1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/khugepaged.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107
108 /*
109 * Array of node states.
110 */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121 #endif /* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134
135 /*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
get_pcppage_migratetype(struct page * page)143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 return page->index;
146 }
147
set_pcppage_migratetype(struct page * page,int migratetype)148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 page->index = migratetype;
151 }
152
153 #ifdef CONFIG_PM_SLEEP
154 /*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with system_transition_mutex held
159 * (gfp_allowed_mask also should only be modified with system_transition_mutex
160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161 * with that modification).
162 */
163
164 static gfp_t saved_gfp_mask;
165
pm_restore_gfp_mask(void)166 void pm_restore_gfp_mask(void)
167 {
168 WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
173 }
174
pm_restrict_gfp_mask(void)175 void pm_restrict_gfp_mask(void)
176 {
177 WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182
pm_suspended_storage(void)183 bool pm_suspended_storage(void)
184 {
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194
195 static void __free_pages_ok(struct page *page, unsigned int order);
196
197 /*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
207 */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 [ZONE_DMA] = 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 [ZONE_DMA32] = 256,
214 #endif
215 [ZONE_NORMAL] = 32,
216 #ifdef CONFIG_HIGHMEM
217 [ZONE_HIGHMEM] = 0,
218 #endif
219 [ZONE_MOVABLE] = 0,
220 };
221
222 EXPORT_SYMBOL(totalram_pages);
223
224 static char * const zone_names[MAX_NR_ZONES] = {
225 #ifdef CONFIG_ZONE_DMA
226 "DMA",
227 #endif
228 #ifdef CONFIG_ZONE_DMA32
229 "DMA32",
230 #endif
231 "Normal",
232 #ifdef CONFIG_HIGHMEM
233 "HighMem",
234 #endif
235 "Movable",
236 #ifdef CONFIG_ZONE_DEVICE
237 "Device",
238 #endif
239 };
240
241 char * const migratetype_names[MIGRATE_TYPES] = {
242 "Unmovable",
243 "Movable",
244 "Reclaimable",
245 "HighAtomic",
246 #ifdef CONFIG_CMA
247 "CMA",
248 #endif
249 #ifdef CONFIG_MEMORY_ISOLATION
250 "Isolate",
251 #endif
252 };
253
254 compound_page_dtor * const compound_page_dtors[] = {
255 NULL,
256 free_compound_page,
257 #ifdef CONFIG_HUGETLB_PAGE
258 free_huge_page,
259 #endif
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 free_transhuge_page,
262 #endif
263 };
264
265 int min_free_kbytes = 1024;
266 int user_min_free_kbytes = -1;
267 int watermark_scale_factor = 10;
268
269 static unsigned long nr_kernel_pages __meminitdata;
270 static unsigned long nr_all_pages __meminitdata;
271 static unsigned long dma_reserve __meminitdata;
272
273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276 static unsigned long required_kernelcore __initdata;
277 static unsigned long required_kernelcore_percent __initdata;
278 static unsigned long required_movablecore __initdata;
279 static unsigned long required_movablecore_percent __initdata;
280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281 static bool mirrored_kernelcore __meminitdata;
282
283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 int movable_zone;
285 EXPORT_SYMBOL(movable_zone);
286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287
288 #if MAX_NUMNODES > 1
289 int nr_node_ids __read_mostly = MAX_NUMNODES;
290 int nr_online_nodes __read_mostly = 1;
291 EXPORT_SYMBOL(nr_node_ids);
292 EXPORT_SYMBOL(nr_online_nodes);
293 #endif
294
295 int page_group_by_mobility_disabled __read_mostly;
296
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /*
299 * During boot we initialize deferred pages on-demand, as needed, but once
300 * page_alloc_init_late() has finished, the deferred pages are all initialized,
301 * and we can permanently disable that path.
302 */
303 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
304
305 /*
306 * Calling kasan_free_pages() only after deferred memory initialization
307 * has completed. Poisoning pages during deferred memory init will greatly
308 * lengthen the process and cause problem in large memory systems as the
309 * deferred pages initialization is done with interrupt disabled.
310 *
311 * Assuming that there will be no reference to those newly initialized
312 * pages before they are ever allocated, this should have no effect on
313 * KASAN memory tracking as the poison will be properly inserted at page
314 * allocation time. The only corner case is when pages are allocated by
315 * on-demand allocation and then freed again before the deferred pages
316 * initialization is done, but this is not likely to happen.
317 */
kasan_free_nondeferred_pages(struct page * page,int order)318 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
319 {
320 if (!static_branch_unlikely(&deferred_pages))
321 kasan_free_pages(page, order);
322 }
323
324 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)325 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
326 {
327 int nid = early_pfn_to_nid(pfn);
328
329 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 return true;
331
332 return false;
333 }
334
335 /*
336 * Returns false when the remaining initialisation should be deferred until
337 * later in the boot cycle when it can be parallelised.
338 */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)339 static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342 {
343 /* Always populate low zones for address-constrained allocations */
344 if (zone_end < pgdat_end_pfn(pgdat))
345 return true;
346 (*nr_initialised)++;
347 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
348 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
349 pgdat->first_deferred_pfn = pfn;
350 return false;
351 }
352
353 return true;
354 }
355 #else
356 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
357
early_page_uninitialised(unsigned long pfn)358 static inline bool early_page_uninitialised(unsigned long pfn)
359 {
360 return false;
361 }
362
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)363 static inline bool update_defer_init(pg_data_t *pgdat,
364 unsigned long pfn, unsigned long zone_end,
365 unsigned long *nr_initialised)
366 {
367 return true;
368 }
369 #endif
370
371 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)372 static inline unsigned long *get_pageblock_bitmap(struct page *page,
373 unsigned long pfn)
374 {
375 #ifdef CONFIG_SPARSEMEM
376 return __pfn_to_section(pfn)->pageblock_flags;
377 #else
378 return page_zone(page)->pageblock_flags;
379 #endif /* CONFIG_SPARSEMEM */
380 }
381
pfn_to_bitidx(struct page * page,unsigned long pfn)382 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
383 {
384 #ifdef CONFIG_SPARSEMEM
385 pfn &= (PAGES_PER_SECTION-1);
386 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
387 #else
388 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
389 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
390 #endif /* CONFIG_SPARSEMEM */
391 }
392
393 /**
394 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
395 * @page: The page within the block of interest
396 * @pfn: The target page frame number
397 * @end_bitidx: The last bit of interest to retrieve
398 * @mask: mask of bits that the caller is interested in
399 *
400 * Return: pageblock_bits flags
401 */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)402 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
403 unsigned long pfn,
404 unsigned long end_bitidx,
405 unsigned long mask)
406 {
407 unsigned long *bitmap;
408 unsigned long bitidx, word_bitidx;
409 unsigned long word;
410
411 bitmap = get_pageblock_bitmap(page, pfn);
412 bitidx = pfn_to_bitidx(page, pfn);
413 word_bitidx = bitidx / BITS_PER_LONG;
414 bitidx &= (BITS_PER_LONG-1);
415
416 word = bitmap[word_bitidx];
417 bitidx += end_bitidx;
418 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
419 }
420
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)421 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424 {
425 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
426 }
427
get_pfnblock_migratetype(struct page * page,unsigned long pfn)428 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
429 {
430 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
431 }
432
433 /**
434 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
435 * @page: The page within the block of interest
436 * @flags: The flags to set
437 * @pfn: The target page frame number
438 * @end_bitidx: The last bit of interest
439 * @mask: mask of bits that the caller is interested in
440 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)441 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
442 unsigned long pfn,
443 unsigned long end_bitidx,
444 unsigned long mask)
445 {
446 unsigned long *bitmap;
447 unsigned long bitidx, word_bitidx;
448 unsigned long old_word, word;
449
450 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
451
452 bitmap = get_pageblock_bitmap(page, pfn);
453 bitidx = pfn_to_bitidx(page, pfn);
454 word_bitidx = bitidx / BITS_PER_LONG;
455 bitidx &= (BITS_PER_LONG-1);
456
457 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
458
459 bitidx += end_bitidx;
460 mask <<= (BITS_PER_LONG - bitidx - 1);
461 flags <<= (BITS_PER_LONG - bitidx - 1);
462
463 word = READ_ONCE(bitmap[word_bitidx]);
464 for (;;) {
465 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
466 if (word == old_word)
467 break;
468 word = old_word;
469 }
470 }
471
set_pageblock_migratetype(struct page * page,int migratetype)472 void set_pageblock_migratetype(struct page *page, int migratetype)
473 {
474 if (unlikely(page_group_by_mobility_disabled &&
475 migratetype < MIGRATE_PCPTYPES))
476 migratetype = MIGRATE_UNMOVABLE;
477
478 set_pageblock_flags_group(page, (unsigned long)migratetype,
479 PB_migrate, PB_migrate_end);
480 }
481
482 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)483 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
484 {
485 int ret = 0;
486 unsigned seq;
487 unsigned long pfn = page_to_pfn(page);
488 unsigned long sp, start_pfn;
489
490 do {
491 seq = zone_span_seqbegin(zone);
492 start_pfn = zone->zone_start_pfn;
493 sp = zone->spanned_pages;
494 if (!zone_spans_pfn(zone, pfn))
495 ret = 1;
496 } while (zone_span_seqretry(zone, seq));
497
498 if (ret)
499 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
500 pfn, zone_to_nid(zone), zone->name,
501 start_pfn, start_pfn + sp);
502
503 return ret;
504 }
505
page_is_consistent(struct zone * zone,struct page * page)506 static int page_is_consistent(struct zone *zone, struct page *page)
507 {
508 if (!pfn_valid_within(page_to_pfn(page)))
509 return 0;
510 if (zone != page_zone(page))
511 return 0;
512
513 return 1;
514 }
515 /*
516 * Temporary debugging check for pages not lying within a given zone.
517 */
bad_range(struct zone * zone,struct page * page)518 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
519 {
520 if (page_outside_zone_boundaries(zone, page))
521 return 1;
522 if (!page_is_consistent(zone, page))
523 return 1;
524
525 return 0;
526 }
527 #else
bad_range(struct zone * zone,struct page * page)528 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 return 0;
531 }
532 #endif
533
bad_page(struct page * page,const char * reason,unsigned long bad_flags)534 static void bad_page(struct page *page, const char *reason,
535 unsigned long bad_flags)
536 {
537 static unsigned long resume;
538 static unsigned long nr_shown;
539 static unsigned long nr_unshown;
540
541 /*
542 * Allow a burst of 60 reports, then keep quiet for that minute;
543 * or allow a steady drip of one report per second.
544 */
545 if (nr_shown == 60) {
546 if (time_before(jiffies, resume)) {
547 nr_unshown++;
548 goto out;
549 }
550 if (nr_unshown) {
551 pr_alert(
552 "BUG: Bad page state: %lu messages suppressed\n",
553 nr_unshown);
554 nr_unshown = 0;
555 }
556 nr_shown = 0;
557 }
558 if (nr_shown++ == 0)
559 resume = jiffies + 60 * HZ;
560
561 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
562 current->comm, page_to_pfn(page));
563 __dump_page(page, reason);
564 bad_flags &= page->flags;
565 if (bad_flags)
566 pr_alert("bad because of flags: %#lx(%pGp)\n",
567 bad_flags, &bad_flags);
568 dump_page_owner(page);
569
570 print_modules();
571 dump_stack();
572 out:
573 /* Leave bad fields for debug, except PageBuddy could make trouble */
574 page_mapcount_reset(page); /* remove PageBuddy */
575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577
578 /*
579 * Higher-order pages are called "compound pages". They are structured thusly:
580 *
581 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582 *
583 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
584 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585 *
586 * The first tail page's ->compound_dtor holds the offset in array of compound
587 * page destructors. See compound_page_dtors.
588 *
589 * The first tail page's ->compound_order holds the order of allocation.
590 * This usage means that zero-order pages may not be compound.
591 */
592
free_compound_page(struct page * page)593 void free_compound_page(struct page *page)
594 {
595 __free_pages_ok(page, compound_order(page));
596 }
597
prep_compound_page(struct page * page,unsigned int order)598 void prep_compound_page(struct page *page, unsigned int order)
599 {
600 int i;
601 int nr_pages = 1 << order;
602
603 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
604 set_compound_order(page, order);
605 __SetPageHead(page);
606 for (i = 1; i < nr_pages; i++) {
607 struct page *p = page + i;
608 set_page_count(p, 0);
609 p->mapping = TAIL_MAPPING;
610 set_compound_head(p, page);
611 }
612 atomic_set(compound_mapcount_ptr(page), -1);
613 }
614
615 #ifdef CONFIG_DEBUG_PAGEALLOC
616 unsigned int _debug_guardpage_minorder;
617 bool _debug_pagealloc_enabled __read_mostly
618 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
619 EXPORT_SYMBOL(_debug_pagealloc_enabled);
620 bool _debug_guardpage_enabled __read_mostly;
621
early_debug_pagealloc(char * buf)622 static int __init early_debug_pagealloc(char *buf)
623 {
624 if (!buf)
625 return -EINVAL;
626 return kstrtobool(buf, &_debug_pagealloc_enabled);
627 }
628 early_param("debug_pagealloc", early_debug_pagealloc);
629
need_debug_guardpage(void)630 static bool need_debug_guardpage(void)
631 {
632 /* If we don't use debug_pagealloc, we don't need guard page */
633 if (!debug_pagealloc_enabled())
634 return false;
635
636 if (!debug_guardpage_minorder())
637 return false;
638
639 return true;
640 }
641
init_debug_guardpage(void)642 static void init_debug_guardpage(void)
643 {
644 if (!debug_pagealloc_enabled())
645 return;
646
647 if (!debug_guardpage_minorder())
648 return;
649
650 _debug_guardpage_enabled = true;
651 }
652
653 struct page_ext_operations debug_guardpage_ops = {
654 .need = need_debug_guardpage,
655 .init = init_debug_guardpage,
656 };
657
debug_guardpage_minorder_setup(char * buf)658 static int __init debug_guardpage_minorder_setup(char *buf)
659 {
660 unsigned long res;
661
662 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
663 pr_err("Bad debug_guardpage_minorder value\n");
664 return 0;
665 }
666 _debug_guardpage_minorder = res;
667 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
668 return 0;
669 }
670 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
671
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)672 static inline bool set_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
674 {
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return false;
679
680 if (order >= debug_guardpage_minorder())
681 return false;
682
683 page_ext = lookup_page_ext(page);
684 if (unlikely(!page_ext))
685 return false;
686
687 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
689 INIT_LIST_HEAD(&page->lru);
690 set_page_private(page, order);
691 /* Guard pages are not available for any usage */
692 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
693
694 return true;
695 }
696
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)697 static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype)
699 {
700 struct page_ext *page_ext;
701
702 if (!debug_guardpage_enabled())
703 return;
704
705 page_ext = lookup_page_ext(page);
706 if (unlikely(!page_ext))
707 return;
708
709 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
710
711 set_page_private(page, 0);
712 if (!is_migrate_isolate(migratetype))
713 __mod_zone_freepage_state(zone, (1 << order), migratetype);
714 }
715 #else
716 struct page_ext_operations debug_guardpage_ops;
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)717 static inline bool set_page_guard(struct zone *zone, struct page *page,
718 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)719 static inline void clear_page_guard(struct zone *zone, struct page *page,
720 unsigned int order, int migratetype) {}
721 #endif
722
set_page_order(struct page * page,unsigned int order)723 static inline void set_page_order(struct page *page, unsigned int order)
724 {
725 set_page_private(page, order);
726 __SetPageBuddy(page);
727 }
728
rmv_page_order(struct page * page)729 static inline void rmv_page_order(struct page *page)
730 {
731 __ClearPageBuddy(page);
732 set_page_private(page, 0);
733 }
734
735 /*
736 * This function checks whether a page is free && is the buddy
737 * we can coalesce a page and its buddy if
738 * (a) the buddy is not in a hole (check before calling!) &&
739 * (b) the buddy is in the buddy system &&
740 * (c) a page and its buddy have the same order &&
741 * (d) a page and its buddy are in the same zone.
742 *
743 * For recording whether a page is in the buddy system, we set PageBuddy.
744 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
745 *
746 * For recording page's order, we use page_private(page).
747 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)748 static inline int page_is_buddy(struct page *page, struct page *buddy,
749 unsigned int order)
750 {
751 if (page_is_guard(buddy) && page_order(buddy) == order) {
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
757 return 1;
758 }
759
760 if (PageBuddy(buddy) && page_order(buddy) == order) {
761 /*
762 * zone check is done late to avoid uselessly
763 * calculating zone/node ids for pages that could
764 * never merge.
765 */
766 if (page_zone_id(page) != page_zone_id(buddy))
767 return 0;
768
769 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
770
771 return 1;
772 }
773 return 0;
774 }
775
776 /*
777 * Freeing function for a buddy system allocator.
778 *
779 * The concept of a buddy system is to maintain direct-mapped table
780 * (containing bit values) for memory blocks of various "orders".
781 * The bottom level table contains the map for the smallest allocatable
782 * units of memory (here, pages), and each level above it describes
783 * pairs of units from the levels below, hence, "buddies".
784 * At a high level, all that happens here is marking the table entry
785 * at the bottom level available, and propagating the changes upward
786 * as necessary, plus some accounting needed to play nicely with other
787 * parts of the VM system.
788 * At each level, we keep a list of pages, which are heads of continuous
789 * free pages of length of (1 << order) and marked with PageBuddy.
790 * Page's order is recorded in page_private(page) field.
791 * So when we are allocating or freeing one, we can derive the state of the
792 * other. That is, if we allocate a small block, and both were
793 * free, the remainder of the region must be split into blocks.
794 * If a block is freed, and its buddy is also free, then this
795 * triggers coalescing into a block of larger size.
796 *
797 * -- nyc
798 */
799
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)800 static inline void __free_one_page(struct page *page,
801 unsigned long pfn,
802 struct zone *zone, unsigned int order,
803 int migratetype)
804 {
805 unsigned long combined_pfn;
806 unsigned long uninitialized_var(buddy_pfn);
807 struct page *buddy;
808 unsigned int max_order;
809
810 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
811
812 VM_BUG_ON(!zone_is_initialized(zone));
813 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
814
815 VM_BUG_ON(migratetype == -1);
816 if (likely(!is_migrate_isolate(migratetype)))
817 __mod_zone_freepage_state(zone, 1 << order, migratetype);
818
819 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
820 VM_BUG_ON_PAGE(bad_range(zone, page), page);
821
822 continue_merging:
823 while (order < max_order - 1) {
824 buddy_pfn = __find_buddy_pfn(pfn, order);
825 buddy = page + (buddy_pfn - pfn);
826
827 if (!pfn_valid_within(buddy_pfn))
828 goto done_merging;
829 if (!page_is_buddy(page, buddy, order))
830 goto done_merging;
831 /*
832 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
833 * merge with it and move up one order.
834 */
835 if (page_is_guard(buddy)) {
836 clear_page_guard(zone, buddy, order, migratetype);
837 } else {
838 list_del(&buddy->lru);
839 zone->free_area[order].nr_free--;
840 rmv_page_order(buddy);
841 }
842 combined_pfn = buddy_pfn & pfn;
843 page = page + (combined_pfn - pfn);
844 pfn = combined_pfn;
845 order++;
846 }
847 if (max_order < MAX_ORDER) {
848 /* If we are here, it means order is >= pageblock_order.
849 * We want to prevent merge between freepages on isolate
850 * pageblock and normal pageblock. Without this, pageblock
851 * isolation could cause incorrect freepage or CMA accounting.
852 *
853 * We don't want to hit this code for the more frequent
854 * low-order merging.
855 */
856 if (unlikely(has_isolate_pageblock(zone))) {
857 int buddy_mt;
858
859 buddy_pfn = __find_buddy_pfn(pfn, order);
860 buddy = page + (buddy_pfn - pfn);
861 buddy_mt = get_pageblock_migratetype(buddy);
862
863 if (migratetype != buddy_mt
864 && (is_migrate_isolate(migratetype) ||
865 is_migrate_isolate(buddy_mt)))
866 goto done_merging;
867 }
868 max_order++;
869 goto continue_merging;
870 }
871
872 done_merging:
873 set_page_order(page, order);
874
875 /*
876 * If this is not the largest possible page, check if the buddy
877 * of the next-highest order is free. If it is, it's possible
878 * that pages are being freed that will coalesce soon. In case,
879 * that is happening, add the free page to the tail of the list
880 * so it's less likely to be used soon and more likely to be merged
881 * as a higher order page
882 */
883 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
884 struct page *higher_page, *higher_buddy;
885 combined_pfn = buddy_pfn & pfn;
886 higher_page = page + (combined_pfn - pfn);
887 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
888 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
889 if (pfn_valid_within(buddy_pfn) &&
890 page_is_buddy(higher_page, higher_buddy, order + 1)) {
891 list_add_tail(&page->lru,
892 &zone->free_area[order].free_list[migratetype]);
893 goto out;
894 }
895 }
896
897 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
898 out:
899 zone->free_area[order].nr_free++;
900 }
901
902 /*
903 * A bad page could be due to a number of fields. Instead of multiple branches,
904 * try and check multiple fields with one check. The caller must do a detailed
905 * check if necessary.
906 */
page_expected_state(struct page * page,unsigned long check_flags)907 static inline bool page_expected_state(struct page *page,
908 unsigned long check_flags)
909 {
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 return false;
912
913 if (unlikely((unsigned long)page->mapping |
914 page_ref_count(page) |
915 #ifdef CONFIG_MEMCG
916 (unsigned long)page->mem_cgroup |
917 #endif
918 (page->flags & check_flags)))
919 return false;
920
921 return true;
922 }
923
free_pages_check_bad(struct page * page)924 static void free_pages_check_bad(struct page *page)
925 {
926 const char *bad_reason;
927 unsigned long bad_flags;
928
929 bad_reason = NULL;
930 bad_flags = 0;
931
932 if (unlikely(atomic_read(&page->_mapcount) != -1))
933 bad_reason = "nonzero mapcount";
934 if (unlikely(page->mapping != NULL))
935 bad_reason = "non-NULL mapping";
936 if (unlikely(page_ref_count(page) != 0))
937 bad_reason = "nonzero _refcount";
938 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
941 }
942 #ifdef CONFIG_MEMCG
943 if (unlikely(page->mem_cgroup))
944 bad_reason = "page still charged to cgroup";
945 #endif
946 bad_page(page, bad_reason, bad_flags);
947 }
948
free_pages_check(struct page * page)949 static inline int free_pages_check(struct page *page)
950 {
951 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
952 return 0;
953
954 /* Something has gone sideways, find it */
955 free_pages_check_bad(page);
956 return 1;
957 }
958
free_tail_pages_check(struct page * head_page,struct page * page)959 static int free_tail_pages_check(struct page *head_page, struct page *page)
960 {
961 int ret = 1;
962
963 /*
964 * We rely page->lru.next never has bit 0 set, unless the page
965 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 */
967 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
968
969 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
970 ret = 0;
971 goto out;
972 }
973 switch (page - head_page) {
974 case 1:
975 /* the first tail page: ->mapping may be compound_mapcount() */
976 if (unlikely(compound_mapcount(page))) {
977 bad_page(page, "nonzero compound_mapcount", 0);
978 goto out;
979 }
980 break;
981 case 2:
982 /*
983 * the second tail page: ->mapping is
984 * deferred_list.next -- ignore value.
985 */
986 break;
987 default:
988 if (page->mapping != TAIL_MAPPING) {
989 bad_page(page, "corrupted mapping in tail page", 0);
990 goto out;
991 }
992 break;
993 }
994 if (unlikely(!PageTail(page))) {
995 bad_page(page, "PageTail not set", 0);
996 goto out;
997 }
998 if (unlikely(compound_head(page) != head_page)) {
999 bad_page(page, "compound_head not consistent", 0);
1000 goto out;
1001 }
1002 ret = 0;
1003 out:
1004 page->mapping = NULL;
1005 clear_compound_head(page);
1006 return ret;
1007 }
1008
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1009 static __always_inline bool free_pages_prepare(struct page *page,
1010 unsigned int order, bool check_free)
1011 {
1012 int bad = 0;
1013
1014 VM_BUG_ON_PAGE(PageTail(page), page);
1015
1016 trace_mm_page_free(page, order);
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027
1028 if (compound)
1029 ClearPageDoubleMap(page);
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
1040 if (PageMappingFlags(page))
1041 page->mapping = NULL;
1042 if (memcg_kmem_enabled() && PageKmemcg(page))
1043 memcg_kmem_uncharge(page, order);
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
1048
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 debug_check_no_obj_freed(page_address(page),
1057 PAGE_SIZE << order);
1058 }
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
1062 kasan_free_nondeferred_pages(page, order);
1063
1064 return true;
1065 }
1066
1067 #ifdef CONFIG_DEBUG_VM
free_pcp_prepare(struct page * page)1068 static inline bool free_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_prepare(page, 0, true);
1071 }
1072
bulkfree_pcp_prepare(struct page * page)1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1074 {
1075 return false;
1076 }
1077 #else
free_pcp_prepare(struct page * page)1078 static bool free_pcp_prepare(struct page *page)
1079 {
1080 return free_pages_prepare(page, 0, false);
1081 }
1082
bulkfree_pcp_prepare(struct page * page)1083 static bool bulkfree_pcp_prepare(struct page *page)
1084 {
1085 return free_pages_check(page);
1086 }
1087 #endif /* CONFIG_DEBUG_VM */
1088
prefetch_buddy(struct page * page)1089 static inline void prefetch_buddy(struct page *page)
1090 {
1091 unsigned long pfn = page_to_pfn(page);
1092 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1093 struct page *buddy = page + (buddy_pfn - pfn);
1094
1095 prefetch(buddy);
1096 }
1097
1098 /*
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1102 *
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1105 *
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1108 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1111 {
1112 int migratetype = 0;
1113 int batch_free = 0;
1114 int prefetch_nr = 0;
1115 bool isolated_pageblocks;
1116 struct page *page, *tmp;
1117 LIST_HEAD(head);
1118
1119 /*
1120 * Ensure proper count is passed which otherwise would stuck in the
1121 * below while (list_empty(list)) loop.
1122 */
1123 count = min(pcp->count, count);
1124 while (count) {
1125 struct list_head *list;
1126
1127 /*
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
1133 */
1134 do {
1135 batch_free++;
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
1140
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
1143 batch_free = count;
1144
1145 do {
1146 page = list_last_entry(list, struct page, lru);
1147 /* must delete to avoid corrupting pcp list */
1148 list_del(&page->lru);
1149 pcp->count--;
1150
1151 if (bulkfree_pcp_prepare(page))
1152 continue;
1153
1154 list_add_tail(&page->lru, &head);
1155
1156 /*
1157 * We are going to put the page back to the global
1158 * pool, prefetch its buddy to speed up later access
1159 * under zone->lock. It is believed the overhead of
1160 * an additional test and calculating buddy_pfn here
1161 * can be offset by reduced memory latency later. To
1162 * avoid excessive prefetching due to large count, only
1163 * prefetch buddy for the first pcp->batch nr of pages.
1164 */
1165 if (prefetch_nr++ < pcp->batch)
1166 prefetch_buddy(page);
1167 } while (--count && --batch_free && !list_empty(list));
1168 }
1169
1170 spin_lock(&zone->lock);
1171 isolated_pageblocks = has_isolate_pageblock(zone);
1172
1173 /*
1174 * Use safe version since after __free_one_page(),
1175 * page->lru.next will not point to original list.
1176 */
1177 list_for_each_entry_safe(page, tmp, &head, lru) {
1178 int mt = get_pcppage_migratetype(page);
1179 /* MIGRATE_ISOLATE page should not go to pcplists */
1180 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1181 /* Pageblock could have been isolated meanwhile */
1182 if (unlikely(isolated_pageblocks))
1183 mt = get_pageblock_migratetype(page);
1184
1185 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1186 trace_mm_page_pcpu_drain(page, 0, mt);
1187 }
1188 spin_unlock(&zone->lock);
1189 }
1190
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1191 static void free_one_page(struct zone *zone,
1192 struct page *page, unsigned long pfn,
1193 unsigned int order,
1194 int migratetype)
1195 {
1196 spin_lock(&zone->lock);
1197 if (unlikely(has_isolate_pageblock(zone) ||
1198 is_migrate_isolate(migratetype))) {
1199 migratetype = get_pfnblock_migratetype(page, pfn);
1200 }
1201 __free_one_page(page, pfn, zone, order, migratetype);
1202 spin_unlock(&zone->lock);
1203 }
1204
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1205 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1206 unsigned long zone, int nid)
1207 {
1208 mm_zero_struct_page(page);
1209 set_page_links(page, zone, nid, pfn);
1210 init_page_count(page);
1211 page_mapcount_reset(page);
1212 page_cpupid_reset_last(page);
1213
1214 INIT_LIST_HEAD(&page->lru);
1215 #ifdef WANT_PAGE_VIRTUAL
1216 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1217 if (!is_highmem_idx(zone))
1218 set_page_address(page, __va(pfn << PAGE_SHIFT));
1219 #endif
1220 }
1221
1222 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1223 static void __meminit init_reserved_page(unsigned long pfn)
1224 {
1225 pg_data_t *pgdat;
1226 int nid, zid;
1227
1228 if (!early_page_uninitialised(pfn))
1229 return;
1230
1231 nid = early_pfn_to_nid(pfn);
1232 pgdat = NODE_DATA(nid);
1233
1234 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1235 struct zone *zone = &pgdat->node_zones[zid];
1236
1237 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1238 break;
1239 }
1240 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1241 }
1242 #else
init_reserved_page(unsigned long pfn)1243 static inline void init_reserved_page(unsigned long pfn)
1244 {
1245 }
1246 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1247
1248 /*
1249 * Initialised pages do not have PageReserved set. This function is
1250 * called for each range allocated by the bootmem allocator and
1251 * marks the pages PageReserved. The remaining valid pages are later
1252 * sent to the buddy page allocator.
1253 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1254 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1255 {
1256 unsigned long start_pfn = PFN_DOWN(start);
1257 unsigned long end_pfn = PFN_UP(end);
1258
1259 for (; start_pfn < end_pfn; start_pfn++) {
1260 if (pfn_valid(start_pfn)) {
1261 struct page *page = pfn_to_page(start_pfn);
1262
1263 init_reserved_page(start_pfn);
1264
1265 /* Avoid false-positive PageTail() */
1266 INIT_LIST_HEAD(&page->lru);
1267
1268 SetPageReserved(page);
1269 }
1270 }
1271 }
1272
__free_pages_ok(struct page * page,unsigned int order)1273 static void __free_pages_ok(struct page *page, unsigned int order)
1274 {
1275 unsigned long flags;
1276 int migratetype;
1277 unsigned long pfn = page_to_pfn(page);
1278
1279 if (!free_pages_prepare(page, order, true))
1280 return;
1281
1282 migratetype = get_pfnblock_migratetype(page, pfn);
1283 local_irq_save(flags);
1284 __count_vm_events(PGFREE, 1 << order);
1285 free_one_page(page_zone(page), page, pfn, order, migratetype);
1286 local_irq_restore(flags);
1287 }
1288
__free_pages_boot_core(struct page * page,unsigned int order)1289 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1290 {
1291 unsigned int nr_pages = 1 << order;
1292 struct page *p = page;
1293 unsigned int loop;
1294
1295 prefetchw(p);
1296 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 prefetchw(p + 1);
1298 __ClearPageReserved(p);
1299 set_page_count(p, 0);
1300 }
1301 __ClearPageReserved(p);
1302 set_page_count(p, 0);
1303
1304 page_zone(page)->managed_pages += nr_pages;
1305 set_page_refcounted(page);
1306 __free_pages(page, order);
1307 }
1308
1309 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1310 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1311
1312 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1313
early_pfn_to_nid(unsigned long pfn)1314 int __meminit early_pfn_to_nid(unsigned long pfn)
1315 {
1316 static DEFINE_SPINLOCK(early_pfn_lock);
1317 int nid;
1318
1319 spin_lock(&early_pfn_lock);
1320 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1321 if (nid < 0)
1322 nid = first_online_node;
1323 spin_unlock(&early_pfn_lock);
1324
1325 return nid;
1326 }
1327 #endif
1328
1329 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1330 static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1331 meminit_pfn_in_nid(unsigned long pfn, int node,
1332 struct mminit_pfnnid_cache *state)
1333 {
1334 int nid;
1335
1336 nid = __early_pfn_to_nid(pfn, state);
1337 if (nid >= 0 && nid != node)
1338 return false;
1339 return true;
1340 }
1341
1342 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1343 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1344 {
1345 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1346 }
1347
1348 #else
1349
early_pfn_in_nid(unsigned long pfn,int node)1350 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1351 {
1352 return true;
1353 }
1354 static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1355 meminit_pfn_in_nid(unsigned long pfn, int node,
1356 struct mminit_pfnnid_cache *state)
1357 {
1358 return true;
1359 }
1360 #endif
1361
1362
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1363 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1364 unsigned int order)
1365 {
1366 if (early_page_uninitialised(pfn))
1367 return;
1368 return __free_pages_boot_core(page, order);
1369 }
1370
1371 /*
1372 * Check that the whole (or subset of) a pageblock given by the interval of
1373 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1374 * with the migration of free compaction scanner. The scanners then need to
1375 * use only pfn_valid_within() check for arches that allow holes within
1376 * pageblocks.
1377 *
1378 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1379 *
1380 * It's possible on some configurations to have a setup like node0 node1 node0
1381 * i.e. it's possible that all pages within a zones range of pages do not
1382 * belong to a single zone. We assume that a border between node0 and node1
1383 * can occur within a single pageblock, but not a node0 node1 node0
1384 * interleaving within a single pageblock. It is therefore sufficient to check
1385 * the first and last page of a pageblock and avoid checking each individual
1386 * page in a pageblock.
1387 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1388 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1389 unsigned long end_pfn, struct zone *zone)
1390 {
1391 struct page *start_page;
1392 struct page *end_page;
1393
1394 /* end_pfn is one past the range we are checking */
1395 end_pfn--;
1396
1397 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1398 return NULL;
1399
1400 start_page = pfn_to_online_page(start_pfn);
1401 if (!start_page)
1402 return NULL;
1403
1404 if (page_zone(start_page) != zone)
1405 return NULL;
1406
1407 end_page = pfn_to_page(end_pfn);
1408
1409 /* This gives a shorter code than deriving page_zone(end_page) */
1410 if (page_zone_id(start_page) != page_zone_id(end_page))
1411 return NULL;
1412
1413 return start_page;
1414 }
1415
set_zone_contiguous(struct zone * zone)1416 void set_zone_contiguous(struct zone *zone)
1417 {
1418 unsigned long block_start_pfn = zone->zone_start_pfn;
1419 unsigned long block_end_pfn;
1420
1421 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1422 for (; block_start_pfn < zone_end_pfn(zone);
1423 block_start_pfn = block_end_pfn,
1424 block_end_pfn += pageblock_nr_pages) {
1425
1426 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1427
1428 if (!__pageblock_pfn_to_page(block_start_pfn,
1429 block_end_pfn, zone))
1430 return;
1431 cond_resched();
1432 }
1433
1434 /* We confirm that there is no hole */
1435 zone->contiguous = true;
1436 }
1437
clear_zone_contiguous(struct zone * zone)1438 void clear_zone_contiguous(struct zone *zone)
1439 {
1440 zone->contiguous = false;
1441 }
1442
1443 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1444 static void __init deferred_free_range(unsigned long pfn,
1445 unsigned long nr_pages)
1446 {
1447 struct page *page;
1448 unsigned long i;
1449
1450 if (!nr_pages)
1451 return;
1452
1453 page = pfn_to_page(pfn);
1454
1455 /* Free a large naturally-aligned chunk if possible */
1456 if (nr_pages == pageblock_nr_pages &&
1457 (pfn & (pageblock_nr_pages - 1)) == 0) {
1458 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1459 __free_pages_boot_core(page, pageblock_order);
1460 return;
1461 }
1462
1463 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1464 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1465 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1466 __free_pages_boot_core(page, 0);
1467 }
1468 }
1469
1470 /* Completion tracking for deferred_init_memmap() threads */
1471 static atomic_t pgdat_init_n_undone __initdata;
1472 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1473
pgdat_init_report_one_done(void)1474 static inline void __init pgdat_init_report_one_done(void)
1475 {
1476 if (atomic_dec_and_test(&pgdat_init_n_undone))
1477 complete(&pgdat_init_all_done_comp);
1478 }
1479
1480 /*
1481 * Returns true if page needs to be initialized or freed to buddy allocator.
1482 *
1483 * First we check if pfn is valid on architectures where it is possible to have
1484 * holes within pageblock_nr_pages. On systems where it is not possible, this
1485 * function is optimized out.
1486 *
1487 * Then, we check if a current large page is valid by only checking the validity
1488 * of the head pfn.
1489 *
1490 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1491 * within a node: a pfn is between start and end of a node, but does not belong
1492 * to this memory node.
1493 */
1494 static inline bool __init
deferred_pfn_valid(int nid,unsigned long pfn,struct mminit_pfnnid_cache * nid_init_state)1495 deferred_pfn_valid(int nid, unsigned long pfn,
1496 struct mminit_pfnnid_cache *nid_init_state)
1497 {
1498 if (!pfn_valid_within(pfn))
1499 return false;
1500 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1501 return false;
1502 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1503 return false;
1504 return true;
1505 }
1506
1507 /*
1508 * Free pages to buddy allocator. Try to free aligned pages in
1509 * pageblock_nr_pages sizes.
1510 */
deferred_free_pages(int nid,int zid,unsigned long pfn,unsigned long end_pfn)1511 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1512 unsigned long end_pfn)
1513 {
1514 struct mminit_pfnnid_cache nid_init_state = { };
1515 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1516 unsigned long nr_free = 0;
1517
1518 for (; pfn < end_pfn; pfn++) {
1519 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1520 deferred_free_range(pfn - nr_free, nr_free);
1521 nr_free = 0;
1522 } else if (!(pfn & nr_pgmask)) {
1523 deferred_free_range(pfn - nr_free, nr_free);
1524 nr_free = 1;
1525 touch_nmi_watchdog();
1526 } else {
1527 nr_free++;
1528 }
1529 }
1530 /* Free the last block of pages to allocator */
1531 deferred_free_range(pfn - nr_free, nr_free);
1532 }
1533
1534 /*
1535 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1536 * by performing it only once every pageblock_nr_pages.
1537 * Return number of pages initialized.
1538 */
deferred_init_pages(int nid,int zid,unsigned long pfn,unsigned long end_pfn)1539 static unsigned long __init deferred_init_pages(int nid, int zid,
1540 unsigned long pfn,
1541 unsigned long end_pfn)
1542 {
1543 struct mminit_pfnnid_cache nid_init_state = { };
1544 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1545 unsigned long nr_pages = 0;
1546 struct page *page = NULL;
1547
1548 for (; pfn < end_pfn; pfn++) {
1549 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1550 page = NULL;
1551 continue;
1552 } else if (!page || !(pfn & nr_pgmask)) {
1553 page = pfn_to_page(pfn);
1554 touch_nmi_watchdog();
1555 } else {
1556 page++;
1557 }
1558 __init_single_page(page, pfn, zid, nid);
1559 nr_pages++;
1560 }
1561 return (nr_pages);
1562 }
1563
1564 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1565 static int __init deferred_init_memmap(void *data)
1566 {
1567 pg_data_t *pgdat = data;
1568 int nid = pgdat->node_id;
1569 unsigned long start = jiffies;
1570 unsigned long nr_pages = 0;
1571 unsigned long spfn, epfn, first_init_pfn, flags;
1572 phys_addr_t spa, epa;
1573 int zid;
1574 struct zone *zone;
1575 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1576 u64 i;
1577
1578 /* Bind memory initialisation thread to a local node if possible */
1579 if (!cpumask_empty(cpumask))
1580 set_cpus_allowed_ptr(current, cpumask);
1581
1582 pgdat_resize_lock(pgdat, &flags);
1583 first_init_pfn = pgdat->first_deferred_pfn;
1584 if (first_init_pfn == ULONG_MAX) {
1585 pgdat_resize_unlock(pgdat, &flags);
1586 pgdat_init_report_one_done();
1587 return 0;
1588 }
1589
1590 /* Sanity check boundaries */
1591 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1592 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1593 pgdat->first_deferred_pfn = ULONG_MAX;
1594
1595 /*
1596 * Once we unlock here, the zone cannot be grown anymore, thus if an
1597 * interrupt thread must allocate this early in boot, zone must be
1598 * pre-grown prior to start of deferred page initialization.
1599 */
1600 pgdat_resize_unlock(pgdat, &flags);
1601
1602 /* Only the highest zone is deferred so find it */
1603 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1604 zone = pgdat->node_zones + zid;
1605 if (first_init_pfn < zone_end_pfn(zone))
1606 break;
1607 }
1608 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1609
1610 /*
1611 * Initialize and free pages. We do it in two loops: first we initialize
1612 * struct page, than free to buddy allocator, because while we are
1613 * freeing pages we can access pages that are ahead (computing buddy
1614 * page in __free_one_page()).
1615 */
1616 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1617 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1618 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1619 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1620 }
1621 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1622 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1623 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1624 deferred_free_pages(nid, zid, spfn, epfn);
1625 }
1626
1627 /* Sanity check that the next zone really is unpopulated */
1628 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1629
1630 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1631 jiffies_to_msecs(jiffies - start));
1632
1633 pgdat_init_report_one_done();
1634 return 0;
1635 }
1636
1637 /*
1638 * If this zone has deferred pages, try to grow it by initializing enough
1639 * deferred pages to satisfy the allocation specified by order, rounded up to
1640 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1641 * of SECTION_SIZE bytes by initializing struct pages in increments of
1642 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1643 *
1644 * Return true when zone was grown, otherwise return false. We return true even
1645 * when we grow less than requested, to let the caller decide if there are
1646 * enough pages to satisfy the allocation.
1647 *
1648 * Note: We use noinline because this function is needed only during boot, and
1649 * it is called from a __ref function _deferred_grow_zone. This way we are
1650 * making sure that it is not inlined into permanent text section.
1651 */
1652 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)1653 deferred_grow_zone(struct zone *zone, unsigned int order)
1654 {
1655 int zid = zone_idx(zone);
1656 int nid = zone_to_nid(zone);
1657 pg_data_t *pgdat = NODE_DATA(nid);
1658 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1659 unsigned long nr_pages = 0;
1660 unsigned long first_init_pfn, spfn, epfn, t, flags;
1661 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1662 phys_addr_t spa, epa;
1663 u64 i;
1664
1665 /* Only the last zone may have deferred pages */
1666 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1667 return false;
1668
1669 pgdat_resize_lock(pgdat, &flags);
1670
1671 /*
1672 * If someone grew this zone while we were waiting for spinlock, return
1673 * true, as there might be enough pages already.
1674 */
1675 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1676 pgdat_resize_unlock(pgdat, &flags);
1677 return true;
1678 }
1679
1680 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1681
1682 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1683 pgdat_resize_unlock(pgdat, &flags);
1684 return false;
1685 }
1686
1687 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1688 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1689 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1690
1691 while (spfn < epfn && nr_pages < nr_pages_needed) {
1692 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1693 first_deferred_pfn = min(t, epfn);
1694 nr_pages += deferred_init_pages(nid, zid, spfn,
1695 first_deferred_pfn);
1696 spfn = first_deferred_pfn;
1697 }
1698
1699 if (nr_pages >= nr_pages_needed)
1700 break;
1701 }
1702
1703 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1704 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1705 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1706 deferred_free_pages(nid, zid, spfn, epfn);
1707
1708 if (first_deferred_pfn == epfn)
1709 break;
1710 }
1711 pgdat->first_deferred_pfn = first_deferred_pfn;
1712 pgdat_resize_unlock(pgdat, &flags);
1713
1714 return nr_pages > 0;
1715 }
1716
1717 /*
1718 * deferred_grow_zone() is __init, but it is called from
1719 * get_page_from_freelist() during early boot until deferred_pages permanently
1720 * disables this call. This is why we have refdata wrapper to avoid warning,
1721 * and to ensure that the function body gets unloaded.
1722 */
1723 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)1724 _deferred_grow_zone(struct zone *zone, unsigned int order)
1725 {
1726 return deferred_grow_zone(zone, order);
1727 }
1728
1729 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1730
page_alloc_init_late(void)1731 void __init page_alloc_init_late(void)
1732 {
1733 struct zone *zone;
1734
1735 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1736 int nid;
1737
1738 /* There will be num_node_state(N_MEMORY) threads */
1739 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1740 for_each_node_state(nid, N_MEMORY) {
1741 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1742 }
1743
1744 /* Block until all are initialised */
1745 wait_for_completion(&pgdat_init_all_done_comp);
1746
1747 /*
1748 * The number of managed pages has changed due to the initialisation
1749 * so the pcpu batch and high limits needs to be updated or the limits
1750 * will be artificially small.
1751 */
1752 for_each_populated_zone(zone)
1753 zone_pcp_update(zone);
1754
1755 /*
1756 * We initialized the rest of the deferred pages. Permanently disable
1757 * on-demand struct page initialization.
1758 */
1759 static_branch_disable(&deferred_pages);
1760
1761 /* Reinit limits that are based on free pages after the kernel is up */
1762 files_maxfiles_init();
1763 #endif
1764 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1765 /* Discard memblock private memory */
1766 memblock_discard();
1767 #endif
1768
1769 for_each_populated_zone(zone)
1770 set_zone_contiguous(zone);
1771 }
1772
1773 #ifdef CONFIG_CMA
1774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1775 void __init init_cma_reserved_pageblock(struct page *page)
1776 {
1777 unsigned i = pageblock_nr_pages;
1778 struct page *p = page;
1779
1780 do {
1781 __ClearPageReserved(p);
1782 set_page_count(p, 0);
1783 } while (++p, --i);
1784
1785 set_pageblock_migratetype(page, MIGRATE_CMA);
1786
1787 if (pageblock_order >= MAX_ORDER) {
1788 i = pageblock_nr_pages;
1789 p = page;
1790 do {
1791 set_page_refcounted(p);
1792 __free_pages(p, MAX_ORDER - 1);
1793 p += MAX_ORDER_NR_PAGES;
1794 } while (i -= MAX_ORDER_NR_PAGES);
1795 } else {
1796 set_page_refcounted(page);
1797 __free_pages(page, pageblock_order);
1798 }
1799
1800 adjust_managed_page_count(page, pageblock_nr_pages);
1801 }
1802 #endif
1803
1804 /*
1805 * The order of subdivision here is critical for the IO subsystem.
1806 * Please do not alter this order without good reasons and regression
1807 * testing. Specifically, as large blocks of memory are subdivided,
1808 * the order in which smaller blocks are delivered depends on the order
1809 * they're subdivided in this function. This is the primary factor
1810 * influencing the order in which pages are delivered to the IO
1811 * subsystem according to empirical testing, and this is also justified
1812 * by considering the behavior of a buddy system containing a single
1813 * large block of memory acted on by a series of small allocations.
1814 * This behavior is a critical factor in sglist merging's success.
1815 *
1816 * -- nyc
1817 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1818 static inline void expand(struct zone *zone, struct page *page,
1819 int low, int high, struct free_area *area,
1820 int migratetype)
1821 {
1822 unsigned long size = 1 << high;
1823
1824 while (high > low) {
1825 area--;
1826 high--;
1827 size >>= 1;
1828 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1829
1830 /*
1831 * Mark as guard pages (or page), that will allow to
1832 * merge back to allocator when buddy will be freed.
1833 * Corresponding page table entries will not be touched,
1834 * pages will stay not present in virtual address space
1835 */
1836 if (set_page_guard(zone, &page[size], high, migratetype))
1837 continue;
1838
1839 list_add(&page[size].lru, &area->free_list[migratetype]);
1840 area->nr_free++;
1841 set_page_order(&page[size], high);
1842 }
1843 }
1844
check_new_page_bad(struct page * page)1845 static void check_new_page_bad(struct page *page)
1846 {
1847 const char *bad_reason = NULL;
1848 unsigned long bad_flags = 0;
1849
1850 if (unlikely(atomic_read(&page->_mapcount) != -1))
1851 bad_reason = "nonzero mapcount";
1852 if (unlikely(page->mapping != NULL))
1853 bad_reason = "non-NULL mapping";
1854 if (unlikely(page_ref_count(page) != 0))
1855 bad_reason = "nonzero _count";
1856 if (unlikely(page->flags & __PG_HWPOISON)) {
1857 bad_reason = "HWPoisoned (hardware-corrupted)";
1858 bad_flags = __PG_HWPOISON;
1859 /* Don't complain about hwpoisoned pages */
1860 page_mapcount_reset(page); /* remove PageBuddy */
1861 return;
1862 }
1863 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1864 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1865 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1866 }
1867 #ifdef CONFIG_MEMCG
1868 if (unlikely(page->mem_cgroup))
1869 bad_reason = "page still charged to cgroup";
1870 #endif
1871 bad_page(page, bad_reason, bad_flags);
1872 }
1873
1874 /*
1875 * This page is about to be returned from the page allocator
1876 */
check_new_page(struct page * page)1877 static inline int check_new_page(struct page *page)
1878 {
1879 if (likely(page_expected_state(page,
1880 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1881 return 0;
1882
1883 check_new_page_bad(page);
1884 return 1;
1885 }
1886
free_pages_prezeroed(void)1887 static inline bool free_pages_prezeroed(void)
1888 {
1889 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1890 page_poisoning_enabled();
1891 }
1892
1893 #ifdef CONFIG_DEBUG_VM
check_pcp_refill(struct page * page)1894 static bool check_pcp_refill(struct page *page)
1895 {
1896 return false;
1897 }
1898
check_new_pcp(struct page * page)1899 static bool check_new_pcp(struct page *page)
1900 {
1901 return check_new_page(page);
1902 }
1903 #else
check_pcp_refill(struct page * page)1904 static bool check_pcp_refill(struct page *page)
1905 {
1906 return check_new_page(page);
1907 }
check_new_pcp(struct page * page)1908 static bool check_new_pcp(struct page *page)
1909 {
1910 return false;
1911 }
1912 #endif /* CONFIG_DEBUG_VM */
1913
check_new_pages(struct page * page,unsigned int order)1914 static bool check_new_pages(struct page *page, unsigned int order)
1915 {
1916 int i;
1917 for (i = 0; i < (1 << order); i++) {
1918 struct page *p = page + i;
1919
1920 if (unlikely(check_new_page(p)))
1921 return true;
1922 }
1923
1924 return false;
1925 }
1926
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1927 inline void post_alloc_hook(struct page *page, unsigned int order,
1928 gfp_t gfp_flags)
1929 {
1930 set_page_private(page, 0);
1931 set_page_refcounted(page);
1932
1933 arch_alloc_page(page, order);
1934 kernel_map_pages(page, 1 << order, 1);
1935 kasan_alloc_pages(page, order);
1936 kernel_poison_pages(page, 1 << order, 1);
1937 set_page_owner(page, order, gfp_flags);
1938 }
1939
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1940 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1941 unsigned int alloc_flags)
1942 {
1943 int i;
1944
1945 post_alloc_hook(page, order, gfp_flags);
1946
1947 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1948 for (i = 0; i < (1 << order); i++)
1949 clear_highpage(page + i);
1950
1951 if (order && (gfp_flags & __GFP_COMP))
1952 prep_compound_page(page, order);
1953
1954 /*
1955 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1956 * allocate the page. The expectation is that the caller is taking
1957 * steps that will free more memory. The caller should avoid the page
1958 * being used for !PFMEMALLOC purposes.
1959 */
1960 if (alloc_flags & ALLOC_NO_WATERMARKS)
1961 set_page_pfmemalloc(page);
1962 else
1963 clear_page_pfmemalloc(page);
1964 }
1965
1966 /*
1967 * Go through the free lists for the given migratetype and remove
1968 * the smallest available page from the freelists
1969 */
1970 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1971 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1972 int migratetype)
1973 {
1974 unsigned int current_order;
1975 struct free_area *area;
1976 struct page *page;
1977
1978 /* Find a page of the appropriate size in the preferred list */
1979 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1980 area = &(zone->free_area[current_order]);
1981 page = list_first_entry_or_null(&area->free_list[migratetype],
1982 struct page, lru);
1983 if (!page)
1984 continue;
1985 list_del(&page->lru);
1986 rmv_page_order(page);
1987 area->nr_free--;
1988 expand(zone, page, order, current_order, area, migratetype);
1989 set_pcppage_migratetype(page, migratetype);
1990 return page;
1991 }
1992
1993 return NULL;
1994 }
1995
1996
1997 /*
1998 * This array describes the order lists are fallen back to when
1999 * the free lists for the desirable migrate type are depleted
2000 */
2001 static int fallbacks[MIGRATE_TYPES][4] = {
2002 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2003 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2004 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2005 #ifdef CONFIG_CMA
2006 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2007 #endif
2008 #ifdef CONFIG_MEMORY_ISOLATION
2009 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2010 #endif
2011 };
2012
2013 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2014 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2015 unsigned int order)
2016 {
2017 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2018 }
2019 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2020 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2021 unsigned int order) { return NULL; }
2022 #endif
2023
2024 /*
2025 * Move the free pages in a range to the free lists of the requested type.
2026 * Note that start_page and end_pages are not aligned on a pageblock
2027 * boundary. If alignment is required, use move_freepages_block()
2028 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2029 static int move_freepages(struct zone *zone,
2030 struct page *start_page, struct page *end_page,
2031 int migratetype, int *num_movable)
2032 {
2033 struct page *page;
2034 unsigned int order;
2035 int pages_moved = 0;
2036
2037 #ifndef CONFIG_HOLES_IN_ZONE
2038 /*
2039 * page_zone is not safe to call in this context when
2040 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2041 * anyway as we check zone boundaries in move_freepages_block().
2042 * Remove at a later date when no bug reports exist related to
2043 * grouping pages by mobility
2044 */
2045 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2046 pfn_valid(page_to_pfn(end_page)) &&
2047 page_zone(start_page) != page_zone(end_page));
2048 #endif
2049
2050 if (num_movable)
2051 *num_movable = 0;
2052
2053 for (page = start_page; page <= end_page;) {
2054 if (!pfn_valid_within(page_to_pfn(page))) {
2055 page++;
2056 continue;
2057 }
2058
2059 /* Make sure we are not inadvertently changing nodes */
2060 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2061
2062 if (!PageBuddy(page)) {
2063 /*
2064 * We assume that pages that could be isolated for
2065 * migration are movable. But we don't actually try
2066 * isolating, as that would be expensive.
2067 */
2068 if (num_movable &&
2069 (PageLRU(page) || __PageMovable(page)))
2070 (*num_movable)++;
2071
2072 page++;
2073 continue;
2074 }
2075
2076 order = page_order(page);
2077 list_move(&page->lru,
2078 &zone->free_area[order].free_list[migratetype]);
2079 page += 1 << order;
2080 pages_moved += 1 << order;
2081 }
2082
2083 return pages_moved;
2084 }
2085
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2086 int move_freepages_block(struct zone *zone, struct page *page,
2087 int migratetype, int *num_movable)
2088 {
2089 unsigned long start_pfn, end_pfn;
2090 struct page *start_page, *end_page;
2091
2092 start_pfn = page_to_pfn(page);
2093 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2094 start_page = pfn_to_page(start_pfn);
2095 end_page = start_page + pageblock_nr_pages - 1;
2096 end_pfn = start_pfn + pageblock_nr_pages - 1;
2097
2098 /* Do not cross zone boundaries */
2099 if (!zone_spans_pfn(zone, start_pfn))
2100 start_page = page;
2101 if (!zone_spans_pfn(zone, end_pfn))
2102 return 0;
2103
2104 return move_freepages(zone, start_page, end_page, migratetype,
2105 num_movable);
2106 }
2107
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2108 static void change_pageblock_range(struct page *pageblock_page,
2109 int start_order, int migratetype)
2110 {
2111 int nr_pageblocks = 1 << (start_order - pageblock_order);
2112
2113 while (nr_pageblocks--) {
2114 set_pageblock_migratetype(pageblock_page, migratetype);
2115 pageblock_page += pageblock_nr_pages;
2116 }
2117 }
2118
2119 /*
2120 * When we are falling back to another migratetype during allocation, try to
2121 * steal extra free pages from the same pageblocks to satisfy further
2122 * allocations, instead of polluting multiple pageblocks.
2123 *
2124 * If we are stealing a relatively large buddy page, it is likely there will
2125 * be more free pages in the pageblock, so try to steal them all. For
2126 * reclaimable and unmovable allocations, we steal regardless of page size,
2127 * as fragmentation caused by those allocations polluting movable pageblocks
2128 * is worse than movable allocations stealing from unmovable and reclaimable
2129 * pageblocks.
2130 */
can_steal_fallback(unsigned int order,int start_mt)2131 static bool can_steal_fallback(unsigned int order, int start_mt)
2132 {
2133 /*
2134 * Leaving this order check is intended, although there is
2135 * relaxed order check in next check. The reason is that
2136 * we can actually steal whole pageblock if this condition met,
2137 * but, below check doesn't guarantee it and that is just heuristic
2138 * so could be changed anytime.
2139 */
2140 if (order >= pageblock_order)
2141 return true;
2142
2143 if (order >= pageblock_order / 2 ||
2144 start_mt == MIGRATE_RECLAIMABLE ||
2145 start_mt == MIGRATE_UNMOVABLE ||
2146 page_group_by_mobility_disabled)
2147 return true;
2148
2149 return false;
2150 }
2151
2152 /*
2153 * This function implements actual steal behaviour. If order is large enough,
2154 * we can steal whole pageblock. If not, we first move freepages in this
2155 * pageblock to our migratetype and determine how many already-allocated pages
2156 * are there in the pageblock with a compatible migratetype. If at least half
2157 * of pages are free or compatible, we can change migratetype of the pageblock
2158 * itself, so pages freed in the future will be put on the correct free list.
2159 */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type,bool whole_block)2160 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2161 int start_type, bool whole_block)
2162 {
2163 unsigned int current_order = page_order(page);
2164 struct free_area *area;
2165 int free_pages, movable_pages, alike_pages;
2166 int old_block_type;
2167
2168 old_block_type = get_pageblock_migratetype(page);
2169
2170 /*
2171 * This can happen due to races and we want to prevent broken
2172 * highatomic accounting.
2173 */
2174 if (is_migrate_highatomic(old_block_type))
2175 goto single_page;
2176
2177 /* Take ownership for orders >= pageblock_order */
2178 if (current_order >= pageblock_order) {
2179 change_pageblock_range(page, current_order, start_type);
2180 goto single_page;
2181 }
2182
2183 /* We are not allowed to try stealing from the whole block */
2184 if (!whole_block)
2185 goto single_page;
2186
2187 free_pages = move_freepages_block(zone, page, start_type,
2188 &movable_pages);
2189 /*
2190 * Determine how many pages are compatible with our allocation.
2191 * For movable allocation, it's the number of movable pages which
2192 * we just obtained. For other types it's a bit more tricky.
2193 */
2194 if (start_type == MIGRATE_MOVABLE) {
2195 alike_pages = movable_pages;
2196 } else {
2197 /*
2198 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2199 * to MOVABLE pageblock, consider all non-movable pages as
2200 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2201 * vice versa, be conservative since we can't distinguish the
2202 * exact migratetype of non-movable pages.
2203 */
2204 if (old_block_type == MIGRATE_MOVABLE)
2205 alike_pages = pageblock_nr_pages
2206 - (free_pages + movable_pages);
2207 else
2208 alike_pages = 0;
2209 }
2210
2211 /* moving whole block can fail due to zone boundary conditions */
2212 if (!free_pages)
2213 goto single_page;
2214
2215 /*
2216 * If a sufficient number of pages in the block are either free or of
2217 * comparable migratability as our allocation, claim the whole block.
2218 */
2219 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2220 page_group_by_mobility_disabled)
2221 set_pageblock_migratetype(page, start_type);
2222
2223 return;
2224
2225 single_page:
2226 area = &zone->free_area[current_order];
2227 list_move(&page->lru, &area->free_list[start_type]);
2228 }
2229
2230 /*
2231 * Check whether there is a suitable fallback freepage with requested order.
2232 * If only_stealable is true, this function returns fallback_mt only if
2233 * we can steal other freepages all together. This would help to reduce
2234 * fragmentation due to mixed migratetype pages in one pageblock.
2235 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2236 int find_suitable_fallback(struct free_area *area, unsigned int order,
2237 int migratetype, bool only_stealable, bool *can_steal)
2238 {
2239 int i;
2240 int fallback_mt;
2241
2242 if (area->nr_free == 0)
2243 return -1;
2244
2245 *can_steal = false;
2246 for (i = 0;; i++) {
2247 fallback_mt = fallbacks[migratetype][i];
2248 if (fallback_mt == MIGRATE_TYPES)
2249 break;
2250
2251 if (list_empty(&area->free_list[fallback_mt]))
2252 continue;
2253
2254 if (can_steal_fallback(order, migratetype))
2255 *can_steal = true;
2256
2257 if (!only_stealable)
2258 return fallback_mt;
2259
2260 if (*can_steal)
2261 return fallback_mt;
2262 }
2263
2264 return -1;
2265 }
2266
2267 /*
2268 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2269 * there are no empty page blocks that contain a page with a suitable order
2270 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2271 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2272 unsigned int alloc_order)
2273 {
2274 int mt;
2275 unsigned long max_managed, flags;
2276
2277 /*
2278 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2279 * Check is race-prone but harmless.
2280 */
2281 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2282 if (zone->nr_reserved_highatomic >= max_managed)
2283 return;
2284
2285 spin_lock_irqsave(&zone->lock, flags);
2286
2287 /* Recheck the nr_reserved_highatomic limit under the lock */
2288 if (zone->nr_reserved_highatomic >= max_managed)
2289 goto out_unlock;
2290
2291 /* Yoink! */
2292 mt = get_pageblock_migratetype(page);
2293 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2294 && !is_migrate_cma(mt)) {
2295 zone->nr_reserved_highatomic += pageblock_nr_pages;
2296 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2297 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2298 }
2299
2300 out_unlock:
2301 spin_unlock_irqrestore(&zone->lock, flags);
2302 }
2303
2304 /*
2305 * Used when an allocation is about to fail under memory pressure. This
2306 * potentially hurts the reliability of high-order allocations when under
2307 * intense memory pressure but failed atomic allocations should be easier
2308 * to recover from than an OOM.
2309 *
2310 * If @force is true, try to unreserve a pageblock even though highatomic
2311 * pageblock is exhausted.
2312 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2313 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2314 bool force)
2315 {
2316 struct zonelist *zonelist = ac->zonelist;
2317 unsigned long flags;
2318 struct zoneref *z;
2319 struct zone *zone;
2320 struct page *page;
2321 int order;
2322 bool ret;
2323
2324 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2325 ac->nodemask) {
2326 /*
2327 * Preserve at least one pageblock unless memory pressure
2328 * is really high.
2329 */
2330 if (!force && zone->nr_reserved_highatomic <=
2331 pageblock_nr_pages)
2332 continue;
2333
2334 spin_lock_irqsave(&zone->lock, flags);
2335 for (order = 0; order < MAX_ORDER; order++) {
2336 struct free_area *area = &(zone->free_area[order]);
2337
2338 page = list_first_entry_or_null(
2339 &area->free_list[MIGRATE_HIGHATOMIC],
2340 struct page, lru);
2341 if (!page)
2342 continue;
2343
2344 /*
2345 * In page freeing path, migratetype change is racy so
2346 * we can counter several free pages in a pageblock
2347 * in this loop althoug we changed the pageblock type
2348 * from highatomic to ac->migratetype. So we should
2349 * adjust the count once.
2350 */
2351 if (is_migrate_highatomic_page(page)) {
2352 /*
2353 * It should never happen but changes to
2354 * locking could inadvertently allow a per-cpu
2355 * drain to add pages to MIGRATE_HIGHATOMIC
2356 * while unreserving so be safe and watch for
2357 * underflows.
2358 */
2359 zone->nr_reserved_highatomic -= min(
2360 pageblock_nr_pages,
2361 zone->nr_reserved_highatomic);
2362 }
2363
2364 /*
2365 * Convert to ac->migratetype and avoid the normal
2366 * pageblock stealing heuristics. Minimally, the caller
2367 * is doing the work and needs the pages. More
2368 * importantly, if the block was always converted to
2369 * MIGRATE_UNMOVABLE or another type then the number
2370 * of pageblocks that cannot be completely freed
2371 * may increase.
2372 */
2373 set_pageblock_migratetype(page, ac->migratetype);
2374 ret = move_freepages_block(zone, page, ac->migratetype,
2375 NULL);
2376 if (ret) {
2377 spin_unlock_irqrestore(&zone->lock, flags);
2378 return ret;
2379 }
2380 }
2381 spin_unlock_irqrestore(&zone->lock, flags);
2382 }
2383
2384 return false;
2385 }
2386
2387 /*
2388 * Try finding a free buddy page on the fallback list and put it on the free
2389 * list of requested migratetype, possibly along with other pages from the same
2390 * block, depending on fragmentation avoidance heuristics. Returns true if
2391 * fallback was found so that __rmqueue_smallest() can grab it.
2392 *
2393 * The use of signed ints for order and current_order is a deliberate
2394 * deviation from the rest of this file, to make the for loop
2395 * condition simpler.
2396 */
2397 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype)2398 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2399 {
2400 struct free_area *area;
2401 int current_order;
2402 struct page *page;
2403 int fallback_mt;
2404 bool can_steal;
2405
2406 /*
2407 * Find the largest available free page in the other list. This roughly
2408 * approximates finding the pageblock with the most free pages, which
2409 * would be too costly to do exactly.
2410 */
2411 for (current_order = MAX_ORDER - 1; current_order >= order;
2412 --current_order) {
2413 area = &(zone->free_area[current_order]);
2414 fallback_mt = find_suitable_fallback(area, current_order,
2415 start_migratetype, false, &can_steal);
2416 if (fallback_mt == -1)
2417 continue;
2418
2419 /*
2420 * We cannot steal all free pages from the pageblock and the
2421 * requested migratetype is movable. In that case it's better to
2422 * steal and split the smallest available page instead of the
2423 * largest available page, because even if the next movable
2424 * allocation falls back into a different pageblock than this
2425 * one, it won't cause permanent fragmentation.
2426 */
2427 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2428 && current_order > order)
2429 goto find_smallest;
2430
2431 goto do_steal;
2432 }
2433
2434 return false;
2435
2436 find_smallest:
2437 for (current_order = order; current_order < MAX_ORDER;
2438 current_order++) {
2439 area = &(zone->free_area[current_order]);
2440 fallback_mt = find_suitable_fallback(area, current_order,
2441 start_migratetype, false, &can_steal);
2442 if (fallback_mt != -1)
2443 break;
2444 }
2445
2446 /*
2447 * This should not happen - we already found a suitable fallback
2448 * when looking for the largest page.
2449 */
2450 VM_BUG_ON(current_order == MAX_ORDER);
2451
2452 do_steal:
2453 page = list_first_entry(&area->free_list[fallback_mt],
2454 struct page, lru);
2455
2456 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2457
2458 trace_mm_page_alloc_extfrag(page, order, current_order,
2459 start_migratetype, fallback_mt);
2460
2461 return true;
2462
2463 }
2464
2465 /*
2466 * Do the hard work of removing an element from the buddy allocator.
2467 * Call me with the zone->lock already held.
2468 */
2469 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype)2470 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2471 {
2472 struct page *page;
2473
2474 retry:
2475 page = __rmqueue_smallest(zone, order, migratetype);
2476 if (unlikely(!page)) {
2477 if (migratetype == MIGRATE_MOVABLE)
2478 page = __rmqueue_cma_fallback(zone, order);
2479
2480 if (!page && __rmqueue_fallback(zone, order, migratetype))
2481 goto retry;
2482 }
2483
2484 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2485 return page;
2486 }
2487
2488 /*
2489 * Obtain a specified number of elements from the buddy allocator, all under
2490 * a single hold of the lock, for efficiency. Add them to the supplied list.
2491 * Returns the number of new pages which were placed at *list.
2492 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype)2493 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2494 unsigned long count, struct list_head *list,
2495 int migratetype)
2496 {
2497 int i, alloced = 0;
2498
2499 spin_lock(&zone->lock);
2500 for (i = 0; i < count; ++i) {
2501 struct page *page = __rmqueue(zone, order, migratetype);
2502 if (unlikely(page == NULL))
2503 break;
2504
2505 if (unlikely(check_pcp_refill(page)))
2506 continue;
2507
2508 /*
2509 * Split buddy pages returned by expand() are received here in
2510 * physical page order. The page is added to the tail of
2511 * caller's list. From the callers perspective, the linked list
2512 * is ordered by page number under some conditions. This is
2513 * useful for IO devices that can forward direction from the
2514 * head, thus also in the physical page order. This is useful
2515 * for IO devices that can merge IO requests if the physical
2516 * pages are ordered properly.
2517 */
2518 list_add_tail(&page->lru, list);
2519 alloced++;
2520 if (is_migrate_cma(get_pcppage_migratetype(page)))
2521 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2522 -(1 << order));
2523 }
2524
2525 /*
2526 * i pages were removed from the buddy list even if some leak due
2527 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2528 * on i. Do not confuse with 'alloced' which is the number of
2529 * pages added to the pcp list.
2530 */
2531 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2532 spin_unlock(&zone->lock);
2533 return alloced;
2534 }
2535
2536 #ifdef CONFIG_NUMA
2537 /*
2538 * Called from the vmstat counter updater to drain pagesets of this
2539 * currently executing processor on remote nodes after they have
2540 * expired.
2541 *
2542 * Note that this function must be called with the thread pinned to
2543 * a single processor.
2544 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2545 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2546 {
2547 unsigned long flags;
2548 int to_drain, batch;
2549
2550 local_irq_save(flags);
2551 batch = READ_ONCE(pcp->batch);
2552 to_drain = min(pcp->count, batch);
2553 if (to_drain > 0)
2554 free_pcppages_bulk(zone, to_drain, pcp);
2555 local_irq_restore(flags);
2556 }
2557 #endif
2558
2559 /*
2560 * Drain pcplists of the indicated processor and zone.
2561 *
2562 * The processor must either be the current processor and the
2563 * thread pinned to the current processor or a processor that
2564 * is not online.
2565 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2566 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2567 {
2568 unsigned long flags;
2569 struct per_cpu_pageset *pset;
2570 struct per_cpu_pages *pcp;
2571
2572 local_irq_save(flags);
2573 pset = per_cpu_ptr(zone->pageset, cpu);
2574
2575 pcp = &pset->pcp;
2576 if (pcp->count)
2577 free_pcppages_bulk(zone, pcp->count, pcp);
2578 local_irq_restore(flags);
2579 }
2580
2581 /*
2582 * Drain pcplists of all zones on the indicated processor.
2583 *
2584 * The processor must either be the current processor and the
2585 * thread pinned to the current processor or a processor that
2586 * is not online.
2587 */
drain_pages(unsigned int cpu)2588 static void drain_pages(unsigned int cpu)
2589 {
2590 struct zone *zone;
2591
2592 for_each_populated_zone(zone) {
2593 drain_pages_zone(cpu, zone);
2594 }
2595 }
2596
2597 /*
2598 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2599 *
2600 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2601 * the single zone's pages.
2602 */
drain_local_pages(struct zone * zone)2603 void drain_local_pages(struct zone *zone)
2604 {
2605 int cpu = smp_processor_id();
2606
2607 if (zone)
2608 drain_pages_zone(cpu, zone);
2609 else
2610 drain_pages(cpu);
2611 }
2612
drain_local_pages_wq(struct work_struct * work)2613 static void drain_local_pages_wq(struct work_struct *work)
2614 {
2615 /*
2616 * drain_all_pages doesn't use proper cpu hotplug protection so
2617 * we can race with cpu offline when the WQ can move this from
2618 * a cpu pinned worker to an unbound one. We can operate on a different
2619 * cpu which is allright but we also have to make sure to not move to
2620 * a different one.
2621 */
2622 preempt_disable();
2623 drain_local_pages(NULL);
2624 preempt_enable();
2625 }
2626
2627 /*
2628 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2629 *
2630 * When zone parameter is non-NULL, spill just the single zone's pages.
2631 *
2632 * Note that this can be extremely slow as the draining happens in a workqueue.
2633 */
drain_all_pages(struct zone * zone)2634 void drain_all_pages(struct zone *zone)
2635 {
2636 int cpu;
2637
2638 /*
2639 * Allocate in the BSS so we wont require allocation in
2640 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2641 */
2642 static cpumask_t cpus_with_pcps;
2643
2644 /*
2645 * Make sure nobody triggers this path before mm_percpu_wq is fully
2646 * initialized.
2647 */
2648 if (WARN_ON_ONCE(!mm_percpu_wq))
2649 return;
2650
2651 /*
2652 * Do not drain if one is already in progress unless it's specific to
2653 * a zone. Such callers are primarily CMA and memory hotplug and need
2654 * the drain to be complete when the call returns.
2655 */
2656 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2657 if (!zone)
2658 return;
2659 mutex_lock(&pcpu_drain_mutex);
2660 }
2661
2662 /*
2663 * We don't care about racing with CPU hotplug event
2664 * as offline notification will cause the notified
2665 * cpu to drain that CPU pcps and on_each_cpu_mask
2666 * disables preemption as part of its processing
2667 */
2668 for_each_online_cpu(cpu) {
2669 struct per_cpu_pageset *pcp;
2670 struct zone *z;
2671 bool has_pcps = false;
2672
2673 if (zone) {
2674 pcp = per_cpu_ptr(zone->pageset, cpu);
2675 if (pcp->pcp.count)
2676 has_pcps = true;
2677 } else {
2678 for_each_populated_zone(z) {
2679 pcp = per_cpu_ptr(z->pageset, cpu);
2680 if (pcp->pcp.count) {
2681 has_pcps = true;
2682 break;
2683 }
2684 }
2685 }
2686
2687 if (has_pcps)
2688 cpumask_set_cpu(cpu, &cpus_with_pcps);
2689 else
2690 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2691 }
2692
2693 for_each_cpu(cpu, &cpus_with_pcps) {
2694 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2695 INIT_WORK(work, drain_local_pages_wq);
2696 queue_work_on(cpu, mm_percpu_wq, work);
2697 }
2698 for_each_cpu(cpu, &cpus_with_pcps)
2699 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2700
2701 mutex_unlock(&pcpu_drain_mutex);
2702 }
2703
2704 #ifdef CONFIG_HIBERNATION
2705
2706 /*
2707 * Touch the watchdog for every WD_PAGE_COUNT pages.
2708 */
2709 #define WD_PAGE_COUNT (128*1024)
2710
mark_free_pages(struct zone * zone)2711 void mark_free_pages(struct zone *zone)
2712 {
2713 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2714 unsigned long flags;
2715 unsigned int order, t;
2716 struct page *page;
2717
2718 if (zone_is_empty(zone))
2719 return;
2720
2721 spin_lock_irqsave(&zone->lock, flags);
2722
2723 max_zone_pfn = zone_end_pfn(zone);
2724 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2725 if (pfn_valid(pfn)) {
2726 page = pfn_to_page(pfn);
2727
2728 if (!--page_count) {
2729 touch_nmi_watchdog();
2730 page_count = WD_PAGE_COUNT;
2731 }
2732
2733 if (page_zone(page) != zone)
2734 continue;
2735
2736 if (!swsusp_page_is_forbidden(page))
2737 swsusp_unset_page_free(page);
2738 }
2739
2740 for_each_migratetype_order(order, t) {
2741 list_for_each_entry(page,
2742 &zone->free_area[order].free_list[t], lru) {
2743 unsigned long i;
2744
2745 pfn = page_to_pfn(page);
2746 for (i = 0; i < (1UL << order); i++) {
2747 if (!--page_count) {
2748 touch_nmi_watchdog();
2749 page_count = WD_PAGE_COUNT;
2750 }
2751 swsusp_set_page_free(pfn_to_page(pfn + i));
2752 }
2753 }
2754 }
2755 spin_unlock_irqrestore(&zone->lock, flags);
2756 }
2757 #endif /* CONFIG_PM */
2758
free_unref_page_prepare(struct page * page,unsigned long pfn)2759 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2760 {
2761 int migratetype;
2762
2763 if (!free_pcp_prepare(page))
2764 return false;
2765
2766 migratetype = get_pfnblock_migratetype(page, pfn);
2767 set_pcppage_migratetype(page, migratetype);
2768 return true;
2769 }
2770
free_unref_page_commit(struct page * page,unsigned long pfn)2771 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2772 {
2773 struct zone *zone = page_zone(page);
2774 struct per_cpu_pages *pcp;
2775 int migratetype;
2776
2777 migratetype = get_pcppage_migratetype(page);
2778 __count_vm_event(PGFREE);
2779
2780 /*
2781 * We only track unmovable, reclaimable and movable on pcp lists.
2782 * Free ISOLATE pages back to the allocator because they are being
2783 * offlined but treat HIGHATOMIC as movable pages so we can get those
2784 * areas back if necessary. Otherwise, we may have to free
2785 * excessively into the page allocator
2786 */
2787 if (migratetype >= MIGRATE_PCPTYPES) {
2788 if (unlikely(is_migrate_isolate(migratetype))) {
2789 free_one_page(zone, page, pfn, 0, migratetype);
2790 return;
2791 }
2792 migratetype = MIGRATE_MOVABLE;
2793 }
2794
2795 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2796 list_add(&page->lru, &pcp->lists[migratetype]);
2797 pcp->count++;
2798 if (pcp->count >= pcp->high) {
2799 unsigned long batch = READ_ONCE(pcp->batch);
2800 free_pcppages_bulk(zone, batch, pcp);
2801 }
2802 }
2803
2804 /*
2805 * Free a 0-order page
2806 */
free_unref_page(struct page * page)2807 void free_unref_page(struct page *page)
2808 {
2809 unsigned long flags;
2810 unsigned long pfn = page_to_pfn(page);
2811
2812 if (!free_unref_page_prepare(page, pfn))
2813 return;
2814
2815 local_irq_save(flags);
2816 free_unref_page_commit(page, pfn);
2817 local_irq_restore(flags);
2818 }
2819
2820 /*
2821 * Free a list of 0-order pages
2822 */
free_unref_page_list(struct list_head * list)2823 void free_unref_page_list(struct list_head *list)
2824 {
2825 struct page *page, *next;
2826 unsigned long flags, pfn;
2827 int batch_count = 0;
2828
2829 /* Prepare pages for freeing */
2830 list_for_each_entry_safe(page, next, list, lru) {
2831 pfn = page_to_pfn(page);
2832 if (!free_unref_page_prepare(page, pfn))
2833 list_del(&page->lru);
2834 set_page_private(page, pfn);
2835 }
2836
2837 local_irq_save(flags);
2838 list_for_each_entry_safe(page, next, list, lru) {
2839 unsigned long pfn = page_private(page);
2840
2841 set_page_private(page, 0);
2842 trace_mm_page_free_batched(page);
2843 free_unref_page_commit(page, pfn);
2844
2845 /*
2846 * Guard against excessive IRQ disabled times when we get
2847 * a large list of pages to free.
2848 */
2849 if (++batch_count == SWAP_CLUSTER_MAX) {
2850 local_irq_restore(flags);
2851 batch_count = 0;
2852 local_irq_save(flags);
2853 }
2854 }
2855 local_irq_restore(flags);
2856 }
2857
2858 /*
2859 * split_page takes a non-compound higher-order page, and splits it into
2860 * n (1<<order) sub-pages: page[0..n]
2861 * Each sub-page must be freed individually.
2862 *
2863 * Note: this is probably too low level an operation for use in drivers.
2864 * Please consult with lkml before using this in your driver.
2865 */
split_page(struct page * page,unsigned int order)2866 void split_page(struct page *page, unsigned int order)
2867 {
2868 int i;
2869
2870 VM_BUG_ON_PAGE(PageCompound(page), page);
2871 VM_BUG_ON_PAGE(!page_count(page), page);
2872
2873 for (i = 1; i < (1 << order); i++)
2874 set_page_refcounted(page + i);
2875 split_page_owner(page, order);
2876 }
2877 EXPORT_SYMBOL_GPL(split_page);
2878
__isolate_free_page(struct page * page,unsigned int order)2879 int __isolate_free_page(struct page *page, unsigned int order)
2880 {
2881 unsigned long watermark;
2882 struct zone *zone;
2883 int mt;
2884
2885 BUG_ON(!PageBuddy(page));
2886
2887 zone = page_zone(page);
2888 mt = get_pageblock_migratetype(page);
2889
2890 if (!is_migrate_isolate(mt)) {
2891 /*
2892 * Obey watermarks as if the page was being allocated. We can
2893 * emulate a high-order watermark check with a raised order-0
2894 * watermark, because we already know our high-order page
2895 * exists.
2896 */
2897 watermark = min_wmark_pages(zone) + (1UL << order);
2898 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2899 return 0;
2900
2901 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2902 }
2903
2904 /* Remove page from free list */
2905 list_del(&page->lru);
2906 zone->free_area[order].nr_free--;
2907 rmv_page_order(page);
2908
2909 /*
2910 * Set the pageblock if the isolated page is at least half of a
2911 * pageblock
2912 */
2913 if (order >= pageblock_order - 1) {
2914 struct page *endpage = page + (1 << order) - 1;
2915 for (; page < endpage; page += pageblock_nr_pages) {
2916 int mt = get_pageblock_migratetype(page);
2917 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2918 && !is_migrate_highatomic(mt))
2919 set_pageblock_migratetype(page,
2920 MIGRATE_MOVABLE);
2921 }
2922 }
2923
2924
2925 return 1UL << order;
2926 }
2927
2928 /*
2929 * Update NUMA hit/miss statistics
2930 *
2931 * Must be called with interrupts disabled.
2932 */
zone_statistics(struct zone * preferred_zone,struct zone * z)2933 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2934 {
2935 #ifdef CONFIG_NUMA
2936 enum numa_stat_item local_stat = NUMA_LOCAL;
2937
2938 /* skip numa counters update if numa stats is disabled */
2939 if (!static_branch_likely(&vm_numa_stat_key))
2940 return;
2941
2942 if (zone_to_nid(z) != numa_node_id())
2943 local_stat = NUMA_OTHER;
2944
2945 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2946 __inc_numa_state(z, NUMA_HIT);
2947 else {
2948 __inc_numa_state(z, NUMA_MISS);
2949 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2950 }
2951 __inc_numa_state(z, local_stat);
2952 #endif
2953 }
2954
2955 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,struct per_cpu_pages * pcp,struct list_head * list)2956 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2957 struct per_cpu_pages *pcp,
2958 struct list_head *list)
2959 {
2960 struct page *page;
2961
2962 do {
2963 if (list_empty(list)) {
2964 pcp->count += rmqueue_bulk(zone, 0,
2965 pcp->batch, list,
2966 migratetype);
2967 if (unlikely(list_empty(list)))
2968 return NULL;
2969 }
2970
2971 page = list_first_entry(list, struct page, lru);
2972 list_del(&page->lru);
2973 pcp->count--;
2974 } while (check_new_pcp(page));
2975
2976 return page;
2977 }
2978
2979 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)2980 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2981 struct zone *zone, unsigned int order,
2982 gfp_t gfp_flags, int migratetype)
2983 {
2984 struct per_cpu_pages *pcp;
2985 struct list_head *list;
2986 struct page *page;
2987 unsigned long flags;
2988
2989 local_irq_save(flags);
2990 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2991 list = &pcp->lists[migratetype];
2992 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2993 if (page) {
2994 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2995 zone_statistics(preferred_zone, zone);
2996 }
2997 local_irq_restore(flags);
2998 return page;
2999 }
3000
3001 /*
3002 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3003 */
3004 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3005 struct page *rmqueue(struct zone *preferred_zone,
3006 struct zone *zone, unsigned int order,
3007 gfp_t gfp_flags, unsigned int alloc_flags,
3008 int migratetype)
3009 {
3010 unsigned long flags;
3011 struct page *page;
3012
3013 if (likely(order == 0)) {
3014 page = rmqueue_pcplist(preferred_zone, zone, order,
3015 gfp_flags, migratetype);
3016 goto out;
3017 }
3018
3019 /*
3020 * We most definitely don't want callers attempting to
3021 * allocate greater than order-1 page units with __GFP_NOFAIL.
3022 */
3023 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3024 spin_lock_irqsave(&zone->lock, flags);
3025
3026 do {
3027 page = NULL;
3028 if (alloc_flags & ALLOC_HARDER) {
3029 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3030 if (page)
3031 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3032 }
3033 if (!page)
3034 page = __rmqueue(zone, order, migratetype);
3035 } while (page && check_new_pages(page, order));
3036 spin_unlock(&zone->lock);
3037 if (!page)
3038 goto failed;
3039 __mod_zone_freepage_state(zone, -(1 << order),
3040 get_pcppage_migratetype(page));
3041
3042 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3043 zone_statistics(preferred_zone, zone);
3044 local_irq_restore(flags);
3045
3046 out:
3047 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3048 return page;
3049
3050 failed:
3051 local_irq_restore(flags);
3052 return NULL;
3053 }
3054
3055 #ifdef CONFIG_FAIL_PAGE_ALLOC
3056
3057 static struct {
3058 struct fault_attr attr;
3059
3060 bool ignore_gfp_highmem;
3061 bool ignore_gfp_reclaim;
3062 u32 min_order;
3063 } fail_page_alloc = {
3064 .attr = FAULT_ATTR_INITIALIZER,
3065 .ignore_gfp_reclaim = true,
3066 .ignore_gfp_highmem = true,
3067 .min_order = 1,
3068 };
3069
setup_fail_page_alloc(char * str)3070 static int __init setup_fail_page_alloc(char *str)
3071 {
3072 return setup_fault_attr(&fail_page_alloc.attr, str);
3073 }
3074 __setup("fail_page_alloc=", setup_fail_page_alloc);
3075
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3076 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3077 {
3078 if (order < fail_page_alloc.min_order)
3079 return false;
3080 if (gfp_mask & __GFP_NOFAIL)
3081 return false;
3082 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3083 return false;
3084 if (fail_page_alloc.ignore_gfp_reclaim &&
3085 (gfp_mask & __GFP_DIRECT_RECLAIM))
3086 return false;
3087
3088 return should_fail(&fail_page_alloc.attr, 1 << order);
3089 }
3090
3091 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3092
fail_page_alloc_debugfs(void)3093 static int __init fail_page_alloc_debugfs(void)
3094 {
3095 umode_t mode = S_IFREG | 0600;
3096 struct dentry *dir;
3097
3098 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3099 &fail_page_alloc.attr);
3100 if (IS_ERR(dir))
3101 return PTR_ERR(dir);
3102
3103 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3104 &fail_page_alloc.ignore_gfp_reclaim))
3105 goto fail;
3106 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3107 &fail_page_alloc.ignore_gfp_highmem))
3108 goto fail;
3109 if (!debugfs_create_u32("min-order", mode, dir,
3110 &fail_page_alloc.min_order))
3111 goto fail;
3112
3113 return 0;
3114 fail:
3115 debugfs_remove_recursive(dir);
3116
3117 return -ENOMEM;
3118 }
3119
3120 late_initcall(fail_page_alloc_debugfs);
3121
3122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3123
3124 #else /* CONFIG_FAIL_PAGE_ALLOC */
3125
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3126 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3127 {
3128 return false;
3129 }
3130
3131 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3132
3133 /*
3134 * Return true if free base pages are above 'mark'. For high-order checks it
3135 * will return true of the order-0 watermark is reached and there is at least
3136 * one free page of a suitable size. Checking now avoids taking the zone lock
3137 * to check in the allocation paths if no pages are free.
3138 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)3139 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3140 int classzone_idx, unsigned int alloc_flags,
3141 long free_pages)
3142 {
3143 long min = mark;
3144 int o;
3145 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3146
3147 /* free_pages may go negative - that's OK */
3148 free_pages -= (1 << order) - 1;
3149
3150 if (alloc_flags & ALLOC_HIGH)
3151 min -= min / 2;
3152
3153 /*
3154 * If the caller does not have rights to ALLOC_HARDER then subtract
3155 * the high-atomic reserves. This will over-estimate the size of the
3156 * atomic reserve but it avoids a search.
3157 */
3158 if (likely(!alloc_harder)) {
3159 free_pages -= z->nr_reserved_highatomic;
3160 } else {
3161 /*
3162 * OOM victims can try even harder than normal ALLOC_HARDER
3163 * users on the grounds that it's definitely going to be in
3164 * the exit path shortly and free memory. Any allocation it
3165 * makes during the free path will be small and short-lived.
3166 */
3167 if (alloc_flags & ALLOC_OOM)
3168 min -= min / 2;
3169 else
3170 min -= min / 4;
3171 }
3172
3173
3174 #ifdef CONFIG_CMA
3175 /* If allocation can't use CMA areas don't use free CMA pages */
3176 if (!(alloc_flags & ALLOC_CMA))
3177 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3178 #endif
3179
3180 /*
3181 * Check watermarks for an order-0 allocation request. If these
3182 * are not met, then a high-order request also cannot go ahead
3183 * even if a suitable page happened to be free.
3184 */
3185 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3186 return false;
3187
3188 /* If this is an order-0 request then the watermark is fine */
3189 if (!order)
3190 return true;
3191
3192 /* For a high-order request, check at least one suitable page is free */
3193 for (o = order; o < MAX_ORDER; o++) {
3194 struct free_area *area = &z->free_area[o];
3195 int mt;
3196
3197 if (!area->nr_free)
3198 continue;
3199
3200 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3201 if (!list_empty(&area->free_list[mt]))
3202 return true;
3203 }
3204
3205 #ifdef CONFIG_CMA
3206 if ((alloc_flags & ALLOC_CMA) &&
3207 !list_empty(&area->free_list[MIGRATE_CMA])) {
3208 return true;
3209 }
3210 #endif
3211 if (alloc_harder &&
3212 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3213 return true;
3214 }
3215 return false;
3216 }
3217
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3218 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3219 int classzone_idx, unsigned int alloc_flags)
3220 {
3221 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3222 zone_page_state(z, NR_FREE_PAGES));
3223 }
3224
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3225 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3226 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3227 {
3228 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3229 long cma_pages = 0;
3230
3231 #ifdef CONFIG_CMA
3232 /* If allocation can't use CMA areas don't use free CMA pages */
3233 if (!(alloc_flags & ALLOC_CMA))
3234 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3235 #endif
3236
3237 /*
3238 * Fast check for order-0 only. If this fails then the reserves
3239 * need to be calculated. There is a corner case where the check
3240 * passes but only the high-order atomic reserve are free. If
3241 * the caller is !atomic then it'll uselessly search the free
3242 * list. That corner case is then slower but it is harmless.
3243 */
3244 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3245 return true;
3246
3247 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3248 free_pages);
3249 }
3250
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)3251 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3252 unsigned long mark, int classzone_idx)
3253 {
3254 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3255
3256 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3257 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3258
3259 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3260 free_pages);
3261 }
3262
3263 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3264 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3265 {
3266 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3267 RECLAIM_DISTANCE;
3268 }
3269 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3270 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3271 {
3272 return true;
3273 }
3274 #endif /* CONFIG_NUMA */
3275
3276 /*
3277 * get_page_from_freelist goes through the zonelist trying to allocate
3278 * a page.
3279 */
3280 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3281 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3282 const struct alloc_context *ac)
3283 {
3284 struct zoneref *z = ac->preferred_zoneref;
3285 struct zone *zone;
3286 struct pglist_data *last_pgdat_dirty_limit = NULL;
3287
3288 /*
3289 * Scan zonelist, looking for a zone with enough free.
3290 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3291 */
3292 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3293 ac->nodemask) {
3294 struct page *page;
3295 unsigned long mark;
3296
3297 if (cpusets_enabled() &&
3298 (alloc_flags & ALLOC_CPUSET) &&
3299 !__cpuset_zone_allowed(zone, gfp_mask))
3300 continue;
3301 /*
3302 * When allocating a page cache page for writing, we
3303 * want to get it from a node that is within its dirty
3304 * limit, such that no single node holds more than its
3305 * proportional share of globally allowed dirty pages.
3306 * The dirty limits take into account the node's
3307 * lowmem reserves and high watermark so that kswapd
3308 * should be able to balance it without having to
3309 * write pages from its LRU list.
3310 *
3311 * XXX: For now, allow allocations to potentially
3312 * exceed the per-node dirty limit in the slowpath
3313 * (spread_dirty_pages unset) before going into reclaim,
3314 * which is important when on a NUMA setup the allowed
3315 * nodes are together not big enough to reach the
3316 * global limit. The proper fix for these situations
3317 * will require awareness of nodes in the
3318 * dirty-throttling and the flusher threads.
3319 */
3320 if (ac->spread_dirty_pages) {
3321 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3322 continue;
3323
3324 if (!node_dirty_ok(zone->zone_pgdat)) {
3325 last_pgdat_dirty_limit = zone->zone_pgdat;
3326 continue;
3327 }
3328 }
3329
3330 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3331 if (!zone_watermark_fast(zone, order, mark,
3332 ac_classzone_idx(ac), alloc_flags)) {
3333 int ret;
3334
3335 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3336 /*
3337 * Watermark failed for this zone, but see if we can
3338 * grow this zone if it contains deferred pages.
3339 */
3340 if (static_branch_unlikely(&deferred_pages)) {
3341 if (_deferred_grow_zone(zone, order))
3342 goto try_this_zone;
3343 }
3344 #endif
3345 /* Checked here to keep the fast path fast */
3346 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3347 if (alloc_flags & ALLOC_NO_WATERMARKS)
3348 goto try_this_zone;
3349
3350 if (node_reclaim_mode == 0 ||
3351 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3352 continue;
3353
3354 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3355 switch (ret) {
3356 case NODE_RECLAIM_NOSCAN:
3357 /* did not scan */
3358 continue;
3359 case NODE_RECLAIM_FULL:
3360 /* scanned but unreclaimable */
3361 continue;
3362 default:
3363 /* did we reclaim enough */
3364 if (zone_watermark_ok(zone, order, mark,
3365 ac_classzone_idx(ac), alloc_flags))
3366 goto try_this_zone;
3367
3368 continue;
3369 }
3370 }
3371
3372 try_this_zone:
3373 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3374 gfp_mask, alloc_flags, ac->migratetype);
3375 if (page) {
3376 prep_new_page(page, order, gfp_mask, alloc_flags);
3377
3378 /*
3379 * If this is a high-order atomic allocation then check
3380 * if the pageblock should be reserved for the future
3381 */
3382 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3383 reserve_highatomic_pageblock(page, zone, order);
3384
3385 return page;
3386 } else {
3387 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3388 /* Try again if zone has deferred pages */
3389 if (static_branch_unlikely(&deferred_pages)) {
3390 if (_deferred_grow_zone(zone, order))
3391 goto try_this_zone;
3392 }
3393 #endif
3394 }
3395 }
3396
3397 return NULL;
3398 }
3399
3400 /*
3401 * Large machines with many possible nodes should not always dump per-node
3402 * meminfo in irq context.
3403 */
should_suppress_show_mem(void)3404 static inline bool should_suppress_show_mem(void)
3405 {
3406 bool ret = false;
3407
3408 #if NODES_SHIFT > 8
3409 ret = in_interrupt();
3410 #endif
3411 return ret;
3412 }
3413
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3414 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3415 {
3416 unsigned int filter = SHOW_MEM_FILTER_NODES;
3417 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3418
3419 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3420 return;
3421
3422 /*
3423 * This documents exceptions given to allocations in certain
3424 * contexts that are allowed to allocate outside current's set
3425 * of allowed nodes.
3426 */
3427 if (!(gfp_mask & __GFP_NOMEMALLOC))
3428 if (tsk_is_oom_victim(current) ||
3429 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3430 filter &= ~SHOW_MEM_FILTER_NODES;
3431 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3432 filter &= ~SHOW_MEM_FILTER_NODES;
3433
3434 show_mem(filter, nodemask);
3435 }
3436
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3437 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3438 {
3439 struct va_format vaf;
3440 va_list args;
3441 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3442 DEFAULT_RATELIMIT_BURST);
3443
3444 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3445 return;
3446
3447 va_start(args, fmt);
3448 vaf.fmt = fmt;
3449 vaf.va = &args;
3450 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3451 current->comm, &vaf, gfp_mask, &gfp_mask,
3452 nodemask_pr_args(nodemask));
3453 va_end(args);
3454
3455 cpuset_print_current_mems_allowed();
3456
3457 dump_stack();
3458 warn_alloc_show_mem(gfp_mask, nodemask);
3459 }
3460
3461 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3462 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3463 unsigned int alloc_flags,
3464 const struct alloc_context *ac)
3465 {
3466 struct page *page;
3467
3468 page = get_page_from_freelist(gfp_mask, order,
3469 alloc_flags|ALLOC_CPUSET, ac);
3470 /*
3471 * fallback to ignore cpuset restriction if our nodes
3472 * are depleted
3473 */
3474 if (!page)
3475 page = get_page_from_freelist(gfp_mask, order,
3476 alloc_flags, ac);
3477
3478 return page;
3479 }
3480
3481 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3482 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3483 const struct alloc_context *ac, unsigned long *did_some_progress)
3484 {
3485 struct oom_control oc = {
3486 .zonelist = ac->zonelist,
3487 .nodemask = ac->nodemask,
3488 .memcg = NULL,
3489 .gfp_mask = gfp_mask,
3490 .order = order,
3491 };
3492 struct page *page;
3493
3494 *did_some_progress = 0;
3495
3496 /*
3497 * Acquire the oom lock. If that fails, somebody else is
3498 * making progress for us.
3499 */
3500 if (!mutex_trylock(&oom_lock)) {
3501 *did_some_progress = 1;
3502 schedule_timeout_uninterruptible(1);
3503 return NULL;
3504 }
3505
3506 /*
3507 * Go through the zonelist yet one more time, keep very high watermark
3508 * here, this is only to catch a parallel oom killing, we must fail if
3509 * we're still under heavy pressure. But make sure that this reclaim
3510 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3511 * allocation which will never fail due to oom_lock already held.
3512 */
3513 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3514 ~__GFP_DIRECT_RECLAIM, order,
3515 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3516 if (page)
3517 goto out;
3518
3519 /* Coredumps can quickly deplete all memory reserves */
3520 if (current->flags & PF_DUMPCORE)
3521 goto out;
3522 /* The OOM killer will not help higher order allocs */
3523 if (order > PAGE_ALLOC_COSTLY_ORDER)
3524 goto out;
3525 /*
3526 * We have already exhausted all our reclaim opportunities without any
3527 * success so it is time to admit defeat. We will skip the OOM killer
3528 * because it is very likely that the caller has a more reasonable
3529 * fallback than shooting a random task.
3530 */
3531 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3532 goto out;
3533 /* The OOM killer does not needlessly kill tasks for lowmem */
3534 if (ac->high_zoneidx < ZONE_NORMAL)
3535 goto out;
3536 if (pm_suspended_storage())
3537 goto out;
3538 /*
3539 * XXX: GFP_NOFS allocations should rather fail than rely on
3540 * other request to make a forward progress.
3541 * We are in an unfortunate situation where out_of_memory cannot
3542 * do much for this context but let's try it to at least get
3543 * access to memory reserved if the current task is killed (see
3544 * out_of_memory). Once filesystems are ready to handle allocation
3545 * failures more gracefully we should just bail out here.
3546 */
3547
3548 /* The OOM killer may not free memory on a specific node */
3549 if (gfp_mask & __GFP_THISNODE)
3550 goto out;
3551
3552 /* Exhausted what can be done so it's blame time */
3553 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3554 *did_some_progress = 1;
3555
3556 /*
3557 * Help non-failing allocations by giving them access to memory
3558 * reserves
3559 */
3560 if (gfp_mask & __GFP_NOFAIL)
3561 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3562 ALLOC_NO_WATERMARKS, ac);
3563 }
3564 out:
3565 mutex_unlock(&oom_lock);
3566 return page;
3567 }
3568
3569 /*
3570 * Maximum number of compaction retries wit a progress before OOM
3571 * killer is consider as the only way to move forward.
3572 */
3573 #define MAX_COMPACT_RETRIES 16
3574
3575 #ifdef CONFIG_COMPACTION
3576 /* Try memory compaction for high-order allocations before reclaim */
3577 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3578 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3579 unsigned int alloc_flags, const struct alloc_context *ac,
3580 enum compact_priority prio, enum compact_result *compact_result)
3581 {
3582 struct page *page;
3583 unsigned int noreclaim_flag;
3584
3585 if (!order)
3586 return NULL;
3587
3588 noreclaim_flag = memalloc_noreclaim_save();
3589 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3590 prio);
3591 memalloc_noreclaim_restore(noreclaim_flag);
3592
3593 if (*compact_result <= COMPACT_INACTIVE)
3594 return NULL;
3595
3596 /*
3597 * At least in one zone compaction wasn't deferred or skipped, so let's
3598 * count a compaction stall
3599 */
3600 count_vm_event(COMPACTSTALL);
3601
3602 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3603
3604 if (page) {
3605 struct zone *zone = page_zone(page);
3606
3607 zone->compact_blockskip_flush = false;
3608 compaction_defer_reset(zone, order, true);
3609 count_vm_event(COMPACTSUCCESS);
3610 return page;
3611 }
3612
3613 /*
3614 * It's bad if compaction run occurs and fails. The most likely reason
3615 * is that pages exist, but not enough to satisfy watermarks.
3616 */
3617 count_vm_event(COMPACTFAIL);
3618
3619 cond_resched();
3620
3621 return NULL;
3622 }
3623
3624 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3625 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3626 enum compact_result compact_result,
3627 enum compact_priority *compact_priority,
3628 int *compaction_retries)
3629 {
3630 int max_retries = MAX_COMPACT_RETRIES;
3631 int min_priority;
3632 bool ret = false;
3633 int retries = *compaction_retries;
3634 enum compact_priority priority = *compact_priority;
3635
3636 if (!order)
3637 return false;
3638
3639 if (compaction_made_progress(compact_result))
3640 (*compaction_retries)++;
3641
3642 /*
3643 * compaction considers all the zone as desperately out of memory
3644 * so it doesn't really make much sense to retry except when the
3645 * failure could be caused by insufficient priority
3646 */
3647 if (compaction_failed(compact_result))
3648 goto check_priority;
3649
3650 /*
3651 * make sure the compaction wasn't deferred or didn't bail out early
3652 * due to locks contention before we declare that we should give up.
3653 * But do not retry if the given zonelist is not suitable for
3654 * compaction.
3655 */
3656 if (compaction_withdrawn(compact_result)) {
3657 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3658 goto out;
3659 }
3660
3661 /*
3662 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3663 * costly ones because they are de facto nofail and invoke OOM
3664 * killer to move on while costly can fail and users are ready
3665 * to cope with that. 1/4 retries is rather arbitrary but we
3666 * would need much more detailed feedback from compaction to
3667 * make a better decision.
3668 */
3669 if (order > PAGE_ALLOC_COSTLY_ORDER)
3670 max_retries /= 4;
3671 if (*compaction_retries <= max_retries) {
3672 ret = true;
3673 goto out;
3674 }
3675
3676 /*
3677 * Make sure there are attempts at the highest priority if we exhausted
3678 * all retries or failed at the lower priorities.
3679 */
3680 check_priority:
3681 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3682 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3683
3684 if (*compact_priority > min_priority) {
3685 (*compact_priority)--;
3686 *compaction_retries = 0;
3687 ret = true;
3688 }
3689 out:
3690 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3691 return ret;
3692 }
3693 #else
3694 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3695 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3696 unsigned int alloc_flags, const struct alloc_context *ac,
3697 enum compact_priority prio, enum compact_result *compact_result)
3698 {
3699 *compact_result = COMPACT_SKIPPED;
3700 return NULL;
3701 }
3702
3703 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3704 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3705 enum compact_result compact_result,
3706 enum compact_priority *compact_priority,
3707 int *compaction_retries)
3708 {
3709 struct zone *zone;
3710 struct zoneref *z;
3711
3712 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3713 return false;
3714
3715 /*
3716 * There are setups with compaction disabled which would prefer to loop
3717 * inside the allocator rather than hit the oom killer prematurely.
3718 * Let's give them a good hope and keep retrying while the order-0
3719 * watermarks are OK.
3720 */
3721 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3722 ac->nodemask) {
3723 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3724 ac_classzone_idx(ac), alloc_flags))
3725 return true;
3726 }
3727 return false;
3728 }
3729 #endif /* CONFIG_COMPACTION */
3730
3731 #ifdef CONFIG_LOCKDEP
3732 static struct lockdep_map __fs_reclaim_map =
3733 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3734
__need_fs_reclaim(gfp_t gfp_mask)3735 static bool __need_fs_reclaim(gfp_t gfp_mask)
3736 {
3737 gfp_mask = current_gfp_context(gfp_mask);
3738
3739 /* no reclaim without waiting on it */
3740 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3741 return false;
3742
3743 /* this guy won't enter reclaim */
3744 if (current->flags & PF_MEMALLOC)
3745 return false;
3746
3747 /* We're only interested __GFP_FS allocations for now */
3748 if (!(gfp_mask & __GFP_FS))
3749 return false;
3750
3751 if (gfp_mask & __GFP_NOLOCKDEP)
3752 return false;
3753
3754 return true;
3755 }
3756
__fs_reclaim_acquire(void)3757 void __fs_reclaim_acquire(void)
3758 {
3759 lock_map_acquire(&__fs_reclaim_map);
3760 }
3761
__fs_reclaim_release(void)3762 void __fs_reclaim_release(void)
3763 {
3764 lock_map_release(&__fs_reclaim_map);
3765 }
3766
fs_reclaim_acquire(gfp_t gfp_mask)3767 void fs_reclaim_acquire(gfp_t gfp_mask)
3768 {
3769 if (__need_fs_reclaim(gfp_mask))
3770 __fs_reclaim_acquire();
3771 }
3772 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3773
fs_reclaim_release(gfp_t gfp_mask)3774 void fs_reclaim_release(gfp_t gfp_mask)
3775 {
3776 if (__need_fs_reclaim(gfp_mask))
3777 __fs_reclaim_release();
3778 }
3779 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3780 #endif
3781
3782 /* Perform direct synchronous page reclaim */
3783 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3784 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3785 const struct alloc_context *ac)
3786 {
3787 struct reclaim_state reclaim_state;
3788 int progress;
3789 unsigned int noreclaim_flag;
3790
3791 cond_resched();
3792
3793 /* We now go into synchronous reclaim */
3794 cpuset_memory_pressure_bump();
3795 fs_reclaim_acquire(gfp_mask);
3796 noreclaim_flag = memalloc_noreclaim_save();
3797 reclaim_state.reclaimed_slab = 0;
3798 current->reclaim_state = &reclaim_state;
3799
3800 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3801 ac->nodemask);
3802
3803 current->reclaim_state = NULL;
3804 memalloc_noreclaim_restore(noreclaim_flag);
3805 fs_reclaim_release(gfp_mask);
3806
3807 cond_resched();
3808
3809 return progress;
3810 }
3811
3812 /* The really slow allocator path where we enter direct reclaim */
3813 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3814 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3815 unsigned int alloc_flags, const struct alloc_context *ac,
3816 unsigned long *did_some_progress)
3817 {
3818 struct page *page = NULL;
3819 bool drained = false;
3820
3821 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3822 if (unlikely(!(*did_some_progress)))
3823 return NULL;
3824
3825 retry:
3826 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3827
3828 /*
3829 * If an allocation failed after direct reclaim, it could be because
3830 * pages are pinned on the per-cpu lists or in high alloc reserves.
3831 * Shrink them them and try again
3832 */
3833 if (!page && !drained) {
3834 unreserve_highatomic_pageblock(ac, false);
3835 drain_all_pages(NULL);
3836 drained = true;
3837 goto retry;
3838 }
3839
3840 return page;
3841 }
3842
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3843 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3844 const struct alloc_context *ac)
3845 {
3846 struct zoneref *z;
3847 struct zone *zone;
3848 pg_data_t *last_pgdat = NULL;
3849 enum zone_type high_zoneidx = ac->high_zoneidx;
3850
3851 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3852 ac->nodemask) {
3853 if (last_pgdat != zone->zone_pgdat)
3854 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3855 last_pgdat = zone->zone_pgdat;
3856 }
3857 }
3858
3859 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)3860 gfp_to_alloc_flags(gfp_t gfp_mask)
3861 {
3862 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3863
3864 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3865 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3866
3867 /*
3868 * The caller may dip into page reserves a bit more if the caller
3869 * cannot run direct reclaim, or if the caller has realtime scheduling
3870 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3871 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3872 */
3873 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3874
3875 if (gfp_mask & __GFP_ATOMIC) {
3876 /*
3877 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3878 * if it can't schedule.
3879 */
3880 if (!(gfp_mask & __GFP_NOMEMALLOC))
3881 alloc_flags |= ALLOC_HARDER;
3882 /*
3883 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3884 * comment for __cpuset_node_allowed().
3885 */
3886 alloc_flags &= ~ALLOC_CPUSET;
3887 } else if (unlikely(rt_task(current)) && !in_interrupt())
3888 alloc_flags |= ALLOC_HARDER;
3889
3890 #ifdef CONFIG_CMA
3891 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3892 alloc_flags |= ALLOC_CMA;
3893 #endif
3894 return alloc_flags;
3895 }
3896
oom_reserves_allowed(struct task_struct * tsk)3897 static bool oom_reserves_allowed(struct task_struct *tsk)
3898 {
3899 if (!tsk_is_oom_victim(tsk))
3900 return false;
3901
3902 /*
3903 * !MMU doesn't have oom reaper so give access to memory reserves
3904 * only to the thread with TIF_MEMDIE set
3905 */
3906 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3907 return false;
3908
3909 return true;
3910 }
3911
3912 /*
3913 * Distinguish requests which really need access to full memory
3914 * reserves from oom victims which can live with a portion of it
3915 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3916 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3917 {
3918 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3919 return 0;
3920 if (gfp_mask & __GFP_MEMALLOC)
3921 return ALLOC_NO_WATERMARKS;
3922 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3923 return ALLOC_NO_WATERMARKS;
3924 if (!in_interrupt()) {
3925 if (current->flags & PF_MEMALLOC)
3926 return ALLOC_NO_WATERMARKS;
3927 else if (oom_reserves_allowed(current))
3928 return ALLOC_OOM;
3929 }
3930
3931 return 0;
3932 }
3933
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3934 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3935 {
3936 return !!__gfp_pfmemalloc_flags(gfp_mask);
3937 }
3938
3939 /*
3940 * Checks whether it makes sense to retry the reclaim to make a forward progress
3941 * for the given allocation request.
3942 *
3943 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3944 * without success, or when we couldn't even meet the watermark if we
3945 * reclaimed all remaining pages on the LRU lists.
3946 *
3947 * Returns true if a retry is viable or false to enter the oom path.
3948 */
3949 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3950 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3951 struct alloc_context *ac, int alloc_flags,
3952 bool did_some_progress, int *no_progress_loops)
3953 {
3954 struct zone *zone;
3955 struct zoneref *z;
3956
3957 /*
3958 * Costly allocations might have made a progress but this doesn't mean
3959 * their order will become available due to high fragmentation so
3960 * always increment the no progress counter for them
3961 */
3962 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3963 *no_progress_loops = 0;
3964 else
3965 (*no_progress_loops)++;
3966
3967 /*
3968 * Make sure we converge to OOM if we cannot make any progress
3969 * several times in the row.
3970 */
3971 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3972 /* Before OOM, exhaust highatomic_reserve */
3973 return unreserve_highatomic_pageblock(ac, true);
3974 }
3975
3976 /*
3977 * Keep reclaiming pages while there is a chance this will lead
3978 * somewhere. If none of the target zones can satisfy our allocation
3979 * request even if all reclaimable pages are considered then we are
3980 * screwed and have to go OOM.
3981 */
3982 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3983 ac->nodemask) {
3984 unsigned long available;
3985 unsigned long reclaimable;
3986 unsigned long min_wmark = min_wmark_pages(zone);
3987 bool wmark;
3988
3989 available = reclaimable = zone_reclaimable_pages(zone);
3990 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3991
3992 /*
3993 * Would the allocation succeed if we reclaimed all
3994 * reclaimable pages?
3995 */
3996 wmark = __zone_watermark_ok(zone, order, min_wmark,
3997 ac_classzone_idx(ac), alloc_flags, available);
3998 trace_reclaim_retry_zone(z, order, reclaimable,
3999 available, min_wmark, *no_progress_loops, wmark);
4000 if (wmark) {
4001 /*
4002 * If we didn't make any progress and have a lot of
4003 * dirty + writeback pages then we should wait for
4004 * an IO to complete to slow down the reclaim and
4005 * prevent from pre mature OOM
4006 */
4007 if (!did_some_progress) {
4008 unsigned long write_pending;
4009
4010 write_pending = zone_page_state_snapshot(zone,
4011 NR_ZONE_WRITE_PENDING);
4012
4013 if (2 * write_pending > reclaimable) {
4014 congestion_wait(BLK_RW_ASYNC, HZ/10);
4015 return true;
4016 }
4017 }
4018
4019 /*
4020 * Memory allocation/reclaim might be called from a WQ
4021 * context and the current implementation of the WQ
4022 * concurrency control doesn't recognize that
4023 * a particular WQ is congested if the worker thread is
4024 * looping without ever sleeping. Therefore we have to
4025 * do a short sleep here rather than calling
4026 * cond_resched().
4027 */
4028 if (current->flags & PF_WQ_WORKER)
4029 schedule_timeout_uninterruptible(1);
4030 else
4031 cond_resched();
4032
4033 return true;
4034 }
4035 }
4036
4037 return false;
4038 }
4039
4040 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4041 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4042 {
4043 /*
4044 * It's possible that cpuset's mems_allowed and the nodemask from
4045 * mempolicy don't intersect. This should be normally dealt with by
4046 * policy_nodemask(), but it's possible to race with cpuset update in
4047 * such a way the check therein was true, and then it became false
4048 * before we got our cpuset_mems_cookie here.
4049 * This assumes that for all allocations, ac->nodemask can come only
4050 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4051 * when it does not intersect with the cpuset restrictions) or the
4052 * caller can deal with a violated nodemask.
4053 */
4054 if (cpusets_enabled() && ac->nodemask &&
4055 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4056 ac->nodemask = NULL;
4057 return true;
4058 }
4059
4060 /*
4061 * When updating a task's mems_allowed or mempolicy nodemask, it is
4062 * possible to race with parallel threads in such a way that our
4063 * allocation can fail while the mask is being updated. If we are about
4064 * to fail, check if the cpuset changed during allocation and if so,
4065 * retry.
4066 */
4067 if (read_mems_allowed_retry(cpuset_mems_cookie))
4068 return true;
4069
4070 return false;
4071 }
4072
4073 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4074 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4075 struct alloc_context *ac)
4076 {
4077 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4078 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4079 struct page *page = NULL;
4080 unsigned int alloc_flags;
4081 unsigned long did_some_progress;
4082 enum compact_priority compact_priority;
4083 enum compact_result compact_result;
4084 int compaction_retries;
4085 int no_progress_loops;
4086 unsigned int cpuset_mems_cookie;
4087 int reserve_flags;
4088
4089 /*
4090 * We also sanity check to catch abuse of atomic reserves being used by
4091 * callers that are not in atomic context.
4092 */
4093 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4094 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4095 gfp_mask &= ~__GFP_ATOMIC;
4096
4097 retry_cpuset:
4098 compaction_retries = 0;
4099 no_progress_loops = 0;
4100 compact_priority = DEF_COMPACT_PRIORITY;
4101 cpuset_mems_cookie = read_mems_allowed_begin();
4102
4103 /*
4104 * The fast path uses conservative alloc_flags to succeed only until
4105 * kswapd needs to be woken up, and to avoid the cost of setting up
4106 * alloc_flags precisely. So we do that now.
4107 */
4108 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4109
4110 /*
4111 * We need to recalculate the starting point for the zonelist iterator
4112 * because we might have used different nodemask in the fast path, or
4113 * there was a cpuset modification and we are retrying - otherwise we
4114 * could end up iterating over non-eligible zones endlessly.
4115 */
4116 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4117 ac->high_zoneidx, ac->nodemask);
4118 if (!ac->preferred_zoneref->zone)
4119 goto nopage;
4120
4121 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4122 wake_all_kswapds(order, gfp_mask, ac);
4123
4124 /*
4125 * The adjusted alloc_flags might result in immediate success, so try
4126 * that first
4127 */
4128 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4129 if (page)
4130 goto got_pg;
4131
4132 /*
4133 * For costly allocations, try direct compaction first, as it's likely
4134 * that we have enough base pages and don't need to reclaim. For non-
4135 * movable high-order allocations, do that as well, as compaction will
4136 * try prevent permanent fragmentation by migrating from blocks of the
4137 * same migratetype.
4138 * Don't try this for allocations that are allowed to ignore
4139 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4140 */
4141 if (can_direct_reclaim &&
4142 (costly_order ||
4143 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4144 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4145 page = __alloc_pages_direct_compact(gfp_mask, order,
4146 alloc_flags, ac,
4147 INIT_COMPACT_PRIORITY,
4148 &compact_result);
4149 if (page)
4150 goto got_pg;
4151
4152 /*
4153 * Checks for costly allocations with __GFP_NORETRY, which
4154 * includes THP page fault allocations
4155 */
4156 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4157 /*
4158 * If compaction is deferred for high-order allocations,
4159 * it is because sync compaction recently failed. If
4160 * this is the case and the caller requested a THP
4161 * allocation, we do not want to heavily disrupt the
4162 * system, so we fail the allocation instead of entering
4163 * direct reclaim.
4164 */
4165 if (compact_result == COMPACT_DEFERRED)
4166 goto nopage;
4167
4168 /*
4169 * Looks like reclaim/compaction is worth trying, but
4170 * sync compaction could be very expensive, so keep
4171 * using async compaction.
4172 */
4173 compact_priority = INIT_COMPACT_PRIORITY;
4174 }
4175 }
4176
4177 retry:
4178 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4179 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4180 wake_all_kswapds(order, gfp_mask, ac);
4181
4182 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4183 if (reserve_flags)
4184 alloc_flags = reserve_flags;
4185
4186 /*
4187 * Reset the nodemask and zonelist iterators if memory policies can be
4188 * ignored. These allocations are high priority and system rather than
4189 * user oriented.
4190 */
4191 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4192 ac->nodemask = NULL;
4193 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4194 ac->high_zoneidx, ac->nodemask);
4195 }
4196
4197 /* Attempt with potentially adjusted zonelist and alloc_flags */
4198 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4199 if (page)
4200 goto got_pg;
4201
4202 /* Caller is not willing to reclaim, we can't balance anything */
4203 if (!can_direct_reclaim)
4204 goto nopage;
4205
4206 /* Avoid recursion of direct reclaim */
4207 if (current->flags & PF_MEMALLOC)
4208 goto nopage;
4209
4210 /* Try direct reclaim and then allocating */
4211 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4212 &did_some_progress);
4213 if (page)
4214 goto got_pg;
4215
4216 /* Try direct compaction and then allocating */
4217 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4218 compact_priority, &compact_result);
4219 if (page)
4220 goto got_pg;
4221
4222 /* Do not loop if specifically requested */
4223 if (gfp_mask & __GFP_NORETRY)
4224 goto nopage;
4225
4226 /*
4227 * Do not retry costly high order allocations unless they are
4228 * __GFP_RETRY_MAYFAIL
4229 */
4230 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4231 goto nopage;
4232
4233 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4234 did_some_progress > 0, &no_progress_loops))
4235 goto retry;
4236
4237 /*
4238 * It doesn't make any sense to retry for the compaction if the order-0
4239 * reclaim is not able to make any progress because the current
4240 * implementation of the compaction depends on the sufficient amount
4241 * of free memory (see __compaction_suitable)
4242 */
4243 if (did_some_progress > 0 &&
4244 should_compact_retry(ac, order, alloc_flags,
4245 compact_result, &compact_priority,
4246 &compaction_retries))
4247 goto retry;
4248
4249
4250 /* Deal with possible cpuset update races before we start OOM killing */
4251 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4252 goto retry_cpuset;
4253
4254 /* Reclaim has failed us, start killing things */
4255 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4256 if (page)
4257 goto got_pg;
4258
4259 /* Avoid allocations with no watermarks from looping endlessly */
4260 if (tsk_is_oom_victim(current) &&
4261 (alloc_flags == ALLOC_OOM ||
4262 (gfp_mask & __GFP_NOMEMALLOC)))
4263 goto nopage;
4264
4265 /* Retry as long as the OOM killer is making progress */
4266 if (did_some_progress) {
4267 no_progress_loops = 0;
4268 goto retry;
4269 }
4270
4271 nopage:
4272 /* Deal with possible cpuset update races before we fail */
4273 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4274 goto retry_cpuset;
4275
4276 /*
4277 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278 * we always retry
4279 */
4280 if (gfp_mask & __GFP_NOFAIL) {
4281 /*
4282 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 * of any new users that actually require GFP_NOWAIT
4284 */
4285 if (WARN_ON_ONCE(!can_direct_reclaim))
4286 goto fail;
4287
4288 /*
4289 * PF_MEMALLOC request from this context is rather bizarre
4290 * because we cannot reclaim anything and only can loop waiting
4291 * for somebody to do a work for us
4292 */
4293 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4294
4295 /*
4296 * non failing costly orders are a hard requirement which we
4297 * are not prepared for much so let's warn about these users
4298 * so that we can identify them and convert them to something
4299 * else.
4300 */
4301 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4302
4303 /*
4304 * Help non-failing allocations by giving them access to memory
4305 * reserves but do not use ALLOC_NO_WATERMARKS because this
4306 * could deplete whole memory reserves which would just make
4307 * the situation worse
4308 */
4309 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4310 if (page)
4311 goto got_pg;
4312
4313 cond_resched();
4314 goto retry;
4315 }
4316 fail:
4317 warn_alloc(gfp_mask, ac->nodemask,
4318 "page allocation failure: order:%u", order);
4319 got_pg:
4320 return page;
4321 }
4322
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4323 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4324 int preferred_nid, nodemask_t *nodemask,
4325 struct alloc_context *ac, gfp_t *alloc_mask,
4326 unsigned int *alloc_flags)
4327 {
4328 ac->high_zoneidx = gfp_zone(gfp_mask);
4329 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4330 ac->nodemask = nodemask;
4331 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4332
4333 if (cpusets_enabled()) {
4334 *alloc_mask |= __GFP_HARDWALL;
4335 if (!ac->nodemask)
4336 ac->nodemask = &cpuset_current_mems_allowed;
4337 else
4338 *alloc_flags |= ALLOC_CPUSET;
4339 }
4340
4341 fs_reclaim_acquire(gfp_mask);
4342 fs_reclaim_release(gfp_mask);
4343
4344 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4345
4346 if (should_fail_alloc_page(gfp_mask, order))
4347 return false;
4348
4349 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4350 *alloc_flags |= ALLOC_CMA;
4351
4352 return true;
4353 }
4354
4355 /* Determine whether to spread dirty pages and what the first usable zone */
finalise_ac(gfp_t gfp_mask,struct alloc_context * ac)4356 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4357 {
4358 /* Dirty zone balancing only done in the fast path */
4359 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4360
4361 /*
4362 * The preferred zone is used for statistics but crucially it is
4363 * also used as the starting point for the zonelist iterator. It
4364 * may get reset for allocations that ignore memory policies.
4365 */
4366 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4367 ac->high_zoneidx, ac->nodemask);
4368 }
4369
4370 /*
4371 * This is the 'heart' of the zoned buddy allocator.
4372 */
4373 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4374 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4375 nodemask_t *nodemask)
4376 {
4377 struct page *page;
4378 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4379 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4380 struct alloc_context ac = { };
4381
4382 /*
4383 * There are several places where we assume that the order value is sane
4384 * so bail out early if the request is out of bound.
4385 */
4386 if (unlikely(order >= MAX_ORDER)) {
4387 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4388 return NULL;
4389 }
4390
4391 gfp_mask &= gfp_allowed_mask;
4392 alloc_mask = gfp_mask;
4393 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4394 return NULL;
4395
4396 finalise_ac(gfp_mask, &ac);
4397
4398 /* First allocation attempt */
4399 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4400 if (likely(page))
4401 goto out;
4402
4403 /*
4404 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4405 * resp. GFP_NOIO which has to be inherited for all allocation requests
4406 * from a particular context which has been marked by
4407 * memalloc_no{fs,io}_{save,restore}.
4408 */
4409 alloc_mask = current_gfp_context(gfp_mask);
4410 ac.spread_dirty_pages = false;
4411
4412 /*
4413 * Restore the original nodemask if it was potentially replaced with
4414 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4415 */
4416 if (unlikely(ac.nodemask != nodemask))
4417 ac.nodemask = nodemask;
4418
4419 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4420
4421 out:
4422 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4423 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4424 __free_pages(page, order);
4425 page = NULL;
4426 }
4427
4428 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4429
4430 return page;
4431 }
4432 EXPORT_SYMBOL(__alloc_pages_nodemask);
4433
4434 /*
4435 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4436 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4437 * you need to access high mem.
4438 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4439 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4440 {
4441 struct page *page;
4442
4443 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4444 if (!page)
4445 return 0;
4446 return (unsigned long) page_address(page);
4447 }
4448 EXPORT_SYMBOL(__get_free_pages);
4449
get_zeroed_page(gfp_t gfp_mask)4450 unsigned long get_zeroed_page(gfp_t gfp_mask)
4451 {
4452 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4453 }
4454 EXPORT_SYMBOL(get_zeroed_page);
4455
free_the_page(struct page * page,unsigned int order)4456 static inline void free_the_page(struct page *page, unsigned int order)
4457 {
4458 if (order == 0) /* Via pcp? */
4459 free_unref_page(page);
4460 else
4461 __free_pages_ok(page, order);
4462 }
4463
__free_pages(struct page * page,unsigned int order)4464 void __free_pages(struct page *page, unsigned int order)
4465 {
4466 if (put_page_testzero(page))
4467 free_the_page(page, order);
4468 }
4469 EXPORT_SYMBOL(__free_pages);
4470
free_pages(unsigned long addr,unsigned int order)4471 void free_pages(unsigned long addr, unsigned int order)
4472 {
4473 if (addr != 0) {
4474 VM_BUG_ON(!virt_addr_valid((void *)addr));
4475 __free_pages(virt_to_page((void *)addr), order);
4476 }
4477 }
4478
4479 EXPORT_SYMBOL(free_pages);
4480
4481 /*
4482 * Page Fragment:
4483 * An arbitrary-length arbitrary-offset area of memory which resides
4484 * within a 0 or higher order page. Multiple fragments within that page
4485 * are individually refcounted, in the page's reference counter.
4486 *
4487 * The page_frag functions below provide a simple allocation framework for
4488 * page fragments. This is used by the network stack and network device
4489 * drivers to provide a backing region of memory for use as either an
4490 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4491 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4492 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4493 gfp_t gfp_mask)
4494 {
4495 struct page *page = NULL;
4496 gfp_t gfp = gfp_mask;
4497
4498 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4499 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4500 __GFP_NOMEMALLOC;
4501 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4502 PAGE_FRAG_CACHE_MAX_ORDER);
4503 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4504 #endif
4505 if (unlikely(!page))
4506 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4507
4508 nc->va = page ? page_address(page) : NULL;
4509
4510 return page;
4511 }
4512
__page_frag_cache_drain(struct page * page,unsigned int count)4513 void __page_frag_cache_drain(struct page *page, unsigned int count)
4514 {
4515 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4516
4517 if (page_ref_sub_and_test(page, count))
4518 free_the_page(page, compound_order(page));
4519 }
4520 EXPORT_SYMBOL(__page_frag_cache_drain);
4521
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)4522 void *page_frag_alloc(struct page_frag_cache *nc,
4523 unsigned int fragsz, gfp_t gfp_mask)
4524 {
4525 unsigned int size = PAGE_SIZE;
4526 struct page *page;
4527 int offset;
4528
4529 if (unlikely(!nc->va)) {
4530 refill:
4531 page = __page_frag_cache_refill(nc, gfp_mask);
4532 if (!page)
4533 return NULL;
4534
4535 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4536 /* if size can vary use size else just use PAGE_SIZE */
4537 size = nc->size;
4538 #endif
4539 /* Even if we own the page, we do not use atomic_set().
4540 * This would break get_page_unless_zero() users.
4541 */
4542 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4543
4544 /* reset page count bias and offset to start of new frag */
4545 nc->pfmemalloc = page_is_pfmemalloc(page);
4546 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4547 nc->offset = size;
4548 }
4549
4550 offset = nc->offset - fragsz;
4551 if (unlikely(offset < 0)) {
4552 page = virt_to_page(nc->va);
4553
4554 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4555 goto refill;
4556
4557 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4558 /* if size can vary use size else just use PAGE_SIZE */
4559 size = nc->size;
4560 #endif
4561 /* OK, page count is 0, we can safely set it */
4562 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4563
4564 /* reset page count bias and offset to start of new frag */
4565 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4566 offset = size - fragsz;
4567 }
4568
4569 nc->pagecnt_bias--;
4570 nc->offset = offset;
4571
4572 return nc->va + offset;
4573 }
4574 EXPORT_SYMBOL(page_frag_alloc);
4575
4576 /*
4577 * Frees a page fragment allocated out of either a compound or order 0 page.
4578 */
page_frag_free(void * addr)4579 void page_frag_free(void *addr)
4580 {
4581 struct page *page = virt_to_head_page(addr);
4582
4583 if (unlikely(put_page_testzero(page)))
4584 free_the_page(page, compound_order(page));
4585 }
4586 EXPORT_SYMBOL(page_frag_free);
4587
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4588 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4589 size_t size)
4590 {
4591 if (addr) {
4592 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4593 unsigned long used = addr + PAGE_ALIGN(size);
4594
4595 split_page(virt_to_page((void *)addr), order);
4596 while (used < alloc_end) {
4597 free_page(used);
4598 used += PAGE_SIZE;
4599 }
4600 }
4601 return (void *)addr;
4602 }
4603
4604 /**
4605 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4606 * @size: the number of bytes to allocate
4607 * @gfp_mask: GFP flags for the allocation
4608 *
4609 * This function is similar to alloc_pages(), except that it allocates the
4610 * minimum number of pages to satisfy the request. alloc_pages() can only
4611 * allocate memory in power-of-two pages.
4612 *
4613 * This function is also limited by MAX_ORDER.
4614 *
4615 * Memory allocated by this function must be released by free_pages_exact().
4616 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4617 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4618 {
4619 unsigned int order = get_order(size);
4620 unsigned long addr;
4621
4622 addr = __get_free_pages(gfp_mask, order);
4623 return make_alloc_exact(addr, order, size);
4624 }
4625 EXPORT_SYMBOL(alloc_pages_exact);
4626
4627 /**
4628 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4629 * pages on a node.
4630 * @nid: the preferred node ID where memory should be allocated
4631 * @size: the number of bytes to allocate
4632 * @gfp_mask: GFP flags for the allocation
4633 *
4634 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4635 * back.
4636 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4637 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4638 {
4639 unsigned int order = get_order(size);
4640 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4641 if (!p)
4642 return NULL;
4643 return make_alloc_exact((unsigned long)page_address(p), order, size);
4644 }
4645
4646 /**
4647 * free_pages_exact - release memory allocated via alloc_pages_exact()
4648 * @virt: the value returned by alloc_pages_exact.
4649 * @size: size of allocation, same value as passed to alloc_pages_exact().
4650 *
4651 * Release the memory allocated by a previous call to alloc_pages_exact.
4652 */
free_pages_exact(void * virt,size_t size)4653 void free_pages_exact(void *virt, size_t size)
4654 {
4655 unsigned long addr = (unsigned long)virt;
4656 unsigned long end = addr + PAGE_ALIGN(size);
4657
4658 while (addr < end) {
4659 free_page(addr);
4660 addr += PAGE_SIZE;
4661 }
4662 }
4663 EXPORT_SYMBOL(free_pages_exact);
4664
4665 /**
4666 * nr_free_zone_pages - count number of pages beyond high watermark
4667 * @offset: The zone index of the highest zone
4668 *
4669 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4670 * high watermark within all zones at or below a given zone index. For each
4671 * zone, the number of pages is calculated as:
4672 *
4673 * nr_free_zone_pages = managed_pages - high_pages
4674 */
nr_free_zone_pages(int offset)4675 static unsigned long nr_free_zone_pages(int offset)
4676 {
4677 struct zoneref *z;
4678 struct zone *zone;
4679
4680 /* Just pick one node, since fallback list is circular */
4681 unsigned long sum = 0;
4682
4683 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4684
4685 for_each_zone_zonelist(zone, z, zonelist, offset) {
4686 unsigned long size = zone->managed_pages;
4687 unsigned long high = high_wmark_pages(zone);
4688 if (size > high)
4689 sum += size - high;
4690 }
4691
4692 return sum;
4693 }
4694
4695 /**
4696 * nr_free_buffer_pages - count number of pages beyond high watermark
4697 *
4698 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4699 * watermark within ZONE_DMA and ZONE_NORMAL.
4700 */
nr_free_buffer_pages(void)4701 unsigned long nr_free_buffer_pages(void)
4702 {
4703 return nr_free_zone_pages(gfp_zone(GFP_USER));
4704 }
4705 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4706
4707 /**
4708 * nr_free_pagecache_pages - count number of pages beyond high watermark
4709 *
4710 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4711 * high watermark within all zones.
4712 */
nr_free_pagecache_pages(void)4713 unsigned long nr_free_pagecache_pages(void)
4714 {
4715 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4716 }
4717
show_node(struct zone * zone)4718 static inline void show_node(struct zone *zone)
4719 {
4720 if (IS_ENABLED(CONFIG_NUMA))
4721 printk("Node %d ", zone_to_nid(zone));
4722 }
4723
si_mem_available(void)4724 long si_mem_available(void)
4725 {
4726 long available;
4727 unsigned long pagecache;
4728 unsigned long wmark_low = 0;
4729 unsigned long pages[NR_LRU_LISTS];
4730 struct zone *zone;
4731 int lru;
4732
4733 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4734 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4735
4736 for_each_zone(zone)
4737 wmark_low += zone->watermark[WMARK_LOW];
4738
4739 /*
4740 * Estimate the amount of memory available for userspace allocations,
4741 * without causing swapping.
4742 */
4743 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4744
4745 /*
4746 * Not all the page cache can be freed, otherwise the system will
4747 * start swapping. Assume at least half of the page cache, or the
4748 * low watermark worth of cache, needs to stay.
4749 */
4750 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4751 pagecache -= min(pagecache / 2, wmark_low);
4752 available += pagecache;
4753
4754 /*
4755 * Part of the reclaimable slab consists of items that are in use,
4756 * and cannot be freed. Cap this estimate at the low watermark.
4757 */
4758 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4759 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4760 wmark_low);
4761
4762 /*
4763 * Part of the kernel memory, which can be released under memory
4764 * pressure.
4765 */
4766 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4767 PAGE_SHIFT;
4768
4769 if (available < 0)
4770 available = 0;
4771 return available;
4772 }
4773 EXPORT_SYMBOL_GPL(si_mem_available);
4774
si_meminfo(struct sysinfo * val)4775 void si_meminfo(struct sysinfo *val)
4776 {
4777 val->totalram = totalram_pages;
4778 val->sharedram = global_node_page_state(NR_SHMEM);
4779 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4780 val->bufferram = nr_blockdev_pages();
4781 val->totalhigh = totalhigh_pages;
4782 val->freehigh = nr_free_highpages();
4783 val->mem_unit = PAGE_SIZE;
4784 }
4785
4786 EXPORT_SYMBOL(si_meminfo);
4787
4788 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)4789 void si_meminfo_node(struct sysinfo *val, int nid)
4790 {
4791 int zone_type; /* needs to be signed */
4792 unsigned long managed_pages = 0;
4793 unsigned long managed_highpages = 0;
4794 unsigned long free_highpages = 0;
4795 pg_data_t *pgdat = NODE_DATA(nid);
4796
4797 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4798 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4799 val->totalram = managed_pages;
4800 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4801 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4802 #ifdef CONFIG_HIGHMEM
4803 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4804 struct zone *zone = &pgdat->node_zones[zone_type];
4805
4806 if (is_highmem(zone)) {
4807 managed_highpages += zone->managed_pages;
4808 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4809 }
4810 }
4811 val->totalhigh = managed_highpages;
4812 val->freehigh = free_highpages;
4813 #else
4814 val->totalhigh = managed_highpages;
4815 val->freehigh = free_highpages;
4816 #endif
4817 val->mem_unit = PAGE_SIZE;
4818 }
4819 #endif
4820
4821 /*
4822 * Determine whether the node should be displayed or not, depending on whether
4823 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4824 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)4825 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4826 {
4827 if (!(flags & SHOW_MEM_FILTER_NODES))
4828 return false;
4829
4830 /*
4831 * no node mask - aka implicit memory numa policy. Do not bother with
4832 * the synchronization - read_mems_allowed_begin - because we do not
4833 * have to be precise here.
4834 */
4835 if (!nodemask)
4836 nodemask = &cpuset_current_mems_allowed;
4837
4838 return !node_isset(nid, *nodemask);
4839 }
4840
4841 #define K(x) ((x) << (PAGE_SHIFT-10))
4842
show_migration_types(unsigned char type)4843 static void show_migration_types(unsigned char type)
4844 {
4845 static const char types[MIGRATE_TYPES] = {
4846 [MIGRATE_UNMOVABLE] = 'U',
4847 [MIGRATE_MOVABLE] = 'M',
4848 [MIGRATE_RECLAIMABLE] = 'E',
4849 [MIGRATE_HIGHATOMIC] = 'H',
4850 #ifdef CONFIG_CMA
4851 [MIGRATE_CMA] = 'C',
4852 #endif
4853 #ifdef CONFIG_MEMORY_ISOLATION
4854 [MIGRATE_ISOLATE] = 'I',
4855 #endif
4856 };
4857 char tmp[MIGRATE_TYPES + 1];
4858 char *p = tmp;
4859 int i;
4860
4861 for (i = 0; i < MIGRATE_TYPES; i++) {
4862 if (type & (1 << i))
4863 *p++ = types[i];
4864 }
4865
4866 *p = '\0';
4867 printk(KERN_CONT "(%s) ", tmp);
4868 }
4869
4870 /*
4871 * Show free area list (used inside shift_scroll-lock stuff)
4872 * We also calculate the percentage fragmentation. We do this by counting the
4873 * memory on each free list with the exception of the first item on the list.
4874 *
4875 * Bits in @filter:
4876 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4877 * cpuset.
4878 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)4879 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4880 {
4881 unsigned long free_pcp = 0;
4882 int cpu;
4883 struct zone *zone;
4884 pg_data_t *pgdat;
4885
4886 for_each_populated_zone(zone) {
4887 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4888 continue;
4889
4890 for_each_online_cpu(cpu)
4891 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4892 }
4893
4894 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4895 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4896 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4897 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4898 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4899 " free:%lu free_pcp:%lu free_cma:%lu\n",
4900 global_node_page_state(NR_ACTIVE_ANON),
4901 global_node_page_state(NR_INACTIVE_ANON),
4902 global_node_page_state(NR_ISOLATED_ANON),
4903 global_node_page_state(NR_ACTIVE_FILE),
4904 global_node_page_state(NR_INACTIVE_FILE),
4905 global_node_page_state(NR_ISOLATED_FILE),
4906 global_node_page_state(NR_UNEVICTABLE),
4907 global_node_page_state(NR_FILE_DIRTY),
4908 global_node_page_state(NR_WRITEBACK),
4909 global_node_page_state(NR_UNSTABLE_NFS),
4910 global_node_page_state(NR_SLAB_RECLAIMABLE),
4911 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4912 global_node_page_state(NR_FILE_MAPPED),
4913 global_node_page_state(NR_SHMEM),
4914 global_zone_page_state(NR_PAGETABLE),
4915 global_zone_page_state(NR_BOUNCE),
4916 global_zone_page_state(NR_FREE_PAGES),
4917 free_pcp,
4918 global_zone_page_state(NR_FREE_CMA_PAGES));
4919
4920 for_each_online_pgdat(pgdat) {
4921 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4922 continue;
4923
4924 printk("Node %d"
4925 " active_anon:%lukB"
4926 " inactive_anon:%lukB"
4927 " active_file:%lukB"
4928 " inactive_file:%lukB"
4929 " unevictable:%lukB"
4930 " isolated(anon):%lukB"
4931 " isolated(file):%lukB"
4932 " mapped:%lukB"
4933 " dirty:%lukB"
4934 " writeback:%lukB"
4935 " shmem:%lukB"
4936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4937 " shmem_thp: %lukB"
4938 " shmem_pmdmapped: %lukB"
4939 " anon_thp: %lukB"
4940 #endif
4941 " writeback_tmp:%lukB"
4942 " unstable:%lukB"
4943 " all_unreclaimable? %s"
4944 "\n",
4945 pgdat->node_id,
4946 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4947 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4948 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4949 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4950 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4951 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4952 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4953 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4954 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4955 K(node_page_state(pgdat, NR_WRITEBACK)),
4956 K(node_page_state(pgdat, NR_SHMEM)),
4957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4958 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4959 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4960 * HPAGE_PMD_NR),
4961 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4962 #endif
4963 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4964 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4965 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4966 "yes" : "no");
4967 }
4968
4969 for_each_populated_zone(zone) {
4970 int i;
4971
4972 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4973 continue;
4974
4975 free_pcp = 0;
4976 for_each_online_cpu(cpu)
4977 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4978
4979 show_node(zone);
4980 printk(KERN_CONT
4981 "%s"
4982 " free:%lukB"
4983 " min:%lukB"
4984 " low:%lukB"
4985 " high:%lukB"
4986 " active_anon:%lukB"
4987 " inactive_anon:%lukB"
4988 " active_file:%lukB"
4989 " inactive_file:%lukB"
4990 " unevictable:%lukB"
4991 " writepending:%lukB"
4992 " present:%lukB"
4993 " managed:%lukB"
4994 " mlocked:%lukB"
4995 " kernel_stack:%lukB"
4996 " pagetables:%lukB"
4997 " bounce:%lukB"
4998 " free_pcp:%lukB"
4999 " local_pcp:%ukB"
5000 " free_cma:%lukB"
5001 "\n",
5002 zone->name,
5003 K(zone_page_state(zone, NR_FREE_PAGES)),
5004 K(min_wmark_pages(zone)),
5005 K(low_wmark_pages(zone)),
5006 K(high_wmark_pages(zone)),
5007 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5008 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5009 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5010 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5011 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5012 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5013 K(zone->present_pages),
5014 K(zone->managed_pages),
5015 K(zone_page_state(zone, NR_MLOCK)),
5016 zone_page_state(zone, NR_KERNEL_STACK_KB),
5017 K(zone_page_state(zone, NR_PAGETABLE)),
5018 K(zone_page_state(zone, NR_BOUNCE)),
5019 K(free_pcp),
5020 K(this_cpu_read(zone->pageset->pcp.count)),
5021 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5022 printk("lowmem_reserve[]:");
5023 for (i = 0; i < MAX_NR_ZONES; i++)
5024 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5025 printk(KERN_CONT "\n");
5026 }
5027
5028 for_each_populated_zone(zone) {
5029 unsigned int order;
5030 unsigned long nr[MAX_ORDER], flags, total = 0;
5031 unsigned char types[MAX_ORDER];
5032
5033 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5034 continue;
5035 show_node(zone);
5036 printk(KERN_CONT "%s: ", zone->name);
5037
5038 spin_lock_irqsave(&zone->lock, flags);
5039 for (order = 0; order < MAX_ORDER; order++) {
5040 struct free_area *area = &zone->free_area[order];
5041 int type;
5042
5043 nr[order] = area->nr_free;
5044 total += nr[order] << order;
5045
5046 types[order] = 0;
5047 for (type = 0; type < MIGRATE_TYPES; type++) {
5048 if (!list_empty(&area->free_list[type]))
5049 types[order] |= 1 << type;
5050 }
5051 }
5052 spin_unlock_irqrestore(&zone->lock, flags);
5053 for (order = 0; order < MAX_ORDER; order++) {
5054 printk(KERN_CONT "%lu*%lukB ",
5055 nr[order], K(1UL) << order);
5056 if (nr[order])
5057 show_migration_types(types[order]);
5058 }
5059 printk(KERN_CONT "= %lukB\n", K(total));
5060 }
5061
5062 hugetlb_show_meminfo();
5063
5064 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5065
5066 show_swap_cache_info();
5067 }
5068
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5069 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5070 {
5071 zoneref->zone = zone;
5072 zoneref->zone_idx = zone_idx(zone);
5073 }
5074
5075 /*
5076 * Builds allocation fallback zone lists.
5077 *
5078 * Add all populated zones of a node to the zonelist.
5079 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5080 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5081 {
5082 struct zone *zone;
5083 enum zone_type zone_type = MAX_NR_ZONES;
5084 int nr_zones = 0;
5085
5086 do {
5087 zone_type--;
5088 zone = pgdat->node_zones + zone_type;
5089 if (managed_zone(zone)) {
5090 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5091 check_highest_zone(zone_type);
5092 }
5093 } while (zone_type);
5094
5095 return nr_zones;
5096 }
5097
5098 #ifdef CONFIG_NUMA
5099
__parse_numa_zonelist_order(char * s)5100 static int __parse_numa_zonelist_order(char *s)
5101 {
5102 /*
5103 * We used to support different zonlists modes but they turned
5104 * out to be just not useful. Let's keep the warning in place
5105 * if somebody still use the cmd line parameter so that we do
5106 * not fail it silently
5107 */
5108 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5109 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5110 return -EINVAL;
5111 }
5112 return 0;
5113 }
5114
setup_numa_zonelist_order(char * s)5115 static __init int setup_numa_zonelist_order(char *s)
5116 {
5117 if (!s)
5118 return 0;
5119
5120 return __parse_numa_zonelist_order(s);
5121 }
5122 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5123
5124 char numa_zonelist_order[] = "Node";
5125
5126 /*
5127 * sysctl handler for numa_zonelist_order
5128 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5129 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5130 void __user *buffer, size_t *length,
5131 loff_t *ppos)
5132 {
5133 char *str;
5134 int ret;
5135
5136 if (!write)
5137 return proc_dostring(table, write, buffer, length, ppos);
5138 str = memdup_user_nul(buffer, 16);
5139 if (IS_ERR(str))
5140 return PTR_ERR(str);
5141
5142 ret = __parse_numa_zonelist_order(str);
5143 kfree(str);
5144 return ret;
5145 }
5146
5147
5148 #define MAX_NODE_LOAD (nr_online_nodes)
5149 static int node_load[MAX_NUMNODES];
5150
5151 /**
5152 * find_next_best_node - find the next node that should appear in a given node's fallback list
5153 * @node: node whose fallback list we're appending
5154 * @used_node_mask: nodemask_t of already used nodes
5155 *
5156 * We use a number of factors to determine which is the next node that should
5157 * appear on a given node's fallback list. The node should not have appeared
5158 * already in @node's fallback list, and it should be the next closest node
5159 * according to the distance array (which contains arbitrary distance values
5160 * from each node to each node in the system), and should also prefer nodes
5161 * with no CPUs, since presumably they'll have very little allocation pressure
5162 * on them otherwise.
5163 * It returns -1 if no node is found.
5164 */
find_next_best_node(int node,nodemask_t * used_node_mask)5165 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5166 {
5167 int n, val;
5168 int min_val = INT_MAX;
5169 int best_node = NUMA_NO_NODE;
5170 const struct cpumask *tmp = cpumask_of_node(0);
5171
5172 /* Use the local node if we haven't already */
5173 if (!node_isset(node, *used_node_mask)) {
5174 node_set(node, *used_node_mask);
5175 return node;
5176 }
5177
5178 for_each_node_state(n, N_MEMORY) {
5179
5180 /* Don't want a node to appear more than once */
5181 if (node_isset(n, *used_node_mask))
5182 continue;
5183
5184 /* Use the distance array to find the distance */
5185 val = node_distance(node, n);
5186
5187 /* Penalize nodes under us ("prefer the next node") */
5188 val += (n < node);
5189
5190 /* Give preference to headless and unused nodes */
5191 tmp = cpumask_of_node(n);
5192 if (!cpumask_empty(tmp))
5193 val += PENALTY_FOR_NODE_WITH_CPUS;
5194
5195 /* Slight preference for less loaded node */
5196 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5197 val += node_load[n];
5198
5199 if (val < min_val) {
5200 min_val = val;
5201 best_node = n;
5202 }
5203 }
5204
5205 if (best_node >= 0)
5206 node_set(best_node, *used_node_mask);
5207
5208 return best_node;
5209 }
5210
5211
5212 /*
5213 * Build zonelists ordered by node and zones within node.
5214 * This results in maximum locality--normal zone overflows into local
5215 * DMA zone, if any--but risks exhausting DMA zone.
5216 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5217 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5218 unsigned nr_nodes)
5219 {
5220 struct zoneref *zonerefs;
5221 int i;
5222
5223 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5224
5225 for (i = 0; i < nr_nodes; i++) {
5226 int nr_zones;
5227
5228 pg_data_t *node = NODE_DATA(node_order[i]);
5229
5230 nr_zones = build_zonerefs_node(node, zonerefs);
5231 zonerefs += nr_zones;
5232 }
5233 zonerefs->zone = NULL;
5234 zonerefs->zone_idx = 0;
5235 }
5236
5237 /*
5238 * Build gfp_thisnode zonelists
5239 */
build_thisnode_zonelists(pg_data_t * pgdat)5240 static void build_thisnode_zonelists(pg_data_t *pgdat)
5241 {
5242 struct zoneref *zonerefs;
5243 int nr_zones;
5244
5245 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5246 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5247 zonerefs += nr_zones;
5248 zonerefs->zone = NULL;
5249 zonerefs->zone_idx = 0;
5250 }
5251
5252 /*
5253 * Build zonelists ordered by zone and nodes within zones.
5254 * This results in conserving DMA zone[s] until all Normal memory is
5255 * exhausted, but results in overflowing to remote node while memory
5256 * may still exist in local DMA zone.
5257 */
5258
build_zonelists(pg_data_t * pgdat)5259 static void build_zonelists(pg_data_t *pgdat)
5260 {
5261 static int node_order[MAX_NUMNODES];
5262 int node, load, nr_nodes = 0;
5263 nodemask_t used_mask;
5264 int local_node, prev_node;
5265
5266 /* NUMA-aware ordering of nodes */
5267 local_node = pgdat->node_id;
5268 load = nr_online_nodes;
5269 prev_node = local_node;
5270 nodes_clear(used_mask);
5271
5272 memset(node_order, 0, sizeof(node_order));
5273 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5274 /*
5275 * We don't want to pressure a particular node.
5276 * So adding penalty to the first node in same
5277 * distance group to make it round-robin.
5278 */
5279 if (node_distance(local_node, node) !=
5280 node_distance(local_node, prev_node))
5281 node_load[node] = load;
5282
5283 node_order[nr_nodes++] = node;
5284 prev_node = node;
5285 load--;
5286 }
5287
5288 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5289 build_thisnode_zonelists(pgdat);
5290 }
5291
5292 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5293 /*
5294 * Return node id of node used for "local" allocations.
5295 * I.e., first node id of first zone in arg node's generic zonelist.
5296 * Used for initializing percpu 'numa_mem', which is used primarily
5297 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5298 */
local_memory_node(int node)5299 int local_memory_node(int node)
5300 {
5301 struct zoneref *z;
5302
5303 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5304 gfp_zone(GFP_KERNEL),
5305 NULL);
5306 return zone_to_nid(z->zone);
5307 }
5308 #endif
5309
5310 static void setup_min_unmapped_ratio(void);
5311 static void setup_min_slab_ratio(void);
5312 #else /* CONFIG_NUMA */
5313
build_zonelists(pg_data_t * pgdat)5314 static void build_zonelists(pg_data_t *pgdat)
5315 {
5316 int node, local_node;
5317 struct zoneref *zonerefs;
5318 int nr_zones;
5319
5320 local_node = pgdat->node_id;
5321
5322 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5323 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5324 zonerefs += nr_zones;
5325
5326 /*
5327 * Now we build the zonelist so that it contains the zones
5328 * of all the other nodes.
5329 * We don't want to pressure a particular node, so when
5330 * building the zones for node N, we make sure that the
5331 * zones coming right after the local ones are those from
5332 * node N+1 (modulo N)
5333 */
5334 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5335 if (!node_online(node))
5336 continue;
5337 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5338 zonerefs += nr_zones;
5339 }
5340 for (node = 0; node < local_node; node++) {
5341 if (!node_online(node))
5342 continue;
5343 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5344 zonerefs += nr_zones;
5345 }
5346
5347 zonerefs->zone = NULL;
5348 zonerefs->zone_idx = 0;
5349 }
5350
5351 #endif /* CONFIG_NUMA */
5352
5353 /*
5354 * Boot pageset table. One per cpu which is going to be used for all
5355 * zones and all nodes. The parameters will be set in such a way
5356 * that an item put on a list will immediately be handed over to
5357 * the buddy list. This is safe since pageset manipulation is done
5358 * with interrupts disabled.
5359 *
5360 * The boot_pagesets must be kept even after bootup is complete for
5361 * unused processors and/or zones. They do play a role for bootstrapping
5362 * hotplugged processors.
5363 *
5364 * zoneinfo_show() and maybe other functions do
5365 * not check if the processor is online before following the pageset pointer.
5366 * Other parts of the kernel may not check if the zone is available.
5367 */
5368 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5369 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5370 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5371
__build_all_zonelists(void * data)5372 static void __build_all_zonelists(void *data)
5373 {
5374 int nid;
5375 int __maybe_unused cpu;
5376 pg_data_t *self = data;
5377 static DEFINE_SPINLOCK(lock);
5378
5379 spin_lock(&lock);
5380
5381 #ifdef CONFIG_NUMA
5382 memset(node_load, 0, sizeof(node_load));
5383 #endif
5384
5385 /*
5386 * This node is hotadded and no memory is yet present. So just
5387 * building zonelists is fine - no need to touch other nodes.
5388 */
5389 if (self && !node_online(self->node_id)) {
5390 build_zonelists(self);
5391 } else {
5392 for_each_online_node(nid) {
5393 pg_data_t *pgdat = NODE_DATA(nid);
5394
5395 build_zonelists(pgdat);
5396 }
5397
5398 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5399 /*
5400 * We now know the "local memory node" for each node--
5401 * i.e., the node of the first zone in the generic zonelist.
5402 * Set up numa_mem percpu variable for on-line cpus. During
5403 * boot, only the boot cpu should be on-line; we'll init the
5404 * secondary cpus' numa_mem as they come on-line. During
5405 * node/memory hotplug, we'll fixup all on-line cpus.
5406 */
5407 for_each_online_cpu(cpu)
5408 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5409 #endif
5410 }
5411
5412 spin_unlock(&lock);
5413 }
5414
5415 static noinline void __init
build_all_zonelists_init(void)5416 build_all_zonelists_init(void)
5417 {
5418 int cpu;
5419
5420 __build_all_zonelists(NULL);
5421
5422 /*
5423 * Initialize the boot_pagesets that are going to be used
5424 * for bootstrapping processors. The real pagesets for
5425 * each zone will be allocated later when the per cpu
5426 * allocator is available.
5427 *
5428 * boot_pagesets are used also for bootstrapping offline
5429 * cpus if the system is already booted because the pagesets
5430 * are needed to initialize allocators on a specific cpu too.
5431 * F.e. the percpu allocator needs the page allocator which
5432 * needs the percpu allocator in order to allocate its pagesets
5433 * (a chicken-egg dilemma).
5434 */
5435 for_each_possible_cpu(cpu)
5436 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5437
5438 mminit_verify_zonelist();
5439 cpuset_init_current_mems_allowed();
5440 }
5441
5442 /*
5443 * unless system_state == SYSTEM_BOOTING.
5444 *
5445 * __ref due to call of __init annotated helper build_all_zonelists_init
5446 * [protected by SYSTEM_BOOTING].
5447 */
build_all_zonelists(pg_data_t * pgdat)5448 void __ref build_all_zonelists(pg_data_t *pgdat)
5449 {
5450 if (system_state == SYSTEM_BOOTING) {
5451 build_all_zonelists_init();
5452 } else {
5453 __build_all_zonelists(pgdat);
5454 /* cpuset refresh routine should be here */
5455 }
5456 vm_total_pages = nr_free_pagecache_pages();
5457 /*
5458 * Disable grouping by mobility if the number of pages in the
5459 * system is too low to allow the mechanism to work. It would be
5460 * more accurate, but expensive to check per-zone. This check is
5461 * made on memory-hotadd so a system can start with mobility
5462 * disabled and enable it later
5463 */
5464 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5465 page_group_by_mobility_disabled = 1;
5466 else
5467 page_group_by_mobility_disabled = 0;
5468
5469 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5470 nr_online_nodes,
5471 page_group_by_mobility_disabled ? "off" : "on",
5472 vm_total_pages);
5473 #ifdef CONFIG_NUMA
5474 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5475 #endif
5476 }
5477
5478 /*
5479 * Initially all pages are reserved - free ones are freed
5480 * up by free_all_bootmem() once the early boot process is
5481 * done. Non-atomic initialization, single-pass.
5482 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum meminit_context context,struct vmem_altmap * altmap)5483 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5484 unsigned long start_pfn, enum meminit_context context,
5485 struct vmem_altmap *altmap)
5486 {
5487 unsigned long end_pfn = start_pfn + size;
5488 pg_data_t *pgdat = NODE_DATA(nid);
5489 unsigned long pfn;
5490 unsigned long nr_initialised = 0;
5491 struct page *page;
5492 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5493 struct memblock_region *r = NULL, *tmp;
5494 #endif
5495
5496 if (highest_memmap_pfn < end_pfn - 1)
5497 highest_memmap_pfn = end_pfn - 1;
5498
5499 /*
5500 * Honor reservation requested by the driver for this ZONE_DEVICE
5501 * memory
5502 */
5503 if (altmap && start_pfn == altmap->base_pfn)
5504 start_pfn += altmap->reserve;
5505
5506 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5507 /*
5508 * There can be holes in boot-time mem_map[]s handed to this
5509 * function. They do not exist on hotplugged memory.
5510 */
5511 if (context != MEMINIT_EARLY)
5512 goto not_early;
5513
5514 if (!early_pfn_valid(pfn))
5515 continue;
5516 if (!early_pfn_in_nid(pfn, nid))
5517 continue;
5518 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5519 break;
5520
5521 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5522 /*
5523 * Check given memblock attribute by firmware which can affect
5524 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5525 * mirrored, it's an overlapped memmap init. skip it.
5526 */
5527 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5528 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5529 for_each_memblock(memory, tmp)
5530 if (pfn < memblock_region_memory_end_pfn(tmp))
5531 break;
5532 r = tmp;
5533 }
5534 if (pfn >= memblock_region_memory_base_pfn(r) &&
5535 memblock_is_mirror(r)) {
5536 /* already initialized as NORMAL */
5537 pfn = memblock_region_memory_end_pfn(r);
5538 continue;
5539 }
5540 }
5541 #endif
5542
5543 not_early:
5544 page = pfn_to_page(pfn);
5545 __init_single_page(page, pfn, zone, nid);
5546 if (context == MEMINIT_HOTPLUG)
5547 SetPageReserved(page);
5548
5549 /*
5550 * Mark the block movable so that blocks are reserved for
5551 * movable at startup. This will force kernel allocations
5552 * to reserve their blocks rather than leaking throughout
5553 * the address space during boot when many long-lived
5554 * kernel allocations are made.
5555 *
5556 * bitmap is created for zone's valid pfn range. but memmap
5557 * can be created for invalid pages (for alignment)
5558 * check here not to call set_pageblock_migratetype() against
5559 * pfn out of zone.
5560 *
5561 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
5562 * because this is done early in sparse_add_one_section
5563 */
5564 if (!(pfn & (pageblock_nr_pages - 1))) {
5565 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5566 cond_resched();
5567 }
5568 }
5569 }
5570
zone_init_free_lists(struct zone * zone)5571 static void __meminit zone_init_free_lists(struct zone *zone)
5572 {
5573 unsigned int order, t;
5574 for_each_migratetype_order(order, t) {
5575 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5576 zone->free_area[order].nr_free = 0;
5577 }
5578 }
5579
5580 #ifndef __HAVE_ARCH_MEMMAP_INIT
5581 #define memmap_init(size, nid, zone, start_pfn) \
5582 memmap_init_zone((size), (nid), (zone), (start_pfn), \
5583 MEMINIT_EARLY, NULL)
5584 #endif
5585
zone_batchsize(struct zone * zone)5586 static int zone_batchsize(struct zone *zone)
5587 {
5588 #ifdef CONFIG_MMU
5589 int batch;
5590
5591 /*
5592 * The per-cpu-pages pools are set to around 1000th of the
5593 * size of the zone.
5594 */
5595 batch = zone->managed_pages / 1024;
5596 /* But no more than a meg. */
5597 if (batch * PAGE_SIZE > 1024 * 1024)
5598 batch = (1024 * 1024) / PAGE_SIZE;
5599 batch /= 4; /* We effectively *= 4 below */
5600 if (batch < 1)
5601 batch = 1;
5602
5603 /*
5604 * Clamp the batch to a 2^n - 1 value. Having a power
5605 * of 2 value was found to be more likely to have
5606 * suboptimal cache aliasing properties in some cases.
5607 *
5608 * For example if 2 tasks are alternately allocating
5609 * batches of pages, one task can end up with a lot
5610 * of pages of one half of the possible page colors
5611 * and the other with pages of the other colors.
5612 */
5613 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5614
5615 return batch;
5616
5617 #else
5618 /* The deferral and batching of frees should be suppressed under NOMMU
5619 * conditions.
5620 *
5621 * The problem is that NOMMU needs to be able to allocate large chunks
5622 * of contiguous memory as there's no hardware page translation to
5623 * assemble apparent contiguous memory from discontiguous pages.
5624 *
5625 * Queueing large contiguous runs of pages for batching, however,
5626 * causes the pages to actually be freed in smaller chunks. As there
5627 * can be a significant delay between the individual batches being
5628 * recycled, this leads to the once large chunks of space being
5629 * fragmented and becoming unavailable for high-order allocations.
5630 */
5631 return 0;
5632 #endif
5633 }
5634
5635 /*
5636 * pcp->high and pcp->batch values are related and dependent on one another:
5637 * ->batch must never be higher then ->high.
5638 * The following function updates them in a safe manner without read side
5639 * locking.
5640 *
5641 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5642 * those fields changing asynchronously (acording the the above rule).
5643 *
5644 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5645 * outside of boot time (or some other assurance that no concurrent updaters
5646 * exist).
5647 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5648 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5649 unsigned long batch)
5650 {
5651 /* start with a fail safe value for batch */
5652 pcp->batch = 1;
5653 smp_wmb();
5654
5655 /* Update high, then batch, in order */
5656 pcp->high = high;
5657 smp_wmb();
5658
5659 pcp->batch = batch;
5660 }
5661
5662 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)5663 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5664 {
5665 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5666 }
5667
pageset_init(struct per_cpu_pageset * p)5668 static void pageset_init(struct per_cpu_pageset *p)
5669 {
5670 struct per_cpu_pages *pcp;
5671 int migratetype;
5672
5673 memset(p, 0, sizeof(*p));
5674
5675 pcp = &p->pcp;
5676 pcp->count = 0;
5677 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5678 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5679 }
5680
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)5681 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5682 {
5683 pageset_init(p);
5684 pageset_set_batch(p, batch);
5685 }
5686
5687 /*
5688 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5689 * to the value high for the pageset p.
5690 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)5691 static void pageset_set_high(struct per_cpu_pageset *p,
5692 unsigned long high)
5693 {
5694 unsigned long batch = max(1UL, high / 4);
5695 if ((high / 4) > (PAGE_SHIFT * 8))
5696 batch = PAGE_SHIFT * 8;
5697
5698 pageset_update(&p->pcp, high, batch);
5699 }
5700
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)5701 static void pageset_set_high_and_batch(struct zone *zone,
5702 struct per_cpu_pageset *pcp)
5703 {
5704 if (percpu_pagelist_fraction)
5705 pageset_set_high(pcp,
5706 (zone->managed_pages /
5707 percpu_pagelist_fraction));
5708 else
5709 pageset_set_batch(pcp, zone_batchsize(zone));
5710 }
5711
zone_pageset_init(struct zone * zone,int cpu)5712 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5713 {
5714 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5715
5716 pageset_init(pcp);
5717 pageset_set_high_and_batch(zone, pcp);
5718 }
5719
setup_zone_pageset(struct zone * zone)5720 void __meminit setup_zone_pageset(struct zone *zone)
5721 {
5722 int cpu;
5723 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5724 for_each_possible_cpu(cpu)
5725 zone_pageset_init(zone, cpu);
5726 }
5727
5728 /*
5729 * Allocate per cpu pagesets and initialize them.
5730 * Before this call only boot pagesets were available.
5731 */
setup_per_cpu_pageset(void)5732 void __init setup_per_cpu_pageset(void)
5733 {
5734 struct pglist_data *pgdat;
5735 struct zone *zone;
5736
5737 for_each_populated_zone(zone)
5738 setup_zone_pageset(zone);
5739
5740 for_each_online_pgdat(pgdat)
5741 pgdat->per_cpu_nodestats =
5742 alloc_percpu(struct per_cpu_nodestat);
5743 }
5744
zone_pcp_init(struct zone * zone)5745 static __meminit void zone_pcp_init(struct zone *zone)
5746 {
5747 /*
5748 * per cpu subsystem is not up at this point. The following code
5749 * relies on the ability of the linker to provide the
5750 * offset of a (static) per cpu variable into the per cpu area.
5751 */
5752 zone->pageset = &boot_pageset;
5753
5754 if (populated_zone(zone))
5755 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5756 zone->name, zone->present_pages,
5757 zone_batchsize(zone));
5758 }
5759
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)5760 void __meminit init_currently_empty_zone(struct zone *zone,
5761 unsigned long zone_start_pfn,
5762 unsigned long size)
5763 {
5764 struct pglist_data *pgdat = zone->zone_pgdat;
5765 int zone_idx = zone_idx(zone) + 1;
5766
5767 if (zone_idx > pgdat->nr_zones)
5768 pgdat->nr_zones = zone_idx;
5769
5770 zone->zone_start_pfn = zone_start_pfn;
5771
5772 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5773 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5774 pgdat->node_id,
5775 (unsigned long)zone_idx(zone),
5776 zone_start_pfn, (zone_start_pfn + size));
5777
5778 zone_init_free_lists(zone);
5779 zone->initialized = 1;
5780 }
5781
5782 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5783 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5784
5785 /*
5786 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5787 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)5788 int __meminit __early_pfn_to_nid(unsigned long pfn,
5789 struct mminit_pfnnid_cache *state)
5790 {
5791 unsigned long start_pfn, end_pfn;
5792 int nid;
5793
5794 if (state->last_start <= pfn && pfn < state->last_end)
5795 return state->last_nid;
5796
5797 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5798 if (nid != -1) {
5799 state->last_start = start_pfn;
5800 state->last_end = end_pfn;
5801 state->last_nid = nid;
5802 }
5803
5804 return nid;
5805 }
5806 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5807
5808 /**
5809 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5810 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5811 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5812 *
5813 * If an architecture guarantees that all ranges registered contain no holes
5814 * and may be freed, this this function may be used instead of calling
5815 * memblock_free_early_nid() manually.
5816 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)5817 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5818 {
5819 unsigned long start_pfn, end_pfn;
5820 int i, this_nid;
5821
5822 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5823 start_pfn = min(start_pfn, max_low_pfn);
5824 end_pfn = min(end_pfn, max_low_pfn);
5825
5826 if (start_pfn < end_pfn)
5827 memblock_free_early_nid(PFN_PHYS(start_pfn),
5828 (end_pfn - start_pfn) << PAGE_SHIFT,
5829 this_nid);
5830 }
5831 }
5832
5833 /**
5834 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5835 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5836 *
5837 * If an architecture guarantees that all ranges registered contain no holes and may
5838 * be freed, this function may be used instead of calling memory_present() manually.
5839 */
sparse_memory_present_with_active_regions(int nid)5840 void __init sparse_memory_present_with_active_regions(int nid)
5841 {
5842 unsigned long start_pfn, end_pfn;
5843 int i, this_nid;
5844
5845 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5846 memory_present(this_nid, start_pfn, end_pfn);
5847 }
5848
5849 /**
5850 * get_pfn_range_for_nid - Return the start and end page frames for a node
5851 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5852 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5853 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5854 *
5855 * It returns the start and end page frame of a node based on information
5856 * provided by memblock_set_node(). If called for a node
5857 * with no available memory, a warning is printed and the start and end
5858 * PFNs will be 0.
5859 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)5860 void __meminit get_pfn_range_for_nid(unsigned int nid,
5861 unsigned long *start_pfn, unsigned long *end_pfn)
5862 {
5863 unsigned long this_start_pfn, this_end_pfn;
5864 int i;
5865
5866 *start_pfn = -1UL;
5867 *end_pfn = 0;
5868
5869 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5870 *start_pfn = min(*start_pfn, this_start_pfn);
5871 *end_pfn = max(*end_pfn, this_end_pfn);
5872 }
5873
5874 if (*start_pfn == -1UL)
5875 *start_pfn = 0;
5876 }
5877
5878 /*
5879 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5880 * assumption is made that zones within a node are ordered in monotonic
5881 * increasing memory addresses so that the "highest" populated zone is used
5882 */
find_usable_zone_for_movable(void)5883 static void __init find_usable_zone_for_movable(void)
5884 {
5885 int zone_index;
5886 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5887 if (zone_index == ZONE_MOVABLE)
5888 continue;
5889
5890 if (arch_zone_highest_possible_pfn[zone_index] >
5891 arch_zone_lowest_possible_pfn[zone_index])
5892 break;
5893 }
5894
5895 VM_BUG_ON(zone_index == -1);
5896 movable_zone = zone_index;
5897 }
5898
5899 /*
5900 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5901 * because it is sized independent of architecture. Unlike the other zones,
5902 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5903 * in each node depending on the size of each node and how evenly kernelcore
5904 * is distributed. This helper function adjusts the zone ranges
5905 * provided by the architecture for a given node by using the end of the
5906 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5907 * zones within a node are in order of monotonic increases memory addresses
5908 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)5909 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5910 unsigned long zone_type,
5911 unsigned long node_start_pfn,
5912 unsigned long node_end_pfn,
5913 unsigned long *zone_start_pfn,
5914 unsigned long *zone_end_pfn)
5915 {
5916 /* Only adjust if ZONE_MOVABLE is on this node */
5917 if (zone_movable_pfn[nid]) {
5918 /* Size ZONE_MOVABLE */
5919 if (zone_type == ZONE_MOVABLE) {
5920 *zone_start_pfn = zone_movable_pfn[nid];
5921 *zone_end_pfn = min(node_end_pfn,
5922 arch_zone_highest_possible_pfn[movable_zone]);
5923
5924 /* Adjust for ZONE_MOVABLE starting within this range */
5925 } else if (!mirrored_kernelcore &&
5926 *zone_start_pfn < zone_movable_pfn[nid] &&
5927 *zone_end_pfn > zone_movable_pfn[nid]) {
5928 *zone_end_pfn = zone_movable_pfn[nid];
5929
5930 /* Check if this whole range is within ZONE_MOVABLE */
5931 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5932 *zone_start_pfn = *zone_end_pfn;
5933 }
5934 }
5935
5936 /*
5937 * Return the number of pages a zone spans in a node, including holes
5938 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5939 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)5940 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5941 unsigned long zone_type,
5942 unsigned long node_start_pfn,
5943 unsigned long node_end_pfn,
5944 unsigned long *zone_start_pfn,
5945 unsigned long *zone_end_pfn,
5946 unsigned long *ignored)
5947 {
5948 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5949 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5950 /* When hotadd a new node from cpu_up(), the node should be empty */
5951 if (!node_start_pfn && !node_end_pfn)
5952 return 0;
5953
5954 /* Get the start and end of the zone */
5955 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5956 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5957 adjust_zone_range_for_zone_movable(nid, zone_type,
5958 node_start_pfn, node_end_pfn,
5959 zone_start_pfn, zone_end_pfn);
5960
5961 /* Check that this node has pages within the zone's required range */
5962 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5963 return 0;
5964
5965 /* Move the zone boundaries inside the node if necessary */
5966 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5967 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5968
5969 /* Return the spanned pages */
5970 return *zone_end_pfn - *zone_start_pfn;
5971 }
5972
5973 /*
5974 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5975 * then all holes in the requested range will be accounted for.
5976 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)5977 unsigned long __meminit __absent_pages_in_range(int nid,
5978 unsigned long range_start_pfn,
5979 unsigned long range_end_pfn)
5980 {
5981 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5982 unsigned long start_pfn, end_pfn;
5983 int i;
5984
5985 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5986 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5987 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5988 nr_absent -= end_pfn - start_pfn;
5989 }
5990 return nr_absent;
5991 }
5992
5993 /**
5994 * absent_pages_in_range - Return number of page frames in holes within a range
5995 * @start_pfn: The start PFN to start searching for holes
5996 * @end_pfn: The end PFN to stop searching for holes
5997 *
5998 * It returns the number of pages frames in memory holes within a range.
5999 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6000 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6001 unsigned long end_pfn)
6002 {
6003 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6004 }
6005
6006 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)6007 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6008 unsigned long zone_type,
6009 unsigned long node_start_pfn,
6010 unsigned long node_end_pfn,
6011 unsigned long *ignored)
6012 {
6013 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6014 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6015 unsigned long zone_start_pfn, zone_end_pfn;
6016 unsigned long nr_absent;
6017
6018 /* When hotadd a new node from cpu_up(), the node should be empty */
6019 if (!node_start_pfn && !node_end_pfn)
6020 return 0;
6021
6022 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6023 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6024
6025 adjust_zone_range_for_zone_movable(nid, zone_type,
6026 node_start_pfn, node_end_pfn,
6027 &zone_start_pfn, &zone_end_pfn);
6028 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6029
6030 /*
6031 * ZONE_MOVABLE handling.
6032 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6033 * and vice versa.
6034 */
6035 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6036 unsigned long start_pfn, end_pfn;
6037 struct memblock_region *r;
6038
6039 for_each_memblock(memory, r) {
6040 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6041 zone_start_pfn, zone_end_pfn);
6042 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6043 zone_start_pfn, zone_end_pfn);
6044
6045 if (zone_type == ZONE_MOVABLE &&
6046 memblock_is_mirror(r))
6047 nr_absent += end_pfn - start_pfn;
6048
6049 if (zone_type == ZONE_NORMAL &&
6050 !memblock_is_mirror(r))
6051 nr_absent += end_pfn - start_pfn;
6052 }
6053 }
6054
6055 return nr_absent;
6056 }
6057
6058 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)6059 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6060 unsigned long zone_type,
6061 unsigned long node_start_pfn,
6062 unsigned long node_end_pfn,
6063 unsigned long *zone_start_pfn,
6064 unsigned long *zone_end_pfn,
6065 unsigned long *zones_size)
6066 {
6067 unsigned int zone;
6068
6069 *zone_start_pfn = node_start_pfn;
6070 for (zone = 0; zone < zone_type; zone++)
6071 *zone_start_pfn += zones_size[zone];
6072
6073 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6074
6075 return zones_size[zone_type];
6076 }
6077
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)6078 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6079 unsigned long zone_type,
6080 unsigned long node_start_pfn,
6081 unsigned long node_end_pfn,
6082 unsigned long *zholes_size)
6083 {
6084 if (!zholes_size)
6085 return 0;
6086
6087 return zholes_size[zone_type];
6088 }
6089
6090 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6091
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)6092 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6093 unsigned long node_start_pfn,
6094 unsigned long node_end_pfn,
6095 unsigned long *zones_size,
6096 unsigned long *zholes_size)
6097 {
6098 unsigned long realtotalpages = 0, totalpages = 0;
6099 enum zone_type i;
6100
6101 for (i = 0; i < MAX_NR_ZONES; i++) {
6102 struct zone *zone = pgdat->node_zones + i;
6103 unsigned long zone_start_pfn, zone_end_pfn;
6104 unsigned long size, real_size;
6105
6106 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6107 node_start_pfn,
6108 node_end_pfn,
6109 &zone_start_pfn,
6110 &zone_end_pfn,
6111 zones_size);
6112 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6113 node_start_pfn, node_end_pfn,
6114 zholes_size);
6115 if (size)
6116 zone->zone_start_pfn = zone_start_pfn;
6117 else
6118 zone->zone_start_pfn = 0;
6119 zone->spanned_pages = size;
6120 zone->present_pages = real_size;
6121
6122 totalpages += size;
6123 realtotalpages += real_size;
6124 }
6125
6126 pgdat->node_spanned_pages = totalpages;
6127 pgdat->node_present_pages = realtotalpages;
6128 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6129 realtotalpages);
6130 }
6131
6132 #ifndef CONFIG_SPARSEMEM
6133 /*
6134 * Calculate the size of the zone->blockflags rounded to an unsigned long
6135 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6136 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6137 * round what is now in bits to nearest long in bits, then return it in
6138 * bytes.
6139 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6140 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6141 {
6142 unsigned long usemapsize;
6143
6144 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6145 usemapsize = roundup(zonesize, pageblock_nr_pages);
6146 usemapsize = usemapsize >> pageblock_order;
6147 usemapsize *= NR_PAGEBLOCK_BITS;
6148 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6149
6150 return usemapsize / 8;
6151 }
6152
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6153 static void __ref setup_usemap(struct pglist_data *pgdat,
6154 struct zone *zone,
6155 unsigned long zone_start_pfn,
6156 unsigned long zonesize)
6157 {
6158 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6159 zone->pageblock_flags = NULL;
6160 if (usemapsize)
6161 zone->pageblock_flags =
6162 memblock_virt_alloc_node_nopanic(usemapsize,
6163 pgdat->node_id);
6164 }
6165 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6166 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6167 unsigned long zone_start_pfn, unsigned long zonesize) {}
6168 #endif /* CONFIG_SPARSEMEM */
6169
6170 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6171
6172 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6173 void __init set_pageblock_order(void)
6174 {
6175 unsigned int order;
6176
6177 /* Check that pageblock_nr_pages has not already been setup */
6178 if (pageblock_order)
6179 return;
6180
6181 if (HPAGE_SHIFT > PAGE_SHIFT)
6182 order = HUGETLB_PAGE_ORDER;
6183 else
6184 order = MAX_ORDER - 1;
6185
6186 /*
6187 * Assume the largest contiguous order of interest is a huge page.
6188 * This value may be variable depending on boot parameters on IA64 and
6189 * powerpc.
6190 */
6191 pageblock_order = order;
6192 }
6193 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6194
6195 /*
6196 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6197 * is unused as pageblock_order is set at compile-time. See
6198 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6199 * the kernel config
6200 */
set_pageblock_order(void)6201 void __init set_pageblock_order(void)
6202 {
6203 }
6204
6205 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6206
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6207 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6208 unsigned long present_pages)
6209 {
6210 unsigned long pages = spanned_pages;
6211
6212 /*
6213 * Provide a more accurate estimation if there are holes within
6214 * the zone and SPARSEMEM is in use. If there are holes within the
6215 * zone, each populated memory region may cost us one or two extra
6216 * memmap pages due to alignment because memmap pages for each
6217 * populated regions may not be naturally aligned on page boundary.
6218 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6219 */
6220 if (spanned_pages > present_pages + (present_pages >> 4) &&
6221 IS_ENABLED(CONFIG_SPARSEMEM))
6222 pages = present_pages;
6223
6224 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6225 }
6226
6227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)6228 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6229 {
6230 spin_lock_init(&pgdat->split_queue_lock);
6231 INIT_LIST_HEAD(&pgdat->split_queue);
6232 pgdat->split_queue_len = 0;
6233 }
6234 #else
pgdat_init_split_queue(struct pglist_data * pgdat)6235 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6236 #endif
6237
6238 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)6239 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6240 {
6241 init_waitqueue_head(&pgdat->kcompactd_wait);
6242 }
6243 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)6244 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6245 #endif
6246
pgdat_init_internals(struct pglist_data * pgdat)6247 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6248 {
6249 pgdat_resize_init(pgdat);
6250
6251 pgdat_init_split_queue(pgdat);
6252 pgdat_init_kcompactd(pgdat);
6253
6254 init_waitqueue_head(&pgdat->kswapd_wait);
6255 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6256
6257 pgdat_page_ext_init(pgdat);
6258 spin_lock_init(&pgdat->lru_lock);
6259 lruvec_init(node_lruvec(pgdat));
6260 }
6261
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)6262 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6263 unsigned long remaining_pages)
6264 {
6265 zone->managed_pages = remaining_pages;
6266 zone_set_nid(zone, nid);
6267 zone->name = zone_names[idx];
6268 zone->zone_pgdat = NODE_DATA(nid);
6269 spin_lock_init(&zone->lock);
6270 zone_seqlock_init(zone);
6271 zone_pcp_init(zone);
6272 }
6273
6274 /*
6275 * Set up the zone data structures
6276 * - init pgdat internals
6277 * - init all zones belonging to this node
6278 *
6279 * NOTE: this function is only called during memory hotplug
6280 */
6281 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)6282 void __ref free_area_init_core_hotplug(int nid)
6283 {
6284 enum zone_type z;
6285 pg_data_t *pgdat = NODE_DATA(nid);
6286
6287 pgdat_init_internals(pgdat);
6288 for (z = 0; z < MAX_NR_ZONES; z++)
6289 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6290 }
6291 #endif
6292
6293 /*
6294 * Set up the zone data structures:
6295 * - mark all pages reserved
6296 * - mark all memory queues empty
6297 * - clear the memory bitmaps
6298 *
6299 * NOTE: pgdat should get zeroed by caller.
6300 * NOTE: this function is only called during early init.
6301 */
free_area_init_core(struct pglist_data * pgdat)6302 static void __init free_area_init_core(struct pglist_data *pgdat)
6303 {
6304 enum zone_type j;
6305 int nid = pgdat->node_id;
6306
6307 pgdat_init_internals(pgdat);
6308 pgdat->per_cpu_nodestats = &boot_nodestats;
6309
6310 for (j = 0; j < MAX_NR_ZONES; j++) {
6311 struct zone *zone = pgdat->node_zones + j;
6312 unsigned long size, freesize, memmap_pages;
6313 unsigned long zone_start_pfn = zone->zone_start_pfn;
6314
6315 size = zone->spanned_pages;
6316 freesize = zone->present_pages;
6317
6318 /*
6319 * Adjust freesize so that it accounts for how much memory
6320 * is used by this zone for memmap. This affects the watermark
6321 * and per-cpu initialisations
6322 */
6323 memmap_pages = calc_memmap_size(size, freesize);
6324 if (!is_highmem_idx(j)) {
6325 if (freesize >= memmap_pages) {
6326 freesize -= memmap_pages;
6327 if (memmap_pages)
6328 printk(KERN_DEBUG
6329 " %s zone: %lu pages used for memmap\n",
6330 zone_names[j], memmap_pages);
6331 } else
6332 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6333 zone_names[j], memmap_pages, freesize);
6334 }
6335
6336 /* Account for reserved pages */
6337 if (j == 0 && freesize > dma_reserve) {
6338 freesize -= dma_reserve;
6339 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6340 zone_names[0], dma_reserve);
6341 }
6342
6343 if (!is_highmem_idx(j))
6344 nr_kernel_pages += freesize;
6345 /* Charge for highmem memmap if there are enough kernel pages */
6346 else if (nr_kernel_pages > memmap_pages * 2)
6347 nr_kernel_pages -= memmap_pages;
6348 nr_all_pages += freesize;
6349
6350 /*
6351 * Set an approximate value for lowmem here, it will be adjusted
6352 * when the bootmem allocator frees pages into the buddy system.
6353 * And all highmem pages will be managed by the buddy system.
6354 */
6355 zone_init_internals(zone, j, nid, freesize);
6356
6357 if (!size)
6358 continue;
6359
6360 set_pageblock_order();
6361 setup_usemap(pgdat, zone, zone_start_pfn, size);
6362 init_currently_empty_zone(zone, zone_start_pfn, size);
6363 memmap_init(size, nid, j, zone_start_pfn);
6364 }
6365 }
6366
6367 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)6368 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6369 {
6370 unsigned long __maybe_unused start = 0;
6371 unsigned long __maybe_unused offset = 0;
6372
6373 /* Skip empty nodes */
6374 if (!pgdat->node_spanned_pages)
6375 return;
6376
6377 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6378 offset = pgdat->node_start_pfn - start;
6379 /* ia64 gets its own node_mem_map, before this, without bootmem */
6380 if (!pgdat->node_mem_map) {
6381 unsigned long size, end;
6382 struct page *map;
6383
6384 /*
6385 * The zone's endpoints aren't required to be MAX_ORDER
6386 * aligned but the node_mem_map endpoints must be in order
6387 * for the buddy allocator to function correctly.
6388 */
6389 end = pgdat_end_pfn(pgdat);
6390 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6391 size = (end - start) * sizeof(struct page);
6392 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6393 pgdat->node_mem_map = map + offset;
6394 }
6395 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6396 __func__, pgdat->node_id, (unsigned long)pgdat,
6397 (unsigned long)pgdat->node_mem_map);
6398 #ifndef CONFIG_NEED_MULTIPLE_NODES
6399 /*
6400 * With no DISCONTIG, the global mem_map is just set as node 0's
6401 */
6402 if (pgdat == NODE_DATA(0)) {
6403 mem_map = NODE_DATA(0)->node_mem_map;
6404 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6405 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6406 mem_map -= offset;
6407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6408 }
6409 #endif
6410 }
6411 #else
alloc_node_mem_map(struct pglist_data * pgdat)6412 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6413 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6414
6415 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)6416 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6417 {
6418 /*
6419 * We start only with one section of pages, more pages are added as
6420 * needed until the rest of deferred pages are initialized.
6421 */
6422 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6423 pgdat->node_spanned_pages);
6424 pgdat->first_deferred_pfn = ULONG_MAX;
6425 }
6426 #else
pgdat_set_deferred_range(pg_data_t * pgdat)6427 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6428 #endif
6429
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)6430 void __init free_area_init_node(int nid, unsigned long *zones_size,
6431 unsigned long node_start_pfn,
6432 unsigned long *zholes_size)
6433 {
6434 pg_data_t *pgdat = NODE_DATA(nid);
6435 unsigned long start_pfn = 0;
6436 unsigned long end_pfn = 0;
6437
6438 /* pg_data_t should be reset to zero when it's allocated */
6439 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6440
6441 pgdat->node_id = nid;
6442 pgdat->node_start_pfn = node_start_pfn;
6443 pgdat->per_cpu_nodestats = NULL;
6444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6445 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6446 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6447 (u64)start_pfn << PAGE_SHIFT,
6448 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6449 #else
6450 start_pfn = node_start_pfn;
6451 #endif
6452 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6453 zones_size, zholes_size);
6454
6455 alloc_node_mem_map(pgdat);
6456 pgdat_set_deferred_range(pgdat);
6457
6458 free_area_init_core(pgdat);
6459 }
6460
6461 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6462
6463 /*
6464 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6465 * pages zeroed
6466 */
zero_pfn_range(unsigned long spfn,unsigned long epfn)6467 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6468 {
6469 unsigned long pfn;
6470 u64 pgcnt = 0;
6471
6472 for (pfn = spfn; pfn < epfn; pfn++) {
6473 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6474 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6475 + pageblock_nr_pages - 1;
6476 continue;
6477 }
6478 mm_zero_struct_page(pfn_to_page(pfn));
6479 pgcnt++;
6480 }
6481
6482 return pgcnt;
6483 }
6484
6485 /*
6486 * Only struct pages that are backed by physical memory are zeroed and
6487 * initialized by going through __init_single_page(). But, there are some
6488 * struct pages which are reserved in memblock allocator and their fields
6489 * may be accessed (for example page_to_pfn() on some configuration accesses
6490 * flags). We must explicitly zero those struct pages.
6491 *
6492 * This function also addresses a similar issue where struct pages are left
6493 * uninitialized because the physical address range is not covered by
6494 * memblock.memory or memblock.reserved. That could happen when memblock
6495 * layout is manually configured via memmap=, or when the highest physical
6496 * address (max_pfn) does not end on a section boundary.
6497 */
zero_resv_unavail(void)6498 void __init zero_resv_unavail(void)
6499 {
6500 phys_addr_t start, end;
6501 u64 i, pgcnt;
6502 phys_addr_t next = 0;
6503
6504 /*
6505 * Loop through unavailable ranges not covered by memblock.memory.
6506 */
6507 pgcnt = 0;
6508 for_each_mem_range(i, &memblock.memory, NULL,
6509 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6510 if (next < start)
6511 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6512 next = end;
6513 }
6514
6515 /*
6516 * Early sections always have a fully populated memmap for the whole
6517 * section - see pfn_valid(). If the last section has holes at the
6518 * end and that section is marked "online", the memmap will be
6519 * considered initialized. Make sure that memmap has a well defined
6520 * state.
6521 */
6522 pgcnt += zero_pfn_range(PFN_DOWN(next),
6523 round_up(max_pfn, PAGES_PER_SECTION));
6524
6525 /*
6526 * Struct pages that do not have backing memory. This could be because
6527 * firmware is using some of this memory, or for some other reasons.
6528 */
6529 if (pgcnt)
6530 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6531 }
6532 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6533
6534 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6535
6536 #if MAX_NUMNODES > 1
6537 /*
6538 * Figure out the number of possible node ids.
6539 */
setup_nr_node_ids(void)6540 void __init setup_nr_node_ids(void)
6541 {
6542 unsigned int highest;
6543
6544 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6545 nr_node_ids = highest + 1;
6546 }
6547 #endif
6548
6549 /**
6550 * node_map_pfn_alignment - determine the maximum internode alignment
6551 *
6552 * This function should be called after node map is populated and sorted.
6553 * It calculates the maximum power of two alignment which can distinguish
6554 * all the nodes.
6555 *
6556 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6557 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6558 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6559 * shifted, 1GiB is enough and this function will indicate so.
6560 *
6561 * This is used to test whether pfn -> nid mapping of the chosen memory
6562 * model has fine enough granularity to avoid incorrect mapping for the
6563 * populated node map.
6564 *
6565 * Returns the determined alignment in pfn's. 0 if there is no alignment
6566 * requirement (single node).
6567 */
node_map_pfn_alignment(void)6568 unsigned long __init node_map_pfn_alignment(void)
6569 {
6570 unsigned long accl_mask = 0, last_end = 0;
6571 unsigned long start, end, mask;
6572 int last_nid = -1;
6573 int i, nid;
6574
6575 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6576 if (!start || last_nid < 0 || last_nid == nid) {
6577 last_nid = nid;
6578 last_end = end;
6579 continue;
6580 }
6581
6582 /*
6583 * Start with a mask granular enough to pin-point to the
6584 * start pfn and tick off bits one-by-one until it becomes
6585 * too coarse to separate the current node from the last.
6586 */
6587 mask = ~((1 << __ffs(start)) - 1);
6588 while (mask && last_end <= (start & (mask << 1)))
6589 mask <<= 1;
6590
6591 /* accumulate all internode masks */
6592 accl_mask |= mask;
6593 }
6594
6595 /* convert mask to number of pages */
6596 return ~accl_mask + 1;
6597 }
6598
6599 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)6600 static unsigned long __init find_min_pfn_for_node(int nid)
6601 {
6602 unsigned long min_pfn = ULONG_MAX;
6603 unsigned long start_pfn;
6604 int i;
6605
6606 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6607 min_pfn = min(min_pfn, start_pfn);
6608
6609 if (min_pfn == ULONG_MAX) {
6610 pr_warn("Could not find start_pfn for node %d\n", nid);
6611 return 0;
6612 }
6613
6614 return min_pfn;
6615 }
6616
6617 /**
6618 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6619 *
6620 * It returns the minimum PFN based on information provided via
6621 * memblock_set_node().
6622 */
find_min_pfn_with_active_regions(void)6623 unsigned long __init find_min_pfn_with_active_regions(void)
6624 {
6625 return find_min_pfn_for_node(MAX_NUMNODES);
6626 }
6627
6628 /*
6629 * early_calculate_totalpages()
6630 * Sum pages in active regions for movable zone.
6631 * Populate N_MEMORY for calculating usable_nodes.
6632 */
early_calculate_totalpages(void)6633 static unsigned long __init early_calculate_totalpages(void)
6634 {
6635 unsigned long totalpages = 0;
6636 unsigned long start_pfn, end_pfn;
6637 int i, nid;
6638
6639 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6640 unsigned long pages = end_pfn - start_pfn;
6641
6642 totalpages += pages;
6643 if (pages)
6644 node_set_state(nid, N_MEMORY);
6645 }
6646 return totalpages;
6647 }
6648
6649 /*
6650 * Find the PFN the Movable zone begins in each node. Kernel memory
6651 * is spread evenly between nodes as long as the nodes have enough
6652 * memory. When they don't, some nodes will have more kernelcore than
6653 * others
6654 */
find_zone_movable_pfns_for_nodes(void)6655 static void __init find_zone_movable_pfns_for_nodes(void)
6656 {
6657 int i, nid;
6658 unsigned long usable_startpfn;
6659 unsigned long kernelcore_node, kernelcore_remaining;
6660 /* save the state before borrow the nodemask */
6661 nodemask_t saved_node_state = node_states[N_MEMORY];
6662 unsigned long totalpages = early_calculate_totalpages();
6663 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6664 struct memblock_region *r;
6665
6666 /* Need to find movable_zone earlier when movable_node is specified. */
6667 find_usable_zone_for_movable();
6668
6669 /*
6670 * If movable_node is specified, ignore kernelcore and movablecore
6671 * options.
6672 */
6673 if (movable_node_is_enabled()) {
6674 for_each_memblock(memory, r) {
6675 if (!memblock_is_hotpluggable(r))
6676 continue;
6677
6678 nid = r->nid;
6679
6680 usable_startpfn = PFN_DOWN(r->base);
6681 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6682 min(usable_startpfn, zone_movable_pfn[nid]) :
6683 usable_startpfn;
6684 }
6685
6686 goto out2;
6687 }
6688
6689 /*
6690 * If kernelcore=mirror is specified, ignore movablecore option
6691 */
6692 if (mirrored_kernelcore) {
6693 bool mem_below_4gb_not_mirrored = false;
6694
6695 for_each_memblock(memory, r) {
6696 if (memblock_is_mirror(r))
6697 continue;
6698
6699 nid = r->nid;
6700
6701 usable_startpfn = memblock_region_memory_base_pfn(r);
6702
6703 if (usable_startpfn < 0x100000) {
6704 mem_below_4gb_not_mirrored = true;
6705 continue;
6706 }
6707
6708 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6709 min(usable_startpfn, zone_movable_pfn[nid]) :
6710 usable_startpfn;
6711 }
6712
6713 if (mem_below_4gb_not_mirrored)
6714 pr_warn("This configuration results in unmirrored kernel memory.");
6715
6716 goto out2;
6717 }
6718
6719 /*
6720 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6721 * amount of necessary memory.
6722 */
6723 if (required_kernelcore_percent)
6724 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6725 10000UL;
6726 if (required_movablecore_percent)
6727 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6728 10000UL;
6729
6730 /*
6731 * If movablecore= was specified, calculate what size of
6732 * kernelcore that corresponds so that memory usable for
6733 * any allocation type is evenly spread. If both kernelcore
6734 * and movablecore are specified, then the value of kernelcore
6735 * will be used for required_kernelcore if it's greater than
6736 * what movablecore would have allowed.
6737 */
6738 if (required_movablecore) {
6739 unsigned long corepages;
6740
6741 /*
6742 * Round-up so that ZONE_MOVABLE is at least as large as what
6743 * was requested by the user
6744 */
6745 required_movablecore =
6746 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6747 required_movablecore = min(totalpages, required_movablecore);
6748 corepages = totalpages - required_movablecore;
6749
6750 required_kernelcore = max(required_kernelcore, corepages);
6751 }
6752
6753 /*
6754 * If kernelcore was not specified or kernelcore size is larger
6755 * than totalpages, there is no ZONE_MOVABLE.
6756 */
6757 if (!required_kernelcore || required_kernelcore >= totalpages)
6758 goto out;
6759
6760 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6761 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6762
6763 restart:
6764 /* Spread kernelcore memory as evenly as possible throughout nodes */
6765 kernelcore_node = required_kernelcore / usable_nodes;
6766 for_each_node_state(nid, N_MEMORY) {
6767 unsigned long start_pfn, end_pfn;
6768
6769 /*
6770 * Recalculate kernelcore_node if the division per node
6771 * now exceeds what is necessary to satisfy the requested
6772 * amount of memory for the kernel
6773 */
6774 if (required_kernelcore < kernelcore_node)
6775 kernelcore_node = required_kernelcore / usable_nodes;
6776
6777 /*
6778 * As the map is walked, we track how much memory is usable
6779 * by the kernel using kernelcore_remaining. When it is
6780 * 0, the rest of the node is usable by ZONE_MOVABLE
6781 */
6782 kernelcore_remaining = kernelcore_node;
6783
6784 /* Go through each range of PFNs within this node */
6785 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6786 unsigned long size_pages;
6787
6788 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6789 if (start_pfn >= end_pfn)
6790 continue;
6791
6792 /* Account for what is only usable for kernelcore */
6793 if (start_pfn < usable_startpfn) {
6794 unsigned long kernel_pages;
6795 kernel_pages = min(end_pfn, usable_startpfn)
6796 - start_pfn;
6797
6798 kernelcore_remaining -= min(kernel_pages,
6799 kernelcore_remaining);
6800 required_kernelcore -= min(kernel_pages,
6801 required_kernelcore);
6802
6803 /* Continue if range is now fully accounted */
6804 if (end_pfn <= usable_startpfn) {
6805
6806 /*
6807 * Push zone_movable_pfn to the end so
6808 * that if we have to rebalance
6809 * kernelcore across nodes, we will
6810 * not double account here
6811 */
6812 zone_movable_pfn[nid] = end_pfn;
6813 continue;
6814 }
6815 start_pfn = usable_startpfn;
6816 }
6817
6818 /*
6819 * The usable PFN range for ZONE_MOVABLE is from
6820 * start_pfn->end_pfn. Calculate size_pages as the
6821 * number of pages used as kernelcore
6822 */
6823 size_pages = end_pfn - start_pfn;
6824 if (size_pages > kernelcore_remaining)
6825 size_pages = kernelcore_remaining;
6826 zone_movable_pfn[nid] = start_pfn + size_pages;
6827
6828 /*
6829 * Some kernelcore has been met, update counts and
6830 * break if the kernelcore for this node has been
6831 * satisfied
6832 */
6833 required_kernelcore -= min(required_kernelcore,
6834 size_pages);
6835 kernelcore_remaining -= size_pages;
6836 if (!kernelcore_remaining)
6837 break;
6838 }
6839 }
6840
6841 /*
6842 * If there is still required_kernelcore, we do another pass with one
6843 * less node in the count. This will push zone_movable_pfn[nid] further
6844 * along on the nodes that still have memory until kernelcore is
6845 * satisfied
6846 */
6847 usable_nodes--;
6848 if (usable_nodes && required_kernelcore > usable_nodes)
6849 goto restart;
6850
6851 out2:
6852 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6853 for (nid = 0; nid < MAX_NUMNODES; nid++)
6854 zone_movable_pfn[nid] =
6855 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6856
6857 out:
6858 /* restore the node_state */
6859 node_states[N_MEMORY] = saved_node_state;
6860 }
6861
6862 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)6863 static void check_for_memory(pg_data_t *pgdat, int nid)
6864 {
6865 enum zone_type zone_type;
6866
6867 if (N_MEMORY == N_NORMAL_MEMORY)
6868 return;
6869
6870 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6871 struct zone *zone = &pgdat->node_zones[zone_type];
6872 if (populated_zone(zone)) {
6873 node_set_state(nid, N_HIGH_MEMORY);
6874 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6875 zone_type <= ZONE_NORMAL)
6876 node_set_state(nid, N_NORMAL_MEMORY);
6877 break;
6878 }
6879 }
6880 }
6881
6882 /**
6883 * free_area_init_nodes - Initialise all pg_data_t and zone data
6884 * @max_zone_pfn: an array of max PFNs for each zone
6885 *
6886 * This will call free_area_init_node() for each active node in the system.
6887 * Using the page ranges provided by memblock_set_node(), the size of each
6888 * zone in each node and their holes is calculated. If the maximum PFN
6889 * between two adjacent zones match, it is assumed that the zone is empty.
6890 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6891 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6892 * starts where the previous one ended. For example, ZONE_DMA32 starts
6893 * at arch_max_dma_pfn.
6894 */
free_area_init_nodes(unsigned long * max_zone_pfn)6895 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6896 {
6897 unsigned long start_pfn, end_pfn;
6898 int i, nid;
6899
6900 /* Record where the zone boundaries are */
6901 memset(arch_zone_lowest_possible_pfn, 0,
6902 sizeof(arch_zone_lowest_possible_pfn));
6903 memset(arch_zone_highest_possible_pfn, 0,
6904 sizeof(arch_zone_highest_possible_pfn));
6905
6906 start_pfn = find_min_pfn_with_active_regions();
6907
6908 for (i = 0; i < MAX_NR_ZONES; i++) {
6909 if (i == ZONE_MOVABLE)
6910 continue;
6911
6912 end_pfn = max(max_zone_pfn[i], start_pfn);
6913 arch_zone_lowest_possible_pfn[i] = start_pfn;
6914 arch_zone_highest_possible_pfn[i] = end_pfn;
6915
6916 start_pfn = end_pfn;
6917 }
6918
6919 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6920 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6921 find_zone_movable_pfns_for_nodes();
6922
6923 /* Print out the zone ranges */
6924 pr_info("Zone ranges:\n");
6925 for (i = 0; i < MAX_NR_ZONES; i++) {
6926 if (i == ZONE_MOVABLE)
6927 continue;
6928 pr_info(" %-8s ", zone_names[i]);
6929 if (arch_zone_lowest_possible_pfn[i] ==
6930 arch_zone_highest_possible_pfn[i])
6931 pr_cont("empty\n");
6932 else
6933 pr_cont("[mem %#018Lx-%#018Lx]\n",
6934 (u64)arch_zone_lowest_possible_pfn[i]
6935 << PAGE_SHIFT,
6936 ((u64)arch_zone_highest_possible_pfn[i]
6937 << PAGE_SHIFT) - 1);
6938 }
6939
6940 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6941 pr_info("Movable zone start for each node\n");
6942 for (i = 0; i < MAX_NUMNODES; i++) {
6943 if (zone_movable_pfn[i])
6944 pr_info(" Node %d: %#018Lx\n", i,
6945 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6946 }
6947
6948 /* Print out the early node map */
6949 pr_info("Early memory node ranges\n");
6950 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6951 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6952 (u64)start_pfn << PAGE_SHIFT,
6953 ((u64)end_pfn << PAGE_SHIFT) - 1);
6954
6955 /* Initialise every node */
6956 mminit_verify_pageflags_layout();
6957 setup_nr_node_ids();
6958 zero_resv_unavail();
6959 for_each_online_node(nid) {
6960 pg_data_t *pgdat = NODE_DATA(nid);
6961 free_area_init_node(nid, NULL,
6962 find_min_pfn_for_node(nid), NULL);
6963
6964 /* Any memory on that node */
6965 if (pgdat->node_present_pages)
6966 node_set_state(nid, N_MEMORY);
6967 check_for_memory(pgdat, nid);
6968 }
6969 }
6970
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)6971 static int __init cmdline_parse_core(char *p, unsigned long *core,
6972 unsigned long *percent)
6973 {
6974 unsigned long long coremem;
6975 char *endptr;
6976
6977 if (!p)
6978 return -EINVAL;
6979
6980 /* Value may be a percentage of total memory, otherwise bytes */
6981 coremem = simple_strtoull(p, &endptr, 0);
6982 if (*endptr == '%') {
6983 /* Paranoid check for percent values greater than 100 */
6984 WARN_ON(coremem > 100);
6985
6986 *percent = coremem;
6987 } else {
6988 coremem = memparse(p, &p);
6989 /* Paranoid check that UL is enough for the coremem value */
6990 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6991
6992 *core = coremem >> PAGE_SHIFT;
6993 *percent = 0UL;
6994 }
6995 return 0;
6996 }
6997
6998 /*
6999 * kernelcore=size sets the amount of memory for use for allocations that
7000 * cannot be reclaimed or migrated.
7001 */
cmdline_parse_kernelcore(char * p)7002 static int __init cmdline_parse_kernelcore(char *p)
7003 {
7004 /* parse kernelcore=mirror */
7005 if (parse_option_str(p, "mirror")) {
7006 mirrored_kernelcore = true;
7007 return 0;
7008 }
7009
7010 return cmdline_parse_core(p, &required_kernelcore,
7011 &required_kernelcore_percent);
7012 }
7013
7014 /*
7015 * movablecore=size sets the amount of memory for use for allocations that
7016 * can be reclaimed or migrated.
7017 */
cmdline_parse_movablecore(char * p)7018 static int __init cmdline_parse_movablecore(char *p)
7019 {
7020 return cmdline_parse_core(p, &required_movablecore,
7021 &required_movablecore_percent);
7022 }
7023
7024 early_param("kernelcore", cmdline_parse_kernelcore);
7025 early_param("movablecore", cmdline_parse_movablecore);
7026
7027 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7028
adjust_managed_page_count(struct page * page,long count)7029 void adjust_managed_page_count(struct page *page, long count)
7030 {
7031 spin_lock(&managed_page_count_lock);
7032 page_zone(page)->managed_pages += count;
7033 totalram_pages += count;
7034 #ifdef CONFIG_HIGHMEM
7035 if (PageHighMem(page))
7036 totalhigh_pages += count;
7037 #endif
7038 spin_unlock(&managed_page_count_lock);
7039 }
7040 EXPORT_SYMBOL(adjust_managed_page_count);
7041
free_reserved_area(void * start,void * end,int poison,char * s)7042 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7043 {
7044 void *pos;
7045 unsigned long pages = 0;
7046
7047 start = (void *)PAGE_ALIGN((unsigned long)start);
7048 end = (void *)((unsigned long)end & PAGE_MASK);
7049 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7050 struct page *page = virt_to_page(pos);
7051 void *direct_map_addr;
7052
7053 /*
7054 * 'direct_map_addr' might be different from 'pos'
7055 * because some architectures' virt_to_page()
7056 * work with aliases. Getting the direct map
7057 * address ensures that we get a _writeable_
7058 * alias for the memset().
7059 */
7060 direct_map_addr = page_address(page);
7061 if ((unsigned int)poison <= 0xFF)
7062 memset(direct_map_addr, poison, PAGE_SIZE);
7063
7064 free_reserved_page(page);
7065 }
7066
7067 if (pages && s)
7068 pr_info("Freeing %s memory: %ldK\n",
7069 s, pages << (PAGE_SHIFT - 10));
7070
7071 return pages;
7072 }
7073 EXPORT_SYMBOL(free_reserved_area);
7074
7075 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)7076 void free_highmem_page(struct page *page)
7077 {
7078 __free_reserved_page(page);
7079 totalram_pages++;
7080 page_zone(page)->managed_pages++;
7081 totalhigh_pages++;
7082 }
7083 #endif
7084
7085
mem_init_print_info(const char * str)7086 void __init mem_init_print_info(const char *str)
7087 {
7088 unsigned long physpages, codesize, datasize, rosize, bss_size;
7089 unsigned long init_code_size, init_data_size;
7090
7091 physpages = get_num_physpages();
7092 codesize = _etext - _stext;
7093 datasize = _edata - _sdata;
7094 rosize = __end_rodata - __start_rodata;
7095 bss_size = __bss_stop - __bss_start;
7096 init_data_size = __init_end - __init_begin;
7097 init_code_size = _einittext - _sinittext;
7098
7099 /*
7100 * Detect special cases and adjust section sizes accordingly:
7101 * 1) .init.* may be embedded into .data sections
7102 * 2) .init.text.* may be out of [__init_begin, __init_end],
7103 * please refer to arch/tile/kernel/vmlinux.lds.S.
7104 * 3) .rodata.* may be embedded into .text or .data sections.
7105 */
7106 #define adj_init_size(start, end, size, pos, adj) \
7107 do { \
7108 if (start <= pos && pos < end && size > adj) \
7109 size -= adj; \
7110 } while (0)
7111
7112 adj_init_size(__init_begin, __init_end, init_data_size,
7113 _sinittext, init_code_size);
7114 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7115 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7116 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7117 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7118
7119 #undef adj_init_size
7120
7121 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7122 #ifdef CONFIG_HIGHMEM
7123 ", %luK highmem"
7124 #endif
7125 "%s%s)\n",
7126 nr_free_pages() << (PAGE_SHIFT - 10),
7127 physpages << (PAGE_SHIFT - 10),
7128 codesize >> 10, datasize >> 10, rosize >> 10,
7129 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7130 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7131 totalcma_pages << (PAGE_SHIFT - 10),
7132 #ifdef CONFIG_HIGHMEM
7133 totalhigh_pages << (PAGE_SHIFT - 10),
7134 #endif
7135 str ? ", " : "", str ? str : "");
7136 }
7137
7138 /**
7139 * set_dma_reserve - set the specified number of pages reserved in the first zone
7140 * @new_dma_reserve: The number of pages to mark reserved
7141 *
7142 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7143 * In the DMA zone, a significant percentage may be consumed by kernel image
7144 * and other unfreeable allocations which can skew the watermarks badly. This
7145 * function may optionally be used to account for unfreeable pages in the
7146 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7147 * smaller per-cpu batchsize.
7148 */
set_dma_reserve(unsigned long new_dma_reserve)7149 void __init set_dma_reserve(unsigned long new_dma_reserve)
7150 {
7151 dma_reserve = new_dma_reserve;
7152 }
7153
free_area_init(unsigned long * zones_size)7154 void __init free_area_init(unsigned long *zones_size)
7155 {
7156 zero_resv_unavail();
7157 free_area_init_node(0, zones_size,
7158 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7159 }
7160
page_alloc_cpu_dead(unsigned int cpu)7161 static int page_alloc_cpu_dead(unsigned int cpu)
7162 {
7163
7164 lru_add_drain_cpu(cpu);
7165 drain_pages(cpu);
7166
7167 /*
7168 * Spill the event counters of the dead processor
7169 * into the current processors event counters.
7170 * This artificially elevates the count of the current
7171 * processor.
7172 */
7173 vm_events_fold_cpu(cpu);
7174
7175 /*
7176 * Zero the differential counters of the dead processor
7177 * so that the vm statistics are consistent.
7178 *
7179 * This is only okay since the processor is dead and cannot
7180 * race with what we are doing.
7181 */
7182 cpu_vm_stats_fold(cpu);
7183 return 0;
7184 }
7185
page_alloc_init(void)7186 void __init page_alloc_init(void)
7187 {
7188 int ret;
7189
7190 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7191 "mm/page_alloc:dead", NULL,
7192 page_alloc_cpu_dead);
7193 WARN_ON(ret < 0);
7194 }
7195
7196 /*
7197 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7198 * or min_free_kbytes changes.
7199 */
calculate_totalreserve_pages(void)7200 static void calculate_totalreserve_pages(void)
7201 {
7202 struct pglist_data *pgdat;
7203 unsigned long reserve_pages = 0;
7204 enum zone_type i, j;
7205
7206 for_each_online_pgdat(pgdat) {
7207
7208 pgdat->totalreserve_pages = 0;
7209
7210 for (i = 0; i < MAX_NR_ZONES; i++) {
7211 struct zone *zone = pgdat->node_zones + i;
7212 long max = 0;
7213
7214 /* Find valid and maximum lowmem_reserve in the zone */
7215 for (j = i; j < MAX_NR_ZONES; j++) {
7216 if (zone->lowmem_reserve[j] > max)
7217 max = zone->lowmem_reserve[j];
7218 }
7219
7220 /* we treat the high watermark as reserved pages. */
7221 max += high_wmark_pages(zone);
7222
7223 if (max > zone->managed_pages)
7224 max = zone->managed_pages;
7225
7226 pgdat->totalreserve_pages += max;
7227
7228 reserve_pages += max;
7229 }
7230 }
7231 totalreserve_pages = reserve_pages;
7232 }
7233
7234 /*
7235 * setup_per_zone_lowmem_reserve - called whenever
7236 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7237 * has a correct pages reserved value, so an adequate number of
7238 * pages are left in the zone after a successful __alloc_pages().
7239 */
setup_per_zone_lowmem_reserve(void)7240 static void setup_per_zone_lowmem_reserve(void)
7241 {
7242 struct pglist_data *pgdat;
7243 enum zone_type j, idx;
7244
7245 for_each_online_pgdat(pgdat) {
7246 for (j = 0; j < MAX_NR_ZONES; j++) {
7247 struct zone *zone = pgdat->node_zones + j;
7248 unsigned long managed_pages = zone->managed_pages;
7249
7250 zone->lowmem_reserve[j] = 0;
7251
7252 idx = j;
7253 while (idx) {
7254 struct zone *lower_zone;
7255
7256 idx--;
7257 lower_zone = pgdat->node_zones + idx;
7258
7259 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7260 sysctl_lowmem_reserve_ratio[idx] = 0;
7261 lower_zone->lowmem_reserve[j] = 0;
7262 } else {
7263 lower_zone->lowmem_reserve[j] =
7264 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7265 }
7266 managed_pages += lower_zone->managed_pages;
7267 }
7268 }
7269 }
7270
7271 /* update totalreserve_pages */
7272 calculate_totalreserve_pages();
7273 }
7274
__setup_per_zone_wmarks(void)7275 static void __setup_per_zone_wmarks(void)
7276 {
7277 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7278 unsigned long lowmem_pages = 0;
7279 struct zone *zone;
7280 unsigned long flags;
7281
7282 /* Calculate total number of !ZONE_HIGHMEM pages */
7283 for_each_zone(zone) {
7284 if (!is_highmem(zone))
7285 lowmem_pages += zone->managed_pages;
7286 }
7287
7288 for_each_zone(zone) {
7289 u64 tmp;
7290
7291 spin_lock_irqsave(&zone->lock, flags);
7292 tmp = (u64)pages_min * zone->managed_pages;
7293 do_div(tmp, lowmem_pages);
7294 if (is_highmem(zone)) {
7295 /*
7296 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7297 * need highmem pages, so cap pages_min to a small
7298 * value here.
7299 *
7300 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7301 * deltas control asynch page reclaim, and so should
7302 * not be capped for highmem.
7303 */
7304 unsigned long min_pages;
7305
7306 min_pages = zone->managed_pages / 1024;
7307 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7308 zone->watermark[WMARK_MIN] = min_pages;
7309 } else {
7310 /*
7311 * If it's a lowmem zone, reserve a number of pages
7312 * proportionate to the zone's size.
7313 */
7314 zone->watermark[WMARK_MIN] = tmp;
7315 }
7316
7317 /*
7318 * Set the kswapd watermarks distance according to the
7319 * scale factor in proportion to available memory, but
7320 * ensure a minimum size on small systems.
7321 */
7322 tmp = max_t(u64, tmp >> 2,
7323 mult_frac(zone->managed_pages,
7324 watermark_scale_factor, 10000));
7325
7326 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7327 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7328
7329 spin_unlock_irqrestore(&zone->lock, flags);
7330 }
7331
7332 /* update totalreserve_pages */
7333 calculate_totalreserve_pages();
7334 }
7335
7336 /**
7337 * setup_per_zone_wmarks - called when min_free_kbytes changes
7338 * or when memory is hot-{added|removed}
7339 *
7340 * Ensures that the watermark[min,low,high] values for each zone are set
7341 * correctly with respect to min_free_kbytes.
7342 */
setup_per_zone_wmarks(void)7343 void setup_per_zone_wmarks(void)
7344 {
7345 static DEFINE_SPINLOCK(lock);
7346
7347 spin_lock(&lock);
7348 __setup_per_zone_wmarks();
7349 spin_unlock(&lock);
7350 }
7351
7352 /*
7353 * Initialise min_free_kbytes.
7354 *
7355 * For small machines we want it small (128k min). For large machines
7356 * we want it large (64MB max). But it is not linear, because network
7357 * bandwidth does not increase linearly with machine size. We use
7358 *
7359 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7360 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7361 *
7362 * which yields
7363 *
7364 * 16MB: 512k
7365 * 32MB: 724k
7366 * 64MB: 1024k
7367 * 128MB: 1448k
7368 * 256MB: 2048k
7369 * 512MB: 2896k
7370 * 1024MB: 4096k
7371 * 2048MB: 5792k
7372 * 4096MB: 8192k
7373 * 8192MB: 11584k
7374 * 16384MB: 16384k
7375 */
init_per_zone_wmark_min(void)7376 int __meminit init_per_zone_wmark_min(void)
7377 {
7378 unsigned long lowmem_kbytes;
7379 int new_min_free_kbytes;
7380
7381 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7382 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7383
7384 if (new_min_free_kbytes > user_min_free_kbytes) {
7385 min_free_kbytes = new_min_free_kbytes;
7386 if (min_free_kbytes < 128)
7387 min_free_kbytes = 128;
7388 if (min_free_kbytes > 65536)
7389 min_free_kbytes = 65536;
7390 } else {
7391 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7392 new_min_free_kbytes, user_min_free_kbytes);
7393 }
7394 setup_per_zone_wmarks();
7395 refresh_zone_stat_thresholds();
7396 setup_per_zone_lowmem_reserve();
7397
7398 #ifdef CONFIG_NUMA
7399 setup_min_unmapped_ratio();
7400 setup_min_slab_ratio();
7401 #endif
7402
7403 khugepaged_min_free_kbytes_update();
7404
7405 return 0;
7406 }
postcore_initcall(init_per_zone_wmark_min)7407 postcore_initcall(init_per_zone_wmark_min)
7408
7409 /*
7410 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7411 * that we can call two helper functions whenever min_free_kbytes
7412 * changes.
7413 */
7414 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7415 void __user *buffer, size_t *length, loff_t *ppos)
7416 {
7417 int rc;
7418
7419 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7420 if (rc)
7421 return rc;
7422
7423 if (write) {
7424 user_min_free_kbytes = min_free_kbytes;
7425 setup_per_zone_wmarks();
7426 }
7427 return 0;
7428 }
7429
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7430 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7431 void __user *buffer, size_t *length, loff_t *ppos)
7432 {
7433 int rc;
7434
7435 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7436 if (rc)
7437 return rc;
7438
7439 if (write)
7440 setup_per_zone_wmarks();
7441
7442 return 0;
7443 }
7444
7445 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)7446 static void setup_min_unmapped_ratio(void)
7447 {
7448 pg_data_t *pgdat;
7449 struct zone *zone;
7450
7451 for_each_online_pgdat(pgdat)
7452 pgdat->min_unmapped_pages = 0;
7453
7454 for_each_zone(zone)
7455 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7456 sysctl_min_unmapped_ratio) / 100;
7457 }
7458
7459
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7460 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7461 void __user *buffer, size_t *length, loff_t *ppos)
7462 {
7463 int rc;
7464
7465 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7466 if (rc)
7467 return rc;
7468
7469 setup_min_unmapped_ratio();
7470
7471 return 0;
7472 }
7473
setup_min_slab_ratio(void)7474 static void setup_min_slab_ratio(void)
7475 {
7476 pg_data_t *pgdat;
7477 struct zone *zone;
7478
7479 for_each_online_pgdat(pgdat)
7480 pgdat->min_slab_pages = 0;
7481
7482 for_each_zone(zone)
7483 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7484 sysctl_min_slab_ratio) / 100;
7485 }
7486
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7487 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7488 void __user *buffer, size_t *length, loff_t *ppos)
7489 {
7490 int rc;
7491
7492 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7493 if (rc)
7494 return rc;
7495
7496 setup_min_slab_ratio();
7497
7498 return 0;
7499 }
7500 #endif
7501
7502 /*
7503 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7504 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7505 * whenever sysctl_lowmem_reserve_ratio changes.
7506 *
7507 * The reserve ratio obviously has absolutely no relation with the
7508 * minimum watermarks. The lowmem reserve ratio can only make sense
7509 * if in function of the boot time zone sizes.
7510 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7511 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7512 void __user *buffer, size_t *length, loff_t *ppos)
7513 {
7514 proc_dointvec_minmax(table, write, buffer, length, ppos);
7515 setup_per_zone_lowmem_reserve();
7516 return 0;
7517 }
7518
7519 /*
7520 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7521 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7522 * pagelist can have before it gets flushed back to buddy allocator.
7523 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7524 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7525 void __user *buffer, size_t *length, loff_t *ppos)
7526 {
7527 struct zone *zone;
7528 int old_percpu_pagelist_fraction;
7529 int ret;
7530
7531 mutex_lock(&pcp_batch_high_lock);
7532 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7533
7534 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7535 if (!write || ret < 0)
7536 goto out;
7537
7538 /* Sanity checking to avoid pcp imbalance */
7539 if (percpu_pagelist_fraction &&
7540 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7541 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7542 ret = -EINVAL;
7543 goto out;
7544 }
7545
7546 /* No change? */
7547 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7548 goto out;
7549
7550 for_each_populated_zone(zone) {
7551 unsigned int cpu;
7552
7553 for_each_possible_cpu(cpu)
7554 pageset_set_high_and_batch(zone,
7555 per_cpu_ptr(zone->pageset, cpu));
7556 }
7557 out:
7558 mutex_unlock(&pcp_batch_high_lock);
7559 return ret;
7560 }
7561
7562 #ifdef CONFIG_NUMA
7563 int hashdist = HASHDIST_DEFAULT;
7564
set_hashdist(char * str)7565 static int __init set_hashdist(char *str)
7566 {
7567 if (!str)
7568 return 0;
7569 hashdist = simple_strtoul(str, &str, 0);
7570 return 1;
7571 }
7572 __setup("hashdist=", set_hashdist);
7573 #endif
7574
7575 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7576 /*
7577 * Returns the number of pages that arch has reserved but
7578 * is not known to alloc_large_system_hash().
7579 */
arch_reserved_kernel_pages(void)7580 static unsigned long __init arch_reserved_kernel_pages(void)
7581 {
7582 return 0;
7583 }
7584 #endif
7585
7586 /*
7587 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7588 * machines. As memory size is increased the scale is also increased but at
7589 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7590 * quadruples the scale is increased by one, which means the size of hash table
7591 * only doubles, instead of quadrupling as well.
7592 * Because 32-bit systems cannot have large physical memory, where this scaling
7593 * makes sense, it is disabled on such platforms.
7594 */
7595 #if __BITS_PER_LONG > 32
7596 #define ADAPT_SCALE_BASE (64ul << 30)
7597 #define ADAPT_SCALE_SHIFT 2
7598 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7599 #endif
7600
7601 /*
7602 * allocate a large system hash table from bootmem
7603 * - it is assumed that the hash table must contain an exact power-of-2
7604 * quantity of entries
7605 * - limit is the number of hash buckets, not the total allocation size
7606 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)7607 void *__init alloc_large_system_hash(const char *tablename,
7608 unsigned long bucketsize,
7609 unsigned long numentries,
7610 int scale,
7611 int flags,
7612 unsigned int *_hash_shift,
7613 unsigned int *_hash_mask,
7614 unsigned long low_limit,
7615 unsigned long high_limit)
7616 {
7617 unsigned long long max = high_limit;
7618 unsigned long log2qty, size;
7619 void *table = NULL;
7620 gfp_t gfp_flags;
7621
7622 /* allow the kernel cmdline to have a say */
7623 if (!numentries) {
7624 /* round applicable memory size up to nearest megabyte */
7625 numentries = nr_kernel_pages;
7626 numentries -= arch_reserved_kernel_pages();
7627
7628 /* It isn't necessary when PAGE_SIZE >= 1MB */
7629 if (PAGE_SHIFT < 20)
7630 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7631
7632 #if __BITS_PER_LONG > 32
7633 if (!high_limit) {
7634 unsigned long adapt;
7635
7636 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7637 adapt <<= ADAPT_SCALE_SHIFT)
7638 scale++;
7639 }
7640 #endif
7641
7642 /* limit to 1 bucket per 2^scale bytes of low memory */
7643 if (scale > PAGE_SHIFT)
7644 numentries >>= (scale - PAGE_SHIFT);
7645 else
7646 numentries <<= (PAGE_SHIFT - scale);
7647
7648 /* Make sure we've got at least a 0-order allocation.. */
7649 if (unlikely(flags & HASH_SMALL)) {
7650 /* Makes no sense without HASH_EARLY */
7651 WARN_ON(!(flags & HASH_EARLY));
7652 if (!(numentries >> *_hash_shift)) {
7653 numentries = 1UL << *_hash_shift;
7654 BUG_ON(!numentries);
7655 }
7656 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7657 numentries = PAGE_SIZE / bucketsize;
7658 }
7659 numentries = roundup_pow_of_two(numentries);
7660
7661 /* limit allocation size to 1/16 total memory by default */
7662 if (max == 0) {
7663 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7664 do_div(max, bucketsize);
7665 }
7666 max = min(max, 0x80000000ULL);
7667
7668 if (numentries < low_limit)
7669 numentries = low_limit;
7670 if (numentries > max)
7671 numentries = max;
7672
7673 log2qty = ilog2(numentries);
7674
7675 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7676 do {
7677 size = bucketsize << log2qty;
7678 if (flags & HASH_EARLY) {
7679 if (flags & HASH_ZERO)
7680 table = memblock_virt_alloc_nopanic(size, 0);
7681 else
7682 table = memblock_virt_alloc_raw(size, 0);
7683 } else if (hashdist) {
7684 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7685 } else {
7686 /*
7687 * If bucketsize is not a power-of-two, we may free
7688 * some pages at the end of hash table which
7689 * alloc_pages_exact() automatically does
7690 */
7691 if (get_order(size) < MAX_ORDER) {
7692 table = alloc_pages_exact(size, gfp_flags);
7693 kmemleak_alloc(table, size, 1, gfp_flags);
7694 }
7695 }
7696 } while (!table && size > PAGE_SIZE && --log2qty);
7697
7698 if (!table)
7699 panic("Failed to allocate %s hash table\n", tablename);
7700
7701 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7702 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7703
7704 if (_hash_shift)
7705 *_hash_shift = log2qty;
7706 if (_hash_mask)
7707 *_hash_mask = (1 << log2qty) - 1;
7708
7709 return table;
7710 }
7711
7712 /*
7713 * This function checks whether pageblock includes unmovable pages or not.
7714 * If @count is not zero, it is okay to include less @count unmovable pages
7715 *
7716 * PageLRU check without isolation or lru_lock could race so that
7717 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7718 * check without lock_page also may miss some movable non-lru pages at
7719 * race condition. So you can't expect this function should be exact.
7720 */
has_unmovable_pages(struct zone * zone,struct page * page,int count,int migratetype,bool skip_hwpoisoned_pages)7721 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7722 int migratetype,
7723 bool skip_hwpoisoned_pages)
7724 {
7725 unsigned long pfn, iter, found;
7726
7727 /*
7728 * TODO we could make this much more efficient by not checking every
7729 * page in the range if we know all of them are in MOVABLE_ZONE and
7730 * that the movable zone guarantees that pages are migratable but
7731 * the later is not the case right now unfortunatelly. E.g. movablecore
7732 * can still lead to having bootmem allocations in zone_movable.
7733 */
7734
7735 /*
7736 * CMA allocations (alloc_contig_range) really need to mark isolate
7737 * CMA pageblocks even when they are not movable in fact so consider
7738 * them movable here.
7739 */
7740 if (is_migrate_cma(migratetype) &&
7741 is_migrate_cma(get_pageblock_migratetype(page)))
7742 return false;
7743
7744 pfn = page_to_pfn(page);
7745 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7746 unsigned long check = pfn + iter;
7747
7748 if (!pfn_valid_within(check))
7749 continue;
7750
7751 page = pfn_to_page(check);
7752
7753 if (PageReserved(page))
7754 goto unmovable;
7755
7756 /*
7757 * If the zone is movable and we have ruled out all reserved
7758 * pages then it should be reasonably safe to assume the rest
7759 * is movable.
7760 */
7761 if (zone_idx(zone) == ZONE_MOVABLE)
7762 continue;
7763
7764 /*
7765 * Hugepages are not in LRU lists, but they're movable.
7766 * We need not scan over tail pages bacause we don't
7767 * handle each tail page individually in migration.
7768 */
7769 if (PageHuge(page)) {
7770 struct page *head = compound_head(page);
7771 unsigned int skip_pages;
7772
7773 if (!hugepage_migration_supported(page_hstate(head)))
7774 goto unmovable;
7775
7776 skip_pages = (1 << compound_order(head)) - (page - head);
7777 iter += skip_pages - 1;
7778 continue;
7779 }
7780
7781 /*
7782 * We can't use page_count without pin a page
7783 * because another CPU can free compound page.
7784 * This check already skips compound tails of THP
7785 * because their page->_refcount is zero at all time.
7786 */
7787 if (!page_ref_count(page)) {
7788 if (PageBuddy(page))
7789 iter += (1 << page_order(page)) - 1;
7790 continue;
7791 }
7792
7793 /*
7794 * The HWPoisoned page may be not in buddy system, and
7795 * page_count() is not 0.
7796 */
7797 if (skip_hwpoisoned_pages && PageHWPoison(page))
7798 continue;
7799
7800 if (__PageMovable(page))
7801 continue;
7802
7803 if (!PageLRU(page))
7804 found++;
7805 /*
7806 * If there are RECLAIMABLE pages, we need to check
7807 * it. But now, memory offline itself doesn't call
7808 * shrink_node_slabs() and it still to be fixed.
7809 */
7810 /*
7811 * If the page is not RAM, page_count()should be 0.
7812 * we don't need more check. This is an _used_ not-movable page.
7813 *
7814 * The problematic thing here is PG_reserved pages. PG_reserved
7815 * is set to both of a memory hole page and a _used_ kernel
7816 * page at boot.
7817 */
7818 if (found > count)
7819 goto unmovable;
7820 }
7821 return false;
7822 unmovable:
7823 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7824 return true;
7825 }
7826
7827 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7828
pfn_max_align_down(unsigned long pfn)7829 static unsigned long pfn_max_align_down(unsigned long pfn)
7830 {
7831 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7832 pageblock_nr_pages) - 1);
7833 }
7834
pfn_max_align_up(unsigned long pfn)7835 static unsigned long pfn_max_align_up(unsigned long pfn)
7836 {
7837 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7838 pageblock_nr_pages));
7839 }
7840
7841 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)7842 static int __alloc_contig_migrate_range(struct compact_control *cc,
7843 unsigned long start, unsigned long end)
7844 {
7845 /* This function is based on compact_zone() from compaction.c. */
7846 unsigned long nr_reclaimed;
7847 unsigned long pfn = start;
7848 unsigned int tries = 0;
7849 int ret = 0;
7850
7851 migrate_prep();
7852
7853 while (pfn < end || !list_empty(&cc->migratepages)) {
7854 if (fatal_signal_pending(current)) {
7855 ret = -EINTR;
7856 break;
7857 }
7858
7859 if (list_empty(&cc->migratepages)) {
7860 cc->nr_migratepages = 0;
7861 pfn = isolate_migratepages_range(cc, pfn, end);
7862 if (!pfn) {
7863 ret = -EINTR;
7864 break;
7865 }
7866 tries = 0;
7867 } else if (++tries == 5) {
7868 ret = ret < 0 ? ret : -EBUSY;
7869 break;
7870 }
7871
7872 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7873 &cc->migratepages);
7874 cc->nr_migratepages -= nr_reclaimed;
7875
7876 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7877 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7878 }
7879 if (ret < 0) {
7880 putback_movable_pages(&cc->migratepages);
7881 return ret;
7882 }
7883 return 0;
7884 }
7885
7886 /**
7887 * alloc_contig_range() -- tries to allocate given range of pages
7888 * @start: start PFN to allocate
7889 * @end: one-past-the-last PFN to allocate
7890 * @migratetype: migratetype of the underlaying pageblocks (either
7891 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7892 * in range must have the same migratetype and it must
7893 * be either of the two.
7894 * @gfp_mask: GFP mask to use during compaction
7895 *
7896 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7897 * aligned. The PFN range must belong to a single zone.
7898 *
7899 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7900 * pageblocks in the range. Once isolated, the pageblocks should not
7901 * be modified by others.
7902 *
7903 * Returns zero on success or negative error code. On success all
7904 * pages which PFN is in [start, end) are allocated for the caller and
7905 * need to be freed with free_contig_range().
7906 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)7907 int alloc_contig_range(unsigned long start, unsigned long end,
7908 unsigned migratetype, gfp_t gfp_mask)
7909 {
7910 unsigned long outer_start, outer_end;
7911 unsigned int order;
7912 int ret = 0;
7913
7914 struct compact_control cc = {
7915 .nr_migratepages = 0,
7916 .order = -1,
7917 .zone = page_zone(pfn_to_page(start)),
7918 .mode = MIGRATE_SYNC,
7919 .ignore_skip_hint = true,
7920 .no_set_skip_hint = true,
7921 .gfp_mask = current_gfp_context(gfp_mask),
7922 };
7923 INIT_LIST_HEAD(&cc.migratepages);
7924
7925 /*
7926 * What we do here is we mark all pageblocks in range as
7927 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7928 * have different sizes, and due to the way page allocator
7929 * work, we align the range to biggest of the two pages so
7930 * that page allocator won't try to merge buddies from
7931 * different pageblocks and change MIGRATE_ISOLATE to some
7932 * other migration type.
7933 *
7934 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7935 * migrate the pages from an unaligned range (ie. pages that
7936 * we are interested in). This will put all the pages in
7937 * range back to page allocator as MIGRATE_ISOLATE.
7938 *
7939 * When this is done, we take the pages in range from page
7940 * allocator removing them from the buddy system. This way
7941 * page allocator will never consider using them.
7942 *
7943 * This lets us mark the pageblocks back as
7944 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7945 * aligned range but not in the unaligned, original range are
7946 * put back to page allocator so that buddy can use them.
7947 */
7948
7949 ret = start_isolate_page_range(pfn_max_align_down(start),
7950 pfn_max_align_up(end), migratetype,
7951 false);
7952 if (ret)
7953 return ret;
7954
7955 /*
7956 * In case of -EBUSY, we'd like to know which page causes problem.
7957 * So, just fall through. test_pages_isolated() has a tracepoint
7958 * which will report the busy page.
7959 *
7960 * It is possible that busy pages could become available before
7961 * the call to test_pages_isolated, and the range will actually be
7962 * allocated. So, if we fall through be sure to clear ret so that
7963 * -EBUSY is not accidentally used or returned to caller.
7964 */
7965 ret = __alloc_contig_migrate_range(&cc, start, end);
7966 if (ret && ret != -EBUSY)
7967 goto done;
7968 ret =0;
7969
7970 /*
7971 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7972 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7973 * more, all pages in [start, end) are free in page allocator.
7974 * What we are going to do is to allocate all pages from
7975 * [start, end) (that is remove them from page allocator).
7976 *
7977 * The only problem is that pages at the beginning and at the
7978 * end of interesting range may be not aligned with pages that
7979 * page allocator holds, ie. they can be part of higher order
7980 * pages. Because of this, we reserve the bigger range and
7981 * once this is done free the pages we are not interested in.
7982 *
7983 * We don't have to hold zone->lock here because the pages are
7984 * isolated thus they won't get removed from buddy.
7985 */
7986
7987 lru_add_drain_all();
7988 drain_all_pages(cc.zone);
7989
7990 order = 0;
7991 outer_start = start;
7992 while (!PageBuddy(pfn_to_page(outer_start))) {
7993 if (++order >= MAX_ORDER) {
7994 outer_start = start;
7995 break;
7996 }
7997 outer_start &= ~0UL << order;
7998 }
7999
8000 if (outer_start != start) {
8001 order = page_order(pfn_to_page(outer_start));
8002
8003 /*
8004 * outer_start page could be small order buddy page and
8005 * it doesn't include start page. Adjust outer_start
8006 * in this case to report failed page properly
8007 * on tracepoint in test_pages_isolated()
8008 */
8009 if (outer_start + (1UL << order) <= start)
8010 outer_start = start;
8011 }
8012
8013 /* Make sure the range is really isolated. */
8014 if (test_pages_isolated(outer_start, end, false)) {
8015 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8016 __func__, outer_start, end);
8017 ret = -EBUSY;
8018 goto done;
8019 }
8020
8021 /* Grab isolated pages from freelists. */
8022 outer_end = isolate_freepages_range(&cc, outer_start, end);
8023 if (!outer_end) {
8024 ret = -EBUSY;
8025 goto done;
8026 }
8027
8028 /* Free head and tail (if any) */
8029 if (start != outer_start)
8030 free_contig_range(outer_start, start - outer_start);
8031 if (end != outer_end)
8032 free_contig_range(end, outer_end - end);
8033
8034 done:
8035 undo_isolate_page_range(pfn_max_align_down(start),
8036 pfn_max_align_up(end), migratetype);
8037 return ret;
8038 }
8039
free_contig_range(unsigned long pfn,unsigned nr_pages)8040 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8041 {
8042 unsigned int count = 0;
8043
8044 for (; nr_pages--; pfn++) {
8045 struct page *page = pfn_to_page(pfn);
8046
8047 count += page_count(page) != 1;
8048 __free_page(page);
8049 }
8050 WARN(count != 0, "%d pages are still in use!\n", count);
8051 }
8052 #endif
8053
8054 /*
8055 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8056 * page high values need to be recalulated.
8057 */
zone_pcp_update(struct zone * zone)8058 void __meminit zone_pcp_update(struct zone *zone)
8059 {
8060 unsigned cpu;
8061 mutex_lock(&pcp_batch_high_lock);
8062 for_each_possible_cpu(cpu)
8063 pageset_set_high_and_batch(zone,
8064 per_cpu_ptr(zone->pageset, cpu));
8065 mutex_unlock(&pcp_batch_high_lock);
8066 }
8067
zone_pcp_reset(struct zone * zone)8068 void zone_pcp_reset(struct zone *zone)
8069 {
8070 unsigned long flags;
8071 int cpu;
8072 struct per_cpu_pageset *pset;
8073
8074 /* avoid races with drain_pages() */
8075 local_irq_save(flags);
8076 if (zone->pageset != &boot_pageset) {
8077 for_each_online_cpu(cpu) {
8078 pset = per_cpu_ptr(zone->pageset, cpu);
8079 drain_zonestat(zone, pset);
8080 }
8081 free_percpu(zone->pageset);
8082 zone->pageset = &boot_pageset;
8083 }
8084 local_irq_restore(flags);
8085 }
8086
8087 #ifdef CONFIG_MEMORY_HOTREMOVE
8088 /*
8089 * All pages in the range must be in a single zone and isolated
8090 * before calling this.
8091 */
8092 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8093 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8094 {
8095 struct page *page;
8096 struct zone *zone;
8097 unsigned int order, i;
8098 unsigned long pfn;
8099 unsigned long flags;
8100 /* find the first valid pfn */
8101 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8102 if (pfn_valid(pfn))
8103 break;
8104 if (pfn == end_pfn)
8105 return;
8106 offline_mem_sections(pfn, end_pfn);
8107 zone = page_zone(pfn_to_page(pfn));
8108 spin_lock_irqsave(&zone->lock, flags);
8109 pfn = start_pfn;
8110 while (pfn < end_pfn) {
8111 if (!pfn_valid(pfn)) {
8112 pfn++;
8113 continue;
8114 }
8115 page = pfn_to_page(pfn);
8116 /*
8117 * The HWPoisoned page may be not in buddy system, and
8118 * page_count() is not 0.
8119 */
8120 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8121 pfn++;
8122 SetPageReserved(page);
8123 continue;
8124 }
8125
8126 BUG_ON(page_count(page));
8127 BUG_ON(!PageBuddy(page));
8128 order = page_order(page);
8129 #ifdef CONFIG_DEBUG_VM
8130 pr_info("remove from free list %lx %d %lx\n",
8131 pfn, 1 << order, end_pfn);
8132 #endif
8133 list_del(&page->lru);
8134 rmv_page_order(page);
8135 zone->free_area[order].nr_free--;
8136 for (i = 0; i < (1 << order); i++)
8137 SetPageReserved((page+i));
8138 pfn += (1 << order);
8139 }
8140 spin_unlock_irqrestore(&zone->lock, flags);
8141 }
8142 #endif
8143
is_free_buddy_page(struct page * page)8144 bool is_free_buddy_page(struct page *page)
8145 {
8146 struct zone *zone = page_zone(page);
8147 unsigned long pfn = page_to_pfn(page);
8148 unsigned long flags;
8149 unsigned int order;
8150
8151 spin_lock_irqsave(&zone->lock, flags);
8152 for (order = 0; order < MAX_ORDER; order++) {
8153 struct page *page_head = page - (pfn & ((1 << order) - 1));
8154
8155 if (PageBuddy(page_head) && page_order(page_head) >= order)
8156 break;
8157 }
8158 spin_unlock_irqrestore(&zone->lock, flags);
8159
8160 return order < MAX_ORDER;
8161 }
8162
8163 #ifdef CONFIG_MEMORY_FAILURE
8164 /*
8165 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8166 * test is performed under the zone lock to prevent a race against page
8167 * allocation.
8168 */
set_hwpoison_free_buddy_page(struct page * page)8169 bool set_hwpoison_free_buddy_page(struct page *page)
8170 {
8171 struct zone *zone = page_zone(page);
8172 unsigned long pfn = page_to_pfn(page);
8173 unsigned long flags;
8174 unsigned int order;
8175 bool hwpoisoned = false;
8176
8177 spin_lock_irqsave(&zone->lock, flags);
8178 for (order = 0; order < MAX_ORDER; order++) {
8179 struct page *page_head = page - (pfn & ((1 << order) - 1));
8180
8181 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8182 if (!TestSetPageHWPoison(page))
8183 hwpoisoned = true;
8184 break;
8185 }
8186 }
8187 spin_unlock_irqrestore(&zone->lock, flags);
8188
8189 return hwpoisoned;
8190 }
8191 #endif
8192