(rq, &rf);
8010 }
8011
8012 /*
8013 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8014 * new rq.
8015 */
attach_tasks(struct lb_env * env)8016 static void attach_tasks(struct lb_env *env)
8017 {
8018 struct list_head *tasks = &env->tasks;
8019 struct task_struct *p;
8020 struct rq_flags rf;
8021
8022 rq_lock(env->dst_rq, &rf);
8023 update_rq_clock(env->dst_rq);
8024
8025 while (!list_empty(tasks)) {
8026 p = list_first_entry(tasks, struct task_struct, se.group_node);
8027 list_del_init(&p->se.group_node);
8028
8029 attach_task(env->dst_rq, p);
8030 }
8031
8032 rq_unlock(env->dst_rq, &rf);
8033 }
8034
8035 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8036 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8037 {
8038 if (cfs_rq->avg.load_avg)
8039 return true;
8040
8041 if (cfs_rq->avg.util_avg)
8042 return true;
8043
8044 return false;
8045 }
8046
others_have_blocked(struct rq * rq)8047 static inline bool others_have_blocked(struct rq *rq)
8048 {
8049 if (READ_ONCE(rq->avg_rt.util_avg))
8050 return true;
8051
8052 if (READ_ONCE(rq->avg_dl.util_avg))
8053 return true;
8054
8055 if (thermal_load_avg(rq))
8056 return true;
8057
8058 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8059 if (READ_ONCE(rq->avg_irq.util_avg))
8060 return true;
8061 #endif
8062
8063 return false;
8064 }
8065
update_blocked_load_status(struct rq * rq,bool has_blocked)8066 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8067 {
8068 rq->last_blocked_load_update_tick = jiffies;
8069
8070 if (!has_blocked)
8071 rq->has_blocked_load = 0;
8072 }
8073 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8074 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8075 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_status(struct rq * rq,bool has_blocked)8076 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8077 #endif
8078
__update_blocked_others(struct rq * rq,bool * done)8079 static bool __update_blocked_others(struct rq *rq, bool *done)
8080 {
8081 const struct sched_class *curr_class;
8082 u64 now = rq_clock_pelt(rq);
8083 unsigned long thermal_pressure;
8084 bool decayed;
8085
8086 /*
8087 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8088 * DL and IRQ signals have been updated before updating CFS.
8089 */
8090 curr_class = rq->curr->sched_class;
8091
8092 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8093
8094 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8095 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8096 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8097 update_irq_load_avg(rq, 0);
8098
8099 if (others_have_blocked(rq))
8100 *done = false;
8101
8102 return decayed;
8103 }
8104
8105 #ifdef CONFIG_FAIR_GROUP_SCHED
8106
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)8107 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8108 {
8109 if (cfs_rq->load.weight)
8110 return false;
8111
8112 if (cfs_rq->avg.load_sum)
8113 return false;
8114
8115 if (cfs_rq->avg.util_sum)
8116 return false;
8117
8118 if (cfs_rq->avg.runnable_sum)
8119 return false;
8120
8121 return true;
8122 }
8123
__update_blocked_fair(struct rq * rq,bool * done)8124 static bool __update_blocked_fair(struct rq *rq, bool *done)
8125 {
8126 struct cfs_rq *cfs_rq, *pos;
8127 bool decayed = false;
8128 int cpu = cpu_of(rq);
8129
8130 /*
8131 * Iterates the task_group tree in a bottom up fashion, see
8132 * list_add_leaf_cfs_rq() for details.
8133 */
8134 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8135 struct sched_entity *se;
8136
8137 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8138 update_tg_load_avg(cfs_rq);
8139
8140 if (cfs_rq == &rq->cfs)
8141 decayed = true;
8142 }
8143
8144 /* Propagate pending load changes to the parent, if any: */
8145 se = cfs_rq->tg->se[cpu];
8146 if (se && !skip_blocked_update(se))
8147 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8148
8149 /*
8150 * There can be a lot of idle CPU cgroups. Don't let fully
8151 * decayed cfs_rqs linger on the list.
8152 */
8153 if (cfs_rq_is_decayed(cfs_rq))
8154 list_del_leaf_cfs_rq(cfs_rq);
8155
8156 /* Don't need periodic decay once load/util_avg are null */
8157 if (cfs_rq_has_blocked(cfs_rq))
8158 *done = false;
8159 }
8160
8161 return decayed;
8162 }
8163
8164 /*
8165 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8166 * This needs to be done in a top-down fashion because the load of a child
8167 * group is a fraction of its parents load.
8168 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8169 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8170 {
8171 struct rq *rq = rq_of(cfs_rq);
8172 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8173 unsigned long now = jiffies;
8174 unsigned long load;
8175
8176 if (cfs_rq->last_h_load_update == now)
8177 return;
8178
8179 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8180 for_each_sched_entity(se) {
8181 cfs_rq = cfs_rq_of(se);
8182 WRITE_ONCE(cfs_rq->h_load_next, se);
8183 if (cfs_rq->last_h_load_update == now)
8184 break;
8185 }
8186
8187 if (!se) {
8188 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8189 cfs_rq->last_h_load_update = now;
8190 }
8191
8192 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8193 load = cfs_rq->h_load;
8194 load = div64_ul(load * se->avg.load_avg,
8195 cfs_rq_load_avg(cfs_rq) + 1);
8196 cfs_rq = group_cfs_rq(se);
8197 cfs_rq->h_load = load;
8198 cfs_rq->last_h_load_update = now;
8199 }
8200 }
8201
task_h_load(struct task_struct * p)8202 static unsigned long task_h_load(struct task_struct *p)
8203 {
8204 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8205
8206 update_cfs_rq_h_load(cfs_rq);
8207 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8208 cfs_rq_load_avg(cfs_rq) + 1);
8209 }
8210 #else
__update_blocked_fair(struct rq * rq,bool * done)8211 static bool __update_blocked_fair(struct rq *rq, bool *done)
8212 {
8213 struct cfs_rq *cfs_rq = &rq->cfs;
8214 bool decayed;
8215
8216 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8217 if (cfs_rq_has_blocked(cfs_rq))
8218 *done = false;
8219
8220 return decayed;
8221 }
8222
task_h_load(struct task_struct * p)8223 static unsigned long task_h_load(struct task_struct *p)
8224 {
8225 return p->se.avg.load_avg;
8226 }
8227 #endif
8228
update_blocked_averages(int cpu)8229 static void update_blocked_averages(int cpu)
8230 {
8231 bool decayed = false, done = true;
8232 struct rq *rq = cpu_rq(cpu);
8233 struct rq_flags rf;
8234
8235 rq_lock_irqsave(rq, &rf);
8236 update_rq_clock(rq);
8237
8238 decayed |= __update_blocked_others(rq, &done);
8239 decayed |= __update_blocked_fair(rq, &done);
8240
8241 update_blocked_load_status(rq, !done);
8242 if (decayed)
8243 cpufreq_update_util(rq, 0);
8244 rq_unlock_irqrestore(rq, &rf);
8245 }
8246
8247 /********** Helpers for find_busiest_group ************************/
8248
8249 /*
8250 * sg_lb_stats - stats of a sched_group required for load_balancing
8251 */
8252 struct sg_lb_stats {
8253 unsigned long avg_load; /*Avg load across the CPUs of the group */
8254 unsigned long group_load; /* Total load over the CPUs of the group */
8255 unsigned long group_capacity;
8256 unsigned long group_util; /* Total utilization over the CPUs of the group */
8257 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8258 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8259 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8260 unsigned int idle_cpus;
8261 unsigned int group_weight;
8262 enum group_type group_type;
8263 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8264 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8265 #ifdef CONFIG_NUMA_BALANCING
8266 unsigned int nr_numa_running;
8267 unsigned int nr_preferred_running;
8268 #endif
8269 };
8270
8271 /*
8272 * sd_lb_stats - Structure to store the statistics of a sched_domain
8273 * during load balancing.
8274 */
8275 struct sd_lb_stats {
8276 struct sched_group *busiest; /* Busiest group in this sd */
8277 struct sched_group *local; /* Local group in this sd */
8278 unsigned long total_load; /* Total load of all groups in sd */
8279 unsigned long total_capacity; /* Total capacity of all groups in sd */
8280 unsigned long avg_load; /* Average load across all groups in sd */
8281 unsigned int prefer_sibling; /* tasks should go to sibling first */
8282
8283 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8284 struct sg_lb_stats local_stat; /* Statistics of the local group */
8285 };
8286
init_sd_lb_stats(struct sd_lb_stats * sds)8287 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8288 {
8289 /*
8290 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8291 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8292 * We must however set busiest_stat::group_type and
8293 * busiest_stat::idle_cpus to the worst busiest group because
8294 * update_sd_pick_busiest() reads these before assignment.
8295 */
8296 *sds = (struct sd_lb_stats){
8297 .busiest = NULL,
8298 .local = NULL,
8299 .total_load = 0UL,
8300 .total_capacity = 0UL,
8301 .busiest_stat = {
8302 .idle_cpus = UINT_MAX,
8303 .group_type = group_has_spare,
8304 },
8305 };
8306 }
8307
scale_rt_capacity(int cpu)8308 static unsigned long scale_rt_capacity(int cpu)
8309 {
8310 struct rq *rq = cpu_rq(cpu);
8311 unsigned long max = arch_scale_cpu_capacity(cpu);
8312 unsigned long used, free;
8313 unsigned long irq;
8314
8315 irq = cpu_util_irq(rq);
8316
8317 if (unlikely(irq >= max))
8318 return 1;
8319
8320 /*
8321 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8322 * (running and not running) with weights 0 and 1024 respectively.
8323 * avg_thermal.load_avg tracks thermal pressure and the weighted
8324 * average uses the actual delta max capacity(load).
8325 */
8326 used = READ_ONCE(rq->avg_rt.util_avg);
8327 used += READ_ONCE(rq->avg_dl.util_avg);
8328 used += thermal_load_avg(rq);
8329
8330 if (unlikely(used >= max))
8331 return 1;
8332
8333 free = max - used;
8334
8335 return scale_irq_capacity(free, irq, max);
8336 }
8337
update_cpu_capacity(struct sched_domain * sd,int cpu)8338 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8339 {
8340 unsigned long capacity = scale_rt_capacity(cpu);
8341 struct sched_group *sdg = sd->groups;
8342
8343 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8344
8345 if (!capacity)
8346 capacity = 1;
8347
8348 cpu_rq(cpu)->cpu_capacity = capacity;
8349 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8350
8351 sdg->sgc->capacity = capacity;
8352 sdg->sgc->min_capacity = capacity;
8353 sdg->sgc->max_capacity = capacity;
8354 }
8355
update_group_capacity(struct sched_domain * sd,int cpu)8356 void update_group_capacity(struct sched_domain *sd, int cpu)
8357 {
8358 struct sched_domain *child = sd->child;
8359 struct sched_group *group, *sdg = sd->groups;
8360 unsigned long capacity, min_capacity, max_capacity;
8361 unsigned long interval;
8362
8363 interval = msecs_to_jiffies(sd->balance_interval);
8364 interval = clamp(interval, 1UL, max_load_balance_interval);
8365 sdg->sgc->next_update = jiffies + interval;
8366
8367 if (!child) {
8368 update_cpu_capacity(sd, cpu);
8369 return;
8370 }
8371
8372 capacity = 0;
8373 min_capacity = ULONG_MAX;
8374 max_capacity = 0;
8375
8376 if (child->flags & SD_OVERLAP) {
8377 /*
8378 * SD_OVERLAP domains cannot assume that child groups
8379 * span the current group.
8380 */
8381
8382 for_each_cpu(cpu, sched_group_span(sdg)) {
8383 unsigned long cpu_cap = capacity_of(cpu);
8384
8385 if (cpu_isolated(cpu))
8386 continue;
8387
8388 capacity += cpu_cap;
8389 min_capacity = min(cpu_cap, min_capacity);
8390 max_capacity = max(cpu_cap, max_capacity);
8391 }
8392 } else {
8393 /*
8394 * !SD_OVERLAP domains can assume that child groups
8395 * span the current group.
8396 */
8397
8398 group = child->groups;
8399 do {
8400 struct sched_group_capacity *sgc = group->sgc;
8401 __maybe_unused cpumask_t *cpus =
8402 sched_group_span(group);
8403
8404 if (!cpu_isolated(cpumask_first(cpus))) {
8405 capacity += sgc->capacity;
8406 min_capacity = min(sgc->min_capacity,
8407 min_capacity);
8408 max_capacity = max(sgc->max_capacity,
8409 max_capacity);
8410 }
8411 group = group->next;
8412 } while (group != child->groups);
8413 }
8414
8415 sdg->sgc->capacity = capacity;
8416 sdg->sgc->min_capacity = min_capacity;
8417 sdg->sgc->max_capacity = max_capacity;
8418 }
8419
8420 /*
8421 * Check whether the capacity of the rq has been noticeably reduced by side
8422 * activity. The imbalance_pct is used for the threshold.
8423 * Return true is the capacity is reduced
8424 */
8425 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8426 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8427 {
8428 return ((rq->cpu_capacity * sd->imbalance_pct) <
8429 (rq->cpu_capacity_orig * 100));
8430 }
8431
8432 /*
8433 * Check whether a rq has a misfit task and if it looks like we can actually
8434 * help that task: we can migrate the task to a CPU of higher capacity, or
8435 * the task's current CPU is heavily pressured.
8436 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8437 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8438 {
8439 return rq->misfit_task_load &&
8440 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8441 check_cpu_capacity(rq, sd));
8442 }
8443
8444 /*
8445 * Group imbalance indicates (and tries to solve) the problem where balancing
8446 * groups is inadequate due to ->cpus_ptr constraints.
8447 *
8448 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8449 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8450 * Something like:
8451 *
8452 * { 0 1 2 3 } { 4 5 6 7 }
8453 * * * * *
8454 *
8455 * If we were to balance group-wise we'd place two tasks in the first group and
8456 * two tasks in the second group. Clearly this is undesired as it will overload
8457 * cpu 3 and leave one of the CPUs in the second group unused.
8458 *
8459 * The current solution to this issue is detecting the skew in the first group
8460 * by noticing the lower domain failed to reach balance and had difficulty
8461 * moving tasks due to affinity constraints.
8462 *
8463 * When this is so detected; this group becomes a candidate for busiest; see
8464 * update_sd_pick_busiest(). And calculate_imbalance() and
8465 * find_busiest_group() avoid some of the usual balance conditions to allow it
8466 * to create an effective group imbalance.
8467 *
8468 * This is a somewhat tricky proposition since the next run might not find the
8469 * group imbalance and decide the groups need to be balanced again. A most
8470 * subtle and fragile situation.
8471 */
8472
sg_imbalanced(struct sched_group * group)8473 static inline int sg_imbalanced(struct sched_group *group)
8474 {
8475 return group->sgc->imbalance;
8476 }
8477
8478 /*
8479 * group_has_capacity returns true if the group has spare capacity that could
8480 * be used by some tasks.
8481 * We consider that a group has spare capacity if the * number of task is
8482 * smaller than the number of CPUs or if the utilization is lower than the
8483 * available capacity for CFS tasks.
8484 * For the latter, we use a threshold to stabilize the state, to take into
8485 * account the variance of the tasks' load and to return true if the available
8486 * capacity in meaningful for the load balancer.
8487 * As an example, an available capacity of 1% can appear but it doesn't make
8488 * any benefit for the load balance.
8489 */
8490 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8491 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8492 {
8493 if (sgs->sum_nr_running < sgs->group_weight)
8494 return true;
8495
8496 if ((sgs->group_capacity * imbalance_pct) <
8497 (sgs->group_runnable * 100))
8498 return false;
8499
8500 if ((sgs->group_capacity * 100) >
8501 (sgs->group_util * imbalance_pct))
8502 return true;
8503
8504 return false;
8505 }
8506
8507 /*
8508 * group_is_overloaded returns true if the group has more tasks than it can
8509 * handle.
8510 * group_is_overloaded is not equals to !group_has_capacity because a group
8511 * with the exact right number of tasks, has no more spare capacity but is not
8512 * overloaded so both group_has_capacity and group_is_overloaded return
8513 * false.
8514 */
8515 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8516 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8517 {
8518 if (sgs->sum_nr_running <= sgs->group_weight)
8519 return false;
8520
8521 if ((sgs->group_capacity * 100) <
8522 (sgs->group_util * imbalance_pct))
8523 return true;
8524
8525 if ((sgs->group_capacity * imbalance_pct) <
8526 (sgs->group_runnable * 100))
8527 return true;
8528
8529 return false;
8530 }
8531
8532 /*
8533 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8534 * per-CPU capacity than sched_group ref.
8535 */
8536 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8537 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8538 {
8539 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8540 }
8541
8542 /*
8543 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8544 * per-CPU capacity_orig than sched_group ref.
8545 */
8546 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8547 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8548 {
8549 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8550 }
8551
8552 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8553 group_type group_classify(unsigned int imbalance_pct,
8554 struct sched_group *group,
8555 struct sg_lb_stats *sgs)
8556 {
8557 if (group_is_overloaded(imbalance_pct, sgs))
8558 return group_overloaded;
8559
8560 if (sg_imbalanced(group))
8561 return group_imbalanced;
8562
8563 if (sgs->group_asym_packing)
8564 return group_asym_packing;
8565
8566 if (sgs->group_misfit_task_load)
8567 return group_misfit_task;
8568
8569 if (!group_has_capacity(imbalance_pct, sgs))
8570 return group_fully_busy;
8571
8572 return group_has_spare;
8573 }
8574
update_nohz_stats(struct rq * rq,bool force)8575 static bool update_nohz_stats(struct rq *rq, bool force)
8576 {
8577 #ifdef CONFIG_NO_HZ_COMMON
8578 unsigned int cpu = rq->cpu;
8579
8580 if (!rq->has_blocked_load)
8581 return false;
8582
8583 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8584 return false;
8585
8586 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8587 return true;
8588
8589 update_blocked_averages(cpu);
8590
8591 return rq->has_blocked_load;
8592 #else
8593 return false;
8594 #endif
8595 }
8596
8597 /**
8598 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8599 * @env: The load balancing environment.
8600 * @group: sched_group whose statistics are to be updated.
8601 * @sgs: variable to hold the statistics for this group.
8602 * @sg_status: Holds flag indicating the status of the sched_group
8603 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8604 static inline void update_sg_lb_stats(struct lb_env *env,
8605 struct sched_group *group,
8606 struct sg_lb_stats *sgs,
8607 int *sg_status)
8608 {
8609 int i, nr_running, local_group;
8610
8611 memset(sgs, 0, sizeof(*sgs));
8612
8613 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8614
8615 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8616 struct rq *rq = cpu_rq(i);
8617
8618 if (cpu_isolated(i))
8619 continue;
8620
8621 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8622 env->flags |= LBF_NOHZ_AGAIN;
8623
8624 sgs->group_load += cpu_load(rq);
8625 sgs->group_util += cpu_util(i);
8626 sgs->group_runnable += cpu_runnable(rq);
8627 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8628
8629 nr_running = rq->nr_running;
8630 sgs->sum_nr_running += nr_running;
8631
8632 if (nr_running > 1)
8633 *sg_status |= SG_OVERLOAD;
8634
8635 if (cpu_overutilized(i))
8636 *sg_status |= SG_OVERUTILIZED;
8637
8638 #ifdef CONFIG_NUMA_BALANCING
8639 sgs->nr_numa_running += rq->nr_numa_running;
8640 sgs->nr_preferred_running += rq->nr_preferred_running;
8641 #endif
8642 /*
8643 * No need to call idle_cpu() if nr_running is not 0
8644 */
8645 if (!nr_running && idle_cpu(i)) {
8646 sgs->idle_cpus++;
8647 /* Idle cpu can't have misfit task */
8648 continue;
8649 }
8650
8651 if (local_group)
8652 continue;
8653
8654 /* Check for a misfit task on the cpu */
8655 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8656 sgs->group_misfit_task_load < rq->misfit_task_load) {
8657 sgs->group_misfit_task_load = rq->misfit_task_load;
8658 *sg_status |= SG_OVERLOAD;
8659 }
8660 }
8661
8662 /* Isolated CPU has no weight */
8663 if (!group->group_weight) {
8664 sgs->group_capacity = 0;
8665 sgs->avg_load = 0;
8666 sgs->group_type = group_has_spare;
8667 sgs->group_weight = group->group_weight;
8668 return;
8669 }
8670
8671 /* Check if dst CPU is idle and preferred to this group */
8672 if (env->sd->flags & SD_ASYM_PACKING &&
8673 env->idle != CPU_NOT_IDLE &&
8674 sgs->sum_h_nr_running &&
8675 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8676 sgs->group_asym_packing = 1;
8677 }
8678
8679 sgs->group_capacity = group->sgc->capacity;
8680
8681 sgs->group_weight = group->group_weight;
8682
8683 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8684
8685 /* Computing avg_load makes sense only when group is overloaded */
8686 if (sgs->group_type == group_overloaded)
8687 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8688 sgs->group_capacity;
8689 }
8690
8691 /**
8692 * update_sd_pick_busiest - return 1 on busiest group
8693 * @env: The load balancing environment.
8694 * @sds: sched_domain statistics
8695 * @sg: sched_group candidate to be checked for being the busiest
8696 * @sgs: sched_group statistics
8697 *
8698 * Determine if @sg is a busier group than the previously selected
8699 * busiest group.
8700 *
8701 * Return: %true if @sg is a busier group than the previously selected
8702 * busiest group. %false otherwise.
8703 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8704 static bool update_sd_pick_busiest(struct lb_env *env,
8705 struct sd_lb_stats *sds,
8706 struct sched_group *sg,
8707 struct sg_lb_stats *sgs)
8708 {
8709 struct sg_lb_stats *busiest = &sds->busiest_stat;
8710
8711 /* Make sure that there is at least one task to pull */
8712 if (!sgs->sum_h_nr_running)
8713 return false;
8714
8715 /*
8716 * Don't try to pull misfit tasks we can't help.
8717 * We can use max_capacity here as reduction in capacity on some
8718 * CPUs in the group should either be possible to resolve
8719 * internally or be covered by avg_load imbalance (eventually).
8720 */
8721 if (sgs->group_type == group_misfit_task &&
8722 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8723 sds->local_stat.group_type != group_has_spare))
8724 return false;
8725
8726 if (sgs->group_type > busiest->group_type)
8727 return true;
8728
8729 if (sgs->group_type < busiest->group_type)
8730 return false;
8731
8732 /*
8733 * The candidate and the current busiest group are the same type of
8734 * group. Let check which one is the busiest according to the type.
8735 */
8736
8737 switch (sgs->group_type) {
8738 case group_overloaded:
8739 /* Select the overloaded group with highest avg_load. */
8740 if (sgs->avg_load <= busiest->avg_load)
8741 return false;
8742 break;
8743
8744 case group_imbalanced:
8745 /*
8746 * Select the 1st imbalanced group as we don't have any way to
8747 * choose one more than another.
8748 */
8749 return false;
8750
8751 case group_asym_packing:
8752 /* Prefer to move from lowest priority CPU's work */
8753 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8754 return false;
8755 break;
8756
8757 case group_misfit_task:
8758 /*
8759 * If we have more than one misfit sg go with the biggest
8760 * misfit.
8761 */
8762 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8763 return false;
8764 break;
8765
8766 case group_fully_busy:
8767 /*
8768 * Select the fully busy group with highest avg_load. In
8769 * theory, there is no need to pull task from such kind of
8770 * group because tasks have all compute capacity that they need
8771 * but we can still improve the overall throughput by reducing
8772 * contention when accessing shared HW resources.
8773 *
8774 * XXX for now avg_load is not computed and always 0 so we
8775 * select the 1st one.
8776 */
8777 if (sgs->avg_load <= busiest->avg_load)
8778 return false;
8779 break;
8780
8781 case group_has_spare:
8782 /*
8783 * Select not overloaded group with lowest number of idle cpus
8784 * and highest number of running tasks. We could also compare
8785 * the spare capacity which is more stable but it can end up
8786 * that the group has less spare capacity but finally more idle
8787 * CPUs which means less opportunity to pull tasks.
8788 */
8789 if (sgs->idle_cpus > busiest->idle_cpus)
8790 return false;
8791 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8792 (sgs->sum_nr_running <= busiest->sum_nr_running))
8793 return false;
8794
8795 break;
8796 }
8797
8798 /*
8799 * Candidate sg has no more than one task per CPU and has higher
8800 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8801 * throughput. Maximize throughput, power/energy consequences are not
8802 * considered.
8803 */
8804 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8805 (sgs->group_type <= group_fully_busy) &&
8806 (group_smaller_min_cpu_capacity(sds->local, sg)))
8807 return false;
8808
8809 return true;
8810 }
8811
8812 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8813 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8814 {
8815 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8816 return regular;
8817 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8818 return remote;
8819 return all;
8820 }
8821
fbq_classify_rq(struct rq * rq)8822 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8823 {
8824 if (rq->nr_running > rq->nr_numa_running)
8825 return regular;
8826 if (rq->nr_running > rq->nr_preferred_running)
8827 return remote;
8828 return all;
8829 }
8830 #else
fbq_classify_group(struct sg_lb_stats * sgs)8831 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8832 {
8833 return all;
8834 }
8835
fbq_classify_rq(struct rq * rq)8836 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8837 {
8838 return regular;
8839 }
8840 #endif /* CONFIG_NUMA_BALANCING */
8841
8842
8843 struct sg_lb_stats;
8844
8845 /*
8846 * task_running_on_cpu - return 1 if @p is running on @cpu.
8847 */
8848
task_running_on_cpu(int cpu,struct task_struct * p)8849 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8850 {
8851 /* Task has no contribution or is new */
8852 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8853 return 0;
8854
8855 if (task_on_rq_queued(p))
8856 return 1;
8857
8858 return 0;
8859 }
8860
8861 /**
8862 * idle_cpu_without - would a given CPU be idle without p ?
8863 * @cpu: the processor on which idleness is tested.
8864 * @p: task which should be ignored.
8865 *
8866 * Return: 1 if the CPU would be idle. 0 otherwise.
8867 */
idle_cpu_without(int cpu,struct task_struct * p)8868 static int idle_cpu_without(int cpu, struct task_struct *p)
8869 {
8870 struct rq *rq = cpu_rq(cpu);
8871
8872 if (rq->curr != rq->idle && rq->curr != p)
8873 return 0;
8874
8875 /*
8876 * rq->nr_running can't be used but an updated version without the
8877 * impact of p on cpu must be used instead. The updated nr_running
8878 * be computed and tested before calling idle_cpu_without().
8879 */
8880
8881 #ifdef CONFIG_SMP
8882 if (rq->ttwu_pending)
8883 return 0;
8884 #endif
8885
8886 return 1;
8887 }
8888
8889 /*
8890 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8891 * @sd: The sched_domain level to look for idlest group.
8892 * @group: sched_group whose statistics are to be updated.
8893 * @sgs: variable to hold the statistics for this group.
8894 * @p: The task for which we look for the idlest group/CPU.
8895 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)8896 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8897 struct sched_group *group,
8898 struct sg_lb_stats *sgs,
8899 struct task_struct *p)
8900 {
8901 int i, nr_running;
8902
8903 memset(sgs, 0, sizeof(*sgs));
8904
8905 for_each_cpu(i, sched_group_span(group)) {
8906 struct rq *rq = cpu_rq(i);
8907 unsigned int local;
8908
8909 sgs->group_load += cpu_load_without(rq, p);
8910 sgs->group_util += cpu_util_without(i, p);
8911 sgs->group_runnable += cpu_runnable_without(rq, p);
8912 local = task_running_on_cpu(i, p);
8913 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8914
8915 nr_running = rq->nr_running - local;
8916 sgs->sum_nr_running += nr_running;
8917
8918 /*
8919 * No need to call idle_cpu_without() if nr_running is not 0
8920 */
8921 if (!nr_running && idle_cpu_without(i, p))
8922 sgs->idle_cpus++;
8923
8924 }
8925
8926 /* Check if task fits in the group */
8927 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8928 !task_fits_capacity(p, group->sgc->max_capacity)) {
8929 sgs->group_misfit_task_load = 1;
8930 }
8931
8932 sgs->group_capacity = group->sgc->capacity;
8933
8934 sgs->group_weight = group->group_weight;
8935
8936 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8937
8938 /*
8939 * Computing avg_load makes sense only when group is fully busy or
8940 * overloaded
8941 */
8942 if (sgs->group_type == group_fully_busy ||
8943 sgs->group_type == group_overloaded)
8944 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8945 sgs->group_capacity;
8946 }
8947
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)8948 static bool update_pick_idlest(struct sched_group *idlest,
8949 struct sg_lb_stats *idlest_sgs,
8950 struct sched_group *group,
8951 struct sg_lb_stats *sgs)
8952 {
8953 if (sgs->group_type < idlest_sgs->group_type)
8954 return true;
8955
8956 if (sgs->group_type > idlest_sgs->group_type)
8957 return false;
8958
8959 /*
8960 * The candidate and the current idlest group are the same type of
8961 * group. Let check which one is the idlest according to the type.
8962 */
8963
8964 switch (sgs->group_type) {
8965 case group_overloaded:
8966 case group_fully_busy:
8967 /* Select the group with lowest avg_load. */
8968 if (idlest_sgs->avg_load <= sgs->avg_load)
8969 return false;
8970 break;
8971
8972 case group_imbalanced:
8973 case group_asym_packing:
8974 /* Those types are not used in the slow wakeup path */
8975 return false;
8976
8977 case group_misfit_task:
8978 /* Select group with the highest max capacity */
8979 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8980 return false;
8981 break;
8982
8983 case group_has_spare:
8984 /* Select group with most idle CPUs */
8985 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8986 return false;
8987
8988 /* Select group with lowest group_util */
8989 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8990 idlest_sgs->group_util <= sgs->group_util)
8991 return false;
8992
8993 break;
8994 }
8995
8996 return true;
8997 }
8998
8999 /*
9000 * find_idlest_group() finds and returns the least busy CPU group within the
9001 * domain.
9002 *
9003 * Assumes p is allowed on at least one CPU in sd.
9004 */
9005 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9006 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9007 {
9008 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9009 struct sg_lb_stats local_sgs, tmp_sgs;
9010 struct sg_lb_stats *sgs;
9011 unsigned long imbalance;
9012 struct sg_lb_stats idlest_sgs = {
9013 .avg_load = UINT_MAX,
9014 .group_type = group_overloaded,
9015 };
9016 #ifdef CONFIG_CPU_ISOLATION_OPT
9017 cpumask_t allowed_cpus;
9018
9019 cpumask_andnot(&allowed_cpus, p->cpus_ptr, cpu_isolated_mask);
9020 #endif
9021
9022 imbalance = scale_load_down(NICE_0_LOAD) *
9023 (sd->imbalance_pct-100) / 100;
9024
9025 do {
9026 int local_group;
9027
9028 /* Skip over this group if it has no CPUs allowed */
9029 #ifdef CONFIG_CPU_ISOLATION_OPT
9030 if (!cpumask_intersects(sched_group_span(group),
9031 &allowed_cpus))
9032 #else
9033 if (!cpumask_intersects(sched_group_span(group),
9034 p->cpus_ptr))
9035 #endif
9036 continue;
9037
9038 local_group = cpumask_test_cpu(this_cpu,
9039 sched_group_span(group));
9040
9041 if (local_group) {
9042 sgs = &local_sgs;
9043 local = group;
9044 } else {
9045 sgs = &tmp_sgs;
9046 }
9047
9048 update_sg_wakeup_stats(sd, group, sgs, p);
9049
9050 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9051 idlest = group;
9052 idlest_sgs = *sgs;
9053 }
9054
9055 } while (group = group->next, group != sd->groups);
9056
9057
9058 /* There is no idlest group to push tasks to */
9059 if (!idlest)
9060 return NULL;
9061
9062 /* The local group has been skipped because of CPU affinity */
9063 if (!local)
9064 return idlest;
9065
9066 /*
9067 * If the local group is idler than the selected idlest group
9068 * don't try and push the task.
9069 */
9070 if (local_sgs.group_type < idlest_sgs.group_type)
9071 return NULL;
9072
9073 /*
9074 * If the local group is busier than the selected idlest group
9075 * try and push the task.
9076 */
9077 if (local_sgs.group_type > idlest_sgs.group_type)
9078 return idlest;
9079
9080 switch (local_sgs.group_type) {
9081 case group_overloaded:
9082 case group_fully_busy:
9083 /*
9084 * When comparing groups across NUMA domains, it's possible for
9085 * the local domain to be very lightly loaded relative to the
9086 * remote domains but "imbalance" skews the comparison making
9087 * remote CPUs look much more favourable. When considering
9088 * cross-domain, add imbalance to the load on the remote node
9089 * and consider staying local.
9090 */
9091
9092 if ((sd->flags & SD_NUMA) &&
9093 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9094 return NULL;
9095
9096 /*
9097 * If the local group is less loaded than the selected
9098 * idlest group don't try and push any tasks.
9099 */
9100 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9101 return NULL;
9102
9103 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9104 return NULL;
9105 break;
9106
9107 case group_imbalanced:
9108 case group_asym_packing:
9109 /* Those type are not used in the slow wakeup path */
9110 return NULL;
9111
9112 case group_misfit_task:
9113 /* Select group with the highest max capacity */
9114 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9115 return NULL;
9116 break;
9117
9118 case group_has_spare:
9119 if (sd->flags & SD_NUMA) {
9120 #ifdef CONFIG_NUMA_BALANCING
9121 int idlest_cpu;
9122 /*
9123 * If there is spare capacity at NUMA, try to select
9124 * the preferred node
9125 */
9126 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9127 return NULL;
9128
9129 idlest_cpu = cpumask_first(sched_group_span(idlest));
9130 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9131 return idlest;
9132 #endif
9133 /*
9134 * Otherwise, keep the task on this node to stay close
9135 * its wakeup source and improve locality. If there is
9136 * a real need of migration, periodic load balance will
9137 * take care of it.
9138 */
9139 if (local_sgs.idle_cpus)
9140 return NULL;
9141 }
9142
9143 /*
9144 * Select group with highest number of idle CPUs. We could also
9145 * compare the utilization which is more stable but it can end
9146 * up that the group has less spare capacity but finally more
9147 * idle CPUs which means more opportunity to run task.
9148 */
9149 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9150 return NULL;
9151 break;
9152 }
9153
9154 return idlest;
9155 }
9156
9157 /**
9158 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9159 * @env: The load balancing environment.
9160 * @sds: variable to hold the statistics for this sched_domain.
9161 */
9162
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9163 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9164 {
9165 struct sched_domain *child = env->sd->child;
9166 struct sched_group *sg = env->sd->groups;
9167 struct sg_lb_stats *local = &sds->local_stat;
9168 struct sg_lb_stats tmp_sgs;
9169 int sg_status = 0;
9170
9171 #ifdef CONFIG_NO_HZ_COMMON
9172 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
9173 env->flags |= LBF_NOHZ_STATS;
9174 #endif
9175
9176 do {
9177 struct sg_lb_stats *sgs = &tmp_sgs;
9178 int local_group;
9179
9180 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9181 if (local_group) {
9182 sds->local = sg;
9183 sgs = local;
9184
9185 if (env->idle != CPU_NEWLY_IDLE ||
9186 time_after_eq(jiffies, sg->sgc->next_update))
9187 update_group_capacity(env->sd, env->dst_cpu);
9188 }
9189
9190 update_sg_lb_stats(env, sg, sgs, &sg_status);
9191
9192 if (local_group)
9193 goto next_group;
9194
9195
9196 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9197 sds->busiest = sg;
9198 sds->busiest_stat = *sgs;
9199 }
9200
9201 next_group:
9202 /* Now, start updating sd_lb_stats */
9203 sds->total_load += sgs->group_load;
9204 sds->total_capacity += sgs->group_capacity;
9205
9206 sg = sg->next;
9207 } while (sg != env->sd->groups);
9208
9209 /* Tag domain that child domain prefers tasks go to siblings first */
9210 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9211
9212 #ifdef CONFIG_NO_HZ_COMMON
9213 if ((env->flags & LBF_NOHZ_AGAIN) &&
9214 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9215
9216 WRITE_ONCE(nohz.next_blocked,
9217 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9218 }
9219 #endif
9220
9221 if (env->sd->flags & SD_NUMA)
9222 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9223
9224 if (!env->sd->parent) {
9225 struct root_domain *rd = env->dst_rq->rd;
9226
9227 /* update overload indicator if we are at root domain */
9228 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9229
9230 /* Update over-utilization (tipping point, U >= 0) indicator */
9231 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9232 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9233 } else if (sg_status & SG_OVERUTILIZED) {
9234 struct root_domain *rd = env->dst_rq->rd;
9235
9236 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9237 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9238 }
9239 }
9240
adjust_numa_imbalance(int imbalance,int nr_running)9241 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
9242 {
9243 unsigned int imbalance_min;
9244
9245 /*
9246 * Allow a small imbalance based on a simple pair of communicating
9247 * tasks that remain local when the source domain is almost idle.
9248 */
9249 imbalance_min = 2;
9250 if (nr_running <= imbalance_min)
9251 return 0;
9252
9253 return imbalance;
9254 }
9255
9256 /**
9257 * calculate_imbalance - Calculate the amount of imbalance present within the
9258 * groups of a given sched_domain during load balance.
9259 * @env: load balance environment
9260 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9261 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9262 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9263 {
9264 struct sg_lb_stats *local, *busiest;
9265
9266 local = &sds->local_stat;
9267 busiest = &sds->busiest_stat;
9268
9269 if (busiest->group_type == group_misfit_task) {
9270 /* Set imbalance to allow misfit tasks to be balanced. */
9271 env->migration_type = migrate_misfit;
9272 env->imbalance = 1;
9273 return;
9274 }
9275
9276 if (busiest->group_type == group_asym_packing) {
9277 /*
9278 * In case of asym capacity, we will try to migrate all load to
9279 * the preferred CPU.
9280 */
9281 env->migration_type = migrate_task;
9282 env->imbalance = busiest->sum_h_nr_running;
9283 return;
9284 }
9285
9286 if (busiest->group_type == group_imbalanced) {
9287 /*
9288 * In the group_imb case we cannot rely on group-wide averages
9289 * to ensure CPU-load equilibrium, try to move any task to fix
9290 * the imbalance. The next load balance will take care of
9291 * balancing back the system.
9292 */
9293 env->migration_type = migrate_task;
9294 env->imbalance = 1;
9295 return;
9296 }
9297
9298 /*
9299 * Try to use spare capacity of local group without overloading it or
9300 * emptying busiest.
9301 */
9302 if (local->group_type == group_has_spare) {
9303 if ((busiest->group_type > group_fully_busy) &&
9304 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9305 /*
9306 * If busiest is overloaded, try to fill spare
9307 * capacity. This might end up creating spare capacity
9308 * in busiest or busiest still being overloaded but
9309 * there is no simple way to directly compute the
9310 * amount of load to migrate in order to balance the
9311 * system.
9312 */
9313 env->migration_type = migrate_util;
9314 env->imbalance = max(local->group_capacity, local->group_util) -
9315 local->group_util;
9316
9317 /*
9318 * In some cases, the group's utilization is max or even
9319 * higher than capacity because of migrations but the
9320 * local CPU is (newly) idle. There is at least one
9321 * waiting task in this overloaded busiest group. Let's
9322 * try to pull it.
9323 */
9324 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9325 env->migration_type = migrate_task;
9326 env->imbalance = 1;
9327 }
9328
9329 return;
9330 }
9331
9332 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9333 unsigned int nr_diff = busiest->sum_nr_running;
9334 /*
9335 * When prefer sibling, evenly spread running tasks on
9336 * groups.
9337 */
9338 env->migration_type = migrate_task;
9339 lsub_positive(&nr_diff, local->sum_nr_running);
9340 env->imbalance = nr_diff >> 1;
9341 } else {
9342
9343 /*
9344 * If there is no overload, we just want to even the number of
9345 * idle cpus.
9346 */
9347 env->migration_type = migrate_task;
9348 env->imbalance = max_t(long, 0, (local->idle_cpus -
9349 busiest->idle_cpus) >> 1);
9350 }
9351
9352 /* Consider allowing a small imbalance between NUMA groups */
9353 if (env->sd->flags & SD_NUMA)
9354 env->imbalance = adjust_numa_imbalance(env->imbalance,
9355 busiest->sum_nr_running);
9356
9357 return;
9358 }
9359
9360 /*
9361 * Local is fully busy but has to take more load to relieve the
9362 * busiest group
9363 */
9364 if (local->group_type < group_overloaded) {
9365 /*
9366 * Local will become overloaded so the avg_load metrics are
9367 * finally needed.
9368 */
9369
9370 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9371 local->group_capacity;
9372
9373 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9374 sds->total_capacity;
9375 /*
9376 * If the local group is more loaded than the selected
9377 * busiest group don't try to pull any tasks.
9378 */
9379 if (local->avg_load >= busiest->avg_load) {
9380 env->imbalance = 0;
9381 return;
9382 }
9383 }
9384
9385 /*
9386 * Both group are or will become overloaded and we're trying to get all
9387 * the CPUs to the average_load, so we don't want to push ourselves
9388 * above the average load, nor do we wish to reduce the max loaded CPU
9389 * below the average load. At the same time, we also don't want to
9390 * reduce the group load below the group capacity. Thus we look for
9391 * the minimum possible imbalance.
9392 */
9393 env->migration_type = migrate_load;
9394 env->imbalance = min(
9395 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9396 (sds->avg_load - local->avg_load) * local->group_capacity
9397 ) / SCHED_CAPACITY_SCALE;
9398 }
9399
9400 /******* find_busiest_group() helpers end here *********************/
9401
9402 /*
9403 * Decision matrix according to the local and busiest group type:
9404 *
9405 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9406 * has_spare nr_idle balanced N/A N/A balanced balanced
9407 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9408 * misfit_task force N/A N/A N/A force force
9409 * asym_packing force force N/A N/A force force
9410 * imbalanced force force N/A N/A force force
9411 * overloaded force force N/A N/A force avg_load
9412 *
9413 * N/A : Not Applicable because already filtered while updating
9414 * statistics.
9415 * balanced : The system is balanced for these 2 groups.
9416 * force : Calculate the imbalance as load migration is probably needed.
9417 * avg_load : Only if imbalance is significant enough.
9418 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9419 * different in groups.
9420 */
9421
9422 /**
9423 * find_busiest_group - Returns the busiest group within the sched_domain
9424 * if there is an imbalance.
9425 *
9426 * Also calculates the amount of runnable load which should be moved
9427 * to restore balance.
9428 *
9429 * @env: The load balancing environment.
9430 *
9431 * Return: - The busiest group if imbalance exists.
9432 */
find_busiest_group(struct lb_env * env)9433 static struct sched_group *find_busiest_group(struct lb_env *env)
9434 {
9435 struct sg_lb_stats *local, *busiest;
9436 struct sd_lb_stats sds;
9437
9438 init_sd_lb_stats(&sds);
9439
9440 /*
9441 * Compute the various statistics relevant for load balancing at
9442 * this level.
9443 */
9444 update_sd_lb_stats(env, &sds);
9445
9446 if (sched_energy_enabled()) {
9447 struct root_domain *rd = env->dst_rq->rd;
9448
9449 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9450 goto out_balanced;
9451 }
9452
9453 local = &sds.local_stat;
9454 busiest = &sds.busiest_stat;
9455
9456 /* There is no busy sibling group to pull tasks from */
9457 if (!sds.busiest)
9458 goto out_balanced;
9459
9460 /* Misfit tasks should be dealt with regardless of the avg load */
9461 if (busiest->group_type == group_misfit_task)
9462 goto force_balance;
9463
9464 /* ASYM feature bypasses nice load balance check */
9465 if (busiest->group_type == group_asym_packing)
9466 goto force_balance;
9467
9468 /*
9469 * If the busiest group is imbalanced the below checks don't
9470 * work because they assume all things are equal, which typically
9471 * isn't true due to cpus_ptr constraints and the like.
9472 */
9473 if (busiest->group_type == group_imbalanced)
9474 goto force_balance;
9475
9476 /*
9477 * If the local group is busier than the selected busiest group
9478 * don't try and pull any tasks.
9479 */
9480 if (local->group_type > busiest->group_type)
9481 goto out_balanced;
9482
9483 /*
9484 * When groups are overloaded, use the avg_load to ensure fairness
9485 * between tasks.
9486 */
9487 if (local->group_type == group_overloaded) {
9488 /*
9489 * If the local group is more loaded than the selected
9490 * busiest group don't try to pull any tasks.
9491 */
9492 if (local->avg_load >= busiest->avg_load)
9493 goto out_balanced;
9494
9495 /* XXX broken for overlapping NUMA groups */
9496 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9497 sds.total_capacity;
9498
9499 /*
9500 * Don't pull any tasks if this group is already above the
9501 * domain average load.
9502 */
9503 if (local->avg_load >= sds.avg_load)
9504 goto out_balanced;
9505
9506 /*
9507 * If the busiest group is more loaded, use imbalance_pct to be
9508 * conservative.
9509 */
9510 if (100 * busiest->avg_load <=
9511 env->sd->imbalance_pct * local->avg_load)
9512 goto out_balanced;
9513 }
9514
9515 /* Try to move all excess tasks to child's sibling domain */
9516 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9517 busiest->sum_nr_running > local->sum_nr_running + 1)
9518 goto force_balance;
9519
9520 if (busiest->group_type != group_overloaded) {
9521 if (env->idle == CPU_NOT_IDLE)
9522 /*
9523 * If the busiest group is not overloaded (and as a
9524 * result the local one too) but this CPU is already
9525 * busy, let another idle CPU try to pull task.
9526 */
9527 goto out_balanced;
9528
9529 if (busiest->group_weight > 1 &&
9530 local->idle_cpus <= (busiest->idle_cpus + 1))
9531 /*
9532 * If the busiest group is not overloaded
9533 * and there is no imbalance between this and busiest
9534 * group wrt idle CPUs, it is balanced. The imbalance
9535 * becomes significant if the diff is greater than 1
9536 * otherwise we might end up to just move the imbalance
9537 * on another group. Of course this applies only if
9538 * there is more than 1 CPU per group.
9539 */
9540 goto out_balanced;
9541
9542 if (busiest->sum_h_nr_running == 1)
9543 /*
9544 * busiest doesn't have any tasks waiting to run
9545 */
9546 goto out_balanced;
9547 }
9548
9549 force_balance:
9550 /* Looks like there is an imbalance. Compute it */
9551 calculate_imbalance(env, &sds);
9552 return env->imbalance ? sds.busiest : NULL;
9553
9554 out_balanced:
9555 env->imbalance = 0;
9556 return NULL;
9557 }
9558
9559 /*
9560 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9561 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9562 static struct rq *find_busiest_queue(struct lb_env *env,
9563 struct sched_group *group)
9564 {
9565 struct rq *busiest = NULL, *rq;
9566 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9567 unsigned int busiest_nr = 0;
9568 int i;
9569
9570 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9571 unsigned long capacity, load, util;
9572 unsigned int nr_running;
9573 enum fbq_type rt;
9574
9575 rq = cpu_rq(i);
9576 rt = fbq_classify_rq(rq);
9577
9578 /*
9579 * We classify groups/runqueues into three groups:
9580 * - regular: there are !numa tasks
9581 * - remote: there are numa tasks that run on the 'wrong' node
9582 * - all: there is no distinction
9583 *
9584 * In order to avoid migrating ideally placed numa tasks,
9585 * ignore those when there's better options.
9586 *
9587 * If we ignore the actual busiest queue to migrate another
9588 * task, the next balance pass can still reduce the busiest
9589 * queue by moving tasks around inside the node.
9590 *
9591 * If we cannot move enough load due to this classification
9592 * the next pass will adjust the group classification and
9593 * allow migration of more tasks.
9594 *
9595 * Both cases only affect the total convergence complexity.
9596 */
9597 if (rt > env->fbq_type)
9598 continue;
9599
9600 if (cpu_isolated(i))
9601 continue;
9602
9603 capacity = capacity_of(i);
9604 nr_running = rq->cfs.h_nr_running;
9605
9606 /*
9607 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9608 * eventually lead to active_balancing high->low capacity.
9609 * Higher per-CPU capacity is considered better than balancing
9610 * average load.
9611 */
9612 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9613 capacity_of(env->dst_cpu) < capacity &&
9614 nr_running == 1)
9615 continue;
9616
9617 switch (env->migration_type) {
9618 case migrate_load:
9619 /*
9620 * When comparing with load imbalance, use cpu_load()
9621 * which is not scaled with the CPU capacity.
9622 */
9623 load = cpu_load(rq);
9624
9625 if (nr_running == 1 && load > env->imbalance &&
9626 !check_cpu_capacity(rq, env->sd))
9627 break;
9628
9629 /*
9630 * For the load comparisons with the other CPUs,
9631 * consider the cpu_load() scaled with the CPU
9632 * capacity, so that the load can be moved away
9633 * from the CPU that is potentially running at a
9634 * lower capacity.
9635 *
9636 * Thus we're looking for max(load_i / capacity_i),
9637 * crosswise multiplication to rid ourselves of the
9638 * division works out to:
9639 * load_i * capacity_j > load_j * capacity_i;
9640 * where j is our previous maximum.
9641 */
9642 if (load * busiest_capacity > busiest_load * capacity) {
9643 busiest_load = load;
9644 busiest_capacity = capacity;
9645 busiest = rq;
9646 }
9647 break;
9648
9649 case migrate_util:
9650 util = cpu_util(cpu_of(rq));
9651
9652 /*
9653 * Don't try to pull utilization from a CPU with one
9654 * running task. Whatever its utilization, we will fail
9655 * detach the task.
9656 */
9657 if (nr_running <= 1)
9658 continue;
9659
9660 if (busiest_util < util) {
9661 busiest_util = util;
9662 busiest = rq;
9663 }
9664 break;
9665
9666 case migrate_task:
9667 if (busiest_nr < nr_running) {
9668 busiest_nr = nr_running;
9669 busiest = rq;
9670 }
9671 break;
9672
9673 case migrate_misfit:
9674 /*
9675 * For ASYM_CPUCAPACITY domains with misfit tasks we
9676 * simply seek the "biggest" misfit task.
9677 */
9678 if (rq->misfit_task_load > busiest_load) {
9679 busiest_load = rq->misfit_task_load;
9680 busiest = rq;
9681 }
9682
9683 break;
9684
9685 }
9686 }
9687
9688 return busiest;
9689 }
9690
9691 /*
9692 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9693 * so long as it is large enough.
9694 */
9695 #define MAX_PINNED_INTERVAL 512
9696
9697 static inline bool
asym_active_balance(struct lb_env * env)9698 asym_active_balance(struct lb_env *env)
9699 {
9700 /*
9701 * ASYM_PACKING needs to force migrate tasks from busy but
9702 * lower priority CPUs in order to pack all tasks in the
9703 * highest priority CPUs.
9704 */
9705 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9706 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9707 }
9708
9709 static inline bool
voluntary_active_balance(struct lb_env * env)9710 voluntary_active_balance(struct lb_env *env)
9711 {
9712 struct sched_domain *sd = env->sd;
9713
9714 if (asym_active_balance(env))
9715 return 1;
9716
9717 /*
9718 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9719 * It's worth migrating the task if the src_cpu's capacity is reduced
9720 * because of other sched_class or IRQs if more capacity stays
9721 * available on dst_cpu.
9722 */
9723 if ((env->idle != CPU_NOT_IDLE) &&
9724 (env->src_rq->cfs.h_nr_running == 1)) {
9725 if ((check_cpu_capacity(env->src_rq, sd)) &&
9726 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9727 return 1;
9728 }
9729
9730 if (env->migration_type == migrate_misfit)
9731 return 1;
9732
9733 return 0;
9734 }
9735
need_active_balance(struct lb_env * env)9736 static int need_active_balance(struct lb_env *env)
9737 {
9738 struct sched_domain *sd = env->sd;
9739
9740 if (voluntary_active_balance(env))
9741 return 1;
9742
9743 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9744 }
9745
9746 #ifdef CONFIG_CPU_ISOLATION_OPT
group_balance_cpu_not_isolated(struct sched_group * sg)9747 int group_balance_cpu_not_isolated(struct sched_group *sg)
9748 {
9749 cpumask_t cpus;
9750
9751 cpumask_and(&cpus, sched_group_span(sg), group_balance_mask(sg));
9752 cpumask_andnot(&cpus, &cpus, cpu_isolated_mask);
9753 return cpumask_first(&cpus);
9754 }
9755 #endif
9756
9757 static int active_load_balance_cpu_stop(void *data);
9758
should_we_balance(struct lb_env * env)9759 static int should_we_balance(struct lb_env *env)
9760 {
9761 struct sched_group *sg = env->sd->groups;
9762 int cpu;
9763
9764 /*
9765 * Ensure the balancing environment is consistent; can happen
9766 * when the softirq triggers 'during' hotplug.
9767 */
9768 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9769 return 0;
9770
9771 /*
9772 * In the newly idle case, we will allow all the CPUs
9773 * to do the newly idle load balance.
9774 */
9775 if (env->idle == CPU_NEWLY_IDLE)
9776 return 1;
9777
9778 /* Try to find first idle CPU */
9779 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9780 if (!idle_cpu(cpu) || cpu_isolated(cpu))
9781 continue;
9782
9783 /* Are we the first idle CPU? */
9784 return cpu == env->dst_cpu;
9785 }
9786
9787 /* Are we the first CPU of this group ? */
9788 return group_balance_cpu_not_isolated(sg) == env->dst_cpu;
9789 }
9790
9791 /*
9792 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9793 * tasks if there is an imbalance.
9794 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)9795 static int load_balance(int this_cpu, struct rq *this_rq,
9796 struct sched_domain *sd, enum cpu_idle_type idle,
9797 int *continue_balancing)
9798 {
9799 int ld_moved, cur_ld_moved, active_balance = 0;
9800 struct sched_domain *sd_parent = sd->parent;
9801 struct sched_group *group;
9802 struct rq *busiest;
9803 struct rq_flags rf;
9804 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9805
9806 struct lb_env env = {
9807 .sd = sd,
9808 .dst_cpu = this_cpu,
9809 .dst_rq = this_rq,
9810 .dst_grpmask = sched_group_span(sd->groups),
9811 .idle = idle,
9812 .loop_break = sched_nr_migrate_break,
9813 .cpus = cpus,
9814 .fbq_type = all,
9815 .tasks = LIST_HEAD_INIT(env.tasks),
9816 };
9817
9818 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9819
9820 schedstat_inc(sd->lb_count[idle]);
9821
9822 redo:
9823 if (!should_we_balance(&env)) {
9824 *continue_balancing = 0;
9825 goto out_balanced;
9826 }
9827
9828 group = find_busiest_group(&env);
9829 if (!group) {
9830 schedstat_inc(sd->lb_nobusyg[idle]);
9831 goto out_balanced;
9832 }
9833
9834 busiest = find_busiest_queue(&env, group);
9835 if (!busiest) {
9836 schedstat_inc(sd->lb_nobusyq[idle]);
9837 goto out_balanced;
9838 }
9839
9840 BUG_ON(busiest == env.dst_rq);
9841
9842 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9843
9844 env.src_cpu = busiest->cpu;
9845 env.src_rq = busiest;
9846
9847 ld_moved = 0;
9848 if (busiest->nr_running > 1) {
9849 /*
9850 * Attempt to move tasks. If find_busiest_group has found
9851 * an imbalance but busiest->nr_running <= 1, the group is
9852 * still unbalanced. ld_moved simply stays zero, so it is
9853 * correctly treated as an imbalance.
9854 */
9855 env.flags |= LBF_ALL_PINNED;
9856 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9857
9858 more_balance:
9859 rq_lock_irqsave(busiest, &rf);
9860 update_rq_clock(busiest);
9861
9862 /*
9863 * cur_ld_moved - load moved in current iteration
9864 * ld_moved - cumulative load moved across iterations
9865 */
9866 cur_ld_moved = detach_tasks(&env);
9867
9868 /*
9869 * We've detached some tasks from busiest_rq. Every
9870 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9871 * unlock busiest->lock, and we are able to be sure
9872 * that nobody can manipulate the tasks in parallel.
9873 * See task_rq_lock() family for the details.
9874 */
9875
9876 rq_unlock(busiest, &rf);
9877
9878 if (cur_ld_moved) {
9879 attach_tasks(&env);
9880 ld_moved += cur_ld_moved;
9881 }
9882
9883 local_irq_restore(rf.flags);
9884
9885 if (env.flags & LBF_NEED_BREAK) {
9886 env.flags &= ~LBF_NEED_BREAK;
9887 goto more_balance;
9888 }
9889
9890 /*
9891 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9892 * us and move them to an alternate dst_cpu in our sched_group
9893 * where they can run. The upper limit on how many times we
9894 * iterate on same src_cpu is dependent on number of CPUs in our
9895 * sched_group.
9896 *
9897 * This changes load balance semantics a bit on who can move
9898 * load to a given_cpu. In addition to the given_cpu itself
9899 * (or a ilb_cpu acting on its behalf where given_cpu is
9900 * nohz-idle), we now have balance_cpu in a position to move
9901 * load to given_cpu. In rare situations, this may cause
9902 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9903 * _independently_ and at _same_ time to move some load to
9904 * given_cpu) causing exceess load to be moved to given_cpu.
9905 * This however should not happen so much in practice and
9906 * moreover subsequent load balance cycles should correct the
9907 * excess load moved.
9908 */
9909 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9910
9911 /* Prevent to re-select dst_cpu via env's CPUs */
9912 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9913
9914 env.dst_rq = cpu_rq(env.new_dst_cpu);
9915 env.dst_cpu = env.new_dst_cpu;
9916 env.flags &= ~LBF_DST_PINNED;
9917 env.loop = 0;
9918 env.loop_break = sched_nr_migrate_break;
9919
9920 /*
9921 * Go back to "more_balance" rather than "redo" since we
9922 * need to continue with same src_cpu.
9923 */
9924 goto more_balance;
9925 }
9926
9927 /*
9928 * We failed to reach balance because of affinity.
9929 */
9930 if (sd_parent) {
9931 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9932
9933 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9934 *group_imbalance = 1;
9935 }
9936
9937 /* All tasks on this runqueue were pinned by CPU affinity */
9938 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9939 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9940 /*
9941 * Attempting to continue load balancing at the current
9942 * sched_domain level only makes sense if there are
9943 * active CPUs remaining as possible busiest CPUs to
9944 * pull load from which are not contained within the
9945 * destination group that is receiving any migrated
9946 * load.
9947 */
9948 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9949 env.loop = 0;
9950 env.loop_break = sched_nr_migrate_break;
9951 goto redo;
9952 }
9953 goto out_all_pinned;
9954 }
9955 }
9956
9957 if (!ld_moved) {
9958 schedstat_inc(sd->lb_failed[idle]);
9959 /*
9960 * Increment the failure counter only on periodic balance.
9961 * We do not want newidle balance, which can be very
9962 * frequent, pollute the failure counter causing
9963 * excessive cache_hot migrations and active balances.
9964 */
9965 if (idle != CPU_NEWLY_IDLE)
9966 sd->nr_balance_failed++;
9967
9968 if (need_active_balance(&env)) {
9969 unsigned long flags;
9970
9971 raw_spin_lock_irqsave(&busiest->lock, flags);
9972
9973 /*
9974 * Don't kick the active_load_balance_cpu_stop,
9975 * if the curr task on busiest CPU can't be
9976 * moved to this_cpu:
9977 */
9978 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9979 raw_spin_unlock_irqrestore(&busiest->lock,
9980 flags);
9981 env.flags |= LBF_ALL_PINNED;
9982 goto out_one_pinned;
9983 }
9984
9985 /*
9986 * ->active_balance synchronizes accesses to
9987 * ->active_balance_work. Once set, it's cleared
9988 * only after active load balance is finished.
9989 */
9990 if (!busiest->active_balance &&
9991 !cpu_isolated(cpu_of(busiest))) {
9992 busiest->active_balance = 1;
9993 busiest->push_cpu = this_cpu;
9994 active_balance = 1;
9995 }
9996 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9997
9998 if (active_balance) {
9999 stop_one_cpu_nowait(cpu_of(busiest),
10000 active_load_balance_cpu_stop, busiest,
10001 &busiest->active_balance_work);
10002 }
10003
10004 /* We've kicked active balancing, force task migration. */
10005 sd->nr_balance_failed = sd->cache_nice_tries+1;
10006 }
10007 } else
10008 sd->nr_balance_failed = 0;
10009
10010 if (likely(!active_balance) || voluntary_active_balance(&env)) {
10011 /* We were unbalanced, so reset the balancing interval */
10012 sd->balance_interval = sd->min_interval;
10013 } else {
10014 /*
10015 * If we've begun active balancing, start to back off. This
10016 * case may not be covered by the all_pinned logic if there
10017 * is only 1 task on the busy runqueue (because we don't call
10018 * detach_tasks).
10019 */
10020 if (sd->balance_interval < sd->max_interval)
10021 sd->balance_interval *= 2;
10022 }
10023
10024 goto out;
10025
10026 out_balanced:
10027 /*
10028 * We reach balance although we may have faced some affinity
10029 * constraints. Clear the imbalance flag only if other tasks got
10030 * a chance to move and fix the imbalance.
10031 */
10032 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10033 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10034
10035 if (*group_imbalance)
10036 *group_imbalance = 0;
10037 }
10038
10039 out_all_pinned:
10040 /*
10041 * We reach balance because all tasks are pinned at this level so
10042 * we can't migrate them. Let the imbalance flag set so parent level
10043 * can try to migrate them.
10044 */
10045 schedstat_inc(sd->lb_balanced[idle]);
10046
10047 sd->nr_balance_failed = 0;
10048
10049 out_one_pinned:
10050 ld_moved = 0;
10051
10052 /*
10053 * newidle_balance() disregards balance intervals, so we could
10054 * repeatedly reach this code, which would lead to balance_interval
10055 * skyrocketting in a short amount of time. Skip the balance_interval
10056 * increase logic to avoid that.
10057 */
10058 if (env.idle == CPU_NEWLY_IDLE)
10059 goto out;
10060
10061 /* tune up the balancing interval */
10062 if ((env.flags & LBF_ALL_PINNED &&
10063 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10064 sd->balance_interval < sd->max_interval)
10065 sd->balance_interval *= 2;
10066 out:
10067 return ld_moved;
10068 }
10069
10070 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10071 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10072 {
10073 unsigned long interval = sd->balance_interval;
10074
10075 if (cpu_busy)
10076 interval *= sd->busy_factor;
10077
10078 /* scale ms to jiffies */
10079 interval = msecs_to_jiffies(interval);
10080
10081 /*
10082 * Reduce likelihood of busy balancing at higher domains racing with
10083 * balancing at lower domains by preventing their balancing periods
10084 * from being multiples of each other.
10085 */
10086 if (cpu_busy)
10087 interval -= 1;
10088
10089 interval = clamp(interval, 1UL, max_load_balance_interval);
10090
10091 return interval;
10092 }
10093
10094 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10095 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10096 {
10097 unsigned long interval, next;
10098
10099 /* used by idle balance, so cpu_busy = 0 */
10100 interval = get_sd_balance_interval(sd, 0);
10101 next = sd->last_balance + interval;
10102
10103 if (time_after(*next_balance, next))
10104 *next_balance = next;
10105 }
10106
10107 /*
10108 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10109 * running tasks off the busiest CPU onto idle CPUs. It requires at
10110 * least 1 task to be running on each physical CPU where possible, and
10111 * avoids physical / logical imbalances.
10112 */
active_load_balance_cpu_stop(void * data)10113 static int active_load_balance_cpu_stop(void *data)
10114 {
10115 struct rq *busiest_rq = data;
10116 int busiest_cpu = cpu_of(busiest_rq);
10117 int target_cpu = busiest_rq->push_cpu;
10118 struct rq *target_rq = cpu_rq(target_cpu);
10119 struct sched_domain *sd = NULL;
10120 struct task_struct *p = NULL;
10121 struct rq_flags rf;
10122 #ifdef CONFIG_SCHED_EAS
10123 struct task_struct *push_task;
10124 int push_task_detached = 0;
10125 #endif
10126
10127 rq_lock_irq(busiest_rq, &rf);
10128 /*
10129 * Between queueing the stop-work and running it is a hole in which
10130 * CPUs can become inactive. We should not move tasks from or to
10131 * inactive CPUs.
10132 */
10133 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10134 goto out_unlock;
10135
10136 /* Make sure the requested CPU hasn't gone down in the meantime: */
10137 if (unlikely(busiest_cpu != smp_processor_id() ||
10138 !busiest_rq->active_balance))
10139 goto out_unlock;
10140
10141 /* Is there any task to move? */
10142 if (busiest_rq->nr_running <= 1)
10143 goto out_unlock;
10144
10145 /*
10146 * This condition is "impossible", if it occurs
10147 * we need to fix it. Originally reported by
10148 * Bjorn Helgaas on a 128-CPU setup.
10149 */
10150 BUG_ON(busiest_rq == target_rq);
10151
10152 #ifdef CONFIG_SCHED_EAS
10153 push_task = busiest_rq->push_task;
10154 target_cpu = busiest_rq->push_cpu;
10155 if (push_task) {
10156 struct lb_env env = {
10157 .sd = sd,
10158 .dst_cpu = target_cpu,
10159 .dst_rq = target_rq,
10160 .src_cpu = busiest_rq->cpu,
10161 .src_rq = busiest_rq,
10162 .idle = CPU_IDLE,
10163 .flags = 0,
10164 .loop = 0,
10165 };
10166 if (task_on_rq_queued(push_task) &&
10167 push_task->state == TASK_RUNNING &&
10168 task_cpu(push_task) == busiest_cpu &&
10169 cpu_online(target_cpu)) {
10170 update_rq_clock(busiest_rq);
10171 detach_task(push_task, &env);
10172 push_task_detached = 1;
10173 }
10174 goto out_unlock;
10175 }
10176 #endif
10177
10178 /* Search for an sd spanning us and the target CPU. */
10179 rcu_read_lock();
10180 for_each_domain(target_cpu, sd) {
10181 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10182 break;
10183 }
10184
10185 if (likely(sd)) {
10186 struct lb_env env = {
10187 .sd = sd,
10188 .dst_cpu = target_cpu,
10189 .dst_rq = target_rq,
10190 .src_cpu = busiest_rq->cpu,
10191 .src_rq = busiest_rq,
10192 .idle = CPU_IDLE,
10193 /*
10194 * can_migrate_task() doesn't need to compute new_dst_cpu
10195 * for active balancing. Since we have CPU_IDLE, but no
10196 * @dst_grpmask we need to make that test go away with lying
10197 * about DST_PINNED.
10198 */
10199 .flags = LBF_DST_PINNED,
10200 };
10201
10202 schedstat_inc(sd->alb_count);
10203 update_rq_clock(busiest_rq);
10204
10205 p = detach_one_task(&env);
10206 if (p) {
10207 schedstat_inc(sd->alb_pushed);
10208 /* Active balancing done, reset the failure counter. */
10209 sd->nr_balance_failed = 0;
10210 } else {
10211 schedstat_inc(sd->alb_failed);
10212 }
10213 }
10214 rcu_read_unlock();
10215 out_unlock:
10216 busiest_rq->active_balance = 0;
10217
10218 #ifdef CONFIG_SCHED_EAS
10219 push_task = busiest_rq->push_task;
10220 if (push_task)
10221 busiest_rq->push_task = NULL;
10222 #endif
10223 rq_unlock(busiest_rq, &rf);
10224
10225 #ifdef CONFIG_SCHED_EAS
10226 if (push_task) {
10227 if (push_task_detached)
10228 attach_one_task(target_rq, push_task);
10229
10230 put_task_struct(push_task);
10231 }
10232 #endif
10233
10234 if (p)
10235 attach_one_task(target_rq, p);
10236
10237 local_irq_enable();
10238
10239 return 0;
10240 }
10241
10242 static DEFINE_SPINLOCK(balancing);
10243
10244 /*
10245 * Scale the max load_balance interval with the number of CPUs in the system.
10246 * This trades load-balance latency on larger machines for less cross talk.
10247 */
update_max_interval(void)10248 void update_max_interval(void)
10249 {
10250 unsigned int available_cpus;
10251 #ifdef CONFIG_CPU_ISOLATION_OPT
10252 cpumask_t avail_mask;
10253
10254 cpumask_andnot(&avail_mask, cpu_online_mask, cpu_isolated_mask);
10255 available_cpus = cpumask_weight(&avail_mask);
10256 #else
10257 available_cpus = num_online_cpus();
10258 #endif
10259
10260 max_load_balance_interval = HZ*available_cpus/10;
10261 }
10262
10263 /*
10264 * It checks each scheduling domain to see if it is due to be balanced,
10265 * and initiates a balancing operation if so.
10266 *
10267 * Balancing parameters are set up in init_sched_domains.
10268 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10269 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10270 {
10271 int continue_balancing = 1;
10272 int cpu = rq->cpu;
10273 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10274 unsigned long interval;
10275 struct sched_domain *sd;
10276 /* Earliest time when we have to do rebalance again */
10277 unsigned long next_balance = jiffies + 60*HZ;
10278 int update_next_balance = 0;
10279 int need_serialize, need_decay = 0;
10280 u64 max_cost = 0;
10281
10282 rcu_read_lock();
10283 for_each_domain(cpu, sd) {
10284 /*
10285 * Decay the newidle max times here because this is a regular
10286 * visit to all the domains. Decay ~1% per second.
10287 */
10288 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10289 sd->max_newidle_lb_cost =
10290 (sd->max_newidle_lb_cost * 253) / 256;
10291 sd->next_decay_max_lb_cost = jiffies + HZ;
10292 need_decay = 1;
10293 }
10294 max_cost += sd->max_newidle_lb_cost;
10295
10296 /*
10297 * Stop the load balance at this level. There is another
10298 * CPU in our sched group which is doing load balancing more
10299 * actively.
10300 */
10301 if (!continue_balancing) {
10302 if (need_decay)
10303 continue;
10304 break;
10305 }
10306
10307 interval = get_sd_balance_interval(sd, busy);
10308
10309 need_serialize = sd->flags & SD_SERIALIZE;
10310 if (need_serialize) {
10311 if (!spin_trylock(&balancing))
10312 goto out;
10313 }
10314
10315 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10316 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10317 /*
10318 * The LBF_DST_PINNED logic could have changed
10319 * env->dst_cpu, so we can't know our idle
10320 * state even if we migrated tasks. Update it.
10321 */
10322 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10323 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10324 }
10325 sd->last_balance = jiffies;
10326 interval = get_sd_balance_interval(sd, busy);
10327 }
10328 if (need_serialize)
10329 spin_unlock(&balancing);
10330 out:
10331 if (time_after(next_balance, sd->last_balance + interval)) {
10332 next_balance = sd->last_balance + interval;
10333 update_next_balance = 1;
10334 }
10335 }
10336 if (need_decay) {
10337 /*
10338 * Ensure the rq-wide value also decays but keep it at a
10339 * reasonable floor to avoid funnies with rq->avg_idle.
10340 */
10341 rq->max_idle_balance_cost =
10342 max((u64)sysctl_sched_migration_cost, max_cost);
10343 }
10344 rcu_read_unlock();
10345
10346 /*
10347 * next_balance will be updated only when there is a need.
10348 * When the cpu is attached to null domain for ex, it will not be
10349 * updated.
10350 */
10351 if (likely(update_next_balance)) {
10352 rq->next_balance = next_balance;
10353
10354 #ifdef CONFIG_NO_HZ_COMMON
10355 /*
10356 * If this CPU has been elected to perform the nohz idle
10357 * balance. Other idle CPUs have already rebalanced with
10358 * nohz_idle_balance() and nohz.next_balance has been
10359 * updated accordingly. This CPU is now running the idle load
10360 * balance for itself and we need to update the
10361 * nohz.next_balance accordingly.
10362 */
10363 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10364 nohz.next_balance = rq->next_balance;
10365 #endif
10366 }
10367 }
10368
on_null_domain(struct rq * rq)10369 static inline int on_null_domain(struct rq *rq)
10370 {
10371 return unlikely(!rcu_dereference_sched(rq->sd));
10372 }
10373
10374 #ifdef CONFIG_NO_HZ_COMMON
10375 /*
10376 * idle load balancing details
10377 * - When one of the busy CPUs notice that there may be an idle rebalancing
10378 * needed, they will kick the idle load balancer, which then does idle
10379 * load balancing for all the idle CPUs.
10380 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10381 * anywhere yet.
10382 */
10383
find_new_ilb(void)10384 static inline int find_new_ilb(void)
10385 {
10386 int ilb;
10387
10388 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10389 housekeeping_cpumask(HK_FLAG_MISC)) {
10390 if (cpu_isolated(ilb))
10391 continue;
10392
10393 if (idle_cpu(ilb))
10394 return ilb;
10395 }
10396
10397 return nr_cpu_ids;
10398 }
10399
10400 /*
10401 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10402 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10403 */
kick_ilb(unsigned int flags)10404 static void kick_ilb(unsigned int flags)
10405 {
10406 int ilb_cpu;
10407
10408 /*
10409 * Increase nohz.next_balance only when if full ilb is triggered but
10410 * not if we only update stats.
10411 */
10412 if (flags & NOHZ_BALANCE_KICK)
10413 nohz.next_balance = jiffies+1;
10414
10415 ilb_cpu = find_new_ilb();
10416
10417 if (ilb_cpu >= nr_cpu_ids)
10418 return;
10419
10420 /*
10421 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10422 * the first flag owns it; cleared by nohz_csd_func().
10423 */
10424 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10425 if (flags & NOHZ_KICK_MASK)
10426 return;
10427
10428 /*
10429 * This way we generate an IPI on the target CPU which
10430 * is idle. And the softirq performing nohz idle load balance
10431 * will be run before returning from the IPI.
10432 */
10433 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10434 }
10435
10436 /*
10437 * Current decision point for kicking the idle load balancer in the presence
10438 * of idle CPUs in the system.
10439 */
nohz_balancer_kick(struct rq * rq)10440 static void nohz_balancer_kick(struct rq *rq)
10441 {
10442 unsigned long now = jiffies;
10443 struct sched_domain_shared *sds;
10444 struct sched_domain *sd;
10445 int nr_busy, i, cpu = rq->cpu;
10446 unsigned int flags = 0;
10447 cpumask_t cpumask;
10448
10449 if (unlikely(rq->idle_balance))
10450 return;
10451
10452 /*
10453 * We may be recently in ticked or tickless idle mode. At the first
10454 * busy tick after returning from idle, we will update the busy stats.
10455 */
10456 nohz_balance_exit_idle(rq);
10457
10458 /*
10459 * None are in tickless mode and hence no need for NOHZ idle load
10460 * balancing.
10461 */
10462 #ifdef CONFIG_CPU_ISOLATION_OPT
10463 cpumask_andnot(&cpumask, nohz.idle_cpus_mask, cpu_isolated_mask);
10464 if (cpumask_empty(&cpumask))
10465 return;
10466 #else
10467 cpumask_copy(&cpumask, nohz.idle_cpus_mask);
10468 if (likely(!atomic_read(&nohz.nr_cpus)))
10469 return;
10470 #endif
10471
10472 if (READ_ONCE(nohz.has_blocked) &&
10473 time_after(now, READ_ONCE(nohz.next_blocked)))
10474 flags = NOHZ_STATS_KICK;
10475
10476 if (time_before(now, nohz.next_balance))
10477 goto out;
10478
10479 if (rq->nr_running >= 2) {
10480 flags = NOHZ_KICK_MASK;
10481 goto out;
10482 }
10483
10484 rcu_read_lock();
10485
10486 sd = rcu_dereference(rq->sd);
10487 if (sd) {
10488 /*
10489 * If there's a CFS task and the current CPU has reduced
10490 * capacity; kick the ILB to see if there's a better CPU to run
10491 * on.
10492 */
10493 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10494 flags = NOHZ_KICK_MASK;
10495 goto unlock;
10496 }
10497 }
10498
10499 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10500 if (sd) {
10501 /*
10502 * When ASYM_PACKING; see if there's a more preferred CPU
10503 * currently idle; in which case, kick the ILB to move tasks
10504 * around.
10505 */
10506 for_each_cpu_and(i, sched_domain_span(sd), &cpumask) {
10507 if (sched_asym_prefer(i, cpu)) {
10508 flags = NOHZ_KICK_MASK;
10509 goto unlock;
10510 }
10511 }
10512 }
10513
10514 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10515 if (sd) {
10516 /*
10517 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10518 * to run the misfit task on.
10519 */
10520 if (check_misfit_status(rq, sd)) {
10521 flags = NOHZ_KICK_MASK;
10522 goto unlock;
10523 }
10524
10525 /*
10526 * For asymmetric systems, we do not want to nicely balance
10527 * cache use, instead we want to embrace asymmetry and only
10528 * ensure tasks have enough CPU capacity.
10529 *
10530 * Skip the LLC logic because it's not relevant in that case.
10531 */
10532 goto unlock;
10533 }
10534
10535 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10536 if (sds) {
10537 /*
10538 * If there is an imbalance between LLC domains (IOW we could
10539 * increase the overall cache use), we need some less-loaded LLC
10540 * domain to pull some load. Likewise, we may need to spread
10541 * load within the current LLC domain (e.g. packed SMT cores but
10542 * other CPUs are idle). We can't really know from here how busy
10543 * the others are - so just get a nohz balance going if it looks
10544 * like this LLC domain has tasks we could move.
10545 */
10546 nr_busy = atomic_read(&sds->nr_busy_cpus);
10547 if (nr_busy > 1) {
10548 flags = NOHZ_KICK_MASK;
10549 goto unlock;
10550 }
10551 }
10552 unlock:
10553 rcu_read_unlock();
10554 out:
10555 if (flags)
10556 kick_ilb(flags);
10557 }
10558
set_cpu_sd_state_busy(int cpu)10559 static void set_cpu_sd_state_busy(int cpu)
10560 {
10561 struct sched_domain *sd;
10562
10563 rcu_read_lock();
10564 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10565
10566 if (!sd || !sd->nohz_idle)
10567 goto unlock;
10568 sd->nohz_idle = 0;
10569
10570 atomic_inc(&sd->shared->nr_busy_cpus);
10571 unlock:
10572 rcu_read_unlock();
10573 }
10574
nohz_balance_exit_idle(struct rq * rq)10575 void nohz_balance_exit_idle(struct rq *rq)
10576 {
10577 SCHED_WARN_ON(rq != this_rq());
10578
10579 if (likely(!rq->nohz_tick_stopped))
10580 return;
10581
10582 rq->nohz_tick_stopped = 0;
10583 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10584 atomic_dec(&nohz.nr_cpus);
10585
10586 set_cpu_sd_state_busy(rq->cpu);
10587 }
10588
set_cpu_sd_state_idle(int cpu)10589 static void set_cpu_sd_state_idle(int cpu)
10590 {
10591 struct sched_domain *sd;
10592
10593 rcu_read_lock();
10594 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10595
10596 if (!sd || sd->nohz_idle)
10597 goto unlock;
10598 sd->nohz_idle = 1;
10599
10600 atomic_dec(&sd->shared->nr_busy_cpus);
10601 unlock:
10602 rcu_read_unlock();
10603 }
10604
10605 /*
10606 * This routine will record that the CPU is going idle with tick stopped.
10607 * This info will be used in performing idle load balancing in the future.
10608 */
nohz_balance_enter_idle(int cpu)10609 void nohz_balance_enter_idle(int cpu)
10610 {
10611 struct rq *rq = cpu_rq(cpu);
10612
10613 SCHED_WARN_ON(cpu != smp_processor_id());
10614
10615 /* If this CPU is going down, then nothing needs to be done: */
10616 if (!cpu_active(cpu))
10617 return;
10618
10619 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10620 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10621 return;
10622
10623 /*
10624 * Can be set safely without rq->lock held
10625 * If a clear happens, it will have evaluated last additions because
10626 * rq->lock is held during the check and the clear
10627 */
10628 rq->has_blocked_load = 1;
10629
10630 /*
10631 * The tick is still stopped but load could have been added in the
10632 * meantime. We set the nohz.has_blocked flag to trig a check of the
10633 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10634 * of nohz.has_blocked can only happen after checking the new load
10635 */
10636 if (rq->nohz_tick_stopped)
10637 goto out;
10638
10639 /* If we're a completely isolated CPU, we don't play: */
10640 if (on_null_domain(rq))
10641 return;
10642
10643 rq->nohz_tick_stopped = 1;
10644
10645 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10646 atomic_inc(&nohz.nr_cpus);
10647
10648 /*
10649 * Ensures that if nohz_idle_balance() fails to observe our
10650 * @idle_cpus_mask store, it must observe the @has_blocked
10651 * store.
10652 */
10653 smp_mb__after_atomic();
10654
10655 set_cpu_sd_state_idle(cpu);
10656
10657 out:
10658 /*
10659 * Each time a cpu enter idle, we assume that it has blocked load and
10660 * enable the periodic update of the load of idle cpus
10661 */
10662 WRITE_ONCE(nohz.has_blocked, 1);
10663 }
10664
10665 /*
10666 * Internal function that runs load balance for all idle cpus. The load balance
10667 * can be a simple update of blocked load or a complete load balance with
10668 * tasks movement depending of flags.
10669 * The function returns false if the loop has stopped before running
10670 * through all idle CPUs.
10671 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)10672 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10673 enum cpu_idle_type idle)
10674 {
10675 /* Earliest time when we have to do rebalance again */
10676 unsigned long now = jiffies;
10677 unsigned long next_balance = now + 60*HZ;
10678 bool has_blocked_load = false;
10679 int update_next_balance = 0;
10680 int this_cpu = this_rq->cpu;
10681 int balance_cpu;
10682 int ret = false;
10683 struct rq *rq;
10684 cpumask_t cpus;
10685
10686 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10687
10688 /*
10689 * We assume there will be no idle load after this update and clear
10690 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10691 * set the has_blocked flag and trig another update of idle load.
10692 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10693 * setting the flag, we are sure to not clear the state and not
10694 * check the load of an idle cpu.
10695 */
10696 WRITE_ONCE(nohz.has_blocked, 0);
10697
10698 /*
10699 * Ensures that if we miss the CPU, we must see the has_blocked
10700 * store from nohz_balance_enter_idle().
10701 */
10702 smp_mb();
10703
10704 #ifdef CONFIG_CPU_ISOLATION_OPT
10705 cpumask_andnot(&cpus, nohz.idle_cpus_mask, cpu_isolated_mask);
10706 #else
10707 cpumask_copy(&cpus, nohz.idle_cpus_mask);
10708 #endif
10709
10710 for_each_cpu(balance_cpu, &cpus) {
10711 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10712 continue;
10713
10714 /*
10715 * If this CPU gets work to do, stop the load balancing
10716 * work being done for other CPUs. Next load
10717 * balancing owner will pick it up.
10718 */
10719 if (need_resched()) {
10720 has_blocked_load = true;
10721 goto abort;
10722 }
10723
10724 rq = cpu_rq(balance_cpu);
10725
10726 has_blocked_load |= update_nohz_stats(rq, true);
10727
10728 /*
10729 * If time for next balance is due,
10730 * do the balance.
10731 */
10732 if (time_after_eq(jiffies, rq->next_balance)) {
10733 struct rq_flags rf;
10734
10735 rq_lock_irqsave(rq, &rf);
10736 update_rq_clock(rq);
10737 rq_unlock_irqrestore(rq, &rf);
10738
10739 if (flags & NOHZ_BALANCE_KICK)
10740 rebalance_domains(rq, CPU_IDLE);
10741 }
10742
10743 if (time_after(next_balance, rq->next_balance)) {
10744 next_balance = rq->next_balance;
10745 update_next_balance = 1;
10746 }
10747 }
10748
10749 /*
10750 * next_balance will be updated only when there is a need.
10751 * When the CPU is attached to null domain for ex, it will not be
10752 * updated.
10753 */
10754 if (likely(update_next_balance))
10755 nohz.next_balance = next_balance;
10756
10757 /* Newly idle CPU doesn't need an update */
10758 if (idle != CPU_NEWLY_IDLE) {
10759 update_blocked_averages(this_cpu);
10760 has_blocked_load |= this_rq->has_blocked_load;
10761 }
10762
10763 if (flags & NOHZ_BALANCE_KICK)
10764 rebalance_domains(this_rq, CPU_IDLE);
10765
10766 WRITE_ONCE(nohz.next_blocked,
10767 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10768
10769 /* The full idle balance loop has been done */
10770 ret = true;
10771
10772 abort:
10773 /* There is still blocked load, enable periodic update */
10774 if (has_blocked_load)
10775 WRITE_ONCE(nohz.has_blocked, 1);
10776
10777 return ret;
10778 }
10779
10780 /*
10781 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10782 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10783 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10784 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10785 {
10786 unsigned int flags = this_rq->nohz_idle_balance;
10787
10788 if (!flags)
10789 return false;
10790
10791 this_rq->nohz_idle_balance = 0;
10792
10793 if (idle != CPU_IDLE)
10794 return false;
10795
10796 _nohz_idle_balance(this_rq, flags, idle);
10797
10798 return true;
10799 }
10800
nohz_newidle_balance(struct rq * this_rq)10801 static void nohz_newidle_balance(struct rq *this_rq)
10802 {
10803 int this_cpu = this_rq->cpu;
10804
10805 /*
10806 * This CPU doesn't want to be disturbed by scheduler
10807 * housekeeping
10808 */
10809 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10810 return;
10811
10812 /* Will wake up very soon. No time for doing anything else*/
10813 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10814 return;
10815
10816 /* Don't need to update blocked load of idle CPUs*/
10817 if (!READ_ONCE(nohz.has_blocked) ||
10818 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10819 return;
10820
10821 raw_spin_unlock(&this_rq->lock);
10822 /*
10823 * This CPU is going to be idle and blocked load of idle CPUs
10824 * need to be updated. Run the ilb locally as it is a good
10825 * candidate for ilb instead of waking up another idle CPU.
10826 * Kick an normal ilb if we failed to do the update.
10827 */
10828 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10829 kick_ilb(NOHZ_STATS_KICK);
10830 raw_spin_lock(&this_rq->lock);
10831 }
10832
10833 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)10834 static inline void nohz_balancer_kick(struct rq *rq) { }
10835
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10836 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10837 {
10838 return false;
10839 }
10840
nohz_newidle_balance(struct rq * this_rq)10841 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10842 #endif /* CONFIG_NO_HZ_COMMON */
10843
10844 /*
10845 * idle_balance is called by schedule() if this_cpu is about to become
10846 * idle. Attempts to pull tasks from other CPUs.
10847 *
10848 * Returns:
10849 * < 0 - we released the lock and there are !fair tasks present
10850 * 0 - failed, no new tasks
10851 * > 0 - success, new (fair) tasks present
10852 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)10853 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10854 {
10855 unsigned long next_balance = jiffies + HZ;
10856 int this_cpu = this_rq->cpu;
10857 struct sched_domain *sd;
10858 int pulled_task = 0;
10859 u64 curr_cost = 0;
10860
10861 if (cpu_isolated(this_cpu))
10862 return 0;
10863
10864 update_misfit_status(NULL, this_rq);
10865 /*
10866 * We must set idle_stamp _before_ calling idle_balance(), such that we
10867 * measure the duration of idle_balance() as idle time.
10868 */
10869 this_rq->idle_stamp = rq_clock(this_rq);
10870
10871 /*
10872 * Do not pull tasks towards !active CPUs...
10873 */
10874 if (!cpu_active(this_cpu))
10875 return 0;
10876
10877 /*
10878 * This is OK, because current is on_cpu, which avoids it being picked
10879 * for load-balance and preemption/IRQs are still disabled avoiding
10880 * further scheduler activity on it and we're being very careful to
10881 * re-start the picking loop.
10882 */
10883 rq_unpin_lock(this_rq, rf);
10884
10885 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10886 !READ_ONCE(this_rq->rd->overload)) {
10887
10888 rcu_read_lock();
10889 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10890 if (sd)
10891 update_next_balance(sd, &next_balance);
10892 rcu_read_unlock();
10893
10894 nohz_newidle_balance(this_rq);
10895
10896 goto out;
10897 }
10898
10899 raw_spin_unlock(&this_rq->lock);
10900
10901 update_blocked_averages(this_cpu);
10902 rcu_read_lock();
10903 for_each_domain(this_cpu, sd) {
10904 int continue_balancing = 1;
10905 u64 t0, domain_cost;
10906
10907 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10908 update_next_balance(sd, &next_balance);
10909 break;
10910 }
10911
10912 if (sd->flags & SD_BALANCE_NEWIDLE) {
10913 t0 = sched_clock_cpu(this_cpu);
10914
10915 pulled_task = load_balance(this_cpu, this_rq,
10916 sd, CPU_NEWLY_IDLE,
10917 &continue_balancing);
10918
10919 domain_cost = sched_clock_cpu(this_cpu) - t0;
10920 if (domain_cost > sd->max_newidle_lb_cost)
10921 sd->max_newidle_lb_cost = domain_cost;
10922
10923 curr_cost += domain_cost;
10924 }
10925
10926 update_next_balance(sd, &next_balance);
10927
10928 /*
10929 * Stop searching for tasks to pull if there are
10930 * now runnable tasks on this rq.
10931 */
10932 if (pulled_task || this_rq->nr_running > 0)
10933 break;
10934 }
10935 rcu_read_unlock();
10936
10937 raw_spin_lock(&this_rq->lock);
10938
10939 if (curr_cost > this_rq->max_idle_balance_cost)
10940 this_rq->max_idle_balance_cost = curr_cost;
10941
10942 out:
10943 /*
10944 * While browsing the domains, we released the rq lock, a task could
10945 * have been enqueued in the meantime. Since we're not going idle,
10946 * pretend we pulled a task.
10947 */
10948 if (this_rq->cfs.h_nr_running && !pulled_task)
10949 pulled_task = 1;
10950
10951 /* Move the next balance forward */
10952 if (time_after(this_rq->next_balance, next_balance))
10953 this_rq->next_balance = next_balance;
10954
10955 /* Is there a task of a high priority class? */
10956 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10957 pulled_task = -1;
10958
10959 if (pulled_task)
10960 this_rq->idle_stamp = 0;
10961
10962 rq_repin_lock(this_rq, rf);
10963
10964 return pulled_task;
10965 }
10966
10967 /*
10968 * run_rebalance_domains is triggered when needed from the scheduler tick.
10969 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10970 */
run_rebalance_domains(struct softirq_action * h)10971 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10972 {
10973 struct rq *this_rq = this_rq();
10974 enum cpu_idle_type idle = this_rq->idle_balance ?
10975 CPU_IDLE : CPU_NOT_IDLE;
10976
10977 /*
10978 * Since core isolation doesn't update nohz.idle_cpus_mask, there
10979 * is a possibility this nohz kicked cpu could be isolated. Hence
10980 * return if the cpu is isolated.
10981 */
10982 if (cpu_isolated(this_rq->cpu))
10983 return;
10984
10985 /*
10986 * If this CPU has a pending nohz_balance_kick, then do the
10987 * balancing on behalf of the other idle CPUs whose ticks are
10988 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10989 * give the idle CPUs a chance to load balance. Else we may
10990 * load balance only within the local sched_domain hierarchy
10991 * and abort nohz_idle_balance altogether if we pull some load.
10992 */
10993 if (nohz_idle_balance(this_rq, idle))
10994 return;
10995
10996 /* normal load balance */
10997 update_blocked_averages(this_rq->cpu);
10998 rebalance_domains(this_rq, idle);
10999 }
11000
11001 /*
11002 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11003 */
trigger_load_balance(struct rq * rq)11004 void trigger_load_balance(struct rq *rq)
11005 {
11006 /* Don't need to rebalance while attached to NULL domain or
11007 * cpu is isolated.
11008 */
11009 if (unlikely(on_null_domain(rq)) || cpu_isolated(cpu_of(rq)))
11010 return;
11011
11012 if (time_after_eq(jiffies, rq->next_balance))
11013 raise_softirq(SCHED_SOFTIRQ);
11014
11015 nohz_balancer_kick(rq);
11016 }
11017
rq_online_fair(struct rq * rq)11018 static void rq_online_fair(struct rq *rq)
11019 {
11020 update_sysctl();
11021
11022 update_runtime_enabled(rq);
11023 }
11024
rq_offline_fair(struct rq * rq)11025 static void rq_offline_fair(struct rq *rq)
11026 {
11027 update_sysctl();
11028
11029 /* Ensure any throttled groups are reachable by pick_next_task */
11030 unthrottle_offline_cfs_rqs(rq);
11031 }
11032
11033 #ifdef CONFIG_SCHED_EAS
11034 static inline int
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)11035 kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
11036 {
11037 unsigned long flags;
11038 int rc = 0;
11039
11040 if (cpu_of(rq) == new_cpu)
11041 return rc;
11042
11043 /* Invoke active balance to force migrate currently running task */
11044 raw_spin_lock_irqsave(&rq->lock, flags);
11045 if (!rq->active_balance) {
11046 rq->active_balance = 1;
11047 rq->push_cpu = new_cpu;
11048 get_task_struct(p);
11049 rq->push_task = p;
11050 rc = 1;
11051 }
11052 raw_spin_unlock_irqrestore(&rq->lock, flags);
11053 return rc;
11054 }
11055
11056 DEFINE_RAW_SPINLOCK(migration_lock);
check_for_migration_fair(struct rq * rq,struct task_struct * p)11057 static void check_for_migration_fair(struct rq *rq, struct task_struct *p)
11058 {
11059 int active_balance;
11060 int new_cpu = -1;
11061 int prev_cpu = task_cpu(p);
11062 int ret;
11063
11064 #ifdef CONFIG_SCHED_RTG
11065 bool need_down_migrate = false;
11066 struct cpumask *rtg_target = find_rtg_target(p);
11067
11068 if (rtg_target &&
11069 (capacity_orig_of(prev_cpu) >
11070 capacity_orig_of(cpumask_first(rtg_target))))
11071 need_down_migrate = true;
11072 #endif
11073
11074 if (rq->misfit_task_load) {
11075 if (rq->curr->state != TASK_RUNNING ||
11076 rq->curr->nr_cpus_allowed == 1)
11077 return;
11078
11079 raw_spin_lock(&migration_lock);
11080 #ifdef CONFIG_SCHED_RTG
11081 if (rtg_target) {
11082 new_cpu = find_rtg_cpu(p);
11083
11084 if (new_cpu != -1 && need_down_migrate &&
11085 cpumask_test_cpu(new_cpu, rtg_target) &&
11086 idle_cpu(new_cpu))
11087 goto do_active_balance;
11088
11089 if (new_cpu != -1 &&
11090 capacity_orig_of(new_cpu) > capacity_orig_of(prev_cpu))
11091 goto do_active_balance;
11092
11093 goto out_unlock;
11094 }
11095 #endif
11096 rcu_read_lock();
11097 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
11098 rcu_read_unlock();
11099
11100 if (new_cpu == -1 ||
11101 capacity_orig_of(new_cpu) <= capacity_orig_of(prev_cpu))
11102 goto out_unlock;
11103 #ifdef CONFIG_SCHED_RTG
11104 do_active_balance:
11105 #endif
11106 active_balance = kick_active_balance(rq, p, new_cpu);
11107 if (active_balance) {
11108 mark_reserved(new_cpu);
11109 raw_spin_unlock(&migration_lock);
11110 ret = stop_one_cpu_nowait(prev_cpu,
11111 active_load_balance_cpu_stop, rq,
11112 &rq->active_balance_work);
11113 if (!ret)
11114 clear_reserved(new_cpu);
11115 else
11116 wake_up_if_idle(new_cpu);
11117 return;
11118 }
11119 out_unlock:
11120 raw_spin_unlock(&migration_lock);
11121 }
11122 }
11123 #endif /* CONFIG_SCHED_EAS */
11124 #endif /* CONFIG_SMP */
11125
11126 /*
11127 * scheduler tick hitting a task of our scheduling class.
11128 *
11129 * NOTE: This function can be called remotely by the tick offload that
11130 * goes along full dynticks. Therefore no local assumption can be made
11131 * and everything must be accessed through the @rq and @curr passed in
11132 * parameters.
11133 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11134 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11135 {
11136 struct cfs_rq *cfs_rq;
11137 struct sched_entity *se = &curr->se;
11138
11139 for_each_sched_entity(se) {
11140 cfs_rq = cfs_rq_of(se);
11141 entity_tick(cfs_rq, se, queued);
11142 }
11143
11144 if (static_branch_unlikely(&sched_numa_balancing))
11145 task_tick_numa(rq, curr);
11146
11147 update_misfit_status(curr, rq);
11148 update_overutilized_status(task_rq(curr));
11149 }
11150
11151 /*
11152 * called on fork with the child task as argument from the parent's context
11153 * - child not yet on the tasklist
11154 * - preemption disabled
11155 */
task_fork_fair(struct task_struct * p)11156 static void task_fork_fair(struct task_struct *p)
11157 {
11158 struct cfs_rq *cfs_rq;
11159 struct sched_entity *se = &p->se, *curr;
11160 struct rq *rq = this_rq();
11161 struct rq_flags rf;
11162
11163 rq_lock(rq, &rf);
11164 update_rq_clock(rq);
11165
11166 cfs_rq = task_cfs_rq(current);
11167 curr = cfs_rq->curr;
11168 if (curr) {
11169 update_curr(cfs_rq);
11170 se->vruntime = curr->vruntime;
11171 }
11172 place_entity(cfs_rq, se, 1);
11173
11174 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11175 /*
11176 * Upon rescheduling, sched_class::put_prev_task() will place
11177 * 'current' within the tree based on its new key value.
11178 */
11179 swap(curr->vruntime, se->vruntime);
11180 resched_curr(rq);
11181 }
11182
11183 se->vruntime -= cfs_rq->min_vruntime;
11184 rq_unlock(rq, &rf);
11185 }
11186
11187 /*
11188 * Priority of the task has changed. Check to see if we preempt
11189 * the current task.
11190 */
11191 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11192 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11193 {
11194 if (!task_on_rq_queued(p))
11195 return;
11196
11197 if (rq->cfs.nr_running == 1)
11198 return;
11199
11200 /*
11201 * Reschedule if we are currently running on this runqueue and
11202 * our priority decreased, or if we are not currently running on
11203 * this runqueue and our priority is higher than the current's
11204 */
11205 if (rq->curr == p) {
11206 if (p->prio > oldprio)
11207 resched_curr(rq);
11208 } else
11209 check_preempt_curr(rq, p, 0);
11210 }
11211
vruntime_normalized(struct task_struct * p)11212 static inline bool vruntime_normalized(struct task_struct *p)
11213 {
11214 struct sched_entity *se = &p->se;
11215
11216 /*
11217 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11218 * the dequeue_entity(.flags=0) will already have normalized the
11219 * vruntime.
11220 */
11221 if (p->on_rq)
11222 return true;
11223
11224 /*
11225 * When !on_rq, vruntime of the task has usually NOT been normalized.
11226 * But there are some cases where it has already been normalized:
11227 *
11228 * - A forked child which is waiting for being woken up by
11229 * wake_up_new_task().
11230 * - A task which has been woken up by try_to_wake_up() and
11231 * waiting for actually being woken up by sched_ttwu_pending().
11232 */
11233 if (!se->sum_exec_runtime ||
11234 (p->state == TASK_WAKING && p->sched_remote_wakeup))
11235 return true;
11236
11237 return false;
11238 }
11239
11240 #ifdef CONFIG_FAIR_GROUP_SCHED
11241 /*
11242 * Propagate the changes of the sched_entity across the tg tree to make it
11243 * visible to the root
11244 */
propagate_entity_cfs_rq(struct sched_entity * se)11245 static void propagate_entity_cfs_rq(struct sched_entity *se)
11246 {
11247 struct cfs_rq *cfs_rq;
11248
11249 list_add_leaf_cfs_rq(cfs_rq_of(se));
11250
11251 /* Start to propagate at parent */
11252 se = se->parent;
11253
11254 for_each_sched_entity(se) {
11255 cfs_rq = cfs_rq_of(se);
11256
11257 if (!cfs_rq_throttled(cfs_rq)){
11258 update_load_avg(cfs_rq, se, UPDATE_TG);
11259 list_add_leaf_cfs_rq(cfs_rq);
11260 continue;
11261 }
11262
11263 if (list_add_leaf_cfs_rq(cfs_rq))
11264 break;
11265 }
11266 }
11267 #else
propagate_entity_cfs_rq(struct sched_entity * se)11268 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11269 #endif
11270
detach_entity_cfs_rq(struct sched_entity * se)11271 static void detach_entity_cfs_rq(struct sched_entity *se)
11272 {
11273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11274
11275 /* Catch up with the cfs_rq and remove our load when we leave */
11276 update_load_avg(cfs_rq, se, 0);
11277 detach_entity_load_avg(cfs_rq, se);
11278 update_tg_load_avg(cfs_rq);
11279 propagate_entity_cfs_rq(se);
11280 }
11281
attach_entity_cfs_rq(struct sched_entity * se)11282 static void attach_entity_cfs_rq(struct sched_entity *se)
11283 {
11284 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11285
11286 #ifdef CONFIG_FAIR_GROUP_SCHED
11287 /*
11288 * Since the real-depth could have been changed (only FAIR
11289 * class maintain depth value), reset depth properly.
11290 */
11291 se->depth = se->parent ? se->parent->depth + 1 : 0;
11292 #endif
11293
11294 /* Synchronize entity with its cfs_rq */
11295 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11296 attach_entity_load_avg(cfs_rq, se);
11297 update_tg_load_avg(cfs_rq);
11298 propagate_entity_cfs_rq(se);
11299 }
11300
detach_task_cfs_rq(struct task_struct * p)11301 static void detach_task_cfs_rq(struct task_struct *p)
11302 {
11303 struct sched_entity *se = &p->se;
11304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11305
11306 if (!vruntime_normalized(p)) {
11307 /*
11308 * Fix up our vruntime so that the current sleep doesn't
11309 * cause 'unlimited' sleep bonus.
11310 */
11311 place_entity(cfs_rq, se, 0);
11312 se->vruntime -= cfs_rq->min_vruntime;
11313 }
11314
11315 detach_entity_cfs_rq(se);
11316 }
11317
attach_task_cfs_rq(struct task_struct * p)11318 static void attach_task_cfs_rq(struct task_struct *p)
11319 {
11320 struct sched_entity *se = &p->se;
11321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11322
11323 attach_entity_cfs_rq(se);
11324
11325 if (!vruntime_normalized(p))
11326 se->vruntime += cfs_rq->min_vruntime;
11327 }
11328
switched_from_fair(struct rq * rq,struct task_struct * p)11329 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11330 {
11331 detach_task_cfs_rq(p);
11332 }
11333
switched_to_fair(struct rq * rq,struct task_struct * p)11334 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11335 {
11336 attach_task_cfs_rq(p);
11337
11338 if (task_on_rq_queued(p)) {
11339 /*
11340 * We were most likely switched from sched_rt, so
11341 * kick off the schedule if running, otherwise just see
11342 * if we can still preempt the current task.
11343 */
11344 if (rq->curr == p)
11345 resched_curr(rq);
11346 else
11347 check_preempt_curr(rq, p, 0);
11348 }
11349 }
11350
11351 /* Account for a task changing its policy or group.
11352 *
11353 * This routine is mostly called to set cfs_rq->curr field when a task
11354 * migrates between groups/classes.
11355 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11356 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11357 {
11358 struct sched_entity *se = &p->se;
11359
11360 #ifdef CONFIG_SMP
11361 if (task_on_rq_queued(p)) {
11362 /*
11363 * Move the next running task to the front of the list, so our
11364 * cfs_tasks list becomes MRU one.
11365 */
11366 list_move(&se->group_node, &rq->cfs_tasks);
11367 }
11368 #endif
11369
11370 for_each_sched_entity(se) {
11371 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11372
11373 set_next_entity(cfs_rq, se);
11374 /* ensure bandwidth has been allocated on our new cfs_rq */
11375 account_cfs_rq_runtime(cfs_rq, 0);
11376 }
11377 }
11378
init_cfs_rq(struct cfs_rq * cfs_rq)11379 void init_cfs_rq(struct cfs_rq *cfs_rq)
11380 {
11381 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11382 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11383 #ifndef CONFIG_64BIT
11384 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11385 #endif
11386 #ifdef CONFIG_SMP
11387 raw_spin_lock_init(&cfs_rq->removed.lock);
11388 #endif
11389 }
11390
11391 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11392 static void task_set_group_fair(struct task_struct *p)
11393 {
11394 struct sched_entity *se = &p->se;
11395
11396 set_task_rq(p, task_cpu(p));
11397 se->depth = se->parent ? se->parent->depth + 1 : 0;
11398 }
11399
task_move_group_fair(struct task_struct * p)11400 static void task_move_group_fair(struct task_struct *p)
11401 {
11402 detach_task_cfs_rq(p);
11403 set_task_rq(p, task_cpu(p));
11404
11405 #ifdef CONFIG_SMP
11406 /* Tell se's cfs_rq has been changed -- migrated */
11407 p->se.avg.last_update_time = 0;
11408 #endif
11409 attach_task_cfs_rq(p);
11410 }
11411
task_change_group_fair(struct task_struct * p,int type)11412 static void task_change_group_fair(struct task_struct *p, int type)
11413 {
11414 switch (type) {
11415 case TASK_SET_GROUP:
11416 task_set_group_fair(p);
11417 break;
11418
11419 case TASK_MOVE_GROUP:
11420 task_move_group_fair(p);
11421 break;
11422 }
11423 }
11424
free_fair_sched_group(struct task_group * tg)11425 void free_fair_sched_group(struct task_group *tg)
11426 {
11427 int i;
11428
11429 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11430
11431 for_each_possible_cpu(i) {
11432 if (tg->cfs_rq)
11433 kfree(tg->cfs_rq[i]);
11434 if (tg->se)
11435 kfree(tg->se[i]);
11436 }
11437
11438 kfree(tg->cfs_rq);
11439 kfree(tg->se);
11440 }
11441
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11442 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11443 {
11444 struct sched_entity *se;
11445 struct cfs_rq *cfs_rq;
11446 int i;
11447
11448 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11449 if (!tg->cfs_rq)
11450 goto err;
11451 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11452 if (!tg->se)
11453 goto err;
11454
11455 tg->shares = NICE_0_LOAD;
11456
11457 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11458
11459 for_each_possible_cpu(i) {
11460 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11461 GFP_KERNEL, cpu_to_node(i));
11462 if (!cfs_rq)
11463 goto err;
11464
11465 se = kzalloc_node(sizeof(struct sched_entity),
11466 GFP_KERNEL, cpu_to_node(i));
11467 if (!se)
11468 goto err_free_rq;
11469
11470 init_cfs_rq(cfs_rq);
11471 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11472 init_entity_runnable_average(se);
11473 }
11474
11475 return 1;
11476
11477 err_free_rq:
11478 kfree(cfs_rq);
11479 err:
11480 return 0;
11481 }
11482
online_fair_sched_group(struct task_group * tg)11483 void online_fair_sched_group(struct task_group *tg)
11484 {
11485 struct sched_entity *se;
11486 struct rq_flags rf;
11487 struct rq *rq;
11488 int i;
11489
11490 for_each_possible_cpu(i) {
11491 rq = cpu_rq(i);
11492 se = tg->se[i];
11493 rq_lock_irq(rq, &rf);
11494 update_rq_clock(rq);
11495 attach_entity_cfs_rq(se);
11496 sync_throttle(tg, i);
11497 rq_unlock_irq(rq, &rf);
11498 }
11499 }
11500
unregister_fair_sched_group(struct task_group * tg)11501 void unregister_fair_sched_group(struct task_group *tg)
11502 {
11503 unsigned long flags;
11504 struct rq *rq;
11505 int cpu;
11506
11507 for_each_possible_cpu(cpu) {
11508 if (tg->se[cpu])
11509 remove_entity_load_avg(tg->se[cpu]);
11510
11511 /*
11512 * Only empty task groups can be destroyed; so we can speculatively
11513 * check on_list without danger of it being re-added.
11514 */
11515 if (!tg->cfs_rq[cpu]->on_list)
11516 continue;
11517
11518 rq = cpu_rq(cpu);
11519
11520 raw_spin_lock_irqsave(&rq->lock, flags);
11521 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11522 raw_spin_unlock_irqrestore(&rq->lock, flags);
11523 }
11524 }
11525
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11526 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11527 struct sched_entity *se, int cpu,
11528 struct sched_entity *parent)
11529 {
11530 struct rq *rq = cpu_rq(cpu);
11531
11532 cfs_rq->tg = tg;
11533 cfs_rq->rq = rq;
11534 init_cfs_rq_runtime(cfs_rq);
11535
11536 tg->cfs_rq[cpu] = cfs_rq;
11537 tg->se[cpu] = se;
11538
11539 /* se could be NULL for root_task_group */
11540 if (!se)
11541 return;
11542
11543 if (!parent) {
11544 se->cfs_rq = &rq->cfs;
11545 se->depth = 0;
11546 } else {
11547 se->cfs_rq = parent->my_q;
11548 se->depth = parent->depth + 1;
11549 }
11550
11551 se->my_q = cfs_rq;
11552 /* guarantee group entities always have weight */
11553 update_load_set(&se->load, NICE_0_LOAD);
11554 se->parent = parent;
11555 }
11556
11557 static DEFINE_MUTEX(shares_mutex);
11558
sched_group_set_shares(struct task_group * tg,unsigned long shares)11559 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11560 {
11561 int i;
11562
11563 /*
11564 * We can't change the weight of the root cgroup.
11565 */
11566 if (!tg->se[0])
11567 return -EINVAL;
11568
11569 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11570
11571 mutex_lock(&shares_mutex);
11572 if (tg->shares == shares)
11573 goto done;
11574
11575 tg->shares = shares;
11576 for_each_possible_cpu(i) {
11577 struct rq *rq = cpu_rq(i);
11578 struct sched_entity *se = tg->se[i];
11579 struct rq_flags rf;
11580
11581 /* Propagate contribution to hierarchy */
11582 rq_lock_irqsave(rq, &rf);
11583 update_rq_clock(rq);
11584 for_each_sched_entity(se) {
11585 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11586 update_cfs_group(se);
11587 }
11588 rq_unlock_irqrestore(rq, &rf);
11589 }
11590
11591 done:
11592 mutex_unlock(&shares_mutex);
11593 return 0;
11594 }
11595 #else /* CONFIG_FAIR_GROUP_SCHED */
11596
free_fair_sched_group(struct task_group * tg)11597 void free_fair_sched_group(struct task_group *tg) { }
11598
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11599 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11600 {
11601 return 1;
11602 }
11603
online_fair_sched_group(struct task_group * tg)11604 void online_fair_sched_group(struct task_group *tg) { }
11605
unregister_fair_sched_group(struct task_group * tg)11606 void unregister_fair_sched_group(struct task_group *tg) { }
11607
11608 #endif /* CONFIG_FAIR_GROUP_SCHED */
11609
11610
get_rr_interval_fair(struct rq * rq,struct task_struct * task)11611 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11612 {
11613 struct sched_entity *se = &task->se;
11614 unsigned int rr_interval = 0;
11615
11616 /*
11617 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11618 * idle runqueue:
11619 */
11620 if (rq->cfs.load.weight)
11621 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11622
11623 return rr_interval;
11624 }
11625
11626 /*
11627 * All the scheduling class methods:
11628 */
11629 const struct sched_class fair_sched_class
11630 __section("__fair_sched_class") = {
11631 .enqueue_task = enqueue_task_fair,
11632 .dequeue_task = dequeue_task_fair,
11633 .yield_task = yield_task_fair,
11634 .yield_to_task = yield_to_task_fair,
11635
11636 .check_preempt_curr = check_preempt_wakeup,
11637
11638 .pick_next_task = __pick_next_task_fair,
11639 .put_prev_task = put_prev_task_fair,
11640 .set_next_task = set_next_task_fair,
11641
11642 #ifdef CONFIG_SMP
11643 .balance = balance_fair,
11644 .select_task_rq = select_task_rq_fair,
11645 .migrate_task_rq = migrate_task_rq_fair,
11646
11647 .rq_online = rq_online_fair,
11648 .rq_offline = rq_offline_fair,
11649
11650 .task_dead = task_dead_fair,
11651 .set_cpus_allowed = set_cpus_allowed_common,
11652 #endif
11653
11654 .task_tick = task_tick_fair,
11655 .task_fork = task_fork_fair,
11656
11657 .prio_changed = prio_changed_fair,
11658 .switched_from = switched_from_fair,
11659 .switched_to = switched_to_fair,
11660
11661 .get_rr_interval = get_rr_interval_fair,
11662
11663 .update_curr = update_curr_fair,
11664
11665 #ifdef CONFIG_FAIR_GROUP_SCHED
11666 .task_change_group = task_change_group_fair,
11667 #endif
11668
11669 #ifdef CONFIG_UCLAMP_TASK
11670 .uclamp_enabled = 1,
11671 #endif
11672 #ifdef CONFIG_SCHED_WALT
11673 .fixup_walt_sched_stats = walt_fixup_sched_stats_fair,
11674 #endif
11675 #ifdef CONFIG_SCHED_EAS
11676 .check_for_migration = check_for_migration_fair,
11677 #endif
11678 };
11679
11680 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)11681 void print_cfs_stats(struct seq_file *m, int cpu)
11682 {
11683 struct cfs_rq *cfs_rq, *pos;
11684
11685 rcu_read_lock();
11686 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11687 print_cfs_rq(m, cpu, cfs_rq);
11688 rcu_read_unlock();
11689 }
11690
11691 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)11692 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11693 {
11694 int node;
11695 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11696 struct numa_group *ng;
11697
11698 rcu_read_lock();
11699 ng = rcu_dereference(p->numa_group);
11700 for_each_online_node(node) {
11701 if (p->numa_faults) {
11702 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11703 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11704 }
11705 if (ng) {
11706 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11707 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11708 }
11709 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11710 }
11711 rcu_read_unlock();
11712 }
11713 #endif /* CONFIG_NUMA_BALANCING */
11714 #endif /* CONFIG_SCHED_DEBUG */
11715
init_sched_fair_class(void)11716 __init void init_sched_fair_class(void)
11717 {
11718 #ifdef CONFIG_SMP
11719 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11720
11721 #ifdef CONFIG_NO_HZ_COMMON
11722 nohz.next_balance = jiffies;
11723 nohz.next_blocked = jiffies;
11724 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11725 #endif
11726 #endif /* SMP */
11727
11728 }
11729
11730 /* WALT sched implementation begins here */
11731 #ifdef CONFIG_SCHED_WALT
11732
11733 #ifdef CONFIG_CFS_BANDWIDTH
11734
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)11735 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
11736 {
11737 cfs_rq->walt_stats.cumulative_runnable_avg_scaled = 0;
11738 }
11739
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)11740 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
11741 {
11742 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11743 p->ravg.demand_scaled);
11744 }
11745
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)11746 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
11747 {
11748 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11749 -(s64)p->ravg.demand_scaled);
11750 }
11751
walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)11752 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
11753 struct cfs_rq *tcfs_rq)
11754 {
11755 struct rq *rq = rq_of(tcfs_rq);
11756
11757 fixup_cumulative_runnable_avg(stats,
11758 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11759
11760 if (stats == &rq->walt_stats)
11761 walt_fixup_cum_window_demand(rq,
11762 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11763
11764 }
11765
walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)11766 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
11767 struct cfs_rq *tcfs_rq)
11768 {
11769 struct rq *rq = rq_of(tcfs_rq);
11770
11771 fixup_cumulative_runnable_avg(stats,
11772 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11773
11774 /*
11775 * We remove the throttled cfs_rq's tasks's contribution from the
11776 * cumulative window demand so that the same can be added
11777 * unconditionally when the cfs_rq is unthrottled.
11778 */
11779 if (stats == &rq->walt_stats)
11780 walt_fixup_cum_window_demand(rq,
11781 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11782 }
11783
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)11784 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
11785 u16 updated_demand_scaled)
11786 {
11787 struct cfs_rq *cfs_rq;
11788 struct sched_entity *se = &p->se;
11789 s64 task_load_delta = (s64)updated_demand_scaled -
11790 p->ravg.demand_scaled;
11791
11792 for_each_sched_entity(se) {
11793 cfs_rq = cfs_rq_of(se);
11794
11795 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11796 task_load_delta);
11797 if (cfs_rq_throttled(cfs_rq))
11798 break;
11799 }
11800
11801 /* Fix up rq->walt_stats only if we didn't find any throttled cfs_rq */
11802 if (!se) {
11803 fixup_cumulative_runnable_avg(&rq->walt_stats,
11804 task_load_delta);
11805 walt_fixup_cum_window_demand(rq, task_load_delta);
11806 }
11807 }
11808
11809 #else /* CONFIG_CFS_BANDWIDTH */
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)11810 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
11811 u16 updated_demand_scaled)
11812 {
11813 fixup_walt_sched_stats_common(rq, p, updated_demand_scaled);
11814 }
11815 #endif /* CONFIG_CFS_BANDWIDTH */
11816 #endif /* CONFIG_SCHED_WALT */
11817
11818 /*
11819 * Helper functions to facilitate extracting info from tracepoints.
11820 */
11821
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)11822 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11823 {
11824 #ifdef CONFIG_SMP
11825 return cfs_rq ? &cfs_rq->avg : NULL;
11826 #else
11827 return NULL;
11828 #endif
11829 }
11830 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11831
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)11832 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11833 {
11834 if (!cfs_rq) {
11835 if (str)
11836 strlcpy(str, "(null)", len);
11837 else
11838 return NULL;
11839 }
11840
11841 cfs_rq_tg_path(cfs_rq, str, len);
11842 return str;
11843 }
11844 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11845
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)11846 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11847 {
11848 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11849 }
11850 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11851
sched_trace_rq_avg_rt(struct rq * rq)11852 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11853 {
11854 #ifdef CONFIG_SMP
11855 return rq ? &rq->avg_rt : NULL;
11856 #else
11857 return NULL;
11858 #endif
11859 }
11860 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11861
sched_trace_rq_avg_dl(struct rq * rq)11862 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11863 {
11864 #ifdef CONFIG_SMP
11865 return rq ? &rq->avg_dl : NULL;
11866 #else
11867 return NULL;
11868 #endif
11869 }
11870 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11871
sched_trace_rq_avg_irq(struct rq * rq)11872 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11873 {
11874 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11875 return rq ? &rq->avg_irq : NULL;
11876 #else
11877 return NULL;
11878 #endif
11879 }
11880 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11881
sched_trace_rq_cpu(struct rq * rq)11882 int sched_trace_rq_cpu(struct rq *rq)
11883 {
11884 return rq ? cpu_of(rq) : -1;
11885 }
11886 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11887
sched_trace_rq_cpu_capacity(struct rq * rq)11888 int sched_trace_rq_cpu_capacity(struct rq *rq)
11889 {
11890 return rq ?
11891 #ifdef CONFIG_SMP
11892 rq->cpu_capacity
11893 #else
11894 SCHED_CAPACITY_SCALE
11895 #endif
11896 : -1;
11897 }
11898 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11899
sched_trace_rd_span(struct root_domain * rd)11900 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11901 {
11902 #ifdef CONFIG_SMP
11903 return rd ? rd->span : NULL;
11904 #else
11905 return NULL;
11906 #endif
11907 }
11908 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11909
sched_trace_rq_nr_running(struct rq * rq)11910 int sched_trace_rq_nr_running(struct rq *rq)
11911 {
11912 return rq ? rq->nr_running : -1;
11913 }
11914 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11915