• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
sock_zerocopy_get(struct ubuf_info * uarg)476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634  *	@ndisc_nodetype: router type (from link layer)
635  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
636  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
637  *		ports.
638  *	@sw_hash: indicates hash was computed in software stack
639  *	@wifi_acked_valid: wifi_acked was set
640  *	@wifi_acked: whether frame was acked on wifi or not
641  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
642  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643  *	@dst_pending_confirm: need to confirm neighbour
644  *	@decrypted: Decrypted SKB
645   *	@napi_id: id of the NAPI struct this skb came from
646  *	@secmark: security marking
647  *	@mark: Generic packet mark
648  *	@vlan_proto: vlan encapsulation protocol
649  *	@vlan_tci: vlan tag control information
650  *	@inner_protocol: Protocol (encapsulation)
651  *	@inner_transport_header: Inner transport layer header (encapsulation)
652  *	@inner_network_header: Network layer header (encapsulation)
653  *	@inner_mac_header: Link layer header (encapsulation)
654  *	@transport_header: Transport layer header
655  *	@network_header: Network layer header
656  *	@mac_header: Link layer header
657  *	@tail: Tail pointer
658  *	@end: End pointer
659  *	@head: Head of buffer
660  *	@data: Data head pointer
661  *	@truesize: Buffer size
662  *	@users: User count - see {datagram,tcp}.c
663  */
664 
665 struct sk_buff {
666 	union {
667 		struct {
668 			/* These two members must be first. */
669 			struct sk_buff		*next;
670 			struct sk_buff		*prev;
671 
672 			union {
673 				struct net_device	*dev;
674 				/* Some protocols might use this space to store information,
675 				 * while device pointer would be NULL.
676 				 * UDP receive path is one user.
677 				 */
678 				unsigned long		dev_scratch;
679 			};
680 		};
681 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
682 		struct list_head	list;
683 	};
684 
685 	union {
686 		struct sock		*sk;
687 		int			ip_defrag_offset;
688 	};
689 
690 	union {
691 		ktime_t		tstamp;
692 		u64		skb_mstamp;
693 	};
694 	/*
695 	 * This is the control buffer. It is free to use for every
696 	 * layer. Please put your private variables there. If you
697 	 * want to keep them across layers you have to do a skb_clone()
698 	 * first. This is owned by whoever has the skb queued ATM.
699 	 */
700 	char			cb[48] __aligned(8);
701 
702 	union {
703 		struct {
704 			unsigned long	_skb_refdst;
705 			void		(*destructor)(struct sk_buff *skb);
706 		};
707 		struct list_head	tcp_tsorted_anchor;
708 	};
709 
710 #ifdef CONFIG_XFRM
711 	struct	sec_path	*sp;
712 #endif
713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
714 	unsigned long		 _nfct;
715 #endif
716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
717 	struct nf_bridge_info	*nf_bridge;
718 #endif
719 	unsigned int		len,
720 				data_len;
721 	__u16			mac_len,
722 				hdr_len;
723 
724 	/* Following fields are _not_ copied in __copy_skb_header()
725 	 * Note that queue_mapping is here mostly to fill a hole.
726 	 */
727 	__u16			queue_mapping;
728 
729 /* if you move cloned around you also must adapt those constants */
730 #ifdef __BIG_ENDIAN_BITFIELD
731 #define CLONED_MASK	(1 << 7)
732 #else
733 #define CLONED_MASK	1
734 #endif
735 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
736 
737 	__u8			__cloned_offset[0];
738 	__u8			cloned:1,
739 				nohdr:1,
740 				fclone:2,
741 				peeked:1,
742 				head_frag:1,
743 				xmit_more:1,
744 				pfmemalloc:1;
745 
746 	/* fields enclosed in headers_start/headers_end are copied
747 	 * using a single memcpy() in __copy_skb_header()
748 	 */
749 	/* private: */
750 	__u32			headers_start[0];
751 	/* public: */
752 
753 /* if you move pkt_type around you also must adapt those constants */
754 #ifdef __BIG_ENDIAN_BITFIELD
755 #define PKT_TYPE_MAX	(7 << 5)
756 #else
757 #define PKT_TYPE_MAX	7
758 #endif
759 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
760 
761 	__u8			__pkt_type_offset[0];
762 	__u8			pkt_type:3;
763 	__u8			ignore_df:1;
764 	__u8			nf_trace:1;
765 	__u8			ip_summed:2;
766 	__u8			ooo_okay:1;
767 
768 	__u8			l4_hash:1;
769 	__u8			sw_hash:1;
770 	__u8			wifi_acked_valid:1;
771 	__u8			wifi_acked:1;
772 	__u8			no_fcs:1;
773 	/* Indicates the inner headers are valid in the skbuff. */
774 	__u8			encapsulation:1;
775 	__u8			encap_hdr_csum:1;
776 	__u8			csum_valid:1;
777 
778 	__u8			csum_complete_sw:1;
779 	__u8			csum_level:2;
780 	__u8			csum_not_inet:1;
781 	__u8			dst_pending_confirm:1;
782 #ifdef CONFIG_IPV6_NDISC_NODETYPE
783 	__u8			ndisc_nodetype:2;
784 #endif
785 	__u8			ipvs_property:1;
786 
787 	__u8			inner_protocol_type:1;
788 	__u8			remcsum_offload:1;
789 #ifdef CONFIG_NET_SWITCHDEV
790 	__u8			offload_fwd_mark:1;
791 	__u8			offload_mr_fwd_mark:1;
792 #endif
793 #ifdef CONFIG_NET_CLS_ACT
794 	__u8			tc_skip_classify:1;
795 	__u8			tc_at_ingress:1;
796 	__u8			tc_redirected:1;
797 	__u8			tc_from_ingress:1;
798 #endif
799 #ifdef CONFIG_TLS_DEVICE
800 	__u8			decrypted:1;
801 #endif
802 
803 #ifdef CONFIG_NET_SCHED
804 	__u16			tc_index;	/* traffic control index */
805 #endif
806 
807 	union {
808 		__wsum		csum;
809 		struct {
810 			__u16	csum_start;
811 			__u16	csum_offset;
812 		};
813 	};
814 	__u32			priority;
815 	int			skb_iif;
816 	__u32			hash;
817 	__be16			vlan_proto;
818 	__u16			vlan_tci;
819 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 	union {
821 		unsigned int	napi_id;
822 		unsigned int	sender_cpu;
823 	};
824 #endif
825 #ifdef CONFIG_NETWORK_SECMARK
826 	__u32		secmark;
827 #endif
828 
829 	union {
830 		__u32		mark;
831 		__u32		reserved_tailroom;
832 	};
833 
834 	union {
835 		__be16		inner_protocol;
836 		__u8		inner_ipproto;
837 	};
838 
839 	__u16			inner_transport_header;
840 	__u16			inner_network_header;
841 	__u16			inner_mac_header;
842 
843 	__be16			protocol;
844 	__u16			transport_header;
845 	__u16			network_header;
846 	__u16			mac_header;
847 
848 	/* private: */
849 	__u32			headers_end[0];
850 	/* public: */
851 
852 	/* These elements must be at the end, see alloc_skb() for details.  */
853 	sk_buff_data_t		tail;
854 	sk_buff_data_t		end;
855 	unsigned char		*head,
856 				*data;
857 	unsigned int		truesize;
858 	refcount_t		users;
859 };
860 
861 #ifdef __KERNEL__
862 /*
863  *	Handling routines are only of interest to the kernel
864  */
865 
866 #define SKB_ALLOC_FCLONE	0x01
867 #define SKB_ALLOC_RX		0x02
868 #define SKB_ALLOC_NAPI		0x04
869 
870 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)871 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872 {
873 	return unlikely(skb->pfmemalloc);
874 }
875 
876 /*
877  * skb might have a dst pointer attached, refcounted or not.
878  * _skb_refdst low order bit is set if refcount was _not_ taken
879  */
880 #define SKB_DST_NOREF	1UL
881 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
882 
883 #define SKB_NFCT_PTRMASK	~(7UL)
884 /**
885  * skb_dst - returns skb dst_entry
886  * @skb: buffer
887  *
888  * Returns skb dst_entry, regardless of reference taken or not.
889  */
skb_dst(const struct sk_buff * skb)890 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891 {
892 	/* If refdst was not refcounted, check we still are in a
893 	 * rcu_read_lock section
894 	 */
895 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 		!rcu_read_lock_held() &&
897 		!rcu_read_lock_bh_held());
898 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
899 }
900 
901 /**
902  * skb_dst_set - sets skb dst
903  * @skb: buffer
904  * @dst: dst entry
905  *
906  * Sets skb dst, assuming a reference was taken on dst and should
907  * be released by skb_dst_drop()
908  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 	skb->_skb_refdst = (unsigned long)dst;
912 }
913 
914 /**
915  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916  * @skb: buffer
917  * @dst: dst entry
918  *
919  * Sets skb dst, assuming a reference was not taken on dst.
920  * If dst entry is cached, we do not take reference and dst_release
921  * will be avoided by refdst_drop. If dst entry is not cached, we take
922  * reference, so that last dst_release can destroy the dst immediately.
923  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)924 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925 {
926 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
928 }
929 
930 /**
931  * skb_dst_is_noref - Test if skb dst isn't refcounted
932  * @skb: buffer
933  */
skb_dst_is_noref(const struct sk_buff * skb)934 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935 {
936 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
937 }
938 
skb_rtable(const struct sk_buff * skb)939 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940 {
941 	return (struct rtable *)skb_dst(skb);
942 }
943 
944 /* For mangling skb->pkt_type from user space side from applications
945  * such as nft, tc, etc, we only allow a conservative subset of
946  * possible pkt_types to be set.
947 */
skb_pkt_type_ok(u32 ptype)948 static inline bool skb_pkt_type_ok(u32 ptype)
949 {
950 	return ptype <= PACKET_OTHERHOST;
951 }
952 
skb_napi_id(const struct sk_buff * skb)953 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954 {
955 #ifdef CONFIG_NET_RX_BUSY_POLL
956 	return skb->napi_id;
957 #else
958 	return 0;
959 #endif
960 }
961 
962 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)963 static inline bool skb_unref(struct sk_buff *skb)
964 {
965 	if (unlikely(!skb))
966 		return false;
967 	if (likely(refcount_read(&skb->users) == 1))
968 		smp_rmb();
969 	else if (likely(!refcount_dec_and_test(&skb->users)))
970 		return false;
971 
972 	return true;
973 }
974 
975 void skb_release_head_state(struct sk_buff *skb);
976 void kfree_skb(struct sk_buff *skb);
977 void kfree_skb_list(struct sk_buff *segs);
978 void skb_tx_error(struct sk_buff *skb);
979 void consume_skb(struct sk_buff *skb);
980 void __consume_stateless_skb(struct sk_buff *skb);
981 void  __kfree_skb(struct sk_buff *skb);
982 extern struct kmem_cache *skbuff_head_cache;
983 
984 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 		      bool *fragstolen, int *delta_truesize);
987 
988 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 			    int node);
990 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
991 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)992 static inline struct sk_buff *alloc_skb(unsigned int size,
993 					gfp_t priority)
994 {
995 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
996 }
997 
998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 				     unsigned long data_len,
1000 				     int max_page_order,
1001 				     int *errcode,
1002 				     gfp_t gfp_mask);
1003 
1004 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005 struct sk_buff_fclones {
1006 	struct sk_buff	skb1;
1007 
1008 	struct sk_buff	skb2;
1009 
1010 	refcount_t	fclone_ref;
1011 };
1012 
1013 /**
1014  *	skb_fclone_busy - check if fclone is busy
1015  *	@sk: socket
1016  *	@skb: buffer
1017  *
1018  * Returns true if skb is a fast clone, and its clone is not freed.
1019  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020  * so we also check that this didnt happen.
1021  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1022 static inline bool skb_fclone_busy(const struct sock *sk,
1023 				   const struct sk_buff *skb)
1024 {
1025 	const struct sk_buff_fclones *fclones;
1026 
1027 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028 
1029 	return skb->fclone == SKB_FCLONE_ORIG &&
1030 	       refcount_read(&fclones->fclone_ref) > 1 &&
1031 	       fclones->skb2.sk == sk;
1032 }
1033 
alloc_skb_fclone(unsigned int size,gfp_t priority)1034 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1035 					       gfp_t priority)
1036 {
1037 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1038 }
1039 
1040 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041 void skb_headers_offset_update(struct sk_buff *skb, int off);
1042 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1044 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1045 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1046 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1047 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1048 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1049 					  gfp_t gfp_mask)
1050 {
1051 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1052 }
1053 
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1055 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1056 				     unsigned int headroom);
1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1058 				int newtailroom, gfp_t priority);
1059 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1060 				     int offset, int len);
1061 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1062 			      int offset, int len);
1063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1064 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1065 
1066 /**
1067  *	skb_pad			-	zero pad the tail of an skb
1068  *	@skb: buffer to pad
1069  *	@pad: space to pad
1070  *
1071  *	Ensure that a buffer is followed by a padding area that is zero
1072  *	filled. Used by network drivers which may DMA or transfer data
1073  *	beyond the buffer end onto the wire.
1074  *
1075  *	May return error in out of memory cases. The skb is freed on error.
1076  */
skb_pad(struct sk_buff * skb,int pad)1077 static inline int skb_pad(struct sk_buff *skb, int pad)
1078 {
1079 	return __skb_pad(skb, pad, true);
1080 }
1081 #define dev_kfree_skb(a)	consume_skb(a)
1082 
1083 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1084 			    int getfrag(void *from, char *to, int offset,
1085 					int len, int odd, struct sk_buff *skb),
1086 			    void *from, int length);
1087 
1088 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1089 			 int offset, size_t size);
1090 
1091 struct skb_seq_state {
1092 	__u32		lower_offset;
1093 	__u32		upper_offset;
1094 	__u32		frag_idx;
1095 	__u32		stepped_offset;
1096 	struct sk_buff	*root_skb;
1097 	struct sk_buff	*cur_skb;
1098 	__u8		*frag_data;
1099 };
1100 
1101 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1102 			  unsigned int to, struct skb_seq_state *st);
1103 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1104 			  struct skb_seq_state *st);
1105 void skb_abort_seq_read(struct skb_seq_state *st);
1106 
1107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1108 			   unsigned int to, struct ts_config *config);
1109 
1110 /*
1111  * Packet hash types specify the type of hash in skb_set_hash.
1112  *
1113  * Hash types refer to the protocol layer addresses which are used to
1114  * construct a packet's hash. The hashes are used to differentiate or identify
1115  * flows of the protocol layer for the hash type. Hash types are either
1116  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1117  *
1118  * Properties of hashes:
1119  *
1120  * 1) Two packets in different flows have different hash values
1121  * 2) Two packets in the same flow should have the same hash value
1122  *
1123  * A hash at a higher layer is considered to be more specific. A driver should
1124  * set the most specific hash possible.
1125  *
1126  * A driver cannot indicate a more specific hash than the layer at which a hash
1127  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1128  *
1129  * A driver may indicate a hash level which is less specific than the
1130  * actual layer the hash was computed on. For instance, a hash computed
1131  * at L4 may be considered an L3 hash. This should only be done if the
1132  * driver can't unambiguously determine that the HW computed the hash at
1133  * the higher layer. Note that the "should" in the second property above
1134  * permits this.
1135  */
1136 enum pkt_hash_types {
1137 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1138 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1139 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1140 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1141 };
1142 
skb_clear_hash(struct sk_buff * skb)1143 static inline void skb_clear_hash(struct sk_buff *skb)
1144 {
1145 	skb->hash = 0;
1146 	skb->sw_hash = 0;
1147 	skb->l4_hash = 0;
1148 }
1149 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1150 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1151 {
1152 	if (!skb->l4_hash)
1153 		skb_clear_hash(skb);
1154 }
1155 
1156 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1157 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1158 {
1159 	skb->l4_hash = is_l4;
1160 	skb->sw_hash = is_sw;
1161 	skb->hash = hash;
1162 }
1163 
1164 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1165 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1166 {
1167 	/* Used by drivers to set hash from HW */
1168 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169 }
1170 
1171 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1172 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1173 {
1174 	__skb_set_hash(skb, hash, true, is_l4);
1175 }
1176 
1177 void __skb_get_hash(struct sk_buff *skb);
1178 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1179 u32 skb_get_poff(const struct sk_buff *skb);
1180 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1181 		   const struct flow_keys_basic *keys, int hlen);
1182 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1183 			    void *data, int hlen_proto);
1184 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1185 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1186 					int thoff, u8 ip_proto)
1187 {
1188 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1189 }
1190 
1191 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1192 			     const struct flow_dissector_key *key,
1193 			     unsigned int key_count);
1194 
1195 bool __skb_flow_dissect(const struct sk_buff *skb,
1196 			struct flow_dissector *flow_dissector,
1197 			void *target_container,
1198 			void *data, __be16 proto, int nhoff, int hlen,
1199 			unsigned int flags);
1200 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1201 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1202 				    struct flow_dissector *flow_dissector,
1203 				    void *target_container, unsigned int flags)
1204 {
1205 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1206 				  NULL, 0, 0, 0, flags);
1207 }
1208 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1209 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1210 					      struct flow_keys *flow,
1211 					      unsigned int flags)
1212 {
1213 	memset(flow, 0, sizeof(*flow));
1214 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1215 				  NULL, 0, 0, 0, flags);
1216 }
1217 
1218 static inline bool
skb_flow_dissect_flow_keys_basic(const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1219 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1220 				 struct flow_keys_basic *flow, void *data,
1221 				 __be16 proto, int nhoff, int hlen,
1222 				 unsigned int flags)
1223 {
1224 	memset(flow, 0, sizeof(*flow));
1225 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1226 				  data, proto, nhoff, hlen, flags);
1227 }
1228 
1229 void
1230 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1231 			     struct flow_dissector *flow_dissector,
1232 			     void *target_container);
1233 
skb_get_hash(struct sk_buff * skb)1234 static inline __u32 skb_get_hash(struct sk_buff *skb)
1235 {
1236 	if (!skb->l4_hash && !skb->sw_hash)
1237 		__skb_get_hash(skb);
1238 
1239 	return skb->hash;
1240 }
1241 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1242 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1243 {
1244 	if (!skb->l4_hash && !skb->sw_hash) {
1245 		struct flow_keys keys;
1246 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1247 
1248 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1249 	}
1250 
1251 	return skb->hash;
1252 }
1253 
1254 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1255 			   const siphash_key_t *perturb);
1256 
skb_get_hash_raw(const struct sk_buff * skb)1257 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1258 {
1259 	return skb->hash;
1260 }
1261 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1262 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1263 {
1264 	to->hash = from->hash;
1265 	to->sw_hash = from->sw_hash;
1266 	to->l4_hash = from->l4_hash;
1267 };
1268 
1269 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1270 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1271 {
1272 	return skb->head + skb->end;
1273 }
1274 
skb_end_offset(const struct sk_buff * skb)1275 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1276 {
1277 	return skb->end;
1278 }
1279 #else
skb_end_pointer(const struct sk_buff * skb)1280 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1281 {
1282 	return skb->end;
1283 }
1284 
skb_end_offset(const struct sk_buff * skb)1285 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1286 {
1287 	return skb->end - skb->head;
1288 }
1289 #endif
1290 
1291 /* Internal */
1292 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1293 
skb_hwtstamps(struct sk_buff * skb)1294 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1295 {
1296 	return &skb_shinfo(skb)->hwtstamps;
1297 }
1298 
skb_zcopy(struct sk_buff * skb)1299 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1300 {
1301 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1302 
1303 	return is_zcopy ? skb_uarg(skb) : NULL;
1304 }
1305 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1306 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1307 {
1308 	if (skb && uarg && !skb_zcopy(skb)) {
1309 		sock_zerocopy_get(uarg);
1310 		skb_shinfo(skb)->destructor_arg = uarg;
1311 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1312 	}
1313 }
1314 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1315 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1316 {
1317 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1318 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1319 }
1320 
skb_zcopy_is_nouarg(struct sk_buff * skb)1321 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1322 {
1323 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1324 }
1325 
skb_zcopy_get_nouarg(struct sk_buff * skb)1326 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1327 {
1328 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1329 }
1330 
1331 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1332 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1333 {
1334 	struct ubuf_info *uarg = skb_zcopy(skb);
1335 
1336 	if (uarg) {
1337 		if (skb_zcopy_is_nouarg(skb)) {
1338 			/* no notification callback */
1339 		} else if (uarg->callback == sock_zerocopy_callback) {
1340 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1341 			sock_zerocopy_put(uarg);
1342 		} else {
1343 			uarg->callback(uarg, zerocopy);
1344 		}
1345 
1346 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1347 	}
1348 }
1349 
1350 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1351 static inline void skb_zcopy_abort(struct sk_buff *skb)
1352 {
1353 	struct ubuf_info *uarg = skb_zcopy(skb);
1354 
1355 	if (uarg) {
1356 		sock_zerocopy_put_abort(uarg);
1357 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1358 	}
1359 }
1360 
skb_mark_not_on_list(struct sk_buff * skb)1361 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1362 {
1363 	skb->next = NULL;
1364 }
1365 
skb_list_del_init(struct sk_buff * skb)1366 static inline void skb_list_del_init(struct sk_buff *skb)
1367 {
1368 	__list_del_entry(&skb->list);
1369 	skb_mark_not_on_list(skb);
1370 }
1371 
1372 /**
1373  *	skb_queue_empty - check if a queue is empty
1374  *	@list: queue head
1375  *
1376  *	Returns true if the queue is empty, false otherwise.
1377  */
skb_queue_empty(const struct sk_buff_head * list)1378 static inline int skb_queue_empty(const struct sk_buff_head *list)
1379 {
1380 	return list->next == (const struct sk_buff *) list;
1381 }
1382 
1383 /**
1384  *	skb_queue_empty_lockless - check if a queue is empty
1385  *	@list: queue head
1386  *
1387  *	Returns true if the queue is empty, false otherwise.
1388  *	This variant can be used in lockless contexts.
1389  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1390 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1391 {
1392 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1393 }
1394 
1395 
1396 /**
1397  *	skb_queue_is_last - check if skb is the last entry in the queue
1398  *	@list: queue head
1399  *	@skb: buffer
1400  *
1401  *	Returns true if @skb is the last buffer on the list.
1402  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1403 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1404 				     const struct sk_buff *skb)
1405 {
1406 	return skb->next == (const struct sk_buff *) list;
1407 }
1408 
1409 /**
1410  *	skb_queue_is_first - check if skb is the first entry in the queue
1411  *	@list: queue head
1412  *	@skb: buffer
1413  *
1414  *	Returns true if @skb is the first buffer on the list.
1415  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1416 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1417 				      const struct sk_buff *skb)
1418 {
1419 	return skb->prev == (const struct sk_buff *) list;
1420 }
1421 
1422 /**
1423  *	skb_queue_next - return the next packet in the queue
1424  *	@list: queue head
1425  *	@skb: current buffer
1426  *
1427  *	Return the next packet in @list after @skb.  It is only valid to
1428  *	call this if skb_queue_is_last() evaluates to false.
1429  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1430 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1431 					     const struct sk_buff *skb)
1432 {
1433 	/* This BUG_ON may seem severe, but if we just return then we
1434 	 * are going to dereference garbage.
1435 	 */
1436 	BUG_ON(skb_queue_is_last(list, skb));
1437 	return skb->next;
1438 }
1439 
1440 /**
1441  *	skb_queue_prev - return the prev packet in the queue
1442  *	@list: queue head
1443  *	@skb: current buffer
1444  *
1445  *	Return the prev packet in @list before @skb.  It is only valid to
1446  *	call this if skb_queue_is_first() evaluates to false.
1447  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1448 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1449 					     const struct sk_buff *skb)
1450 {
1451 	/* This BUG_ON may seem severe, but if we just return then we
1452 	 * are going to dereference garbage.
1453 	 */
1454 	BUG_ON(skb_queue_is_first(list, skb));
1455 	return skb->prev;
1456 }
1457 
1458 /**
1459  *	skb_get - reference buffer
1460  *	@skb: buffer to reference
1461  *
1462  *	Makes another reference to a socket buffer and returns a pointer
1463  *	to the buffer.
1464  */
skb_get(struct sk_buff * skb)1465 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1466 {
1467 	refcount_inc(&skb->users);
1468 	return skb;
1469 }
1470 
1471 /*
1472  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1473  */
1474 
1475 /**
1476  *	skb_cloned - is the buffer a clone
1477  *	@skb: buffer to check
1478  *
1479  *	Returns true if the buffer was generated with skb_clone() and is
1480  *	one of multiple shared copies of the buffer. Cloned buffers are
1481  *	shared data so must not be written to under normal circumstances.
1482  */
skb_cloned(const struct sk_buff * skb)1483 static inline int skb_cloned(const struct sk_buff *skb)
1484 {
1485 	return skb->cloned &&
1486 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1487 }
1488 
skb_unclone(struct sk_buff * skb,gfp_t pri)1489 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1490 {
1491 	might_sleep_if(gfpflags_allow_blocking(pri));
1492 
1493 	if (skb_cloned(skb))
1494 		return pskb_expand_head(skb, 0, 0, pri);
1495 
1496 	return 0;
1497 }
1498 
1499 /**
1500  *	skb_header_cloned - is the header a clone
1501  *	@skb: buffer to check
1502  *
1503  *	Returns true if modifying the header part of the buffer requires
1504  *	the data to be copied.
1505  */
skb_header_cloned(const struct sk_buff * skb)1506 static inline int skb_header_cloned(const struct sk_buff *skb)
1507 {
1508 	int dataref;
1509 
1510 	if (!skb->cloned)
1511 		return 0;
1512 
1513 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1514 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1515 	return dataref != 1;
1516 }
1517 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1518 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1519 {
1520 	might_sleep_if(gfpflags_allow_blocking(pri));
1521 
1522 	if (skb_header_cloned(skb))
1523 		return pskb_expand_head(skb, 0, 0, pri);
1524 
1525 	return 0;
1526 }
1527 
1528 /**
1529  *	__skb_header_release - release reference to header
1530  *	@skb: buffer to operate on
1531  */
__skb_header_release(struct sk_buff * skb)1532 static inline void __skb_header_release(struct sk_buff *skb)
1533 {
1534 	skb->nohdr = 1;
1535 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1536 }
1537 
1538 
1539 /**
1540  *	skb_shared - is the buffer shared
1541  *	@skb: buffer to check
1542  *
1543  *	Returns true if more than one person has a reference to this
1544  *	buffer.
1545  */
skb_shared(const struct sk_buff * skb)1546 static inline int skb_shared(const struct sk_buff *skb)
1547 {
1548 	return refcount_read(&skb->users) != 1;
1549 }
1550 
1551 /**
1552  *	skb_share_check - check if buffer is shared and if so clone it
1553  *	@skb: buffer to check
1554  *	@pri: priority for memory allocation
1555  *
1556  *	If the buffer is shared the buffer is cloned and the old copy
1557  *	drops a reference. A new clone with a single reference is returned.
1558  *	If the buffer is not shared the original buffer is returned. When
1559  *	being called from interrupt status or with spinlocks held pri must
1560  *	be GFP_ATOMIC.
1561  *
1562  *	NULL is returned on a memory allocation failure.
1563  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1564 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1565 {
1566 	might_sleep_if(gfpflags_allow_blocking(pri));
1567 	if (skb_shared(skb)) {
1568 		struct sk_buff *nskb = skb_clone(skb, pri);
1569 
1570 		if (likely(nskb))
1571 			consume_skb(skb);
1572 		else
1573 			kfree_skb(skb);
1574 		skb = nskb;
1575 	}
1576 	return skb;
1577 }
1578 
1579 /*
1580  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1581  *	packets to handle cases where we have a local reader and forward
1582  *	and a couple of other messy ones. The normal one is tcpdumping
1583  *	a packet thats being forwarded.
1584  */
1585 
1586 /**
1587  *	skb_unshare - make a copy of a shared buffer
1588  *	@skb: buffer to check
1589  *	@pri: priority for memory allocation
1590  *
1591  *	If the socket buffer is a clone then this function creates a new
1592  *	copy of the data, drops a reference count on the old copy and returns
1593  *	the new copy with the reference count at 1. If the buffer is not a clone
1594  *	the original buffer is returned. When called with a spinlock held or
1595  *	from interrupt state @pri must be %GFP_ATOMIC
1596  *
1597  *	%NULL is returned on a memory allocation failure.
1598  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1599 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1600 					  gfp_t pri)
1601 {
1602 	might_sleep_if(gfpflags_allow_blocking(pri));
1603 	if (skb_cloned(skb)) {
1604 		struct sk_buff *nskb = skb_copy(skb, pri);
1605 
1606 		/* Free our shared copy */
1607 		if (likely(nskb))
1608 			consume_skb(skb);
1609 		else
1610 			kfree_skb(skb);
1611 		skb = nskb;
1612 	}
1613 	return skb;
1614 }
1615 
1616 /**
1617  *	skb_peek - peek at the head of an &sk_buff_head
1618  *	@list_: list to peek at
1619  *
1620  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1621  *	be careful with this one. A peek leaves the buffer on the
1622  *	list and someone else may run off with it. You must hold
1623  *	the appropriate locks or have a private queue to do this.
1624  *
1625  *	Returns %NULL for an empty list or a pointer to the head element.
1626  *	The reference count is not incremented and the reference is therefore
1627  *	volatile. Use with caution.
1628  */
skb_peek(const struct sk_buff_head * list_)1629 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1630 {
1631 	struct sk_buff *skb = list_->next;
1632 
1633 	if (skb == (struct sk_buff *)list_)
1634 		skb = NULL;
1635 	return skb;
1636 }
1637 
1638 /**
1639  *	skb_peek_next - peek skb following the given one from a queue
1640  *	@skb: skb to start from
1641  *	@list_: list to peek at
1642  *
1643  *	Returns %NULL when the end of the list is met or a pointer to the
1644  *	next element. The reference count is not incremented and the
1645  *	reference is therefore volatile. Use with caution.
1646  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1647 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1648 		const struct sk_buff_head *list_)
1649 {
1650 	struct sk_buff *next = skb->next;
1651 
1652 	if (next == (struct sk_buff *)list_)
1653 		next = NULL;
1654 	return next;
1655 }
1656 
1657 /**
1658  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1659  *	@list_: list to peek at
1660  *
1661  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1662  *	be careful with this one. A peek leaves the buffer on the
1663  *	list and someone else may run off with it. You must hold
1664  *	the appropriate locks or have a private queue to do this.
1665  *
1666  *	Returns %NULL for an empty list or a pointer to the tail element.
1667  *	The reference count is not incremented and the reference is therefore
1668  *	volatile. Use with caution.
1669  */
skb_peek_tail(const struct sk_buff_head * list_)1670 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1671 {
1672 	struct sk_buff *skb = READ_ONCE(list_->prev);
1673 
1674 	if (skb == (struct sk_buff *)list_)
1675 		skb = NULL;
1676 	return skb;
1677 
1678 }
1679 
1680 /**
1681  *	skb_queue_len	- get queue length
1682  *	@list_: list to measure
1683  *
1684  *	Return the length of an &sk_buff queue.
1685  */
skb_queue_len(const struct sk_buff_head * list_)1686 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1687 {
1688 	return list_->qlen;
1689 }
1690 
1691 /**
1692  *	skb_queue_len_lockless	- get queue length
1693  *	@list_: list to measure
1694  *
1695  *	Return the length of an &sk_buff queue.
1696  *	This variant can be used in lockless contexts.
1697  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1698 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1699 {
1700 	return READ_ONCE(list_->qlen);
1701 }
1702 
1703 /**
1704  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1705  *	@list: queue to initialize
1706  *
1707  *	This initializes only the list and queue length aspects of
1708  *	an sk_buff_head object.  This allows to initialize the list
1709  *	aspects of an sk_buff_head without reinitializing things like
1710  *	the spinlock.  It can also be used for on-stack sk_buff_head
1711  *	objects where the spinlock is known to not be used.
1712  */
__skb_queue_head_init(struct sk_buff_head * list)1713 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1714 {
1715 	list->prev = list->next = (struct sk_buff *)list;
1716 	list->qlen = 0;
1717 }
1718 
1719 /*
1720  * This function creates a split out lock class for each invocation;
1721  * this is needed for now since a whole lot of users of the skb-queue
1722  * infrastructure in drivers have different locking usage (in hardirq)
1723  * than the networking core (in softirq only). In the long run either the
1724  * network layer or drivers should need annotation to consolidate the
1725  * main types of usage into 3 classes.
1726  */
skb_queue_head_init(struct sk_buff_head * list)1727 static inline void skb_queue_head_init(struct sk_buff_head *list)
1728 {
1729 	spin_lock_init(&list->lock);
1730 	__skb_queue_head_init(list);
1731 }
1732 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1733 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1734 		struct lock_class_key *class)
1735 {
1736 	skb_queue_head_init(list);
1737 	lockdep_set_class(&list->lock, class);
1738 }
1739 
1740 /*
1741  *	Insert an sk_buff on a list.
1742  *
1743  *	The "__skb_xxxx()" functions are the non-atomic ones that
1744  *	can only be called with interrupts disabled.
1745  */
1746 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1747 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1748 static inline void __skb_insert(struct sk_buff *newsk,
1749 				struct sk_buff *prev, struct sk_buff *next,
1750 				struct sk_buff_head *list)
1751 {
1752 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1753 	 * for the opposite READ_ONCE()
1754 	 */
1755 	WRITE_ONCE(newsk->next, next);
1756 	WRITE_ONCE(newsk->prev, prev);
1757 	WRITE_ONCE(next->prev, newsk);
1758 	WRITE_ONCE(prev->next, newsk);
1759 	list->qlen++;
1760 }
1761 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1762 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1763 				      struct sk_buff *prev,
1764 				      struct sk_buff *next)
1765 {
1766 	struct sk_buff *first = list->next;
1767 	struct sk_buff *last = list->prev;
1768 
1769 	WRITE_ONCE(first->prev, prev);
1770 	WRITE_ONCE(prev->next, first);
1771 
1772 	WRITE_ONCE(last->next, next);
1773 	WRITE_ONCE(next->prev, last);
1774 }
1775 
1776 /**
1777  *	skb_queue_splice - join two skb lists, this is designed for stacks
1778  *	@list: the new list to add
1779  *	@head: the place to add it in the first list
1780  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1781 static inline void skb_queue_splice(const struct sk_buff_head *list,
1782 				    struct sk_buff_head *head)
1783 {
1784 	if (!skb_queue_empty(list)) {
1785 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1786 		head->qlen += list->qlen;
1787 	}
1788 }
1789 
1790 /**
1791  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1792  *	@list: the new list to add
1793  *	@head: the place to add it in the first list
1794  *
1795  *	The list at @list is reinitialised
1796  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1797 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1798 					 struct sk_buff_head *head)
1799 {
1800 	if (!skb_queue_empty(list)) {
1801 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1802 		head->qlen += list->qlen;
1803 		__skb_queue_head_init(list);
1804 	}
1805 }
1806 
1807 /**
1808  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1809  *	@list: the new list to add
1810  *	@head: the place to add it in the first list
1811  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1812 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1813 					 struct sk_buff_head *head)
1814 {
1815 	if (!skb_queue_empty(list)) {
1816 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1817 		head->qlen += list->qlen;
1818 	}
1819 }
1820 
1821 /**
1822  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1823  *	@list: the new list to add
1824  *	@head: the place to add it in the first list
1825  *
1826  *	Each of the lists is a queue.
1827  *	The list at @list is reinitialised
1828  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1829 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1830 					      struct sk_buff_head *head)
1831 {
1832 	if (!skb_queue_empty(list)) {
1833 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1834 		head->qlen += list->qlen;
1835 		__skb_queue_head_init(list);
1836 	}
1837 }
1838 
1839 /**
1840  *	__skb_queue_after - queue a buffer at the list head
1841  *	@list: list to use
1842  *	@prev: place after this buffer
1843  *	@newsk: buffer to queue
1844  *
1845  *	Queue a buffer int the middle of a list. This function takes no locks
1846  *	and you must therefore hold required locks before calling it.
1847  *
1848  *	A buffer cannot be placed on two lists at the same time.
1849  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1850 static inline void __skb_queue_after(struct sk_buff_head *list,
1851 				     struct sk_buff *prev,
1852 				     struct sk_buff *newsk)
1853 {
1854 	__skb_insert(newsk, prev, prev->next, list);
1855 }
1856 
1857 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1858 		struct sk_buff_head *list);
1859 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1860 static inline void __skb_queue_before(struct sk_buff_head *list,
1861 				      struct sk_buff *next,
1862 				      struct sk_buff *newsk)
1863 {
1864 	__skb_insert(newsk, next->prev, next, list);
1865 }
1866 
1867 /**
1868  *	__skb_queue_head - queue a buffer at the list head
1869  *	@list: list to use
1870  *	@newsk: buffer to queue
1871  *
1872  *	Queue a buffer at the start of a list. This function takes no locks
1873  *	and you must therefore hold required locks before calling it.
1874  *
1875  *	A buffer cannot be placed on two lists at the same time.
1876  */
1877 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1878 static inline void __skb_queue_head(struct sk_buff_head *list,
1879 				    struct sk_buff *newsk)
1880 {
1881 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1882 }
1883 
1884 /**
1885  *	__skb_queue_tail - queue a buffer at the list tail
1886  *	@list: list to use
1887  *	@newsk: buffer to queue
1888  *
1889  *	Queue a buffer at the end of a list. This function takes no locks
1890  *	and you must therefore hold required locks before calling it.
1891  *
1892  *	A buffer cannot be placed on two lists at the same time.
1893  */
1894 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1895 static inline void __skb_queue_tail(struct sk_buff_head *list,
1896 				   struct sk_buff *newsk)
1897 {
1898 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1899 }
1900 
1901 /*
1902  * remove sk_buff from list. _Must_ be called atomically, and with
1903  * the list known..
1904  */
1905 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1906 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1907 {
1908 	struct sk_buff *next, *prev;
1909 
1910 	WRITE_ONCE(list->qlen, list->qlen - 1);
1911 	next	   = skb->next;
1912 	prev	   = skb->prev;
1913 	skb->next  = skb->prev = NULL;
1914 	WRITE_ONCE(next->prev, prev);
1915 	WRITE_ONCE(prev->next, next);
1916 }
1917 
1918 /**
1919  *	__skb_dequeue - remove from the head of the queue
1920  *	@list: list to dequeue from
1921  *
1922  *	Remove the head of the list. This function does not take any locks
1923  *	so must be used with appropriate locks held only. The head item is
1924  *	returned or %NULL if the list is empty.
1925  */
1926 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1927 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1928 {
1929 	struct sk_buff *skb = skb_peek(list);
1930 	if (skb)
1931 		__skb_unlink(skb, list);
1932 	return skb;
1933 }
1934 
1935 /**
1936  *	__skb_dequeue_tail - remove from the tail of the queue
1937  *	@list: list to dequeue from
1938  *
1939  *	Remove the tail of the list. This function does not take any locks
1940  *	so must be used with appropriate locks held only. The tail item is
1941  *	returned or %NULL if the list is empty.
1942  */
1943 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1944 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1945 {
1946 	struct sk_buff *skb = skb_peek_tail(list);
1947 	if (skb)
1948 		__skb_unlink(skb, list);
1949 	return skb;
1950 }
1951 
1952 
skb_is_nonlinear(const struct sk_buff * skb)1953 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1954 {
1955 	return skb->data_len;
1956 }
1957 
skb_headlen(const struct sk_buff * skb)1958 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1959 {
1960 	return skb->len - skb->data_len;
1961 }
1962 
__skb_pagelen(const struct sk_buff * skb)1963 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1964 {
1965 	unsigned int i, len = 0;
1966 
1967 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1968 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1969 	return len;
1970 }
1971 
skb_pagelen(const struct sk_buff * skb)1972 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1973 {
1974 	return skb_headlen(skb) + __skb_pagelen(skb);
1975 }
1976 
1977 /**
1978  * __skb_fill_page_desc - initialise a paged fragment in an skb
1979  * @skb: buffer containing fragment to be initialised
1980  * @i: paged fragment index to initialise
1981  * @page: the page to use for this fragment
1982  * @off: the offset to the data with @page
1983  * @size: the length of the data
1984  *
1985  * Initialises the @i'th fragment of @skb to point to &size bytes at
1986  * offset @off within @page.
1987  *
1988  * Does not take any additional reference on the fragment.
1989  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1990 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1991 					struct page *page, int off, int size)
1992 {
1993 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1994 
1995 	/*
1996 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1997 	 * that not all callers have unique ownership of the page but rely
1998 	 * on page_is_pfmemalloc doing the right thing(tm).
1999 	 */
2000 	frag->page.p		  = page;
2001 	frag->page_offset	  = off;
2002 	skb_frag_size_set(frag, size);
2003 
2004 	page = compound_head(page);
2005 	if (page_is_pfmemalloc(page))
2006 		skb->pfmemalloc	= true;
2007 }
2008 
2009 /**
2010  * skb_fill_page_desc - initialise a paged fragment in an skb
2011  * @skb: buffer containing fragment to be initialised
2012  * @i: paged fragment index to initialise
2013  * @page: the page to use for this fragment
2014  * @off: the offset to the data with @page
2015  * @size: the length of the data
2016  *
2017  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2018  * @skb to point to @size bytes at offset @off within @page. In
2019  * addition updates @skb such that @i is the last fragment.
2020  *
2021  * Does not take any additional reference on the fragment.
2022  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2023 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2024 				      struct page *page, int off, int size)
2025 {
2026 	__skb_fill_page_desc(skb, i, page, off, size);
2027 	skb_shinfo(skb)->nr_frags = i + 1;
2028 }
2029 
2030 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2031 		     int size, unsigned int truesize);
2032 
2033 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2034 			  unsigned int truesize);
2035 
2036 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2037 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2038 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2039 
2040 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2041 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2042 {
2043 	return skb->head + skb->tail;
2044 }
2045 
skb_reset_tail_pointer(struct sk_buff * skb)2046 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2047 {
2048 	skb->tail = skb->data - skb->head;
2049 }
2050 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2051 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2052 {
2053 	skb_reset_tail_pointer(skb);
2054 	skb->tail += offset;
2055 }
2056 
2057 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2058 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2059 {
2060 	return skb->tail;
2061 }
2062 
skb_reset_tail_pointer(struct sk_buff * skb)2063 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2064 {
2065 	skb->tail = skb->data;
2066 }
2067 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2068 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2069 {
2070 	skb->tail = skb->data + offset;
2071 }
2072 
2073 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2074 
2075 /*
2076  *	Add data to an sk_buff
2077  */
2078 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2079 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2080 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2081 {
2082 	void *tmp = skb_tail_pointer(skb);
2083 	SKB_LINEAR_ASSERT(skb);
2084 	skb->tail += len;
2085 	skb->len  += len;
2086 	return tmp;
2087 }
2088 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2089 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2090 {
2091 	void *tmp = __skb_put(skb, len);
2092 
2093 	memset(tmp, 0, len);
2094 	return tmp;
2095 }
2096 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2097 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2098 				   unsigned int len)
2099 {
2100 	void *tmp = __skb_put(skb, len);
2101 
2102 	memcpy(tmp, data, len);
2103 	return tmp;
2104 }
2105 
__skb_put_u8(struct sk_buff * skb,u8 val)2106 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2107 {
2108 	*(u8 *)__skb_put(skb, 1) = val;
2109 }
2110 
skb_put_zero(struct sk_buff * skb,unsigned int len)2111 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2112 {
2113 	void *tmp = skb_put(skb, len);
2114 
2115 	memset(tmp, 0, len);
2116 
2117 	return tmp;
2118 }
2119 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2120 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2121 				 unsigned int len)
2122 {
2123 	void *tmp = skb_put(skb, len);
2124 
2125 	memcpy(tmp, data, len);
2126 
2127 	return tmp;
2128 }
2129 
skb_put_u8(struct sk_buff * skb,u8 val)2130 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2131 {
2132 	*(u8 *)skb_put(skb, 1) = val;
2133 }
2134 
2135 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2136 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2137 {
2138 	skb->data -= len;
2139 	skb->len  += len;
2140 	return skb->data;
2141 }
2142 
2143 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2144 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2145 {
2146 	skb->len -= len;
2147 	BUG_ON(skb->len < skb->data_len);
2148 	return skb->data += len;
2149 }
2150 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2151 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2152 {
2153 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2154 }
2155 
2156 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2157 
__pskb_pull(struct sk_buff * skb,unsigned int len)2158 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2159 {
2160 	if (len > skb_headlen(skb) &&
2161 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2162 		return NULL;
2163 	skb->len -= len;
2164 	return skb->data += len;
2165 }
2166 
pskb_pull(struct sk_buff * skb,unsigned int len)2167 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2168 {
2169 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2170 }
2171 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2172 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2173 {
2174 	if (likely(len <= skb_headlen(skb)))
2175 		return 1;
2176 	if (unlikely(len > skb->len))
2177 		return 0;
2178 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2179 }
2180 
2181 void skb_condense(struct sk_buff *skb);
2182 
2183 /**
2184  *	skb_headroom - bytes at buffer head
2185  *	@skb: buffer to check
2186  *
2187  *	Return the number of bytes of free space at the head of an &sk_buff.
2188  */
skb_headroom(const struct sk_buff * skb)2189 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2190 {
2191 	return skb->data - skb->head;
2192 }
2193 
2194 /**
2195  *	skb_tailroom - bytes at buffer end
2196  *	@skb: buffer to check
2197  *
2198  *	Return the number of bytes of free space at the tail of an sk_buff
2199  */
skb_tailroom(const struct sk_buff * skb)2200 static inline int skb_tailroom(const struct sk_buff *skb)
2201 {
2202 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2203 }
2204 
2205 /**
2206  *	skb_availroom - bytes at buffer end
2207  *	@skb: buffer to check
2208  *
2209  *	Return the number of bytes of free space at the tail of an sk_buff
2210  *	allocated by sk_stream_alloc()
2211  */
skb_availroom(const struct sk_buff * skb)2212 static inline int skb_availroom(const struct sk_buff *skb)
2213 {
2214 	if (skb_is_nonlinear(skb))
2215 		return 0;
2216 
2217 	return skb->end - skb->tail - skb->reserved_tailroom;
2218 }
2219 
2220 /**
2221  *	skb_reserve - adjust headroom
2222  *	@skb: buffer to alter
2223  *	@len: bytes to move
2224  *
2225  *	Increase the headroom of an empty &sk_buff by reducing the tail
2226  *	room. This is only allowed for an empty buffer.
2227  */
skb_reserve(struct sk_buff * skb,int len)2228 static inline void skb_reserve(struct sk_buff *skb, int len)
2229 {
2230 	skb->data += len;
2231 	skb->tail += len;
2232 }
2233 
2234 /**
2235  *	skb_tailroom_reserve - adjust reserved_tailroom
2236  *	@skb: buffer to alter
2237  *	@mtu: maximum amount of headlen permitted
2238  *	@needed_tailroom: minimum amount of reserved_tailroom
2239  *
2240  *	Set reserved_tailroom so that headlen can be as large as possible but
2241  *	not larger than mtu and tailroom cannot be smaller than
2242  *	needed_tailroom.
2243  *	The required headroom should already have been reserved before using
2244  *	this function.
2245  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2246 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2247 					unsigned int needed_tailroom)
2248 {
2249 	SKB_LINEAR_ASSERT(skb);
2250 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2251 		/* use at most mtu */
2252 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2253 	else
2254 		/* use up to all available space */
2255 		skb->reserved_tailroom = needed_tailroom;
2256 }
2257 
2258 #define ENCAP_TYPE_ETHER	0
2259 #define ENCAP_TYPE_IPPROTO	1
2260 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2261 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2262 					  __be16 protocol)
2263 {
2264 	skb->inner_protocol = protocol;
2265 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2266 }
2267 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2268 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2269 					 __u8 ipproto)
2270 {
2271 	skb->inner_ipproto = ipproto;
2272 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2273 }
2274 
skb_reset_inner_headers(struct sk_buff * skb)2275 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2276 {
2277 	skb->inner_mac_header = skb->mac_header;
2278 	skb->inner_network_header = skb->network_header;
2279 	skb->inner_transport_header = skb->transport_header;
2280 }
2281 
skb_reset_mac_len(struct sk_buff * skb)2282 static inline void skb_reset_mac_len(struct sk_buff *skb)
2283 {
2284 	skb->mac_len = skb->network_header - skb->mac_header;
2285 }
2286 
skb_inner_transport_header(const struct sk_buff * skb)2287 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2288 							*skb)
2289 {
2290 	return skb->head + skb->inner_transport_header;
2291 }
2292 
skb_inner_transport_offset(const struct sk_buff * skb)2293 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2294 {
2295 	return skb_inner_transport_header(skb) - skb->data;
2296 }
2297 
skb_reset_inner_transport_header(struct sk_buff * skb)2298 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2299 {
2300 	skb->inner_transport_header = skb->data - skb->head;
2301 }
2302 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2303 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2304 						   const int offset)
2305 {
2306 	skb_reset_inner_transport_header(skb);
2307 	skb->inner_transport_header += offset;
2308 }
2309 
skb_inner_network_header(const struct sk_buff * skb)2310 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2311 {
2312 	return skb->head + skb->inner_network_header;
2313 }
2314 
skb_reset_inner_network_header(struct sk_buff * skb)2315 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2316 {
2317 	skb->inner_network_header = skb->data - skb->head;
2318 }
2319 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2320 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2321 						const int offset)
2322 {
2323 	skb_reset_inner_network_header(skb);
2324 	skb->inner_network_header += offset;
2325 }
2326 
skb_inner_mac_header(const struct sk_buff * skb)2327 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2328 {
2329 	return skb->head + skb->inner_mac_header;
2330 }
2331 
skb_reset_inner_mac_header(struct sk_buff * skb)2332 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2333 {
2334 	skb->inner_mac_header = skb->data - skb->head;
2335 }
2336 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2337 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2338 					    const int offset)
2339 {
2340 	skb_reset_inner_mac_header(skb);
2341 	skb->inner_mac_header += offset;
2342 }
skb_transport_header_was_set(const struct sk_buff * skb)2343 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2344 {
2345 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2346 }
2347 
skb_transport_header(const struct sk_buff * skb)2348 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2349 {
2350 	return skb->head + skb->transport_header;
2351 }
2352 
skb_reset_transport_header(struct sk_buff * skb)2353 static inline void skb_reset_transport_header(struct sk_buff *skb)
2354 {
2355 	skb->transport_header = skb->data - skb->head;
2356 }
2357 
skb_set_transport_header(struct sk_buff * skb,const int offset)2358 static inline void skb_set_transport_header(struct sk_buff *skb,
2359 					    const int offset)
2360 {
2361 	skb_reset_transport_header(skb);
2362 	skb->transport_header += offset;
2363 }
2364 
skb_network_header(const struct sk_buff * skb)2365 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2366 {
2367 	return skb->head + skb->network_header;
2368 }
2369 
skb_reset_network_header(struct sk_buff * skb)2370 static inline void skb_reset_network_header(struct sk_buff *skb)
2371 {
2372 	skb->network_header = skb->data - skb->head;
2373 }
2374 
skb_set_network_header(struct sk_buff * skb,const int offset)2375 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2376 {
2377 	skb_reset_network_header(skb);
2378 	skb->network_header += offset;
2379 }
2380 
skb_mac_header(const struct sk_buff * skb)2381 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2382 {
2383 	return skb->head + skb->mac_header;
2384 }
2385 
skb_mac_offset(const struct sk_buff * skb)2386 static inline int skb_mac_offset(const struct sk_buff *skb)
2387 {
2388 	return skb_mac_header(skb) - skb->data;
2389 }
2390 
skb_mac_header_len(const struct sk_buff * skb)2391 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2392 {
2393 	return skb->network_header - skb->mac_header;
2394 }
2395 
skb_mac_header_was_set(const struct sk_buff * skb)2396 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2397 {
2398 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2399 }
2400 
skb_reset_mac_header(struct sk_buff * skb)2401 static inline void skb_reset_mac_header(struct sk_buff *skb)
2402 {
2403 	skb->mac_header = skb->data - skb->head;
2404 }
2405 
skb_set_mac_header(struct sk_buff * skb,const int offset)2406 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2407 {
2408 	skb_reset_mac_header(skb);
2409 	skb->mac_header += offset;
2410 }
2411 
skb_pop_mac_header(struct sk_buff * skb)2412 static inline void skb_pop_mac_header(struct sk_buff *skb)
2413 {
2414 	skb->mac_header = skb->network_header;
2415 }
2416 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2417 static inline void skb_probe_transport_header(struct sk_buff *skb,
2418 					      const int offset_hint)
2419 {
2420 	struct flow_keys_basic keys;
2421 
2422 	if (skb_transport_header_was_set(skb))
2423 		return;
2424 
2425 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2426 		skb_set_transport_header(skb, keys.control.thoff);
2427 	else if (offset_hint >= 0)
2428 		skb_set_transport_header(skb, offset_hint);
2429 }
2430 
skb_mac_header_rebuild(struct sk_buff * skb)2431 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2432 {
2433 	if (skb_mac_header_was_set(skb)) {
2434 		const unsigned char *old_mac = skb_mac_header(skb);
2435 
2436 		skb_set_mac_header(skb, -skb->mac_len);
2437 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2438 	}
2439 }
2440 
skb_checksum_start_offset(const struct sk_buff * skb)2441 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2442 {
2443 	return skb->csum_start - skb_headroom(skb);
2444 }
2445 
skb_checksum_start(const struct sk_buff * skb)2446 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2447 {
2448 	return skb->head + skb->csum_start;
2449 }
2450 
skb_transport_offset(const struct sk_buff * skb)2451 static inline int skb_transport_offset(const struct sk_buff *skb)
2452 {
2453 	return skb_transport_header(skb) - skb->data;
2454 }
2455 
skb_network_header_len(const struct sk_buff * skb)2456 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2457 {
2458 	return skb->transport_header - skb->network_header;
2459 }
2460 
skb_inner_network_header_len(const struct sk_buff * skb)2461 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2462 {
2463 	return skb->inner_transport_header - skb->inner_network_header;
2464 }
2465 
skb_network_offset(const struct sk_buff * skb)2466 static inline int skb_network_offset(const struct sk_buff *skb)
2467 {
2468 	return skb_network_header(skb) - skb->data;
2469 }
2470 
skb_inner_network_offset(const struct sk_buff * skb)2471 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2472 {
2473 	return skb_inner_network_header(skb) - skb->data;
2474 }
2475 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2476 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2477 {
2478 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2479 }
2480 
2481 /*
2482  * CPUs often take a performance hit when accessing unaligned memory
2483  * locations. The actual performance hit varies, it can be small if the
2484  * hardware handles it or large if we have to take an exception and fix it
2485  * in software.
2486  *
2487  * Since an ethernet header is 14 bytes network drivers often end up with
2488  * the IP header at an unaligned offset. The IP header can be aligned by
2489  * shifting the start of the packet by 2 bytes. Drivers should do this
2490  * with:
2491  *
2492  * skb_reserve(skb, NET_IP_ALIGN);
2493  *
2494  * The downside to this alignment of the IP header is that the DMA is now
2495  * unaligned. On some architectures the cost of an unaligned DMA is high
2496  * and this cost outweighs the gains made by aligning the IP header.
2497  *
2498  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2499  * to be overridden.
2500  */
2501 #ifndef NET_IP_ALIGN
2502 #define NET_IP_ALIGN	2
2503 #endif
2504 
2505 /*
2506  * The networking layer reserves some headroom in skb data (via
2507  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2508  * the header has to grow. In the default case, if the header has to grow
2509  * 32 bytes or less we avoid the reallocation.
2510  *
2511  * Unfortunately this headroom changes the DMA alignment of the resulting
2512  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2513  * on some architectures. An architecture can override this value,
2514  * perhaps setting it to a cacheline in size (since that will maintain
2515  * cacheline alignment of the DMA). It must be a power of 2.
2516  *
2517  * Various parts of the networking layer expect at least 32 bytes of
2518  * headroom, you should not reduce this.
2519  *
2520  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2521  * to reduce average number of cache lines per packet.
2522  * get_rps_cpus() for example only access one 64 bytes aligned block :
2523  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2524  */
2525 #ifndef NET_SKB_PAD
2526 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2527 #endif
2528 
2529 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2530 
__skb_set_length(struct sk_buff * skb,unsigned int len)2531 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2532 {
2533 	if (unlikely(skb_is_nonlinear(skb))) {
2534 		WARN_ON(1);
2535 		return;
2536 	}
2537 	skb->len = len;
2538 	skb_set_tail_pointer(skb, len);
2539 }
2540 
__skb_trim(struct sk_buff * skb,unsigned int len)2541 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2542 {
2543 	__skb_set_length(skb, len);
2544 }
2545 
2546 void skb_trim(struct sk_buff *skb, unsigned int len);
2547 
__pskb_trim(struct sk_buff * skb,unsigned int len)2548 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2549 {
2550 	if (skb->data_len)
2551 		return ___pskb_trim(skb, len);
2552 	__skb_trim(skb, len);
2553 	return 0;
2554 }
2555 
pskb_trim(struct sk_buff * skb,unsigned int len)2556 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2557 {
2558 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2559 }
2560 
2561 /**
2562  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2563  *	@skb: buffer to alter
2564  *	@len: new length
2565  *
2566  *	This is identical to pskb_trim except that the caller knows that
2567  *	the skb is not cloned so we should never get an error due to out-
2568  *	of-memory.
2569  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2570 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2571 {
2572 	int err = pskb_trim(skb, len);
2573 	BUG_ON(err);
2574 }
2575 
__skb_grow(struct sk_buff * skb,unsigned int len)2576 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2577 {
2578 	unsigned int diff = len - skb->len;
2579 
2580 	if (skb_tailroom(skb) < diff) {
2581 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2582 					   GFP_ATOMIC);
2583 		if (ret)
2584 			return ret;
2585 	}
2586 	__skb_set_length(skb, len);
2587 	return 0;
2588 }
2589 
2590 /**
2591  *	skb_orphan - orphan a buffer
2592  *	@skb: buffer to orphan
2593  *
2594  *	If a buffer currently has an owner then we call the owner's
2595  *	destructor function and make the @skb unowned. The buffer continues
2596  *	to exist but is no longer charged to its former owner.
2597  */
skb_orphan(struct sk_buff * skb)2598 static inline void skb_orphan(struct sk_buff *skb)
2599 {
2600 	if (skb->destructor) {
2601 		skb->destructor(skb);
2602 		skb->destructor = NULL;
2603 		skb->sk		= NULL;
2604 	} else {
2605 		BUG_ON(skb->sk);
2606 	}
2607 }
2608 
2609 /**
2610  *	skb_orphan_frags - orphan the frags contained in a buffer
2611  *	@skb: buffer to orphan frags from
2612  *	@gfp_mask: allocation mask for replacement pages
2613  *
2614  *	For each frag in the SKB which needs a destructor (i.e. has an
2615  *	owner) create a copy of that frag and release the original
2616  *	page by calling the destructor.
2617  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2618 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2619 {
2620 	if (likely(!skb_zcopy(skb)))
2621 		return 0;
2622 	if (!skb_zcopy_is_nouarg(skb) &&
2623 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2624 		return 0;
2625 	return skb_copy_ubufs(skb, gfp_mask);
2626 }
2627 
2628 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2629 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2630 {
2631 	if (likely(!skb_zcopy(skb)))
2632 		return 0;
2633 	return skb_copy_ubufs(skb, gfp_mask);
2634 }
2635 
2636 /**
2637  *	__skb_queue_purge - empty a list
2638  *	@list: list to empty
2639  *
2640  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2641  *	the list and one reference dropped. This function does not take the
2642  *	list lock and the caller must hold the relevant locks to use it.
2643  */
2644 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2645 static inline void __skb_queue_purge(struct sk_buff_head *list)
2646 {
2647 	struct sk_buff *skb;
2648 	while ((skb = __skb_dequeue(list)) != NULL)
2649 		kfree_skb(skb);
2650 }
2651 
2652 unsigned int skb_rbtree_purge(struct rb_root *root);
2653 
2654 void *netdev_alloc_frag(unsigned int fragsz);
2655 
2656 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2657 				   gfp_t gfp_mask);
2658 
2659 /**
2660  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2661  *	@dev: network device to receive on
2662  *	@length: length to allocate
2663  *
2664  *	Allocate a new &sk_buff and assign it a usage count of one. The
2665  *	buffer has unspecified headroom built in. Users should allocate
2666  *	the headroom they think they need without accounting for the
2667  *	built in space. The built in space is used for optimisations.
2668  *
2669  *	%NULL is returned if there is no free memory. Although this function
2670  *	allocates memory it can be called from an interrupt.
2671  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2672 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2673 					       unsigned int length)
2674 {
2675 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2676 }
2677 
2678 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2680 					      gfp_t gfp_mask)
2681 {
2682 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2683 }
2684 
2685 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2686 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2687 {
2688 	return netdev_alloc_skb(NULL, length);
2689 }
2690 
2691 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2692 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2693 		unsigned int length, gfp_t gfp)
2694 {
2695 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2696 
2697 	if (NET_IP_ALIGN && skb)
2698 		skb_reserve(skb, NET_IP_ALIGN);
2699 	return skb;
2700 }
2701 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2702 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2703 		unsigned int length)
2704 {
2705 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2706 }
2707 
skb_free_frag(void * addr)2708 static inline void skb_free_frag(void *addr)
2709 {
2710 	page_frag_free(addr);
2711 }
2712 
2713 void *napi_alloc_frag(unsigned int fragsz);
2714 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2715 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2716 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2717 					     unsigned int length)
2718 {
2719 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2720 }
2721 void napi_consume_skb(struct sk_buff *skb, int budget);
2722 
2723 void __kfree_skb_flush(void);
2724 void __kfree_skb_defer(struct sk_buff *skb);
2725 
2726 /**
2727  * __dev_alloc_pages - allocate page for network Rx
2728  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2729  * @order: size of the allocation
2730  *
2731  * Allocate a new page.
2732  *
2733  * %NULL is returned if there is no free memory.
2734 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2735 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2736 					     unsigned int order)
2737 {
2738 	/* This piece of code contains several assumptions.
2739 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2740 	 * 2.  The expectation is the user wants a compound page.
2741 	 * 3.  If requesting a order 0 page it will not be compound
2742 	 *     due to the check to see if order has a value in prep_new_page
2743 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2744 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2745 	 */
2746 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2747 
2748 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2749 }
2750 
dev_alloc_pages(unsigned int order)2751 static inline struct page *dev_alloc_pages(unsigned int order)
2752 {
2753 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2754 }
2755 
2756 /**
2757  * __dev_alloc_page - allocate a page for network Rx
2758  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2759  *
2760  * Allocate a new page.
2761  *
2762  * %NULL is returned if there is no free memory.
2763  */
__dev_alloc_page(gfp_t gfp_mask)2764 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2765 {
2766 	return __dev_alloc_pages(gfp_mask, 0);
2767 }
2768 
dev_alloc_page(void)2769 static inline struct page *dev_alloc_page(void)
2770 {
2771 	return dev_alloc_pages(0);
2772 }
2773 
2774 /**
2775  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2776  *	@page: The page that was allocated from skb_alloc_page
2777  *	@skb: The skb that may need pfmemalloc set
2778  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2779 static inline void skb_propagate_pfmemalloc(struct page *page,
2780 					     struct sk_buff *skb)
2781 {
2782 	if (page_is_pfmemalloc(page))
2783 		skb->pfmemalloc = true;
2784 }
2785 
2786 /**
2787  * skb_frag_page - retrieve the page referred to by a paged fragment
2788  * @frag: the paged fragment
2789  *
2790  * Returns the &struct page associated with @frag.
2791  */
skb_frag_page(const skb_frag_t * frag)2792 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2793 {
2794 	return frag->page.p;
2795 }
2796 
2797 /**
2798  * __skb_frag_ref - take an addition reference on a paged fragment.
2799  * @frag: the paged fragment
2800  *
2801  * Takes an additional reference on the paged fragment @frag.
2802  */
__skb_frag_ref(skb_frag_t * frag)2803 static inline void __skb_frag_ref(skb_frag_t *frag)
2804 {
2805 	get_page(skb_frag_page(frag));
2806 }
2807 
2808 /**
2809  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2810  * @skb: the buffer
2811  * @f: the fragment offset.
2812  *
2813  * Takes an additional reference on the @f'th paged fragment of @skb.
2814  */
skb_frag_ref(struct sk_buff * skb,int f)2815 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2816 {
2817 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2818 }
2819 
2820 /**
2821  * __skb_frag_unref - release a reference on a paged fragment.
2822  * @frag: the paged fragment
2823  *
2824  * Releases a reference on the paged fragment @frag.
2825  */
__skb_frag_unref(skb_frag_t * frag)2826 static inline void __skb_frag_unref(skb_frag_t *frag)
2827 {
2828 	put_page(skb_frag_page(frag));
2829 }
2830 
2831 /**
2832  * skb_frag_unref - release a reference on a paged fragment of an skb.
2833  * @skb: the buffer
2834  * @f: the fragment offset
2835  *
2836  * Releases a reference on the @f'th paged fragment of @skb.
2837  */
skb_frag_unref(struct sk_buff * skb,int f)2838 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2839 {
2840 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2841 }
2842 
2843 /**
2844  * skb_frag_address - gets the address of the data contained in a paged fragment
2845  * @frag: the paged fragment buffer
2846  *
2847  * Returns the address of the data within @frag. The page must already
2848  * be mapped.
2849  */
skb_frag_address(const skb_frag_t * frag)2850 static inline void *skb_frag_address(const skb_frag_t *frag)
2851 {
2852 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2853 }
2854 
2855 /**
2856  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2857  * @frag: the paged fragment buffer
2858  *
2859  * Returns the address of the data within @frag. Checks that the page
2860  * is mapped and returns %NULL otherwise.
2861  */
skb_frag_address_safe(const skb_frag_t * frag)2862 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2863 {
2864 	void *ptr = page_address(skb_frag_page(frag));
2865 	if (unlikely(!ptr))
2866 		return NULL;
2867 
2868 	return ptr + frag->page_offset;
2869 }
2870 
2871 /**
2872  * __skb_frag_set_page - sets the page contained in a paged fragment
2873  * @frag: the paged fragment
2874  * @page: the page to set
2875  *
2876  * Sets the fragment @frag to contain @page.
2877  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2878 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2879 {
2880 	frag->page.p = page;
2881 }
2882 
2883 /**
2884  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2885  * @skb: the buffer
2886  * @f: the fragment offset
2887  * @page: the page to set
2888  *
2889  * Sets the @f'th fragment of @skb to contain @page.
2890  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2891 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2892 				     struct page *page)
2893 {
2894 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2895 }
2896 
2897 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2898 
2899 /**
2900  * skb_frag_dma_map - maps a paged fragment via the DMA API
2901  * @dev: the device to map the fragment to
2902  * @frag: the paged fragment to map
2903  * @offset: the offset within the fragment (starting at the
2904  *          fragment's own offset)
2905  * @size: the number of bytes to map
2906  * @dir: the direction of the mapping (``PCI_DMA_*``)
2907  *
2908  * Maps the page associated with @frag to @device.
2909  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2910 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2911 					  const skb_frag_t *frag,
2912 					  size_t offset, size_t size,
2913 					  enum dma_data_direction dir)
2914 {
2915 	return dma_map_page(dev, skb_frag_page(frag),
2916 			    frag->page_offset + offset, size, dir);
2917 }
2918 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2919 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2920 					gfp_t gfp_mask)
2921 {
2922 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2923 }
2924 
2925 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2926 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2927 						  gfp_t gfp_mask)
2928 {
2929 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2930 }
2931 
2932 
2933 /**
2934  *	skb_clone_writable - is the header of a clone writable
2935  *	@skb: buffer to check
2936  *	@len: length up to which to write
2937  *
2938  *	Returns true if modifying the header part of the cloned buffer
2939  *	does not requires the data to be copied.
2940  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2941 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2942 {
2943 	return !skb_header_cloned(skb) &&
2944 	       skb_headroom(skb) + len <= skb->hdr_len;
2945 }
2946 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2947 static inline int skb_try_make_writable(struct sk_buff *skb,
2948 					unsigned int write_len)
2949 {
2950 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2951 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2952 }
2953 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2954 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2955 			    int cloned)
2956 {
2957 	int delta = 0;
2958 
2959 	if (headroom > skb_headroom(skb))
2960 		delta = headroom - skb_headroom(skb);
2961 
2962 	if (delta || cloned)
2963 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2964 					GFP_ATOMIC);
2965 	return 0;
2966 }
2967 
2968 /**
2969  *	skb_cow - copy header of skb when it is required
2970  *	@skb: buffer to cow
2971  *	@headroom: needed headroom
2972  *
2973  *	If the skb passed lacks sufficient headroom or its data part
2974  *	is shared, data is reallocated. If reallocation fails, an error
2975  *	is returned and original skb is not changed.
2976  *
2977  *	The result is skb with writable area skb->head...skb->tail
2978  *	and at least @headroom of space at head.
2979  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2980 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2981 {
2982 	return __skb_cow(skb, headroom, skb_cloned(skb));
2983 }
2984 
2985 /**
2986  *	skb_cow_head - skb_cow but only making the head writable
2987  *	@skb: buffer to cow
2988  *	@headroom: needed headroom
2989  *
2990  *	This function is identical to skb_cow except that we replace the
2991  *	skb_cloned check by skb_header_cloned.  It should be used when
2992  *	you only need to push on some header and do not need to modify
2993  *	the data.
2994  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2995 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2996 {
2997 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2998 }
2999 
3000 /**
3001  *	skb_padto	- pad an skbuff up to a minimal size
3002  *	@skb: buffer to pad
3003  *	@len: minimal length
3004  *
3005  *	Pads up a buffer to ensure the trailing bytes exist and are
3006  *	blanked. If the buffer already contains sufficient data it
3007  *	is untouched. Otherwise it is extended. Returns zero on
3008  *	success. The skb is freed on error.
3009  */
skb_padto(struct sk_buff * skb,unsigned int len)3010 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3011 {
3012 	unsigned int size = skb->len;
3013 	if (likely(size >= len))
3014 		return 0;
3015 	return skb_pad(skb, len - size);
3016 }
3017 
3018 /**
3019  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3020  *	@skb: buffer to pad
3021  *	@len: minimal length
3022  *	@free_on_error: free buffer on error
3023  *
3024  *	Pads up a buffer to ensure the trailing bytes exist and are
3025  *	blanked. If the buffer already contains sufficient data it
3026  *	is untouched. Otherwise it is extended. Returns zero on
3027  *	success. The skb is freed on error if @free_on_error is true.
3028  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3029 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3030 					       unsigned int len,
3031 					       bool free_on_error)
3032 {
3033 	unsigned int size = skb->len;
3034 
3035 	if (unlikely(size < len)) {
3036 		len -= size;
3037 		if (__skb_pad(skb, len, free_on_error))
3038 			return -ENOMEM;
3039 		__skb_put(skb, len);
3040 	}
3041 	return 0;
3042 }
3043 
3044 /**
3045  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3046  *	@skb: buffer to pad
3047  *	@len: minimal length
3048  *
3049  *	Pads up a buffer to ensure the trailing bytes exist and are
3050  *	blanked. If the buffer already contains sufficient data it
3051  *	is untouched. Otherwise it is extended. Returns zero on
3052  *	success. The skb is freed on error.
3053  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3054 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3055 {
3056 	return __skb_put_padto(skb, len, true);
3057 }
3058 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3059 static inline int skb_add_data(struct sk_buff *skb,
3060 			       struct iov_iter *from, int copy)
3061 {
3062 	const int off = skb->len;
3063 
3064 	if (skb->ip_summed == CHECKSUM_NONE) {
3065 		__wsum csum = 0;
3066 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3067 					         &csum, from)) {
3068 			skb->csum = csum_block_add(skb->csum, csum, off);
3069 			return 0;
3070 		}
3071 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3072 		return 0;
3073 
3074 	__skb_trim(skb, off);
3075 	return -EFAULT;
3076 }
3077 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3078 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3079 				    const struct page *page, int off)
3080 {
3081 	if (skb_zcopy(skb))
3082 		return false;
3083 	if (i) {
3084 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3085 
3086 		return page == skb_frag_page(frag) &&
3087 		       off == frag->page_offset + skb_frag_size(frag);
3088 	}
3089 	return false;
3090 }
3091 
__skb_linearize(struct sk_buff * skb)3092 static inline int __skb_linearize(struct sk_buff *skb)
3093 {
3094 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3095 }
3096 
3097 /**
3098  *	skb_linearize - convert paged skb to linear one
3099  *	@skb: buffer to linarize
3100  *
3101  *	If there is no free memory -ENOMEM is returned, otherwise zero
3102  *	is returned and the old skb data released.
3103  */
skb_linearize(struct sk_buff * skb)3104 static inline int skb_linearize(struct sk_buff *skb)
3105 {
3106 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3107 }
3108 
3109 /**
3110  * skb_has_shared_frag - can any frag be overwritten
3111  * @skb: buffer to test
3112  *
3113  * Return true if the skb has at least one frag that might be modified
3114  * by an external entity (as in vmsplice()/sendfile())
3115  */
skb_has_shared_frag(const struct sk_buff * skb)3116 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3117 {
3118 	return skb_is_nonlinear(skb) &&
3119 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3120 }
3121 
3122 /**
3123  *	skb_linearize_cow - make sure skb is linear and writable
3124  *	@skb: buffer to process
3125  *
3126  *	If there is no free memory -ENOMEM is returned, otherwise zero
3127  *	is returned and the old skb data released.
3128  */
skb_linearize_cow(struct sk_buff * skb)3129 static inline int skb_linearize_cow(struct sk_buff *skb)
3130 {
3131 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3132 	       __skb_linearize(skb) : 0;
3133 }
3134 
3135 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3136 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3137 		     unsigned int off)
3138 {
3139 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3140 		skb->csum = csum_block_sub(skb->csum,
3141 					   csum_partial(start, len, 0), off);
3142 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3143 		 skb_checksum_start_offset(skb) < 0)
3144 		skb->ip_summed = CHECKSUM_NONE;
3145 }
3146 
3147 /**
3148  *	skb_postpull_rcsum - update checksum for received skb after pull
3149  *	@skb: buffer to update
3150  *	@start: start of data before pull
3151  *	@len: length of data pulled
3152  *
3153  *	After doing a pull on a received packet, you need to call this to
3154  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3155  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3156  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3157 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3158 				      const void *start, unsigned int len)
3159 {
3160 	__skb_postpull_rcsum(skb, start, len, 0);
3161 }
3162 
3163 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3164 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3165 		     unsigned int off)
3166 {
3167 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3168 		skb->csum = csum_block_add(skb->csum,
3169 					   csum_partial(start, len, 0), off);
3170 }
3171 
3172 /**
3173  *	skb_postpush_rcsum - update checksum for received skb after push
3174  *	@skb: buffer to update
3175  *	@start: start of data after push
3176  *	@len: length of data pushed
3177  *
3178  *	After doing a push on a received packet, you need to call this to
3179  *	update the CHECKSUM_COMPLETE checksum.
3180  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3181 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3182 				      const void *start, unsigned int len)
3183 {
3184 	__skb_postpush_rcsum(skb, start, len, 0);
3185 }
3186 
3187 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3188 
3189 /**
3190  *	skb_push_rcsum - push skb and update receive checksum
3191  *	@skb: buffer to update
3192  *	@len: length of data pulled
3193  *
3194  *	This function performs an skb_push on the packet and updates
3195  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3196  *	receive path processing instead of skb_push unless you know
3197  *	that the checksum difference is zero (e.g., a valid IP header)
3198  *	or you are setting ip_summed to CHECKSUM_NONE.
3199  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3200 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3201 {
3202 	skb_push(skb, len);
3203 	skb_postpush_rcsum(skb, skb->data, len);
3204 	return skb->data;
3205 }
3206 
3207 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3208 /**
3209  *	pskb_trim_rcsum - trim received skb and update checksum
3210  *	@skb: buffer to trim
3211  *	@len: new length
3212  *
3213  *	This is exactly the same as pskb_trim except that it ensures the
3214  *	checksum of received packets are still valid after the operation.
3215  *	It can change skb pointers.
3216  */
3217 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3218 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3219 {
3220 	if (likely(len >= skb->len))
3221 		return 0;
3222 	return pskb_trim_rcsum_slow(skb, len);
3223 }
3224 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3225 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3226 {
3227 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3228 		skb->ip_summed = CHECKSUM_NONE;
3229 	__skb_trim(skb, len);
3230 	return 0;
3231 }
3232 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3233 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3234 {
3235 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3236 		skb->ip_summed = CHECKSUM_NONE;
3237 	return __skb_grow(skb, len);
3238 }
3239 
3240 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3241 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3242 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3243 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3244 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3245 
3246 #define skb_queue_walk(queue, skb) \
3247 		for (skb = (queue)->next;					\
3248 		     skb != (struct sk_buff *)(queue);				\
3249 		     skb = skb->next)
3250 
3251 #define skb_queue_walk_safe(queue, skb, tmp)					\
3252 		for (skb = (queue)->next, tmp = skb->next;			\
3253 		     skb != (struct sk_buff *)(queue);				\
3254 		     skb = tmp, tmp = skb->next)
3255 
3256 #define skb_queue_walk_from(queue, skb)						\
3257 		for (; skb != (struct sk_buff *)(queue);			\
3258 		     skb = skb->next)
3259 
3260 #define skb_rbtree_walk(skb, root)						\
3261 		for (skb = skb_rb_first(root); skb != NULL;			\
3262 		     skb = skb_rb_next(skb))
3263 
3264 #define skb_rbtree_walk_from(skb)						\
3265 		for (; skb != NULL;						\
3266 		     skb = skb_rb_next(skb))
3267 
3268 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3269 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3270 		     skb = tmp)
3271 
3272 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3273 		for (tmp = skb->next;						\
3274 		     skb != (struct sk_buff *)(queue);				\
3275 		     skb = tmp, tmp = skb->next)
3276 
3277 #define skb_queue_reverse_walk(queue, skb) \
3278 		for (skb = (queue)->prev;					\
3279 		     skb != (struct sk_buff *)(queue);				\
3280 		     skb = skb->prev)
3281 
3282 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3283 		for (skb = (queue)->prev, tmp = skb->prev;			\
3284 		     skb != (struct sk_buff *)(queue);				\
3285 		     skb = tmp, tmp = skb->prev)
3286 
3287 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3288 		for (tmp = skb->prev;						\
3289 		     skb != (struct sk_buff *)(queue);				\
3290 		     skb = tmp, tmp = skb->prev)
3291 
skb_has_frag_list(const struct sk_buff * skb)3292 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3293 {
3294 	return skb_shinfo(skb)->frag_list != NULL;
3295 }
3296 
skb_frag_list_init(struct sk_buff * skb)3297 static inline void skb_frag_list_init(struct sk_buff *skb)
3298 {
3299 	skb_shinfo(skb)->frag_list = NULL;
3300 }
3301 
3302 #define skb_walk_frags(skb, iter)	\
3303 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3304 
3305 
3306 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3307 				const struct sk_buff *skb);
3308 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3309 					  struct sk_buff_head *queue,
3310 					  unsigned int flags,
3311 					  void (*destructor)(struct sock *sk,
3312 							   struct sk_buff *skb),
3313 					  int *peeked, int *off, int *err,
3314 					  struct sk_buff **last);
3315 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3316 					void (*destructor)(struct sock *sk,
3317 							   struct sk_buff *skb),
3318 					int *peeked, int *off, int *err,
3319 					struct sk_buff **last);
3320 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3321 				    void (*destructor)(struct sock *sk,
3322 						       struct sk_buff *skb),
3323 				    int *peeked, int *off, int *err);
3324 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3325 				  int *err);
3326 __poll_t datagram_poll(struct file *file, struct socket *sock,
3327 			   struct poll_table_struct *wait);
3328 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3329 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3330 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3331 					struct msghdr *msg, int size)
3332 {
3333 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3334 }
3335 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3336 				   struct msghdr *msg);
3337 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3338 				 struct iov_iter *from, int len);
3339 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3340 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3341 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3342 static inline void skb_free_datagram_locked(struct sock *sk,
3343 					    struct sk_buff *skb)
3344 {
3345 	__skb_free_datagram_locked(sk, skb, 0);
3346 }
3347 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3348 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3349 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3350 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3351 			      int len, __wsum csum);
3352 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3353 		    struct pipe_inode_info *pipe, unsigned int len,
3354 		    unsigned int flags);
3355 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3356 			 int len);
3357 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3358 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3359 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3360 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3361 		 int len, int hlen);
3362 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3363 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3364 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3365 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3366 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3367 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3368 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3369 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3370 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3371 int skb_vlan_pop(struct sk_buff *skb);
3372 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3373 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3374 			     gfp_t gfp);
3375 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3376 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3377 {
3378 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3379 }
3380 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3381 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3382 {
3383 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3384 }
3385 
3386 struct skb_checksum_ops {
3387 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3388 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3389 };
3390 
3391 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3392 
3393 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3394 		      __wsum csum, const struct skb_checksum_ops *ops);
3395 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3396 		    __wsum csum);
3397 
3398 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3399 __skb_header_pointer(const struct sk_buff *skb, int offset,
3400 		     int len, void *data, int hlen, void *buffer)
3401 {
3402 	if (hlen - offset >= len)
3403 		return data + offset;
3404 
3405 	if (!skb ||
3406 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3407 		return NULL;
3408 
3409 	return buffer;
3410 }
3411 
3412 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3413 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3414 {
3415 	return __skb_header_pointer(skb, offset, len, skb->data,
3416 				    skb_headlen(skb), buffer);
3417 }
3418 
3419 /**
3420  *	skb_needs_linearize - check if we need to linearize a given skb
3421  *			      depending on the given device features.
3422  *	@skb: socket buffer to check
3423  *	@features: net device features
3424  *
3425  *	Returns true if either:
3426  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3427  *	2. skb is fragmented and the device does not support SG.
3428  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3429 static inline bool skb_needs_linearize(struct sk_buff *skb,
3430 				       netdev_features_t features)
3431 {
3432 	return skb_is_nonlinear(skb) &&
3433 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3434 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3435 }
3436 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3437 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3438 					     void *to,
3439 					     const unsigned int len)
3440 {
3441 	memcpy(to, skb->data, len);
3442 }
3443 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3444 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3445 						    const int offset, void *to,
3446 						    const unsigned int len)
3447 {
3448 	memcpy(to, skb->data + offset, len);
3449 }
3450 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3451 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3452 					   const void *from,
3453 					   const unsigned int len)
3454 {
3455 	memcpy(skb->data, from, len);
3456 }
3457 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3458 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3459 						  const int offset,
3460 						  const void *from,
3461 						  const unsigned int len)
3462 {
3463 	memcpy(skb->data + offset, from, len);
3464 }
3465 
3466 void skb_init(void);
3467 
skb_get_ktime(const struct sk_buff * skb)3468 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3469 {
3470 	return skb->tstamp;
3471 }
3472 
3473 /**
3474  *	skb_get_timestamp - get timestamp from a skb
3475  *	@skb: skb to get stamp from
3476  *	@stamp: pointer to struct timeval to store stamp in
3477  *
3478  *	Timestamps are stored in the skb as offsets to a base timestamp.
3479  *	This function converts the offset back to a struct timeval and stores
3480  *	it in stamp.
3481  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3482 static inline void skb_get_timestamp(const struct sk_buff *skb,
3483 				     struct timeval *stamp)
3484 {
3485 	*stamp = ktime_to_timeval(skb->tstamp);
3486 }
3487 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3488 static inline void skb_get_timestampns(const struct sk_buff *skb,
3489 				       struct timespec *stamp)
3490 {
3491 	*stamp = ktime_to_timespec(skb->tstamp);
3492 }
3493 
__net_timestamp(struct sk_buff * skb)3494 static inline void __net_timestamp(struct sk_buff *skb)
3495 {
3496 	skb->tstamp = ktime_get_real();
3497 }
3498 
net_timedelta(ktime_t t)3499 static inline ktime_t net_timedelta(ktime_t t)
3500 {
3501 	return ktime_sub(ktime_get_real(), t);
3502 }
3503 
net_invalid_timestamp(void)3504 static inline ktime_t net_invalid_timestamp(void)
3505 {
3506 	return 0;
3507 }
3508 
skb_metadata_len(const struct sk_buff * skb)3509 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3510 {
3511 	return skb_shinfo(skb)->meta_len;
3512 }
3513 
skb_metadata_end(const struct sk_buff * skb)3514 static inline void *skb_metadata_end(const struct sk_buff *skb)
3515 {
3516 	return skb_mac_header(skb);
3517 }
3518 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3519 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3520 					  const struct sk_buff *skb_b,
3521 					  u8 meta_len)
3522 {
3523 	const void *a = skb_metadata_end(skb_a);
3524 	const void *b = skb_metadata_end(skb_b);
3525 	/* Using more efficient varaiant than plain call to memcmp(). */
3526 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3527 	u64 diffs = 0;
3528 
3529 	switch (meta_len) {
3530 #define __it(x, op) (x -= sizeof(u##op))
3531 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3532 	case 32: diffs |= __it_diff(a, b, 64);
3533 	case 24: diffs |= __it_diff(a, b, 64);
3534 	case 16: diffs |= __it_diff(a, b, 64);
3535 	case  8: diffs |= __it_diff(a, b, 64);
3536 		break;
3537 	case 28: diffs |= __it_diff(a, b, 64);
3538 	case 20: diffs |= __it_diff(a, b, 64);
3539 	case 12: diffs |= __it_diff(a, b, 64);
3540 	case  4: diffs |= __it_diff(a, b, 32);
3541 		break;
3542 	}
3543 	return diffs;
3544 #else
3545 	return memcmp(a - meta_len, b - meta_len, meta_len);
3546 #endif
3547 }
3548 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3549 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3550 					const struct sk_buff *skb_b)
3551 {
3552 	u8 len_a = skb_metadata_len(skb_a);
3553 	u8 len_b = skb_metadata_len(skb_b);
3554 
3555 	if (!(len_a | len_b))
3556 		return false;
3557 
3558 	return len_a != len_b ?
3559 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3560 }
3561 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3562 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3563 {
3564 	skb_shinfo(skb)->meta_len = meta_len;
3565 }
3566 
skb_metadata_clear(struct sk_buff * skb)3567 static inline void skb_metadata_clear(struct sk_buff *skb)
3568 {
3569 	skb_metadata_set(skb, 0);
3570 }
3571 
3572 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3573 
3574 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3575 
3576 void skb_clone_tx_timestamp(struct sk_buff *skb);
3577 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3578 
3579 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3580 
skb_clone_tx_timestamp(struct sk_buff * skb)3581 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3582 {
3583 }
3584 
skb_defer_rx_timestamp(struct sk_buff * skb)3585 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3586 {
3587 	return false;
3588 }
3589 
3590 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3591 
3592 /**
3593  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3594  *
3595  * PHY drivers may accept clones of transmitted packets for
3596  * timestamping via their phy_driver.txtstamp method. These drivers
3597  * must call this function to return the skb back to the stack with a
3598  * timestamp.
3599  *
3600  * @skb: clone of the the original outgoing packet
3601  * @hwtstamps: hardware time stamps
3602  *
3603  */
3604 void skb_complete_tx_timestamp(struct sk_buff *skb,
3605 			       struct skb_shared_hwtstamps *hwtstamps);
3606 
3607 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3608 		     struct skb_shared_hwtstamps *hwtstamps,
3609 		     struct sock *sk, int tstype);
3610 
3611 /**
3612  * skb_tstamp_tx - queue clone of skb with send time stamps
3613  * @orig_skb:	the original outgoing packet
3614  * @hwtstamps:	hardware time stamps, may be NULL if not available
3615  *
3616  * If the skb has a socket associated, then this function clones the
3617  * skb (thus sharing the actual data and optional structures), stores
3618  * the optional hardware time stamping information (if non NULL) or
3619  * generates a software time stamp (otherwise), then queues the clone
3620  * to the error queue of the socket.  Errors are silently ignored.
3621  */
3622 void skb_tstamp_tx(struct sk_buff *orig_skb,
3623 		   struct skb_shared_hwtstamps *hwtstamps);
3624 
3625 /**
3626  * skb_tx_timestamp() - Driver hook for transmit timestamping
3627  *
3628  * Ethernet MAC Drivers should call this function in their hard_xmit()
3629  * function immediately before giving the sk_buff to the MAC hardware.
3630  *
3631  * Specifically, one should make absolutely sure that this function is
3632  * called before TX completion of this packet can trigger.  Otherwise
3633  * the packet could potentially already be freed.
3634  *
3635  * @skb: A socket buffer.
3636  */
skb_tx_timestamp(struct sk_buff * skb)3637 static inline void skb_tx_timestamp(struct sk_buff *skb)
3638 {
3639 	skb_clone_tx_timestamp(skb);
3640 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3641 		skb_tstamp_tx(skb, NULL);
3642 }
3643 
3644 /**
3645  * skb_complete_wifi_ack - deliver skb with wifi status
3646  *
3647  * @skb: the original outgoing packet
3648  * @acked: ack status
3649  *
3650  */
3651 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3652 
3653 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3654 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3655 
skb_csum_unnecessary(const struct sk_buff * skb)3656 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3657 {
3658 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3659 		skb->csum_valid ||
3660 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3661 		 skb_checksum_start_offset(skb) >= 0));
3662 }
3663 
3664 /**
3665  *	skb_checksum_complete - Calculate checksum of an entire packet
3666  *	@skb: packet to process
3667  *
3668  *	This function calculates the checksum over the entire packet plus
3669  *	the value of skb->csum.  The latter can be used to supply the
3670  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3671  *	checksum.
3672  *
3673  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3674  *	this function can be used to verify that checksum on received
3675  *	packets.  In that case the function should return zero if the
3676  *	checksum is correct.  In particular, this function will return zero
3677  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3678  *	hardware has already verified the correctness of the checksum.
3679  */
skb_checksum_complete(struct sk_buff * skb)3680 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3681 {
3682 	return skb_csum_unnecessary(skb) ?
3683 	       0 : __skb_checksum_complete(skb);
3684 }
3685 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3686 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3687 {
3688 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3689 		if (skb->csum_level == 0)
3690 			skb->ip_summed = CHECKSUM_NONE;
3691 		else
3692 			skb->csum_level--;
3693 	}
3694 }
3695 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3696 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3697 {
3698 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3699 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3700 			skb->csum_level++;
3701 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3702 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3703 		skb->csum_level = 0;
3704 	}
3705 }
3706 
3707 /* Check if we need to perform checksum complete validation.
3708  *
3709  * Returns true if checksum complete is needed, false otherwise
3710  * (either checksum is unnecessary or zero checksum is allowed).
3711  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3712 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3713 						  bool zero_okay,
3714 						  __sum16 check)
3715 {
3716 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3717 		skb->csum_valid = 1;
3718 		__skb_decr_checksum_unnecessary(skb);
3719 		return false;
3720 	}
3721 
3722 	return true;
3723 }
3724 
3725 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3726  * in checksum_init.
3727  */
3728 #define CHECKSUM_BREAK 76
3729 
3730 /* Unset checksum-complete
3731  *
3732  * Unset checksum complete can be done when packet is being modified
3733  * (uncompressed for instance) and checksum-complete value is
3734  * invalidated.
3735  */
skb_checksum_complete_unset(struct sk_buff * skb)3736 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3737 {
3738 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3739 		skb->ip_summed = CHECKSUM_NONE;
3740 }
3741 
3742 /* Validate (init) checksum based on checksum complete.
3743  *
3744  * Return values:
3745  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3746  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3747  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3748  *   non-zero: value of invalid checksum
3749  *
3750  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3751 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3752 						       bool complete,
3753 						       __wsum psum)
3754 {
3755 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3756 		if (!csum_fold(csum_add(psum, skb->csum))) {
3757 			skb->csum_valid = 1;
3758 			return 0;
3759 		}
3760 	}
3761 
3762 	skb->csum = psum;
3763 
3764 	if (complete || skb->len <= CHECKSUM_BREAK) {
3765 		__sum16 csum;
3766 
3767 		csum = __skb_checksum_complete(skb);
3768 		skb->csum_valid = !csum;
3769 		return csum;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
null_compute_pseudo(struct sk_buff * skb,int proto)3775 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3776 {
3777 	return 0;
3778 }
3779 
3780 /* Perform checksum validate (init). Note that this is a macro since we only
3781  * want to calculate the pseudo header which is an input function if necessary.
3782  * First we try to validate without any computation (checksum unnecessary) and
3783  * then calculate based on checksum complete calling the function to compute
3784  * pseudo header.
3785  *
3786  * Return values:
3787  *   0: checksum is validated or try to in skb_checksum_complete
3788  *   non-zero: value of invalid checksum
3789  */
3790 #define __skb_checksum_validate(skb, proto, complete,			\
3791 				zero_okay, check, compute_pseudo)	\
3792 ({									\
3793 	__sum16 __ret = 0;						\
3794 	skb->csum_valid = 0;						\
3795 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3796 		__ret = __skb_checksum_validate_complete(skb,		\
3797 				complete, compute_pseudo(skb, proto));	\
3798 	__ret;								\
3799 })
3800 
3801 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3802 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3803 
3804 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3805 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3806 
3807 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3808 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3809 
3810 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3811 					 compute_pseudo)		\
3812 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3813 
3814 #define skb_checksum_simple_validate(skb)				\
3815 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3816 
__skb_checksum_convert_check(struct sk_buff * skb)3817 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3818 {
3819 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3820 }
3821 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3822 static inline void __skb_checksum_convert(struct sk_buff *skb,
3823 					  __sum16 check, __wsum pseudo)
3824 {
3825 	skb->csum = ~pseudo;
3826 	skb->ip_summed = CHECKSUM_COMPLETE;
3827 }
3828 
3829 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3830 do {									\
3831 	if (__skb_checksum_convert_check(skb))				\
3832 		__skb_checksum_convert(skb, check,			\
3833 				       compute_pseudo(skb, proto));	\
3834 } while (0)
3835 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3836 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3837 					      u16 start, u16 offset)
3838 {
3839 	skb->ip_summed = CHECKSUM_PARTIAL;
3840 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3841 	skb->csum_offset = offset - start;
3842 }
3843 
3844 /* Update skbuf and packet to reflect the remote checksum offload operation.
3845  * When called, ptr indicates the starting point for skb->csum when
3846  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3847  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3848  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3849 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3850 				       int start, int offset, bool nopartial)
3851 {
3852 	__wsum delta;
3853 
3854 	if (!nopartial) {
3855 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3856 		return;
3857 	}
3858 
3859 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3860 		__skb_checksum_complete(skb);
3861 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3862 	}
3863 
3864 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3865 
3866 	/* Adjust skb->csum since we changed the packet */
3867 	skb->csum = csum_add(skb->csum, delta);
3868 }
3869 
skb_nfct(const struct sk_buff * skb)3870 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3871 {
3872 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3873 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3874 #else
3875 	return NULL;
3876 #endif
3877 }
3878 
3879 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3880 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3881 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3882 {
3883 	if (nfct && atomic_dec_and_test(&nfct->use))
3884 		nf_conntrack_destroy(nfct);
3885 }
nf_conntrack_get(struct nf_conntrack * nfct)3886 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3887 {
3888 	if (nfct)
3889 		atomic_inc(&nfct->use);
3890 }
3891 #endif
3892 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3893 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3894 {
3895 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3896 		kfree(nf_bridge);
3897 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3898 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3899 {
3900 	if (nf_bridge)
3901 		refcount_inc(&nf_bridge->use);
3902 }
3903 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3904 static inline void nf_reset(struct sk_buff *skb)
3905 {
3906 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3907 	nf_conntrack_put(skb_nfct(skb));
3908 	skb->_nfct = 0;
3909 #endif
3910 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3911 	nf_bridge_put(skb->nf_bridge);
3912 	skb->nf_bridge = NULL;
3913 #endif
3914 }
3915 
nf_reset_trace(struct sk_buff * skb)3916 static inline void nf_reset_trace(struct sk_buff *skb)
3917 {
3918 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3919 	skb->nf_trace = 0;
3920 #endif
3921 }
3922 
ipvs_reset(struct sk_buff * skb)3923 static inline void ipvs_reset(struct sk_buff *skb)
3924 {
3925 #if IS_ENABLED(CONFIG_IP_VS)
3926 	skb->ipvs_property = 0;
3927 #endif
3928 }
3929 
3930 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3931 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3932 			     bool copy)
3933 {
3934 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3935 	dst->_nfct = src->_nfct;
3936 	nf_conntrack_get(skb_nfct(src));
3937 #endif
3938 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3939 	dst->nf_bridge  = src->nf_bridge;
3940 	nf_bridge_get(src->nf_bridge);
3941 #endif
3942 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3943 	if (copy)
3944 		dst->nf_trace = src->nf_trace;
3945 #endif
3946 }
3947 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3948 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3949 {
3950 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3951 	nf_conntrack_put(skb_nfct(dst));
3952 #endif
3953 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3954 	nf_bridge_put(dst->nf_bridge);
3955 #endif
3956 	__nf_copy(dst, src, true);
3957 }
3958 
3959 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3960 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3961 {
3962 	to->secmark = from->secmark;
3963 }
3964 
skb_init_secmark(struct sk_buff * skb)3965 static inline void skb_init_secmark(struct sk_buff *skb)
3966 {
3967 	skb->secmark = 0;
3968 }
3969 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3970 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3971 { }
3972 
skb_init_secmark(struct sk_buff * skb)3973 static inline void skb_init_secmark(struct sk_buff *skb)
3974 { }
3975 #endif
3976 
skb_irq_freeable(const struct sk_buff * skb)3977 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3978 {
3979 	return !skb->destructor &&
3980 #if IS_ENABLED(CONFIG_XFRM)
3981 		!skb->sp &&
3982 #endif
3983 		!skb_nfct(skb) &&
3984 		!skb->_skb_refdst &&
3985 		!skb_has_frag_list(skb);
3986 }
3987 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3988 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3989 {
3990 	skb->queue_mapping = queue_mapping;
3991 }
3992 
skb_get_queue_mapping(const struct sk_buff * skb)3993 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3994 {
3995 	return skb->queue_mapping;
3996 }
3997 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3998 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3999 {
4000 	to->queue_mapping = from->queue_mapping;
4001 }
4002 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4003 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4004 {
4005 	skb->queue_mapping = rx_queue + 1;
4006 }
4007 
skb_get_rx_queue(const struct sk_buff * skb)4008 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4009 {
4010 	return skb->queue_mapping - 1;
4011 }
4012 
skb_rx_queue_recorded(const struct sk_buff * skb)4013 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4014 {
4015 	return skb->queue_mapping != 0;
4016 }
4017 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4018 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4019 {
4020 	skb->dst_pending_confirm = val;
4021 }
4022 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4023 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4024 {
4025 	return skb->dst_pending_confirm != 0;
4026 }
4027 
skb_sec_path(struct sk_buff * skb)4028 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4029 {
4030 #ifdef CONFIG_XFRM
4031 	return skb->sp;
4032 #else
4033 	return NULL;
4034 #endif
4035 }
4036 
4037 /* Keeps track of mac header offset relative to skb->head.
4038  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4039  * For non-tunnel skb it points to skb_mac_header() and for
4040  * tunnel skb it points to outer mac header.
4041  * Keeps track of level of encapsulation of network headers.
4042  */
4043 struct skb_gso_cb {
4044 	union {
4045 		int	mac_offset;
4046 		int	data_offset;
4047 	};
4048 	int	encap_level;
4049 	__wsum	csum;
4050 	__u16	csum_start;
4051 };
4052 #define SKB_SGO_CB_OFFSET	32
4053 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4054 
skb_tnl_header_len(const struct sk_buff * inner_skb)4055 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4056 {
4057 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4058 		SKB_GSO_CB(inner_skb)->mac_offset;
4059 }
4060 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4061 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4062 {
4063 	int new_headroom, headroom;
4064 	int ret;
4065 
4066 	headroom = skb_headroom(skb);
4067 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4068 	if (ret)
4069 		return ret;
4070 
4071 	new_headroom = skb_headroom(skb);
4072 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4073 	return 0;
4074 }
4075 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4076 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4077 {
4078 	/* Do not update partial checksums if remote checksum is enabled. */
4079 	if (skb->remcsum_offload)
4080 		return;
4081 
4082 	SKB_GSO_CB(skb)->csum = res;
4083 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4084 }
4085 
4086 /* Compute the checksum for a gso segment. First compute the checksum value
4087  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4088  * then add in skb->csum (checksum from csum_start to end of packet).
4089  * skb->csum and csum_start are then updated to reflect the checksum of the
4090  * resultant packet starting from the transport header-- the resultant checksum
4091  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4092  * header.
4093  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4094 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4095 {
4096 	unsigned char *csum_start = skb_transport_header(skb);
4097 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4098 	__wsum partial = SKB_GSO_CB(skb)->csum;
4099 
4100 	SKB_GSO_CB(skb)->csum = res;
4101 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4102 
4103 	return csum_fold(csum_partial(csum_start, plen, partial));
4104 }
4105 
skb_is_gso(const struct sk_buff * skb)4106 static inline bool skb_is_gso(const struct sk_buff *skb)
4107 {
4108 	return skb_shinfo(skb)->gso_size;
4109 }
4110 
4111 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4112 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4113 {
4114 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4115 }
4116 
4117 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4118 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4119 {
4120 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4121 }
4122 
4123 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4124 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4125 {
4126 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4127 }
4128 
skb_gso_reset(struct sk_buff * skb)4129 static inline void skb_gso_reset(struct sk_buff *skb)
4130 {
4131 	skb_shinfo(skb)->gso_size = 0;
4132 	skb_shinfo(skb)->gso_segs = 0;
4133 	skb_shinfo(skb)->gso_type = 0;
4134 }
4135 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4136 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4137 					 u16 increment)
4138 {
4139 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4140 		return;
4141 	shinfo->gso_size += increment;
4142 }
4143 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4144 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4145 					 u16 decrement)
4146 {
4147 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4148 		return;
4149 	shinfo->gso_size -= decrement;
4150 }
4151 
4152 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4153 
skb_warn_if_lro(const struct sk_buff * skb)4154 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4155 {
4156 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4157 	 * wanted then gso_type will be set. */
4158 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4159 
4160 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4161 	    unlikely(shinfo->gso_type == 0)) {
4162 		__skb_warn_lro_forwarding(skb);
4163 		return true;
4164 	}
4165 	return false;
4166 }
4167 
skb_forward_csum(struct sk_buff * skb)4168 static inline void skb_forward_csum(struct sk_buff *skb)
4169 {
4170 	/* Unfortunately we don't support this one.  Any brave souls? */
4171 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4172 		skb->ip_summed = CHECKSUM_NONE;
4173 }
4174 
4175 /**
4176  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4177  * @skb: skb to check
4178  *
4179  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4180  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4181  * use this helper, to document places where we make this assertion.
4182  */
skb_checksum_none_assert(const struct sk_buff * skb)4183 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4184 {
4185 #ifdef DEBUG
4186 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4187 #endif
4188 }
4189 
4190 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4191 
4192 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4193 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4194 				     unsigned int transport_len,
4195 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4196 
4197 /**
4198  * skb_head_is_locked - Determine if the skb->head is locked down
4199  * @skb: skb to check
4200  *
4201  * The head on skbs build around a head frag can be removed if they are
4202  * not cloned.  This function returns true if the skb head is locked down
4203  * due to either being allocated via kmalloc, or by being a clone with
4204  * multiple references to the head.
4205  */
skb_head_is_locked(const struct sk_buff * skb)4206 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4207 {
4208 	return !skb->head_frag || skb_cloned(skb);
4209 }
4210 
4211 /* Local Checksum Offload.
4212  * Compute outer checksum based on the assumption that the
4213  * inner checksum will be offloaded later.
4214  * See Documentation/networking/checksum-offloads.txt for
4215  * explanation of how this works.
4216  * Fill in outer checksum adjustment (e.g. with sum of outer
4217  * pseudo-header) before calling.
4218  * Also ensure that inner checksum is in linear data area.
4219  */
lco_csum(struct sk_buff * skb)4220 static inline __wsum lco_csum(struct sk_buff *skb)
4221 {
4222 	unsigned char *csum_start = skb_checksum_start(skb);
4223 	unsigned char *l4_hdr = skb_transport_header(skb);
4224 	__wsum partial;
4225 
4226 	/* Start with complement of inner checksum adjustment */
4227 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4228 						    skb->csum_offset));
4229 
4230 	/* Add in checksum of our headers (incl. outer checksum
4231 	 * adjustment filled in by caller) and return result.
4232 	 */
4233 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4234 }
4235 
4236 #endif	/* __KERNEL__ */
4237 #endif	/* _LINUX_SKBUFF_H */
4238