• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
__build_skb(void * data,unsigned int frag_size)275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
build_skb(void * data,unsigned int frag_size)310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
netdev_alloc_frag(unsigned int fragsz)354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	fragsz = SKB_DATA_ALIGN(fragsz);
357 
358 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
359 }
360 EXPORT_SYMBOL(netdev_alloc_frag);
361 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)362 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
363 {
364 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
365 
366 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
367 }
368 
napi_alloc_frag(unsigned int fragsz)369 void *napi_alloc_frag(unsigned int fragsz)
370 {
371 	fragsz = SKB_DATA_ALIGN(fragsz);
372 
373 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
374 }
375 EXPORT_SYMBOL(napi_alloc_frag);
376 
377 /**
378  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
379  *	@dev: network device to receive on
380  *	@len: length to allocate
381  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
382  *
383  *	Allocate a new &sk_buff and assign it a usage count of one. The
384  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
385  *	the headroom they think they need without accounting for the
386  *	built in space. The built in space is used for optimisations.
387  *
388  *	%NULL is returned if there is no free memory.
389  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 				   gfp_t gfp_mask)
392 {
393 	struct page_frag_cache *nc;
394 	unsigned long flags;
395 	struct sk_buff *skb;
396 	bool pfmemalloc;
397 	void *data;
398 
399 	len += NET_SKB_PAD;
400 
401 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 		if (!skb)
405 			goto skb_fail;
406 		goto skb_success;
407 	}
408 
409 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 	len = SKB_DATA_ALIGN(len);
411 
412 	if (sk_memalloc_socks())
413 		gfp_mask |= __GFP_MEMALLOC;
414 
415 	local_irq_save(flags);
416 
417 	nc = this_cpu_ptr(&netdev_alloc_cache);
418 	data = page_frag_alloc(nc, len, gfp_mask);
419 	pfmemalloc = nc->pfmemalloc;
420 
421 	local_irq_restore(flags);
422 
423 	if (unlikely(!data))
424 		return NULL;
425 
426 	skb = __build_skb(data, len);
427 	if (unlikely(!skb)) {
428 		skb_free_frag(data);
429 		return NULL;
430 	}
431 
432 	/* use OR instead of assignment to avoid clearing of bits in mask */
433 	if (pfmemalloc)
434 		skb->pfmemalloc = 1;
435 	skb->head_frag = 1;
436 
437 skb_success:
438 	skb_reserve(skb, NET_SKB_PAD);
439 	skb->dev = dev;
440 
441 skb_fail:
442 	return skb;
443 }
444 EXPORT_SYMBOL(__netdev_alloc_skb);
445 
446 /**
447  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448  *	@napi: napi instance this buffer was allocated for
449  *	@len: length to allocate
450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451  *
452  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
453  *	attempt to allocate the head from a special reserved region used
454  *	only for NAPI Rx allocation.  By doing this we can save several
455  *	CPU cycles by avoiding having to disable and re-enable IRQs.
456  *
457  *	%NULL is returned if there is no free memory.
458  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 				 gfp_t gfp_mask)
461 {
462 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 	struct sk_buff *skb;
464 	void *data;
465 
466 	len += NET_SKB_PAD + NET_IP_ALIGN;
467 
468 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 		if (!skb)
472 			goto skb_fail;
473 		goto skb_success;
474 	}
475 
476 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 	len = SKB_DATA_ALIGN(len);
478 
479 	if (sk_memalloc_socks())
480 		gfp_mask |= __GFP_MEMALLOC;
481 
482 	data = page_frag_alloc(&nc->page, len, gfp_mask);
483 	if (unlikely(!data))
484 		return NULL;
485 
486 	skb = __build_skb(data, len);
487 	if (unlikely(!skb)) {
488 		skb_free_frag(data);
489 		return NULL;
490 	}
491 
492 	/* use OR instead of assignment to avoid clearing of bits in mask */
493 	if (nc->page.pfmemalloc)
494 		skb->pfmemalloc = 1;
495 	skb->head_frag = 1;
496 
497 skb_success:
498 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 	skb->dev = napi->dev;
500 
501 skb_fail:
502 	return skb;
503 }
504 EXPORT_SYMBOL(__napi_alloc_skb);
505 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 		     int size, unsigned int truesize)
508 {
509 	skb_fill_page_desc(skb, i, page, off, size);
510 	skb->len += size;
511 	skb->data_len += size;
512 	skb->truesize += truesize;
513 }
514 EXPORT_SYMBOL(skb_add_rx_frag);
515 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 			  unsigned int truesize)
518 {
519 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 
521 	skb_frag_size_add(frag, size);
522 	skb->len += size;
523 	skb->data_len += size;
524 	skb->truesize += truesize;
525 }
526 EXPORT_SYMBOL(skb_coalesce_rx_frag);
527 
skb_drop_list(struct sk_buff ** listp)528 static void skb_drop_list(struct sk_buff **listp)
529 {
530 	kfree_skb_list(*listp);
531 	*listp = NULL;
532 }
533 
skb_drop_fraglist(struct sk_buff * skb)534 static inline void skb_drop_fraglist(struct sk_buff *skb)
535 {
536 	skb_drop_list(&skb_shinfo(skb)->frag_list);
537 }
538 
skb_clone_fraglist(struct sk_buff * skb)539 static void skb_clone_fraglist(struct sk_buff *skb)
540 {
541 	struct sk_buff *list;
542 
543 	skb_walk_frags(skb, list)
544 		skb_get(list);
545 }
546 
skb_free_head(struct sk_buff * skb)547 static void skb_free_head(struct sk_buff *skb)
548 {
549 	unsigned char *head = skb->head;
550 
551 	if (skb->head_frag)
552 		skb_free_frag(head);
553 	else
554 		kfree(head);
555 }
556 
skb_release_data(struct sk_buff * skb)557 static void skb_release_data(struct sk_buff *skb)
558 {
559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
560 	int i;
561 
562 	if (skb->cloned &&
563 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 			      &shinfo->dataref))
565 		return;
566 
567 	for (i = 0; i < shinfo->nr_frags; i++)
568 		__skb_frag_unref(&shinfo->frags[i]);
569 
570 	if (shinfo->frag_list)
571 		kfree_skb_list(shinfo->frag_list);
572 
573 	skb_zcopy_clear(skb, true);
574 	skb_free_head(skb);
575 }
576 
577 /*
578  *	Free an skbuff by memory without cleaning the state.
579  */
kfree_skbmem(struct sk_buff * skb)580 static void kfree_skbmem(struct sk_buff *skb)
581 {
582 	struct sk_buff_fclones *fclones;
583 
584 	switch (skb->fclone) {
585 	case SKB_FCLONE_UNAVAILABLE:
586 		kmem_cache_free(skbuff_head_cache, skb);
587 		return;
588 
589 	case SKB_FCLONE_ORIG:
590 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
591 
592 		/* We usually free the clone (TX completion) before original skb
593 		 * This test would have no chance to be true for the clone,
594 		 * while here, branch prediction will be good.
595 		 */
596 		if (refcount_read(&fclones->fclone_ref) == 1)
597 			goto fastpath;
598 		break;
599 
600 	default: /* SKB_FCLONE_CLONE */
601 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 		break;
603 	}
604 	if (!refcount_dec_and_test(&fclones->fclone_ref))
605 		return;
606 fastpath:
607 	kmem_cache_free(skbuff_fclone_cache, fclones);
608 }
609 
skb_release_head_state(struct sk_buff * skb)610 void skb_release_head_state(struct sk_buff *skb)
611 {
612 	skb_dst_drop(skb);
613 	secpath_reset(skb);
614 	if (skb->destructor) {
615 		WARN_ON(in_irq());
616 		skb->destructor(skb);
617 	}
618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 	nf_conntrack_put(skb_nfct(skb));
620 #endif
621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 	nf_bridge_put(skb->nf_bridge);
623 #endif
624 }
625 
626 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
__kfree_skb(struct sk_buff * skb)643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
kfree_skb(struct sk_buff * skb)657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
kfree_skb_list(struct sk_buff * segs)667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
skb_tx_error(struct sk_buff * skb)685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
consume_skb(struct sk_buff * skb)699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Alike consume_skb(), but this variant assumes that this is the last
714  *	skb reference and all the head states have been already dropped
715  */
__consume_stateless_skb(struct sk_buff * skb)716 void __consume_stateless_skb(struct sk_buff *skb)
717 {
718 	trace_consume_skb(skb);
719 	skb_release_data(skb);
720 	kfree_skbmem(skb);
721 }
722 
__kfree_skb_flush(void)723 void __kfree_skb_flush(void)
724 {
725 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726 
727 	/* flush skb_cache if containing objects */
728 	if (nc->skb_count) {
729 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 				     nc->skb_cache);
731 		nc->skb_count = 0;
732 	}
733 }
734 
_kfree_skb_defer(struct sk_buff * skb)735 static inline void _kfree_skb_defer(struct sk_buff *skb)
736 {
737 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738 
739 	/* drop skb->head and call any destructors for packet */
740 	skb_release_all(skb);
741 
742 	/* record skb to CPU local list */
743 	nc->skb_cache[nc->skb_count++] = skb;
744 
745 #ifdef CONFIG_SLUB
746 	/* SLUB writes into objects when freeing */
747 	prefetchw(skb);
748 #endif
749 
750 	/* flush skb_cache if it is filled */
751 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 				     nc->skb_cache);
754 		nc->skb_count = 0;
755 	}
756 }
__kfree_skb_defer(struct sk_buff * skb)757 void __kfree_skb_defer(struct sk_buff *skb)
758 {
759 	_kfree_skb_defer(skb);
760 }
761 
napi_consume_skb(struct sk_buff * skb,int budget)762 void napi_consume_skb(struct sk_buff *skb, int budget)
763 {
764 	if (unlikely(!skb))
765 		return;
766 
767 	/* Zero budget indicate non-NAPI context called us, like netpoll */
768 	if (unlikely(!budget)) {
769 		dev_consume_skb_any(skb);
770 		return;
771 	}
772 
773 	if (!skb_unref(skb))
774 		return;
775 
776 	/* if reaching here SKB is ready to free */
777 	trace_consume_skb(skb);
778 
779 	/* if SKB is a clone, don't handle this case */
780 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 		__kfree_skb(skb);
782 		return;
783 	}
784 
785 	_kfree_skb_defer(skb);
786 }
787 EXPORT_SYMBOL(napi_consume_skb);
788 
789 /* Make sure a field is enclosed inside headers_start/headers_end section */
790 #define CHECK_SKB_FIELD(field) \
791 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
792 		     offsetof(struct sk_buff, headers_start));	\
793 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
794 		     offsetof(struct sk_buff, headers_end));	\
795 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797 {
798 	new->tstamp		= old->tstamp;
799 	/* We do not copy old->sk */
800 	new->dev		= old->dev;
801 	memcpy(new->cb, old->cb, sizeof(old->cb));
802 	skb_dst_copy(new, old);
803 #ifdef CONFIG_XFRM
804 	new->sp			= secpath_get(old->sp);
805 #endif
806 	__nf_copy(new, old, false);
807 
808 	/* Note : this field could be in headers_start/headers_end section
809 	 * It is not yet because we do not want to have a 16 bit hole
810 	 */
811 	new->queue_mapping = old->queue_mapping;
812 
813 	memcpy(&new->headers_start, &old->headers_start,
814 	       offsetof(struct sk_buff, headers_end) -
815 	       offsetof(struct sk_buff, headers_start));
816 	CHECK_SKB_FIELD(protocol);
817 	CHECK_SKB_FIELD(csum);
818 	CHECK_SKB_FIELD(hash);
819 	CHECK_SKB_FIELD(priority);
820 	CHECK_SKB_FIELD(skb_iif);
821 	CHECK_SKB_FIELD(vlan_proto);
822 	CHECK_SKB_FIELD(vlan_tci);
823 	CHECK_SKB_FIELD(transport_header);
824 	CHECK_SKB_FIELD(network_header);
825 	CHECK_SKB_FIELD(mac_header);
826 	CHECK_SKB_FIELD(inner_protocol);
827 	CHECK_SKB_FIELD(inner_transport_header);
828 	CHECK_SKB_FIELD(inner_network_header);
829 	CHECK_SKB_FIELD(inner_mac_header);
830 	CHECK_SKB_FIELD(mark);
831 #ifdef CONFIG_NETWORK_SECMARK
832 	CHECK_SKB_FIELD(secmark);
833 #endif
834 #ifdef CONFIG_NET_RX_BUSY_POLL
835 	CHECK_SKB_FIELD(napi_id);
836 #endif
837 #ifdef CONFIG_XPS
838 	CHECK_SKB_FIELD(sender_cpu);
839 #endif
840 #ifdef CONFIG_NET_SCHED
841 	CHECK_SKB_FIELD(tc_index);
842 #endif
843 
844 }
845 
846 /*
847  * You should not add any new code to this function.  Add it to
848  * __copy_skb_header above instead.
849  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851 {
852 #define C(x) n->x = skb->x
853 
854 	n->next = n->prev = NULL;
855 	n->sk = NULL;
856 	__copy_skb_header(n, skb);
857 
858 	C(len);
859 	C(data_len);
860 	C(mac_len);
861 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 	n->cloned = 1;
863 	n->nohdr = 0;
864 	n->peeked = 0;
865 	C(pfmemalloc);
866 	n->destructor = NULL;
867 	C(tail);
868 	C(end);
869 	C(head);
870 	C(head_frag);
871 	C(data);
872 	C(truesize);
873 	refcount_set(&n->users, 1);
874 
875 	atomic_inc(&(skb_shinfo(skb)->dataref));
876 	skb->cloned = 1;
877 
878 	return n;
879 #undef C
880 }
881 
882 /**
883  *	skb_morph	-	morph one skb into another
884  *	@dst: the skb to receive the contents
885  *	@src: the skb to supply the contents
886  *
887  *	This is identical to skb_clone except that the target skb is
888  *	supplied by the user.
889  *
890  *	The target skb is returned upon exit.
891  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)892 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
893 {
894 	skb_release_all(dst);
895 	return __skb_clone(dst, src);
896 }
897 EXPORT_SYMBOL_GPL(skb_morph);
898 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)899 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
900 {
901 	unsigned long max_pg, num_pg, new_pg, old_pg;
902 	struct user_struct *user;
903 
904 	if (capable(CAP_IPC_LOCK) || !size)
905 		return 0;
906 
907 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
908 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
909 	user = mmp->user ? : current_user();
910 
911 	do {
912 		old_pg = atomic_long_read(&user->locked_vm);
913 		new_pg = old_pg + num_pg;
914 		if (new_pg > max_pg)
915 			return -ENOBUFS;
916 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
917 		 old_pg);
918 
919 	if (!mmp->user) {
920 		mmp->user = get_uid(user);
921 		mmp->num_pg = num_pg;
922 	} else {
923 		mmp->num_pg += num_pg;
924 	}
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
929 
mm_unaccount_pinned_pages(struct mmpin * mmp)930 void mm_unaccount_pinned_pages(struct mmpin *mmp)
931 {
932 	if (mmp->user) {
933 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
934 		free_uid(mmp->user);
935 	}
936 }
937 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
938 
sock_zerocopy_alloc(struct sock * sk,size_t size)939 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
940 {
941 	struct ubuf_info *uarg;
942 	struct sk_buff *skb;
943 
944 	WARN_ON_ONCE(!in_task());
945 
946 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
947 	if (!skb)
948 		return NULL;
949 
950 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
951 	uarg = (void *)skb->cb;
952 	uarg->mmp.user = NULL;
953 
954 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
955 		kfree_skb(skb);
956 		return NULL;
957 	}
958 
959 	uarg->callback = sock_zerocopy_callback;
960 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
961 	uarg->len = 1;
962 	uarg->bytelen = size;
963 	uarg->zerocopy = 1;
964 	refcount_set(&uarg->refcnt, 1);
965 	sock_hold(sk);
966 
967 	return uarg;
968 }
969 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
970 
skb_from_uarg(struct ubuf_info * uarg)971 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
972 {
973 	return container_of((void *)uarg, struct sk_buff, cb);
974 }
975 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)976 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
977 					struct ubuf_info *uarg)
978 {
979 	if (uarg) {
980 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
981 		u32 bytelen, next;
982 
983 		/* realloc only when socket is locked (TCP, UDP cork),
984 		 * so uarg->len and sk_zckey access is serialized
985 		 */
986 		if (!sock_owned_by_user(sk)) {
987 			WARN_ON_ONCE(1);
988 			return NULL;
989 		}
990 
991 		bytelen = uarg->bytelen + size;
992 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
993 			/* TCP can create new skb to attach new uarg */
994 			if (sk->sk_type == SOCK_STREAM)
995 				goto new_alloc;
996 			return NULL;
997 		}
998 
999 		next = (u32)atomic_read(&sk->sk_zckey);
1000 		if ((u32)(uarg->id + uarg->len) == next) {
1001 			if (mm_account_pinned_pages(&uarg->mmp, size))
1002 				return NULL;
1003 			uarg->len++;
1004 			uarg->bytelen = bytelen;
1005 			atomic_set(&sk->sk_zckey, ++next);
1006 			sock_zerocopy_get(uarg);
1007 			return uarg;
1008 		}
1009 	}
1010 
1011 new_alloc:
1012 	return sock_zerocopy_alloc(sk, size);
1013 }
1014 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1015 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1016 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1017 {
1018 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1019 	u32 old_lo, old_hi;
1020 	u64 sum_len;
1021 
1022 	old_lo = serr->ee.ee_info;
1023 	old_hi = serr->ee.ee_data;
1024 	sum_len = old_hi - old_lo + 1ULL + len;
1025 
1026 	if (sum_len >= (1ULL << 32))
1027 		return false;
1028 
1029 	if (lo != old_hi + 1)
1030 		return false;
1031 
1032 	serr->ee.ee_data += len;
1033 	return true;
1034 }
1035 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1036 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1037 {
1038 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1039 	struct sock_exterr_skb *serr;
1040 	struct sock *sk = skb->sk;
1041 	struct sk_buff_head *q;
1042 	unsigned long flags;
1043 	u32 lo, hi;
1044 	u16 len;
1045 
1046 	mm_unaccount_pinned_pages(&uarg->mmp);
1047 
1048 	/* if !len, there was only 1 call, and it was aborted
1049 	 * so do not queue a completion notification
1050 	 */
1051 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1052 		goto release;
1053 
1054 	len = uarg->len;
1055 	lo = uarg->id;
1056 	hi = uarg->id + len - 1;
1057 
1058 	serr = SKB_EXT_ERR(skb);
1059 	memset(serr, 0, sizeof(*serr));
1060 	serr->ee.ee_errno = 0;
1061 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1062 	serr->ee.ee_data = hi;
1063 	serr->ee.ee_info = lo;
1064 	if (!success)
1065 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1066 
1067 	q = &sk->sk_error_queue;
1068 	spin_lock_irqsave(&q->lock, flags);
1069 	tail = skb_peek_tail(q);
1070 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1071 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1072 		__skb_queue_tail(q, skb);
1073 		skb = NULL;
1074 	}
1075 	spin_unlock_irqrestore(&q->lock, flags);
1076 
1077 	sk->sk_error_report(sk);
1078 
1079 release:
1080 	consume_skb(skb);
1081 	sock_put(sk);
1082 }
1083 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1084 
sock_zerocopy_put(struct ubuf_info * uarg)1085 void sock_zerocopy_put(struct ubuf_info *uarg)
1086 {
1087 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1088 		if (uarg->callback)
1089 			uarg->callback(uarg, uarg->zerocopy);
1090 		else
1091 			consume_skb(skb_from_uarg(uarg));
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1095 
sock_zerocopy_put_abort(struct ubuf_info * uarg)1096 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1097 {
1098 	if (uarg) {
1099 		struct sock *sk = skb_from_uarg(uarg)->sk;
1100 
1101 		atomic_dec(&sk->sk_zckey);
1102 		uarg->len--;
1103 
1104 		sock_zerocopy_put(uarg);
1105 	}
1106 }
1107 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1108 
1109 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1110 				   struct iov_iter *from, size_t length);
1111 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1112 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1113 			     struct msghdr *msg, int len,
1114 			     struct ubuf_info *uarg)
1115 {
1116 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1117 	struct iov_iter orig_iter = msg->msg_iter;
1118 	int err, orig_len = skb->len;
1119 
1120 	/* An skb can only point to one uarg. This edge case happens when
1121 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1122 	 */
1123 	if (orig_uarg && uarg != orig_uarg)
1124 		return -EEXIST;
1125 
1126 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1127 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1128 		struct sock *save_sk = skb->sk;
1129 
1130 		/* Streams do not free skb on error. Reset to prev state. */
1131 		msg->msg_iter = orig_iter;
1132 		skb->sk = sk;
1133 		___pskb_trim(skb, orig_len);
1134 		skb->sk = save_sk;
1135 		return err;
1136 	}
1137 
1138 	skb_zcopy_set(skb, uarg);
1139 	return skb->len - orig_len;
1140 }
1141 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1142 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1143 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1144 			      gfp_t gfp_mask)
1145 {
1146 	if (skb_zcopy(orig)) {
1147 		if (skb_zcopy(nskb)) {
1148 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1149 			if (!gfp_mask) {
1150 				WARN_ON_ONCE(1);
1151 				return -ENOMEM;
1152 			}
1153 			if (skb_uarg(nskb) == skb_uarg(orig))
1154 				return 0;
1155 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1156 				return -EIO;
1157 		}
1158 		skb_zcopy_set(nskb, skb_uarg(orig));
1159 	}
1160 	return 0;
1161 }
1162 
1163 /**
1164  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1165  *	@skb: the skb to modify
1166  *	@gfp_mask: allocation priority
1167  *
1168  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1169  *	It will copy all frags into kernel and drop the reference
1170  *	to userspace pages.
1171  *
1172  *	If this function is called from an interrupt gfp_mask() must be
1173  *	%GFP_ATOMIC.
1174  *
1175  *	Returns 0 on success or a negative error code on failure
1176  *	to allocate kernel memory to copy to.
1177  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1178 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1179 {
1180 	int num_frags = skb_shinfo(skb)->nr_frags;
1181 	struct page *page, *head = NULL;
1182 	int i, new_frags;
1183 	u32 d_off;
1184 
1185 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1186 		return -EINVAL;
1187 
1188 	if (!num_frags)
1189 		goto release;
1190 
1191 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 	for (i = 0; i < new_frags; i++) {
1193 		page = alloc_page(gfp_mask);
1194 		if (!page) {
1195 			while (head) {
1196 				struct page *next = (struct page *)page_private(head);
1197 				put_page(head);
1198 				head = next;
1199 			}
1200 			return -ENOMEM;
1201 		}
1202 		set_page_private(page, (unsigned long)head);
1203 		head = page;
1204 	}
1205 
1206 	page = head;
1207 	d_off = 0;
1208 	for (i = 0; i < num_frags; i++) {
1209 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1210 		u32 p_off, p_len, copied;
1211 		struct page *p;
1212 		u8 *vaddr;
1213 
1214 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1215 				      p, p_off, p_len, copied) {
1216 			u32 copy, done = 0;
1217 			vaddr = kmap_atomic(p);
1218 
1219 			while (done < p_len) {
1220 				if (d_off == PAGE_SIZE) {
1221 					d_off = 0;
1222 					page = (struct page *)page_private(page);
1223 				}
1224 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1225 				memcpy(page_address(page) + d_off,
1226 				       vaddr + p_off + done, copy);
1227 				done += copy;
1228 				d_off += copy;
1229 			}
1230 			kunmap_atomic(vaddr);
1231 		}
1232 	}
1233 
1234 	/* skb frags release userspace buffers */
1235 	for (i = 0; i < num_frags; i++)
1236 		skb_frag_unref(skb, i);
1237 
1238 	/* skb frags point to kernel buffers */
1239 	for (i = 0; i < new_frags - 1; i++) {
1240 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1241 		head = (struct page *)page_private(head);
1242 	}
1243 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1244 	skb_shinfo(skb)->nr_frags = new_frags;
1245 
1246 release:
1247 	skb_zcopy_clear(skb, false);
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1251 
1252 /**
1253  *	skb_clone	-	duplicate an sk_buff
1254  *	@skb: buffer to clone
1255  *	@gfp_mask: allocation priority
1256  *
1257  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1258  *	copies share the same packet data but not structure. The new
1259  *	buffer has a reference count of 1. If the allocation fails the
1260  *	function returns %NULL otherwise the new buffer is returned.
1261  *
1262  *	If this function is called from an interrupt gfp_mask() must be
1263  *	%GFP_ATOMIC.
1264  */
1265 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1266 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1267 {
1268 	struct sk_buff_fclones *fclones = container_of(skb,
1269 						       struct sk_buff_fclones,
1270 						       skb1);
1271 	struct sk_buff *n;
1272 
1273 	if (skb_orphan_frags(skb, gfp_mask))
1274 		return NULL;
1275 
1276 	if (skb->fclone == SKB_FCLONE_ORIG &&
1277 	    refcount_read(&fclones->fclone_ref) == 1) {
1278 		n = &fclones->skb2;
1279 		refcount_set(&fclones->fclone_ref, 2);
1280 	} else {
1281 		if (skb_pfmemalloc(skb))
1282 			gfp_mask |= __GFP_MEMALLOC;
1283 
1284 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1285 		if (!n)
1286 			return NULL;
1287 
1288 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1289 	}
1290 
1291 	return __skb_clone(n, skb);
1292 }
1293 EXPORT_SYMBOL(skb_clone);
1294 
skb_headers_offset_update(struct sk_buff * skb,int off)1295 void skb_headers_offset_update(struct sk_buff *skb, int off)
1296 {
1297 	/* Only adjust this if it actually is csum_start rather than csum */
1298 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1299 		skb->csum_start += off;
1300 	/* {transport,network,mac}_header and tail are relative to skb->head */
1301 	skb->transport_header += off;
1302 	skb->network_header   += off;
1303 	if (skb_mac_header_was_set(skb))
1304 		skb->mac_header += off;
1305 	skb->inner_transport_header += off;
1306 	skb->inner_network_header += off;
1307 	skb->inner_mac_header += off;
1308 }
1309 EXPORT_SYMBOL(skb_headers_offset_update);
1310 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1311 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1312 {
1313 	__copy_skb_header(new, old);
1314 
1315 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1316 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1317 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1318 }
1319 EXPORT_SYMBOL(skb_copy_header);
1320 
skb_alloc_rx_flag(const struct sk_buff * skb)1321 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1322 {
1323 	if (skb_pfmemalloc(skb))
1324 		return SKB_ALLOC_RX;
1325 	return 0;
1326 }
1327 
1328 /**
1329  *	skb_copy	-	create private copy of an sk_buff
1330  *	@skb: buffer to copy
1331  *	@gfp_mask: allocation priority
1332  *
1333  *	Make a copy of both an &sk_buff and its data. This is used when the
1334  *	caller wishes to modify the data and needs a private copy of the
1335  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1336  *	on success. The returned buffer has a reference count of 1.
1337  *
1338  *	As by-product this function converts non-linear &sk_buff to linear
1339  *	one, so that &sk_buff becomes completely private and caller is allowed
1340  *	to modify all the data of returned buffer. This means that this
1341  *	function is not recommended for use in circumstances when only
1342  *	header is going to be modified. Use pskb_copy() instead.
1343  */
1344 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1345 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1346 {
1347 	int headerlen = skb_headroom(skb);
1348 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1349 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1350 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1351 
1352 	if (!n)
1353 		return NULL;
1354 
1355 	/* Set the data pointer */
1356 	skb_reserve(n, headerlen);
1357 	/* Set the tail pointer and length */
1358 	skb_put(n, skb->len);
1359 
1360 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1361 
1362 	skb_copy_header(n, skb);
1363 	return n;
1364 }
1365 EXPORT_SYMBOL(skb_copy);
1366 
1367 /**
1368  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1369  *	@skb: buffer to copy
1370  *	@headroom: headroom of new skb
1371  *	@gfp_mask: allocation priority
1372  *	@fclone: if true allocate the copy of the skb from the fclone
1373  *	cache instead of the head cache; it is recommended to set this
1374  *	to true for the cases where the copy will likely be cloned
1375  *
1376  *	Make a copy of both an &sk_buff and part of its data, located
1377  *	in header. Fragmented data remain shared. This is used when
1378  *	the caller wishes to modify only header of &sk_buff and needs
1379  *	private copy of the header to alter. Returns %NULL on failure
1380  *	or the pointer to the buffer on success.
1381  *	The returned buffer has a reference count of 1.
1382  */
1383 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1384 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1385 				   gfp_t gfp_mask, bool fclone)
1386 {
1387 	unsigned int size = skb_headlen(skb) + headroom;
1388 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1389 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1390 
1391 	if (!n)
1392 		goto out;
1393 
1394 	/* Set the data pointer */
1395 	skb_reserve(n, headroom);
1396 	/* Set the tail pointer and length */
1397 	skb_put(n, skb_headlen(skb));
1398 	/* Copy the bytes */
1399 	skb_copy_from_linear_data(skb, n->data, n->len);
1400 
1401 	n->truesize += skb->data_len;
1402 	n->data_len  = skb->data_len;
1403 	n->len	     = skb->len;
1404 
1405 	if (skb_shinfo(skb)->nr_frags) {
1406 		int i;
1407 
1408 		if (skb_orphan_frags(skb, gfp_mask) ||
1409 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1410 			kfree_skb(n);
1411 			n = NULL;
1412 			goto out;
1413 		}
1414 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1415 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1416 			skb_frag_ref(skb, i);
1417 		}
1418 		skb_shinfo(n)->nr_frags = i;
1419 	}
1420 
1421 	if (skb_has_frag_list(skb)) {
1422 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1423 		skb_clone_fraglist(n);
1424 	}
1425 
1426 	skb_copy_header(n, skb);
1427 out:
1428 	return n;
1429 }
1430 EXPORT_SYMBOL(__pskb_copy_fclone);
1431 
1432 /**
1433  *	pskb_expand_head - reallocate header of &sk_buff
1434  *	@skb: buffer to reallocate
1435  *	@nhead: room to add at head
1436  *	@ntail: room to add at tail
1437  *	@gfp_mask: allocation priority
1438  *
1439  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1440  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1441  *	reference count of 1. Returns zero in the case of success or error,
1442  *	if expansion failed. In the last case, &sk_buff is not changed.
1443  *
1444  *	All the pointers pointing into skb header may change and must be
1445  *	reloaded after call to this function.
1446  */
1447 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1448 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1449 		     gfp_t gfp_mask)
1450 {
1451 	int i, osize = skb_end_offset(skb);
1452 	int size = osize + nhead + ntail;
1453 	long off;
1454 	u8 *data;
1455 
1456 	BUG_ON(nhead < 0);
1457 
1458 	BUG_ON(skb_shared(skb));
1459 
1460 	size = SKB_DATA_ALIGN(size);
1461 
1462 	if (skb_pfmemalloc(skb))
1463 		gfp_mask |= __GFP_MEMALLOC;
1464 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1465 			       gfp_mask, NUMA_NO_NODE, NULL);
1466 	if (!data)
1467 		goto nodata;
1468 	size = SKB_WITH_OVERHEAD(ksize(data));
1469 
1470 	/* Copy only real data... and, alas, header. This should be
1471 	 * optimized for the cases when header is void.
1472 	 */
1473 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1474 
1475 	memcpy((struct skb_shared_info *)(data + size),
1476 	       skb_shinfo(skb),
1477 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1478 
1479 	/*
1480 	 * if shinfo is shared we must drop the old head gracefully, but if it
1481 	 * is not we can just drop the old head and let the existing refcount
1482 	 * be since all we did is relocate the values
1483 	 */
1484 	if (skb_cloned(skb)) {
1485 		if (skb_orphan_frags(skb, gfp_mask))
1486 			goto nofrags;
1487 		if (skb_zcopy(skb))
1488 			refcount_inc(&skb_uarg(skb)->refcnt);
1489 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1490 			skb_frag_ref(skb, i);
1491 
1492 		if (skb_has_frag_list(skb))
1493 			skb_clone_fraglist(skb);
1494 
1495 		skb_release_data(skb);
1496 	} else {
1497 		skb_free_head(skb);
1498 	}
1499 	off = (data + nhead) - skb->head;
1500 
1501 	skb->head     = data;
1502 	skb->head_frag = 0;
1503 	skb->data    += off;
1504 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1505 	skb->end      = size;
1506 	off           = nhead;
1507 #else
1508 	skb->end      = skb->head + size;
1509 #endif
1510 	skb->tail	      += off;
1511 	skb_headers_offset_update(skb, nhead);
1512 	skb->cloned   = 0;
1513 	skb->hdr_len  = 0;
1514 	skb->nohdr    = 0;
1515 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1516 
1517 	skb_metadata_clear(skb);
1518 
1519 	/* It is not generally safe to change skb->truesize.
1520 	 * For the moment, we really care of rx path, or
1521 	 * when skb is orphaned (not attached to a socket).
1522 	 */
1523 	if (!skb->sk || skb->destructor == sock_edemux)
1524 		skb->truesize += size - osize;
1525 
1526 	return 0;
1527 
1528 nofrags:
1529 	kfree(data);
1530 nodata:
1531 	return -ENOMEM;
1532 }
1533 EXPORT_SYMBOL(pskb_expand_head);
1534 
1535 /* Make private copy of skb with writable head and some headroom */
1536 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1537 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1538 {
1539 	struct sk_buff *skb2;
1540 	int delta = headroom - skb_headroom(skb);
1541 
1542 	if (delta <= 0)
1543 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1544 	else {
1545 		skb2 = skb_clone(skb, GFP_ATOMIC);
1546 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1547 					     GFP_ATOMIC)) {
1548 			kfree_skb(skb2);
1549 			skb2 = NULL;
1550 		}
1551 	}
1552 	return skb2;
1553 }
1554 EXPORT_SYMBOL(skb_realloc_headroom);
1555 
1556 /**
1557  *	skb_copy_expand	-	copy and expand sk_buff
1558  *	@skb: buffer to copy
1559  *	@newheadroom: new free bytes at head
1560  *	@newtailroom: new free bytes at tail
1561  *	@gfp_mask: allocation priority
1562  *
1563  *	Make a copy of both an &sk_buff and its data and while doing so
1564  *	allocate additional space.
1565  *
1566  *	This is used when the caller wishes to modify the data and needs a
1567  *	private copy of the data to alter as well as more space for new fields.
1568  *	Returns %NULL on failure or the pointer to the buffer
1569  *	on success. The returned buffer has a reference count of 1.
1570  *
1571  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1572  *	is called from an interrupt.
1573  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1574 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1575 				int newheadroom, int newtailroom,
1576 				gfp_t gfp_mask)
1577 {
1578 	/*
1579 	 *	Allocate the copy buffer
1580 	 */
1581 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1582 					gfp_mask, skb_alloc_rx_flag(skb),
1583 					NUMA_NO_NODE);
1584 	int oldheadroom = skb_headroom(skb);
1585 	int head_copy_len, head_copy_off;
1586 
1587 	if (!n)
1588 		return NULL;
1589 
1590 	skb_reserve(n, newheadroom);
1591 
1592 	/* Set the tail pointer and length */
1593 	skb_put(n, skb->len);
1594 
1595 	head_copy_len = oldheadroom;
1596 	head_copy_off = 0;
1597 	if (newheadroom <= head_copy_len)
1598 		head_copy_len = newheadroom;
1599 	else
1600 		head_copy_off = newheadroom - head_copy_len;
1601 
1602 	/* Copy the linear header and data. */
1603 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1604 			     skb->len + head_copy_len));
1605 
1606 	skb_copy_header(n, skb);
1607 
1608 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1609 
1610 	return n;
1611 }
1612 EXPORT_SYMBOL(skb_copy_expand);
1613 
1614 /**
1615  *	__skb_pad		-	zero pad the tail of an skb
1616  *	@skb: buffer to pad
1617  *	@pad: space to pad
1618  *	@free_on_error: free buffer on error
1619  *
1620  *	Ensure that a buffer is followed by a padding area that is zero
1621  *	filled. Used by network drivers which may DMA or transfer data
1622  *	beyond the buffer end onto the wire.
1623  *
1624  *	May return error in out of memory cases. The skb is freed on error
1625  *	if @free_on_error is true.
1626  */
1627 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1628 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1629 {
1630 	int err;
1631 	int ntail;
1632 
1633 	/* If the skbuff is non linear tailroom is always zero.. */
1634 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1635 		memset(skb->data+skb->len, 0, pad);
1636 		return 0;
1637 	}
1638 
1639 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1640 	if (likely(skb_cloned(skb) || ntail > 0)) {
1641 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1642 		if (unlikely(err))
1643 			goto free_skb;
1644 	}
1645 
1646 	/* FIXME: The use of this function with non-linear skb's really needs
1647 	 * to be audited.
1648 	 */
1649 	err = skb_linearize(skb);
1650 	if (unlikely(err))
1651 		goto free_skb;
1652 
1653 	memset(skb->data + skb->len, 0, pad);
1654 	return 0;
1655 
1656 free_skb:
1657 	if (free_on_error)
1658 		kfree_skb(skb);
1659 	return err;
1660 }
1661 EXPORT_SYMBOL(__skb_pad);
1662 
1663 /**
1664  *	pskb_put - add data to the tail of a potentially fragmented buffer
1665  *	@skb: start of the buffer to use
1666  *	@tail: tail fragment of the buffer to use
1667  *	@len: amount of data to add
1668  *
1669  *	This function extends the used data area of the potentially
1670  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1671  *	@skb itself. If this would exceed the total buffer size the kernel
1672  *	will panic. A pointer to the first byte of the extra data is
1673  *	returned.
1674  */
1675 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1676 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1677 {
1678 	if (tail != skb) {
1679 		skb->data_len += len;
1680 		skb->len += len;
1681 	}
1682 	return skb_put(tail, len);
1683 }
1684 EXPORT_SYMBOL_GPL(pskb_put);
1685 
1686 /**
1687  *	skb_put - add data to a buffer
1688  *	@skb: buffer to use
1689  *	@len: amount of data to add
1690  *
1691  *	This function extends the used data area of the buffer. If this would
1692  *	exceed the total buffer size the kernel will panic. A pointer to the
1693  *	first byte of the extra data is returned.
1694  */
skb_put(struct sk_buff * skb,unsigned int len)1695 void *skb_put(struct sk_buff *skb, unsigned int len)
1696 {
1697 	void *tmp = skb_tail_pointer(skb);
1698 	SKB_LINEAR_ASSERT(skb);
1699 	skb->tail += len;
1700 	skb->len  += len;
1701 	if (unlikely(skb->tail > skb->end))
1702 		skb_over_panic(skb, len, __builtin_return_address(0));
1703 	return tmp;
1704 }
1705 EXPORT_SYMBOL(skb_put);
1706 
1707 /**
1708  *	skb_push - add data to the start of a buffer
1709  *	@skb: buffer to use
1710  *	@len: amount of data to add
1711  *
1712  *	This function extends the used data area of the buffer at the buffer
1713  *	start. If this would exceed the total buffer headroom the kernel will
1714  *	panic. A pointer to the first byte of the extra data is returned.
1715  */
skb_push(struct sk_buff * skb,unsigned int len)1716 void *skb_push(struct sk_buff *skb, unsigned int len)
1717 {
1718 	skb->data -= len;
1719 	skb->len  += len;
1720 	if (unlikely(skb->data < skb->head))
1721 		skb_under_panic(skb, len, __builtin_return_address(0));
1722 	return skb->data;
1723 }
1724 EXPORT_SYMBOL(skb_push);
1725 
1726 /**
1727  *	skb_pull - remove data from the start of a buffer
1728  *	@skb: buffer to use
1729  *	@len: amount of data to remove
1730  *
1731  *	This function removes data from the start of a buffer, returning
1732  *	the memory to the headroom. A pointer to the next data in the buffer
1733  *	is returned. Once the data has been pulled future pushes will overwrite
1734  *	the old data.
1735  */
skb_pull(struct sk_buff * skb,unsigned int len)1736 void *skb_pull(struct sk_buff *skb, unsigned int len)
1737 {
1738 	return skb_pull_inline(skb, len);
1739 }
1740 EXPORT_SYMBOL(skb_pull);
1741 
1742 /**
1743  *	skb_trim - remove end from a buffer
1744  *	@skb: buffer to alter
1745  *	@len: new length
1746  *
1747  *	Cut the length of a buffer down by removing data from the tail. If
1748  *	the buffer is already under the length specified it is not modified.
1749  *	The skb must be linear.
1750  */
skb_trim(struct sk_buff * skb,unsigned int len)1751 void skb_trim(struct sk_buff *skb, unsigned int len)
1752 {
1753 	if (skb->len > len)
1754 		__skb_trim(skb, len);
1755 }
1756 EXPORT_SYMBOL(skb_trim);
1757 
1758 /* Trims skb to length len. It can change skb pointers.
1759  */
1760 
___pskb_trim(struct sk_buff * skb,unsigned int len)1761 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1762 {
1763 	struct sk_buff **fragp;
1764 	struct sk_buff *frag;
1765 	int offset = skb_headlen(skb);
1766 	int nfrags = skb_shinfo(skb)->nr_frags;
1767 	int i;
1768 	int err;
1769 
1770 	if (skb_cloned(skb) &&
1771 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1772 		return err;
1773 
1774 	i = 0;
1775 	if (offset >= len)
1776 		goto drop_pages;
1777 
1778 	for (; i < nfrags; i++) {
1779 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1780 
1781 		if (end < len) {
1782 			offset = end;
1783 			continue;
1784 		}
1785 
1786 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1787 
1788 drop_pages:
1789 		skb_shinfo(skb)->nr_frags = i;
1790 
1791 		for (; i < nfrags; i++)
1792 			skb_frag_unref(skb, i);
1793 
1794 		if (skb_has_frag_list(skb))
1795 			skb_drop_fraglist(skb);
1796 		goto done;
1797 	}
1798 
1799 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1800 	     fragp = &frag->next) {
1801 		int end = offset + frag->len;
1802 
1803 		if (skb_shared(frag)) {
1804 			struct sk_buff *nfrag;
1805 
1806 			nfrag = skb_clone(frag, GFP_ATOMIC);
1807 			if (unlikely(!nfrag))
1808 				return -ENOMEM;
1809 
1810 			nfrag->next = frag->next;
1811 			consume_skb(frag);
1812 			frag = nfrag;
1813 			*fragp = frag;
1814 		}
1815 
1816 		if (end < len) {
1817 			offset = end;
1818 			continue;
1819 		}
1820 
1821 		if (end > len &&
1822 		    unlikely((err = pskb_trim(frag, len - offset))))
1823 			return err;
1824 
1825 		if (frag->next)
1826 			skb_drop_list(&frag->next);
1827 		break;
1828 	}
1829 
1830 done:
1831 	if (len > skb_headlen(skb)) {
1832 		skb->data_len -= skb->len - len;
1833 		skb->len       = len;
1834 	} else {
1835 		skb->len       = len;
1836 		skb->data_len  = 0;
1837 		skb_set_tail_pointer(skb, len);
1838 	}
1839 
1840 	if (!skb->sk || skb->destructor == sock_edemux)
1841 		skb_condense(skb);
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL(___pskb_trim);
1845 
1846 /* Note : use pskb_trim_rcsum() instead of calling this directly
1847  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)1848 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1849 {
1850 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1851 		int delta = skb->len - len;
1852 
1853 		skb->csum = csum_block_sub(skb->csum,
1854 					   skb_checksum(skb, len, delta, 0),
1855 					   len);
1856 	}
1857 	return __pskb_trim(skb, len);
1858 }
1859 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1860 
1861 /**
1862  *	__pskb_pull_tail - advance tail of skb header
1863  *	@skb: buffer to reallocate
1864  *	@delta: number of bytes to advance tail
1865  *
1866  *	The function makes a sense only on a fragmented &sk_buff,
1867  *	it expands header moving its tail forward and copying necessary
1868  *	data from fragmented part.
1869  *
1870  *	&sk_buff MUST have reference count of 1.
1871  *
1872  *	Returns %NULL (and &sk_buff does not change) if pull failed
1873  *	or value of new tail of skb in the case of success.
1874  *
1875  *	All the pointers pointing into skb header may change and must be
1876  *	reloaded after call to this function.
1877  */
1878 
1879 /* Moves tail of skb head forward, copying data from fragmented part,
1880  * when it is necessary.
1881  * 1. It may fail due to malloc failure.
1882  * 2. It may change skb pointers.
1883  *
1884  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1885  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1886 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1887 {
1888 	/* If skb has not enough free space at tail, get new one
1889 	 * plus 128 bytes for future expansions. If we have enough
1890 	 * room at tail, reallocate without expansion only if skb is cloned.
1891 	 */
1892 	int i, k, eat = (skb->tail + delta) - skb->end;
1893 
1894 	if (eat > 0 || skb_cloned(skb)) {
1895 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1896 				     GFP_ATOMIC))
1897 			return NULL;
1898 	}
1899 
1900 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1901 			     skb_tail_pointer(skb), delta));
1902 
1903 	/* Optimization: no fragments, no reasons to preestimate
1904 	 * size of pulled pages. Superb.
1905 	 */
1906 	if (!skb_has_frag_list(skb))
1907 		goto pull_pages;
1908 
1909 	/* Estimate size of pulled pages. */
1910 	eat = delta;
1911 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1912 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1913 
1914 		if (size >= eat)
1915 			goto pull_pages;
1916 		eat -= size;
1917 	}
1918 
1919 	/* If we need update frag list, we are in troubles.
1920 	 * Certainly, it is possible to add an offset to skb data,
1921 	 * but taking into account that pulling is expected to
1922 	 * be very rare operation, it is worth to fight against
1923 	 * further bloating skb head and crucify ourselves here instead.
1924 	 * Pure masohism, indeed. 8)8)
1925 	 */
1926 	if (eat) {
1927 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1928 		struct sk_buff *clone = NULL;
1929 		struct sk_buff *insp = NULL;
1930 
1931 		do {
1932 			BUG_ON(!list);
1933 
1934 			if (list->len <= eat) {
1935 				/* Eaten as whole. */
1936 				eat -= list->len;
1937 				list = list->next;
1938 				insp = list;
1939 			} else {
1940 				/* Eaten partially. */
1941 
1942 				if (skb_shared(list)) {
1943 					/* Sucks! We need to fork list. :-( */
1944 					clone = skb_clone(list, GFP_ATOMIC);
1945 					if (!clone)
1946 						return NULL;
1947 					insp = list->next;
1948 					list = clone;
1949 				} else {
1950 					/* This may be pulled without
1951 					 * problems. */
1952 					insp = list;
1953 				}
1954 				if (!pskb_pull(list, eat)) {
1955 					kfree_skb(clone);
1956 					return NULL;
1957 				}
1958 				break;
1959 			}
1960 		} while (eat);
1961 
1962 		/* Free pulled out fragments. */
1963 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1964 			skb_shinfo(skb)->frag_list = list->next;
1965 			kfree_skb(list);
1966 		}
1967 		/* And insert new clone at head. */
1968 		if (clone) {
1969 			clone->next = list;
1970 			skb_shinfo(skb)->frag_list = clone;
1971 		}
1972 	}
1973 	/* Success! Now we may commit changes to skb data. */
1974 
1975 pull_pages:
1976 	eat = delta;
1977 	k = 0;
1978 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1979 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1980 
1981 		if (size <= eat) {
1982 			skb_frag_unref(skb, i);
1983 			eat -= size;
1984 		} else {
1985 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1986 			if (eat) {
1987 				skb_shinfo(skb)->frags[k].page_offset += eat;
1988 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1989 				if (!i)
1990 					goto end;
1991 				eat = 0;
1992 			}
1993 			k++;
1994 		}
1995 	}
1996 	skb_shinfo(skb)->nr_frags = k;
1997 
1998 end:
1999 	skb->tail     += delta;
2000 	skb->data_len -= delta;
2001 
2002 	if (!skb->data_len)
2003 		skb_zcopy_clear(skb, false);
2004 
2005 	return skb_tail_pointer(skb);
2006 }
2007 EXPORT_SYMBOL(__pskb_pull_tail);
2008 
2009 /**
2010  *	skb_copy_bits - copy bits from skb to kernel buffer
2011  *	@skb: source skb
2012  *	@offset: offset in source
2013  *	@to: destination buffer
2014  *	@len: number of bytes to copy
2015  *
2016  *	Copy the specified number of bytes from the source skb to the
2017  *	destination buffer.
2018  *
2019  *	CAUTION ! :
2020  *		If its prototype is ever changed,
2021  *		check arch/{*}/net/{*}.S files,
2022  *		since it is called from BPF assembly code.
2023  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2024 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2025 {
2026 	int start = skb_headlen(skb);
2027 	struct sk_buff *frag_iter;
2028 	int i, copy;
2029 
2030 	if (offset > (int)skb->len - len)
2031 		goto fault;
2032 
2033 	/* Copy header. */
2034 	if ((copy = start - offset) > 0) {
2035 		if (copy > len)
2036 			copy = len;
2037 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2038 		if ((len -= copy) == 0)
2039 			return 0;
2040 		offset += copy;
2041 		to     += copy;
2042 	}
2043 
2044 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2045 		int end;
2046 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2047 
2048 		WARN_ON(start > offset + len);
2049 
2050 		end = start + skb_frag_size(f);
2051 		if ((copy = end - offset) > 0) {
2052 			u32 p_off, p_len, copied;
2053 			struct page *p;
2054 			u8 *vaddr;
2055 
2056 			if (copy > len)
2057 				copy = len;
2058 
2059 			skb_frag_foreach_page(f,
2060 					      f->page_offset + offset - start,
2061 					      copy, p, p_off, p_len, copied) {
2062 				vaddr = kmap_atomic(p);
2063 				memcpy(to + copied, vaddr + p_off, p_len);
2064 				kunmap_atomic(vaddr);
2065 			}
2066 
2067 			if ((len -= copy) == 0)
2068 				return 0;
2069 			offset += copy;
2070 			to     += copy;
2071 		}
2072 		start = end;
2073 	}
2074 
2075 	skb_walk_frags(skb, frag_iter) {
2076 		int end;
2077 
2078 		WARN_ON(start > offset + len);
2079 
2080 		end = start + frag_iter->len;
2081 		if ((copy = end - offset) > 0) {
2082 			if (copy > len)
2083 				copy = len;
2084 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2085 				goto fault;
2086 			if ((len -= copy) == 0)
2087 				return 0;
2088 			offset += copy;
2089 			to     += copy;
2090 		}
2091 		start = end;
2092 	}
2093 
2094 	if (!len)
2095 		return 0;
2096 
2097 fault:
2098 	return -EFAULT;
2099 }
2100 EXPORT_SYMBOL(skb_copy_bits);
2101 
2102 /*
2103  * Callback from splice_to_pipe(), if we need to release some pages
2104  * at the end of the spd in case we error'ed out in filling the pipe.
2105  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2106 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2107 {
2108 	put_page(spd->pages[i]);
2109 }
2110 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2111 static struct page *linear_to_page(struct page *page, unsigned int *len,
2112 				   unsigned int *offset,
2113 				   struct sock *sk)
2114 {
2115 	struct page_frag *pfrag = sk_page_frag(sk);
2116 
2117 	if (!sk_page_frag_refill(sk, pfrag))
2118 		return NULL;
2119 
2120 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2121 
2122 	memcpy(page_address(pfrag->page) + pfrag->offset,
2123 	       page_address(page) + *offset, *len);
2124 	*offset = pfrag->offset;
2125 	pfrag->offset += *len;
2126 
2127 	return pfrag->page;
2128 }
2129 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2130 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2131 			     struct page *page,
2132 			     unsigned int offset)
2133 {
2134 	return	spd->nr_pages &&
2135 		spd->pages[spd->nr_pages - 1] == page &&
2136 		(spd->partial[spd->nr_pages - 1].offset +
2137 		 spd->partial[spd->nr_pages - 1].len == offset);
2138 }
2139 
2140 /*
2141  * Fill page/offset/length into spd, if it can hold more pages.
2142  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2143 static bool spd_fill_page(struct splice_pipe_desc *spd,
2144 			  struct pipe_inode_info *pipe, struct page *page,
2145 			  unsigned int *len, unsigned int offset,
2146 			  bool linear,
2147 			  struct sock *sk)
2148 {
2149 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2150 		return true;
2151 
2152 	if (linear) {
2153 		page = linear_to_page(page, len, &offset, sk);
2154 		if (!page)
2155 			return true;
2156 	}
2157 	if (spd_can_coalesce(spd, page, offset)) {
2158 		spd->partial[spd->nr_pages - 1].len += *len;
2159 		return false;
2160 	}
2161 	get_page(page);
2162 	spd->pages[spd->nr_pages] = page;
2163 	spd->partial[spd->nr_pages].len = *len;
2164 	spd->partial[spd->nr_pages].offset = offset;
2165 	spd->nr_pages++;
2166 
2167 	return false;
2168 }
2169 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2170 static bool __splice_segment(struct page *page, unsigned int poff,
2171 			     unsigned int plen, unsigned int *off,
2172 			     unsigned int *len,
2173 			     struct splice_pipe_desc *spd, bool linear,
2174 			     struct sock *sk,
2175 			     struct pipe_inode_info *pipe)
2176 {
2177 	if (!*len)
2178 		return true;
2179 
2180 	/* skip this segment if already processed */
2181 	if (*off >= plen) {
2182 		*off -= plen;
2183 		return false;
2184 	}
2185 
2186 	/* ignore any bits we already processed */
2187 	poff += *off;
2188 	plen -= *off;
2189 	*off = 0;
2190 
2191 	do {
2192 		unsigned int flen = min(*len, plen);
2193 
2194 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2195 				  linear, sk))
2196 			return true;
2197 		poff += flen;
2198 		plen -= flen;
2199 		*len -= flen;
2200 	} while (*len && plen);
2201 
2202 	return false;
2203 }
2204 
2205 /*
2206  * Map linear and fragment data from the skb to spd. It reports true if the
2207  * pipe is full or if we already spliced the requested length.
2208  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2209 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2210 			      unsigned int *offset, unsigned int *len,
2211 			      struct splice_pipe_desc *spd, struct sock *sk)
2212 {
2213 	int seg;
2214 	struct sk_buff *iter;
2215 
2216 	/* map the linear part :
2217 	 * If skb->head_frag is set, this 'linear' part is backed by a
2218 	 * fragment, and if the head is not shared with any clones then
2219 	 * we can avoid a copy since we own the head portion of this page.
2220 	 */
2221 	if (__splice_segment(virt_to_page(skb->data),
2222 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2223 			     skb_headlen(skb),
2224 			     offset, len, spd,
2225 			     skb_head_is_locked(skb),
2226 			     sk, pipe))
2227 		return true;
2228 
2229 	/*
2230 	 * then map the fragments
2231 	 */
2232 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2233 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2234 
2235 		if (__splice_segment(skb_frag_page(f),
2236 				     f->page_offset, skb_frag_size(f),
2237 				     offset, len, spd, false, sk, pipe))
2238 			return true;
2239 	}
2240 
2241 	skb_walk_frags(skb, iter) {
2242 		if (*offset >= iter->len) {
2243 			*offset -= iter->len;
2244 			continue;
2245 		}
2246 		/* __skb_splice_bits() only fails if the output has no room
2247 		 * left, so no point in going over the frag_list for the error
2248 		 * case.
2249 		 */
2250 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2251 			return true;
2252 	}
2253 
2254 	return false;
2255 }
2256 
2257 /*
2258  * Map data from the skb to a pipe. Should handle both the linear part,
2259  * the fragments, and the frag list.
2260  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2261 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2262 		    struct pipe_inode_info *pipe, unsigned int tlen,
2263 		    unsigned int flags)
2264 {
2265 	struct partial_page partial[MAX_SKB_FRAGS];
2266 	struct page *pages[MAX_SKB_FRAGS];
2267 	struct splice_pipe_desc spd = {
2268 		.pages = pages,
2269 		.partial = partial,
2270 		.nr_pages_max = MAX_SKB_FRAGS,
2271 		.ops = &nosteal_pipe_buf_ops,
2272 		.spd_release = sock_spd_release,
2273 	};
2274 	int ret = 0;
2275 
2276 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2277 
2278 	if (spd.nr_pages)
2279 		ret = splice_to_pipe(pipe, &spd);
2280 
2281 	return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(skb_splice_bits);
2284 
2285 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2286 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2287 			 int len)
2288 {
2289 	unsigned int orig_len = len;
2290 	struct sk_buff *head = skb;
2291 	unsigned short fragidx;
2292 	int slen, ret;
2293 
2294 do_frag_list:
2295 
2296 	/* Deal with head data */
2297 	while (offset < skb_headlen(skb) && len) {
2298 		struct kvec kv;
2299 		struct msghdr msg;
2300 
2301 		slen = min_t(int, len, skb_headlen(skb) - offset);
2302 		kv.iov_base = skb->data + offset;
2303 		kv.iov_len = slen;
2304 		memset(&msg, 0, sizeof(msg));
2305 		msg.msg_flags = MSG_DONTWAIT;
2306 
2307 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2308 		if (ret <= 0)
2309 			goto error;
2310 
2311 		offset += ret;
2312 		len -= ret;
2313 	}
2314 
2315 	/* All the data was skb head? */
2316 	if (!len)
2317 		goto out;
2318 
2319 	/* Make offset relative to start of frags */
2320 	offset -= skb_headlen(skb);
2321 
2322 	/* Find where we are in frag list */
2323 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2324 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2325 
2326 		if (offset < frag->size)
2327 			break;
2328 
2329 		offset -= frag->size;
2330 	}
2331 
2332 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2333 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2334 
2335 		slen = min_t(size_t, len, frag->size - offset);
2336 
2337 		while (slen) {
2338 			ret = kernel_sendpage_locked(sk, frag->page.p,
2339 						     frag->page_offset + offset,
2340 						     slen, MSG_DONTWAIT);
2341 			if (ret <= 0)
2342 				goto error;
2343 
2344 			len -= ret;
2345 			offset += ret;
2346 			slen -= ret;
2347 		}
2348 
2349 		offset = 0;
2350 	}
2351 
2352 	if (len) {
2353 		/* Process any frag lists */
2354 
2355 		if (skb == head) {
2356 			if (skb_has_frag_list(skb)) {
2357 				skb = skb_shinfo(skb)->frag_list;
2358 				goto do_frag_list;
2359 			}
2360 		} else if (skb->next) {
2361 			skb = skb->next;
2362 			goto do_frag_list;
2363 		}
2364 	}
2365 
2366 out:
2367 	return orig_len - len;
2368 
2369 error:
2370 	return orig_len == len ? ret : orig_len - len;
2371 }
2372 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2373 
2374 /* Send skb data on a socket. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2375 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2376 {
2377 	int ret = 0;
2378 
2379 	lock_sock(sk);
2380 	ret = skb_send_sock_locked(sk, skb, offset, len);
2381 	release_sock(sk);
2382 
2383 	return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(skb_send_sock);
2386 
2387 /**
2388  *	skb_store_bits - store bits from kernel buffer to skb
2389  *	@skb: destination buffer
2390  *	@offset: offset in destination
2391  *	@from: source buffer
2392  *	@len: number of bytes to copy
2393  *
2394  *	Copy the specified number of bytes from the source buffer to the
2395  *	destination skb.  This function handles all the messy bits of
2396  *	traversing fragment lists and such.
2397  */
2398 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2399 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2400 {
2401 	int start = skb_headlen(skb);
2402 	struct sk_buff *frag_iter;
2403 	int i, copy;
2404 
2405 	if (offset > (int)skb->len - len)
2406 		goto fault;
2407 
2408 	if ((copy = start - offset) > 0) {
2409 		if (copy > len)
2410 			copy = len;
2411 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2412 		if ((len -= copy) == 0)
2413 			return 0;
2414 		offset += copy;
2415 		from += copy;
2416 	}
2417 
2418 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2419 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2420 		int end;
2421 
2422 		WARN_ON(start > offset + len);
2423 
2424 		end = start + skb_frag_size(frag);
2425 		if ((copy = end - offset) > 0) {
2426 			u32 p_off, p_len, copied;
2427 			struct page *p;
2428 			u8 *vaddr;
2429 
2430 			if (copy > len)
2431 				copy = len;
2432 
2433 			skb_frag_foreach_page(frag,
2434 					      frag->page_offset + offset - start,
2435 					      copy, p, p_off, p_len, copied) {
2436 				vaddr = kmap_atomic(p);
2437 				memcpy(vaddr + p_off, from + copied, p_len);
2438 				kunmap_atomic(vaddr);
2439 			}
2440 
2441 			if ((len -= copy) == 0)
2442 				return 0;
2443 			offset += copy;
2444 			from += copy;
2445 		}
2446 		start = end;
2447 	}
2448 
2449 	skb_walk_frags(skb, frag_iter) {
2450 		int end;
2451 
2452 		WARN_ON(start > offset + len);
2453 
2454 		end = start + frag_iter->len;
2455 		if ((copy = end - offset) > 0) {
2456 			if (copy > len)
2457 				copy = len;
2458 			if (skb_store_bits(frag_iter, offset - start,
2459 					   from, copy))
2460 				goto fault;
2461 			if ((len -= copy) == 0)
2462 				return 0;
2463 			offset += copy;
2464 			from += copy;
2465 		}
2466 		start = end;
2467 	}
2468 	if (!len)
2469 		return 0;
2470 
2471 fault:
2472 	return -EFAULT;
2473 }
2474 EXPORT_SYMBOL(skb_store_bits);
2475 
2476 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2477 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2478 		      __wsum csum, const struct skb_checksum_ops *ops)
2479 {
2480 	int start = skb_headlen(skb);
2481 	int i, copy = start - offset;
2482 	struct sk_buff *frag_iter;
2483 	int pos = 0;
2484 
2485 	/* Checksum header. */
2486 	if (copy > 0) {
2487 		if (copy > len)
2488 			copy = len;
2489 		csum = ops->update(skb->data + offset, copy, csum);
2490 		if ((len -= copy) == 0)
2491 			return csum;
2492 		offset += copy;
2493 		pos	= copy;
2494 	}
2495 
2496 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2497 		int end;
2498 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2499 
2500 		WARN_ON(start > offset + len);
2501 
2502 		end = start + skb_frag_size(frag);
2503 		if ((copy = end - offset) > 0) {
2504 			u32 p_off, p_len, copied;
2505 			struct page *p;
2506 			__wsum csum2;
2507 			u8 *vaddr;
2508 
2509 			if (copy > len)
2510 				copy = len;
2511 
2512 			skb_frag_foreach_page(frag,
2513 					      frag->page_offset + offset - start,
2514 					      copy, p, p_off, p_len, copied) {
2515 				vaddr = kmap_atomic(p);
2516 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2517 				kunmap_atomic(vaddr);
2518 				csum = ops->combine(csum, csum2, pos, p_len);
2519 				pos += p_len;
2520 			}
2521 
2522 			if (!(len -= copy))
2523 				return csum;
2524 			offset += copy;
2525 		}
2526 		start = end;
2527 	}
2528 
2529 	skb_walk_frags(skb, frag_iter) {
2530 		int end;
2531 
2532 		WARN_ON(start > offset + len);
2533 
2534 		end = start + frag_iter->len;
2535 		if ((copy = end - offset) > 0) {
2536 			__wsum csum2;
2537 			if (copy > len)
2538 				copy = len;
2539 			csum2 = __skb_checksum(frag_iter, offset - start,
2540 					       copy, 0, ops);
2541 			csum = ops->combine(csum, csum2, pos, copy);
2542 			if ((len -= copy) == 0)
2543 				return csum;
2544 			offset += copy;
2545 			pos    += copy;
2546 		}
2547 		start = end;
2548 	}
2549 	BUG_ON(len);
2550 
2551 	return csum;
2552 }
2553 EXPORT_SYMBOL(__skb_checksum);
2554 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2555 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2556 		    int len, __wsum csum)
2557 {
2558 	const struct skb_checksum_ops ops = {
2559 		.update  = csum_partial_ext,
2560 		.combine = csum_block_add_ext,
2561 	};
2562 
2563 	return __skb_checksum(skb, offset, len, csum, &ops);
2564 }
2565 EXPORT_SYMBOL(skb_checksum);
2566 
2567 /* Both of above in one bottle. */
2568 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2569 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2570 				    u8 *to, int len, __wsum csum)
2571 {
2572 	int start = skb_headlen(skb);
2573 	int i, copy = start - offset;
2574 	struct sk_buff *frag_iter;
2575 	int pos = 0;
2576 
2577 	/* Copy header. */
2578 	if (copy > 0) {
2579 		if (copy > len)
2580 			copy = len;
2581 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2582 						 copy, csum);
2583 		if ((len -= copy) == 0)
2584 			return csum;
2585 		offset += copy;
2586 		to     += copy;
2587 		pos	= copy;
2588 	}
2589 
2590 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2591 		int end;
2592 
2593 		WARN_ON(start > offset + len);
2594 
2595 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2596 		if ((copy = end - offset) > 0) {
2597 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598 			u32 p_off, p_len, copied;
2599 			struct page *p;
2600 			__wsum csum2;
2601 			u8 *vaddr;
2602 
2603 			if (copy > len)
2604 				copy = len;
2605 
2606 			skb_frag_foreach_page(frag,
2607 					      frag->page_offset + offset - start,
2608 					      copy, p, p_off, p_len, copied) {
2609 				vaddr = kmap_atomic(p);
2610 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2611 								  to + copied,
2612 								  p_len, 0);
2613 				kunmap_atomic(vaddr);
2614 				csum = csum_block_add(csum, csum2, pos);
2615 				pos += p_len;
2616 			}
2617 
2618 			if (!(len -= copy))
2619 				return csum;
2620 			offset += copy;
2621 			to     += copy;
2622 		}
2623 		start = end;
2624 	}
2625 
2626 	skb_walk_frags(skb, frag_iter) {
2627 		__wsum csum2;
2628 		int end;
2629 
2630 		WARN_ON(start > offset + len);
2631 
2632 		end = start + frag_iter->len;
2633 		if ((copy = end - offset) > 0) {
2634 			if (copy > len)
2635 				copy = len;
2636 			csum2 = skb_copy_and_csum_bits(frag_iter,
2637 						       offset - start,
2638 						       to, copy, 0);
2639 			csum = csum_block_add(csum, csum2, pos);
2640 			if ((len -= copy) == 0)
2641 				return csum;
2642 			offset += copy;
2643 			to     += copy;
2644 			pos    += copy;
2645 		}
2646 		start = end;
2647 	}
2648 	BUG_ON(len);
2649 	return csum;
2650 }
2651 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2652 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2653 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2654 {
2655 	net_warn_ratelimited(
2656 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2657 		__func__);
2658 	return 0;
2659 }
2660 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2661 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2662 				       int offset, int len)
2663 {
2664 	net_warn_ratelimited(
2665 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2666 		__func__);
2667 	return 0;
2668 }
2669 
2670 static const struct skb_checksum_ops default_crc32c_ops = {
2671 	.update  = warn_crc32c_csum_update,
2672 	.combine = warn_crc32c_csum_combine,
2673 };
2674 
2675 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2676 	&default_crc32c_ops;
2677 EXPORT_SYMBOL(crc32c_csum_stub);
2678 
2679  /**
2680  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2681  *	@from: source buffer
2682  *
2683  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2684  *	into skb_zerocopy().
2685  */
2686 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2687 skb_zerocopy_headlen(const struct sk_buff *from)
2688 {
2689 	unsigned int hlen = 0;
2690 
2691 	if (!from->head_frag ||
2692 	    skb_headlen(from) < L1_CACHE_BYTES ||
2693 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2694 		hlen = skb_headlen(from);
2695 
2696 	if (skb_has_frag_list(from))
2697 		hlen = from->len;
2698 
2699 	return hlen;
2700 }
2701 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2702 
2703 /**
2704  *	skb_zerocopy - Zero copy skb to skb
2705  *	@to: destination buffer
2706  *	@from: source buffer
2707  *	@len: number of bytes to copy from source buffer
2708  *	@hlen: size of linear headroom in destination buffer
2709  *
2710  *	Copies up to `len` bytes from `from` to `to` by creating references
2711  *	to the frags in the source buffer.
2712  *
2713  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2714  *	headroom in the `to` buffer.
2715  *
2716  *	Return value:
2717  *	0: everything is OK
2718  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2719  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2720  */
2721 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2722 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2723 {
2724 	int i, j = 0;
2725 	int plen = 0; /* length of skb->head fragment */
2726 	int ret;
2727 	struct page *page;
2728 	unsigned int offset;
2729 
2730 	BUG_ON(!from->head_frag && !hlen);
2731 
2732 	/* dont bother with small payloads */
2733 	if (len <= skb_tailroom(to))
2734 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2735 
2736 	if (hlen) {
2737 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2738 		if (unlikely(ret))
2739 			return ret;
2740 		len -= hlen;
2741 	} else {
2742 		plen = min_t(int, skb_headlen(from), len);
2743 		if (plen) {
2744 			page = virt_to_head_page(from->head);
2745 			offset = from->data - (unsigned char *)page_address(page);
2746 			__skb_fill_page_desc(to, 0, page, offset, plen);
2747 			get_page(page);
2748 			j = 1;
2749 			len -= plen;
2750 		}
2751 	}
2752 
2753 	to->truesize += len + plen;
2754 	to->len += len + plen;
2755 	to->data_len += len + plen;
2756 
2757 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2758 		skb_tx_error(from);
2759 		return -ENOMEM;
2760 	}
2761 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2762 
2763 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2764 		if (!len)
2765 			break;
2766 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2767 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2768 		len -= skb_shinfo(to)->frags[j].size;
2769 		skb_frag_ref(to, j);
2770 		j++;
2771 	}
2772 	skb_shinfo(to)->nr_frags = j;
2773 
2774 	return 0;
2775 }
2776 EXPORT_SYMBOL_GPL(skb_zerocopy);
2777 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2778 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2779 {
2780 	__wsum csum;
2781 	long csstart;
2782 
2783 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2784 		csstart = skb_checksum_start_offset(skb);
2785 	else
2786 		csstart = skb_headlen(skb);
2787 
2788 	BUG_ON(csstart > skb_headlen(skb));
2789 
2790 	skb_copy_from_linear_data(skb, to, csstart);
2791 
2792 	csum = 0;
2793 	if (csstart != skb->len)
2794 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2795 					      skb->len - csstart, 0);
2796 
2797 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2798 		long csstuff = csstart + skb->csum_offset;
2799 
2800 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2801 	}
2802 }
2803 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2804 
2805 /**
2806  *	skb_dequeue - remove from the head of the queue
2807  *	@list: list to dequeue from
2808  *
2809  *	Remove the head of the list. The list lock is taken so the function
2810  *	may be used safely with other locking list functions. The head item is
2811  *	returned or %NULL if the list is empty.
2812  */
2813 
skb_dequeue(struct sk_buff_head * list)2814 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2815 {
2816 	unsigned long flags;
2817 	struct sk_buff *result;
2818 
2819 	spin_lock_irqsave(&list->lock, flags);
2820 	result = __skb_dequeue(list);
2821 	spin_unlock_irqrestore(&list->lock, flags);
2822 	return result;
2823 }
2824 EXPORT_SYMBOL(skb_dequeue);
2825 
2826 /**
2827  *	skb_dequeue_tail - remove from the tail of the queue
2828  *	@list: list to dequeue from
2829  *
2830  *	Remove the tail of the list. The list lock is taken so the function
2831  *	may be used safely with other locking list functions. The tail item is
2832  *	returned or %NULL if the list is empty.
2833  */
skb_dequeue_tail(struct sk_buff_head * list)2834 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2835 {
2836 	unsigned long flags;
2837 	struct sk_buff *result;
2838 
2839 	spin_lock_irqsave(&list->lock, flags);
2840 	result = __skb_dequeue_tail(list);
2841 	spin_unlock_irqrestore(&list->lock, flags);
2842 	return result;
2843 }
2844 EXPORT_SYMBOL(skb_dequeue_tail);
2845 
2846 /**
2847  *	skb_queue_purge - empty a list
2848  *	@list: list to empty
2849  *
2850  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2851  *	the list and one reference dropped. This function takes the list
2852  *	lock and is atomic with respect to other list locking functions.
2853  */
skb_queue_purge(struct sk_buff_head * list)2854 void skb_queue_purge(struct sk_buff_head *list)
2855 {
2856 	struct sk_buff *skb;
2857 	while ((skb = skb_dequeue(list)) != NULL)
2858 		kfree_skb(skb);
2859 }
2860 EXPORT_SYMBOL(skb_queue_purge);
2861 
2862 /**
2863  *	skb_rbtree_purge - empty a skb rbtree
2864  *	@root: root of the rbtree to empty
2865  *	Return value: the sum of truesizes of all purged skbs.
2866  *
2867  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2868  *	the list and one reference dropped. This function does not take
2869  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2870  *	out-of-order queue is protected by the socket lock).
2871  */
skb_rbtree_purge(struct rb_root * root)2872 unsigned int skb_rbtree_purge(struct rb_root *root)
2873 {
2874 	struct rb_node *p = rb_first(root);
2875 	unsigned int sum = 0;
2876 
2877 	while (p) {
2878 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2879 
2880 		p = rb_next(p);
2881 		rb_erase(&skb->rbnode, root);
2882 		sum += skb->truesize;
2883 		kfree_skb(skb);
2884 	}
2885 	return sum;
2886 }
2887 
2888 /**
2889  *	skb_queue_head - queue a buffer at the list head
2890  *	@list: list to use
2891  *	@newsk: buffer to queue
2892  *
2893  *	Queue a buffer at the start of the list. This function takes the
2894  *	list lock and can be used safely with other locking &sk_buff functions
2895  *	safely.
2896  *
2897  *	A buffer cannot be placed on two lists at the same time.
2898  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2899 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2900 {
2901 	unsigned long flags;
2902 
2903 	spin_lock_irqsave(&list->lock, flags);
2904 	__skb_queue_head(list, newsk);
2905 	spin_unlock_irqrestore(&list->lock, flags);
2906 }
2907 EXPORT_SYMBOL(skb_queue_head);
2908 
2909 /**
2910  *	skb_queue_tail - queue a buffer at the list tail
2911  *	@list: list to use
2912  *	@newsk: buffer to queue
2913  *
2914  *	Queue a buffer at the tail of the list. This function takes the
2915  *	list lock and can be used safely with other locking &sk_buff functions
2916  *	safely.
2917  *
2918  *	A buffer cannot be placed on two lists at the same time.
2919  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2920 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2921 {
2922 	unsigned long flags;
2923 
2924 	spin_lock_irqsave(&list->lock, flags);
2925 	__skb_queue_tail(list, newsk);
2926 	spin_unlock_irqrestore(&list->lock, flags);
2927 }
2928 EXPORT_SYMBOL(skb_queue_tail);
2929 
2930 /**
2931  *	skb_unlink	-	remove a buffer from a list
2932  *	@skb: buffer to remove
2933  *	@list: list to use
2934  *
2935  *	Remove a packet from a list. The list locks are taken and this
2936  *	function is atomic with respect to other list locked calls
2937  *
2938  *	You must know what list the SKB is on.
2939  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2940 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2941 {
2942 	unsigned long flags;
2943 
2944 	spin_lock_irqsave(&list->lock, flags);
2945 	__skb_unlink(skb, list);
2946 	spin_unlock_irqrestore(&list->lock, flags);
2947 }
2948 EXPORT_SYMBOL(skb_unlink);
2949 
2950 /**
2951  *	skb_append	-	append a buffer
2952  *	@old: buffer to insert after
2953  *	@newsk: buffer to insert
2954  *	@list: list to use
2955  *
2956  *	Place a packet after a given packet in a list. The list locks are taken
2957  *	and this function is atomic with respect to other list locked calls.
2958  *	A buffer cannot be placed on two lists at the same time.
2959  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2960 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2961 {
2962 	unsigned long flags;
2963 
2964 	spin_lock_irqsave(&list->lock, flags);
2965 	__skb_queue_after(list, old, newsk);
2966 	spin_unlock_irqrestore(&list->lock, flags);
2967 }
2968 EXPORT_SYMBOL(skb_append);
2969 
2970 /**
2971  *	skb_insert	-	insert a buffer
2972  *	@old: buffer to insert before
2973  *	@newsk: buffer to insert
2974  *	@list: list to use
2975  *
2976  *	Place a packet before a given packet in a list. The list locks are
2977  * 	taken and this function is atomic with respect to other list locked
2978  *	calls.
2979  *
2980  *	A buffer cannot be placed on two lists at the same time.
2981  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2982 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2983 {
2984 	unsigned long flags;
2985 
2986 	spin_lock_irqsave(&list->lock, flags);
2987 	__skb_insert(newsk, old->prev, old, list);
2988 	spin_unlock_irqrestore(&list->lock, flags);
2989 }
2990 EXPORT_SYMBOL(skb_insert);
2991 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2992 static inline void skb_split_inside_header(struct sk_buff *skb,
2993 					   struct sk_buff* skb1,
2994 					   const u32 len, const int pos)
2995 {
2996 	int i;
2997 
2998 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2999 					 pos - len);
3000 	/* And move data appendix as is. */
3001 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3002 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3003 
3004 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3005 	skb_shinfo(skb)->nr_frags  = 0;
3006 	skb1->data_len		   = skb->data_len;
3007 	skb1->len		   += skb1->data_len;
3008 	skb->data_len		   = 0;
3009 	skb->len		   = len;
3010 	skb_set_tail_pointer(skb, len);
3011 }
3012 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3013 static inline void skb_split_no_header(struct sk_buff *skb,
3014 				       struct sk_buff* skb1,
3015 				       const u32 len, int pos)
3016 {
3017 	int i, k = 0;
3018 	const int nfrags = skb_shinfo(skb)->nr_frags;
3019 
3020 	skb_shinfo(skb)->nr_frags = 0;
3021 	skb1->len		  = skb1->data_len = skb->len - len;
3022 	skb->len		  = len;
3023 	skb->data_len		  = len - pos;
3024 
3025 	for (i = 0; i < nfrags; i++) {
3026 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3027 
3028 		if (pos + size > len) {
3029 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3030 
3031 			if (pos < len) {
3032 				/* Split frag.
3033 				 * We have two variants in this case:
3034 				 * 1. Move all the frag to the second
3035 				 *    part, if it is possible. F.e.
3036 				 *    this approach is mandatory for TUX,
3037 				 *    where splitting is expensive.
3038 				 * 2. Split is accurately. We make this.
3039 				 */
3040 				skb_frag_ref(skb, i);
3041 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3042 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3043 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3044 				skb_shinfo(skb)->nr_frags++;
3045 			}
3046 			k++;
3047 		} else
3048 			skb_shinfo(skb)->nr_frags++;
3049 		pos += size;
3050 	}
3051 	skb_shinfo(skb1)->nr_frags = k;
3052 }
3053 
3054 /**
3055  * skb_split - Split fragmented skb to two parts at length len.
3056  * @skb: the buffer to split
3057  * @skb1: the buffer to receive the second part
3058  * @len: new length for skb
3059  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3060 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3061 {
3062 	int pos = skb_headlen(skb);
3063 
3064 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3065 				      SKBTX_SHARED_FRAG;
3066 	skb_zerocopy_clone(skb1, skb, 0);
3067 	if (len < pos)	/* Split line is inside header. */
3068 		skb_split_inside_header(skb, skb1, len, pos);
3069 	else		/* Second chunk has no header, nothing to copy. */
3070 		skb_split_no_header(skb, skb1, len, pos);
3071 }
3072 EXPORT_SYMBOL(skb_split);
3073 
3074 /* Shifting from/to a cloned skb is a no-go.
3075  *
3076  * Caller cannot keep skb_shinfo related pointers past calling here!
3077  */
skb_prepare_for_shift(struct sk_buff * skb)3078 static int skb_prepare_for_shift(struct sk_buff *skb)
3079 {
3080 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3081 }
3082 
3083 /**
3084  * skb_shift - Shifts paged data partially from skb to another
3085  * @tgt: buffer into which tail data gets added
3086  * @skb: buffer from which the paged data comes from
3087  * @shiftlen: shift up to this many bytes
3088  *
3089  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3090  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3091  * It's up to caller to free skb if everything was shifted.
3092  *
3093  * If @tgt runs out of frags, the whole operation is aborted.
3094  *
3095  * Skb cannot include anything else but paged data while tgt is allowed
3096  * to have non-paged data as well.
3097  *
3098  * TODO: full sized shift could be optimized but that would need
3099  * specialized skb free'er to handle frags without up-to-date nr_frags.
3100  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3101 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3102 {
3103 	int from, to, merge, todo;
3104 	struct skb_frag_struct *fragfrom, *fragto;
3105 
3106 	BUG_ON(shiftlen > skb->len);
3107 
3108 	if (skb_headlen(skb))
3109 		return 0;
3110 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3111 		return 0;
3112 
3113 	todo = shiftlen;
3114 	from = 0;
3115 	to = skb_shinfo(tgt)->nr_frags;
3116 	fragfrom = &skb_shinfo(skb)->frags[from];
3117 
3118 	/* Actual merge is delayed until the point when we know we can
3119 	 * commit all, so that we don't have to undo partial changes
3120 	 */
3121 	if (!to ||
3122 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3123 			      fragfrom->page_offset)) {
3124 		merge = -1;
3125 	} else {
3126 		merge = to - 1;
3127 
3128 		todo -= skb_frag_size(fragfrom);
3129 		if (todo < 0) {
3130 			if (skb_prepare_for_shift(skb) ||
3131 			    skb_prepare_for_shift(tgt))
3132 				return 0;
3133 
3134 			/* All previous frag pointers might be stale! */
3135 			fragfrom = &skb_shinfo(skb)->frags[from];
3136 			fragto = &skb_shinfo(tgt)->frags[merge];
3137 
3138 			skb_frag_size_add(fragto, shiftlen);
3139 			skb_frag_size_sub(fragfrom, shiftlen);
3140 			fragfrom->page_offset += shiftlen;
3141 
3142 			goto onlymerged;
3143 		}
3144 
3145 		from++;
3146 	}
3147 
3148 	/* Skip full, not-fitting skb to avoid expensive operations */
3149 	if ((shiftlen == skb->len) &&
3150 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3151 		return 0;
3152 
3153 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3154 		return 0;
3155 
3156 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3157 		if (to == MAX_SKB_FRAGS)
3158 			return 0;
3159 
3160 		fragfrom = &skb_shinfo(skb)->frags[from];
3161 		fragto = &skb_shinfo(tgt)->frags[to];
3162 
3163 		if (todo >= skb_frag_size(fragfrom)) {
3164 			*fragto = *fragfrom;
3165 			todo -= skb_frag_size(fragfrom);
3166 			from++;
3167 			to++;
3168 
3169 		} else {
3170 			__skb_frag_ref(fragfrom);
3171 			fragto->page = fragfrom->page;
3172 			fragto->page_offset = fragfrom->page_offset;
3173 			skb_frag_size_set(fragto, todo);
3174 
3175 			fragfrom->page_offset += todo;
3176 			skb_frag_size_sub(fragfrom, todo);
3177 			todo = 0;
3178 
3179 			to++;
3180 			break;
3181 		}
3182 	}
3183 
3184 	/* Ready to "commit" this state change to tgt */
3185 	skb_shinfo(tgt)->nr_frags = to;
3186 
3187 	if (merge >= 0) {
3188 		fragfrom = &skb_shinfo(skb)->frags[0];
3189 		fragto = &skb_shinfo(tgt)->frags[merge];
3190 
3191 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3192 		__skb_frag_unref(fragfrom);
3193 	}
3194 
3195 	/* Reposition in the original skb */
3196 	to = 0;
3197 	while (from < skb_shinfo(skb)->nr_frags)
3198 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3199 	skb_shinfo(skb)->nr_frags = to;
3200 
3201 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3202 
3203 onlymerged:
3204 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3205 	 * the other hand might need it if it needs to be resent
3206 	 */
3207 	tgt->ip_summed = CHECKSUM_PARTIAL;
3208 	skb->ip_summed = CHECKSUM_PARTIAL;
3209 
3210 	/* Yak, is it really working this way? Some helper please? */
3211 	skb->len -= shiftlen;
3212 	skb->data_len -= shiftlen;
3213 	skb->truesize -= shiftlen;
3214 	tgt->len += shiftlen;
3215 	tgt->data_len += shiftlen;
3216 	tgt->truesize += shiftlen;
3217 
3218 	return shiftlen;
3219 }
3220 
3221 /**
3222  * skb_prepare_seq_read - Prepare a sequential read of skb data
3223  * @skb: the buffer to read
3224  * @from: lower offset of data to be read
3225  * @to: upper offset of data to be read
3226  * @st: state variable
3227  *
3228  * Initializes the specified state variable. Must be called before
3229  * invoking skb_seq_read() for the first time.
3230  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3231 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3232 			  unsigned int to, struct skb_seq_state *st)
3233 {
3234 	st->lower_offset = from;
3235 	st->upper_offset = to;
3236 	st->root_skb = st->cur_skb = skb;
3237 	st->frag_idx = st->stepped_offset = 0;
3238 	st->frag_data = NULL;
3239 }
3240 EXPORT_SYMBOL(skb_prepare_seq_read);
3241 
3242 /**
3243  * skb_seq_read - Sequentially read skb data
3244  * @consumed: number of bytes consumed by the caller so far
3245  * @data: destination pointer for data to be returned
3246  * @st: state variable
3247  *
3248  * Reads a block of skb data at @consumed relative to the
3249  * lower offset specified to skb_prepare_seq_read(). Assigns
3250  * the head of the data block to @data and returns the length
3251  * of the block or 0 if the end of the skb data or the upper
3252  * offset has been reached.
3253  *
3254  * The caller is not required to consume all of the data
3255  * returned, i.e. @consumed is typically set to the number
3256  * of bytes already consumed and the next call to
3257  * skb_seq_read() will return the remaining part of the block.
3258  *
3259  * Note 1: The size of each block of data returned can be arbitrary,
3260  *       this limitation is the cost for zerocopy sequential
3261  *       reads of potentially non linear data.
3262  *
3263  * Note 2: Fragment lists within fragments are not implemented
3264  *       at the moment, state->root_skb could be replaced with
3265  *       a stack for this purpose.
3266  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3267 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3268 			  struct skb_seq_state *st)
3269 {
3270 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3271 	skb_frag_t *frag;
3272 
3273 	if (unlikely(abs_offset >= st->upper_offset)) {
3274 		if (st->frag_data) {
3275 			kunmap_atomic(st->frag_data);
3276 			st->frag_data = NULL;
3277 		}
3278 		return 0;
3279 	}
3280 
3281 next_skb:
3282 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3283 
3284 	if (abs_offset < block_limit && !st->frag_data) {
3285 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3286 		return block_limit - abs_offset;
3287 	}
3288 
3289 	if (st->frag_idx == 0 && !st->frag_data)
3290 		st->stepped_offset += skb_headlen(st->cur_skb);
3291 
3292 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3293 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3294 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3295 
3296 		if (abs_offset < block_limit) {
3297 			if (!st->frag_data)
3298 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3299 
3300 			*data = (u8 *) st->frag_data + frag->page_offset +
3301 				(abs_offset - st->stepped_offset);
3302 
3303 			return block_limit - abs_offset;
3304 		}
3305 
3306 		if (st->frag_data) {
3307 			kunmap_atomic(st->frag_data);
3308 			st->frag_data = NULL;
3309 		}
3310 
3311 		st->frag_idx++;
3312 		st->stepped_offset += skb_frag_size(frag);
3313 	}
3314 
3315 	if (st->frag_data) {
3316 		kunmap_atomic(st->frag_data);
3317 		st->frag_data = NULL;
3318 	}
3319 
3320 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3321 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3322 		st->frag_idx = 0;
3323 		goto next_skb;
3324 	} else if (st->cur_skb->next) {
3325 		st->cur_skb = st->cur_skb->next;
3326 		st->frag_idx = 0;
3327 		goto next_skb;
3328 	}
3329 
3330 	return 0;
3331 }
3332 EXPORT_SYMBOL(skb_seq_read);
3333 
3334 /**
3335  * skb_abort_seq_read - Abort a sequential read of skb data
3336  * @st: state variable
3337  *
3338  * Must be called if skb_seq_read() was not called until it
3339  * returned 0.
3340  */
skb_abort_seq_read(struct skb_seq_state * st)3341 void skb_abort_seq_read(struct skb_seq_state *st)
3342 {
3343 	if (st->frag_data)
3344 		kunmap_atomic(st->frag_data);
3345 }
3346 EXPORT_SYMBOL(skb_abort_seq_read);
3347 
3348 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3349 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3350 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3351 					  struct ts_config *conf,
3352 					  struct ts_state *state)
3353 {
3354 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3355 }
3356 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3357 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3358 {
3359 	skb_abort_seq_read(TS_SKB_CB(state));
3360 }
3361 
3362 /**
3363  * skb_find_text - Find a text pattern in skb data
3364  * @skb: the buffer to look in
3365  * @from: search offset
3366  * @to: search limit
3367  * @config: textsearch configuration
3368  *
3369  * Finds a pattern in the skb data according to the specified
3370  * textsearch configuration. Use textsearch_next() to retrieve
3371  * subsequent occurrences of the pattern. Returns the offset
3372  * to the first occurrence or UINT_MAX if no match was found.
3373  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3374 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3375 			   unsigned int to, struct ts_config *config)
3376 {
3377 	struct ts_state state;
3378 	unsigned int ret;
3379 
3380 	config->get_next_block = skb_ts_get_next_block;
3381 	config->finish = skb_ts_finish;
3382 
3383 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3384 
3385 	ret = textsearch_find(config, &state);
3386 	return (ret <= to - from ? ret : UINT_MAX);
3387 }
3388 EXPORT_SYMBOL(skb_find_text);
3389 
3390 /**
3391  * skb_append_datato_frags - append the user data to a skb
3392  * @sk: sock  structure
3393  * @skb: skb structure to be appended with user data.
3394  * @getfrag: call back function to be used for getting the user data
3395  * @from: pointer to user message iov
3396  * @length: length of the iov message
3397  *
3398  * Description: This procedure append the user data in the fragment part
3399  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3400  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)3401 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3402 			int (*getfrag)(void *from, char *to, int offset,
3403 					int len, int odd, struct sk_buff *skb),
3404 			void *from, int length)
3405 {
3406 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3407 	int copy;
3408 	int offset = 0;
3409 	int ret;
3410 	struct page_frag *pfrag = &current->task_frag;
3411 
3412 	do {
3413 		/* Return error if we don't have space for new frag */
3414 		if (frg_cnt >= MAX_SKB_FRAGS)
3415 			return -EMSGSIZE;
3416 
3417 		if (!sk_page_frag_refill(sk, pfrag))
3418 			return -ENOMEM;
3419 
3420 		/* copy the user data to page */
3421 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3422 
3423 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3424 			      offset, copy, 0, skb);
3425 		if (ret < 0)
3426 			return -EFAULT;
3427 
3428 		/* copy was successful so update the size parameters */
3429 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3430 				   copy);
3431 		frg_cnt++;
3432 		pfrag->offset += copy;
3433 		get_page(pfrag->page);
3434 
3435 		skb->truesize += copy;
3436 		refcount_add(copy, &sk->sk_wmem_alloc);
3437 		skb->len += copy;
3438 		skb->data_len += copy;
3439 		offset += copy;
3440 		length -= copy;
3441 
3442 	} while (length > 0);
3443 
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL(skb_append_datato_frags);
3447 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3448 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3449 			 int offset, size_t size)
3450 {
3451 	int i = skb_shinfo(skb)->nr_frags;
3452 
3453 	if (skb_can_coalesce(skb, i, page, offset)) {
3454 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3455 	} else if (i < MAX_SKB_FRAGS) {
3456 		get_page(page);
3457 		skb_fill_page_desc(skb, i, page, offset, size);
3458 	} else {
3459 		return -EMSGSIZE;
3460 	}
3461 
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3465 
3466 /**
3467  *	skb_pull_rcsum - pull skb and update receive checksum
3468  *	@skb: buffer to update
3469  *	@len: length of data pulled
3470  *
3471  *	This function performs an skb_pull on the packet and updates
3472  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3473  *	receive path processing instead of skb_pull unless you know
3474  *	that the checksum difference is zero (e.g., a valid IP header)
3475  *	or you are setting ip_summed to CHECKSUM_NONE.
3476  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3477 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3478 {
3479 	unsigned char *data = skb->data;
3480 
3481 	BUG_ON(len > skb->len);
3482 	__skb_pull(skb, len);
3483 	skb_postpull_rcsum(skb, data, len);
3484 	return skb->data;
3485 }
3486 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3487 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3488 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3489 {
3490 	skb_frag_t head_frag;
3491 	struct page *page;
3492 
3493 	page = virt_to_head_page(frag_skb->head);
3494 	head_frag.page.p = page;
3495 	head_frag.page_offset = frag_skb->data -
3496 		(unsigned char *)page_address(page);
3497 	head_frag.size = skb_headlen(frag_skb);
3498 	return head_frag;
3499 }
3500 
3501 /**
3502  *	skb_segment - Perform protocol segmentation on skb.
3503  *	@head_skb: buffer to segment
3504  *	@features: features for the output path (see dev->features)
3505  *
3506  *	This function performs segmentation on the given skb.  It returns
3507  *	a pointer to the first in a list of new skbs for the segments.
3508  *	In case of error it returns ERR_PTR(err).
3509  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3510 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3511 			    netdev_features_t features)
3512 {
3513 	struct sk_buff *segs = NULL;
3514 	struct sk_buff *tail = NULL;
3515 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3516 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3517 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3518 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3519 	struct sk_buff *frag_skb = head_skb;
3520 	unsigned int offset = doffset;
3521 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3522 	unsigned int partial_segs = 0;
3523 	unsigned int headroom;
3524 	unsigned int len = head_skb->len;
3525 	__be16 proto;
3526 	bool csum, sg;
3527 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3528 	int err = -ENOMEM;
3529 	int i = 0;
3530 	int pos;
3531 	int dummy;
3532 
3533 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3534 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3535 		/* gso_size is untrusted, and we have a frag_list with a linear
3536 		 * non head_frag head.
3537 		 *
3538 		 * (we assume checking the first list_skb member suffices;
3539 		 * i.e if either of the list_skb members have non head_frag
3540 		 * head, then the first one has too).
3541 		 *
3542 		 * If head_skb's headlen does not fit requested gso_size, it
3543 		 * means that the frag_list members do NOT terminate on exact
3544 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3545 		 * sharing. Therefore we must fallback to copying the frag_list
3546 		 * skbs; we do so by disabling SG.
3547 		 */
3548 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3549 			features &= ~NETIF_F_SG;
3550 	}
3551 
3552 	__skb_push(head_skb, doffset);
3553 	proto = skb_network_protocol(head_skb, &dummy);
3554 	if (unlikely(!proto))
3555 		return ERR_PTR(-EINVAL);
3556 
3557 	sg = !!(features & NETIF_F_SG);
3558 	csum = !!can_checksum_protocol(features, proto);
3559 
3560 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3561 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3562 			struct sk_buff *iter;
3563 			unsigned int frag_len;
3564 
3565 			if (!list_skb ||
3566 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3567 				goto normal;
3568 
3569 			/* If we get here then all the required
3570 			 * GSO features except frag_list are supported.
3571 			 * Try to split the SKB to multiple GSO SKBs
3572 			 * with no frag_list.
3573 			 * Currently we can do that only when the buffers don't
3574 			 * have a linear part and all the buffers except
3575 			 * the last are of the same length.
3576 			 */
3577 			frag_len = list_skb->len;
3578 			skb_walk_frags(head_skb, iter) {
3579 				if (frag_len != iter->len && iter->next)
3580 					goto normal;
3581 				if (skb_headlen(iter) && !iter->head_frag)
3582 					goto normal;
3583 
3584 				len -= iter->len;
3585 			}
3586 
3587 			if (len != frag_len)
3588 				goto normal;
3589 		}
3590 
3591 		/* GSO partial only requires that we trim off any excess that
3592 		 * doesn't fit into an MSS sized block, so take care of that
3593 		 * now.
3594 		 */
3595 		partial_segs = len / mss;
3596 		if (partial_segs > 1)
3597 			mss *= partial_segs;
3598 		else
3599 			partial_segs = 0;
3600 	}
3601 
3602 normal:
3603 	headroom = skb_headroom(head_skb);
3604 	pos = skb_headlen(head_skb);
3605 
3606 	do {
3607 		struct sk_buff *nskb;
3608 		skb_frag_t *nskb_frag;
3609 		int hsize;
3610 		int size;
3611 
3612 		if (unlikely(mss == GSO_BY_FRAGS)) {
3613 			len = list_skb->len;
3614 		} else {
3615 			len = head_skb->len - offset;
3616 			if (len > mss)
3617 				len = mss;
3618 		}
3619 
3620 		hsize = skb_headlen(head_skb) - offset;
3621 		if (hsize < 0)
3622 			hsize = 0;
3623 		if (hsize > len || !sg)
3624 			hsize = len;
3625 
3626 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3627 		    (skb_headlen(list_skb) == len || sg)) {
3628 			BUG_ON(skb_headlen(list_skb) > len);
3629 
3630 			i = 0;
3631 			nfrags = skb_shinfo(list_skb)->nr_frags;
3632 			frag = skb_shinfo(list_skb)->frags;
3633 			frag_skb = list_skb;
3634 			pos += skb_headlen(list_skb);
3635 
3636 			while (pos < offset + len) {
3637 				BUG_ON(i >= nfrags);
3638 
3639 				size = skb_frag_size(frag);
3640 				if (pos + size > offset + len)
3641 					break;
3642 
3643 				i++;
3644 				pos += size;
3645 				frag++;
3646 			}
3647 
3648 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3649 			list_skb = list_skb->next;
3650 
3651 			if (unlikely(!nskb))
3652 				goto err;
3653 
3654 			if (unlikely(pskb_trim(nskb, len))) {
3655 				kfree_skb(nskb);
3656 				goto err;
3657 			}
3658 
3659 			hsize = skb_end_offset(nskb);
3660 			if (skb_cow_head(nskb, doffset + headroom)) {
3661 				kfree_skb(nskb);
3662 				goto err;
3663 			}
3664 
3665 			nskb->truesize += skb_end_offset(nskb) - hsize;
3666 			skb_release_head_state(nskb);
3667 			__skb_push(nskb, doffset);
3668 		} else {
3669 			nskb = __alloc_skb(hsize + doffset + headroom,
3670 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3671 					   NUMA_NO_NODE);
3672 
3673 			if (unlikely(!nskb))
3674 				goto err;
3675 
3676 			skb_reserve(nskb, headroom);
3677 			__skb_put(nskb, doffset);
3678 		}
3679 
3680 		if (segs)
3681 			tail->next = nskb;
3682 		else
3683 			segs = nskb;
3684 		tail = nskb;
3685 
3686 		__copy_skb_header(nskb, head_skb);
3687 
3688 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3689 		skb_reset_mac_len(nskb);
3690 
3691 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3692 						 nskb->data - tnl_hlen,
3693 						 doffset + tnl_hlen);
3694 
3695 		if (nskb->len == len + doffset)
3696 			goto perform_csum_check;
3697 
3698 		if (!sg) {
3699 			if (!nskb->remcsum_offload)
3700 				nskb->ip_summed = CHECKSUM_NONE;
3701 			SKB_GSO_CB(nskb)->csum =
3702 				skb_copy_and_csum_bits(head_skb, offset,
3703 						       skb_put(nskb, len),
3704 						       len, 0);
3705 			SKB_GSO_CB(nskb)->csum_start =
3706 				skb_headroom(nskb) + doffset;
3707 			continue;
3708 		}
3709 
3710 		nskb_frag = skb_shinfo(nskb)->frags;
3711 
3712 		skb_copy_from_linear_data_offset(head_skb, offset,
3713 						 skb_put(nskb, hsize), hsize);
3714 
3715 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3716 					      SKBTX_SHARED_FRAG;
3717 
3718 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3719 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3720 			goto err;
3721 
3722 		while (pos < offset + len) {
3723 			if (i >= nfrags) {
3724 				i = 0;
3725 				nfrags = skb_shinfo(list_skb)->nr_frags;
3726 				frag = skb_shinfo(list_skb)->frags;
3727 				frag_skb = list_skb;
3728 				if (!skb_headlen(list_skb)) {
3729 					BUG_ON(!nfrags);
3730 				} else {
3731 					BUG_ON(!list_skb->head_frag);
3732 
3733 					/* to make room for head_frag. */
3734 					i--;
3735 					frag--;
3736 				}
3737 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3738 				    skb_zerocopy_clone(nskb, frag_skb,
3739 						       GFP_ATOMIC))
3740 					goto err;
3741 
3742 				list_skb = list_skb->next;
3743 			}
3744 
3745 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3746 				     MAX_SKB_FRAGS)) {
3747 				net_warn_ratelimited(
3748 					"skb_segment: too many frags: %u %u\n",
3749 					pos, mss);
3750 				err = -EINVAL;
3751 				goto err;
3752 			}
3753 
3754 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3755 			__skb_frag_ref(nskb_frag);
3756 			size = skb_frag_size(nskb_frag);
3757 
3758 			if (pos < offset) {
3759 				nskb_frag->page_offset += offset - pos;
3760 				skb_frag_size_sub(nskb_frag, offset - pos);
3761 			}
3762 
3763 			skb_shinfo(nskb)->nr_frags++;
3764 
3765 			if (pos + size <= offset + len) {
3766 				i++;
3767 				frag++;
3768 				pos += size;
3769 			} else {
3770 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3771 				goto skip_fraglist;
3772 			}
3773 
3774 			nskb_frag++;
3775 		}
3776 
3777 skip_fraglist:
3778 		nskb->data_len = len - hsize;
3779 		nskb->len += nskb->data_len;
3780 		nskb->truesize += nskb->data_len;
3781 
3782 perform_csum_check:
3783 		if (!csum) {
3784 			if (skb_has_shared_frag(nskb) &&
3785 			    __skb_linearize(nskb))
3786 				goto err;
3787 
3788 			if (!nskb->remcsum_offload)
3789 				nskb->ip_summed = CHECKSUM_NONE;
3790 			SKB_GSO_CB(nskb)->csum =
3791 				skb_checksum(nskb, doffset,
3792 					     nskb->len - doffset, 0);
3793 			SKB_GSO_CB(nskb)->csum_start =
3794 				skb_headroom(nskb) + doffset;
3795 		}
3796 	} while ((offset += len) < head_skb->len);
3797 
3798 	/* Some callers want to get the end of the list.
3799 	 * Put it in segs->prev to avoid walking the list.
3800 	 * (see validate_xmit_skb_list() for example)
3801 	 */
3802 	segs->prev = tail;
3803 
3804 	if (partial_segs) {
3805 		struct sk_buff *iter;
3806 		int type = skb_shinfo(head_skb)->gso_type;
3807 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3808 
3809 		/* Update type to add partial and then remove dodgy if set */
3810 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3811 		type &= ~SKB_GSO_DODGY;
3812 
3813 		/* Update GSO info and prepare to start updating headers on
3814 		 * our way back down the stack of protocols.
3815 		 */
3816 		for (iter = segs; iter; iter = iter->next) {
3817 			skb_shinfo(iter)->gso_size = gso_size;
3818 			skb_shinfo(iter)->gso_segs = partial_segs;
3819 			skb_shinfo(iter)->gso_type = type;
3820 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3821 		}
3822 
3823 		if (tail->len - doffset <= gso_size)
3824 			skb_shinfo(tail)->gso_size = 0;
3825 		else if (tail != segs)
3826 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3827 	}
3828 
3829 	/* Following permits correct backpressure, for protocols
3830 	 * using skb_set_owner_w().
3831 	 * Idea is to tranfert ownership from head_skb to last segment.
3832 	 */
3833 	if (head_skb->destructor == sock_wfree) {
3834 		swap(tail->truesize, head_skb->truesize);
3835 		swap(tail->destructor, head_skb->destructor);
3836 		swap(tail->sk, head_skb->sk);
3837 	}
3838 	return segs;
3839 
3840 err:
3841 	kfree_skb_list(segs);
3842 	return ERR_PTR(err);
3843 }
3844 EXPORT_SYMBOL_GPL(skb_segment);
3845 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)3846 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3847 {
3848 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3849 	unsigned int offset = skb_gro_offset(skb);
3850 	unsigned int headlen = skb_headlen(skb);
3851 	unsigned int len = skb_gro_len(skb);
3852 	unsigned int delta_truesize;
3853 	struct sk_buff *lp;
3854 
3855 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3856 		return -E2BIG;
3857 
3858 	lp = NAPI_GRO_CB(p)->last;
3859 	pinfo = skb_shinfo(lp);
3860 
3861 	if (headlen <= offset) {
3862 		skb_frag_t *frag;
3863 		skb_frag_t *frag2;
3864 		int i = skbinfo->nr_frags;
3865 		int nr_frags = pinfo->nr_frags + i;
3866 
3867 		if (nr_frags > MAX_SKB_FRAGS)
3868 			goto merge;
3869 
3870 		offset -= headlen;
3871 		pinfo->nr_frags = nr_frags;
3872 		skbinfo->nr_frags = 0;
3873 
3874 		frag = pinfo->frags + nr_frags;
3875 		frag2 = skbinfo->frags + i;
3876 		do {
3877 			*--frag = *--frag2;
3878 		} while (--i);
3879 
3880 		frag->page_offset += offset;
3881 		skb_frag_size_sub(frag, offset);
3882 
3883 		/* all fragments truesize : remove (head size + sk_buff) */
3884 		delta_truesize = skb->truesize -
3885 				 SKB_TRUESIZE(skb_end_offset(skb));
3886 
3887 		skb->truesize -= skb->data_len;
3888 		skb->len -= skb->data_len;
3889 		skb->data_len = 0;
3890 
3891 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3892 		goto done;
3893 	} else if (skb->head_frag) {
3894 		int nr_frags = pinfo->nr_frags;
3895 		skb_frag_t *frag = pinfo->frags + nr_frags;
3896 		struct page *page = virt_to_head_page(skb->head);
3897 		unsigned int first_size = headlen - offset;
3898 		unsigned int first_offset;
3899 
3900 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3901 			goto merge;
3902 
3903 		first_offset = skb->data -
3904 			       (unsigned char *)page_address(page) +
3905 			       offset;
3906 
3907 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3908 
3909 		frag->page.p	  = page;
3910 		frag->page_offset = first_offset;
3911 		skb_frag_size_set(frag, first_size);
3912 
3913 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3914 		/* We dont need to clear skbinfo->nr_frags here */
3915 
3916 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3917 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3918 		goto done;
3919 	}
3920 
3921 merge:
3922 	delta_truesize = skb->truesize;
3923 	if (offset > headlen) {
3924 		unsigned int eat = offset - headlen;
3925 
3926 		skbinfo->frags[0].page_offset += eat;
3927 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3928 		skb->data_len -= eat;
3929 		skb->len -= eat;
3930 		offset = headlen;
3931 	}
3932 
3933 	__skb_pull(skb, offset);
3934 
3935 	if (NAPI_GRO_CB(p)->last == p)
3936 		skb_shinfo(p)->frag_list = skb;
3937 	else
3938 		NAPI_GRO_CB(p)->last->next = skb;
3939 	NAPI_GRO_CB(p)->last = skb;
3940 	__skb_header_release(skb);
3941 	lp = p;
3942 
3943 done:
3944 	NAPI_GRO_CB(p)->count++;
3945 	p->data_len += len;
3946 	p->truesize += delta_truesize;
3947 	p->len += len;
3948 	if (lp != p) {
3949 		lp->data_len += len;
3950 		lp->truesize += delta_truesize;
3951 		lp->len += len;
3952 	}
3953 	NAPI_GRO_CB(skb)->same_flow = 1;
3954 	return 0;
3955 }
3956 EXPORT_SYMBOL_GPL(skb_gro_receive);
3957 
skb_init(void)3958 void __init skb_init(void)
3959 {
3960 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3961 					      sizeof(struct sk_buff),
3962 					      0,
3963 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3964 					      offsetof(struct sk_buff, cb),
3965 					      sizeof_field(struct sk_buff, cb),
3966 					      NULL);
3967 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3968 						sizeof(struct sk_buff_fclones),
3969 						0,
3970 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3971 						NULL);
3972 }
3973 
3974 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)3975 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3976 	       unsigned int recursion_level)
3977 {
3978 	int start = skb_headlen(skb);
3979 	int i, copy = start - offset;
3980 	struct sk_buff *frag_iter;
3981 	int elt = 0;
3982 
3983 	if (unlikely(recursion_level >= 24))
3984 		return -EMSGSIZE;
3985 
3986 	if (copy > 0) {
3987 		if (copy > len)
3988 			copy = len;
3989 		sg_set_buf(sg, skb->data + offset, copy);
3990 		elt++;
3991 		if ((len -= copy) == 0)
3992 			return elt;
3993 		offset += copy;
3994 	}
3995 
3996 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3997 		int end;
3998 
3999 		WARN_ON(start > offset + len);
4000 
4001 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4002 		if ((copy = end - offset) > 0) {
4003 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4004 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4005 				return -EMSGSIZE;
4006 
4007 			if (copy > len)
4008 				copy = len;
4009 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4010 					frag->page_offset+offset-start);
4011 			elt++;
4012 			if (!(len -= copy))
4013 				return elt;
4014 			offset += copy;
4015 		}
4016 		start = end;
4017 	}
4018 
4019 	skb_walk_frags(skb, frag_iter) {
4020 		int end, ret;
4021 
4022 		WARN_ON(start > offset + len);
4023 
4024 		end = start + frag_iter->len;
4025 		if ((copy = end - offset) > 0) {
4026 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4027 				return -EMSGSIZE;
4028 
4029 			if (copy > len)
4030 				copy = len;
4031 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4032 					      copy, recursion_level + 1);
4033 			if (unlikely(ret < 0))
4034 				return ret;
4035 			elt += ret;
4036 			if ((len -= copy) == 0)
4037 				return elt;
4038 			offset += copy;
4039 		}
4040 		start = end;
4041 	}
4042 	BUG_ON(len);
4043 	return elt;
4044 }
4045 
4046 /**
4047  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4048  *	@skb: Socket buffer containing the buffers to be mapped
4049  *	@sg: The scatter-gather list to map into
4050  *	@offset: The offset into the buffer's contents to start mapping
4051  *	@len: Length of buffer space to be mapped
4052  *
4053  *	Fill the specified scatter-gather list with mappings/pointers into a
4054  *	region of the buffer space attached to a socket buffer. Returns either
4055  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4056  *	could not fit.
4057  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4058 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4059 {
4060 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4061 
4062 	if (nsg <= 0)
4063 		return nsg;
4064 
4065 	sg_mark_end(&sg[nsg - 1]);
4066 
4067 	return nsg;
4068 }
4069 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4070 
4071 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4072  * sglist without mark the sg which contain last skb data as the end.
4073  * So the caller can mannipulate sg list as will when padding new data after
4074  * the first call without calling sg_unmark_end to expend sg list.
4075  *
4076  * Scenario to use skb_to_sgvec_nomark:
4077  * 1. sg_init_table
4078  * 2. skb_to_sgvec_nomark(payload1)
4079  * 3. skb_to_sgvec_nomark(payload2)
4080  *
4081  * This is equivalent to:
4082  * 1. sg_init_table
4083  * 2. skb_to_sgvec(payload1)
4084  * 3. sg_unmark_end
4085  * 4. skb_to_sgvec(payload2)
4086  *
4087  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4088  * is more preferable.
4089  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4090 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4091 			int offset, int len)
4092 {
4093 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4094 }
4095 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4096 
4097 
4098 
4099 /**
4100  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4101  *	@skb: The socket buffer to check.
4102  *	@tailbits: Amount of trailing space to be added
4103  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4104  *
4105  *	Make sure that the data buffers attached to a socket buffer are
4106  *	writable. If they are not, private copies are made of the data buffers
4107  *	and the socket buffer is set to use these instead.
4108  *
4109  *	If @tailbits is given, make sure that there is space to write @tailbits
4110  *	bytes of data beyond current end of socket buffer.  @trailer will be
4111  *	set to point to the skb in which this space begins.
4112  *
4113  *	The number of scatterlist elements required to completely map the
4114  *	COW'd and extended socket buffer will be returned.
4115  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4116 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4117 {
4118 	int copyflag;
4119 	int elt;
4120 	struct sk_buff *skb1, **skb_p;
4121 
4122 	/* If skb is cloned or its head is paged, reallocate
4123 	 * head pulling out all the pages (pages are considered not writable
4124 	 * at the moment even if they are anonymous).
4125 	 */
4126 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4127 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4128 		return -ENOMEM;
4129 
4130 	/* Easy case. Most of packets will go this way. */
4131 	if (!skb_has_frag_list(skb)) {
4132 		/* A little of trouble, not enough of space for trailer.
4133 		 * This should not happen, when stack is tuned to generate
4134 		 * good frames. OK, on miss we reallocate and reserve even more
4135 		 * space, 128 bytes is fair. */
4136 
4137 		if (skb_tailroom(skb) < tailbits &&
4138 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4139 			return -ENOMEM;
4140 
4141 		/* Voila! */
4142 		*trailer = skb;
4143 		return 1;
4144 	}
4145 
4146 	/* Misery. We are in troubles, going to mincer fragments... */
4147 
4148 	elt = 1;
4149 	skb_p = &skb_shinfo(skb)->frag_list;
4150 	copyflag = 0;
4151 
4152 	while ((skb1 = *skb_p) != NULL) {
4153 		int ntail = 0;
4154 
4155 		/* The fragment is partially pulled by someone,
4156 		 * this can happen on input. Copy it and everything
4157 		 * after it. */
4158 
4159 		if (skb_shared(skb1))
4160 			copyflag = 1;
4161 
4162 		/* If the skb is the last, worry about trailer. */
4163 
4164 		if (skb1->next == NULL && tailbits) {
4165 			if (skb_shinfo(skb1)->nr_frags ||
4166 			    skb_has_frag_list(skb1) ||
4167 			    skb_tailroom(skb1) < tailbits)
4168 				ntail = tailbits + 128;
4169 		}
4170 
4171 		if (copyflag ||
4172 		    skb_cloned(skb1) ||
4173 		    ntail ||
4174 		    skb_shinfo(skb1)->nr_frags ||
4175 		    skb_has_frag_list(skb1)) {
4176 			struct sk_buff *skb2;
4177 
4178 			/* Fuck, we are miserable poor guys... */
4179 			if (ntail == 0)
4180 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4181 			else
4182 				skb2 = skb_copy_expand(skb1,
4183 						       skb_headroom(skb1),
4184 						       ntail,
4185 						       GFP_ATOMIC);
4186 			if (unlikely(skb2 == NULL))
4187 				return -ENOMEM;
4188 
4189 			if (skb1->sk)
4190 				skb_set_owner_w(skb2, skb1->sk);
4191 
4192 			/* Looking around. Are we still alive?
4193 			 * OK, link new skb, drop old one */
4194 
4195 			skb2->next = skb1->next;
4196 			*skb_p = skb2;
4197 			kfree_skb(skb1);
4198 			skb1 = skb2;
4199 		}
4200 		elt++;
4201 		*trailer = skb1;
4202 		skb_p = &skb1->next;
4203 	}
4204 
4205 	return elt;
4206 }
4207 EXPORT_SYMBOL_GPL(skb_cow_data);
4208 
sock_rmem_free(struct sk_buff * skb)4209 static void sock_rmem_free(struct sk_buff *skb)
4210 {
4211 	struct sock *sk = skb->sk;
4212 
4213 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4214 }
4215 
skb_set_err_queue(struct sk_buff * skb)4216 static void skb_set_err_queue(struct sk_buff *skb)
4217 {
4218 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4219 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4220 	 */
4221 	skb->pkt_type = PACKET_OUTGOING;
4222 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4223 }
4224 
4225 /*
4226  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4227  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4228 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4229 {
4230 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4231 	    (unsigned int)sk->sk_rcvbuf)
4232 		return -ENOMEM;
4233 
4234 	skb_orphan(skb);
4235 	skb->sk = sk;
4236 	skb->destructor = sock_rmem_free;
4237 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4238 	skb_set_err_queue(skb);
4239 
4240 	/* before exiting rcu section, make sure dst is refcounted */
4241 	skb_dst_force(skb);
4242 
4243 	skb_queue_tail(&sk->sk_error_queue, skb);
4244 	if (!sock_flag(sk, SOCK_DEAD))
4245 		sk->sk_error_report(sk);
4246 	return 0;
4247 }
4248 EXPORT_SYMBOL(sock_queue_err_skb);
4249 
is_icmp_err_skb(const struct sk_buff * skb)4250 static bool is_icmp_err_skb(const struct sk_buff *skb)
4251 {
4252 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4253 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4254 }
4255 
sock_dequeue_err_skb(struct sock * sk)4256 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4257 {
4258 	struct sk_buff_head *q = &sk->sk_error_queue;
4259 	struct sk_buff *skb, *skb_next = NULL;
4260 	bool icmp_next = false;
4261 	unsigned long flags;
4262 
4263 	spin_lock_irqsave(&q->lock, flags);
4264 	skb = __skb_dequeue(q);
4265 	if (skb && (skb_next = skb_peek(q))) {
4266 		icmp_next = is_icmp_err_skb(skb_next);
4267 		if (icmp_next)
4268 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4269 	}
4270 	spin_unlock_irqrestore(&q->lock, flags);
4271 
4272 	if (is_icmp_err_skb(skb) && !icmp_next)
4273 		sk->sk_err = 0;
4274 
4275 	if (skb_next)
4276 		sk->sk_error_report(sk);
4277 
4278 	return skb;
4279 }
4280 EXPORT_SYMBOL(sock_dequeue_err_skb);
4281 
4282 /**
4283  * skb_clone_sk - create clone of skb, and take reference to socket
4284  * @skb: the skb to clone
4285  *
4286  * This function creates a clone of a buffer that holds a reference on
4287  * sk_refcnt.  Buffers created via this function are meant to be
4288  * returned using sock_queue_err_skb, or free via kfree_skb.
4289  *
4290  * When passing buffers allocated with this function to sock_queue_err_skb
4291  * it is necessary to wrap the call with sock_hold/sock_put in order to
4292  * prevent the socket from being released prior to being enqueued on
4293  * the sk_error_queue.
4294  */
skb_clone_sk(struct sk_buff * skb)4295 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4296 {
4297 	struct sock *sk = skb->sk;
4298 	struct sk_buff *clone;
4299 
4300 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4301 		return NULL;
4302 
4303 	clone = skb_clone(skb, GFP_ATOMIC);
4304 	if (!clone) {
4305 		sock_put(sk);
4306 		return NULL;
4307 	}
4308 
4309 	clone->sk = sk;
4310 	clone->destructor = sock_efree;
4311 
4312 	return clone;
4313 }
4314 EXPORT_SYMBOL(skb_clone_sk);
4315 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4316 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4317 					struct sock *sk,
4318 					int tstype,
4319 					bool opt_stats)
4320 {
4321 	struct sock_exterr_skb *serr;
4322 	int err;
4323 
4324 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4325 
4326 	serr = SKB_EXT_ERR(skb);
4327 	memset(serr, 0, sizeof(*serr));
4328 	serr->ee.ee_errno = ENOMSG;
4329 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4330 	serr->ee.ee_info = tstype;
4331 	serr->opt_stats = opt_stats;
4332 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4333 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4334 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4335 		if (sk->sk_protocol == IPPROTO_TCP &&
4336 		    sk->sk_type == SOCK_STREAM)
4337 			serr->ee.ee_data -= sk->sk_tskey;
4338 	}
4339 
4340 	err = sock_queue_err_skb(sk, skb);
4341 
4342 	if (err)
4343 		kfree_skb(skb);
4344 }
4345 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4346 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4347 {
4348 	bool ret;
4349 
4350 	if (likely(sysctl_tstamp_allow_data || tsonly))
4351 		return true;
4352 
4353 	read_lock_bh(&sk->sk_callback_lock);
4354 	ret = sk->sk_socket && sk->sk_socket->file &&
4355 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4356 	read_unlock_bh(&sk->sk_callback_lock);
4357 	return ret;
4358 }
4359 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4360 void skb_complete_tx_timestamp(struct sk_buff *skb,
4361 			       struct skb_shared_hwtstamps *hwtstamps)
4362 {
4363 	struct sock *sk = skb->sk;
4364 
4365 	if (!skb_may_tx_timestamp(sk, false))
4366 		goto err;
4367 
4368 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4369 	 * but only if the socket refcount is not zero.
4370 	 */
4371 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4372 		*skb_hwtstamps(skb) = *hwtstamps;
4373 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4374 		sock_put(sk);
4375 		return;
4376 	}
4377 
4378 err:
4379 	kfree_skb(skb);
4380 }
4381 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4382 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4383 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4384 		     struct skb_shared_hwtstamps *hwtstamps,
4385 		     struct sock *sk, int tstype)
4386 {
4387 	struct sk_buff *skb;
4388 	bool tsonly, opt_stats = false;
4389 
4390 	if (!sk)
4391 		return;
4392 
4393 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4394 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4395 		return;
4396 
4397 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4398 	if (!skb_may_tx_timestamp(sk, tsonly))
4399 		return;
4400 
4401 	if (tsonly) {
4402 #ifdef CONFIG_INET
4403 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4404 		    sk->sk_protocol == IPPROTO_TCP &&
4405 		    sk->sk_type == SOCK_STREAM) {
4406 			skb = tcp_get_timestamping_opt_stats(sk);
4407 			opt_stats = true;
4408 		} else
4409 #endif
4410 			skb = alloc_skb(0, GFP_ATOMIC);
4411 	} else {
4412 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4413 	}
4414 	if (!skb)
4415 		return;
4416 
4417 	if (tsonly) {
4418 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4419 					     SKBTX_ANY_TSTAMP;
4420 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4421 	}
4422 
4423 	if (hwtstamps)
4424 		*skb_hwtstamps(skb) = *hwtstamps;
4425 	else
4426 		skb->tstamp = ktime_get_real();
4427 
4428 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4429 }
4430 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4431 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4432 void skb_tstamp_tx(struct sk_buff *orig_skb,
4433 		   struct skb_shared_hwtstamps *hwtstamps)
4434 {
4435 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4436 			       SCM_TSTAMP_SND);
4437 }
4438 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4439 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4440 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4441 {
4442 	struct sock *sk = skb->sk;
4443 	struct sock_exterr_skb *serr;
4444 	int err = 1;
4445 
4446 	skb->wifi_acked_valid = 1;
4447 	skb->wifi_acked = acked;
4448 
4449 	serr = SKB_EXT_ERR(skb);
4450 	memset(serr, 0, sizeof(*serr));
4451 	serr->ee.ee_errno = ENOMSG;
4452 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4453 
4454 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4455 	 * but only if the socket refcount is not zero.
4456 	 */
4457 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4458 		err = sock_queue_err_skb(sk, skb);
4459 		sock_put(sk);
4460 	}
4461 	if (err)
4462 		kfree_skb(skb);
4463 }
4464 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4465 
4466 /**
4467  * skb_partial_csum_set - set up and verify partial csum values for packet
4468  * @skb: the skb to set
4469  * @start: the number of bytes after skb->data to start checksumming.
4470  * @off: the offset from start to place the checksum.
4471  *
4472  * For untrusted partially-checksummed packets, we need to make sure the values
4473  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4474  *
4475  * This function checks and sets those values and skb->ip_summed: if this
4476  * returns false you should drop the packet.
4477  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4478 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4479 {
4480 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4481 	u32 csum_start = skb_headroom(skb) + (u32)start;
4482 
4483 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4484 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4485 				     start, off, skb_headroom(skb), skb_headlen(skb));
4486 		return false;
4487 	}
4488 	skb->ip_summed = CHECKSUM_PARTIAL;
4489 	skb->csum_start = csum_start;
4490 	skb->csum_offset = off;
4491 	skb_set_transport_header(skb, start);
4492 	return true;
4493 }
4494 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4495 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4496 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4497 			       unsigned int max)
4498 {
4499 	if (skb_headlen(skb) >= len)
4500 		return 0;
4501 
4502 	/* If we need to pullup then pullup to the max, so we
4503 	 * won't need to do it again.
4504 	 */
4505 	if (max > skb->len)
4506 		max = skb->len;
4507 
4508 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4509 		return -ENOMEM;
4510 
4511 	if (skb_headlen(skb) < len)
4512 		return -EPROTO;
4513 
4514 	return 0;
4515 }
4516 
4517 #define MAX_TCP_HDR_LEN (15 * 4)
4518 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4519 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4520 				      typeof(IPPROTO_IP) proto,
4521 				      unsigned int off)
4522 {
4523 	switch (proto) {
4524 		int err;
4525 
4526 	case IPPROTO_TCP:
4527 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4528 					  off + MAX_TCP_HDR_LEN);
4529 		if (!err && !skb_partial_csum_set(skb, off,
4530 						  offsetof(struct tcphdr,
4531 							   check)))
4532 			err = -EPROTO;
4533 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4534 
4535 	case IPPROTO_UDP:
4536 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4537 					  off + sizeof(struct udphdr));
4538 		if (!err && !skb_partial_csum_set(skb, off,
4539 						  offsetof(struct udphdr,
4540 							   check)))
4541 			err = -EPROTO;
4542 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4543 	}
4544 
4545 	return ERR_PTR(-EPROTO);
4546 }
4547 
4548 /* This value should be large enough to cover a tagged ethernet header plus
4549  * maximally sized IP and TCP or UDP headers.
4550  */
4551 #define MAX_IP_HDR_LEN 128
4552 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4553 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4554 {
4555 	unsigned int off;
4556 	bool fragment;
4557 	__sum16 *csum;
4558 	int err;
4559 
4560 	fragment = false;
4561 
4562 	err = skb_maybe_pull_tail(skb,
4563 				  sizeof(struct iphdr),
4564 				  MAX_IP_HDR_LEN);
4565 	if (err < 0)
4566 		goto out;
4567 
4568 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4569 		fragment = true;
4570 
4571 	off = ip_hdrlen(skb);
4572 
4573 	err = -EPROTO;
4574 
4575 	if (fragment)
4576 		goto out;
4577 
4578 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4579 	if (IS_ERR(csum))
4580 		return PTR_ERR(csum);
4581 
4582 	if (recalculate)
4583 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4584 					   ip_hdr(skb)->daddr,
4585 					   skb->len - off,
4586 					   ip_hdr(skb)->protocol, 0);
4587 	err = 0;
4588 
4589 out:
4590 	return err;
4591 }
4592 
4593 /* This value should be large enough to cover a tagged ethernet header plus
4594  * an IPv6 header, all options, and a maximal TCP or UDP header.
4595  */
4596 #define MAX_IPV6_HDR_LEN 256
4597 
4598 #define OPT_HDR(type, skb, off) \
4599 	(type *)(skb_network_header(skb) + (off))
4600 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4601 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4602 {
4603 	int err;
4604 	u8 nexthdr;
4605 	unsigned int off;
4606 	unsigned int len;
4607 	bool fragment;
4608 	bool done;
4609 	__sum16 *csum;
4610 
4611 	fragment = false;
4612 	done = false;
4613 
4614 	off = sizeof(struct ipv6hdr);
4615 
4616 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4617 	if (err < 0)
4618 		goto out;
4619 
4620 	nexthdr = ipv6_hdr(skb)->nexthdr;
4621 
4622 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4623 	while (off <= len && !done) {
4624 		switch (nexthdr) {
4625 		case IPPROTO_DSTOPTS:
4626 		case IPPROTO_HOPOPTS:
4627 		case IPPROTO_ROUTING: {
4628 			struct ipv6_opt_hdr *hp;
4629 
4630 			err = skb_maybe_pull_tail(skb,
4631 						  off +
4632 						  sizeof(struct ipv6_opt_hdr),
4633 						  MAX_IPV6_HDR_LEN);
4634 			if (err < 0)
4635 				goto out;
4636 
4637 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4638 			nexthdr = hp->nexthdr;
4639 			off += ipv6_optlen(hp);
4640 			break;
4641 		}
4642 		case IPPROTO_AH: {
4643 			struct ip_auth_hdr *hp;
4644 
4645 			err = skb_maybe_pull_tail(skb,
4646 						  off +
4647 						  sizeof(struct ip_auth_hdr),
4648 						  MAX_IPV6_HDR_LEN);
4649 			if (err < 0)
4650 				goto out;
4651 
4652 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4653 			nexthdr = hp->nexthdr;
4654 			off += ipv6_authlen(hp);
4655 			break;
4656 		}
4657 		case IPPROTO_FRAGMENT: {
4658 			struct frag_hdr *hp;
4659 
4660 			err = skb_maybe_pull_tail(skb,
4661 						  off +
4662 						  sizeof(struct frag_hdr),
4663 						  MAX_IPV6_HDR_LEN);
4664 			if (err < 0)
4665 				goto out;
4666 
4667 			hp = OPT_HDR(struct frag_hdr, skb, off);
4668 
4669 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4670 				fragment = true;
4671 
4672 			nexthdr = hp->nexthdr;
4673 			off += sizeof(struct frag_hdr);
4674 			break;
4675 		}
4676 		default:
4677 			done = true;
4678 			break;
4679 		}
4680 	}
4681 
4682 	err = -EPROTO;
4683 
4684 	if (!done || fragment)
4685 		goto out;
4686 
4687 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4688 	if (IS_ERR(csum))
4689 		return PTR_ERR(csum);
4690 
4691 	if (recalculate)
4692 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4693 					 &ipv6_hdr(skb)->daddr,
4694 					 skb->len - off, nexthdr, 0);
4695 	err = 0;
4696 
4697 out:
4698 	return err;
4699 }
4700 
4701 /**
4702  * skb_checksum_setup - set up partial checksum offset
4703  * @skb: the skb to set up
4704  * @recalculate: if true the pseudo-header checksum will be recalculated
4705  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4706 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4707 {
4708 	int err;
4709 
4710 	switch (skb->protocol) {
4711 	case htons(ETH_P_IP):
4712 		err = skb_checksum_setup_ipv4(skb, recalculate);
4713 		break;
4714 
4715 	case htons(ETH_P_IPV6):
4716 		err = skb_checksum_setup_ipv6(skb, recalculate);
4717 		break;
4718 
4719 	default:
4720 		err = -EPROTO;
4721 		break;
4722 	}
4723 
4724 	return err;
4725 }
4726 EXPORT_SYMBOL(skb_checksum_setup);
4727 
4728 /**
4729  * skb_checksum_maybe_trim - maybe trims the given skb
4730  * @skb: the skb to check
4731  * @transport_len: the data length beyond the network header
4732  *
4733  * Checks whether the given skb has data beyond the given transport length.
4734  * If so, returns a cloned skb trimmed to this transport length.
4735  * Otherwise returns the provided skb. Returns NULL in error cases
4736  * (e.g. transport_len exceeds skb length or out-of-memory).
4737  *
4738  * Caller needs to set the skb transport header and free any returned skb if it
4739  * differs from the provided skb.
4740  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4741 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4742 					       unsigned int transport_len)
4743 {
4744 	struct sk_buff *skb_chk;
4745 	unsigned int len = skb_transport_offset(skb) + transport_len;
4746 	int ret;
4747 
4748 	if (skb->len < len)
4749 		return NULL;
4750 	else if (skb->len == len)
4751 		return skb;
4752 
4753 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4754 	if (!skb_chk)
4755 		return NULL;
4756 
4757 	ret = pskb_trim_rcsum(skb_chk, len);
4758 	if (ret) {
4759 		kfree_skb(skb_chk);
4760 		return NULL;
4761 	}
4762 
4763 	return skb_chk;
4764 }
4765 
4766 /**
4767  * skb_checksum_trimmed - validate checksum of an skb
4768  * @skb: the skb to check
4769  * @transport_len: the data length beyond the network header
4770  * @skb_chkf: checksum function to use
4771  *
4772  * Applies the given checksum function skb_chkf to the provided skb.
4773  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4774  *
4775  * If the skb has data beyond the given transport length, then a
4776  * trimmed & cloned skb is checked and returned.
4777  *
4778  * Caller needs to set the skb transport header and free any returned skb if it
4779  * differs from the provided skb.
4780  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4781 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4782 				     unsigned int transport_len,
4783 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4784 {
4785 	struct sk_buff *skb_chk;
4786 	unsigned int offset = skb_transport_offset(skb);
4787 	__sum16 ret;
4788 
4789 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4790 	if (!skb_chk)
4791 		goto err;
4792 
4793 	if (!pskb_may_pull(skb_chk, offset))
4794 		goto err;
4795 
4796 	skb_pull_rcsum(skb_chk, offset);
4797 	ret = skb_chkf(skb_chk);
4798 	skb_push_rcsum(skb_chk, offset);
4799 
4800 	if (ret)
4801 		goto err;
4802 
4803 	return skb_chk;
4804 
4805 err:
4806 	if (skb_chk && skb_chk != skb)
4807 		kfree_skb(skb_chk);
4808 
4809 	return NULL;
4810 
4811 }
4812 EXPORT_SYMBOL(skb_checksum_trimmed);
4813 
__skb_warn_lro_forwarding(const struct sk_buff * skb)4814 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4815 {
4816 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4817 			     skb->dev->name);
4818 }
4819 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4820 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4821 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4822 {
4823 	if (head_stolen) {
4824 		skb_release_head_state(skb);
4825 		kmem_cache_free(skbuff_head_cache, skb);
4826 	} else {
4827 		__kfree_skb(skb);
4828 	}
4829 }
4830 EXPORT_SYMBOL(kfree_skb_partial);
4831 
4832 /**
4833  * skb_try_coalesce - try to merge skb to prior one
4834  * @to: prior buffer
4835  * @from: buffer to add
4836  * @fragstolen: pointer to boolean
4837  * @delta_truesize: how much more was allocated than was requested
4838  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4839 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4840 		      bool *fragstolen, int *delta_truesize)
4841 {
4842 	struct skb_shared_info *to_shinfo, *from_shinfo;
4843 	int i, delta, len = from->len;
4844 
4845 	*fragstolen = false;
4846 
4847 	if (skb_cloned(to))
4848 		return false;
4849 
4850 	if (len <= skb_tailroom(to)) {
4851 		if (len)
4852 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4853 		*delta_truesize = 0;
4854 		return true;
4855 	}
4856 
4857 	to_shinfo = skb_shinfo(to);
4858 	from_shinfo = skb_shinfo(from);
4859 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4860 		return false;
4861 	if (skb_zcopy(to) || skb_zcopy(from))
4862 		return false;
4863 
4864 	if (skb_headlen(from) != 0) {
4865 		struct page *page;
4866 		unsigned int offset;
4867 
4868 		if (to_shinfo->nr_frags +
4869 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4870 			return false;
4871 
4872 		if (skb_head_is_locked(from))
4873 			return false;
4874 
4875 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4876 
4877 		page = virt_to_head_page(from->head);
4878 		offset = from->data - (unsigned char *)page_address(page);
4879 
4880 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4881 				   page, offset, skb_headlen(from));
4882 		*fragstolen = true;
4883 	} else {
4884 		if (to_shinfo->nr_frags +
4885 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4886 			return false;
4887 
4888 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4889 	}
4890 
4891 	WARN_ON_ONCE(delta < len);
4892 
4893 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4894 	       from_shinfo->frags,
4895 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4896 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4897 
4898 	if (!skb_cloned(from))
4899 		from_shinfo->nr_frags = 0;
4900 
4901 	/* if the skb is not cloned this does nothing
4902 	 * since we set nr_frags to 0.
4903 	 */
4904 	for (i = 0; i < from_shinfo->nr_frags; i++)
4905 		__skb_frag_ref(&from_shinfo->frags[i]);
4906 
4907 	to->truesize += delta;
4908 	to->len += len;
4909 	to->data_len += len;
4910 
4911 	*delta_truesize = delta;
4912 	return true;
4913 }
4914 EXPORT_SYMBOL(skb_try_coalesce);
4915 
4916 /**
4917  * skb_scrub_packet - scrub an skb
4918  *
4919  * @skb: buffer to clean
4920  * @xnet: packet is crossing netns
4921  *
4922  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4923  * into/from a tunnel. Some information have to be cleared during these
4924  * operations.
4925  * skb_scrub_packet can also be used to clean a skb before injecting it in
4926  * another namespace (@xnet == true). We have to clear all information in the
4927  * skb that could impact namespace isolation.
4928  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4929 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4930 {
4931 	skb->pkt_type = PACKET_HOST;
4932 	skb->skb_iif = 0;
4933 	skb->ignore_df = 0;
4934 	skb_dst_drop(skb);
4935 	secpath_reset(skb);
4936 	nf_reset(skb);
4937 	nf_reset_trace(skb);
4938 
4939 #ifdef CONFIG_NET_SWITCHDEV
4940 	skb->offload_fwd_mark = 0;
4941 	skb->offload_mr_fwd_mark = 0;
4942 #endif
4943 
4944 	if (!xnet)
4945 		return;
4946 
4947 	ipvs_reset(skb);
4948 	skb->mark = 0;
4949 	skb->tstamp = 0;
4950 }
4951 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4952 
4953 /**
4954  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4955  *
4956  * @skb: GSO skb
4957  *
4958  * skb_gso_transport_seglen is used to determine the real size of the
4959  * individual segments, including Layer4 headers (TCP/UDP).
4960  *
4961  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4962  */
skb_gso_transport_seglen(const struct sk_buff * skb)4963 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4964 {
4965 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4966 	unsigned int thlen = 0;
4967 
4968 	if (skb->encapsulation) {
4969 		thlen = skb_inner_transport_header(skb) -
4970 			skb_transport_header(skb);
4971 
4972 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4973 			thlen += inner_tcp_hdrlen(skb);
4974 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4975 		thlen = tcp_hdrlen(skb);
4976 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4977 		thlen = sizeof(struct sctphdr);
4978 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4979 		thlen = sizeof(struct udphdr);
4980 	}
4981 	/* UFO sets gso_size to the size of the fragmentation
4982 	 * payload, i.e. the size of the L4 (UDP) header is already
4983 	 * accounted for.
4984 	 */
4985 	return thlen + shinfo->gso_size;
4986 }
4987 
4988 /**
4989  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4990  *
4991  * @skb: GSO skb
4992  *
4993  * skb_gso_network_seglen is used to determine the real size of the
4994  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4995  *
4996  * The MAC/L2 header is not accounted for.
4997  */
skb_gso_network_seglen(const struct sk_buff * skb)4998 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4999 {
5000 	unsigned int hdr_len = skb_transport_header(skb) -
5001 			       skb_network_header(skb);
5002 
5003 	return hdr_len + skb_gso_transport_seglen(skb);
5004 }
5005 
5006 /**
5007  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5008  *
5009  * @skb: GSO skb
5010  *
5011  * skb_gso_mac_seglen is used to determine the real size of the
5012  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5013  * headers (TCP/UDP).
5014  */
skb_gso_mac_seglen(const struct sk_buff * skb)5015 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5016 {
5017 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5018 
5019 	return hdr_len + skb_gso_transport_seglen(skb);
5020 }
5021 
5022 /**
5023  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5024  *
5025  * There are a couple of instances where we have a GSO skb, and we
5026  * want to determine what size it would be after it is segmented.
5027  *
5028  * We might want to check:
5029  * -    L3+L4+payload size (e.g. IP forwarding)
5030  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5031  *
5032  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5033  *
5034  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5035  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5036  *
5037  * @max_len: The maximum permissible length.
5038  *
5039  * Returns true if the segmented length <= max length.
5040  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5041 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5042 				      unsigned int seg_len,
5043 				      unsigned int max_len) {
5044 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5045 	const struct sk_buff *iter;
5046 
5047 	if (shinfo->gso_size != GSO_BY_FRAGS)
5048 		return seg_len <= max_len;
5049 
5050 	/* Undo this so we can re-use header sizes */
5051 	seg_len -= GSO_BY_FRAGS;
5052 
5053 	skb_walk_frags(skb, iter) {
5054 		if (seg_len + skb_headlen(iter) > max_len)
5055 			return false;
5056 	}
5057 
5058 	return true;
5059 }
5060 
5061 /**
5062  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5063  *
5064  * @skb: GSO skb
5065  * @mtu: MTU to validate against
5066  *
5067  * skb_gso_validate_network_len validates if a given skb will fit a
5068  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5069  * payload.
5070  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5071 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5072 {
5073 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5074 }
5075 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5076 
5077 /**
5078  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5079  *
5080  * @skb: GSO skb
5081  * @len: length to validate against
5082  *
5083  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5084  * length once split, including L2, L3 and L4 headers and the payload.
5085  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5086 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5087 {
5088 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5089 }
5090 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5091 
skb_reorder_vlan_header(struct sk_buff * skb)5092 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5093 {
5094 	int mac_len, meta_len;
5095 	void *meta;
5096 
5097 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5098 		kfree_skb(skb);
5099 		return NULL;
5100 	}
5101 
5102 	mac_len = skb->data - skb_mac_header(skb);
5103 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5104 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5105 			mac_len - VLAN_HLEN - ETH_TLEN);
5106 	}
5107 
5108 	meta_len = skb_metadata_len(skb);
5109 	if (meta_len) {
5110 		meta = skb_metadata_end(skb) - meta_len;
5111 		memmove(meta + VLAN_HLEN, meta, meta_len);
5112 	}
5113 
5114 	skb->mac_header += VLAN_HLEN;
5115 	return skb;
5116 }
5117 
skb_vlan_untag(struct sk_buff * skb)5118 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5119 {
5120 	struct vlan_hdr *vhdr;
5121 	u16 vlan_tci;
5122 
5123 	if (unlikely(skb_vlan_tag_present(skb))) {
5124 		/* vlan_tci is already set-up so leave this for another time */
5125 		return skb;
5126 	}
5127 
5128 	skb = skb_share_check(skb, GFP_ATOMIC);
5129 	if (unlikely(!skb))
5130 		goto err_free;
5131 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5132 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5133 		goto err_free;
5134 
5135 	vhdr = (struct vlan_hdr *)skb->data;
5136 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5137 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5138 
5139 	skb_pull_rcsum(skb, VLAN_HLEN);
5140 	vlan_set_encap_proto(skb, vhdr);
5141 
5142 	skb = skb_reorder_vlan_header(skb);
5143 	if (unlikely(!skb))
5144 		goto err_free;
5145 
5146 	skb_reset_network_header(skb);
5147 	skb_reset_transport_header(skb);
5148 	skb_reset_mac_len(skb);
5149 
5150 	return skb;
5151 
5152 err_free:
5153 	kfree_skb(skb);
5154 	return NULL;
5155 }
5156 EXPORT_SYMBOL(skb_vlan_untag);
5157 
skb_ensure_writable(struct sk_buff * skb,int write_len)5158 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5159 {
5160 	if (!pskb_may_pull(skb, write_len))
5161 		return -ENOMEM;
5162 
5163 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5164 		return 0;
5165 
5166 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5167 }
5168 EXPORT_SYMBOL(skb_ensure_writable);
5169 
5170 /* remove VLAN header from packet and update csum accordingly.
5171  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5172  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5173 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5174 {
5175 	struct vlan_hdr *vhdr;
5176 	int offset = skb->data - skb_mac_header(skb);
5177 	int err;
5178 
5179 	if (WARN_ONCE(offset,
5180 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5181 		      offset)) {
5182 		return -EINVAL;
5183 	}
5184 
5185 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5186 	if (unlikely(err))
5187 		return err;
5188 
5189 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5190 
5191 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5192 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5193 
5194 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5195 	__skb_pull(skb, VLAN_HLEN);
5196 
5197 	vlan_set_encap_proto(skb, vhdr);
5198 	skb->mac_header += VLAN_HLEN;
5199 
5200 	if (skb_network_offset(skb) < ETH_HLEN)
5201 		skb_set_network_header(skb, ETH_HLEN);
5202 
5203 	skb_reset_mac_len(skb);
5204 
5205 	return err;
5206 }
5207 EXPORT_SYMBOL(__skb_vlan_pop);
5208 
5209 /* Pop a vlan tag either from hwaccel or from payload.
5210  * Expects skb->data at mac header.
5211  */
skb_vlan_pop(struct sk_buff * skb)5212 int skb_vlan_pop(struct sk_buff *skb)
5213 {
5214 	u16 vlan_tci;
5215 	__be16 vlan_proto;
5216 	int err;
5217 
5218 	if (likely(skb_vlan_tag_present(skb))) {
5219 		skb->vlan_tci = 0;
5220 	} else {
5221 		if (unlikely(!eth_type_vlan(skb->protocol)))
5222 			return 0;
5223 
5224 		err = __skb_vlan_pop(skb, &vlan_tci);
5225 		if (err)
5226 			return err;
5227 	}
5228 	/* move next vlan tag to hw accel tag */
5229 	if (likely(!eth_type_vlan(skb->protocol)))
5230 		return 0;
5231 
5232 	vlan_proto = skb->protocol;
5233 	err = __skb_vlan_pop(skb, &vlan_tci);
5234 	if (unlikely(err))
5235 		return err;
5236 
5237 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5238 	return 0;
5239 }
5240 EXPORT_SYMBOL(skb_vlan_pop);
5241 
5242 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5243  * Expects skb->data at mac header.
5244  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5245 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5246 {
5247 	if (skb_vlan_tag_present(skb)) {
5248 		int offset = skb->data - skb_mac_header(skb);
5249 		int err;
5250 
5251 		if (WARN_ONCE(offset,
5252 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5253 			      offset)) {
5254 			return -EINVAL;
5255 		}
5256 
5257 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5258 					skb_vlan_tag_get(skb));
5259 		if (err)
5260 			return err;
5261 
5262 		skb->protocol = skb->vlan_proto;
5263 		skb->mac_len += VLAN_HLEN;
5264 
5265 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5266 	}
5267 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5268 	return 0;
5269 }
5270 EXPORT_SYMBOL(skb_vlan_push);
5271 
5272 /**
5273  * alloc_skb_with_frags - allocate skb with page frags
5274  *
5275  * @header_len: size of linear part
5276  * @data_len: needed length in frags
5277  * @max_page_order: max page order desired.
5278  * @errcode: pointer to error code if any
5279  * @gfp_mask: allocation mask
5280  *
5281  * This can be used to allocate a paged skb, given a maximal order for frags.
5282  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5283 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5284 				     unsigned long data_len,
5285 				     int max_page_order,
5286 				     int *errcode,
5287 				     gfp_t gfp_mask)
5288 {
5289 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5290 	unsigned long chunk;
5291 	struct sk_buff *skb;
5292 	struct page *page;
5293 	int i;
5294 
5295 	*errcode = -EMSGSIZE;
5296 	/* Note this test could be relaxed, if we succeed to allocate
5297 	 * high order pages...
5298 	 */
5299 	if (npages > MAX_SKB_FRAGS)
5300 		return NULL;
5301 
5302 	*errcode = -ENOBUFS;
5303 	skb = alloc_skb(header_len, gfp_mask);
5304 	if (!skb)
5305 		return NULL;
5306 
5307 	skb->truesize += npages << PAGE_SHIFT;
5308 
5309 	for (i = 0; npages > 0; i++) {
5310 		int order = max_page_order;
5311 
5312 		while (order) {
5313 			if (npages >= 1 << order) {
5314 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5315 						   __GFP_COMP |
5316 						   __GFP_NOWARN,
5317 						   order);
5318 				if (page)
5319 					goto fill_page;
5320 				/* Do not retry other high order allocations */
5321 				order = 1;
5322 				max_page_order = 0;
5323 			}
5324 			order--;
5325 		}
5326 		page = alloc_page(gfp_mask);
5327 		if (!page)
5328 			goto failure;
5329 fill_page:
5330 		chunk = min_t(unsigned long, data_len,
5331 			      PAGE_SIZE << order);
5332 		skb_fill_page_desc(skb, i, page, 0, chunk);
5333 		data_len -= chunk;
5334 		npages -= 1 << order;
5335 	}
5336 	return skb;
5337 
5338 failure:
5339 	kfree_skb(skb);
5340 	return NULL;
5341 }
5342 EXPORT_SYMBOL(alloc_skb_with_frags);
5343 
5344 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5345 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5346 				    const int headlen, gfp_t gfp_mask)
5347 {
5348 	int i;
5349 	int size = skb_end_offset(skb);
5350 	int new_hlen = headlen - off;
5351 	u8 *data;
5352 
5353 	size = SKB_DATA_ALIGN(size);
5354 
5355 	if (skb_pfmemalloc(skb))
5356 		gfp_mask |= __GFP_MEMALLOC;
5357 	data = kmalloc_reserve(size +
5358 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5359 			       gfp_mask, NUMA_NO_NODE, NULL);
5360 	if (!data)
5361 		return -ENOMEM;
5362 
5363 	size = SKB_WITH_OVERHEAD(ksize(data));
5364 
5365 	/* Copy real data, and all frags */
5366 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5367 	skb->len -= off;
5368 
5369 	memcpy((struct skb_shared_info *)(data + size),
5370 	       skb_shinfo(skb),
5371 	       offsetof(struct skb_shared_info,
5372 			frags[skb_shinfo(skb)->nr_frags]));
5373 	if (skb_cloned(skb)) {
5374 		/* drop the old head gracefully */
5375 		if (skb_orphan_frags(skb, gfp_mask)) {
5376 			kfree(data);
5377 			return -ENOMEM;
5378 		}
5379 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5380 			skb_frag_ref(skb, i);
5381 		if (skb_has_frag_list(skb))
5382 			skb_clone_fraglist(skb);
5383 		skb_release_data(skb);
5384 	} else {
5385 		/* we can reuse existing recount- all we did was
5386 		 * relocate values
5387 		 */
5388 		skb_free_head(skb);
5389 	}
5390 
5391 	skb->head = data;
5392 	skb->data = data;
5393 	skb->head_frag = 0;
5394 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5395 	skb->end = size;
5396 #else
5397 	skb->end = skb->head + size;
5398 #endif
5399 	skb_set_tail_pointer(skb, skb_headlen(skb));
5400 	skb_headers_offset_update(skb, 0);
5401 	skb->cloned = 0;
5402 	skb->hdr_len = 0;
5403 	skb->nohdr = 0;
5404 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5405 
5406 	return 0;
5407 }
5408 
5409 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5410 
5411 /* carve out the first eat bytes from skb's frag_list. May recurse into
5412  * pskb_carve()
5413  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)5414 static int pskb_carve_frag_list(struct sk_buff *skb,
5415 				struct skb_shared_info *shinfo, int eat,
5416 				gfp_t gfp_mask)
5417 {
5418 	struct sk_buff *list = shinfo->frag_list;
5419 	struct sk_buff *clone = NULL;
5420 	struct sk_buff *insp = NULL;
5421 
5422 	do {
5423 		if (!list) {
5424 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5425 			return -EFAULT;
5426 		}
5427 		if (list->len <= eat) {
5428 			/* Eaten as whole. */
5429 			eat -= list->len;
5430 			list = list->next;
5431 			insp = list;
5432 		} else {
5433 			/* Eaten partially. */
5434 			if (skb_shared(list)) {
5435 				clone = skb_clone(list, gfp_mask);
5436 				if (!clone)
5437 					return -ENOMEM;
5438 				insp = list->next;
5439 				list = clone;
5440 			} else {
5441 				/* This may be pulled without problems. */
5442 				insp = list;
5443 			}
5444 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5445 				kfree_skb(clone);
5446 				return -ENOMEM;
5447 			}
5448 			break;
5449 		}
5450 	} while (eat);
5451 
5452 	/* Free pulled out fragments. */
5453 	while ((list = shinfo->frag_list) != insp) {
5454 		shinfo->frag_list = list->next;
5455 		kfree_skb(list);
5456 	}
5457 	/* And insert new clone at head. */
5458 	if (clone) {
5459 		clone->next = list;
5460 		shinfo->frag_list = clone;
5461 	}
5462 	return 0;
5463 }
5464 
5465 /* carve off first len bytes from skb. Split line (off) is in the
5466  * non-linear part of skb
5467  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)5468 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5469 				       int pos, gfp_t gfp_mask)
5470 {
5471 	int i, k = 0;
5472 	int size = skb_end_offset(skb);
5473 	u8 *data;
5474 	const int nfrags = skb_shinfo(skb)->nr_frags;
5475 	struct skb_shared_info *shinfo;
5476 
5477 	size = SKB_DATA_ALIGN(size);
5478 
5479 	if (skb_pfmemalloc(skb))
5480 		gfp_mask |= __GFP_MEMALLOC;
5481 	data = kmalloc_reserve(size +
5482 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5483 			       gfp_mask, NUMA_NO_NODE, NULL);
5484 	if (!data)
5485 		return -ENOMEM;
5486 
5487 	size = SKB_WITH_OVERHEAD(ksize(data));
5488 
5489 	memcpy((struct skb_shared_info *)(data + size),
5490 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5491 					 frags[skb_shinfo(skb)->nr_frags]));
5492 	if (skb_orphan_frags(skb, gfp_mask)) {
5493 		kfree(data);
5494 		return -ENOMEM;
5495 	}
5496 	shinfo = (struct skb_shared_info *)(data + size);
5497 	for (i = 0; i < nfrags; i++) {
5498 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5499 
5500 		if (pos + fsize > off) {
5501 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5502 
5503 			if (pos < off) {
5504 				/* Split frag.
5505 				 * We have two variants in this case:
5506 				 * 1. Move all the frag to the second
5507 				 *    part, if it is possible. F.e.
5508 				 *    this approach is mandatory for TUX,
5509 				 *    where splitting is expensive.
5510 				 * 2. Split is accurately. We make this.
5511 				 */
5512 				shinfo->frags[0].page_offset += off - pos;
5513 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5514 			}
5515 			skb_frag_ref(skb, i);
5516 			k++;
5517 		}
5518 		pos += fsize;
5519 	}
5520 	shinfo->nr_frags = k;
5521 	if (skb_has_frag_list(skb))
5522 		skb_clone_fraglist(skb);
5523 
5524 	/* split line is in frag list */
5525 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5526 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5527 		if (skb_has_frag_list(skb))
5528 			kfree_skb_list(skb_shinfo(skb)->frag_list);
5529 		kfree(data);
5530 		return -ENOMEM;
5531 	}
5532 	skb_release_data(skb);
5533 
5534 	skb->head = data;
5535 	skb->head_frag = 0;
5536 	skb->data = data;
5537 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5538 	skb->end = size;
5539 #else
5540 	skb->end = skb->head + size;
5541 #endif
5542 	skb_reset_tail_pointer(skb);
5543 	skb_headers_offset_update(skb, 0);
5544 	skb->cloned   = 0;
5545 	skb->hdr_len  = 0;
5546 	skb->nohdr    = 0;
5547 	skb->len -= off;
5548 	skb->data_len = skb->len;
5549 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5550 	return 0;
5551 }
5552 
5553 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)5554 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5555 {
5556 	int headlen = skb_headlen(skb);
5557 
5558 	if (len < headlen)
5559 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5560 	else
5561 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5562 }
5563 
5564 /* Extract to_copy bytes starting at off from skb, and return this in
5565  * a new skb
5566  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)5567 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5568 			     int to_copy, gfp_t gfp)
5569 {
5570 	struct sk_buff  *clone = skb_clone(skb, gfp);
5571 
5572 	if (!clone)
5573 		return NULL;
5574 
5575 	if (pskb_carve(clone, off, gfp) < 0 ||
5576 	    pskb_trim(clone, to_copy)) {
5577 		kfree_skb(clone);
5578 		return NULL;
5579 	}
5580 	return clone;
5581 }
5582 EXPORT_SYMBOL(pskb_extract);
5583 
5584 /**
5585  * skb_condense - try to get rid of fragments/frag_list if possible
5586  * @skb: buffer
5587  *
5588  * Can be used to save memory before skb is added to a busy queue.
5589  * If packet has bytes in frags and enough tail room in skb->head,
5590  * pull all of them, so that we can free the frags right now and adjust
5591  * truesize.
5592  * Notes:
5593  *	We do not reallocate skb->head thus can not fail.
5594  *	Caller must re-evaluate skb->truesize if needed.
5595  */
skb_condense(struct sk_buff * skb)5596 void skb_condense(struct sk_buff *skb)
5597 {
5598 	if (skb->data_len) {
5599 		if (skb->data_len > skb->end - skb->tail ||
5600 		    skb_cloned(skb))
5601 			return;
5602 
5603 		/* Nice, we can free page frag(s) right now */
5604 		__pskb_pull_tail(skb, skb->data_len);
5605 	}
5606 	/* At this point, skb->truesize might be over estimated,
5607 	 * because skb had a fragment, and fragments do not tell
5608 	 * their truesize.
5609 	 * When we pulled its content into skb->head, fragment
5610 	 * was freed, but __pskb_pull_tail() could not possibly
5611 	 * adjust skb->truesize, not knowing the frag truesize.
5612 	 */
5613 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5614 }
5615