1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 #ifdef CONFIG_CMA_REUSE
46 MIGRATE_CMA,
47 #endif
48 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
49 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
50 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
51 /*
52 * MIGRATE_CMA migration type is designed to mimic the way
53 * ZONE_MOVABLE works. Only movable pages can be allocated
54 * from MIGRATE_CMA pageblocks and page allocator never
55 * implicitly change migration type of MIGRATE_CMA pageblock.
56 *
57 * The way to use it is to change migratetype of a range of
58 * pageblocks to MIGRATE_CMA which can be done by
59 * __free_pageblock_cma() function. What is important though
60 * is that a range of pageblocks must be aligned to
61 * MAX_ORDER_NR_PAGES should biggest page be bigger then
62 * a single pageblock.
63 */
64 MIGRATE_CMA,
65 #endif
66 #ifdef CONFIG_MEMORY_ISOLATION
67 MIGRATE_ISOLATE, /* can't allocate from here */
68 #endif
69 MIGRATE_TYPES
70 };
71
72 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
73 extern const char * const migratetype_names[MIGRATE_TYPES];
74
75 #ifdef CONFIG_CMA
76 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
77 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
78 #else
79 # define is_migrate_cma(migratetype) false
80 # define is_migrate_cma_page(_page) false
81 #endif
82
83 #ifdef CONFIG_CMA_REUSE
84 # define get_cma_migratetype() MIGRATE_CMA
85 #else
86 # define get_cma_migratetype() MIGRATE_MOVABLE
87 #endif
88
is_migrate_movable(int mt)89 static inline bool is_migrate_movable(int mt)
90 {
91 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
92 }
93
94 #define for_each_migratetype_order(order, type) \
95 for (order = 0; order < MAX_ORDER; order++) \
96 for (type = 0; type < MIGRATE_TYPES; type++)
97
98 extern int page_group_by_mobility_disabled;
99
100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
101
102 #define get_pageblock_migratetype(page) \
103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
104
105 struct free_area {
106 struct list_head free_list[MIGRATE_TYPES];
107 unsigned long nr_free;
108 };
109
get_page_from_free_area(struct free_area * area,int migratetype)110 static inline struct page *get_page_from_free_area(struct free_area *area,
111 int migratetype)
112 {
113 return list_first_entry_or_null(&area->free_list[migratetype],
114 struct page, lru);
115 }
116
free_area_empty(struct free_area * area,int migratetype)117 static inline bool free_area_empty(struct free_area *area, int migratetype)
118 {
119 return list_empty(&area->free_list[migratetype]);
120 }
121
122 struct pglist_data;
123
124 /*
125 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
126 * So add a wild amount of padding here to ensure that they fall into separate
127 * cachelines. There are very few zone structures in the machine, so space
128 * consumption is not a concern here.
129 */
130 #if defined(CONFIG_SMP)
131 struct zone_padding {
132 char x[0];
133 } ____cacheline_internodealigned_in_smp;
134 #define ZONE_PADDING(name) struct zone_padding name;
135 #else
136 #define ZONE_PADDING(name)
137 #endif
138
139 #ifdef CONFIG_NUMA
140 enum numa_stat_item {
141 NUMA_HIT, /* allocated in intended node */
142 NUMA_MISS, /* allocated in non intended node */
143 NUMA_FOREIGN, /* was intended here, hit elsewhere */
144 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
145 NUMA_LOCAL, /* allocation from local node */
146 NUMA_OTHER, /* allocation from other node */
147 NR_VM_NUMA_STAT_ITEMS
148 };
149 #else
150 #define NR_VM_NUMA_STAT_ITEMS 0
151 #endif
152
153 enum zone_stat_item {
154 /* First 128 byte cacheline (assuming 64 bit words) */
155 NR_FREE_PAGES,
156 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
157 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
158 NR_ZONE_ACTIVE_ANON,
159 NR_ZONE_INACTIVE_FILE,
160 NR_ZONE_ACTIVE_FILE,
161 NR_ZONE_UNEVICTABLE,
162 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
163 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
164 NR_PAGETABLE, /* used for pagetables */
165 /* Second 128 byte cacheline */
166 NR_BOUNCE,
167 #if IS_ENABLED(CONFIG_ZSMALLOC)
168 NR_ZSPAGES, /* allocated in zsmalloc */
169 #endif
170 NR_FREE_CMA_PAGES,
171 NR_VM_ZONE_STAT_ITEMS };
172
173 enum node_stat_item {
174 NR_LRU_BASE,
175 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
176 NR_ACTIVE_ANON, /* " " " " " */
177 NR_INACTIVE_FILE, /* " " " " " */
178 NR_ACTIVE_FILE, /* " " " " " */
179 NR_UNEVICTABLE, /* " " " " " */
180 NR_SLAB_RECLAIMABLE_B,
181 NR_SLAB_UNRECLAIMABLE_B,
182 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
183 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
184 WORKINGSET_NODES,
185 WORKINGSET_REFAULT_BASE,
186 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
187 WORKINGSET_REFAULT_FILE,
188 WORKINGSET_ACTIVATE_BASE,
189 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
190 WORKINGSET_ACTIVATE_FILE,
191 WORKINGSET_RESTORE_BASE,
192 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
193 WORKINGSET_RESTORE_FILE,
194 WORKINGSET_NODERECLAIM,
195 NR_ANON_MAPPED, /* Mapped anonymous pages */
196 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
197 only modified from process context */
198 NR_FILE_PAGES,
199 NR_FILE_DIRTY,
200 NR_WRITEBACK,
201 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
202 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
203 NR_SHMEM_THPS,
204 NR_SHMEM_PMDMAPPED,
205 NR_FILE_THPS,
206 NR_FILE_PMDMAPPED,
207 NR_ANON_THPS,
208 NR_VMSCAN_WRITE,
209 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
210 NR_DIRTIED, /* page dirtyings since bootup */
211 NR_WRITTEN, /* page writings since bootup */
212 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
213 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
214 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
215 NR_KERNEL_STACK_KB, /* measured in KiB */
216 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
217 NR_KERNEL_SCS_KB, /* measured in KiB */
218 #endif
219 NR_VM_NODE_STAT_ITEMS
220 };
221
222 /*
223 * Returns true if the value is measured in bytes (most vmstat values are
224 * measured in pages). This defines the API part, the internal representation
225 * might be different.
226 */
vmstat_item_in_bytes(int idx)227 static __always_inline bool vmstat_item_in_bytes(int idx)
228 {
229 /*
230 * Global and per-node slab counters track slab pages.
231 * It's expected that changes are multiples of PAGE_SIZE.
232 * Internally values are stored in pages.
233 *
234 * Per-memcg and per-lruvec counters track memory, consumed
235 * by individual slab objects. These counters are actually
236 * byte-precise.
237 */
238 return (idx == NR_SLAB_RECLAIMABLE_B ||
239 idx == NR_SLAB_UNRECLAIMABLE_B);
240 }
241
242 /*
243 * We do arithmetic on the LRU lists in various places in the code,
244 * so it is important to keep the active lists LRU_ACTIVE higher in
245 * the array than the corresponding inactive lists, and to keep
246 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
247 *
248 * This has to be kept in sync with the statistics in zone_stat_item
249 * above and the descriptions in vmstat_text in mm/vmstat.c
250 */
251 #define LRU_BASE 0
252 #define LRU_ACTIVE 1
253 #define LRU_FILE 2
254
255 enum lru_list {
256 LRU_INACTIVE_ANON = LRU_BASE,
257 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
258 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
259 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
260 LRU_UNEVICTABLE,
261 NR_LRU_LISTS
262 };
263
264 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
265
266 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
267
is_file_lru(enum lru_list lru)268 static inline bool is_file_lru(enum lru_list lru)
269 {
270 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
271 }
272
is_active_lru(enum lru_list lru)273 static inline bool is_active_lru(enum lru_list lru)
274 {
275 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
276 }
277
278 #define ANON_AND_FILE 2
279
280 enum lruvec_flags {
281 LRUVEC_CONGESTED, /* lruvec has many dirty pages
282 * backed by a congested BDI
283 */
284 };
285
286 struct lruvec {
287 struct list_head lists[NR_LRU_LISTS];
288 /*
289 * These track the cost of reclaiming one LRU - file or anon -
290 * over the other. As the observed cost of reclaiming one LRU
291 * increases, the reclaim scan balance tips toward the other.
292 */
293 unsigned long anon_cost;
294 unsigned long file_cost;
295 /* Non-resident age, driven by LRU movement */
296 atomic_long_t nonresident_age;
297 /* Refaults at the time of last reclaim cycle */
298 unsigned long refaults[ANON_AND_FILE];
299 /* Various lruvec state flags (enum lruvec_flags) */
300 unsigned long flags;
301 #ifdef CONFIG_MEMCG
302 struct pglist_data *pgdat;
303 #endif
304 };
305
306 /* Isolate unmapped pages */
307 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
308 /* Isolate for asynchronous migration */
309 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
310 /* Isolate unevictable pages */
311 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
312
313 /* LRU Isolation modes. */
314 typedef unsigned __bitwise isolate_mode_t;
315
316 enum zone_watermarks {
317 WMARK_MIN,
318 WMARK_LOW,
319 WMARK_HIGH,
320 NR_WMARK
321 };
322
323 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
324 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
325 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
326 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
327
328 struct per_cpu_pages {
329 int count; /* number of pages in the list */
330 int high; /* high watermark, emptying needed */
331 int batch; /* chunk size for buddy add/remove */
332
333 /* Lists of pages, one per migrate type stored on the pcp-lists */
334 struct list_head lists[MIGRATE_PCPTYPES];
335 };
336
337 struct per_cpu_pageset {
338 struct per_cpu_pages pcp;
339 #ifdef CONFIG_NUMA
340 s8 expire;
341 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
342 #endif
343 #ifdef CONFIG_SMP
344 s8 stat_threshold;
345 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
346 #endif
347 };
348
349 struct per_cpu_nodestat {
350 s8 stat_threshold;
351 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
352 };
353
354 #endif /* !__GENERATING_BOUNDS.H */
355
356 enum zone_type {
357 /*
358 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
359 * to DMA to all of the addressable memory (ZONE_NORMAL).
360 * On architectures where this area covers the whole 32 bit address
361 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
362 * DMA addressing constraints. This distinction is important as a 32bit
363 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
364 * platforms may need both zones as they support peripherals with
365 * different DMA addressing limitations.
366 */
367 #ifdef CONFIG_ZONE_DMA
368 ZONE_DMA,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 ZONE_DMA32,
372 #endif
373 /*
374 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
375 * performed on pages in ZONE_NORMAL if the DMA devices support
376 * transfers to all addressable memory.
377 */
378 ZONE_NORMAL,
379 #ifdef CONFIG_HIGHMEM
380 /*
381 * A memory area that is only addressable by the kernel through
382 * mapping portions into its own address space. This is for example
383 * used by i386 to allow the kernel to address the memory beyond
384 * 900MB. The kernel will set up special mappings (page
385 * table entries on i386) for each page that the kernel needs to
386 * access.
387 */
388 ZONE_HIGHMEM,
389 #endif
390 /*
391 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
392 * movable pages with few exceptional cases described below. Main use
393 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
394 * likely to succeed, and to locally limit unmovable allocations - e.g.,
395 * to increase the number of THP/huge pages. Notable special cases are:
396 *
397 * 1. Pinned pages: (long-term) pinning of movable pages might
398 * essentially turn such pages unmovable. Memory offlining might
399 * retry a long time.
400 * 2. memblock allocations: kernelcore/movablecore setups might create
401 * situations where ZONE_MOVABLE contains unmovable allocations
402 * after boot. Memory offlining and allocations fail early.
403 * 3. Memory holes: kernelcore/movablecore setups might create very rare
404 * situations where ZONE_MOVABLE contains memory holes after boot,
405 * for example, if we have sections that are only partially
406 * populated. Memory offlining and allocations fail early.
407 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
408 * memory offlining, such pages cannot be allocated.
409 * 5. Unmovable PG_offline pages: in paravirtualized environments,
410 * hotplugged memory blocks might only partially be managed by the
411 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
412 * parts not manged by the buddy are unmovable PG_offline pages. In
413 * some cases (virtio-mem), such pages can be skipped during
414 * memory offlining, however, cannot be moved/allocated. These
415 * techniques might use alloc_contig_range() to hide previously
416 * exposed pages from the buddy again (e.g., to implement some sort
417 * of memory unplug in virtio-mem).
418 *
419 * In general, no unmovable allocations that degrade memory offlining
420 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
421 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
422 * if has_unmovable_pages() states that there are no unmovable pages,
423 * there can be false negatives).
424 */
425 ZONE_MOVABLE,
426 #ifdef CONFIG_ZONE_DEVICE
427 ZONE_DEVICE,
428 #endif
429 __MAX_NR_ZONES
430
431 };
432
433 #ifndef __GENERATING_BOUNDS_H
434
435 #define ASYNC_AND_SYNC 2
436
437 struct zone {
438 /* Read-mostly fields */
439
440 /* zone watermarks, access with *_wmark_pages(zone) macros */
441 unsigned long _watermark[NR_WMARK];
442 unsigned long watermark_boost;
443
444 unsigned long nr_reserved_highatomic;
445
446 /*
447 * We don't know if the memory that we're going to allocate will be
448 * freeable or/and it will be released eventually, so to avoid totally
449 * wasting several GB of ram we must reserve some of the lower zone
450 * memory (otherwise we risk to run OOM on the lower zones despite
451 * there being tons of freeable ram on the higher zones). This array is
452 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
453 * changes.
454 */
455 long lowmem_reserve[MAX_NR_ZONES];
456
457 #ifdef CONFIG_NEED_MULTIPLE_NODES
458 int node;
459 #endif
460 struct pglist_data *zone_pgdat;
461 struct per_cpu_pageset __percpu *pageset;
462
463 #ifndef CONFIG_SPARSEMEM
464 /*
465 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
466 * In SPARSEMEM, this map is stored in struct mem_section
467 */
468 unsigned long *pageblock_flags;
469 #endif /* CONFIG_SPARSEMEM */
470
471 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
472 unsigned long zone_start_pfn;
473
474 /*
475 * spanned_pages is the total pages spanned by the zone, including
476 * holes, which is calculated as:
477 * spanned_pages = zone_end_pfn - zone_start_pfn;
478 *
479 * present_pages is physical pages existing within the zone, which
480 * is calculated as:
481 * present_pages = spanned_pages - absent_pages(pages in holes);
482 *
483 * managed_pages is present pages managed by the buddy system, which
484 * is calculated as (reserved_pages includes pages allocated by the
485 * bootmem allocator):
486 * managed_pages = present_pages - reserved_pages;
487 *
488 * So present_pages may be used by memory hotplug or memory power
489 * management logic to figure out unmanaged pages by checking
490 * (present_pages - managed_pages). And managed_pages should be used
491 * by page allocator and vm scanner to calculate all kinds of watermarks
492 * and thresholds.
493 *
494 * Locking rules:
495 *
496 * zone_start_pfn and spanned_pages are protected by span_seqlock.
497 * It is a seqlock because it has to be read outside of zone->lock,
498 * and it is done in the main allocator path. But, it is written
499 * quite infrequently.
500 *
501 * The span_seq lock is declared along with zone->lock because it is
502 * frequently read in proximity to zone->lock. It's good to
503 * give them a chance of being in the same cacheline.
504 *
505 * Write access to present_pages at runtime should be protected by
506 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
507 * present_pages should get_online_mems() to get a stable value.
508 */
509 atomic_long_t managed_pages;
510 unsigned long spanned_pages;
511 unsigned long present_pages;
512
513 const char *name;
514
515 #ifdef CONFIG_MEMORY_ISOLATION
516 /*
517 * Number of isolated pageblock. It is used to solve incorrect
518 * freepage counting problem due to racy retrieving migratetype
519 * of pageblock. Protected by zone->lock.
520 */
521 unsigned long nr_isolate_pageblock;
522 #endif
523
524 #ifdef CONFIG_MEMORY_HOTPLUG
525 /* see spanned/present_pages for more description */
526 seqlock_t span_seqlock;
527 #endif
528
529 int initialized;
530
531 /* Write-intensive fields used from the page allocator */
532 ZONE_PADDING(_pad1_)
533
534 /* free areas of different sizes */
535 struct free_area free_area[MAX_ORDER];
536
537 /* zone flags, see below */
538 unsigned long flags;
539
540 /* Primarily protects free_area */
541 spinlock_t lock;
542
543 /* Write-intensive fields used by compaction and vmstats. */
544 ZONE_PADDING(_pad2_)
545
546 /*
547 * When free pages are below this point, additional steps are taken
548 * when reading the number of free pages to avoid per-cpu counter
549 * drift allowing watermarks to be breached
550 */
551 unsigned long percpu_drift_mark;
552
553 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
554 /* pfn where compaction free scanner should start */
555 unsigned long compact_cached_free_pfn;
556 /* pfn where compaction migration scanner should start */
557 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
558 unsigned long compact_init_migrate_pfn;
559 unsigned long compact_init_free_pfn;
560 #endif
561
562 #ifdef CONFIG_COMPACTION
563 /*
564 * On compaction failure, 1<<compact_defer_shift compactions
565 * are skipped before trying again. The number attempted since
566 * last failure is tracked with compact_considered.
567 * compact_order_failed is the minimum compaction failed order.
568 */
569 unsigned int compact_considered;
570 unsigned int compact_defer_shift;
571 int compact_order_failed;
572 #endif
573
574 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
575 /* Set to true when the PG_migrate_skip bits should be cleared */
576 bool compact_blockskip_flush;
577 #endif
578
579 bool contiguous;
580
581 ZONE_PADDING(_pad3_)
582 /* Zone statistics */
583 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
584 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
585 } ____cacheline_internodealigned_in_smp;
586
587 enum pgdat_flags {
588 PGDAT_DIRTY, /* reclaim scanning has recently found
589 * many dirty file pages at the tail
590 * of the LRU.
591 */
592 PGDAT_WRITEBACK, /* reclaim scanning has recently found
593 * many pages under writeback
594 */
595 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
596 };
597
598 enum zone_flags {
599 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
600 * Cleared when kswapd is woken.
601 */
602 };
603
zone_managed_pages(struct zone * zone)604 static inline unsigned long zone_managed_pages(struct zone *zone)
605 {
606 return (unsigned long)atomic_long_read(&zone->managed_pages);
607 }
608
zone_end_pfn(const struct zone * zone)609 static inline unsigned long zone_end_pfn(const struct zone *zone)
610 {
611 return zone->zone_start_pfn + zone->spanned_pages;
612 }
613
zone_spans_pfn(const struct zone * zone,unsigned long pfn)614 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
615 {
616 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
617 }
618
zone_is_initialized(struct zone * zone)619 static inline bool zone_is_initialized(struct zone *zone)
620 {
621 return zone->initialized;
622 }
623
zone_is_empty(struct zone * zone)624 static inline bool zone_is_empty(struct zone *zone)
625 {
626 return zone->spanned_pages == 0;
627 }
628
629 /*
630 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
631 * intersection with the given zone
632 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)633 static inline bool zone_intersects(struct zone *zone,
634 unsigned long start_pfn, unsigned long nr_pages)
635 {
636 if (zone_is_empty(zone))
637 return false;
638 if (start_pfn >= zone_end_pfn(zone) ||
639 start_pfn + nr_pages <= zone->zone_start_pfn)
640 return false;
641
642 return true;
643 }
644
645 /*
646 * The "priority" of VM scanning is how much of the queues we will scan in one
647 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
648 * queues ("queue_length >> 12") during an aging round.
649 */
650 #define DEF_PRIORITY 12
651
652 /* Maximum number of zones on a zonelist */
653 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
654
655 enum {
656 ZONELIST_FALLBACK, /* zonelist with fallback */
657 #ifdef CONFIG_NUMA
658 /*
659 * The NUMA zonelists are doubled because we need zonelists that
660 * restrict the allocations to a single node for __GFP_THISNODE.
661 */
662 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
663 #endif
664 MAX_ZONELISTS
665 };
666
667 /*
668 * This struct contains information about a zone in a zonelist. It is stored
669 * here to avoid dereferences into large structures and lookups of tables
670 */
671 struct zoneref {
672 struct zone *zone; /* Pointer to actual zone */
673 int zone_idx; /* zone_idx(zoneref->zone) */
674 };
675
676 /*
677 * One allocation request operates on a zonelist. A zonelist
678 * is a list of zones, the first one is the 'goal' of the
679 * allocation, the other zones are fallback zones, in decreasing
680 * priority.
681 *
682 * To speed the reading of the zonelist, the zonerefs contain the zone index
683 * of the entry being read. Helper functions to access information given
684 * a struct zoneref are
685 *
686 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
687 * zonelist_zone_idx() - Return the index of the zone for an entry
688 * zonelist_node_idx() - Return the index of the node for an entry
689 */
690 struct zonelist {
691 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
692 };
693
694 #ifndef CONFIG_DISCONTIGMEM
695 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
696 extern struct page *mem_map;
697 #endif
698
699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
700 struct deferred_split {
701 spinlock_t split_queue_lock;
702 struct list_head split_queue;
703 unsigned long split_queue_len;
704 };
705 #endif
706
707 /*
708 * On NUMA machines, each NUMA node would have a pg_data_t to describe
709 * it's memory layout. On UMA machines there is a single pglist_data which
710 * describes the whole memory.
711 *
712 * Memory statistics and page replacement data structures are maintained on a
713 * per-zone basis.
714 */
715 typedef struct pglist_data {
716 /*
717 * node_zones contains just the zones for THIS node. Not all of the
718 * zones may be populated, but it is the full list. It is referenced by
719 * this node's node_zonelists as well as other node's node_zonelists.
720 */
721 struct zone node_zones[MAX_NR_ZONES];
722
723 /*
724 * node_zonelists contains references to all zones in all nodes.
725 * Generally the first zones will be references to this node's
726 * node_zones.
727 */
728 struct zonelist node_zonelists[MAX_ZONELISTS];
729
730 int nr_zones; /* number of populated zones in this node */
731 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
732 struct page *node_mem_map;
733 #ifdef CONFIG_PAGE_EXTENSION
734 struct page_ext *node_page_ext;
735 #endif
736 #endif
737 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
738 /*
739 * Must be held any time you expect node_start_pfn,
740 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
741 * Also synchronizes pgdat->first_deferred_pfn during deferred page
742 * init.
743 *
744 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
745 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
746 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
747 *
748 * Nests above zone->lock and zone->span_seqlock
749 */
750 spinlock_t node_size_lock;
751 #endif
752 unsigned long node_start_pfn;
753 unsigned long node_present_pages; /* total number of physical pages */
754 unsigned long node_spanned_pages; /* total size of physical page
755 range, including holes */
756 int node_id;
757 wait_queue_head_t kswapd_wait;
758 wait_queue_head_t pfmemalloc_wait;
759 struct task_struct *kswapd; /* Protected by
760 mem_hotplug_begin/end() */
761 int kswapd_order;
762 enum zone_type kswapd_highest_zoneidx;
763
764 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
765
766 #ifdef CONFIG_HYPERHOLD_ZSWAPD
767 wait_queue_head_t zswapd_wait;
768 atomic_t zswapd_wait_flag;
769 struct task_struct *zswapd;
770 #endif
771
772 #ifdef CONFIG_COMPACTION
773 int kcompactd_max_order;
774 enum zone_type kcompactd_highest_zoneidx;
775 wait_queue_head_t kcompactd_wait;
776 struct task_struct *kcompactd;
777 #endif
778 /*
779 * This is a per-node reserve of pages that are not available
780 * to userspace allocations.
781 */
782 unsigned long totalreserve_pages;
783
784 #ifdef CONFIG_NUMA
785 /*
786 * node reclaim becomes active if more unmapped pages exist.
787 */
788 unsigned long min_unmapped_pages;
789 unsigned long min_slab_pages;
790 #endif /* CONFIG_NUMA */
791
792 /* Write-intensive fields used by page reclaim */
793 ZONE_PADDING(_pad1_)
794 spinlock_t lru_lock;
795
796 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
797 /*
798 * If memory initialisation on large machines is deferred then this
799 * is the first PFN that needs to be initialised.
800 */
801 unsigned long first_deferred_pfn;
802 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
803
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805 struct deferred_split deferred_split_queue;
806 #endif
807
808 /* Fields commonly accessed by the page reclaim scanner */
809
810 /*
811 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
812 *
813 * Use mem_cgroup_lruvec() to look up lruvecs.
814 */
815 struct lruvec __lruvec;
816
817 unsigned long flags;
818
819 ZONE_PADDING(_pad2_)
820
821 /* Per-node vmstats */
822 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
823 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
824 } pg_data_t;
825
826 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
827 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
828 #ifdef CONFIG_FLAT_NODE_MEM_MAP
829 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
830 #else
831 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
832 #endif
833 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
834
835 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
836 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
837
node_lruvec(struct pglist_data * pgdat)838 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
839 {
840 return &pgdat->__lruvec;
841 }
842
pgdat_end_pfn(pg_data_t * pgdat)843 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
844 {
845 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
846 }
847
pgdat_is_empty(pg_data_t * pgdat)848 static inline bool pgdat_is_empty(pg_data_t *pgdat)
849 {
850 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
851 }
852
853 #include <linux/memory_hotplug.h>
854
855 void build_all_zonelists(pg_data_t *pgdat);
856 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
857 enum zone_type highest_zoneidx);
858 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
859 int highest_zoneidx, unsigned int alloc_flags,
860 long free_pages);
861 bool zone_watermark_ok(struct zone *z, unsigned int order,
862 unsigned long mark, int highest_zoneidx,
863 unsigned int alloc_flags);
864 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
865 unsigned long mark, int highest_zoneidx);
866 /*
867 * Memory initialization context, use to differentiate memory added by
868 * the platform statically or via memory hotplug interface.
869 */
870 enum meminit_context {
871 MEMINIT_EARLY,
872 MEMINIT_HOTPLUG,
873 };
874
875 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
876 unsigned long size);
877
878 extern void lruvec_init(struct lruvec *lruvec);
879
lruvec_pgdat(struct lruvec * lruvec)880 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
881 {
882 #ifdef CONFIG_MEMCG
883 return lruvec->pgdat;
884 #else
885 return container_of(lruvec, struct pglist_data, __lruvec);
886 #endif
887 }
888
889 #ifdef CONFIG_HYPERHOLD_FILE_LRU
is_node_lruvec(struct lruvec * lruvec)890 static inline int is_node_lruvec(struct lruvec *lruvec)
891 {
892 return &lruvec_pgdat(lruvec)->__lruvec == lruvec;
893 }
894 #endif
895
896 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
897
898 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
899 int local_memory_node(int node_id);
900 #else
local_memory_node(int node_id)901 static inline int local_memory_node(int node_id) { return node_id; };
902 #endif
903
904 /*
905 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
906 */
907 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
908
909 /*
910 * Returns true if a zone has pages managed by the buddy allocator.
911 * All the reclaim decisions have to use this function rather than
912 * populated_zone(). If the whole zone is reserved then we can easily
913 * end up with populated_zone() && !managed_zone().
914 */
managed_zone(struct zone * zone)915 static inline bool managed_zone(struct zone *zone)
916 {
917 return zone_managed_pages(zone);
918 }
919
920 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)921 static inline bool populated_zone(struct zone *zone)
922 {
923 return zone->present_pages;
924 }
925
926 #ifdef CONFIG_NEED_MULTIPLE_NODES
zone_to_nid(struct zone * zone)927 static inline int zone_to_nid(struct zone *zone)
928 {
929 return zone->node;
930 }
931
zone_set_nid(struct zone * zone,int nid)932 static inline void zone_set_nid(struct zone *zone, int nid)
933 {
934 zone->node = nid;
935 }
936 #else
zone_to_nid(struct zone * zone)937 static inline int zone_to_nid(struct zone *zone)
938 {
939 return 0;
940 }
941
zone_set_nid(struct zone * zone,int nid)942 static inline void zone_set_nid(struct zone *zone, int nid) {}
943 #endif
944
945 extern int movable_zone;
946
947 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)948 static inline int zone_movable_is_highmem(void)
949 {
950 #ifdef CONFIG_NEED_MULTIPLE_NODES
951 return movable_zone == ZONE_HIGHMEM;
952 #else
953 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
954 #endif
955 }
956 #endif
957
is_highmem_idx(enum zone_type idx)958 static inline int is_highmem_idx(enum zone_type idx)
959 {
960 #ifdef CONFIG_HIGHMEM
961 return (idx == ZONE_HIGHMEM ||
962 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
963 #else
964 return 0;
965 #endif
966 }
967
968 /**
969 * is_highmem - helper function to quickly check if a struct zone is a
970 * highmem zone or not. This is an attempt to keep references
971 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
972 * @zone - pointer to struct zone variable
973 */
is_highmem(struct zone * zone)974 static inline int is_highmem(struct zone *zone)
975 {
976 #ifdef CONFIG_HIGHMEM
977 return is_highmem_idx(zone_idx(zone));
978 #else
979 return 0;
980 #endif
981 }
982
983 /* These two functions are used to setup the per zone pages min values */
984 struct ctl_table;
985
986 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
987 loff_t *);
988 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
989 size_t *, loff_t *);
990 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
991 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
992 size_t *, loff_t *);
993 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
994 void *, size_t *, loff_t *);
995 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
996 void *, size_t *, loff_t *);
997 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
998 void *, size_t *, loff_t *);
999 int numa_zonelist_order_handler(struct ctl_table *, int,
1000 void *, size_t *, loff_t *);
1001 extern int percpu_pagelist_fraction;
1002 extern char numa_zonelist_order[];
1003 #define NUMA_ZONELIST_ORDER_LEN 16
1004
1005 #ifndef CONFIG_NEED_MULTIPLE_NODES
1006
1007 extern struct pglist_data contig_page_data;
1008 #define NODE_DATA(nid) (&contig_page_data)
1009 #define NODE_MEM_MAP(nid) mem_map
1010
1011 #else /* CONFIG_NEED_MULTIPLE_NODES */
1012
1013 #include <asm/mmzone.h>
1014
1015 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1016
1017 extern struct pglist_data *first_online_pgdat(void);
1018 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1019 extern struct zone *next_zone(struct zone *zone);
1020
1021 /**
1022 * for_each_online_pgdat - helper macro to iterate over all online nodes
1023 * @pgdat - pointer to a pg_data_t variable
1024 */
1025 #define for_each_online_pgdat(pgdat) \
1026 for (pgdat = first_online_pgdat(); \
1027 pgdat; \
1028 pgdat = next_online_pgdat(pgdat))
1029 /**
1030 * for_each_zone - helper macro to iterate over all memory zones
1031 * @zone - pointer to struct zone variable
1032 *
1033 * The user only needs to declare the zone variable, for_each_zone
1034 * fills it in.
1035 */
1036 #define for_each_zone(zone) \
1037 for (zone = (first_online_pgdat())->node_zones; \
1038 zone; \
1039 zone = next_zone(zone))
1040
1041 #define for_each_populated_zone(zone) \
1042 for (zone = (first_online_pgdat())->node_zones; \
1043 zone; \
1044 zone = next_zone(zone)) \
1045 if (!populated_zone(zone)) \
1046 ; /* do nothing */ \
1047 else
1048
zonelist_zone(struct zoneref * zoneref)1049 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1050 {
1051 return zoneref->zone;
1052 }
1053
zonelist_zone_idx(struct zoneref * zoneref)1054 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1055 {
1056 return zoneref->zone_idx;
1057 }
1058
zonelist_node_idx(struct zoneref * zoneref)1059 static inline int zonelist_node_idx(struct zoneref *zoneref)
1060 {
1061 return zone_to_nid(zoneref->zone);
1062 }
1063
1064 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1065 enum zone_type highest_zoneidx,
1066 nodemask_t *nodes);
1067
1068 /**
1069 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1070 * @z - The cursor used as a starting point for the search
1071 * @highest_zoneidx - The zone index of the highest zone to return
1072 * @nodes - An optional nodemask to filter the zonelist with
1073 *
1074 * This function returns the next zone at or below a given zone index that is
1075 * within the allowed nodemask using a cursor as the starting point for the
1076 * search. The zoneref returned is a cursor that represents the current zone
1077 * being examined. It should be advanced by one before calling
1078 * next_zones_zonelist again.
1079 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1080 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1081 enum zone_type highest_zoneidx,
1082 nodemask_t *nodes)
1083 {
1084 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1085 return z;
1086 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1087 }
1088
1089 /**
1090 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1091 * @zonelist - The zonelist to search for a suitable zone
1092 * @highest_zoneidx - The zone index of the highest zone to return
1093 * @nodes - An optional nodemask to filter the zonelist with
1094 * @return - Zoneref pointer for the first suitable zone found (see below)
1095 *
1096 * This function returns the first zone at or below a given zone index that is
1097 * within the allowed nodemask. The zoneref returned is a cursor that can be
1098 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1099 * one before calling.
1100 *
1101 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1102 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1103 * update due to cpuset modification.
1104 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1105 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1106 enum zone_type highest_zoneidx,
1107 nodemask_t *nodes)
1108 {
1109 return next_zones_zonelist(zonelist->_zonerefs,
1110 highest_zoneidx, nodes);
1111 }
1112
1113 /**
1114 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1115 * @zone - The current zone in the iterator
1116 * @z - The current pointer within zonelist->_zonerefs being iterated
1117 * @zlist - The zonelist being iterated
1118 * @highidx - The zone index of the highest zone to return
1119 * @nodemask - Nodemask allowed by the allocator
1120 *
1121 * This iterator iterates though all zones at or below a given zone index and
1122 * within a given nodemask
1123 */
1124 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1125 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1126 zone; \
1127 z = next_zones_zonelist(++z, highidx, nodemask), \
1128 zone = zonelist_zone(z))
1129
1130 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1131 for (zone = z->zone; \
1132 zone; \
1133 z = next_zones_zonelist(++z, highidx, nodemask), \
1134 zone = zonelist_zone(z))
1135
1136
1137 /**
1138 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1139 * @zone - The current zone in the iterator
1140 * @z - The current pointer within zonelist->zones being iterated
1141 * @zlist - The zonelist being iterated
1142 * @highidx - The zone index of the highest zone to return
1143 *
1144 * This iterator iterates though all zones at or below a given zone index.
1145 */
1146 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1147 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1148
1149 #ifdef CONFIG_SPARSEMEM
1150 #include <asm/sparsemem.h>
1151 #endif
1152
1153 #ifdef CONFIG_FLATMEM
1154 #define pfn_to_nid(pfn) (0)
1155 #endif
1156
1157 #ifdef CONFIG_SPARSEMEM
1158
1159 /*
1160 * SECTION_SHIFT #bits space required to store a section #
1161 *
1162 * PA_SECTION_SHIFT physical address to/from section number
1163 * PFN_SECTION_SHIFT pfn to/from section number
1164 */
1165 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1166 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1167
1168 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1169
1170 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1171 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1172
1173 #define SECTION_BLOCKFLAGS_BITS \
1174 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1175
1176 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1177 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1178 #endif
1179
pfn_to_section_nr(unsigned long pfn)1180 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1181 {
1182 return pfn >> PFN_SECTION_SHIFT;
1183 }
section_nr_to_pfn(unsigned long sec)1184 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1185 {
1186 return sec << PFN_SECTION_SHIFT;
1187 }
1188
1189 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1190 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1191
1192 #define SUBSECTION_SHIFT 21
1193 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1194
1195 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1196 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1197 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1198
1199 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1200 #error Subsection size exceeds section size
1201 #else
1202 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1203 #endif
1204
1205 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1206 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1207
1208 struct mem_section_usage {
1209 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1210 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1211 #endif
1212 /* See declaration of similar field in struct zone */
1213 unsigned long pageblock_flags[0];
1214 };
1215
1216 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1217
1218 struct page;
1219 struct page_ext;
1220 struct mem_section {
1221 /*
1222 * This is, logically, a pointer to an array of struct
1223 * pages. However, it is stored with some other magic.
1224 * (see sparse.c::sparse_init_one_section())
1225 *
1226 * Additionally during early boot we encode node id of
1227 * the location of the section here to guide allocation.
1228 * (see sparse.c::memory_present())
1229 *
1230 * Making it a UL at least makes someone do a cast
1231 * before using it wrong.
1232 */
1233 unsigned long section_mem_map;
1234
1235 struct mem_section_usage *usage;
1236 #ifdef CONFIG_PAGE_EXTENSION
1237 /*
1238 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1239 * section. (see page_ext.h about this.)
1240 */
1241 struct page_ext *page_ext;
1242 unsigned long pad;
1243 #endif
1244 /*
1245 * WARNING: mem_section must be a power-of-2 in size for the
1246 * calculation and use of SECTION_ROOT_MASK to make sense.
1247 */
1248 };
1249
1250 #ifdef CONFIG_SPARSEMEM_EXTREME
1251 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1252 #else
1253 #define SECTIONS_PER_ROOT 1
1254 #endif
1255
1256 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1257 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1258 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1259
1260 #ifdef CONFIG_SPARSEMEM_EXTREME
1261 extern struct mem_section **mem_section;
1262 #else
1263 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1264 #endif
1265
section_to_usemap(struct mem_section * ms)1266 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1267 {
1268 return ms->usage->pageblock_flags;
1269 }
1270
__nr_to_section(unsigned long nr)1271 static inline struct mem_section *__nr_to_section(unsigned long nr)
1272 {
1273 #ifdef CONFIG_SPARSEMEM_EXTREME
1274 if (!mem_section)
1275 return NULL;
1276 #endif
1277 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1278 return NULL;
1279 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1280 }
1281 extern unsigned long __section_nr(struct mem_section *ms);
1282 extern size_t mem_section_usage_size(void);
1283
1284 /*
1285 * We use the lower bits of the mem_map pointer to store
1286 * a little bit of information. The pointer is calculated
1287 * as mem_map - section_nr_to_pfn(pnum). The result is
1288 * aligned to the minimum alignment of the two values:
1289 * 1. All mem_map arrays are page-aligned.
1290 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1291 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1292 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1293 * worst combination is powerpc with 256k pages,
1294 * which results in PFN_SECTION_SHIFT equal 6.
1295 * To sum it up, at least 6 bits are available.
1296 */
1297 #define SECTION_MARKED_PRESENT (1UL<<0)
1298 #define SECTION_HAS_MEM_MAP (1UL<<1)
1299 #define SECTION_IS_ONLINE (1UL<<2)
1300 #define SECTION_IS_EARLY (1UL<<3)
1301 #define SECTION_MAP_LAST_BIT (1UL<<4)
1302 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1303 #define SECTION_NID_SHIFT 3
1304
__section_mem_map_addr(struct mem_section * section)1305 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1306 {
1307 unsigned long map = section->section_mem_map;
1308 map &= SECTION_MAP_MASK;
1309 return (struct page *)map;
1310 }
1311
present_section(struct mem_section * section)1312 static inline int present_section(struct mem_section *section)
1313 {
1314 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1315 }
1316
present_section_nr(unsigned long nr)1317 static inline int present_section_nr(unsigned long nr)
1318 {
1319 return present_section(__nr_to_section(nr));
1320 }
1321
valid_section(struct mem_section * section)1322 static inline int valid_section(struct mem_section *section)
1323 {
1324 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1325 }
1326
early_section(struct mem_section * section)1327 static inline int early_section(struct mem_section *section)
1328 {
1329 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1330 }
1331
valid_section_nr(unsigned long nr)1332 static inline int valid_section_nr(unsigned long nr)
1333 {
1334 return valid_section(__nr_to_section(nr));
1335 }
1336
online_section(struct mem_section * section)1337 static inline int online_section(struct mem_section *section)
1338 {
1339 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1340 }
1341
online_section_nr(unsigned long nr)1342 static inline int online_section_nr(unsigned long nr)
1343 {
1344 return online_section(__nr_to_section(nr));
1345 }
1346
1347 #ifdef CONFIG_MEMORY_HOTPLUG
1348 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1349 #ifdef CONFIG_MEMORY_HOTREMOVE
1350 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1351 #endif
1352 #endif
1353
__pfn_to_section(unsigned long pfn)1354 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1355 {
1356 return __nr_to_section(pfn_to_section_nr(pfn));
1357 }
1358
1359 extern unsigned long __highest_present_section_nr;
1360
subsection_map_index(unsigned long pfn)1361 static inline int subsection_map_index(unsigned long pfn)
1362 {
1363 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1364 }
1365
1366 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1367 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1368 {
1369 int idx = subsection_map_index(pfn);
1370
1371 return test_bit(idx, ms->usage->subsection_map);
1372 }
1373 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1374 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1375 {
1376 return 1;
1377 }
1378 #endif
1379
1380 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1381 static inline int pfn_valid(unsigned long pfn)
1382 {
1383 struct mem_section *ms;
1384
1385 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1386 return 0;
1387 ms = __nr_to_section(pfn_to_section_nr(pfn));
1388 if (!valid_section(ms))
1389 return 0;
1390 /*
1391 * Traditionally early sections always returned pfn_valid() for
1392 * the entire section-sized span.
1393 */
1394 return early_section(ms) || pfn_section_valid(ms, pfn);
1395 }
1396 #endif
1397
pfn_in_present_section(unsigned long pfn)1398 static inline int pfn_in_present_section(unsigned long pfn)
1399 {
1400 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1401 return 0;
1402 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1403 }
1404
next_present_section_nr(unsigned long section_nr)1405 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1406 {
1407 while (++section_nr <= __highest_present_section_nr) {
1408 if (present_section_nr(section_nr))
1409 return section_nr;
1410 }
1411
1412 return -1;
1413 }
1414
1415 /*
1416 * These are _only_ used during initialisation, therefore they
1417 * can use __initdata ... They could have names to indicate
1418 * this restriction.
1419 */
1420 #ifdef CONFIG_NUMA
1421 #define pfn_to_nid(pfn) \
1422 ({ \
1423 unsigned long __pfn_to_nid_pfn = (pfn); \
1424 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1425 })
1426 #else
1427 #define pfn_to_nid(pfn) (0)
1428 #endif
1429
1430 void sparse_init(void);
1431 #else
1432 #define sparse_init() do {} while (0)
1433 #define sparse_index_init(_sec, _nid) do {} while (0)
1434 #define pfn_in_present_section pfn_valid
1435 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1436 #endif /* CONFIG_SPARSEMEM */
1437
1438 /*
1439 * During memory init memblocks map pfns to nids. The search is expensive and
1440 * this caches recent lookups. The implementation of __early_pfn_to_nid
1441 * may treat start/end as pfns or sections.
1442 */
1443 struct mminit_pfnnid_cache {
1444 unsigned long last_start;
1445 unsigned long last_end;
1446 int last_nid;
1447 };
1448
1449 /*
1450 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1451 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1452 * pfn_valid_within() should be used in this case; we optimise this away
1453 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1454 */
1455 #ifdef CONFIG_HOLES_IN_ZONE
1456 #define pfn_valid_within(pfn) pfn_valid(pfn)
1457 #else
1458 #define pfn_valid_within(pfn) (1)
1459 #endif
1460
1461 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1462 /*
1463 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1464 * associated with it or not. This means that a struct page exists for this
1465 * pfn. The caller cannot assume the page is fully initialized in general.
1466 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1467 * will ensure the struct page is fully online and initialized. Special pages
1468 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1469 *
1470 * In FLATMEM, it is expected that holes always have valid memmap as long as
1471 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1472 * that a valid section has a memmap for the entire section.
1473 *
1474 * However, an ARM, and maybe other embedded architectures in the future
1475 * free memmap backing holes to save memory on the assumption the memmap is
1476 * never used. The page_zone linkages are then broken even though pfn_valid()
1477 * returns true. A walker of the full memmap must then do this additional
1478 * check to ensure the memmap they are looking at is sane by making sure
1479 * the zone and PFN linkages are still valid. This is expensive, but walkers
1480 * of the full memmap are extremely rare.
1481 */
1482 bool memmap_valid_within(unsigned long pfn,
1483 struct page *page, struct zone *zone);
1484 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1485 static inline bool memmap_valid_within(unsigned long pfn,
1486 struct page *page, struct zone *zone)
1487 {
1488 return true;
1489 }
1490 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1491
1492 #endif /* !__GENERATING_BOUNDS.H */
1493 #endif /* !__ASSEMBLY__ */
1494 #endif /* _LINUX_MMZONE_H */
1495