1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 atomic_t use;
250 };
251 #endif
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290 };
291
292 struct sk_buff;
293
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311 #define GSO_BY_FRAGS 0xFFFF
312
313 typedef struct skb_frag_struct skb_frag_t;
314
315 struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322 #else
323 __u16 page_offset;
324 __u16 size;
325 #endif
326 };
327
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->size;
331 }
332
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 frag->size = size;
336 }
337
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 frag->size += delta;
341 }
342
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 frag->size -= delta;
346 }
347
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353 #endif
354 return false;
355 }
356
357 /**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384 #define HAVE_HW_TIME_STAMP
385
386 /**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400 struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402 };
403
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437 /*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445 struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465 };
466
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 struct ubuf_info *uarg);
475
sock_zerocopy_get(struct ubuf_info * uarg)476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 refcount_inc(&uarg->refcnt);
479 }
480
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 struct msghdr *msg, int len,
488 struct ubuf_info *uarg);
489
490 /* This data is invariant across clones and lives at
491 * the end of the header data, ie. at skb->end.
492 */
493 struct skb_shared_info {
494 __u8 __unused;
495 __u8 meta_len;
496 __u8 nr_frags;
497 __u8 tx_flags;
498 unsigned short gso_size;
499 /* Warning: this field is not always filled in (UFO)! */
500 unsigned short gso_segs;
501 struct sk_buff *frag_list;
502 struct skb_shared_hwtstamps hwtstamps;
503 unsigned int gso_type;
504 u32 tskey;
505
506 /*
507 * Warning : all fields before dataref are cleared in __alloc_skb()
508 */
509 atomic_t dataref;
510
511 /* Intermediate layers must ensure that destructor_arg
512 * remains valid until skb destructor */
513 void * destructor_arg;
514
515 /* must be last field, see pskb_expand_head() */
516 skb_frag_t frags[MAX_SKB_FRAGS];
517 };
518
519 /* We divide dataref into two halves. The higher 16 bits hold references
520 * to the payload part of skb->data. The lower 16 bits hold references to
521 * the entire skb->data. A clone of a headerless skb holds the length of
522 * the header in skb->hdr_len.
523 *
524 * All users must obey the rule that the skb->data reference count must be
525 * greater than or equal to the payload reference count.
526 *
527 * Holding a reference to the payload part means that the user does not
528 * care about modifications to the header part of skb->data.
529 */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532
533
534 enum {
535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
538 };
539
540 enum {
541 SKB_GSO_TCPV4 = 1 << 0,
542
543 /* This indicates the skb is from an untrusted source. */
544 SKB_GSO_DODGY = 1 << 1,
545
546 /* This indicates the tcp segment has CWR set. */
547 SKB_GSO_TCP_ECN = 1 << 2,
548
549 SKB_GSO_TCP_FIXEDID = 1 << 3,
550
551 SKB_GSO_TCPV6 = 1 << 4,
552
553 SKB_GSO_FCOE = 1 << 5,
554
555 SKB_GSO_GRE = 1 << 6,
556
557 SKB_GSO_GRE_CSUM = 1 << 7,
558
559 SKB_GSO_IPXIP4 = 1 << 8,
560
561 SKB_GSO_IPXIP6 = 1 << 9,
562
563 SKB_GSO_UDP_TUNNEL = 1 << 10,
564
565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566
567 SKB_GSO_PARTIAL = 1 << 12,
568
569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570
571 SKB_GSO_SCTP = 1 << 14,
572
573 SKB_GSO_ESP = 1 << 15,
574
575 SKB_GSO_UDP = 1 << 16,
576
577 SKB_GSO_UDP_L4 = 1 << 17,
578 };
579
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589
590 /**
591 * struct sk_buff - socket buffer
592 * @next: Next buffer in list
593 * @prev: Previous buffer in list
594 * @tstamp: Time we arrived/left
595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
596 * @sk: Socket we are owned by
597 * @dev: Device we arrived on/are leaving by
598 * @cb: Control buffer. Free for use by every layer. Put private vars here
599 * @_skb_refdst: destination entry (with norefcount bit)
600 * @sp: the security path, used for xfrm
601 * @len: Length of actual data
602 * @data_len: Data length
603 * @mac_len: Length of link layer header
604 * @hdr_len: writable header length of cloned skb
605 * @csum: Checksum (must include start/offset pair)
606 * @csum_start: Offset from skb->head where checksumming should start
607 * @csum_offset: Offset from csum_start where checksum should be stored
608 * @priority: Packet queueing priority
609 * @ignore_df: allow local fragmentation
610 * @cloned: Head may be cloned (check refcnt to be sure)
611 * @ip_summed: Driver fed us an IP checksum
612 * @nohdr: Payload reference only, must not modify header
613 * @pkt_type: Packet class
614 * @fclone: skbuff clone status
615 * @ipvs_property: skbuff is owned by ipvs
616 * @tc_skip_classify: do not classify packet. set by IFB device
617 * @tc_at_ingress: used within tc_classify to distinguish in/egress
618 * @tc_redirected: packet was redirected by a tc action
619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620 * @peeked: this packet has been seen already, so stats have been
621 * done for it, don't do them again
622 * @nf_trace: netfilter packet trace flag
623 * @protocol: Packet protocol from driver
624 * @destructor: Destruct function
625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626 * @_nfct: Associated connection, if any (with nfctinfo bits)
627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628 * @skb_iif: ifindex of device we arrived on
629 * @tc_index: Traffic control index
630 * @hash: the packet hash
631 * @queue_mapping: Queue mapping for multiqueue devices
632 * @xmit_more: More SKBs are pending for this queue
633 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634 * @ndisc_nodetype: router type (from link layer)
635 * @ooo_okay: allow the mapping of a socket to a queue to be changed
636 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
637 * ports.
638 * @sw_hash: indicates hash was computed in software stack
639 * @wifi_acked_valid: wifi_acked was set
640 * @wifi_acked: whether frame was acked on wifi or not
641 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
642 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643 * @dst_pending_confirm: need to confirm neighbour
644 * @decrypted: Decrypted SKB
645 * @napi_id: id of the NAPI struct this skb came from
646 * @secmark: security marking
647 * @mark: Generic packet mark
648 * @vlan_proto: vlan encapsulation protocol
649 * @vlan_tci: vlan tag control information
650 * @inner_protocol: Protocol (encapsulation)
651 * @inner_transport_header: Inner transport layer header (encapsulation)
652 * @inner_network_header: Network layer header (encapsulation)
653 * @inner_mac_header: Link layer header (encapsulation)
654 * @transport_header: Transport layer header
655 * @network_header: Network layer header
656 * @mac_header: Link layer header
657 * @tail: Tail pointer
658 * @end: End pointer
659 * @head: Head of buffer
660 * @data: Data head pointer
661 * @truesize: Buffer size
662 * @users: User count - see {datagram,tcp}.c
663 */
664
665 struct sk_buff {
666 union {
667 struct {
668 /* These two members must be first. */
669 struct sk_buff *next;
670 struct sk_buff *prev;
671
672 union {
673 struct net_device *dev;
674 /* Some protocols might use this space to store information,
675 * while device pointer would be NULL.
676 * UDP receive path is one user.
677 */
678 unsigned long dev_scratch;
679 };
680 };
681 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
682 struct list_head list;
683 };
684
685 union {
686 struct sock *sk;
687 int ip_defrag_offset;
688 };
689
690 union {
691 ktime_t tstamp;
692 u64 skb_mstamp;
693 };
694 /*
695 * This is the control buffer. It is free to use for every
696 * layer. Please put your private variables there. If you
697 * want to keep them across layers you have to do a skb_clone()
698 * first. This is owned by whoever has the skb queued ATM.
699 */
700 char cb[48] __aligned(8);
701
702 union {
703 struct {
704 unsigned long _skb_refdst;
705 void (*destructor)(struct sk_buff *skb);
706 };
707 struct list_head tcp_tsorted_anchor;
708 };
709
710 #ifdef CONFIG_XFRM
711 struct sec_path *sp;
712 #endif
713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
714 unsigned long _nfct;
715 #endif
716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
717 struct nf_bridge_info *nf_bridge;
718 #endif
719 unsigned int len,
720 data_len;
721 __u16 mac_len,
722 hdr_len;
723
724 /* Following fields are _not_ copied in __copy_skb_header()
725 * Note that queue_mapping is here mostly to fill a hole.
726 */
727 __u16 queue_mapping;
728
729 /* if you move cloned around you also must adapt those constants */
730 #ifdef __BIG_ENDIAN_BITFIELD
731 #define CLONED_MASK (1 << 7)
732 #else
733 #define CLONED_MASK 1
734 #endif
735 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
736
737 __u8 __cloned_offset[0];
738 __u8 cloned:1,
739 nohdr:1,
740 fclone:2,
741 peeked:1,
742 head_frag:1,
743 xmit_more:1,
744 pfmemalloc:1;
745
746 /* fields enclosed in headers_start/headers_end are copied
747 * using a single memcpy() in __copy_skb_header()
748 */
749 /* private: */
750 __u32 headers_start[0];
751 /* public: */
752
753 /* if you move pkt_type around you also must adapt those constants */
754 #ifdef __BIG_ENDIAN_BITFIELD
755 #define PKT_TYPE_MAX (7 << 5)
756 #else
757 #define PKT_TYPE_MAX 7
758 #endif
759 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
760
761 __u8 __pkt_type_offset[0];
762 __u8 pkt_type:3;
763 __u8 ignore_df:1;
764 __u8 nf_trace:1;
765 __u8 ip_summed:2;
766 __u8 ooo_okay:1;
767
768 __u8 l4_hash:1;
769 __u8 sw_hash:1;
770 __u8 wifi_acked_valid:1;
771 __u8 wifi_acked:1;
772 __u8 no_fcs:1;
773 /* Indicates the inner headers are valid in the skbuff. */
774 __u8 encapsulation:1;
775 __u8 encap_hdr_csum:1;
776 __u8 csum_valid:1;
777
778 __u8 csum_complete_sw:1;
779 __u8 csum_level:2;
780 __u8 csum_not_inet:1;
781 __u8 dst_pending_confirm:1;
782 #ifdef CONFIG_IPV6_NDISC_NODETYPE
783 __u8 ndisc_nodetype:2;
784 #endif
785 __u8 ipvs_property:1;
786
787 __u8 inner_protocol_type:1;
788 __u8 remcsum_offload:1;
789 #ifdef CONFIG_NET_SWITCHDEV
790 __u8 offload_fwd_mark:1;
791 __u8 offload_mr_fwd_mark:1;
792 #endif
793 #ifdef CONFIG_NET_CLS_ACT
794 __u8 tc_skip_classify:1;
795 __u8 tc_at_ingress:1;
796 __u8 tc_redirected:1;
797 __u8 tc_from_ingress:1;
798 #endif
799 #ifdef CONFIG_TLS_DEVICE
800 __u8 decrypted:1;
801 #endif
802
803 #ifdef CONFIG_NET_SCHED
804 __u16 tc_index; /* traffic control index */
805 #endif
806
807 union {
808 __wsum csum;
809 struct {
810 __u16 csum_start;
811 __u16 csum_offset;
812 };
813 };
814 __u32 priority;
815 int skb_iif;
816 __u32 hash;
817 __be16 vlan_proto;
818 __u16 vlan_tci;
819 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 union {
821 unsigned int napi_id;
822 unsigned int sender_cpu;
823 };
824 #endif
825 #ifdef CONFIG_NETWORK_SECMARK
826 __u32 secmark;
827 #endif
828
829 union {
830 __u32 mark;
831 __u32 reserved_tailroom;
832 };
833
834 union {
835 __be16 inner_protocol;
836 __u8 inner_ipproto;
837 };
838
839 __u16 inner_transport_header;
840 __u16 inner_network_header;
841 __u16 inner_mac_header;
842
843 __be16 protocol;
844 __u16 transport_header;
845 __u16 network_header;
846 __u16 mac_header;
847
848 /* private: */
849 __u32 headers_end[0];
850 /* public: */
851
852 /* These elements must be at the end, see alloc_skb() for details. */
853 sk_buff_data_t tail;
854 sk_buff_data_t end;
855 unsigned char *head,
856 *data;
857 unsigned int truesize;
858 refcount_t users;
859 };
860
861 #ifdef __KERNEL__
862 /*
863 * Handling routines are only of interest to the kernel
864 */
865
866 #define SKB_ALLOC_FCLONE 0x01
867 #define SKB_ALLOC_RX 0x02
868 #define SKB_ALLOC_NAPI 0x04
869
870 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)871 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872 {
873 return unlikely(skb->pfmemalloc);
874 }
875
876 /*
877 * skb might have a dst pointer attached, refcounted or not.
878 * _skb_refdst low order bit is set if refcount was _not_ taken
879 */
880 #define SKB_DST_NOREF 1UL
881 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
882
883 #define SKB_NFCT_PTRMASK ~(7UL)
884 /**
885 * skb_dst - returns skb dst_entry
886 * @skb: buffer
887 *
888 * Returns skb dst_entry, regardless of reference taken or not.
889 */
skb_dst(const struct sk_buff * skb)890 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891 {
892 /* If refdst was not refcounted, check we still are in a
893 * rcu_read_lock section
894 */
895 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 !rcu_read_lock_held() &&
897 !rcu_read_lock_bh_held());
898 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
899 }
900
901 /**
902 * skb_dst_set - sets skb dst
903 * @skb: buffer
904 * @dst: dst entry
905 *
906 * Sets skb dst, assuming a reference was taken on dst and should
907 * be released by skb_dst_drop()
908 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 skb->_skb_refdst = (unsigned long)dst;
912 }
913
914 /**
915 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916 * @skb: buffer
917 * @dst: dst entry
918 *
919 * Sets skb dst, assuming a reference was not taken on dst.
920 * If dst entry is cached, we do not take reference and dst_release
921 * will be avoided by refdst_drop. If dst entry is not cached, we take
922 * reference, so that last dst_release can destroy the dst immediately.
923 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)924 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925 {
926 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
928 }
929
930 /**
931 * skb_dst_is_noref - Test if skb dst isn't refcounted
932 * @skb: buffer
933 */
skb_dst_is_noref(const struct sk_buff * skb)934 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935 {
936 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
937 }
938
skb_rtable(const struct sk_buff * skb)939 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940 {
941 return (struct rtable *)skb_dst(skb);
942 }
943
944 /* For mangling skb->pkt_type from user space side from applications
945 * such as nft, tc, etc, we only allow a conservative subset of
946 * possible pkt_types to be set.
947 */
skb_pkt_type_ok(u32 ptype)948 static inline bool skb_pkt_type_ok(u32 ptype)
949 {
950 return ptype <= PACKET_OTHERHOST;
951 }
952
skb_napi_id(const struct sk_buff * skb)953 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954 {
955 #ifdef CONFIG_NET_RX_BUSY_POLL
956 return skb->napi_id;
957 #else
958 return 0;
959 #endif
960 }
961
962 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)963 static inline bool skb_unref(struct sk_buff *skb)
964 {
965 if (unlikely(!skb))
966 return false;
967 if (likely(refcount_read(&skb->users) == 1))
968 smp_rmb();
969 else if (likely(!refcount_dec_and_test(&skb->users)))
970 return false;
971
972 return true;
973 }
974
975 void skb_release_head_state(struct sk_buff *skb);
976 void kfree_skb(struct sk_buff *skb);
977 void kfree_skb_list(struct sk_buff *segs);
978 void skb_tx_error(struct sk_buff *skb);
979 void consume_skb(struct sk_buff *skb);
980 void __consume_stateless_skb(struct sk_buff *skb);
981 void __kfree_skb(struct sk_buff *skb);
982 extern struct kmem_cache *skbuff_head_cache;
983
984 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 bool *fragstolen, int *delta_truesize);
987
988 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 int node);
990 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
991 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)992 static inline struct sk_buff *alloc_skb(unsigned int size,
993 gfp_t priority)
994 {
995 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
996 }
997
998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 unsigned long data_len,
1000 int max_page_order,
1001 int *errcode,
1002 gfp_t gfp_mask);
1003
1004 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005 struct sk_buff_fclones {
1006 struct sk_buff skb1;
1007
1008 struct sk_buff skb2;
1009
1010 refcount_t fclone_ref;
1011 };
1012
1013 /**
1014 * skb_fclone_busy - check if fclone is busy
1015 * @sk: socket
1016 * @skb: buffer
1017 *
1018 * Returns true if skb is a fast clone, and its clone is not freed.
1019 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020 * so we also check that this didnt happen.
1021 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1022 static inline bool skb_fclone_busy(const struct sock *sk,
1023 const struct sk_buff *skb)
1024 {
1025 const struct sk_buff_fclones *fclones;
1026
1027 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028
1029 return skb->fclone == SKB_FCLONE_ORIG &&
1030 refcount_read(&fclones->fclone_ref) > 1 &&
1031 fclones->skb2.sk == sk;
1032 }
1033
alloc_skb_fclone(unsigned int size,gfp_t priority)1034 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1035 gfp_t priority)
1036 {
1037 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1038 }
1039
1040 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041 void skb_headers_offset_update(struct sk_buff *skb, int off);
1042 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1044 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1045 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1046 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1047 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1048 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1049 gfp_t gfp_mask)
1050 {
1051 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1052 }
1053
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1055 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1056 unsigned int headroom);
1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1058 int newtailroom, gfp_t priority);
1059 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1060 int offset, int len);
1061 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1062 int offset, int len);
1063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1064 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1065
1066 /**
1067 * skb_pad - zero pad the tail of an skb
1068 * @skb: buffer to pad
1069 * @pad: space to pad
1070 *
1071 * Ensure that a buffer is followed by a padding area that is zero
1072 * filled. Used by network drivers which may DMA or transfer data
1073 * beyond the buffer end onto the wire.
1074 *
1075 * May return error in out of memory cases. The skb is freed on error.
1076 */
skb_pad(struct sk_buff * skb,int pad)1077 static inline int skb_pad(struct sk_buff *skb, int pad)
1078 {
1079 return __skb_pad(skb, pad, true);
1080 }
1081 #define dev_kfree_skb(a) consume_skb(a)
1082
1083 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1084 int getfrag(void *from, char *to, int offset,
1085 int len, int odd, struct sk_buff *skb),
1086 void *from, int length);
1087
1088 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1089 int offset, size_t size);
1090
1091 struct skb_seq_state {
1092 __u32 lower_offset;
1093 __u32 upper_offset;
1094 __u32 frag_idx;
1095 __u32 stepped_offset;
1096 struct sk_buff *root_skb;
1097 struct sk_buff *cur_skb;
1098 __u8 *frag_data;
1099 };
1100
1101 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1102 unsigned int to, struct skb_seq_state *st);
1103 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1104 struct skb_seq_state *st);
1105 void skb_abort_seq_read(struct skb_seq_state *st);
1106
1107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1108 unsigned int to, struct ts_config *config);
1109
1110 /*
1111 * Packet hash types specify the type of hash in skb_set_hash.
1112 *
1113 * Hash types refer to the protocol layer addresses which are used to
1114 * construct a packet's hash. The hashes are used to differentiate or identify
1115 * flows of the protocol layer for the hash type. Hash types are either
1116 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1117 *
1118 * Properties of hashes:
1119 *
1120 * 1) Two packets in different flows have different hash values
1121 * 2) Two packets in the same flow should have the same hash value
1122 *
1123 * A hash at a higher layer is considered to be more specific. A driver should
1124 * set the most specific hash possible.
1125 *
1126 * A driver cannot indicate a more specific hash than the layer at which a hash
1127 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1128 *
1129 * A driver may indicate a hash level which is less specific than the
1130 * actual layer the hash was computed on. For instance, a hash computed
1131 * at L4 may be considered an L3 hash. This should only be done if the
1132 * driver can't unambiguously determine that the HW computed the hash at
1133 * the higher layer. Note that the "should" in the second property above
1134 * permits this.
1135 */
1136 enum pkt_hash_types {
1137 PKT_HASH_TYPE_NONE, /* Undefined type */
1138 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1139 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1140 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1141 };
1142
skb_clear_hash(struct sk_buff * skb)1143 static inline void skb_clear_hash(struct sk_buff *skb)
1144 {
1145 skb->hash = 0;
1146 skb->sw_hash = 0;
1147 skb->l4_hash = 0;
1148 }
1149
skb_clear_hash_if_not_l4(struct sk_buff * skb)1150 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1151 {
1152 if (!skb->l4_hash)
1153 skb_clear_hash(skb);
1154 }
1155
1156 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1157 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1158 {
1159 skb->l4_hash = is_l4;
1160 skb->sw_hash = is_sw;
1161 skb->hash = hash;
1162 }
1163
1164 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1165 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1166 {
1167 /* Used by drivers to set hash from HW */
1168 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169 }
1170
1171 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1172 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1173 {
1174 __skb_set_hash(skb, hash, true, is_l4);
1175 }
1176
1177 void __skb_get_hash(struct sk_buff *skb);
1178 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1179 u32 skb_get_poff(const struct sk_buff *skb);
1180 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1181 const struct flow_keys_basic *keys, int hlen);
1182 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1183 void *data, int hlen_proto);
1184
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1185 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1186 int thoff, u8 ip_proto)
1187 {
1188 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1189 }
1190
1191 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1192 const struct flow_dissector_key *key,
1193 unsigned int key_count);
1194
1195 bool __skb_flow_dissect(const struct sk_buff *skb,
1196 struct flow_dissector *flow_dissector,
1197 void *target_container,
1198 void *data, __be16 proto, int nhoff, int hlen,
1199 unsigned int flags);
1200
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1201 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1202 struct flow_dissector *flow_dissector,
1203 void *target_container, unsigned int flags)
1204 {
1205 return __skb_flow_dissect(skb, flow_dissector, target_container,
1206 NULL, 0, 0, 0, flags);
1207 }
1208
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1209 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1210 struct flow_keys *flow,
1211 unsigned int flags)
1212 {
1213 memset(flow, 0, sizeof(*flow));
1214 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1215 NULL, 0, 0, 0, flags);
1216 }
1217
1218 static inline bool
skb_flow_dissect_flow_keys_basic(const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1219 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1220 struct flow_keys_basic *flow, void *data,
1221 __be16 proto, int nhoff, int hlen,
1222 unsigned int flags)
1223 {
1224 memset(flow, 0, sizeof(*flow));
1225 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1226 data, proto, nhoff, hlen, flags);
1227 }
1228
1229 void
1230 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1231 struct flow_dissector *flow_dissector,
1232 void *target_container);
1233
skb_get_hash(struct sk_buff * skb)1234 static inline __u32 skb_get_hash(struct sk_buff *skb)
1235 {
1236 if (!skb->l4_hash && !skb->sw_hash)
1237 __skb_get_hash(skb);
1238
1239 return skb->hash;
1240 }
1241
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1242 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1243 {
1244 if (!skb->l4_hash && !skb->sw_hash) {
1245 struct flow_keys keys;
1246 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1247
1248 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1249 }
1250
1251 return skb->hash;
1252 }
1253
1254 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1255 const siphash_key_t *perturb);
1256
skb_get_hash_raw(const struct sk_buff * skb)1257 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1258 {
1259 return skb->hash;
1260 }
1261
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1262 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1263 {
1264 to->hash = from->hash;
1265 to->sw_hash = from->sw_hash;
1266 to->l4_hash = from->l4_hash;
1267 };
1268
1269 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1270 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1271 {
1272 return skb->head + skb->end;
1273 }
1274
skb_end_offset(const struct sk_buff * skb)1275 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1276 {
1277 return skb->end;
1278 }
1279 #else
skb_end_pointer(const struct sk_buff * skb)1280 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1281 {
1282 return skb->end;
1283 }
1284
skb_end_offset(const struct sk_buff * skb)1285 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1286 {
1287 return skb->end - skb->head;
1288 }
1289 #endif
1290
1291 /* Internal */
1292 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1293
skb_hwtstamps(struct sk_buff * skb)1294 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1295 {
1296 return &skb_shinfo(skb)->hwtstamps;
1297 }
1298
skb_zcopy(struct sk_buff * skb)1299 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1300 {
1301 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1302
1303 return is_zcopy ? skb_uarg(skb) : NULL;
1304 }
1305
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1306 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1307 {
1308 if (skb && uarg && !skb_zcopy(skb)) {
1309 sock_zerocopy_get(uarg);
1310 skb_shinfo(skb)->destructor_arg = uarg;
1311 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1312 }
1313 }
1314
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1315 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1316 {
1317 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1318 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1319 }
1320
skb_zcopy_is_nouarg(struct sk_buff * skb)1321 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1322 {
1323 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1324 }
1325
skb_zcopy_get_nouarg(struct sk_buff * skb)1326 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1327 {
1328 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1329 }
1330
1331 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1332 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1333 {
1334 struct ubuf_info *uarg = skb_zcopy(skb);
1335
1336 if (uarg) {
1337 if (skb_zcopy_is_nouarg(skb)) {
1338 /* no notification callback */
1339 } else if (uarg->callback == sock_zerocopy_callback) {
1340 uarg->zerocopy = uarg->zerocopy && zerocopy;
1341 sock_zerocopy_put(uarg);
1342 } else {
1343 uarg->callback(uarg, zerocopy);
1344 }
1345
1346 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1347 }
1348 }
1349
1350 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1351 static inline void skb_zcopy_abort(struct sk_buff *skb)
1352 {
1353 struct ubuf_info *uarg = skb_zcopy(skb);
1354
1355 if (uarg) {
1356 sock_zerocopy_put_abort(uarg);
1357 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1358 }
1359 }
1360
skb_mark_not_on_list(struct sk_buff * skb)1361 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1362 {
1363 skb->next = NULL;
1364 }
1365
skb_list_del_init(struct sk_buff * skb)1366 static inline void skb_list_del_init(struct sk_buff *skb)
1367 {
1368 __list_del_entry(&skb->list);
1369 skb_mark_not_on_list(skb);
1370 }
1371
1372 /**
1373 * skb_queue_empty - check if a queue is empty
1374 * @list: queue head
1375 *
1376 * Returns true if the queue is empty, false otherwise.
1377 */
skb_queue_empty(const struct sk_buff_head * list)1378 static inline int skb_queue_empty(const struct sk_buff_head *list)
1379 {
1380 return list->next == (const struct sk_buff *) list;
1381 }
1382
1383 /**
1384 * skb_queue_empty_lockless - check if a queue is empty
1385 * @list: queue head
1386 *
1387 * Returns true if the queue is empty, false otherwise.
1388 * This variant can be used in lockless contexts.
1389 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1390 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1391 {
1392 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1393 }
1394
1395
1396 /**
1397 * skb_queue_is_last - check if skb is the last entry in the queue
1398 * @list: queue head
1399 * @skb: buffer
1400 *
1401 * Returns true if @skb is the last buffer on the list.
1402 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1403 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1404 const struct sk_buff *skb)
1405 {
1406 return skb->next == (const struct sk_buff *) list;
1407 }
1408
1409 /**
1410 * skb_queue_is_first - check if skb is the first entry in the queue
1411 * @list: queue head
1412 * @skb: buffer
1413 *
1414 * Returns true if @skb is the first buffer on the list.
1415 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1416 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1417 const struct sk_buff *skb)
1418 {
1419 return skb->prev == (const struct sk_buff *) list;
1420 }
1421
1422 /**
1423 * skb_queue_next - return the next packet in the queue
1424 * @list: queue head
1425 * @skb: current buffer
1426 *
1427 * Return the next packet in @list after @skb. It is only valid to
1428 * call this if skb_queue_is_last() evaluates to false.
1429 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1430 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1431 const struct sk_buff *skb)
1432 {
1433 /* This BUG_ON may seem severe, but if we just return then we
1434 * are going to dereference garbage.
1435 */
1436 BUG_ON(skb_queue_is_last(list, skb));
1437 return skb->next;
1438 }
1439
1440 /**
1441 * skb_queue_prev - return the prev packet in the queue
1442 * @list: queue head
1443 * @skb: current buffer
1444 *
1445 * Return the prev packet in @list before @skb. It is only valid to
1446 * call this if skb_queue_is_first() evaluates to false.
1447 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1448 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1449 const struct sk_buff *skb)
1450 {
1451 /* This BUG_ON may seem severe, but if we just return then we
1452 * are going to dereference garbage.
1453 */
1454 BUG_ON(skb_queue_is_first(list, skb));
1455 return skb->prev;
1456 }
1457
1458 /**
1459 * skb_get - reference buffer
1460 * @skb: buffer to reference
1461 *
1462 * Makes another reference to a socket buffer and returns a pointer
1463 * to the buffer.
1464 */
skb_get(struct sk_buff * skb)1465 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1466 {
1467 refcount_inc(&skb->users);
1468 return skb;
1469 }
1470
1471 /*
1472 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1473 */
1474
1475 /**
1476 * skb_cloned - is the buffer a clone
1477 * @skb: buffer to check
1478 *
1479 * Returns true if the buffer was generated with skb_clone() and is
1480 * one of multiple shared copies of the buffer. Cloned buffers are
1481 * shared data so must not be written to under normal circumstances.
1482 */
skb_cloned(const struct sk_buff * skb)1483 static inline int skb_cloned(const struct sk_buff *skb)
1484 {
1485 return skb->cloned &&
1486 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1487 }
1488
skb_unclone(struct sk_buff * skb,gfp_t pri)1489 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1490 {
1491 might_sleep_if(gfpflags_allow_blocking(pri));
1492
1493 if (skb_cloned(skb))
1494 return pskb_expand_head(skb, 0, 0, pri);
1495
1496 return 0;
1497 }
1498
1499 /**
1500 * skb_header_cloned - is the header a clone
1501 * @skb: buffer to check
1502 *
1503 * Returns true if modifying the header part of the buffer requires
1504 * the data to be copied.
1505 */
skb_header_cloned(const struct sk_buff * skb)1506 static inline int skb_header_cloned(const struct sk_buff *skb)
1507 {
1508 int dataref;
1509
1510 if (!skb->cloned)
1511 return 0;
1512
1513 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1514 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1515 return dataref != 1;
1516 }
1517
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1518 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1519 {
1520 might_sleep_if(gfpflags_allow_blocking(pri));
1521
1522 if (skb_header_cloned(skb))
1523 return pskb_expand_head(skb, 0, 0, pri);
1524
1525 return 0;
1526 }
1527
1528 /**
1529 * __skb_header_release - release reference to header
1530 * @skb: buffer to operate on
1531 */
__skb_header_release(struct sk_buff * skb)1532 static inline void __skb_header_release(struct sk_buff *skb)
1533 {
1534 skb->nohdr = 1;
1535 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1536 }
1537
1538
1539 /**
1540 * skb_shared - is the buffer shared
1541 * @skb: buffer to check
1542 *
1543 * Returns true if more than one person has a reference to this
1544 * buffer.
1545 */
skb_shared(const struct sk_buff * skb)1546 static inline int skb_shared(const struct sk_buff *skb)
1547 {
1548 return refcount_read(&skb->users) != 1;
1549 }
1550
1551 /**
1552 * skb_share_check - check if buffer is shared and if so clone it
1553 * @skb: buffer to check
1554 * @pri: priority for memory allocation
1555 *
1556 * If the buffer is shared the buffer is cloned and the old copy
1557 * drops a reference. A new clone with a single reference is returned.
1558 * If the buffer is not shared the original buffer is returned. When
1559 * being called from interrupt status or with spinlocks held pri must
1560 * be GFP_ATOMIC.
1561 *
1562 * NULL is returned on a memory allocation failure.
1563 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1564 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1565 {
1566 might_sleep_if(gfpflags_allow_blocking(pri));
1567 if (skb_shared(skb)) {
1568 struct sk_buff *nskb = skb_clone(skb, pri);
1569
1570 if (likely(nskb))
1571 consume_skb(skb);
1572 else
1573 kfree_skb(skb);
1574 skb = nskb;
1575 }
1576 return skb;
1577 }
1578
1579 /*
1580 * Copy shared buffers into a new sk_buff. We effectively do COW on
1581 * packets to handle cases where we have a local reader and forward
1582 * and a couple of other messy ones. The normal one is tcpdumping
1583 * a packet thats being forwarded.
1584 */
1585
1586 /**
1587 * skb_unshare - make a copy of a shared buffer
1588 * @skb: buffer to check
1589 * @pri: priority for memory allocation
1590 *
1591 * If the socket buffer is a clone then this function creates a new
1592 * copy of the data, drops a reference count on the old copy and returns
1593 * the new copy with the reference count at 1. If the buffer is not a clone
1594 * the original buffer is returned. When called with a spinlock held or
1595 * from interrupt state @pri must be %GFP_ATOMIC
1596 *
1597 * %NULL is returned on a memory allocation failure.
1598 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1599 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1600 gfp_t pri)
1601 {
1602 might_sleep_if(gfpflags_allow_blocking(pri));
1603 if (skb_cloned(skb)) {
1604 struct sk_buff *nskb = skb_copy(skb, pri);
1605
1606 /* Free our shared copy */
1607 if (likely(nskb))
1608 consume_skb(skb);
1609 else
1610 kfree_skb(skb);
1611 skb = nskb;
1612 }
1613 return skb;
1614 }
1615
1616 /**
1617 * skb_peek - peek at the head of an &sk_buff_head
1618 * @list_: list to peek at
1619 *
1620 * Peek an &sk_buff. Unlike most other operations you _MUST_
1621 * be careful with this one. A peek leaves the buffer on the
1622 * list and someone else may run off with it. You must hold
1623 * the appropriate locks or have a private queue to do this.
1624 *
1625 * Returns %NULL for an empty list or a pointer to the head element.
1626 * The reference count is not incremented and the reference is therefore
1627 * volatile. Use with caution.
1628 */
skb_peek(const struct sk_buff_head * list_)1629 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1630 {
1631 struct sk_buff *skb = list_->next;
1632
1633 if (skb == (struct sk_buff *)list_)
1634 skb = NULL;
1635 return skb;
1636 }
1637
1638 /**
1639 * skb_peek_next - peek skb following the given one from a queue
1640 * @skb: skb to start from
1641 * @list_: list to peek at
1642 *
1643 * Returns %NULL when the end of the list is met or a pointer to the
1644 * next element. The reference count is not incremented and the
1645 * reference is therefore volatile. Use with caution.
1646 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1647 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1648 const struct sk_buff_head *list_)
1649 {
1650 struct sk_buff *next = skb->next;
1651
1652 if (next == (struct sk_buff *)list_)
1653 next = NULL;
1654 return next;
1655 }
1656
1657 /**
1658 * skb_peek_tail - peek at the tail of an &sk_buff_head
1659 * @list_: list to peek at
1660 *
1661 * Peek an &sk_buff. Unlike most other operations you _MUST_
1662 * be careful with this one. A peek leaves the buffer on the
1663 * list and someone else may run off with it. You must hold
1664 * the appropriate locks or have a private queue to do this.
1665 *
1666 * Returns %NULL for an empty list or a pointer to the tail element.
1667 * The reference count is not incremented and the reference is therefore
1668 * volatile. Use with caution.
1669 */
skb_peek_tail(const struct sk_buff_head * list_)1670 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1671 {
1672 struct sk_buff *skb = READ_ONCE(list_->prev);
1673
1674 if (skb == (struct sk_buff *)list_)
1675 skb = NULL;
1676 return skb;
1677
1678 }
1679
1680 /**
1681 * skb_queue_len - get queue length
1682 * @list_: list to measure
1683 *
1684 * Return the length of an &sk_buff queue.
1685 */
skb_queue_len(const struct sk_buff_head * list_)1686 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1687 {
1688 return list_->qlen;
1689 }
1690
1691 /**
1692 * skb_queue_len_lockless - get queue length
1693 * @list_: list to measure
1694 *
1695 * Return the length of an &sk_buff queue.
1696 * This variant can be used in lockless contexts.
1697 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1698 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1699 {
1700 return READ_ONCE(list_->qlen);
1701 }
1702
1703 /**
1704 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1705 * @list: queue to initialize
1706 *
1707 * This initializes only the list and queue length aspects of
1708 * an sk_buff_head object. This allows to initialize the list
1709 * aspects of an sk_buff_head without reinitializing things like
1710 * the spinlock. It can also be used for on-stack sk_buff_head
1711 * objects where the spinlock is known to not be used.
1712 */
__skb_queue_head_init(struct sk_buff_head * list)1713 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1714 {
1715 list->prev = list->next = (struct sk_buff *)list;
1716 list->qlen = 0;
1717 }
1718
1719 /*
1720 * This function creates a split out lock class for each invocation;
1721 * this is needed for now since a whole lot of users of the skb-queue
1722 * infrastructure in drivers have different locking usage (in hardirq)
1723 * than the networking core (in softirq only). In the long run either the
1724 * network layer or drivers should need annotation to consolidate the
1725 * main types of usage into 3 classes.
1726 */
skb_queue_head_init(struct sk_buff_head * list)1727 static inline void skb_queue_head_init(struct sk_buff_head *list)
1728 {
1729 spin_lock_init(&list->lock);
1730 __skb_queue_head_init(list);
1731 }
1732
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1733 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1734 struct lock_class_key *class)
1735 {
1736 skb_queue_head_init(list);
1737 lockdep_set_class(&list->lock, class);
1738 }
1739
1740 /*
1741 * Insert an sk_buff on a list.
1742 *
1743 * The "__skb_xxxx()" functions are the non-atomic ones that
1744 * can only be called with interrupts disabled.
1745 */
1746 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1747 struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1748 static inline void __skb_insert(struct sk_buff *newsk,
1749 struct sk_buff *prev, struct sk_buff *next,
1750 struct sk_buff_head *list)
1751 {
1752 /* See skb_queue_empty_lockless() and skb_peek_tail()
1753 * for the opposite READ_ONCE()
1754 */
1755 WRITE_ONCE(newsk->next, next);
1756 WRITE_ONCE(newsk->prev, prev);
1757 WRITE_ONCE(next->prev, newsk);
1758 WRITE_ONCE(prev->next, newsk);
1759 list->qlen++;
1760 }
1761
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1762 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1763 struct sk_buff *prev,
1764 struct sk_buff *next)
1765 {
1766 struct sk_buff *first = list->next;
1767 struct sk_buff *last = list->prev;
1768
1769 WRITE_ONCE(first->prev, prev);
1770 WRITE_ONCE(prev->next, first);
1771
1772 WRITE_ONCE(last->next, next);
1773 WRITE_ONCE(next->prev, last);
1774 }
1775
1776 /**
1777 * skb_queue_splice - join two skb lists, this is designed for stacks
1778 * @list: the new list to add
1779 * @head: the place to add it in the first list
1780 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1781 static inline void skb_queue_splice(const struct sk_buff_head *list,
1782 struct sk_buff_head *head)
1783 {
1784 if (!skb_queue_empty(list)) {
1785 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1786 head->qlen += list->qlen;
1787 }
1788 }
1789
1790 /**
1791 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1792 * @list: the new list to add
1793 * @head: the place to add it in the first list
1794 *
1795 * The list at @list is reinitialised
1796 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1797 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1798 struct sk_buff_head *head)
1799 {
1800 if (!skb_queue_empty(list)) {
1801 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1802 head->qlen += list->qlen;
1803 __skb_queue_head_init(list);
1804 }
1805 }
1806
1807 /**
1808 * skb_queue_splice_tail - join two skb lists, each list being a queue
1809 * @list: the new list to add
1810 * @head: the place to add it in the first list
1811 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1812 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1813 struct sk_buff_head *head)
1814 {
1815 if (!skb_queue_empty(list)) {
1816 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1817 head->qlen += list->qlen;
1818 }
1819 }
1820
1821 /**
1822 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1823 * @list: the new list to add
1824 * @head: the place to add it in the first list
1825 *
1826 * Each of the lists is a queue.
1827 * The list at @list is reinitialised
1828 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1829 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1830 struct sk_buff_head *head)
1831 {
1832 if (!skb_queue_empty(list)) {
1833 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1834 head->qlen += list->qlen;
1835 __skb_queue_head_init(list);
1836 }
1837 }
1838
1839 /**
1840 * __skb_queue_after - queue a buffer at the list head
1841 * @list: list to use
1842 * @prev: place after this buffer
1843 * @newsk: buffer to queue
1844 *
1845 * Queue a buffer int the middle of a list. This function takes no locks
1846 * and you must therefore hold required locks before calling it.
1847 *
1848 * A buffer cannot be placed on two lists at the same time.
1849 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1850 static inline void __skb_queue_after(struct sk_buff_head *list,
1851 struct sk_buff *prev,
1852 struct sk_buff *newsk)
1853 {
1854 __skb_insert(newsk, prev, prev->next, list);
1855 }
1856
1857 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1858 struct sk_buff_head *list);
1859
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1860 static inline void __skb_queue_before(struct sk_buff_head *list,
1861 struct sk_buff *next,
1862 struct sk_buff *newsk)
1863 {
1864 __skb_insert(newsk, next->prev, next, list);
1865 }
1866
1867 /**
1868 * __skb_queue_head - queue a buffer at the list head
1869 * @list: list to use
1870 * @newsk: buffer to queue
1871 *
1872 * Queue a buffer at the start of a list. This function takes no locks
1873 * and you must therefore hold required locks before calling it.
1874 *
1875 * A buffer cannot be placed on two lists at the same time.
1876 */
1877 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1878 static inline void __skb_queue_head(struct sk_buff_head *list,
1879 struct sk_buff *newsk)
1880 {
1881 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1882 }
1883
1884 /**
1885 * __skb_queue_tail - queue a buffer at the list tail
1886 * @list: list to use
1887 * @newsk: buffer to queue
1888 *
1889 * Queue a buffer at the end of a list. This function takes no locks
1890 * and you must therefore hold required locks before calling it.
1891 *
1892 * A buffer cannot be placed on two lists at the same time.
1893 */
1894 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1895 static inline void __skb_queue_tail(struct sk_buff_head *list,
1896 struct sk_buff *newsk)
1897 {
1898 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1899 }
1900
1901 /*
1902 * remove sk_buff from list. _Must_ be called atomically, and with
1903 * the list known..
1904 */
1905 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1906 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1907 {
1908 struct sk_buff *next, *prev;
1909
1910 WRITE_ONCE(list->qlen, list->qlen - 1);
1911 next = skb->next;
1912 prev = skb->prev;
1913 skb->next = skb->prev = NULL;
1914 WRITE_ONCE(next->prev, prev);
1915 WRITE_ONCE(prev->next, next);
1916 }
1917
1918 /**
1919 * __skb_dequeue - remove from the head of the queue
1920 * @list: list to dequeue from
1921 *
1922 * Remove the head of the list. This function does not take any locks
1923 * so must be used with appropriate locks held only. The head item is
1924 * returned or %NULL if the list is empty.
1925 */
1926 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1927 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1928 {
1929 struct sk_buff *skb = skb_peek(list);
1930 if (skb)
1931 __skb_unlink(skb, list);
1932 return skb;
1933 }
1934
1935 /**
1936 * __skb_dequeue_tail - remove from the tail of the queue
1937 * @list: list to dequeue from
1938 *
1939 * Remove the tail of the list. This function does not take any locks
1940 * so must be used with appropriate locks held only. The tail item is
1941 * returned or %NULL if the list is empty.
1942 */
1943 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1944 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1945 {
1946 struct sk_buff *skb = skb_peek_tail(list);
1947 if (skb)
1948 __skb_unlink(skb, list);
1949 return skb;
1950 }
1951
1952
skb_is_nonlinear(const struct sk_buff * skb)1953 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1954 {
1955 return skb->data_len;
1956 }
1957
skb_headlen(const struct sk_buff * skb)1958 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1959 {
1960 return skb->len - skb->data_len;
1961 }
1962
__skb_pagelen(const struct sk_buff * skb)1963 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1964 {
1965 unsigned int i, len = 0;
1966
1967 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1968 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1969 return len;
1970 }
1971
skb_pagelen(const struct sk_buff * skb)1972 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1973 {
1974 return skb_headlen(skb) + __skb_pagelen(skb);
1975 }
1976
1977 /**
1978 * __skb_fill_page_desc - initialise a paged fragment in an skb
1979 * @skb: buffer containing fragment to be initialised
1980 * @i: paged fragment index to initialise
1981 * @page: the page to use for this fragment
1982 * @off: the offset to the data with @page
1983 * @size: the length of the data
1984 *
1985 * Initialises the @i'th fragment of @skb to point to &size bytes at
1986 * offset @off within @page.
1987 *
1988 * Does not take any additional reference on the fragment.
1989 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1990 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1991 struct page *page, int off, int size)
1992 {
1993 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1994
1995 /*
1996 * Propagate page pfmemalloc to the skb if we can. The problem is
1997 * that not all callers have unique ownership of the page but rely
1998 * on page_is_pfmemalloc doing the right thing(tm).
1999 */
2000 frag->page.p = page;
2001 frag->page_offset = off;
2002 skb_frag_size_set(frag, size);
2003
2004 page = compound_head(page);
2005 if (page_is_pfmemalloc(page))
2006 skb->pfmemalloc = true;
2007 }
2008
2009 /**
2010 * skb_fill_page_desc - initialise a paged fragment in an skb
2011 * @skb: buffer containing fragment to be initialised
2012 * @i: paged fragment index to initialise
2013 * @page: the page to use for this fragment
2014 * @off: the offset to the data with @page
2015 * @size: the length of the data
2016 *
2017 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2018 * @skb to point to @size bytes at offset @off within @page. In
2019 * addition updates @skb such that @i is the last fragment.
2020 *
2021 * Does not take any additional reference on the fragment.
2022 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2023 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2024 struct page *page, int off, int size)
2025 {
2026 __skb_fill_page_desc(skb, i, page, off, size);
2027 skb_shinfo(skb)->nr_frags = i + 1;
2028 }
2029
2030 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2031 int size, unsigned int truesize);
2032
2033 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2034 unsigned int truesize);
2035
2036 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
2037 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
2038 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2039
2040 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2041 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2042 {
2043 return skb->head + skb->tail;
2044 }
2045
skb_reset_tail_pointer(struct sk_buff * skb)2046 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2047 {
2048 skb->tail = skb->data - skb->head;
2049 }
2050
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2051 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2052 {
2053 skb_reset_tail_pointer(skb);
2054 skb->tail += offset;
2055 }
2056
2057 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2058 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2059 {
2060 return skb->tail;
2061 }
2062
skb_reset_tail_pointer(struct sk_buff * skb)2063 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2064 {
2065 skb->tail = skb->data;
2066 }
2067
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2068 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2069 {
2070 skb->tail = skb->data + offset;
2071 }
2072
2073 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2074
2075 /*
2076 * Add data to an sk_buff
2077 */
2078 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2079 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2080 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2081 {
2082 void *tmp = skb_tail_pointer(skb);
2083 SKB_LINEAR_ASSERT(skb);
2084 skb->tail += len;
2085 skb->len += len;
2086 return tmp;
2087 }
2088
__skb_put_zero(struct sk_buff * skb,unsigned int len)2089 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2090 {
2091 void *tmp = __skb_put(skb, len);
2092
2093 memset(tmp, 0, len);
2094 return tmp;
2095 }
2096
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2097 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2098 unsigned int len)
2099 {
2100 void *tmp = __skb_put(skb, len);
2101
2102 memcpy(tmp, data, len);
2103 return tmp;
2104 }
2105
__skb_put_u8(struct sk_buff * skb,u8 val)2106 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2107 {
2108 *(u8 *)__skb_put(skb, 1) = val;
2109 }
2110
skb_put_zero(struct sk_buff * skb,unsigned int len)2111 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2112 {
2113 void *tmp = skb_put(skb, len);
2114
2115 memset(tmp, 0, len);
2116
2117 return tmp;
2118 }
2119
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2120 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2121 unsigned int len)
2122 {
2123 void *tmp = skb_put(skb, len);
2124
2125 memcpy(tmp, data, len);
2126
2127 return tmp;
2128 }
2129
skb_put_u8(struct sk_buff * skb,u8 val)2130 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2131 {
2132 *(u8 *)skb_put(skb, 1) = val;
2133 }
2134
2135 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2136 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2137 {
2138 skb->data -= len;
2139 skb->len += len;
2140 return skb->data;
2141 }
2142
2143 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2144 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2145 {
2146 skb->len -= len;
2147 BUG_ON(skb->len < skb->data_len);
2148 return skb->data += len;
2149 }
2150
skb_pull_inline(struct sk_buff * skb,unsigned int len)2151 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2152 {
2153 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2154 }
2155
2156 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2157
__pskb_pull(struct sk_buff * skb,unsigned int len)2158 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2159 {
2160 if (len > skb_headlen(skb) &&
2161 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2162 return NULL;
2163 skb->len -= len;
2164 return skb->data += len;
2165 }
2166
pskb_pull(struct sk_buff * skb,unsigned int len)2167 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2168 {
2169 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2170 }
2171
pskb_may_pull(struct sk_buff * skb,unsigned int len)2172 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2173 {
2174 if (likely(len <= skb_headlen(skb)))
2175 return 1;
2176 if (unlikely(len > skb->len))
2177 return 0;
2178 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2179 }
2180
2181 void skb_condense(struct sk_buff *skb);
2182
2183 /**
2184 * skb_headroom - bytes at buffer head
2185 * @skb: buffer to check
2186 *
2187 * Return the number of bytes of free space at the head of an &sk_buff.
2188 */
skb_headroom(const struct sk_buff * skb)2189 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2190 {
2191 return skb->data - skb->head;
2192 }
2193
2194 /**
2195 * skb_tailroom - bytes at buffer end
2196 * @skb: buffer to check
2197 *
2198 * Return the number of bytes of free space at the tail of an sk_buff
2199 */
skb_tailroom(const struct sk_buff * skb)2200 static inline int skb_tailroom(const struct sk_buff *skb)
2201 {
2202 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2203 }
2204
2205 /**
2206 * skb_availroom - bytes at buffer end
2207 * @skb: buffer to check
2208 *
2209 * Return the number of bytes of free space at the tail of an sk_buff
2210 * allocated by sk_stream_alloc()
2211 */
skb_availroom(const struct sk_buff * skb)2212 static inline int skb_availroom(const struct sk_buff *skb)
2213 {
2214 if (skb_is_nonlinear(skb))
2215 return 0;
2216
2217 return skb->end - skb->tail - skb->reserved_tailroom;
2218 }
2219
2220 /**
2221 * skb_reserve - adjust headroom
2222 * @skb: buffer to alter
2223 * @len: bytes to move
2224 *
2225 * Increase the headroom of an empty &sk_buff by reducing the tail
2226 * room. This is only allowed for an empty buffer.
2227 */
skb_reserve(struct sk_buff * skb,int len)2228 static inline void skb_reserve(struct sk_buff *skb, int len)
2229 {
2230 skb->data += len;
2231 skb->tail += len;
2232 }
2233
2234 /**
2235 * skb_tailroom_reserve - adjust reserved_tailroom
2236 * @skb: buffer to alter
2237 * @mtu: maximum amount of headlen permitted
2238 * @needed_tailroom: minimum amount of reserved_tailroom
2239 *
2240 * Set reserved_tailroom so that headlen can be as large as possible but
2241 * not larger than mtu and tailroom cannot be smaller than
2242 * needed_tailroom.
2243 * The required headroom should already have been reserved before using
2244 * this function.
2245 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2246 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2247 unsigned int needed_tailroom)
2248 {
2249 SKB_LINEAR_ASSERT(skb);
2250 if (mtu < skb_tailroom(skb) - needed_tailroom)
2251 /* use at most mtu */
2252 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2253 else
2254 /* use up to all available space */
2255 skb->reserved_tailroom = needed_tailroom;
2256 }
2257
2258 #define ENCAP_TYPE_ETHER 0
2259 #define ENCAP_TYPE_IPPROTO 1
2260
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2261 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2262 __be16 protocol)
2263 {
2264 skb->inner_protocol = protocol;
2265 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2266 }
2267
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2268 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2269 __u8 ipproto)
2270 {
2271 skb->inner_ipproto = ipproto;
2272 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2273 }
2274
skb_reset_inner_headers(struct sk_buff * skb)2275 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2276 {
2277 skb->inner_mac_header = skb->mac_header;
2278 skb->inner_network_header = skb->network_header;
2279 skb->inner_transport_header = skb->transport_header;
2280 }
2281
skb_reset_mac_len(struct sk_buff * skb)2282 static inline void skb_reset_mac_len(struct sk_buff *skb)
2283 {
2284 skb->mac_len = skb->network_header - skb->mac_header;
2285 }
2286
skb_inner_transport_header(const struct sk_buff * skb)2287 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2288 *skb)
2289 {
2290 return skb->head + skb->inner_transport_header;
2291 }
2292
skb_inner_transport_offset(const struct sk_buff * skb)2293 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2294 {
2295 return skb_inner_transport_header(skb) - skb->data;
2296 }
2297
skb_reset_inner_transport_header(struct sk_buff * skb)2298 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2299 {
2300 skb->inner_transport_header = skb->data - skb->head;
2301 }
2302
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2303 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2304 const int offset)
2305 {
2306 skb_reset_inner_transport_header(skb);
2307 skb->inner_transport_header += offset;
2308 }
2309
skb_inner_network_header(const struct sk_buff * skb)2310 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2311 {
2312 return skb->head + skb->inner_network_header;
2313 }
2314
skb_reset_inner_network_header(struct sk_buff * skb)2315 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2316 {
2317 skb->inner_network_header = skb->data - skb->head;
2318 }
2319
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2320 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2321 const int offset)
2322 {
2323 skb_reset_inner_network_header(skb);
2324 skb->inner_network_header += offset;
2325 }
2326
skb_inner_mac_header(const struct sk_buff * skb)2327 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2328 {
2329 return skb->head + skb->inner_mac_header;
2330 }
2331
skb_reset_inner_mac_header(struct sk_buff * skb)2332 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2333 {
2334 skb->inner_mac_header = skb->data - skb->head;
2335 }
2336
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2337 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2338 const int offset)
2339 {
2340 skb_reset_inner_mac_header(skb);
2341 skb->inner_mac_header += offset;
2342 }
skb_transport_header_was_set(const struct sk_buff * skb)2343 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2344 {
2345 return skb->transport_header != (typeof(skb->transport_header))~0U;
2346 }
2347
skb_transport_header(const struct sk_buff * skb)2348 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2349 {
2350 return skb->head + skb->transport_header;
2351 }
2352
skb_reset_transport_header(struct sk_buff * skb)2353 static inline void skb_reset_transport_header(struct sk_buff *skb)
2354 {
2355 skb->transport_header = skb->data - skb->head;
2356 }
2357
skb_set_transport_header(struct sk_buff * skb,const int offset)2358 static inline void skb_set_transport_header(struct sk_buff *skb,
2359 const int offset)
2360 {
2361 skb_reset_transport_header(skb);
2362 skb->transport_header += offset;
2363 }
2364
skb_network_header(const struct sk_buff * skb)2365 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2366 {
2367 return skb->head + skb->network_header;
2368 }
2369
skb_reset_network_header(struct sk_buff * skb)2370 static inline void skb_reset_network_header(struct sk_buff *skb)
2371 {
2372 skb->network_header = skb->data - skb->head;
2373 }
2374
skb_set_network_header(struct sk_buff * skb,const int offset)2375 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2376 {
2377 skb_reset_network_header(skb);
2378 skb->network_header += offset;
2379 }
2380
skb_mac_header(const struct sk_buff * skb)2381 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2382 {
2383 return skb->head + skb->mac_header;
2384 }
2385
skb_mac_offset(const struct sk_buff * skb)2386 static inline int skb_mac_offset(const struct sk_buff *skb)
2387 {
2388 return skb_mac_header(skb) - skb->data;
2389 }
2390
skb_mac_header_len(const struct sk_buff * skb)2391 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2392 {
2393 return skb->network_header - skb->mac_header;
2394 }
2395
skb_mac_header_was_set(const struct sk_buff * skb)2396 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2397 {
2398 return skb->mac_header != (typeof(skb->mac_header))~0U;
2399 }
2400
skb_reset_mac_header(struct sk_buff * skb)2401 static inline void skb_reset_mac_header(struct sk_buff *skb)
2402 {
2403 skb->mac_header = skb->data - skb->head;
2404 }
2405
skb_set_mac_header(struct sk_buff * skb,const int offset)2406 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2407 {
2408 skb_reset_mac_header(skb);
2409 skb->mac_header += offset;
2410 }
2411
skb_pop_mac_header(struct sk_buff * skb)2412 static inline void skb_pop_mac_header(struct sk_buff *skb)
2413 {
2414 skb->mac_header = skb->network_header;
2415 }
2416
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2417 static inline void skb_probe_transport_header(struct sk_buff *skb,
2418 const int offset_hint)
2419 {
2420 struct flow_keys_basic keys;
2421
2422 if (skb_transport_header_was_set(skb))
2423 return;
2424
2425 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2426 skb_set_transport_header(skb, keys.control.thoff);
2427 else if (offset_hint >= 0)
2428 skb_set_transport_header(skb, offset_hint);
2429 }
2430
skb_mac_header_rebuild(struct sk_buff * skb)2431 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2432 {
2433 if (skb_mac_header_was_set(skb)) {
2434 const unsigned char *old_mac = skb_mac_header(skb);
2435
2436 skb_set_mac_header(skb, -skb->mac_len);
2437 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2438 }
2439 }
2440
skb_checksum_start_offset(const struct sk_buff * skb)2441 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2442 {
2443 return skb->csum_start - skb_headroom(skb);
2444 }
2445
skb_checksum_start(const struct sk_buff * skb)2446 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2447 {
2448 return skb->head + skb->csum_start;
2449 }
2450
skb_transport_offset(const struct sk_buff * skb)2451 static inline int skb_transport_offset(const struct sk_buff *skb)
2452 {
2453 return skb_transport_header(skb) - skb->data;
2454 }
2455
skb_network_header_len(const struct sk_buff * skb)2456 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2457 {
2458 return skb->transport_header - skb->network_header;
2459 }
2460
skb_inner_network_header_len(const struct sk_buff * skb)2461 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2462 {
2463 return skb->inner_transport_header - skb->inner_network_header;
2464 }
2465
skb_network_offset(const struct sk_buff * skb)2466 static inline int skb_network_offset(const struct sk_buff *skb)
2467 {
2468 return skb_network_header(skb) - skb->data;
2469 }
2470
skb_inner_network_offset(const struct sk_buff * skb)2471 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2472 {
2473 return skb_inner_network_header(skb) - skb->data;
2474 }
2475
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2476 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2477 {
2478 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2479 }
2480
2481 /*
2482 * CPUs often take a performance hit when accessing unaligned memory
2483 * locations. The actual performance hit varies, it can be small if the
2484 * hardware handles it or large if we have to take an exception and fix it
2485 * in software.
2486 *
2487 * Since an ethernet header is 14 bytes network drivers often end up with
2488 * the IP header at an unaligned offset. The IP header can be aligned by
2489 * shifting the start of the packet by 2 bytes. Drivers should do this
2490 * with:
2491 *
2492 * skb_reserve(skb, NET_IP_ALIGN);
2493 *
2494 * The downside to this alignment of the IP header is that the DMA is now
2495 * unaligned. On some architectures the cost of an unaligned DMA is high
2496 * and this cost outweighs the gains made by aligning the IP header.
2497 *
2498 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2499 * to be overridden.
2500 */
2501 #ifndef NET_IP_ALIGN
2502 #define NET_IP_ALIGN 2
2503 #endif
2504
2505 /*
2506 * The networking layer reserves some headroom in skb data (via
2507 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2508 * the header has to grow. In the default case, if the header has to grow
2509 * 32 bytes or less we avoid the reallocation.
2510 *
2511 * Unfortunately this headroom changes the DMA alignment of the resulting
2512 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2513 * on some architectures. An architecture can override this value,
2514 * perhaps setting it to a cacheline in size (since that will maintain
2515 * cacheline alignment of the DMA). It must be a power of 2.
2516 *
2517 * Various parts of the networking layer expect at least 32 bytes of
2518 * headroom, you should not reduce this.
2519 *
2520 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2521 * to reduce average number of cache lines per packet.
2522 * get_rps_cpus() for example only access one 64 bytes aligned block :
2523 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2524 */
2525 #ifndef NET_SKB_PAD
2526 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2527 #endif
2528
2529 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2530
__skb_set_length(struct sk_buff * skb,unsigned int len)2531 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2532 {
2533 if (unlikely(skb_is_nonlinear(skb))) {
2534 WARN_ON(1);
2535 return;
2536 }
2537 skb->len = len;
2538 skb_set_tail_pointer(skb, len);
2539 }
2540
__skb_trim(struct sk_buff * skb,unsigned int len)2541 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2542 {
2543 __skb_set_length(skb, len);
2544 }
2545
2546 void skb_trim(struct sk_buff *skb, unsigned int len);
2547
__pskb_trim(struct sk_buff * skb,unsigned int len)2548 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2549 {
2550 if (skb->data_len)
2551 return ___pskb_trim(skb, len);
2552 __skb_trim(skb, len);
2553 return 0;
2554 }
2555
pskb_trim(struct sk_buff * skb,unsigned int len)2556 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2557 {
2558 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2559 }
2560
2561 /**
2562 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2563 * @skb: buffer to alter
2564 * @len: new length
2565 *
2566 * This is identical to pskb_trim except that the caller knows that
2567 * the skb is not cloned so we should never get an error due to out-
2568 * of-memory.
2569 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2570 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2571 {
2572 int err = pskb_trim(skb, len);
2573 BUG_ON(err);
2574 }
2575
__skb_grow(struct sk_buff * skb,unsigned int len)2576 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2577 {
2578 unsigned int diff = len - skb->len;
2579
2580 if (skb_tailroom(skb) < diff) {
2581 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2582 GFP_ATOMIC);
2583 if (ret)
2584 return ret;
2585 }
2586 __skb_set_length(skb, len);
2587 return 0;
2588 }
2589
2590 /**
2591 * skb_orphan - orphan a buffer
2592 * @skb: buffer to orphan
2593 *
2594 * If a buffer currently has an owner then we call the owner's
2595 * destructor function and make the @skb unowned. The buffer continues
2596 * to exist but is no longer charged to its former owner.
2597 */
skb_orphan(struct sk_buff * skb)2598 static inline void skb_orphan(struct sk_buff *skb)
2599 {
2600 if (skb->destructor) {
2601 skb->destructor(skb);
2602 skb->destructor = NULL;
2603 skb->sk = NULL;
2604 } else {
2605 BUG_ON(skb->sk);
2606 }
2607 }
2608
2609 /**
2610 * skb_orphan_frags - orphan the frags contained in a buffer
2611 * @skb: buffer to orphan frags from
2612 * @gfp_mask: allocation mask for replacement pages
2613 *
2614 * For each frag in the SKB which needs a destructor (i.e. has an
2615 * owner) create a copy of that frag and release the original
2616 * page by calling the destructor.
2617 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2618 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2619 {
2620 if (likely(!skb_zcopy(skb)))
2621 return 0;
2622 if (!skb_zcopy_is_nouarg(skb) &&
2623 skb_uarg(skb)->callback == sock_zerocopy_callback)
2624 return 0;
2625 return skb_copy_ubufs(skb, gfp_mask);
2626 }
2627
2628 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2629 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2630 {
2631 if (likely(!skb_zcopy(skb)))
2632 return 0;
2633 return skb_copy_ubufs(skb, gfp_mask);
2634 }
2635
2636 /**
2637 * __skb_queue_purge - empty a list
2638 * @list: list to empty
2639 *
2640 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2641 * the list and one reference dropped. This function does not take the
2642 * list lock and the caller must hold the relevant locks to use it.
2643 */
2644 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2645 static inline void __skb_queue_purge(struct sk_buff_head *list)
2646 {
2647 struct sk_buff *skb;
2648 while ((skb = __skb_dequeue(list)) != NULL)
2649 kfree_skb(skb);
2650 }
2651
2652 unsigned int skb_rbtree_purge(struct rb_root *root);
2653
2654 void *netdev_alloc_frag(unsigned int fragsz);
2655
2656 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2657 gfp_t gfp_mask);
2658
2659 /**
2660 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2661 * @dev: network device to receive on
2662 * @length: length to allocate
2663 *
2664 * Allocate a new &sk_buff and assign it a usage count of one. The
2665 * buffer has unspecified headroom built in. Users should allocate
2666 * the headroom they think they need without accounting for the
2667 * built in space. The built in space is used for optimisations.
2668 *
2669 * %NULL is returned if there is no free memory. Although this function
2670 * allocates memory it can be called from an interrupt.
2671 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2672 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2673 unsigned int length)
2674 {
2675 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2676 }
2677
2678 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2680 gfp_t gfp_mask)
2681 {
2682 return __netdev_alloc_skb(NULL, length, gfp_mask);
2683 }
2684
2685 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2686 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2687 {
2688 return netdev_alloc_skb(NULL, length);
2689 }
2690
2691
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2692 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2693 unsigned int length, gfp_t gfp)
2694 {
2695 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2696
2697 if (NET_IP_ALIGN && skb)
2698 skb_reserve(skb, NET_IP_ALIGN);
2699 return skb;
2700 }
2701
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2702 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2703 unsigned int length)
2704 {
2705 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2706 }
2707
skb_free_frag(void * addr)2708 static inline void skb_free_frag(void *addr)
2709 {
2710 page_frag_free(addr);
2711 }
2712
2713 void *napi_alloc_frag(unsigned int fragsz);
2714 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2715 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2716 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2717 unsigned int length)
2718 {
2719 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2720 }
2721 void napi_consume_skb(struct sk_buff *skb, int budget);
2722
2723 void __kfree_skb_flush(void);
2724 void __kfree_skb_defer(struct sk_buff *skb);
2725
2726 /**
2727 * __dev_alloc_pages - allocate page for network Rx
2728 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2729 * @order: size of the allocation
2730 *
2731 * Allocate a new page.
2732 *
2733 * %NULL is returned if there is no free memory.
2734 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2735 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2736 unsigned int order)
2737 {
2738 /* This piece of code contains several assumptions.
2739 * 1. This is for device Rx, therefor a cold page is preferred.
2740 * 2. The expectation is the user wants a compound page.
2741 * 3. If requesting a order 0 page it will not be compound
2742 * due to the check to see if order has a value in prep_new_page
2743 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2744 * code in gfp_to_alloc_flags that should be enforcing this.
2745 */
2746 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2747
2748 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2749 }
2750
dev_alloc_pages(unsigned int order)2751 static inline struct page *dev_alloc_pages(unsigned int order)
2752 {
2753 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2754 }
2755
2756 /**
2757 * __dev_alloc_page - allocate a page for network Rx
2758 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2759 *
2760 * Allocate a new page.
2761 *
2762 * %NULL is returned if there is no free memory.
2763 */
__dev_alloc_page(gfp_t gfp_mask)2764 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2765 {
2766 return __dev_alloc_pages(gfp_mask, 0);
2767 }
2768
dev_alloc_page(void)2769 static inline struct page *dev_alloc_page(void)
2770 {
2771 return dev_alloc_pages(0);
2772 }
2773
2774 /**
2775 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2776 * @page: The page that was allocated from skb_alloc_page
2777 * @skb: The skb that may need pfmemalloc set
2778 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2779 static inline void skb_propagate_pfmemalloc(struct page *page,
2780 struct sk_buff *skb)
2781 {
2782 if (page_is_pfmemalloc(page))
2783 skb->pfmemalloc = true;
2784 }
2785
2786 /**
2787 * skb_frag_page - retrieve the page referred to by a paged fragment
2788 * @frag: the paged fragment
2789 *
2790 * Returns the &struct page associated with @frag.
2791 */
skb_frag_page(const skb_frag_t * frag)2792 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2793 {
2794 return frag->page.p;
2795 }
2796
2797 /**
2798 * __skb_frag_ref - take an addition reference on a paged fragment.
2799 * @frag: the paged fragment
2800 *
2801 * Takes an additional reference on the paged fragment @frag.
2802 */
__skb_frag_ref(skb_frag_t * frag)2803 static inline void __skb_frag_ref(skb_frag_t *frag)
2804 {
2805 get_page(skb_frag_page(frag));
2806 }
2807
2808 /**
2809 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2810 * @skb: the buffer
2811 * @f: the fragment offset.
2812 *
2813 * Takes an additional reference on the @f'th paged fragment of @skb.
2814 */
skb_frag_ref(struct sk_buff * skb,int f)2815 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2816 {
2817 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2818 }
2819
2820 /**
2821 * __skb_frag_unref - release a reference on a paged fragment.
2822 * @frag: the paged fragment
2823 *
2824 * Releases a reference on the paged fragment @frag.
2825 */
__skb_frag_unref(skb_frag_t * frag)2826 static inline void __skb_frag_unref(skb_frag_t *frag)
2827 {
2828 put_page(skb_frag_page(frag));
2829 }
2830
2831 /**
2832 * skb_frag_unref - release a reference on a paged fragment of an skb.
2833 * @skb: the buffer
2834 * @f: the fragment offset
2835 *
2836 * Releases a reference on the @f'th paged fragment of @skb.
2837 */
skb_frag_unref(struct sk_buff * skb,int f)2838 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2839 {
2840 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2841 }
2842
2843 /**
2844 * skb_frag_address - gets the address of the data contained in a paged fragment
2845 * @frag: the paged fragment buffer
2846 *
2847 * Returns the address of the data within @frag. The page must already
2848 * be mapped.
2849 */
skb_frag_address(const skb_frag_t * frag)2850 static inline void *skb_frag_address(const skb_frag_t *frag)
2851 {
2852 return page_address(skb_frag_page(frag)) + frag->page_offset;
2853 }
2854
2855 /**
2856 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2857 * @frag: the paged fragment buffer
2858 *
2859 * Returns the address of the data within @frag. Checks that the page
2860 * is mapped and returns %NULL otherwise.
2861 */
skb_frag_address_safe(const skb_frag_t * frag)2862 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2863 {
2864 void *ptr = page_address(skb_frag_page(frag));
2865 if (unlikely(!ptr))
2866 return NULL;
2867
2868 return ptr + frag->page_offset;
2869 }
2870
2871 /**
2872 * __skb_frag_set_page - sets the page contained in a paged fragment
2873 * @frag: the paged fragment
2874 * @page: the page to set
2875 *
2876 * Sets the fragment @frag to contain @page.
2877 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2878 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2879 {
2880 frag->page.p = page;
2881 }
2882
2883 /**
2884 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2885 * @skb: the buffer
2886 * @f: the fragment offset
2887 * @page: the page to set
2888 *
2889 * Sets the @f'th fragment of @skb to contain @page.
2890 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2891 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2892 struct page *page)
2893 {
2894 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2895 }
2896
2897 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2898
2899 /**
2900 * skb_frag_dma_map - maps a paged fragment via the DMA API
2901 * @dev: the device to map the fragment to
2902 * @frag: the paged fragment to map
2903 * @offset: the offset within the fragment (starting at the
2904 * fragment's own offset)
2905 * @size: the number of bytes to map
2906 * @dir: the direction of the mapping (``PCI_DMA_*``)
2907 *
2908 * Maps the page associated with @frag to @device.
2909 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2910 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2911 const skb_frag_t *frag,
2912 size_t offset, size_t size,
2913 enum dma_data_direction dir)
2914 {
2915 return dma_map_page(dev, skb_frag_page(frag),
2916 frag->page_offset + offset, size, dir);
2917 }
2918
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2919 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2920 gfp_t gfp_mask)
2921 {
2922 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2923 }
2924
2925
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2926 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2927 gfp_t gfp_mask)
2928 {
2929 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2930 }
2931
2932
2933 /**
2934 * skb_clone_writable - is the header of a clone writable
2935 * @skb: buffer to check
2936 * @len: length up to which to write
2937 *
2938 * Returns true if modifying the header part of the cloned buffer
2939 * does not requires the data to be copied.
2940 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2941 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2942 {
2943 return !skb_header_cloned(skb) &&
2944 skb_headroom(skb) + len <= skb->hdr_len;
2945 }
2946
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2947 static inline int skb_try_make_writable(struct sk_buff *skb,
2948 unsigned int write_len)
2949 {
2950 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2951 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2952 }
2953
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2954 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2955 int cloned)
2956 {
2957 int delta = 0;
2958
2959 if (headroom > skb_headroom(skb))
2960 delta = headroom - skb_headroom(skb);
2961
2962 if (delta || cloned)
2963 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2964 GFP_ATOMIC);
2965 return 0;
2966 }
2967
2968 /**
2969 * skb_cow - copy header of skb when it is required
2970 * @skb: buffer to cow
2971 * @headroom: needed headroom
2972 *
2973 * If the skb passed lacks sufficient headroom or its data part
2974 * is shared, data is reallocated. If reallocation fails, an error
2975 * is returned and original skb is not changed.
2976 *
2977 * The result is skb with writable area skb->head...skb->tail
2978 * and at least @headroom of space at head.
2979 */
skb_cow(struct sk_buff * skb,unsigned int headroom)2980 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2981 {
2982 return __skb_cow(skb, headroom, skb_cloned(skb));
2983 }
2984
2985 /**
2986 * skb_cow_head - skb_cow but only making the head writable
2987 * @skb: buffer to cow
2988 * @headroom: needed headroom
2989 *
2990 * This function is identical to skb_cow except that we replace the
2991 * skb_cloned check by skb_header_cloned. It should be used when
2992 * you only need to push on some header and do not need to modify
2993 * the data.
2994 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2995 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2996 {
2997 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2998 }
2999
3000 /**
3001 * skb_padto - pad an skbuff up to a minimal size
3002 * @skb: buffer to pad
3003 * @len: minimal length
3004 *
3005 * Pads up a buffer to ensure the trailing bytes exist and are
3006 * blanked. If the buffer already contains sufficient data it
3007 * is untouched. Otherwise it is extended. Returns zero on
3008 * success. The skb is freed on error.
3009 */
skb_padto(struct sk_buff * skb,unsigned int len)3010 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3011 {
3012 unsigned int size = skb->len;
3013 if (likely(size >= len))
3014 return 0;
3015 return skb_pad(skb, len - size);
3016 }
3017
3018 /**
3019 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3020 * @skb: buffer to pad
3021 * @len: minimal length
3022 * @free_on_error: free buffer on error
3023 *
3024 * Pads up a buffer to ensure the trailing bytes exist and are
3025 * blanked. If the buffer already contains sufficient data it
3026 * is untouched. Otherwise it is extended. Returns zero on
3027 * success. The skb is freed on error if @free_on_error is true.
3028 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3029 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3030 unsigned int len,
3031 bool free_on_error)
3032 {
3033 unsigned int size = skb->len;
3034
3035 if (unlikely(size < len)) {
3036 len -= size;
3037 if (__skb_pad(skb, len, free_on_error))
3038 return -ENOMEM;
3039 __skb_put(skb, len);
3040 }
3041 return 0;
3042 }
3043
3044 /**
3045 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3046 * @skb: buffer to pad
3047 * @len: minimal length
3048 *
3049 * Pads up a buffer to ensure the trailing bytes exist and are
3050 * blanked. If the buffer already contains sufficient data it
3051 * is untouched. Otherwise it is extended. Returns zero on
3052 * success. The skb is freed on error.
3053 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3054 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3055 {
3056 return __skb_put_padto(skb, len, true);
3057 }
3058
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3059 static inline int skb_add_data(struct sk_buff *skb,
3060 struct iov_iter *from, int copy)
3061 {
3062 const int off = skb->len;
3063
3064 if (skb->ip_summed == CHECKSUM_NONE) {
3065 __wsum csum = 0;
3066 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3067 &csum, from)) {
3068 skb->csum = csum_block_add(skb->csum, csum, off);
3069 return 0;
3070 }
3071 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3072 return 0;
3073
3074 __skb_trim(skb, off);
3075 return -EFAULT;
3076 }
3077
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3078 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3079 const struct page *page, int off)
3080 {
3081 if (skb_zcopy(skb))
3082 return false;
3083 if (i) {
3084 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3085
3086 return page == skb_frag_page(frag) &&
3087 off == frag->page_offset + skb_frag_size(frag);
3088 }
3089 return false;
3090 }
3091
__skb_linearize(struct sk_buff * skb)3092 static inline int __skb_linearize(struct sk_buff *skb)
3093 {
3094 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3095 }
3096
3097 /**
3098 * skb_linearize - convert paged skb to linear one
3099 * @skb: buffer to linarize
3100 *
3101 * If there is no free memory -ENOMEM is returned, otherwise zero
3102 * is returned and the old skb data released.
3103 */
skb_linearize(struct sk_buff * skb)3104 static inline int skb_linearize(struct sk_buff *skb)
3105 {
3106 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3107 }
3108
3109 /**
3110 * skb_has_shared_frag - can any frag be overwritten
3111 * @skb: buffer to test
3112 *
3113 * Return true if the skb has at least one frag that might be modified
3114 * by an external entity (as in vmsplice()/sendfile())
3115 */
skb_has_shared_frag(const struct sk_buff * skb)3116 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3117 {
3118 return skb_is_nonlinear(skb) &&
3119 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3120 }
3121
3122 /**
3123 * skb_linearize_cow - make sure skb is linear and writable
3124 * @skb: buffer to process
3125 *
3126 * If there is no free memory -ENOMEM is returned, otherwise zero
3127 * is returned and the old skb data released.
3128 */
skb_linearize_cow(struct sk_buff * skb)3129 static inline int skb_linearize_cow(struct sk_buff *skb)
3130 {
3131 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3132 __skb_linearize(skb) : 0;
3133 }
3134
3135 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3136 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3137 unsigned int off)
3138 {
3139 if (skb->ip_summed == CHECKSUM_COMPLETE)
3140 skb->csum = csum_block_sub(skb->csum,
3141 csum_partial(start, len, 0), off);
3142 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3143 skb_checksum_start_offset(skb) < 0)
3144 skb->ip_summed = CHECKSUM_NONE;
3145 }
3146
3147 /**
3148 * skb_postpull_rcsum - update checksum for received skb after pull
3149 * @skb: buffer to update
3150 * @start: start of data before pull
3151 * @len: length of data pulled
3152 *
3153 * After doing a pull on a received packet, you need to call this to
3154 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3155 * CHECKSUM_NONE so that it can be recomputed from scratch.
3156 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3157 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3158 const void *start, unsigned int len)
3159 {
3160 __skb_postpull_rcsum(skb, start, len, 0);
3161 }
3162
3163 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3164 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3165 unsigned int off)
3166 {
3167 if (skb->ip_summed == CHECKSUM_COMPLETE)
3168 skb->csum = csum_block_add(skb->csum,
3169 csum_partial(start, len, 0), off);
3170 }
3171
3172 /**
3173 * skb_postpush_rcsum - update checksum for received skb after push
3174 * @skb: buffer to update
3175 * @start: start of data after push
3176 * @len: length of data pushed
3177 *
3178 * After doing a push on a received packet, you need to call this to
3179 * update the CHECKSUM_COMPLETE checksum.
3180 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3181 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3182 const void *start, unsigned int len)
3183 {
3184 __skb_postpush_rcsum(skb, start, len, 0);
3185 }
3186
3187 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3188
3189 /**
3190 * skb_push_rcsum - push skb and update receive checksum
3191 * @skb: buffer to update
3192 * @len: length of data pulled
3193 *
3194 * This function performs an skb_push on the packet and updates
3195 * the CHECKSUM_COMPLETE checksum. It should be used on
3196 * receive path processing instead of skb_push unless you know
3197 * that the checksum difference is zero (e.g., a valid IP header)
3198 * or you are setting ip_summed to CHECKSUM_NONE.
3199 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3200 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3201 {
3202 skb_push(skb, len);
3203 skb_postpush_rcsum(skb, skb->data, len);
3204 return skb->data;
3205 }
3206
3207 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3208 /**
3209 * pskb_trim_rcsum - trim received skb and update checksum
3210 * @skb: buffer to trim
3211 * @len: new length
3212 *
3213 * This is exactly the same as pskb_trim except that it ensures the
3214 * checksum of received packets are still valid after the operation.
3215 * It can change skb pointers.
3216 */
3217
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3218 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3219 {
3220 if (likely(len >= skb->len))
3221 return 0;
3222 return pskb_trim_rcsum_slow(skb, len);
3223 }
3224
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3225 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3226 {
3227 if (skb->ip_summed == CHECKSUM_COMPLETE)
3228 skb->ip_summed = CHECKSUM_NONE;
3229 __skb_trim(skb, len);
3230 return 0;
3231 }
3232
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3233 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3234 {
3235 if (skb->ip_summed == CHECKSUM_COMPLETE)
3236 skb->ip_summed = CHECKSUM_NONE;
3237 return __skb_grow(skb, len);
3238 }
3239
3240 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3241 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3242 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3243 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3244 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3245
3246 #define skb_queue_walk(queue, skb) \
3247 for (skb = (queue)->next; \
3248 skb != (struct sk_buff *)(queue); \
3249 skb = skb->next)
3250
3251 #define skb_queue_walk_safe(queue, skb, tmp) \
3252 for (skb = (queue)->next, tmp = skb->next; \
3253 skb != (struct sk_buff *)(queue); \
3254 skb = tmp, tmp = skb->next)
3255
3256 #define skb_queue_walk_from(queue, skb) \
3257 for (; skb != (struct sk_buff *)(queue); \
3258 skb = skb->next)
3259
3260 #define skb_rbtree_walk(skb, root) \
3261 for (skb = skb_rb_first(root); skb != NULL; \
3262 skb = skb_rb_next(skb))
3263
3264 #define skb_rbtree_walk_from(skb) \
3265 for (; skb != NULL; \
3266 skb = skb_rb_next(skb))
3267
3268 #define skb_rbtree_walk_from_safe(skb, tmp) \
3269 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3270 skb = tmp)
3271
3272 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3273 for (tmp = skb->next; \
3274 skb != (struct sk_buff *)(queue); \
3275 skb = tmp, tmp = skb->next)
3276
3277 #define skb_queue_reverse_walk(queue, skb) \
3278 for (skb = (queue)->prev; \
3279 skb != (struct sk_buff *)(queue); \
3280 skb = skb->prev)
3281
3282 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3283 for (skb = (queue)->prev, tmp = skb->prev; \
3284 skb != (struct sk_buff *)(queue); \
3285 skb = tmp, tmp = skb->prev)
3286
3287 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3288 for (tmp = skb->prev; \
3289 skb != (struct sk_buff *)(queue); \
3290 skb = tmp, tmp = skb->prev)
3291
skb_has_frag_list(const struct sk_buff * skb)3292 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3293 {
3294 return skb_shinfo(skb)->frag_list != NULL;
3295 }
3296
skb_frag_list_init(struct sk_buff * skb)3297 static inline void skb_frag_list_init(struct sk_buff *skb)
3298 {
3299 skb_shinfo(skb)->frag_list = NULL;
3300 }
3301
3302 #define skb_walk_frags(skb, iter) \
3303 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3304
3305
3306 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3307 const struct sk_buff *skb);
3308 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3309 struct sk_buff_head *queue,
3310 unsigned int flags,
3311 void (*destructor)(struct sock *sk,
3312 struct sk_buff *skb),
3313 int *peeked, int *off, int *err,
3314 struct sk_buff **last);
3315 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3316 void (*destructor)(struct sock *sk,
3317 struct sk_buff *skb),
3318 int *peeked, int *off, int *err,
3319 struct sk_buff **last);
3320 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3321 void (*destructor)(struct sock *sk,
3322 struct sk_buff *skb),
3323 int *peeked, int *off, int *err);
3324 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3325 int *err);
3326 __poll_t datagram_poll(struct file *file, struct socket *sock,
3327 struct poll_table_struct *wait);
3328 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3329 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3330 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3331 struct msghdr *msg, int size)
3332 {
3333 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3334 }
3335 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3336 struct msghdr *msg);
3337 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3338 struct iov_iter *from, int len);
3339 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3340 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3341 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3342 static inline void skb_free_datagram_locked(struct sock *sk,
3343 struct sk_buff *skb)
3344 {
3345 __skb_free_datagram_locked(sk, skb, 0);
3346 }
3347 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3348 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3349 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3350 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3351 int len, __wsum csum);
3352 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3353 struct pipe_inode_info *pipe, unsigned int len,
3354 unsigned int flags);
3355 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3356 int len);
3357 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3358 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3359 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3360 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3361 int len, int hlen);
3362 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3363 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3364 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3365 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3366 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3367 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3368 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3369 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3370 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3371 int skb_vlan_pop(struct sk_buff *skb);
3372 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3373 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3374 gfp_t gfp);
3375
memcpy_from_msg(void * data,struct msghdr * msg,int len)3376 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3377 {
3378 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3379 }
3380
memcpy_to_msg(struct msghdr * msg,void * data,int len)3381 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3382 {
3383 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3384 }
3385
3386 struct skb_checksum_ops {
3387 __wsum (*update)(const void *mem, int len, __wsum wsum);
3388 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3389 };
3390
3391 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3392
3393 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3394 __wsum csum, const struct skb_checksum_ops *ops);
3395 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3396 __wsum csum);
3397
3398 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3399 __skb_header_pointer(const struct sk_buff *skb, int offset,
3400 int len, void *data, int hlen, void *buffer)
3401 {
3402 if (hlen - offset >= len)
3403 return data + offset;
3404
3405 if (!skb ||
3406 skb_copy_bits(skb, offset, buffer, len) < 0)
3407 return NULL;
3408
3409 return buffer;
3410 }
3411
3412 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3413 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3414 {
3415 return __skb_header_pointer(skb, offset, len, skb->data,
3416 skb_headlen(skb), buffer);
3417 }
3418
3419 /**
3420 * skb_needs_linearize - check if we need to linearize a given skb
3421 * depending on the given device features.
3422 * @skb: socket buffer to check
3423 * @features: net device features
3424 *
3425 * Returns true if either:
3426 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3427 * 2. skb is fragmented and the device does not support SG.
3428 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3429 static inline bool skb_needs_linearize(struct sk_buff *skb,
3430 netdev_features_t features)
3431 {
3432 return skb_is_nonlinear(skb) &&
3433 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3434 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3435 }
3436
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3437 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3438 void *to,
3439 const unsigned int len)
3440 {
3441 memcpy(to, skb->data, len);
3442 }
3443
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3444 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3445 const int offset, void *to,
3446 const unsigned int len)
3447 {
3448 memcpy(to, skb->data + offset, len);
3449 }
3450
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3451 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3452 const void *from,
3453 const unsigned int len)
3454 {
3455 memcpy(skb->data, from, len);
3456 }
3457
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3458 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3459 const int offset,
3460 const void *from,
3461 const unsigned int len)
3462 {
3463 memcpy(skb->data + offset, from, len);
3464 }
3465
3466 void skb_init(void);
3467
skb_get_ktime(const struct sk_buff * skb)3468 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3469 {
3470 return skb->tstamp;
3471 }
3472
3473 /**
3474 * skb_get_timestamp - get timestamp from a skb
3475 * @skb: skb to get stamp from
3476 * @stamp: pointer to struct timeval to store stamp in
3477 *
3478 * Timestamps are stored in the skb as offsets to a base timestamp.
3479 * This function converts the offset back to a struct timeval and stores
3480 * it in stamp.
3481 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3482 static inline void skb_get_timestamp(const struct sk_buff *skb,
3483 struct timeval *stamp)
3484 {
3485 *stamp = ktime_to_timeval(skb->tstamp);
3486 }
3487
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3488 static inline void skb_get_timestampns(const struct sk_buff *skb,
3489 struct timespec *stamp)
3490 {
3491 *stamp = ktime_to_timespec(skb->tstamp);
3492 }
3493
__net_timestamp(struct sk_buff * skb)3494 static inline void __net_timestamp(struct sk_buff *skb)
3495 {
3496 skb->tstamp = ktime_get_real();
3497 }
3498
net_timedelta(ktime_t t)3499 static inline ktime_t net_timedelta(ktime_t t)
3500 {
3501 return ktime_sub(ktime_get_real(), t);
3502 }
3503
net_invalid_timestamp(void)3504 static inline ktime_t net_invalid_timestamp(void)
3505 {
3506 return 0;
3507 }
3508
skb_metadata_len(const struct sk_buff * skb)3509 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3510 {
3511 return skb_shinfo(skb)->meta_len;
3512 }
3513
skb_metadata_end(const struct sk_buff * skb)3514 static inline void *skb_metadata_end(const struct sk_buff *skb)
3515 {
3516 return skb_mac_header(skb);
3517 }
3518
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3519 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3520 const struct sk_buff *skb_b,
3521 u8 meta_len)
3522 {
3523 const void *a = skb_metadata_end(skb_a);
3524 const void *b = skb_metadata_end(skb_b);
3525 /* Using more efficient varaiant than plain call to memcmp(). */
3526 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3527 u64 diffs = 0;
3528
3529 switch (meta_len) {
3530 #define __it(x, op) (x -= sizeof(u##op))
3531 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3532 case 32: diffs |= __it_diff(a, b, 64);
3533 case 24: diffs |= __it_diff(a, b, 64);
3534 case 16: diffs |= __it_diff(a, b, 64);
3535 case 8: diffs |= __it_diff(a, b, 64);
3536 break;
3537 case 28: diffs |= __it_diff(a, b, 64);
3538 case 20: diffs |= __it_diff(a, b, 64);
3539 case 12: diffs |= __it_diff(a, b, 64);
3540 case 4: diffs |= __it_diff(a, b, 32);
3541 break;
3542 }
3543 return diffs;
3544 #else
3545 return memcmp(a - meta_len, b - meta_len, meta_len);
3546 #endif
3547 }
3548
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3549 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3550 const struct sk_buff *skb_b)
3551 {
3552 u8 len_a = skb_metadata_len(skb_a);
3553 u8 len_b = skb_metadata_len(skb_b);
3554
3555 if (!(len_a | len_b))
3556 return false;
3557
3558 return len_a != len_b ?
3559 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3560 }
3561
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3562 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3563 {
3564 skb_shinfo(skb)->meta_len = meta_len;
3565 }
3566
skb_metadata_clear(struct sk_buff * skb)3567 static inline void skb_metadata_clear(struct sk_buff *skb)
3568 {
3569 skb_metadata_set(skb, 0);
3570 }
3571
3572 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3573
3574 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3575
3576 void skb_clone_tx_timestamp(struct sk_buff *skb);
3577 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3578
3579 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3580
skb_clone_tx_timestamp(struct sk_buff * skb)3581 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3582 {
3583 }
3584
skb_defer_rx_timestamp(struct sk_buff * skb)3585 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3586 {
3587 return false;
3588 }
3589
3590 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3591
3592 /**
3593 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3594 *
3595 * PHY drivers may accept clones of transmitted packets for
3596 * timestamping via their phy_driver.txtstamp method. These drivers
3597 * must call this function to return the skb back to the stack with a
3598 * timestamp.
3599 *
3600 * @skb: clone of the the original outgoing packet
3601 * @hwtstamps: hardware time stamps
3602 *
3603 */
3604 void skb_complete_tx_timestamp(struct sk_buff *skb,
3605 struct skb_shared_hwtstamps *hwtstamps);
3606
3607 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3608 struct skb_shared_hwtstamps *hwtstamps,
3609 struct sock *sk, int tstype);
3610
3611 /**
3612 * skb_tstamp_tx - queue clone of skb with send time stamps
3613 * @orig_skb: the original outgoing packet
3614 * @hwtstamps: hardware time stamps, may be NULL if not available
3615 *
3616 * If the skb has a socket associated, then this function clones the
3617 * skb (thus sharing the actual data and optional structures), stores
3618 * the optional hardware time stamping information (if non NULL) or
3619 * generates a software time stamp (otherwise), then queues the clone
3620 * to the error queue of the socket. Errors are silently ignored.
3621 */
3622 void skb_tstamp_tx(struct sk_buff *orig_skb,
3623 struct skb_shared_hwtstamps *hwtstamps);
3624
3625 /**
3626 * skb_tx_timestamp() - Driver hook for transmit timestamping
3627 *
3628 * Ethernet MAC Drivers should call this function in their hard_xmit()
3629 * function immediately before giving the sk_buff to the MAC hardware.
3630 *
3631 * Specifically, one should make absolutely sure that this function is
3632 * called before TX completion of this packet can trigger. Otherwise
3633 * the packet could potentially already be freed.
3634 *
3635 * @skb: A socket buffer.
3636 */
skb_tx_timestamp(struct sk_buff * skb)3637 static inline void skb_tx_timestamp(struct sk_buff *skb)
3638 {
3639 skb_clone_tx_timestamp(skb);
3640 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3641 skb_tstamp_tx(skb, NULL);
3642 }
3643
3644 /**
3645 * skb_complete_wifi_ack - deliver skb with wifi status
3646 *
3647 * @skb: the original outgoing packet
3648 * @acked: ack status
3649 *
3650 */
3651 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3652
3653 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3654 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3655
skb_csum_unnecessary(const struct sk_buff * skb)3656 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3657 {
3658 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3659 skb->csum_valid ||
3660 (skb->ip_summed == CHECKSUM_PARTIAL &&
3661 skb_checksum_start_offset(skb) >= 0));
3662 }
3663
3664 /**
3665 * skb_checksum_complete - Calculate checksum of an entire packet
3666 * @skb: packet to process
3667 *
3668 * This function calculates the checksum over the entire packet plus
3669 * the value of skb->csum. The latter can be used to supply the
3670 * checksum of a pseudo header as used by TCP/UDP. It returns the
3671 * checksum.
3672 *
3673 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3674 * this function can be used to verify that checksum on received
3675 * packets. In that case the function should return zero if the
3676 * checksum is correct. In particular, this function will return zero
3677 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3678 * hardware has already verified the correctness of the checksum.
3679 */
skb_checksum_complete(struct sk_buff * skb)3680 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3681 {
3682 return skb_csum_unnecessary(skb) ?
3683 0 : __skb_checksum_complete(skb);
3684 }
3685
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3686 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3687 {
3688 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3689 if (skb->csum_level == 0)
3690 skb->ip_summed = CHECKSUM_NONE;
3691 else
3692 skb->csum_level--;
3693 }
3694 }
3695
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3696 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3697 {
3698 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3699 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3700 skb->csum_level++;
3701 } else if (skb->ip_summed == CHECKSUM_NONE) {
3702 skb->ip_summed = CHECKSUM_UNNECESSARY;
3703 skb->csum_level = 0;
3704 }
3705 }
3706
3707 /* Check if we need to perform checksum complete validation.
3708 *
3709 * Returns true if checksum complete is needed, false otherwise
3710 * (either checksum is unnecessary or zero checksum is allowed).
3711 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3712 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3713 bool zero_okay,
3714 __sum16 check)
3715 {
3716 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3717 skb->csum_valid = 1;
3718 __skb_decr_checksum_unnecessary(skb);
3719 return false;
3720 }
3721
3722 return true;
3723 }
3724
3725 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3726 * in checksum_init.
3727 */
3728 #define CHECKSUM_BREAK 76
3729
3730 /* Unset checksum-complete
3731 *
3732 * Unset checksum complete can be done when packet is being modified
3733 * (uncompressed for instance) and checksum-complete value is
3734 * invalidated.
3735 */
skb_checksum_complete_unset(struct sk_buff * skb)3736 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3737 {
3738 if (skb->ip_summed == CHECKSUM_COMPLETE)
3739 skb->ip_summed = CHECKSUM_NONE;
3740 }
3741
3742 /* Validate (init) checksum based on checksum complete.
3743 *
3744 * Return values:
3745 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3746 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3747 * checksum is stored in skb->csum for use in __skb_checksum_complete
3748 * non-zero: value of invalid checksum
3749 *
3750 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3751 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3752 bool complete,
3753 __wsum psum)
3754 {
3755 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3756 if (!csum_fold(csum_add(psum, skb->csum))) {
3757 skb->csum_valid = 1;
3758 return 0;
3759 }
3760 }
3761
3762 skb->csum = psum;
3763
3764 if (complete || skb->len <= CHECKSUM_BREAK) {
3765 __sum16 csum;
3766
3767 csum = __skb_checksum_complete(skb);
3768 skb->csum_valid = !csum;
3769 return csum;
3770 }
3771
3772 return 0;
3773 }
3774
null_compute_pseudo(struct sk_buff * skb,int proto)3775 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3776 {
3777 return 0;
3778 }
3779
3780 /* Perform checksum validate (init). Note that this is a macro since we only
3781 * want to calculate the pseudo header which is an input function if necessary.
3782 * First we try to validate without any computation (checksum unnecessary) and
3783 * then calculate based on checksum complete calling the function to compute
3784 * pseudo header.
3785 *
3786 * Return values:
3787 * 0: checksum is validated or try to in skb_checksum_complete
3788 * non-zero: value of invalid checksum
3789 */
3790 #define __skb_checksum_validate(skb, proto, complete, \
3791 zero_okay, check, compute_pseudo) \
3792 ({ \
3793 __sum16 __ret = 0; \
3794 skb->csum_valid = 0; \
3795 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3796 __ret = __skb_checksum_validate_complete(skb, \
3797 complete, compute_pseudo(skb, proto)); \
3798 __ret; \
3799 })
3800
3801 #define skb_checksum_init(skb, proto, compute_pseudo) \
3802 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3803
3804 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3805 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3806
3807 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3808 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3809
3810 #define skb_checksum_validate_zero_check(skb, proto, check, \
3811 compute_pseudo) \
3812 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3813
3814 #define skb_checksum_simple_validate(skb) \
3815 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3816
__skb_checksum_convert_check(struct sk_buff * skb)3817 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3818 {
3819 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3820 }
3821
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3822 static inline void __skb_checksum_convert(struct sk_buff *skb,
3823 __sum16 check, __wsum pseudo)
3824 {
3825 skb->csum = ~pseudo;
3826 skb->ip_summed = CHECKSUM_COMPLETE;
3827 }
3828
3829 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3830 do { \
3831 if (__skb_checksum_convert_check(skb)) \
3832 __skb_checksum_convert(skb, check, \
3833 compute_pseudo(skb, proto)); \
3834 } while (0)
3835
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3836 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3837 u16 start, u16 offset)
3838 {
3839 skb->ip_summed = CHECKSUM_PARTIAL;
3840 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3841 skb->csum_offset = offset - start;
3842 }
3843
3844 /* Update skbuf and packet to reflect the remote checksum offload operation.
3845 * When called, ptr indicates the starting point for skb->csum when
3846 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3847 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3848 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3849 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3850 int start, int offset, bool nopartial)
3851 {
3852 __wsum delta;
3853
3854 if (!nopartial) {
3855 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3856 return;
3857 }
3858
3859 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3860 __skb_checksum_complete(skb);
3861 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3862 }
3863
3864 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3865
3866 /* Adjust skb->csum since we changed the packet */
3867 skb->csum = csum_add(skb->csum, delta);
3868 }
3869
skb_nfct(const struct sk_buff * skb)3870 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3871 {
3872 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3873 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3874 #else
3875 return NULL;
3876 #endif
3877 }
3878
3879 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3880 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3881 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3882 {
3883 if (nfct && atomic_dec_and_test(&nfct->use))
3884 nf_conntrack_destroy(nfct);
3885 }
nf_conntrack_get(struct nf_conntrack * nfct)3886 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3887 {
3888 if (nfct)
3889 atomic_inc(&nfct->use);
3890 }
3891 #endif
3892 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3893 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3894 {
3895 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3896 kfree(nf_bridge);
3897 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3898 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3899 {
3900 if (nf_bridge)
3901 refcount_inc(&nf_bridge->use);
3902 }
3903 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3904 static inline void nf_reset(struct sk_buff *skb)
3905 {
3906 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3907 nf_conntrack_put(skb_nfct(skb));
3908 skb->_nfct = 0;
3909 #endif
3910 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3911 nf_bridge_put(skb->nf_bridge);
3912 skb->nf_bridge = NULL;
3913 #endif
3914 }
3915
nf_reset_trace(struct sk_buff * skb)3916 static inline void nf_reset_trace(struct sk_buff *skb)
3917 {
3918 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3919 skb->nf_trace = 0;
3920 #endif
3921 }
3922
ipvs_reset(struct sk_buff * skb)3923 static inline void ipvs_reset(struct sk_buff *skb)
3924 {
3925 #if IS_ENABLED(CONFIG_IP_VS)
3926 skb->ipvs_property = 0;
3927 #endif
3928 }
3929
3930 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3931 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3932 bool copy)
3933 {
3934 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3935 dst->_nfct = src->_nfct;
3936 nf_conntrack_get(skb_nfct(src));
3937 #endif
3938 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3939 dst->nf_bridge = src->nf_bridge;
3940 nf_bridge_get(src->nf_bridge);
3941 #endif
3942 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3943 if (copy)
3944 dst->nf_trace = src->nf_trace;
3945 #endif
3946 }
3947
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3948 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3949 {
3950 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3951 nf_conntrack_put(skb_nfct(dst));
3952 #endif
3953 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3954 nf_bridge_put(dst->nf_bridge);
3955 #endif
3956 __nf_copy(dst, src, true);
3957 }
3958
3959 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3960 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3961 {
3962 to->secmark = from->secmark;
3963 }
3964
skb_init_secmark(struct sk_buff * skb)3965 static inline void skb_init_secmark(struct sk_buff *skb)
3966 {
3967 skb->secmark = 0;
3968 }
3969 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3970 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3971 { }
3972
skb_init_secmark(struct sk_buff * skb)3973 static inline void skb_init_secmark(struct sk_buff *skb)
3974 { }
3975 #endif
3976
skb_irq_freeable(const struct sk_buff * skb)3977 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3978 {
3979 return !skb->destructor &&
3980 #if IS_ENABLED(CONFIG_XFRM)
3981 !skb->sp &&
3982 #endif
3983 !skb_nfct(skb) &&
3984 !skb->_skb_refdst &&
3985 !skb_has_frag_list(skb);
3986 }
3987
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3988 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3989 {
3990 skb->queue_mapping = queue_mapping;
3991 }
3992
skb_get_queue_mapping(const struct sk_buff * skb)3993 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3994 {
3995 return skb->queue_mapping;
3996 }
3997
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3998 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3999 {
4000 to->queue_mapping = from->queue_mapping;
4001 }
4002
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4003 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4004 {
4005 skb->queue_mapping = rx_queue + 1;
4006 }
4007
skb_get_rx_queue(const struct sk_buff * skb)4008 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4009 {
4010 return skb->queue_mapping - 1;
4011 }
4012
skb_rx_queue_recorded(const struct sk_buff * skb)4013 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4014 {
4015 return skb->queue_mapping != 0;
4016 }
4017
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4018 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4019 {
4020 skb->dst_pending_confirm = val;
4021 }
4022
skb_get_dst_pending_confirm(const struct sk_buff * skb)4023 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4024 {
4025 return skb->dst_pending_confirm != 0;
4026 }
4027
skb_sec_path(struct sk_buff * skb)4028 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4029 {
4030 #ifdef CONFIG_XFRM
4031 return skb->sp;
4032 #else
4033 return NULL;
4034 #endif
4035 }
4036
4037 /* Keeps track of mac header offset relative to skb->head.
4038 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4039 * For non-tunnel skb it points to skb_mac_header() and for
4040 * tunnel skb it points to outer mac header.
4041 * Keeps track of level of encapsulation of network headers.
4042 */
4043 struct skb_gso_cb {
4044 union {
4045 int mac_offset;
4046 int data_offset;
4047 };
4048 int encap_level;
4049 __wsum csum;
4050 __u16 csum_start;
4051 };
4052 #define SKB_SGO_CB_OFFSET 32
4053 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4054
skb_tnl_header_len(const struct sk_buff * inner_skb)4055 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4056 {
4057 return (skb_mac_header(inner_skb) - inner_skb->head) -
4058 SKB_GSO_CB(inner_skb)->mac_offset;
4059 }
4060
gso_pskb_expand_head(struct sk_buff * skb,int extra)4061 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4062 {
4063 int new_headroom, headroom;
4064 int ret;
4065
4066 headroom = skb_headroom(skb);
4067 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4068 if (ret)
4069 return ret;
4070
4071 new_headroom = skb_headroom(skb);
4072 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4073 return 0;
4074 }
4075
gso_reset_checksum(struct sk_buff * skb,__wsum res)4076 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4077 {
4078 /* Do not update partial checksums if remote checksum is enabled. */
4079 if (skb->remcsum_offload)
4080 return;
4081
4082 SKB_GSO_CB(skb)->csum = res;
4083 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4084 }
4085
4086 /* Compute the checksum for a gso segment. First compute the checksum value
4087 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4088 * then add in skb->csum (checksum from csum_start to end of packet).
4089 * skb->csum and csum_start are then updated to reflect the checksum of the
4090 * resultant packet starting from the transport header-- the resultant checksum
4091 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4092 * header.
4093 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4094 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4095 {
4096 unsigned char *csum_start = skb_transport_header(skb);
4097 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4098 __wsum partial = SKB_GSO_CB(skb)->csum;
4099
4100 SKB_GSO_CB(skb)->csum = res;
4101 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4102
4103 return csum_fold(csum_partial(csum_start, plen, partial));
4104 }
4105
skb_is_gso(const struct sk_buff * skb)4106 static inline bool skb_is_gso(const struct sk_buff *skb)
4107 {
4108 return skb_shinfo(skb)->gso_size;
4109 }
4110
4111 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4112 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4113 {
4114 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4115 }
4116
4117 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4118 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4119 {
4120 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4121 }
4122
4123 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4124 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4125 {
4126 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4127 }
4128
skb_gso_reset(struct sk_buff * skb)4129 static inline void skb_gso_reset(struct sk_buff *skb)
4130 {
4131 skb_shinfo(skb)->gso_size = 0;
4132 skb_shinfo(skb)->gso_segs = 0;
4133 skb_shinfo(skb)->gso_type = 0;
4134 }
4135
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4136 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4137 u16 increment)
4138 {
4139 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4140 return;
4141 shinfo->gso_size += increment;
4142 }
4143
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4144 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4145 u16 decrement)
4146 {
4147 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4148 return;
4149 shinfo->gso_size -= decrement;
4150 }
4151
4152 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4153
skb_warn_if_lro(const struct sk_buff * skb)4154 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4155 {
4156 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4157 * wanted then gso_type will be set. */
4158 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4159
4160 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4161 unlikely(shinfo->gso_type == 0)) {
4162 __skb_warn_lro_forwarding(skb);
4163 return true;
4164 }
4165 return false;
4166 }
4167
skb_forward_csum(struct sk_buff * skb)4168 static inline void skb_forward_csum(struct sk_buff *skb)
4169 {
4170 /* Unfortunately we don't support this one. Any brave souls? */
4171 if (skb->ip_summed == CHECKSUM_COMPLETE)
4172 skb->ip_summed = CHECKSUM_NONE;
4173 }
4174
4175 /**
4176 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4177 * @skb: skb to check
4178 *
4179 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4180 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4181 * use this helper, to document places where we make this assertion.
4182 */
skb_checksum_none_assert(const struct sk_buff * skb)4183 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4184 {
4185 #ifdef DEBUG
4186 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4187 #endif
4188 }
4189
4190 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4191
4192 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4193 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4194 unsigned int transport_len,
4195 __sum16(*skb_chkf)(struct sk_buff *skb));
4196
4197 /**
4198 * skb_head_is_locked - Determine if the skb->head is locked down
4199 * @skb: skb to check
4200 *
4201 * The head on skbs build around a head frag can be removed if they are
4202 * not cloned. This function returns true if the skb head is locked down
4203 * due to either being allocated via kmalloc, or by being a clone with
4204 * multiple references to the head.
4205 */
skb_head_is_locked(const struct sk_buff * skb)4206 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4207 {
4208 return !skb->head_frag || skb_cloned(skb);
4209 }
4210
4211 /* Local Checksum Offload.
4212 * Compute outer checksum based on the assumption that the
4213 * inner checksum will be offloaded later.
4214 * See Documentation/networking/checksum-offloads.txt for
4215 * explanation of how this works.
4216 * Fill in outer checksum adjustment (e.g. with sum of outer
4217 * pseudo-header) before calling.
4218 * Also ensure that inner checksum is in linear data area.
4219 */
lco_csum(struct sk_buff * skb)4220 static inline __wsum lco_csum(struct sk_buff *skb)
4221 {
4222 unsigned char *csum_start = skb_checksum_start(skb);
4223 unsigned char *l4_hdr = skb_transport_header(skb);
4224 __wsum partial;
4225
4226 /* Start with complement of inner checksum adjustment */
4227 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4228 skb->csum_offset));
4229
4230 /* Add in checksum of our headers (incl. outer checksum
4231 * adjustment filled in by caller) and return result.
4232 */
4233 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4234 }
4235
4236 #endif /* __KERNEL__ */
4237 #endif /* _LINUX_SKBUFF_H */
4238