• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/khugepaged.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
get_pcppage_migratetype(struct page * page)143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
set_pcppage_migratetype(struct page * page,int migratetype)148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with system_transition_mutex held
159  * (gfp_allowed_mask also should only be modified with system_transition_mutex
160  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161  * with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
pm_restore_gfp_mask(void)166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
pm_restrict_gfp_mask(void)175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
pm_suspended_storage(void)183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 	[ZONE_DMA] = 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	[ZONE_DMA32] = 256,
214 #endif
215 	[ZONE_NORMAL] = 32,
216 #ifdef CONFIG_HIGHMEM
217 	[ZONE_HIGHMEM] = 0,
218 #endif
219 	[ZONE_MOVABLE] = 0,
220 };
221 
222 EXPORT_SYMBOL(totalram_pages);
223 
224 static char * const zone_names[MAX_NR_ZONES] = {
225 #ifdef CONFIG_ZONE_DMA
226 	 "DMA",
227 #endif
228 #ifdef CONFIG_ZONE_DMA32
229 	 "DMA32",
230 #endif
231 	 "Normal",
232 #ifdef CONFIG_HIGHMEM
233 	 "HighMem",
234 #endif
235 	 "Movable",
236 #ifdef CONFIG_ZONE_DEVICE
237 	 "Device",
238 #endif
239 };
240 
241 char * const migratetype_names[MIGRATE_TYPES] = {
242 	"Unmovable",
243 	"Movable",
244 	"Reclaimable",
245 	"HighAtomic",
246 #ifdef CONFIG_CMA
247 	"CMA",
248 #endif
249 #ifdef CONFIG_MEMORY_ISOLATION
250 	"Isolate",
251 #endif
252 };
253 
254 compound_page_dtor * const compound_page_dtors[] = {
255 	NULL,
256 	free_compound_page,
257 #ifdef CONFIG_HUGETLB_PAGE
258 	free_huge_page,
259 #endif
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 	free_transhuge_page,
262 #endif
263 };
264 
265 int min_free_kbytes = 1024;
266 int user_min_free_kbytes = -1;
267 int watermark_scale_factor = 10;
268 
269 static unsigned long nr_kernel_pages __meminitdata;
270 static unsigned long nr_all_pages __meminitdata;
271 static unsigned long dma_reserve __meminitdata;
272 
273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276 static unsigned long required_kernelcore __initdata;
277 static unsigned long required_kernelcore_percent __initdata;
278 static unsigned long required_movablecore __initdata;
279 static unsigned long required_movablecore_percent __initdata;
280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281 static bool mirrored_kernelcore __meminitdata;
282 
283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 int movable_zone;
285 EXPORT_SYMBOL(movable_zone);
286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287 
288 #if MAX_NUMNODES > 1
289 int nr_node_ids __read_mostly = MAX_NUMNODES;
290 int nr_online_nodes __read_mostly = 1;
291 EXPORT_SYMBOL(nr_node_ids);
292 EXPORT_SYMBOL(nr_online_nodes);
293 #endif
294 
295 int page_group_by_mobility_disabled __read_mostly;
296 
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /*
299  * During boot we initialize deferred pages on-demand, as needed, but once
300  * page_alloc_init_late() has finished, the deferred pages are all initialized,
301  * and we can permanently disable that path.
302  */
303 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
304 
305 /*
306  * Calling kasan_free_pages() only after deferred memory initialization
307  * has completed. Poisoning pages during deferred memory init will greatly
308  * lengthen the process and cause problem in large memory systems as the
309  * deferred pages initialization is done with interrupt disabled.
310  *
311  * Assuming that there will be no reference to those newly initialized
312  * pages before they are ever allocated, this should have no effect on
313  * KASAN memory tracking as the poison will be properly inserted at page
314  * allocation time. The only corner case is when pages are allocated by
315  * on-demand allocation and then freed again before the deferred pages
316  * initialization is done, but this is not likely to happen.
317  */
kasan_free_nondeferred_pages(struct page * page,int order)318 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
319 {
320 	if (!static_branch_unlikely(&deferred_pages))
321 		kasan_free_pages(page, order);
322 }
323 
324 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)325 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
326 {
327 	int nid = early_pfn_to_nid(pfn);
328 
329 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 		return true;
331 
332 	return false;
333 }
334 
335 /*
336  * Returns false when the remaining initialisation should be deferred until
337  * later in the boot cycle when it can be parallelised.
338  */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)339 static inline bool update_defer_init(pg_data_t *pgdat,
340 				unsigned long pfn, unsigned long zone_end,
341 				unsigned long *nr_initialised)
342 {
343 	/* Always populate low zones for address-constrained allocations */
344 	if (zone_end < pgdat_end_pfn(pgdat))
345 		return true;
346 	(*nr_initialised)++;
347 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
348 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
349 		pgdat->first_deferred_pfn = pfn;
350 		return false;
351 	}
352 
353 	return true;
354 }
355 #else
356 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
357 
early_page_uninitialised(unsigned long pfn)358 static inline bool early_page_uninitialised(unsigned long pfn)
359 {
360 	return false;
361 }
362 
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)363 static inline bool update_defer_init(pg_data_t *pgdat,
364 				unsigned long pfn, unsigned long zone_end,
365 				unsigned long *nr_initialised)
366 {
367 	return true;
368 }
369 #endif
370 
371 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)372 static inline unsigned long *get_pageblock_bitmap(struct page *page,
373 							unsigned long pfn)
374 {
375 #ifdef CONFIG_SPARSEMEM
376 	return __pfn_to_section(pfn)->pageblock_flags;
377 #else
378 	return page_zone(page)->pageblock_flags;
379 #endif /* CONFIG_SPARSEMEM */
380 }
381 
pfn_to_bitidx(struct page * page,unsigned long pfn)382 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
383 {
384 #ifdef CONFIG_SPARSEMEM
385 	pfn &= (PAGES_PER_SECTION-1);
386 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
387 #else
388 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
389 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
390 #endif /* CONFIG_SPARSEMEM */
391 }
392 
393 /**
394  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
395  * @page: The page within the block of interest
396  * @pfn: The target page frame number
397  * @end_bitidx: The last bit of interest to retrieve
398  * @mask: mask of bits that the caller is interested in
399  *
400  * Return: pageblock_bits flags
401  */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)402 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
403 					unsigned long pfn,
404 					unsigned long end_bitidx,
405 					unsigned long mask)
406 {
407 	unsigned long *bitmap;
408 	unsigned long bitidx, word_bitidx;
409 	unsigned long word;
410 
411 	bitmap = get_pageblock_bitmap(page, pfn);
412 	bitidx = pfn_to_bitidx(page, pfn);
413 	word_bitidx = bitidx / BITS_PER_LONG;
414 	bitidx &= (BITS_PER_LONG-1);
415 
416 	word = bitmap[word_bitidx];
417 	bitidx += end_bitidx;
418 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
419 }
420 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)421 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
422 					unsigned long end_bitidx,
423 					unsigned long mask)
424 {
425 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
426 }
427 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)428 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
429 {
430 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
431 }
432 
433 /**
434  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
435  * @page: The page within the block of interest
436  * @flags: The flags to set
437  * @pfn: The target page frame number
438  * @end_bitidx: The last bit of interest
439  * @mask: mask of bits that the caller is interested in
440  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)441 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
442 					unsigned long pfn,
443 					unsigned long end_bitidx,
444 					unsigned long mask)
445 {
446 	unsigned long *bitmap;
447 	unsigned long bitidx, word_bitidx;
448 	unsigned long old_word, word;
449 
450 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
451 
452 	bitmap = get_pageblock_bitmap(page, pfn);
453 	bitidx = pfn_to_bitidx(page, pfn);
454 	word_bitidx = bitidx / BITS_PER_LONG;
455 	bitidx &= (BITS_PER_LONG-1);
456 
457 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
458 
459 	bitidx += end_bitidx;
460 	mask <<= (BITS_PER_LONG - bitidx - 1);
461 	flags <<= (BITS_PER_LONG - bitidx - 1);
462 
463 	word = READ_ONCE(bitmap[word_bitidx]);
464 	for (;;) {
465 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
466 		if (word == old_word)
467 			break;
468 		word = old_word;
469 	}
470 }
471 
set_pageblock_migratetype(struct page * page,int migratetype)472 void set_pageblock_migratetype(struct page *page, int migratetype)
473 {
474 	if (unlikely(page_group_by_mobility_disabled &&
475 		     migratetype < MIGRATE_PCPTYPES))
476 		migratetype = MIGRATE_UNMOVABLE;
477 
478 	set_pageblock_flags_group(page, (unsigned long)migratetype,
479 					PB_migrate, PB_migrate_end);
480 }
481 
482 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)483 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
484 {
485 	int ret = 0;
486 	unsigned seq;
487 	unsigned long pfn = page_to_pfn(page);
488 	unsigned long sp, start_pfn;
489 
490 	do {
491 		seq = zone_span_seqbegin(zone);
492 		start_pfn = zone->zone_start_pfn;
493 		sp = zone->spanned_pages;
494 		if (!zone_spans_pfn(zone, pfn))
495 			ret = 1;
496 	} while (zone_span_seqretry(zone, seq));
497 
498 	if (ret)
499 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
500 			pfn, zone_to_nid(zone), zone->name,
501 			start_pfn, start_pfn + sp);
502 
503 	return ret;
504 }
505 
page_is_consistent(struct zone * zone,struct page * page)506 static int page_is_consistent(struct zone *zone, struct page *page)
507 {
508 	if (!pfn_valid_within(page_to_pfn(page)))
509 		return 0;
510 	if (zone != page_zone(page))
511 		return 0;
512 
513 	return 1;
514 }
515 /*
516  * Temporary debugging check for pages not lying within a given zone.
517  */
bad_range(struct zone * zone,struct page * page)518 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
519 {
520 	if (page_outside_zone_boundaries(zone, page))
521 		return 1;
522 	if (!page_is_consistent(zone, page))
523 		return 1;
524 
525 	return 0;
526 }
527 #else
bad_range(struct zone * zone,struct page * page)528 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 	return 0;
531 }
532 #endif
533 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)534 static void bad_page(struct page *page, const char *reason,
535 		unsigned long bad_flags)
536 {
537 	static unsigned long resume;
538 	static unsigned long nr_shown;
539 	static unsigned long nr_unshown;
540 
541 	/*
542 	 * Allow a burst of 60 reports, then keep quiet for that minute;
543 	 * or allow a steady drip of one report per second.
544 	 */
545 	if (nr_shown == 60) {
546 		if (time_before(jiffies, resume)) {
547 			nr_unshown++;
548 			goto out;
549 		}
550 		if (nr_unshown) {
551 			pr_alert(
552 			      "BUG: Bad page state: %lu messages suppressed\n",
553 				nr_unshown);
554 			nr_unshown = 0;
555 		}
556 		nr_shown = 0;
557 	}
558 	if (nr_shown++ == 0)
559 		resume = jiffies + 60 * HZ;
560 
561 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
562 		current->comm, page_to_pfn(page));
563 	__dump_page(page, reason);
564 	bad_flags &= page->flags;
565 	if (bad_flags)
566 		pr_alert("bad because of flags: %#lx(%pGp)\n",
567 						bad_flags, &bad_flags);
568 	dump_page_owner(page);
569 
570 	print_modules();
571 	dump_stack();
572 out:
573 	/* Leave bad fields for debug, except PageBuddy could make trouble */
574 	page_mapcount_reset(page); /* remove PageBuddy */
575 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577 
578 /*
579  * Higher-order pages are called "compound pages".  They are structured thusly:
580  *
581  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582  *
583  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
584  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585  *
586  * The first tail page's ->compound_dtor holds the offset in array of compound
587  * page destructors. See compound_page_dtors.
588  *
589  * The first tail page's ->compound_order holds the order of allocation.
590  * This usage means that zero-order pages may not be compound.
591  */
592 
free_compound_page(struct page * page)593 void free_compound_page(struct page *page)
594 {
595 	__free_pages_ok(page, compound_order(page));
596 }
597 
prep_compound_page(struct page * page,unsigned int order)598 void prep_compound_page(struct page *page, unsigned int order)
599 {
600 	int i;
601 	int nr_pages = 1 << order;
602 
603 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
604 	set_compound_order(page, order);
605 	__SetPageHead(page);
606 	for (i = 1; i < nr_pages; i++) {
607 		struct page *p = page + i;
608 		set_page_count(p, 0);
609 		p->mapping = TAIL_MAPPING;
610 		set_compound_head(p, page);
611 	}
612 	atomic_set(compound_mapcount_ptr(page), -1);
613 }
614 
615 #ifdef CONFIG_DEBUG_PAGEALLOC
616 unsigned int _debug_guardpage_minorder;
617 bool _debug_pagealloc_enabled __read_mostly
618 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
619 EXPORT_SYMBOL(_debug_pagealloc_enabled);
620 bool _debug_guardpage_enabled __read_mostly;
621 
early_debug_pagealloc(char * buf)622 static int __init early_debug_pagealloc(char *buf)
623 {
624 	if (!buf)
625 		return -EINVAL;
626 	return kstrtobool(buf, &_debug_pagealloc_enabled);
627 }
628 early_param("debug_pagealloc", early_debug_pagealloc);
629 
need_debug_guardpage(void)630 static bool need_debug_guardpage(void)
631 {
632 	/* If we don't use debug_pagealloc, we don't need guard page */
633 	if (!debug_pagealloc_enabled())
634 		return false;
635 
636 	if (!debug_guardpage_minorder())
637 		return false;
638 
639 	return true;
640 }
641 
init_debug_guardpage(void)642 static void init_debug_guardpage(void)
643 {
644 	if (!debug_pagealloc_enabled())
645 		return;
646 
647 	if (!debug_guardpage_minorder())
648 		return;
649 
650 	_debug_guardpage_enabled = true;
651 }
652 
653 struct page_ext_operations debug_guardpage_ops = {
654 	.need = need_debug_guardpage,
655 	.init = init_debug_guardpage,
656 };
657 
debug_guardpage_minorder_setup(char * buf)658 static int __init debug_guardpage_minorder_setup(char *buf)
659 {
660 	unsigned long res;
661 
662 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
663 		pr_err("Bad debug_guardpage_minorder value\n");
664 		return 0;
665 	}
666 	_debug_guardpage_minorder = res;
667 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
668 	return 0;
669 }
670 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
671 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)672 static inline bool set_page_guard(struct zone *zone, struct page *page,
673 				unsigned int order, int migratetype)
674 {
675 	struct page_ext *page_ext;
676 
677 	if (!debug_guardpage_enabled())
678 		return false;
679 
680 	if (order >= debug_guardpage_minorder())
681 		return false;
682 
683 	page_ext = lookup_page_ext(page);
684 	if (unlikely(!page_ext))
685 		return false;
686 
687 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688 
689 	INIT_LIST_HEAD(&page->lru);
690 	set_page_private(page, order);
691 	/* Guard pages are not available for any usage */
692 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
693 
694 	return true;
695 }
696 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)697 static inline void clear_page_guard(struct zone *zone, struct page *page,
698 				unsigned int order, int migratetype)
699 {
700 	struct page_ext *page_ext;
701 
702 	if (!debug_guardpage_enabled())
703 		return;
704 
705 	page_ext = lookup_page_ext(page);
706 	if (unlikely(!page_ext))
707 		return;
708 
709 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
710 
711 	set_page_private(page, 0);
712 	if (!is_migrate_isolate(migratetype))
713 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
714 }
715 #else
716 struct page_ext_operations debug_guardpage_ops;
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)717 static inline bool set_page_guard(struct zone *zone, struct page *page,
718 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)719 static inline void clear_page_guard(struct zone *zone, struct page *page,
720 				unsigned int order, int migratetype) {}
721 #endif
722 
set_page_order(struct page * page,unsigned int order)723 static inline void set_page_order(struct page *page, unsigned int order)
724 {
725 	set_page_private(page, order);
726 	__SetPageBuddy(page);
727 }
728 
rmv_page_order(struct page * page)729 static inline void rmv_page_order(struct page *page)
730 {
731 	__ClearPageBuddy(page);
732 	set_page_private(page, 0);
733 }
734 
735 /*
736  * This function checks whether a page is free && is the buddy
737  * we can coalesce a page and its buddy if
738  * (a) the buddy is not in a hole (check before calling!) &&
739  * (b) the buddy is in the buddy system &&
740  * (c) a page and its buddy have the same order &&
741  * (d) a page and its buddy are in the same zone.
742  *
743  * For recording whether a page is in the buddy system, we set PageBuddy.
744  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
745  *
746  * For recording page's order, we use page_private(page).
747  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)748 static inline int page_is_buddy(struct page *page, struct page *buddy,
749 							unsigned int order)
750 {
751 	if (page_is_guard(buddy) && page_order(buddy) == order) {
752 		if (page_zone_id(page) != page_zone_id(buddy))
753 			return 0;
754 
755 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 
757 		return 1;
758 	}
759 
760 	if (PageBuddy(buddy) && page_order(buddy) == order) {
761 		/*
762 		 * zone check is done late to avoid uselessly
763 		 * calculating zone/node ids for pages that could
764 		 * never merge.
765 		 */
766 		if (page_zone_id(page) != page_zone_id(buddy))
767 			return 0;
768 
769 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
770 
771 		return 1;
772 	}
773 	return 0;
774 }
775 
776 /*
777  * Freeing function for a buddy system allocator.
778  *
779  * The concept of a buddy system is to maintain direct-mapped table
780  * (containing bit values) for memory blocks of various "orders".
781  * The bottom level table contains the map for the smallest allocatable
782  * units of memory (here, pages), and each level above it describes
783  * pairs of units from the levels below, hence, "buddies".
784  * At a high level, all that happens here is marking the table entry
785  * at the bottom level available, and propagating the changes upward
786  * as necessary, plus some accounting needed to play nicely with other
787  * parts of the VM system.
788  * At each level, we keep a list of pages, which are heads of continuous
789  * free pages of length of (1 << order) and marked with PageBuddy.
790  * Page's order is recorded in page_private(page) field.
791  * So when we are allocating or freeing one, we can derive the state of the
792  * other.  That is, if we allocate a small block, and both were
793  * free, the remainder of the region must be split into blocks.
794  * If a block is freed, and its buddy is also free, then this
795  * triggers coalescing into a block of larger size.
796  *
797  * -- nyc
798  */
799 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)800 static inline void __free_one_page(struct page *page,
801 		unsigned long pfn,
802 		struct zone *zone, unsigned int order,
803 		int migratetype)
804 {
805 	unsigned long combined_pfn;
806 	unsigned long uninitialized_var(buddy_pfn);
807 	struct page *buddy;
808 	unsigned int max_order;
809 
810 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
811 
812 	VM_BUG_ON(!zone_is_initialized(zone));
813 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
814 
815 	VM_BUG_ON(migratetype == -1);
816 	if (likely(!is_migrate_isolate(migratetype)))
817 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
818 
819 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
820 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
821 
822 continue_merging:
823 	while (order < max_order - 1) {
824 		buddy_pfn = __find_buddy_pfn(pfn, order);
825 		buddy = page + (buddy_pfn - pfn);
826 
827 		if (!pfn_valid_within(buddy_pfn))
828 			goto done_merging;
829 		if (!page_is_buddy(page, buddy, order))
830 			goto done_merging;
831 		/*
832 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
833 		 * merge with it and move up one order.
834 		 */
835 		if (page_is_guard(buddy)) {
836 			clear_page_guard(zone, buddy, order, migratetype);
837 		} else {
838 			list_del(&buddy->lru);
839 			zone->free_area[order].nr_free--;
840 			rmv_page_order(buddy);
841 		}
842 		combined_pfn = buddy_pfn & pfn;
843 		page = page + (combined_pfn - pfn);
844 		pfn = combined_pfn;
845 		order++;
846 	}
847 	if (max_order < MAX_ORDER) {
848 		/* If we are here, it means order is >= pageblock_order.
849 		 * We want to prevent merge between freepages on isolate
850 		 * pageblock and normal pageblock. Without this, pageblock
851 		 * isolation could cause incorrect freepage or CMA accounting.
852 		 *
853 		 * We don't want to hit this code for the more frequent
854 		 * low-order merging.
855 		 */
856 		if (unlikely(has_isolate_pageblock(zone))) {
857 			int buddy_mt;
858 
859 			buddy_pfn = __find_buddy_pfn(pfn, order);
860 			buddy = page + (buddy_pfn - pfn);
861 			buddy_mt = get_pageblock_migratetype(buddy);
862 
863 			if (migratetype != buddy_mt
864 					&& (is_migrate_isolate(migratetype) ||
865 						is_migrate_isolate(buddy_mt)))
866 				goto done_merging;
867 		}
868 		max_order++;
869 		goto continue_merging;
870 	}
871 
872 done_merging:
873 	set_page_order(page, order);
874 
875 	/*
876 	 * If this is not the largest possible page, check if the buddy
877 	 * of the next-highest order is free. If it is, it's possible
878 	 * that pages are being freed that will coalesce soon. In case,
879 	 * that is happening, add the free page to the tail of the list
880 	 * so it's less likely to be used soon and more likely to be merged
881 	 * as a higher order page
882 	 */
883 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
884 		struct page *higher_page, *higher_buddy;
885 		combined_pfn = buddy_pfn & pfn;
886 		higher_page = page + (combined_pfn - pfn);
887 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
888 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
889 		if (pfn_valid_within(buddy_pfn) &&
890 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
891 			list_add_tail(&page->lru,
892 				&zone->free_area[order].free_list[migratetype]);
893 			goto out;
894 		}
895 	}
896 
897 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
898 out:
899 	zone->free_area[order].nr_free++;
900 }
901 
902 /*
903  * A bad page could be due to a number of fields. Instead of multiple branches,
904  * try and check multiple fields with one check. The caller must do a detailed
905  * check if necessary.
906  */
page_expected_state(struct page * page,unsigned long check_flags)907 static inline bool page_expected_state(struct page *page,
908 					unsigned long check_flags)
909 {
910 	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 		return false;
912 
913 	if (unlikely((unsigned long)page->mapping |
914 			page_ref_count(page) |
915 #ifdef CONFIG_MEMCG
916 			(unsigned long)page->mem_cgroup |
917 #endif
918 			(page->flags & check_flags)))
919 		return false;
920 
921 	return true;
922 }
923 
free_pages_check_bad(struct page * page)924 static void free_pages_check_bad(struct page *page)
925 {
926 	const char *bad_reason;
927 	unsigned long bad_flags;
928 
929 	bad_reason = NULL;
930 	bad_flags = 0;
931 
932 	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 		bad_reason = "nonzero mapcount";
934 	if (unlikely(page->mapping != NULL))
935 		bad_reason = "non-NULL mapping";
936 	if (unlikely(page_ref_count(page) != 0))
937 		bad_reason = "nonzero _refcount";
938 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
939 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
941 	}
942 #ifdef CONFIG_MEMCG
943 	if (unlikely(page->mem_cgroup))
944 		bad_reason = "page still charged to cgroup";
945 #endif
946 	bad_page(page, bad_reason, bad_flags);
947 }
948 
free_pages_check(struct page * page)949 static inline int free_pages_check(struct page *page)
950 {
951 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
952 		return 0;
953 
954 	/* Something has gone sideways, find it */
955 	free_pages_check_bad(page);
956 	return 1;
957 }
958 
free_tail_pages_check(struct page * head_page,struct page * page)959 static int free_tail_pages_check(struct page *head_page, struct page *page)
960 {
961 	int ret = 1;
962 
963 	/*
964 	 * We rely page->lru.next never has bit 0 set, unless the page
965 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 	 */
967 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
968 
969 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
970 		ret = 0;
971 		goto out;
972 	}
973 	switch (page - head_page) {
974 	case 1:
975 		/* the first tail page: ->mapping may be compound_mapcount() */
976 		if (unlikely(compound_mapcount(page))) {
977 			bad_page(page, "nonzero compound_mapcount", 0);
978 			goto out;
979 		}
980 		break;
981 	case 2:
982 		/*
983 		 * the second tail page: ->mapping is
984 		 * deferred_list.next -- ignore value.
985 		 */
986 		break;
987 	default:
988 		if (page->mapping != TAIL_MAPPING) {
989 			bad_page(page, "corrupted mapping in tail page", 0);
990 			goto out;
991 		}
992 		break;
993 	}
994 	if (unlikely(!PageTail(page))) {
995 		bad_page(page, "PageTail not set", 0);
996 		goto out;
997 	}
998 	if (unlikely(compound_head(page) != head_page)) {
999 		bad_page(page, "compound_head not consistent", 0);
1000 		goto out;
1001 	}
1002 	ret = 0;
1003 out:
1004 	page->mapping = NULL;
1005 	clear_compound_head(page);
1006 	return ret;
1007 }
1008 
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1009 static __always_inline bool free_pages_prepare(struct page *page,
1010 					unsigned int order, bool check_free)
1011 {
1012 	int bad = 0;
1013 
1014 	VM_BUG_ON_PAGE(PageTail(page), page);
1015 
1016 	trace_mm_page_free(page, order);
1017 
1018 	/*
1019 	 * Check tail pages before head page information is cleared to
1020 	 * avoid checking PageCompound for order-0 pages.
1021 	 */
1022 	if (unlikely(order)) {
1023 		bool compound = PageCompound(page);
1024 		int i;
1025 
1026 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027 
1028 		if (compound)
1029 			ClearPageDoubleMap(page);
1030 		for (i = 1; i < (1 << order); i++) {
1031 			if (compound)
1032 				bad += free_tail_pages_check(page, page + i);
1033 			if (unlikely(free_pages_check(page + i))) {
1034 				bad++;
1035 				continue;
1036 			}
1037 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 		}
1039 	}
1040 	if (PageMappingFlags(page))
1041 		page->mapping = NULL;
1042 	if (memcg_kmem_enabled() && PageKmemcg(page))
1043 		memcg_kmem_uncharge(page, order);
1044 	if (check_free)
1045 		bad += free_pages_check(page);
1046 	if (bad)
1047 		return false;
1048 
1049 	page_cpupid_reset_last(page);
1050 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 	reset_page_owner(page, order);
1052 
1053 	if (!PageHighMem(page)) {
1054 		debug_check_no_locks_freed(page_address(page),
1055 					   PAGE_SIZE << order);
1056 		debug_check_no_obj_freed(page_address(page),
1057 					   PAGE_SIZE << order);
1058 	}
1059 	arch_free_page(page, order);
1060 	kernel_poison_pages(page, 1 << order, 0);
1061 	kernel_map_pages(page, 1 << order, 0);
1062 	kasan_free_nondeferred_pages(page, order);
1063 
1064 	return true;
1065 }
1066 
1067 #ifdef CONFIG_DEBUG_VM
free_pcp_prepare(struct page * page)1068 static inline bool free_pcp_prepare(struct page *page)
1069 {
1070 	return free_pages_prepare(page, 0, true);
1071 }
1072 
bulkfree_pcp_prepare(struct page * page)1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1074 {
1075 	return false;
1076 }
1077 #else
free_pcp_prepare(struct page * page)1078 static bool free_pcp_prepare(struct page *page)
1079 {
1080 	return free_pages_prepare(page, 0, false);
1081 }
1082 
bulkfree_pcp_prepare(struct page * page)1083 static bool bulkfree_pcp_prepare(struct page *page)
1084 {
1085 	return free_pages_check(page);
1086 }
1087 #endif /* CONFIG_DEBUG_VM */
1088 
prefetch_buddy(struct page * page)1089 static inline void prefetch_buddy(struct page *page)
1090 {
1091 	unsigned long pfn = page_to_pfn(page);
1092 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1093 	struct page *buddy = page + (buddy_pfn - pfn);
1094 
1095 	prefetch(buddy);
1096 }
1097 
1098 /*
1099  * Frees a number of pages from the PCP lists
1100  * Assumes all pages on list are in same zone, and of same order.
1101  * count is the number of pages to free.
1102  *
1103  * If the zone was previously in an "all pages pinned" state then look to
1104  * see if this freeing clears that state.
1105  *
1106  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107  * pinned" detection logic.
1108  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 					struct per_cpu_pages *pcp)
1111 {
1112 	int migratetype = 0;
1113 	int batch_free = 0;
1114 	int prefetch_nr = 0;
1115 	bool isolated_pageblocks;
1116 	struct page *page, *tmp;
1117 	LIST_HEAD(head);
1118 
1119 	/*
1120 	 * Ensure proper count is passed which otherwise would stuck in the
1121 	 * below while (list_empty(list)) loop.
1122 	 */
1123 	count = min(pcp->count, count);
1124 	while (count) {
1125 		struct list_head *list;
1126 
1127 		/*
1128 		 * Remove pages from lists in a round-robin fashion. A
1129 		 * batch_free count is maintained that is incremented when an
1130 		 * empty list is encountered.  This is so more pages are freed
1131 		 * off fuller lists instead of spinning excessively around empty
1132 		 * lists
1133 		 */
1134 		do {
1135 			batch_free++;
1136 			if (++migratetype == MIGRATE_PCPTYPES)
1137 				migratetype = 0;
1138 			list = &pcp->lists[migratetype];
1139 		} while (list_empty(list));
1140 
1141 		/* This is the only non-empty list. Free them all. */
1142 		if (batch_free == MIGRATE_PCPTYPES)
1143 			batch_free = count;
1144 
1145 		do {
1146 			page = list_last_entry(list, struct page, lru);
1147 			/* must delete to avoid corrupting pcp list */
1148 			list_del(&page->lru);
1149 			pcp->count--;
1150 
1151 			if (bulkfree_pcp_prepare(page))
1152 				continue;
1153 
1154 			list_add_tail(&page->lru, &head);
1155 
1156 			/*
1157 			 * We are going to put the page back to the global
1158 			 * pool, prefetch its buddy to speed up later access
1159 			 * under zone->lock. It is believed the overhead of
1160 			 * an additional test and calculating buddy_pfn here
1161 			 * can be offset by reduced memory latency later. To
1162 			 * avoid excessive prefetching due to large count, only
1163 			 * prefetch buddy for the first pcp->batch nr of pages.
1164 			 */
1165 			if (prefetch_nr++ < pcp->batch)
1166 				prefetch_buddy(page);
1167 		} while (--count && --batch_free && !list_empty(list));
1168 	}
1169 
1170 	spin_lock(&zone->lock);
1171 	isolated_pageblocks = has_isolate_pageblock(zone);
1172 
1173 	/*
1174 	 * Use safe version since after __free_one_page(),
1175 	 * page->lru.next will not point to original list.
1176 	 */
1177 	list_for_each_entry_safe(page, tmp, &head, lru) {
1178 		int mt = get_pcppage_migratetype(page);
1179 		/* MIGRATE_ISOLATE page should not go to pcplists */
1180 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1181 		/* Pageblock could have been isolated meanwhile */
1182 		if (unlikely(isolated_pageblocks))
1183 			mt = get_pageblock_migratetype(page);
1184 
1185 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1186 		trace_mm_page_pcpu_drain(page, 0, mt);
1187 	}
1188 	spin_unlock(&zone->lock);
1189 }
1190 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1191 static void free_one_page(struct zone *zone,
1192 				struct page *page, unsigned long pfn,
1193 				unsigned int order,
1194 				int migratetype)
1195 {
1196 	spin_lock(&zone->lock);
1197 	if (unlikely(has_isolate_pageblock(zone) ||
1198 		is_migrate_isolate(migratetype))) {
1199 		migratetype = get_pfnblock_migratetype(page, pfn);
1200 	}
1201 	__free_one_page(page, pfn, zone, order, migratetype);
1202 	spin_unlock(&zone->lock);
1203 }
1204 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1205 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1206 				unsigned long zone, int nid)
1207 {
1208 	mm_zero_struct_page(page);
1209 	set_page_links(page, zone, nid, pfn);
1210 	init_page_count(page);
1211 	page_mapcount_reset(page);
1212 	page_cpupid_reset_last(page);
1213 
1214 	INIT_LIST_HEAD(&page->lru);
1215 #ifdef WANT_PAGE_VIRTUAL
1216 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1217 	if (!is_highmem_idx(zone))
1218 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1219 #endif
1220 }
1221 
1222 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1223 static void __meminit init_reserved_page(unsigned long pfn)
1224 {
1225 	pg_data_t *pgdat;
1226 	int nid, zid;
1227 
1228 	if (!early_page_uninitialised(pfn))
1229 		return;
1230 
1231 	nid = early_pfn_to_nid(pfn);
1232 	pgdat = NODE_DATA(nid);
1233 
1234 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1235 		struct zone *zone = &pgdat->node_zones[zid];
1236 
1237 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1238 			break;
1239 	}
1240 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1241 }
1242 #else
init_reserved_page(unsigned long pfn)1243 static inline void init_reserved_page(unsigned long pfn)
1244 {
1245 }
1246 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1247 
1248 /*
1249  * Initialised pages do not have PageReserved set. This function is
1250  * called for each range allocated by the bootmem allocator and
1251  * marks the pages PageReserved. The remaining valid pages are later
1252  * sent to the buddy page allocator.
1253  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1254 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1255 {
1256 	unsigned long start_pfn = PFN_DOWN(start);
1257 	unsigned long end_pfn = PFN_UP(end);
1258 
1259 	for (; start_pfn < end_pfn; start_pfn++) {
1260 		if (pfn_valid(start_pfn)) {
1261 			struct page *page = pfn_to_page(start_pfn);
1262 
1263 			init_reserved_page(start_pfn);
1264 
1265 			/* Avoid false-positive PageTail() */
1266 			INIT_LIST_HEAD(&page->lru);
1267 
1268 			SetPageReserved(page);
1269 		}
1270 	}
1271 }
1272 
__free_pages_ok(struct page * page,unsigned int order)1273 static void __free_pages_ok(struct page *page, unsigned int order)
1274 {
1275 	unsigned long flags;
1276 	int migratetype;
1277 	unsigned long pfn = page_to_pfn(page);
1278 
1279 	if (!free_pages_prepare(page, order, true))
1280 		return;
1281 
1282 	migratetype = get_pfnblock_migratetype(page, pfn);
1283 	local_irq_save(flags);
1284 	__count_vm_events(PGFREE, 1 << order);
1285 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1286 	local_irq_restore(flags);
1287 }
1288 
__free_pages_boot_core(struct page * page,unsigned int order)1289 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1290 {
1291 	unsigned int nr_pages = 1 << order;
1292 	struct page *p = page;
1293 	unsigned int loop;
1294 
1295 	prefetchw(p);
1296 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 		prefetchw(p + 1);
1298 		__ClearPageReserved(p);
1299 		set_page_count(p, 0);
1300 	}
1301 	__ClearPageReserved(p);
1302 	set_page_count(p, 0);
1303 
1304 	page_zone(page)->managed_pages += nr_pages;
1305 	set_page_refcounted(page);
1306 	__free_pages(page, order);
1307 }
1308 
1309 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1310 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1311 
1312 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1313 
early_pfn_to_nid(unsigned long pfn)1314 int __meminit early_pfn_to_nid(unsigned long pfn)
1315 {
1316 	static DEFINE_SPINLOCK(early_pfn_lock);
1317 	int nid;
1318 
1319 	spin_lock(&early_pfn_lock);
1320 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1321 	if (nid < 0)
1322 		nid = first_online_node;
1323 	spin_unlock(&early_pfn_lock);
1324 
1325 	return nid;
1326 }
1327 #endif
1328 
1329 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1330 static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1331 meminit_pfn_in_nid(unsigned long pfn, int node,
1332 		   struct mminit_pfnnid_cache *state)
1333 {
1334 	int nid;
1335 
1336 	nid = __early_pfn_to_nid(pfn, state);
1337 	if (nid >= 0 && nid != node)
1338 		return false;
1339 	return true;
1340 }
1341 
1342 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1343 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1344 {
1345 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1346 }
1347 
1348 #else
1349 
early_pfn_in_nid(unsigned long pfn,int node)1350 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1351 {
1352 	return true;
1353 }
1354 static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1355 meminit_pfn_in_nid(unsigned long pfn, int node,
1356 		   struct mminit_pfnnid_cache *state)
1357 {
1358 	return true;
1359 }
1360 #endif
1361 
1362 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1363 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1364 							unsigned int order)
1365 {
1366 	if (early_page_uninitialised(pfn))
1367 		return;
1368 	return __free_pages_boot_core(page, order);
1369 }
1370 
1371 /*
1372  * Check that the whole (or subset of) a pageblock given by the interval of
1373  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1374  * with the migration of free compaction scanner. The scanners then need to
1375  * use only pfn_valid_within() check for arches that allow holes within
1376  * pageblocks.
1377  *
1378  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1379  *
1380  * It's possible on some configurations to have a setup like node0 node1 node0
1381  * i.e. it's possible that all pages within a zones range of pages do not
1382  * belong to a single zone. We assume that a border between node0 and node1
1383  * can occur within a single pageblock, but not a node0 node1 node0
1384  * interleaving within a single pageblock. It is therefore sufficient to check
1385  * the first and last page of a pageblock and avoid checking each individual
1386  * page in a pageblock.
1387  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1388 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1389 				     unsigned long end_pfn, struct zone *zone)
1390 {
1391 	struct page *start_page;
1392 	struct page *end_page;
1393 
1394 	/* end_pfn is one past the range we are checking */
1395 	end_pfn--;
1396 
1397 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1398 		return NULL;
1399 
1400 	start_page = pfn_to_online_page(start_pfn);
1401 	if (!start_page)
1402 		return NULL;
1403 
1404 	if (page_zone(start_page) != zone)
1405 		return NULL;
1406 
1407 	end_page = pfn_to_page(end_pfn);
1408 
1409 	/* This gives a shorter code than deriving page_zone(end_page) */
1410 	if (page_zone_id(start_page) != page_zone_id(end_page))
1411 		return NULL;
1412 
1413 	return start_page;
1414 }
1415 
set_zone_contiguous(struct zone * zone)1416 void set_zone_contiguous(struct zone *zone)
1417 {
1418 	unsigned long block_start_pfn = zone->zone_start_pfn;
1419 	unsigned long block_end_pfn;
1420 
1421 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1422 	for (; block_start_pfn < zone_end_pfn(zone);
1423 			block_start_pfn = block_end_pfn,
1424 			 block_end_pfn += pageblock_nr_pages) {
1425 
1426 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1427 
1428 		if (!__pageblock_pfn_to_page(block_start_pfn,
1429 					     block_end_pfn, zone))
1430 			return;
1431 		cond_resched();
1432 	}
1433 
1434 	/* We confirm that there is no hole */
1435 	zone->contiguous = true;
1436 }
1437 
clear_zone_contiguous(struct zone * zone)1438 void clear_zone_contiguous(struct zone *zone)
1439 {
1440 	zone->contiguous = false;
1441 }
1442 
1443 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1444 static void __init deferred_free_range(unsigned long pfn,
1445 				       unsigned long nr_pages)
1446 {
1447 	struct page *page;
1448 	unsigned long i;
1449 
1450 	if (!nr_pages)
1451 		return;
1452 
1453 	page = pfn_to_page(pfn);
1454 
1455 	/* Free a large naturally-aligned chunk if possible */
1456 	if (nr_pages == pageblock_nr_pages &&
1457 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1458 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1459 		__free_pages_boot_core(page, pageblock_order);
1460 		return;
1461 	}
1462 
1463 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1464 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1465 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1466 		__free_pages_boot_core(page, 0);
1467 	}
1468 }
1469 
1470 /* Completion tracking for deferred_init_memmap() threads */
1471 static atomic_t pgdat_init_n_undone __initdata;
1472 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1473 
pgdat_init_report_one_done(void)1474 static inline void __init pgdat_init_report_one_done(void)
1475 {
1476 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1477 		complete(&pgdat_init_all_done_comp);
1478 }
1479 
1480 /*
1481  * Returns true if page needs to be initialized or freed to buddy allocator.
1482  *
1483  * First we check if pfn is valid on architectures where it is possible to have
1484  * holes within pageblock_nr_pages. On systems where it is not possible, this
1485  * function is optimized out.
1486  *
1487  * Then, we check if a current large page is valid by only checking the validity
1488  * of the head pfn.
1489  *
1490  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1491  * within a node: a pfn is between start and end of a node, but does not belong
1492  * to this memory node.
1493  */
1494 static inline bool __init
deferred_pfn_valid(int nid,unsigned long pfn,struct mminit_pfnnid_cache * nid_init_state)1495 deferred_pfn_valid(int nid, unsigned long pfn,
1496 		   struct mminit_pfnnid_cache *nid_init_state)
1497 {
1498 	if (!pfn_valid_within(pfn))
1499 		return false;
1500 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1501 		return false;
1502 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1503 		return false;
1504 	return true;
1505 }
1506 
1507 /*
1508  * Free pages to buddy allocator. Try to free aligned pages in
1509  * pageblock_nr_pages sizes.
1510  */
deferred_free_pages(int nid,int zid,unsigned long pfn,unsigned long end_pfn)1511 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1512 				       unsigned long end_pfn)
1513 {
1514 	struct mminit_pfnnid_cache nid_init_state = { };
1515 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1516 	unsigned long nr_free = 0;
1517 
1518 	for (; pfn < end_pfn; pfn++) {
1519 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1520 			deferred_free_range(pfn - nr_free, nr_free);
1521 			nr_free = 0;
1522 		} else if (!(pfn & nr_pgmask)) {
1523 			deferred_free_range(pfn - nr_free, nr_free);
1524 			nr_free = 1;
1525 			touch_nmi_watchdog();
1526 		} else {
1527 			nr_free++;
1528 		}
1529 	}
1530 	/* Free the last block of pages to allocator */
1531 	deferred_free_range(pfn - nr_free, nr_free);
1532 }
1533 
1534 /*
1535  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1536  * by performing it only once every pageblock_nr_pages.
1537  * Return number of pages initialized.
1538  */
deferred_init_pages(int nid,int zid,unsigned long pfn,unsigned long end_pfn)1539 static unsigned long  __init deferred_init_pages(int nid, int zid,
1540 						 unsigned long pfn,
1541 						 unsigned long end_pfn)
1542 {
1543 	struct mminit_pfnnid_cache nid_init_state = { };
1544 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1545 	unsigned long nr_pages = 0;
1546 	struct page *page = NULL;
1547 
1548 	for (; pfn < end_pfn; pfn++) {
1549 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1550 			page = NULL;
1551 			continue;
1552 		} else if (!page || !(pfn & nr_pgmask)) {
1553 			page = pfn_to_page(pfn);
1554 			touch_nmi_watchdog();
1555 		} else {
1556 			page++;
1557 		}
1558 		__init_single_page(page, pfn, zid, nid);
1559 		nr_pages++;
1560 	}
1561 	return (nr_pages);
1562 }
1563 
1564 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1565 static int __init deferred_init_memmap(void *data)
1566 {
1567 	pg_data_t *pgdat = data;
1568 	int nid = pgdat->node_id;
1569 	unsigned long start = jiffies;
1570 	unsigned long nr_pages = 0;
1571 	unsigned long spfn, epfn, first_init_pfn, flags;
1572 	phys_addr_t spa, epa;
1573 	int zid;
1574 	struct zone *zone;
1575 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1576 	u64 i;
1577 
1578 	/* Bind memory initialisation thread to a local node if possible */
1579 	if (!cpumask_empty(cpumask))
1580 		set_cpus_allowed_ptr(current, cpumask);
1581 
1582 	pgdat_resize_lock(pgdat, &flags);
1583 	first_init_pfn = pgdat->first_deferred_pfn;
1584 	if (first_init_pfn == ULONG_MAX) {
1585 		pgdat_resize_unlock(pgdat, &flags);
1586 		pgdat_init_report_one_done();
1587 		return 0;
1588 	}
1589 
1590 	/* Sanity check boundaries */
1591 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1592 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1593 	pgdat->first_deferred_pfn = ULONG_MAX;
1594 
1595 	/*
1596 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1597 	 * interrupt thread must allocate this early in boot, zone must be
1598 	 * pre-grown prior to start of deferred page initialization.
1599 	 */
1600 	pgdat_resize_unlock(pgdat, &flags);
1601 
1602 	/* Only the highest zone is deferred so find it */
1603 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1604 		zone = pgdat->node_zones + zid;
1605 		if (first_init_pfn < zone_end_pfn(zone))
1606 			break;
1607 	}
1608 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1609 
1610 	/*
1611 	 * Initialize and free pages. We do it in two loops: first we initialize
1612 	 * struct page, than free to buddy allocator, because while we are
1613 	 * freeing pages we can access pages that are ahead (computing buddy
1614 	 * page in __free_one_page()).
1615 	 */
1616 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1617 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1618 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1619 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1620 	}
1621 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1622 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1623 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1624 		deferred_free_pages(nid, zid, spfn, epfn);
1625 	}
1626 
1627 	/* Sanity check that the next zone really is unpopulated */
1628 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1629 
1630 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1631 					jiffies_to_msecs(jiffies - start));
1632 
1633 	pgdat_init_report_one_done();
1634 	return 0;
1635 }
1636 
1637 /*
1638  * If this zone has deferred pages, try to grow it by initializing enough
1639  * deferred pages to satisfy the allocation specified by order, rounded up to
1640  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1641  * of SECTION_SIZE bytes by initializing struct pages in increments of
1642  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1643  *
1644  * Return true when zone was grown, otherwise return false. We return true even
1645  * when we grow less than requested, to let the caller decide if there are
1646  * enough pages to satisfy the allocation.
1647  *
1648  * Note: We use noinline because this function is needed only during boot, and
1649  * it is called from a __ref function _deferred_grow_zone. This way we are
1650  * making sure that it is not inlined into permanent text section.
1651  */
1652 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)1653 deferred_grow_zone(struct zone *zone, unsigned int order)
1654 {
1655 	int zid = zone_idx(zone);
1656 	int nid = zone_to_nid(zone);
1657 	pg_data_t *pgdat = NODE_DATA(nid);
1658 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1659 	unsigned long nr_pages = 0;
1660 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1661 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1662 	phys_addr_t spa, epa;
1663 	u64 i;
1664 
1665 	/* Only the last zone may have deferred pages */
1666 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1667 		return false;
1668 
1669 	pgdat_resize_lock(pgdat, &flags);
1670 
1671 	/*
1672 	 * If someone grew this zone while we were waiting for spinlock, return
1673 	 * true, as there might be enough pages already.
1674 	 */
1675 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1676 		pgdat_resize_unlock(pgdat, &flags);
1677 		return true;
1678 	}
1679 
1680 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1681 
1682 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1683 		pgdat_resize_unlock(pgdat, &flags);
1684 		return false;
1685 	}
1686 
1687 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1688 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1689 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1690 
1691 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1692 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1693 			first_deferred_pfn = min(t, epfn);
1694 			nr_pages += deferred_init_pages(nid, zid, spfn,
1695 							first_deferred_pfn);
1696 			spfn = first_deferred_pfn;
1697 		}
1698 
1699 		if (nr_pages >= nr_pages_needed)
1700 			break;
1701 	}
1702 
1703 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1704 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1705 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1706 		deferred_free_pages(nid, zid, spfn, epfn);
1707 
1708 		if (first_deferred_pfn == epfn)
1709 			break;
1710 	}
1711 	pgdat->first_deferred_pfn = first_deferred_pfn;
1712 	pgdat_resize_unlock(pgdat, &flags);
1713 
1714 	return nr_pages > 0;
1715 }
1716 
1717 /*
1718  * deferred_grow_zone() is __init, but it is called from
1719  * get_page_from_freelist() during early boot until deferred_pages permanently
1720  * disables this call. This is why we have refdata wrapper to avoid warning,
1721  * and to ensure that the function body gets unloaded.
1722  */
1723 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)1724 _deferred_grow_zone(struct zone *zone, unsigned int order)
1725 {
1726 	return deferred_grow_zone(zone, order);
1727 }
1728 
1729 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1730 
page_alloc_init_late(void)1731 void __init page_alloc_init_late(void)
1732 {
1733 	struct zone *zone;
1734 
1735 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1736 	int nid;
1737 
1738 	/* There will be num_node_state(N_MEMORY) threads */
1739 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1740 	for_each_node_state(nid, N_MEMORY) {
1741 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1742 	}
1743 
1744 	/* Block until all are initialised */
1745 	wait_for_completion(&pgdat_init_all_done_comp);
1746 
1747 	/*
1748 	 * The number of managed pages has changed due to the initialisation
1749 	 * so the pcpu batch and high limits needs to be updated or the limits
1750 	 * will be artificially small.
1751 	 */
1752 	for_each_populated_zone(zone)
1753 		zone_pcp_update(zone);
1754 
1755 	/*
1756 	 * We initialized the rest of the deferred pages.  Permanently disable
1757 	 * on-demand struct page initialization.
1758 	 */
1759 	static_branch_disable(&deferred_pages);
1760 
1761 	/* Reinit limits that are based on free pages after the kernel is up */
1762 	files_maxfiles_init();
1763 #endif
1764 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1765 	/* Discard memblock private memory */
1766 	memblock_discard();
1767 #endif
1768 
1769 	for_each_populated_zone(zone)
1770 		set_zone_contiguous(zone);
1771 }
1772 
1773 #ifdef CONFIG_CMA
1774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1775 void __init init_cma_reserved_pageblock(struct page *page)
1776 {
1777 	unsigned i = pageblock_nr_pages;
1778 	struct page *p = page;
1779 
1780 	do {
1781 		__ClearPageReserved(p);
1782 		set_page_count(p, 0);
1783 	} while (++p, --i);
1784 
1785 	set_pageblock_migratetype(page, MIGRATE_CMA);
1786 
1787 	if (pageblock_order >= MAX_ORDER) {
1788 		i = pageblock_nr_pages;
1789 		p = page;
1790 		do {
1791 			set_page_refcounted(p);
1792 			__free_pages(p, MAX_ORDER - 1);
1793 			p += MAX_ORDER_NR_PAGES;
1794 		} while (i -= MAX_ORDER_NR_PAGES);
1795 	} else {
1796 		set_page_refcounted(page);
1797 		__free_pages(page, pageblock_order);
1798 	}
1799 
1800 	adjust_managed_page_count(page, pageblock_nr_pages);
1801 }
1802 #endif
1803 
1804 /*
1805  * The order of subdivision here is critical for the IO subsystem.
1806  * Please do not alter this order without good reasons and regression
1807  * testing. Specifically, as large blocks of memory are subdivided,
1808  * the order in which smaller blocks are delivered depends on the order
1809  * they're subdivided in this function. This is the primary factor
1810  * influencing the order in which pages are delivered to the IO
1811  * subsystem according to empirical testing, and this is also justified
1812  * by considering the behavior of a buddy system containing a single
1813  * large block of memory acted on by a series of small allocations.
1814  * This behavior is a critical factor in sglist merging's success.
1815  *
1816  * -- nyc
1817  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1818 static inline void expand(struct zone *zone, struct page *page,
1819 	int low, int high, struct free_area *area,
1820 	int migratetype)
1821 {
1822 	unsigned long size = 1 << high;
1823 
1824 	while (high > low) {
1825 		area--;
1826 		high--;
1827 		size >>= 1;
1828 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1829 
1830 		/*
1831 		 * Mark as guard pages (or page), that will allow to
1832 		 * merge back to allocator when buddy will be freed.
1833 		 * Corresponding page table entries will not be touched,
1834 		 * pages will stay not present in virtual address space
1835 		 */
1836 		if (set_page_guard(zone, &page[size], high, migratetype))
1837 			continue;
1838 
1839 		list_add(&page[size].lru, &area->free_list[migratetype]);
1840 		area->nr_free++;
1841 		set_page_order(&page[size], high);
1842 	}
1843 }
1844 
check_new_page_bad(struct page * page)1845 static void check_new_page_bad(struct page *page)
1846 {
1847 	const char *bad_reason = NULL;
1848 	unsigned long bad_flags = 0;
1849 
1850 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1851 		bad_reason = "nonzero mapcount";
1852 	if (unlikely(page->mapping != NULL))
1853 		bad_reason = "non-NULL mapping";
1854 	if (unlikely(page_ref_count(page) != 0))
1855 		bad_reason = "nonzero _count";
1856 	if (unlikely(page->flags & __PG_HWPOISON)) {
1857 		bad_reason = "HWPoisoned (hardware-corrupted)";
1858 		bad_flags = __PG_HWPOISON;
1859 		/* Don't complain about hwpoisoned pages */
1860 		page_mapcount_reset(page); /* remove PageBuddy */
1861 		return;
1862 	}
1863 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1864 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1865 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1866 	}
1867 #ifdef CONFIG_MEMCG
1868 	if (unlikely(page->mem_cgroup))
1869 		bad_reason = "page still charged to cgroup";
1870 #endif
1871 	bad_page(page, bad_reason, bad_flags);
1872 }
1873 
1874 /*
1875  * This page is about to be returned from the page allocator
1876  */
check_new_page(struct page * page)1877 static inline int check_new_page(struct page *page)
1878 {
1879 	if (likely(page_expected_state(page,
1880 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1881 		return 0;
1882 
1883 	check_new_page_bad(page);
1884 	return 1;
1885 }
1886 
free_pages_prezeroed(void)1887 static inline bool free_pages_prezeroed(void)
1888 {
1889 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1890 		page_poisoning_enabled();
1891 }
1892 
1893 #ifdef CONFIG_DEBUG_VM
check_pcp_refill(struct page * page)1894 static bool check_pcp_refill(struct page *page)
1895 {
1896 	return false;
1897 }
1898 
check_new_pcp(struct page * page)1899 static bool check_new_pcp(struct page *page)
1900 {
1901 	return check_new_page(page);
1902 }
1903 #else
check_pcp_refill(struct page * page)1904 static bool check_pcp_refill(struct page *page)
1905 {
1906 	return check_new_page(page);
1907 }
check_new_pcp(struct page * page)1908 static bool check_new_pcp(struct page *page)
1909 {
1910 	return false;
1911 }
1912 #endif /* CONFIG_DEBUG_VM */
1913 
check_new_pages(struct page * page,unsigned int order)1914 static bool check_new_pages(struct page *page, unsigned int order)
1915 {
1916 	int i;
1917 	for (i = 0; i < (1 << order); i++) {
1918 		struct page *p = page + i;
1919 
1920 		if (unlikely(check_new_page(p)))
1921 			return true;
1922 	}
1923 
1924 	return false;
1925 }
1926 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1927 inline void post_alloc_hook(struct page *page, unsigned int order,
1928 				gfp_t gfp_flags)
1929 {
1930 	set_page_private(page, 0);
1931 	set_page_refcounted(page);
1932 
1933 	arch_alloc_page(page, order);
1934 	kernel_map_pages(page, 1 << order, 1);
1935 	kasan_alloc_pages(page, order);
1936 	kernel_poison_pages(page, 1 << order, 1);
1937 	set_page_owner(page, order, gfp_flags);
1938 }
1939 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1940 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1941 							unsigned int alloc_flags)
1942 {
1943 	int i;
1944 
1945 	post_alloc_hook(page, order, gfp_flags);
1946 
1947 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1948 		for (i = 0; i < (1 << order); i++)
1949 			clear_highpage(page + i);
1950 
1951 	if (order && (gfp_flags & __GFP_COMP))
1952 		prep_compound_page(page, order);
1953 
1954 	/*
1955 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1956 	 * allocate the page. The expectation is that the caller is taking
1957 	 * steps that will free more memory. The caller should avoid the page
1958 	 * being used for !PFMEMALLOC purposes.
1959 	 */
1960 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1961 		set_page_pfmemalloc(page);
1962 	else
1963 		clear_page_pfmemalloc(page);
1964 }
1965 
1966 /*
1967  * Go through the free lists for the given migratetype and remove
1968  * the smallest available page from the freelists
1969  */
1970 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1971 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1972 						int migratetype)
1973 {
1974 	unsigned int current_order;
1975 	struct free_area *area;
1976 	struct page *page;
1977 
1978 	/* Find a page of the appropriate size in the preferred list */
1979 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1980 		area = &(zone->free_area[current_order]);
1981 		page = list_first_entry_or_null(&area->free_list[migratetype],
1982 							struct page, lru);
1983 		if (!page)
1984 			continue;
1985 		list_del(&page->lru);
1986 		rmv_page_order(page);
1987 		area->nr_free--;
1988 		expand(zone, page, order, current_order, area, migratetype);
1989 		set_pcppage_migratetype(page, migratetype);
1990 		return page;
1991 	}
1992 
1993 	return NULL;
1994 }
1995 
1996 
1997 /*
1998  * This array describes the order lists are fallen back to when
1999  * the free lists for the desirable migrate type are depleted
2000  */
2001 static int fallbacks[MIGRATE_TYPES][4] = {
2002 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2003 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2004 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2005 #ifdef CONFIG_CMA
2006 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2007 #endif
2008 #ifdef CONFIG_MEMORY_ISOLATION
2009 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2010 #endif
2011 };
2012 
2013 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2014 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2015 					unsigned int order)
2016 {
2017 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2018 }
2019 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2020 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2021 					unsigned int order) { return NULL; }
2022 #endif
2023 
2024 /*
2025  * Move the free pages in a range to the free lists of the requested type.
2026  * Note that start_page and end_pages are not aligned on a pageblock
2027  * boundary. If alignment is required, use move_freepages_block()
2028  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2029 static int move_freepages(struct zone *zone,
2030 			  struct page *start_page, struct page *end_page,
2031 			  int migratetype, int *num_movable)
2032 {
2033 	struct page *page;
2034 	unsigned int order;
2035 	int pages_moved = 0;
2036 
2037 #ifndef CONFIG_HOLES_IN_ZONE
2038 	/*
2039 	 * page_zone is not safe to call in this context when
2040 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2041 	 * anyway as we check zone boundaries in move_freepages_block().
2042 	 * Remove at a later date when no bug reports exist related to
2043 	 * grouping pages by mobility
2044 	 */
2045 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2046 	          pfn_valid(page_to_pfn(end_page)) &&
2047 	          page_zone(start_page) != page_zone(end_page));
2048 #endif
2049 
2050 	if (num_movable)
2051 		*num_movable = 0;
2052 
2053 	for (page = start_page; page <= end_page;) {
2054 		if (!pfn_valid_within(page_to_pfn(page))) {
2055 			page++;
2056 			continue;
2057 		}
2058 
2059 		/* Make sure we are not inadvertently changing nodes */
2060 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2061 
2062 		if (!PageBuddy(page)) {
2063 			/*
2064 			 * We assume that pages that could be isolated for
2065 			 * migration are movable. But we don't actually try
2066 			 * isolating, as that would be expensive.
2067 			 */
2068 			if (num_movable &&
2069 					(PageLRU(page) || __PageMovable(page)))
2070 				(*num_movable)++;
2071 
2072 			page++;
2073 			continue;
2074 		}
2075 
2076 		order = page_order(page);
2077 		list_move(&page->lru,
2078 			  &zone->free_area[order].free_list[migratetype]);
2079 		page += 1 << order;
2080 		pages_moved += 1 << order;
2081 	}
2082 
2083 	return pages_moved;
2084 }
2085 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2086 int move_freepages_block(struct zone *zone, struct page *page,
2087 				int migratetype, int *num_movable)
2088 {
2089 	unsigned long start_pfn, end_pfn;
2090 	struct page *start_page, *end_page;
2091 
2092 	start_pfn = page_to_pfn(page);
2093 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2094 	start_page = pfn_to_page(start_pfn);
2095 	end_page = start_page + pageblock_nr_pages - 1;
2096 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2097 
2098 	/* Do not cross zone boundaries */
2099 	if (!zone_spans_pfn(zone, start_pfn))
2100 		start_page = page;
2101 	if (!zone_spans_pfn(zone, end_pfn))
2102 		return 0;
2103 
2104 	return move_freepages(zone, start_page, end_page, migratetype,
2105 								num_movable);
2106 }
2107 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2108 static void change_pageblock_range(struct page *pageblock_page,
2109 					int start_order, int migratetype)
2110 {
2111 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2112 
2113 	while (nr_pageblocks--) {
2114 		set_pageblock_migratetype(pageblock_page, migratetype);
2115 		pageblock_page += pageblock_nr_pages;
2116 	}
2117 }
2118 
2119 /*
2120  * When we are falling back to another migratetype during allocation, try to
2121  * steal extra free pages from the same pageblocks to satisfy further
2122  * allocations, instead of polluting multiple pageblocks.
2123  *
2124  * If we are stealing a relatively large buddy page, it is likely there will
2125  * be more free pages in the pageblock, so try to steal them all. For
2126  * reclaimable and unmovable allocations, we steal regardless of page size,
2127  * as fragmentation caused by those allocations polluting movable pageblocks
2128  * is worse than movable allocations stealing from unmovable and reclaimable
2129  * pageblocks.
2130  */
can_steal_fallback(unsigned int order,int start_mt)2131 static bool can_steal_fallback(unsigned int order, int start_mt)
2132 {
2133 	/*
2134 	 * Leaving this order check is intended, although there is
2135 	 * relaxed order check in next check. The reason is that
2136 	 * we can actually steal whole pageblock if this condition met,
2137 	 * but, below check doesn't guarantee it and that is just heuristic
2138 	 * so could be changed anytime.
2139 	 */
2140 	if (order >= pageblock_order)
2141 		return true;
2142 
2143 	if (order >= pageblock_order / 2 ||
2144 		start_mt == MIGRATE_RECLAIMABLE ||
2145 		start_mt == MIGRATE_UNMOVABLE ||
2146 		page_group_by_mobility_disabled)
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 /*
2153  * This function implements actual steal behaviour. If order is large enough,
2154  * we can steal whole pageblock. If not, we first move freepages in this
2155  * pageblock to our migratetype and determine how many already-allocated pages
2156  * are there in the pageblock with a compatible migratetype. If at least half
2157  * of pages are free or compatible, we can change migratetype of the pageblock
2158  * itself, so pages freed in the future will be put on the correct free list.
2159  */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type,bool whole_block)2160 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2161 					int start_type, bool whole_block)
2162 {
2163 	unsigned int current_order = page_order(page);
2164 	struct free_area *area;
2165 	int free_pages, movable_pages, alike_pages;
2166 	int old_block_type;
2167 
2168 	old_block_type = get_pageblock_migratetype(page);
2169 
2170 	/*
2171 	 * This can happen due to races and we want to prevent broken
2172 	 * highatomic accounting.
2173 	 */
2174 	if (is_migrate_highatomic(old_block_type))
2175 		goto single_page;
2176 
2177 	/* Take ownership for orders >= pageblock_order */
2178 	if (current_order >= pageblock_order) {
2179 		change_pageblock_range(page, current_order, start_type);
2180 		goto single_page;
2181 	}
2182 
2183 	/* We are not allowed to try stealing from the whole block */
2184 	if (!whole_block)
2185 		goto single_page;
2186 
2187 	free_pages = move_freepages_block(zone, page, start_type,
2188 						&movable_pages);
2189 	/*
2190 	 * Determine how many pages are compatible with our allocation.
2191 	 * For movable allocation, it's the number of movable pages which
2192 	 * we just obtained. For other types it's a bit more tricky.
2193 	 */
2194 	if (start_type == MIGRATE_MOVABLE) {
2195 		alike_pages = movable_pages;
2196 	} else {
2197 		/*
2198 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2199 		 * to MOVABLE pageblock, consider all non-movable pages as
2200 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2201 		 * vice versa, be conservative since we can't distinguish the
2202 		 * exact migratetype of non-movable pages.
2203 		 */
2204 		if (old_block_type == MIGRATE_MOVABLE)
2205 			alike_pages = pageblock_nr_pages
2206 						- (free_pages + movable_pages);
2207 		else
2208 			alike_pages = 0;
2209 	}
2210 
2211 	/* moving whole block can fail due to zone boundary conditions */
2212 	if (!free_pages)
2213 		goto single_page;
2214 
2215 	/*
2216 	 * If a sufficient number of pages in the block are either free or of
2217 	 * comparable migratability as our allocation, claim the whole block.
2218 	 */
2219 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2220 			page_group_by_mobility_disabled)
2221 		set_pageblock_migratetype(page, start_type);
2222 
2223 	return;
2224 
2225 single_page:
2226 	area = &zone->free_area[current_order];
2227 	list_move(&page->lru, &area->free_list[start_type]);
2228 }
2229 
2230 /*
2231  * Check whether there is a suitable fallback freepage with requested order.
2232  * If only_stealable is true, this function returns fallback_mt only if
2233  * we can steal other freepages all together. This would help to reduce
2234  * fragmentation due to mixed migratetype pages in one pageblock.
2235  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2236 int find_suitable_fallback(struct free_area *area, unsigned int order,
2237 			int migratetype, bool only_stealable, bool *can_steal)
2238 {
2239 	int i;
2240 	int fallback_mt;
2241 
2242 	if (area->nr_free == 0)
2243 		return -1;
2244 
2245 	*can_steal = false;
2246 	for (i = 0;; i++) {
2247 		fallback_mt = fallbacks[migratetype][i];
2248 		if (fallback_mt == MIGRATE_TYPES)
2249 			break;
2250 
2251 		if (list_empty(&area->free_list[fallback_mt]))
2252 			continue;
2253 
2254 		if (can_steal_fallback(order, migratetype))
2255 			*can_steal = true;
2256 
2257 		if (!only_stealable)
2258 			return fallback_mt;
2259 
2260 		if (*can_steal)
2261 			return fallback_mt;
2262 	}
2263 
2264 	return -1;
2265 }
2266 
2267 /*
2268  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2269  * there are no empty page blocks that contain a page with a suitable order
2270  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2271 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2272 				unsigned int alloc_order)
2273 {
2274 	int mt;
2275 	unsigned long max_managed, flags;
2276 
2277 	/*
2278 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2279 	 * Check is race-prone but harmless.
2280 	 */
2281 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2282 	if (zone->nr_reserved_highatomic >= max_managed)
2283 		return;
2284 
2285 	spin_lock_irqsave(&zone->lock, flags);
2286 
2287 	/* Recheck the nr_reserved_highatomic limit under the lock */
2288 	if (zone->nr_reserved_highatomic >= max_managed)
2289 		goto out_unlock;
2290 
2291 	/* Yoink! */
2292 	mt = get_pageblock_migratetype(page);
2293 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2294 	    && !is_migrate_cma(mt)) {
2295 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2296 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2297 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2298 	}
2299 
2300 out_unlock:
2301 	spin_unlock_irqrestore(&zone->lock, flags);
2302 }
2303 
2304 /*
2305  * Used when an allocation is about to fail under memory pressure. This
2306  * potentially hurts the reliability of high-order allocations when under
2307  * intense memory pressure but failed atomic allocations should be easier
2308  * to recover from than an OOM.
2309  *
2310  * If @force is true, try to unreserve a pageblock even though highatomic
2311  * pageblock is exhausted.
2312  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2313 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2314 						bool force)
2315 {
2316 	struct zonelist *zonelist = ac->zonelist;
2317 	unsigned long flags;
2318 	struct zoneref *z;
2319 	struct zone *zone;
2320 	struct page *page;
2321 	int order;
2322 	bool ret;
2323 
2324 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2325 								ac->nodemask) {
2326 		/*
2327 		 * Preserve at least one pageblock unless memory pressure
2328 		 * is really high.
2329 		 */
2330 		if (!force && zone->nr_reserved_highatomic <=
2331 					pageblock_nr_pages)
2332 			continue;
2333 
2334 		spin_lock_irqsave(&zone->lock, flags);
2335 		for (order = 0; order < MAX_ORDER; order++) {
2336 			struct free_area *area = &(zone->free_area[order]);
2337 
2338 			page = list_first_entry_or_null(
2339 					&area->free_list[MIGRATE_HIGHATOMIC],
2340 					struct page, lru);
2341 			if (!page)
2342 				continue;
2343 
2344 			/*
2345 			 * In page freeing path, migratetype change is racy so
2346 			 * we can counter several free pages in a pageblock
2347 			 * in this loop althoug we changed the pageblock type
2348 			 * from highatomic to ac->migratetype. So we should
2349 			 * adjust the count once.
2350 			 */
2351 			if (is_migrate_highatomic_page(page)) {
2352 				/*
2353 				 * It should never happen but changes to
2354 				 * locking could inadvertently allow a per-cpu
2355 				 * drain to add pages to MIGRATE_HIGHATOMIC
2356 				 * while unreserving so be safe and watch for
2357 				 * underflows.
2358 				 */
2359 				zone->nr_reserved_highatomic -= min(
2360 						pageblock_nr_pages,
2361 						zone->nr_reserved_highatomic);
2362 			}
2363 
2364 			/*
2365 			 * Convert to ac->migratetype and avoid the normal
2366 			 * pageblock stealing heuristics. Minimally, the caller
2367 			 * is doing the work and needs the pages. More
2368 			 * importantly, if the block was always converted to
2369 			 * MIGRATE_UNMOVABLE or another type then the number
2370 			 * of pageblocks that cannot be completely freed
2371 			 * may increase.
2372 			 */
2373 			set_pageblock_migratetype(page, ac->migratetype);
2374 			ret = move_freepages_block(zone, page, ac->migratetype,
2375 									NULL);
2376 			if (ret) {
2377 				spin_unlock_irqrestore(&zone->lock, flags);
2378 				return ret;
2379 			}
2380 		}
2381 		spin_unlock_irqrestore(&zone->lock, flags);
2382 	}
2383 
2384 	return false;
2385 }
2386 
2387 /*
2388  * Try finding a free buddy page on the fallback list and put it on the free
2389  * list of requested migratetype, possibly along with other pages from the same
2390  * block, depending on fragmentation avoidance heuristics. Returns true if
2391  * fallback was found so that __rmqueue_smallest() can grab it.
2392  *
2393  * The use of signed ints for order and current_order is a deliberate
2394  * deviation from the rest of this file, to make the for loop
2395  * condition simpler.
2396  */
2397 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype)2398 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2399 {
2400 	struct free_area *area;
2401 	int current_order;
2402 	struct page *page;
2403 	int fallback_mt;
2404 	bool can_steal;
2405 
2406 	/*
2407 	 * Find the largest available free page in the other list. This roughly
2408 	 * approximates finding the pageblock with the most free pages, which
2409 	 * would be too costly to do exactly.
2410 	 */
2411 	for (current_order = MAX_ORDER - 1; current_order >= order;
2412 				--current_order) {
2413 		area = &(zone->free_area[current_order]);
2414 		fallback_mt = find_suitable_fallback(area, current_order,
2415 				start_migratetype, false, &can_steal);
2416 		if (fallback_mt == -1)
2417 			continue;
2418 
2419 		/*
2420 		 * We cannot steal all free pages from the pageblock and the
2421 		 * requested migratetype is movable. In that case it's better to
2422 		 * steal and split the smallest available page instead of the
2423 		 * largest available page, because even if the next movable
2424 		 * allocation falls back into a different pageblock than this
2425 		 * one, it won't cause permanent fragmentation.
2426 		 */
2427 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2428 					&& current_order > order)
2429 			goto find_smallest;
2430 
2431 		goto do_steal;
2432 	}
2433 
2434 	return false;
2435 
2436 find_smallest:
2437 	for (current_order = order; current_order < MAX_ORDER;
2438 							current_order++) {
2439 		area = &(zone->free_area[current_order]);
2440 		fallback_mt = find_suitable_fallback(area, current_order,
2441 				start_migratetype, false, &can_steal);
2442 		if (fallback_mt != -1)
2443 			break;
2444 	}
2445 
2446 	/*
2447 	 * This should not happen - we already found a suitable fallback
2448 	 * when looking for the largest page.
2449 	 */
2450 	VM_BUG_ON(current_order == MAX_ORDER);
2451 
2452 do_steal:
2453 	page = list_first_entry(&area->free_list[fallback_mt],
2454 							struct page, lru);
2455 
2456 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2457 
2458 	trace_mm_page_alloc_extfrag(page, order, current_order,
2459 		start_migratetype, fallback_mt);
2460 
2461 	return true;
2462 
2463 }
2464 
2465 /*
2466  * Do the hard work of removing an element from the buddy allocator.
2467  * Call me with the zone->lock already held.
2468  */
2469 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype)2470 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2471 {
2472 	struct page *page;
2473 
2474 retry:
2475 	page = __rmqueue_smallest(zone, order, migratetype);
2476 	if (unlikely(!page)) {
2477 		if (migratetype == MIGRATE_MOVABLE)
2478 			page = __rmqueue_cma_fallback(zone, order);
2479 
2480 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2481 			goto retry;
2482 	}
2483 
2484 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2485 	return page;
2486 }
2487 
2488 /*
2489  * Obtain a specified number of elements from the buddy allocator, all under
2490  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2491  * Returns the number of new pages which were placed at *list.
2492  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype)2493 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2494 			unsigned long count, struct list_head *list,
2495 			int migratetype)
2496 {
2497 	int i, alloced = 0;
2498 
2499 	spin_lock(&zone->lock);
2500 	for (i = 0; i < count; ++i) {
2501 		struct page *page = __rmqueue(zone, order, migratetype);
2502 		if (unlikely(page == NULL))
2503 			break;
2504 
2505 		if (unlikely(check_pcp_refill(page)))
2506 			continue;
2507 
2508 		/*
2509 		 * Split buddy pages returned by expand() are received here in
2510 		 * physical page order. The page is added to the tail of
2511 		 * caller's list. From the callers perspective, the linked list
2512 		 * is ordered by page number under some conditions. This is
2513 		 * useful for IO devices that can forward direction from the
2514 		 * head, thus also in the physical page order. This is useful
2515 		 * for IO devices that can merge IO requests if the physical
2516 		 * pages are ordered properly.
2517 		 */
2518 		list_add_tail(&page->lru, list);
2519 		alloced++;
2520 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2521 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2522 					      -(1 << order));
2523 	}
2524 
2525 	/*
2526 	 * i pages were removed from the buddy list even if some leak due
2527 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2528 	 * on i. Do not confuse with 'alloced' which is the number of
2529 	 * pages added to the pcp list.
2530 	 */
2531 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2532 	spin_unlock(&zone->lock);
2533 	return alloced;
2534 }
2535 
2536 #ifdef CONFIG_NUMA
2537 /*
2538  * Called from the vmstat counter updater to drain pagesets of this
2539  * currently executing processor on remote nodes after they have
2540  * expired.
2541  *
2542  * Note that this function must be called with the thread pinned to
2543  * a single processor.
2544  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2545 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2546 {
2547 	unsigned long flags;
2548 	int to_drain, batch;
2549 
2550 	local_irq_save(flags);
2551 	batch = READ_ONCE(pcp->batch);
2552 	to_drain = min(pcp->count, batch);
2553 	if (to_drain > 0)
2554 		free_pcppages_bulk(zone, to_drain, pcp);
2555 	local_irq_restore(flags);
2556 }
2557 #endif
2558 
2559 /*
2560  * Drain pcplists of the indicated processor and zone.
2561  *
2562  * The processor must either be the current processor and the
2563  * thread pinned to the current processor or a processor that
2564  * is not online.
2565  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2566 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2567 {
2568 	unsigned long flags;
2569 	struct per_cpu_pageset *pset;
2570 	struct per_cpu_pages *pcp;
2571 
2572 	local_irq_save(flags);
2573 	pset = per_cpu_ptr(zone->pageset, cpu);
2574 
2575 	pcp = &pset->pcp;
2576 	if (pcp->count)
2577 		free_pcppages_bulk(zone, pcp->count, pcp);
2578 	local_irq_restore(flags);
2579 }
2580 
2581 /*
2582  * Drain pcplists of all zones on the indicated processor.
2583  *
2584  * The processor must either be the current processor and the
2585  * thread pinned to the current processor or a processor that
2586  * is not online.
2587  */
drain_pages(unsigned int cpu)2588 static void drain_pages(unsigned int cpu)
2589 {
2590 	struct zone *zone;
2591 
2592 	for_each_populated_zone(zone) {
2593 		drain_pages_zone(cpu, zone);
2594 	}
2595 }
2596 
2597 /*
2598  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2599  *
2600  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2601  * the single zone's pages.
2602  */
drain_local_pages(struct zone * zone)2603 void drain_local_pages(struct zone *zone)
2604 {
2605 	int cpu = smp_processor_id();
2606 
2607 	if (zone)
2608 		drain_pages_zone(cpu, zone);
2609 	else
2610 		drain_pages(cpu);
2611 }
2612 
drain_local_pages_wq(struct work_struct * work)2613 static void drain_local_pages_wq(struct work_struct *work)
2614 {
2615 	/*
2616 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2617 	 * we can race with cpu offline when the WQ can move this from
2618 	 * a cpu pinned worker to an unbound one. We can operate on a different
2619 	 * cpu which is allright but we also have to make sure to not move to
2620 	 * a different one.
2621 	 */
2622 	preempt_disable();
2623 	drain_local_pages(NULL);
2624 	preempt_enable();
2625 }
2626 
2627 /*
2628  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2629  *
2630  * When zone parameter is non-NULL, spill just the single zone's pages.
2631  *
2632  * Note that this can be extremely slow as the draining happens in a workqueue.
2633  */
drain_all_pages(struct zone * zone)2634 void drain_all_pages(struct zone *zone)
2635 {
2636 	int cpu;
2637 
2638 	/*
2639 	 * Allocate in the BSS so we wont require allocation in
2640 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2641 	 */
2642 	static cpumask_t cpus_with_pcps;
2643 
2644 	/*
2645 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2646 	 * initialized.
2647 	 */
2648 	if (WARN_ON_ONCE(!mm_percpu_wq))
2649 		return;
2650 
2651 	/*
2652 	 * Do not drain if one is already in progress unless it's specific to
2653 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2654 	 * the drain to be complete when the call returns.
2655 	 */
2656 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2657 		if (!zone)
2658 			return;
2659 		mutex_lock(&pcpu_drain_mutex);
2660 	}
2661 
2662 	/*
2663 	 * We don't care about racing with CPU hotplug event
2664 	 * as offline notification will cause the notified
2665 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2666 	 * disables preemption as part of its processing
2667 	 */
2668 	for_each_online_cpu(cpu) {
2669 		struct per_cpu_pageset *pcp;
2670 		struct zone *z;
2671 		bool has_pcps = false;
2672 
2673 		if (zone) {
2674 			pcp = per_cpu_ptr(zone->pageset, cpu);
2675 			if (pcp->pcp.count)
2676 				has_pcps = true;
2677 		} else {
2678 			for_each_populated_zone(z) {
2679 				pcp = per_cpu_ptr(z->pageset, cpu);
2680 				if (pcp->pcp.count) {
2681 					has_pcps = true;
2682 					break;
2683 				}
2684 			}
2685 		}
2686 
2687 		if (has_pcps)
2688 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2689 		else
2690 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2691 	}
2692 
2693 	for_each_cpu(cpu, &cpus_with_pcps) {
2694 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2695 		INIT_WORK(work, drain_local_pages_wq);
2696 		queue_work_on(cpu, mm_percpu_wq, work);
2697 	}
2698 	for_each_cpu(cpu, &cpus_with_pcps)
2699 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2700 
2701 	mutex_unlock(&pcpu_drain_mutex);
2702 }
2703 
2704 #ifdef CONFIG_HIBERNATION
2705 
2706 /*
2707  * Touch the watchdog for every WD_PAGE_COUNT pages.
2708  */
2709 #define WD_PAGE_COUNT	(128*1024)
2710 
mark_free_pages(struct zone * zone)2711 void mark_free_pages(struct zone *zone)
2712 {
2713 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2714 	unsigned long flags;
2715 	unsigned int order, t;
2716 	struct page *page;
2717 
2718 	if (zone_is_empty(zone))
2719 		return;
2720 
2721 	spin_lock_irqsave(&zone->lock, flags);
2722 
2723 	max_zone_pfn = zone_end_pfn(zone);
2724 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2725 		if (pfn_valid(pfn)) {
2726 			page = pfn_to_page(pfn);
2727 
2728 			if (!--page_count) {
2729 				touch_nmi_watchdog();
2730 				page_count = WD_PAGE_COUNT;
2731 			}
2732 
2733 			if (page_zone(page) != zone)
2734 				continue;
2735 
2736 			if (!swsusp_page_is_forbidden(page))
2737 				swsusp_unset_page_free(page);
2738 		}
2739 
2740 	for_each_migratetype_order(order, t) {
2741 		list_for_each_entry(page,
2742 				&zone->free_area[order].free_list[t], lru) {
2743 			unsigned long i;
2744 
2745 			pfn = page_to_pfn(page);
2746 			for (i = 0; i < (1UL << order); i++) {
2747 				if (!--page_count) {
2748 					touch_nmi_watchdog();
2749 					page_count = WD_PAGE_COUNT;
2750 				}
2751 				swsusp_set_page_free(pfn_to_page(pfn + i));
2752 			}
2753 		}
2754 	}
2755 	spin_unlock_irqrestore(&zone->lock, flags);
2756 }
2757 #endif /* CONFIG_PM */
2758 
free_unref_page_prepare(struct page * page,unsigned long pfn)2759 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2760 {
2761 	int migratetype;
2762 
2763 	if (!free_pcp_prepare(page))
2764 		return false;
2765 
2766 	migratetype = get_pfnblock_migratetype(page, pfn);
2767 	set_pcppage_migratetype(page, migratetype);
2768 	return true;
2769 }
2770 
free_unref_page_commit(struct page * page,unsigned long pfn)2771 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2772 {
2773 	struct zone *zone = page_zone(page);
2774 	struct per_cpu_pages *pcp;
2775 	int migratetype;
2776 
2777 	migratetype = get_pcppage_migratetype(page);
2778 	__count_vm_event(PGFREE);
2779 
2780 	/*
2781 	 * We only track unmovable, reclaimable and movable on pcp lists.
2782 	 * Free ISOLATE pages back to the allocator because they are being
2783 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2784 	 * areas back if necessary. Otherwise, we may have to free
2785 	 * excessively into the page allocator
2786 	 */
2787 	if (migratetype >= MIGRATE_PCPTYPES) {
2788 		if (unlikely(is_migrate_isolate(migratetype))) {
2789 			free_one_page(zone, page, pfn, 0, migratetype);
2790 			return;
2791 		}
2792 		migratetype = MIGRATE_MOVABLE;
2793 	}
2794 
2795 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2796 	list_add(&page->lru, &pcp->lists[migratetype]);
2797 	pcp->count++;
2798 	if (pcp->count >= pcp->high) {
2799 		unsigned long batch = READ_ONCE(pcp->batch);
2800 		free_pcppages_bulk(zone, batch, pcp);
2801 	}
2802 }
2803 
2804 /*
2805  * Free a 0-order page
2806  */
free_unref_page(struct page * page)2807 void free_unref_page(struct page *page)
2808 {
2809 	unsigned long flags;
2810 	unsigned long pfn = page_to_pfn(page);
2811 
2812 	if (!free_unref_page_prepare(page, pfn))
2813 		return;
2814 
2815 	local_irq_save(flags);
2816 	free_unref_page_commit(page, pfn);
2817 	local_irq_restore(flags);
2818 }
2819 
2820 /*
2821  * Free a list of 0-order pages
2822  */
free_unref_page_list(struct list_head * list)2823 void free_unref_page_list(struct list_head *list)
2824 {
2825 	struct page *page, *next;
2826 	unsigned long flags, pfn;
2827 	int batch_count = 0;
2828 
2829 	/* Prepare pages for freeing */
2830 	list_for_each_entry_safe(page, next, list, lru) {
2831 		pfn = page_to_pfn(page);
2832 		if (!free_unref_page_prepare(page, pfn))
2833 			list_del(&page->lru);
2834 		set_page_private(page, pfn);
2835 	}
2836 
2837 	local_irq_save(flags);
2838 	list_for_each_entry_safe(page, next, list, lru) {
2839 		unsigned long pfn = page_private(page);
2840 
2841 		set_page_private(page, 0);
2842 		trace_mm_page_free_batched(page);
2843 		free_unref_page_commit(page, pfn);
2844 
2845 		/*
2846 		 * Guard against excessive IRQ disabled times when we get
2847 		 * a large list of pages to free.
2848 		 */
2849 		if (++batch_count == SWAP_CLUSTER_MAX) {
2850 			local_irq_restore(flags);
2851 			batch_count = 0;
2852 			local_irq_save(flags);
2853 		}
2854 	}
2855 	local_irq_restore(flags);
2856 }
2857 
2858 /*
2859  * split_page takes a non-compound higher-order page, and splits it into
2860  * n (1<<order) sub-pages: page[0..n]
2861  * Each sub-page must be freed individually.
2862  *
2863  * Note: this is probably too low level an operation for use in drivers.
2864  * Please consult with lkml before using this in your driver.
2865  */
split_page(struct page * page,unsigned int order)2866 void split_page(struct page *page, unsigned int order)
2867 {
2868 	int i;
2869 
2870 	VM_BUG_ON_PAGE(PageCompound(page), page);
2871 	VM_BUG_ON_PAGE(!page_count(page), page);
2872 
2873 	for (i = 1; i < (1 << order); i++)
2874 		set_page_refcounted(page + i);
2875 	split_page_owner(page, order);
2876 }
2877 EXPORT_SYMBOL_GPL(split_page);
2878 
__isolate_free_page(struct page * page,unsigned int order)2879 int __isolate_free_page(struct page *page, unsigned int order)
2880 {
2881 	unsigned long watermark;
2882 	struct zone *zone;
2883 	int mt;
2884 
2885 	BUG_ON(!PageBuddy(page));
2886 
2887 	zone = page_zone(page);
2888 	mt = get_pageblock_migratetype(page);
2889 
2890 	if (!is_migrate_isolate(mt)) {
2891 		/*
2892 		 * Obey watermarks as if the page was being allocated. We can
2893 		 * emulate a high-order watermark check with a raised order-0
2894 		 * watermark, because we already know our high-order page
2895 		 * exists.
2896 		 */
2897 		watermark = min_wmark_pages(zone) + (1UL << order);
2898 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2899 			return 0;
2900 
2901 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2902 	}
2903 
2904 	/* Remove page from free list */
2905 	list_del(&page->lru);
2906 	zone->free_area[order].nr_free--;
2907 	rmv_page_order(page);
2908 
2909 	/*
2910 	 * Set the pageblock if the isolated page is at least half of a
2911 	 * pageblock
2912 	 */
2913 	if (order >= pageblock_order - 1) {
2914 		struct page *endpage = page + (1 << order) - 1;
2915 		for (; page < endpage; page += pageblock_nr_pages) {
2916 			int mt = get_pageblock_migratetype(page);
2917 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2918 			    && !is_migrate_highatomic(mt))
2919 				set_pageblock_migratetype(page,
2920 							  MIGRATE_MOVABLE);
2921 		}
2922 	}
2923 
2924 
2925 	return 1UL << order;
2926 }
2927 
2928 /*
2929  * Update NUMA hit/miss statistics
2930  *
2931  * Must be called with interrupts disabled.
2932  */
zone_statistics(struct zone * preferred_zone,struct zone * z)2933 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2934 {
2935 #ifdef CONFIG_NUMA
2936 	enum numa_stat_item local_stat = NUMA_LOCAL;
2937 
2938 	/* skip numa counters update if numa stats is disabled */
2939 	if (!static_branch_likely(&vm_numa_stat_key))
2940 		return;
2941 
2942 	if (zone_to_nid(z) != numa_node_id())
2943 		local_stat = NUMA_OTHER;
2944 
2945 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2946 		__inc_numa_state(z, NUMA_HIT);
2947 	else {
2948 		__inc_numa_state(z, NUMA_MISS);
2949 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2950 	}
2951 	__inc_numa_state(z, local_stat);
2952 #endif
2953 }
2954 
2955 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,struct per_cpu_pages * pcp,struct list_head * list)2956 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2957 			struct per_cpu_pages *pcp,
2958 			struct list_head *list)
2959 {
2960 	struct page *page;
2961 
2962 	do {
2963 		if (list_empty(list)) {
2964 			pcp->count += rmqueue_bulk(zone, 0,
2965 					pcp->batch, list,
2966 					migratetype);
2967 			if (unlikely(list_empty(list)))
2968 				return NULL;
2969 		}
2970 
2971 		page = list_first_entry(list, struct page, lru);
2972 		list_del(&page->lru);
2973 		pcp->count--;
2974 	} while (check_new_pcp(page));
2975 
2976 	return page;
2977 }
2978 
2979 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)2980 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2981 			struct zone *zone, unsigned int order,
2982 			gfp_t gfp_flags, int migratetype)
2983 {
2984 	struct per_cpu_pages *pcp;
2985 	struct list_head *list;
2986 	struct page *page;
2987 	unsigned long flags;
2988 
2989 	local_irq_save(flags);
2990 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2991 	list = &pcp->lists[migratetype];
2992 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2993 	if (page) {
2994 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2995 		zone_statistics(preferred_zone, zone);
2996 	}
2997 	local_irq_restore(flags);
2998 	return page;
2999 }
3000 
3001 /*
3002  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3003  */
3004 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3005 struct page *rmqueue(struct zone *preferred_zone,
3006 			struct zone *zone, unsigned int order,
3007 			gfp_t gfp_flags, unsigned int alloc_flags,
3008 			int migratetype)
3009 {
3010 	unsigned long flags;
3011 	struct page *page;
3012 
3013 	if (likely(order == 0)) {
3014 		page = rmqueue_pcplist(preferred_zone, zone, order,
3015 				gfp_flags, migratetype);
3016 		goto out;
3017 	}
3018 
3019 	/*
3020 	 * We most definitely don't want callers attempting to
3021 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3022 	 */
3023 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3024 	spin_lock_irqsave(&zone->lock, flags);
3025 
3026 	do {
3027 		page = NULL;
3028 		if (alloc_flags & ALLOC_HARDER) {
3029 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3030 			if (page)
3031 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3032 		}
3033 		if (!page)
3034 			page = __rmqueue(zone, order, migratetype);
3035 	} while (page && check_new_pages(page, order));
3036 	spin_unlock(&zone->lock);
3037 	if (!page)
3038 		goto failed;
3039 	__mod_zone_freepage_state(zone, -(1 << order),
3040 				  get_pcppage_migratetype(page));
3041 
3042 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3043 	zone_statistics(preferred_zone, zone);
3044 	local_irq_restore(flags);
3045 
3046 out:
3047 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3048 	return page;
3049 
3050 failed:
3051 	local_irq_restore(flags);
3052 	return NULL;
3053 }
3054 
3055 #ifdef CONFIG_FAIL_PAGE_ALLOC
3056 
3057 static struct {
3058 	struct fault_attr attr;
3059 
3060 	bool ignore_gfp_highmem;
3061 	bool ignore_gfp_reclaim;
3062 	u32 min_order;
3063 } fail_page_alloc = {
3064 	.attr = FAULT_ATTR_INITIALIZER,
3065 	.ignore_gfp_reclaim = true,
3066 	.ignore_gfp_highmem = true,
3067 	.min_order = 1,
3068 };
3069 
setup_fail_page_alloc(char * str)3070 static int __init setup_fail_page_alloc(char *str)
3071 {
3072 	return setup_fault_attr(&fail_page_alloc.attr, str);
3073 }
3074 __setup("fail_page_alloc=", setup_fail_page_alloc);
3075 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3076 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3077 {
3078 	if (order < fail_page_alloc.min_order)
3079 		return false;
3080 	if (gfp_mask & __GFP_NOFAIL)
3081 		return false;
3082 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3083 		return false;
3084 	if (fail_page_alloc.ignore_gfp_reclaim &&
3085 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3086 		return false;
3087 
3088 	return should_fail(&fail_page_alloc.attr, 1 << order);
3089 }
3090 
3091 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3092 
fail_page_alloc_debugfs(void)3093 static int __init fail_page_alloc_debugfs(void)
3094 {
3095 	umode_t mode = S_IFREG | 0600;
3096 	struct dentry *dir;
3097 
3098 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3099 					&fail_page_alloc.attr);
3100 	if (IS_ERR(dir))
3101 		return PTR_ERR(dir);
3102 
3103 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3104 				&fail_page_alloc.ignore_gfp_reclaim))
3105 		goto fail;
3106 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3107 				&fail_page_alloc.ignore_gfp_highmem))
3108 		goto fail;
3109 	if (!debugfs_create_u32("min-order", mode, dir,
3110 				&fail_page_alloc.min_order))
3111 		goto fail;
3112 
3113 	return 0;
3114 fail:
3115 	debugfs_remove_recursive(dir);
3116 
3117 	return -ENOMEM;
3118 }
3119 
3120 late_initcall(fail_page_alloc_debugfs);
3121 
3122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3123 
3124 #else /* CONFIG_FAIL_PAGE_ALLOC */
3125 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3126 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3127 {
3128 	return false;
3129 }
3130 
3131 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3132 
3133 /*
3134  * Return true if free base pages are above 'mark'. For high-order checks it
3135  * will return true of the order-0 watermark is reached and there is at least
3136  * one free page of a suitable size. Checking now avoids taking the zone lock
3137  * to check in the allocation paths if no pages are free.
3138  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)3139 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3140 			 int classzone_idx, unsigned int alloc_flags,
3141 			 long free_pages)
3142 {
3143 	long min = mark;
3144 	int o;
3145 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3146 
3147 	/* free_pages may go negative - that's OK */
3148 	free_pages -= (1 << order) - 1;
3149 
3150 	if (alloc_flags & ALLOC_HIGH)
3151 		min -= min / 2;
3152 
3153 	/*
3154 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3155 	 * the high-atomic reserves. This will over-estimate the size of the
3156 	 * atomic reserve but it avoids a search.
3157 	 */
3158 	if (likely(!alloc_harder)) {
3159 		free_pages -= z->nr_reserved_highatomic;
3160 	} else {
3161 		/*
3162 		 * OOM victims can try even harder than normal ALLOC_HARDER
3163 		 * users on the grounds that it's definitely going to be in
3164 		 * the exit path shortly and free memory. Any allocation it
3165 		 * makes during the free path will be small and short-lived.
3166 		 */
3167 		if (alloc_flags & ALLOC_OOM)
3168 			min -= min / 2;
3169 		else
3170 			min -= min / 4;
3171 	}
3172 
3173 
3174 #ifdef CONFIG_CMA
3175 	/* If allocation can't use CMA areas don't use free CMA pages */
3176 	if (!(alloc_flags & ALLOC_CMA))
3177 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3178 #endif
3179 
3180 	/*
3181 	 * Check watermarks for an order-0 allocation request. If these
3182 	 * are not met, then a high-order request also cannot go ahead
3183 	 * even if a suitable page happened to be free.
3184 	 */
3185 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3186 		return false;
3187 
3188 	/* If this is an order-0 request then the watermark is fine */
3189 	if (!order)
3190 		return true;
3191 
3192 	/* For a high-order request, check at least one suitable page is free */
3193 	for (o = order; o < MAX_ORDER; o++) {
3194 		struct free_area *area = &z->free_area[o];
3195 		int mt;
3196 
3197 		if (!area->nr_free)
3198 			continue;
3199 
3200 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3201 			if (!list_empty(&area->free_list[mt]))
3202 				return true;
3203 		}
3204 
3205 #ifdef CONFIG_CMA
3206 		if ((alloc_flags & ALLOC_CMA) &&
3207 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3208 			return true;
3209 		}
3210 #endif
3211 		if (alloc_harder &&
3212 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3213 			return true;
3214 	}
3215 	return false;
3216 }
3217 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3218 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3219 		      int classzone_idx, unsigned int alloc_flags)
3220 {
3221 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3222 					zone_page_state(z, NR_FREE_PAGES));
3223 }
3224 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3225 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3226 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3227 {
3228 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3229 	long cma_pages = 0;
3230 
3231 #ifdef CONFIG_CMA
3232 	/* If allocation can't use CMA areas don't use free CMA pages */
3233 	if (!(alloc_flags & ALLOC_CMA))
3234 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3235 #endif
3236 
3237 	/*
3238 	 * Fast check for order-0 only. If this fails then the reserves
3239 	 * need to be calculated. There is a corner case where the check
3240 	 * passes but only the high-order atomic reserve are free. If
3241 	 * the caller is !atomic then it'll uselessly search the free
3242 	 * list. That corner case is then slower but it is harmless.
3243 	 */
3244 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3245 		return true;
3246 
3247 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3248 					free_pages);
3249 }
3250 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)3251 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3252 			unsigned long mark, int classzone_idx)
3253 {
3254 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3255 
3256 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3257 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3258 
3259 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3260 								free_pages);
3261 }
3262 
3263 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3264 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3265 {
3266 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3267 				RECLAIM_DISTANCE;
3268 }
3269 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3270 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3271 {
3272 	return true;
3273 }
3274 #endif	/* CONFIG_NUMA */
3275 
3276 /*
3277  * get_page_from_freelist goes through the zonelist trying to allocate
3278  * a page.
3279  */
3280 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3281 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3282 						const struct alloc_context *ac)
3283 {
3284 	struct zoneref *z = ac->preferred_zoneref;
3285 	struct zone *zone;
3286 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3287 
3288 	/*
3289 	 * Scan zonelist, looking for a zone with enough free.
3290 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3291 	 */
3292 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3293 								ac->nodemask) {
3294 		struct page *page;
3295 		unsigned long mark;
3296 
3297 		if (cpusets_enabled() &&
3298 			(alloc_flags & ALLOC_CPUSET) &&
3299 			!__cpuset_zone_allowed(zone, gfp_mask))
3300 				continue;
3301 		/*
3302 		 * When allocating a page cache page for writing, we
3303 		 * want to get it from a node that is within its dirty
3304 		 * limit, such that no single node holds more than its
3305 		 * proportional share of globally allowed dirty pages.
3306 		 * The dirty limits take into account the node's
3307 		 * lowmem reserves and high watermark so that kswapd
3308 		 * should be able to balance it without having to
3309 		 * write pages from its LRU list.
3310 		 *
3311 		 * XXX: For now, allow allocations to potentially
3312 		 * exceed the per-node dirty limit in the slowpath
3313 		 * (spread_dirty_pages unset) before going into reclaim,
3314 		 * which is important when on a NUMA setup the allowed
3315 		 * nodes are together not big enough to reach the
3316 		 * global limit.  The proper fix for these situations
3317 		 * will require awareness of nodes in the
3318 		 * dirty-throttling and the flusher threads.
3319 		 */
3320 		if (ac->spread_dirty_pages) {
3321 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3322 				continue;
3323 
3324 			if (!node_dirty_ok(zone->zone_pgdat)) {
3325 				last_pgdat_dirty_limit = zone->zone_pgdat;
3326 				continue;
3327 			}
3328 		}
3329 
3330 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3331 		if (!zone_watermark_fast(zone, order, mark,
3332 				       ac_classzone_idx(ac), alloc_flags)) {
3333 			int ret;
3334 
3335 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3336 			/*
3337 			 * Watermark failed for this zone, but see if we can
3338 			 * grow this zone if it contains deferred pages.
3339 			 */
3340 			if (static_branch_unlikely(&deferred_pages)) {
3341 				if (_deferred_grow_zone(zone, order))
3342 					goto try_this_zone;
3343 			}
3344 #endif
3345 			/* Checked here to keep the fast path fast */
3346 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3347 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3348 				goto try_this_zone;
3349 
3350 			if (node_reclaim_mode == 0 ||
3351 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3352 				continue;
3353 
3354 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3355 			switch (ret) {
3356 			case NODE_RECLAIM_NOSCAN:
3357 				/* did not scan */
3358 				continue;
3359 			case NODE_RECLAIM_FULL:
3360 				/* scanned but unreclaimable */
3361 				continue;
3362 			default:
3363 				/* did we reclaim enough */
3364 				if (zone_watermark_ok(zone, order, mark,
3365 						ac_classzone_idx(ac), alloc_flags))
3366 					goto try_this_zone;
3367 
3368 				continue;
3369 			}
3370 		}
3371 
3372 try_this_zone:
3373 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3374 				gfp_mask, alloc_flags, ac->migratetype);
3375 		if (page) {
3376 			prep_new_page(page, order, gfp_mask, alloc_flags);
3377 
3378 			/*
3379 			 * If this is a high-order atomic allocation then check
3380 			 * if the pageblock should be reserved for the future
3381 			 */
3382 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3383 				reserve_highatomic_pageblock(page, zone, order);
3384 
3385 			return page;
3386 		} else {
3387 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3388 			/* Try again if zone has deferred pages */
3389 			if (static_branch_unlikely(&deferred_pages)) {
3390 				if (_deferred_grow_zone(zone, order))
3391 					goto try_this_zone;
3392 			}
3393 #endif
3394 		}
3395 	}
3396 
3397 	return NULL;
3398 }
3399 
3400 /*
3401  * Large machines with many possible nodes should not always dump per-node
3402  * meminfo in irq context.
3403  */
should_suppress_show_mem(void)3404 static inline bool should_suppress_show_mem(void)
3405 {
3406 	bool ret = false;
3407 
3408 #if NODES_SHIFT > 8
3409 	ret = in_interrupt();
3410 #endif
3411 	return ret;
3412 }
3413 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3414 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3415 {
3416 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3417 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3418 
3419 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3420 		return;
3421 
3422 	/*
3423 	 * This documents exceptions given to allocations in certain
3424 	 * contexts that are allowed to allocate outside current's set
3425 	 * of allowed nodes.
3426 	 */
3427 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3428 		if (tsk_is_oom_victim(current) ||
3429 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3430 			filter &= ~SHOW_MEM_FILTER_NODES;
3431 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3432 		filter &= ~SHOW_MEM_FILTER_NODES;
3433 
3434 	show_mem(filter, nodemask);
3435 }
3436 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3437 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3438 {
3439 	struct va_format vaf;
3440 	va_list args;
3441 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3442 				      DEFAULT_RATELIMIT_BURST);
3443 
3444 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3445 		return;
3446 
3447 	va_start(args, fmt);
3448 	vaf.fmt = fmt;
3449 	vaf.va = &args;
3450 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3451 			current->comm, &vaf, gfp_mask, &gfp_mask,
3452 			nodemask_pr_args(nodemask));
3453 	va_end(args);
3454 
3455 	cpuset_print_current_mems_allowed();
3456 
3457 	dump_stack();
3458 	warn_alloc_show_mem(gfp_mask, nodemask);
3459 }
3460 
3461 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3462 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3463 			      unsigned int alloc_flags,
3464 			      const struct alloc_context *ac)
3465 {
3466 	struct page *page;
3467 
3468 	page = get_page_from_freelist(gfp_mask, order,
3469 			alloc_flags|ALLOC_CPUSET, ac);
3470 	/*
3471 	 * fallback to ignore cpuset restriction if our nodes
3472 	 * are depleted
3473 	 */
3474 	if (!page)
3475 		page = get_page_from_freelist(gfp_mask, order,
3476 				alloc_flags, ac);
3477 
3478 	return page;
3479 }
3480 
3481 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3482 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3483 	const struct alloc_context *ac, unsigned long *did_some_progress)
3484 {
3485 	struct oom_control oc = {
3486 		.zonelist = ac->zonelist,
3487 		.nodemask = ac->nodemask,
3488 		.memcg = NULL,
3489 		.gfp_mask = gfp_mask,
3490 		.order = order,
3491 	};
3492 	struct page *page;
3493 
3494 	*did_some_progress = 0;
3495 
3496 	/*
3497 	 * Acquire the oom lock.  If that fails, somebody else is
3498 	 * making progress for us.
3499 	 */
3500 	if (!mutex_trylock(&oom_lock)) {
3501 		*did_some_progress = 1;
3502 		schedule_timeout_uninterruptible(1);
3503 		return NULL;
3504 	}
3505 
3506 	/*
3507 	 * Go through the zonelist yet one more time, keep very high watermark
3508 	 * here, this is only to catch a parallel oom killing, we must fail if
3509 	 * we're still under heavy pressure. But make sure that this reclaim
3510 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3511 	 * allocation which will never fail due to oom_lock already held.
3512 	 */
3513 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3514 				      ~__GFP_DIRECT_RECLAIM, order,
3515 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3516 	if (page)
3517 		goto out;
3518 
3519 	/* Coredumps can quickly deplete all memory reserves */
3520 	if (current->flags & PF_DUMPCORE)
3521 		goto out;
3522 	/* The OOM killer will not help higher order allocs */
3523 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3524 		goto out;
3525 	/*
3526 	 * We have already exhausted all our reclaim opportunities without any
3527 	 * success so it is time to admit defeat. We will skip the OOM killer
3528 	 * because it is very likely that the caller has a more reasonable
3529 	 * fallback than shooting a random task.
3530 	 */
3531 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3532 		goto out;
3533 	/* The OOM killer does not needlessly kill tasks for lowmem */
3534 	if (ac->high_zoneidx < ZONE_NORMAL)
3535 		goto out;
3536 	if (pm_suspended_storage())
3537 		goto out;
3538 	/*
3539 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3540 	 * other request to make a forward progress.
3541 	 * We are in an unfortunate situation where out_of_memory cannot
3542 	 * do much for this context but let's try it to at least get
3543 	 * access to memory reserved if the current task is killed (see
3544 	 * out_of_memory). Once filesystems are ready to handle allocation
3545 	 * failures more gracefully we should just bail out here.
3546 	 */
3547 
3548 	/* The OOM killer may not free memory on a specific node */
3549 	if (gfp_mask & __GFP_THISNODE)
3550 		goto out;
3551 
3552 	/* Exhausted what can be done so it's blame time */
3553 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3554 		*did_some_progress = 1;
3555 
3556 		/*
3557 		 * Help non-failing allocations by giving them access to memory
3558 		 * reserves
3559 		 */
3560 		if (gfp_mask & __GFP_NOFAIL)
3561 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3562 					ALLOC_NO_WATERMARKS, ac);
3563 	}
3564 out:
3565 	mutex_unlock(&oom_lock);
3566 	return page;
3567 }
3568 
3569 /*
3570  * Maximum number of compaction retries wit a progress before OOM
3571  * killer is consider as the only way to move forward.
3572  */
3573 #define MAX_COMPACT_RETRIES 16
3574 
3575 #ifdef CONFIG_COMPACTION
3576 /* Try memory compaction for high-order allocations before reclaim */
3577 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3578 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3579 		unsigned int alloc_flags, const struct alloc_context *ac,
3580 		enum compact_priority prio, enum compact_result *compact_result)
3581 {
3582 	struct page *page;
3583 	unsigned int noreclaim_flag;
3584 
3585 	if (!order)
3586 		return NULL;
3587 
3588 	noreclaim_flag = memalloc_noreclaim_save();
3589 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3590 									prio);
3591 	memalloc_noreclaim_restore(noreclaim_flag);
3592 
3593 	if (*compact_result <= COMPACT_INACTIVE)
3594 		return NULL;
3595 
3596 	/*
3597 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3598 	 * count a compaction stall
3599 	 */
3600 	count_vm_event(COMPACTSTALL);
3601 
3602 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3603 
3604 	if (page) {
3605 		struct zone *zone = page_zone(page);
3606 
3607 		zone->compact_blockskip_flush = false;
3608 		compaction_defer_reset(zone, order, true);
3609 		count_vm_event(COMPACTSUCCESS);
3610 		return page;
3611 	}
3612 
3613 	/*
3614 	 * It's bad if compaction run occurs and fails. The most likely reason
3615 	 * is that pages exist, but not enough to satisfy watermarks.
3616 	 */
3617 	count_vm_event(COMPACTFAIL);
3618 
3619 	cond_resched();
3620 
3621 	return NULL;
3622 }
3623 
3624 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3625 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3626 		     enum compact_result compact_result,
3627 		     enum compact_priority *compact_priority,
3628 		     int *compaction_retries)
3629 {
3630 	int max_retries = MAX_COMPACT_RETRIES;
3631 	int min_priority;
3632 	bool ret = false;
3633 	int retries = *compaction_retries;
3634 	enum compact_priority priority = *compact_priority;
3635 
3636 	if (!order)
3637 		return false;
3638 
3639 	if (compaction_made_progress(compact_result))
3640 		(*compaction_retries)++;
3641 
3642 	/*
3643 	 * compaction considers all the zone as desperately out of memory
3644 	 * so it doesn't really make much sense to retry except when the
3645 	 * failure could be caused by insufficient priority
3646 	 */
3647 	if (compaction_failed(compact_result))
3648 		goto check_priority;
3649 
3650 	/*
3651 	 * make sure the compaction wasn't deferred or didn't bail out early
3652 	 * due to locks contention before we declare that we should give up.
3653 	 * But do not retry if the given zonelist is not suitable for
3654 	 * compaction.
3655 	 */
3656 	if (compaction_withdrawn(compact_result)) {
3657 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3658 		goto out;
3659 	}
3660 
3661 	/*
3662 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3663 	 * costly ones because they are de facto nofail and invoke OOM
3664 	 * killer to move on while costly can fail and users are ready
3665 	 * to cope with that. 1/4 retries is rather arbitrary but we
3666 	 * would need much more detailed feedback from compaction to
3667 	 * make a better decision.
3668 	 */
3669 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3670 		max_retries /= 4;
3671 	if (*compaction_retries <= max_retries) {
3672 		ret = true;
3673 		goto out;
3674 	}
3675 
3676 	/*
3677 	 * Make sure there are attempts at the highest priority if we exhausted
3678 	 * all retries or failed at the lower priorities.
3679 	 */
3680 check_priority:
3681 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3682 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3683 
3684 	if (*compact_priority > min_priority) {
3685 		(*compact_priority)--;
3686 		*compaction_retries = 0;
3687 		ret = true;
3688 	}
3689 out:
3690 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3691 	return ret;
3692 }
3693 #else
3694 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3695 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3696 		unsigned int alloc_flags, const struct alloc_context *ac,
3697 		enum compact_priority prio, enum compact_result *compact_result)
3698 {
3699 	*compact_result = COMPACT_SKIPPED;
3700 	return NULL;
3701 }
3702 
3703 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3704 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3705 		     enum compact_result compact_result,
3706 		     enum compact_priority *compact_priority,
3707 		     int *compaction_retries)
3708 {
3709 	struct zone *zone;
3710 	struct zoneref *z;
3711 
3712 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3713 		return false;
3714 
3715 	/*
3716 	 * There are setups with compaction disabled which would prefer to loop
3717 	 * inside the allocator rather than hit the oom killer prematurely.
3718 	 * Let's give them a good hope and keep retrying while the order-0
3719 	 * watermarks are OK.
3720 	 */
3721 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3722 					ac->nodemask) {
3723 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3724 					ac_classzone_idx(ac), alloc_flags))
3725 			return true;
3726 	}
3727 	return false;
3728 }
3729 #endif /* CONFIG_COMPACTION */
3730 
3731 #ifdef CONFIG_LOCKDEP
3732 static struct lockdep_map __fs_reclaim_map =
3733 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3734 
__need_fs_reclaim(gfp_t gfp_mask)3735 static bool __need_fs_reclaim(gfp_t gfp_mask)
3736 {
3737 	gfp_mask = current_gfp_context(gfp_mask);
3738 
3739 	/* no reclaim without waiting on it */
3740 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3741 		return false;
3742 
3743 	/* this guy won't enter reclaim */
3744 	if (current->flags & PF_MEMALLOC)
3745 		return false;
3746 
3747 	/* We're only interested __GFP_FS allocations for now */
3748 	if (!(gfp_mask & __GFP_FS))
3749 		return false;
3750 
3751 	if (gfp_mask & __GFP_NOLOCKDEP)
3752 		return false;
3753 
3754 	return true;
3755 }
3756 
__fs_reclaim_acquire(void)3757 void __fs_reclaim_acquire(void)
3758 {
3759 	lock_map_acquire(&__fs_reclaim_map);
3760 }
3761 
__fs_reclaim_release(void)3762 void __fs_reclaim_release(void)
3763 {
3764 	lock_map_release(&__fs_reclaim_map);
3765 }
3766 
fs_reclaim_acquire(gfp_t gfp_mask)3767 void fs_reclaim_acquire(gfp_t gfp_mask)
3768 {
3769 	if (__need_fs_reclaim(gfp_mask))
3770 		__fs_reclaim_acquire();
3771 }
3772 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3773 
fs_reclaim_release(gfp_t gfp_mask)3774 void fs_reclaim_release(gfp_t gfp_mask)
3775 {
3776 	if (__need_fs_reclaim(gfp_mask))
3777 		__fs_reclaim_release();
3778 }
3779 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3780 #endif
3781 
3782 /* Perform direct synchronous page reclaim */
3783 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3784 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3785 					const struct alloc_context *ac)
3786 {
3787 	struct reclaim_state reclaim_state;
3788 	int progress;
3789 	unsigned int noreclaim_flag;
3790 
3791 	cond_resched();
3792 
3793 	/* We now go into synchronous reclaim */
3794 	cpuset_memory_pressure_bump();
3795 	fs_reclaim_acquire(gfp_mask);
3796 	noreclaim_flag = memalloc_noreclaim_save();
3797 	reclaim_state.reclaimed_slab = 0;
3798 	current->reclaim_state = &reclaim_state;
3799 
3800 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3801 								ac->nodemask);
3802 
3803 	current->reclaim_state = NULL;
3804 	memalloc_noreclaim_restore(noreclaim_flag);
3805 	fs_reclaim_release(gfp_mask);
3806 
3807 	cond_resched();
3808 
3809 	return progress;
3810 }
3811 
3812 /* The really slow allocator path where we enter direct reclaim */
3813 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3814 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3815 		unsigned int alloc_flags, const struct alloc_context *ac,
3816 		unsigned long *did_some_progress)
3817 {
3818 	struct page *page = NULL;
3819 	bool drained = false;
3820 
3821 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3822 	if (unlikely(!(*did_some_progress)))
3823 		return NULL;
3824 
3825 retry:
3826 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3827 
3828 	/*
3829 	 * If an allocation failed after direct reclaim, it could be because
3830 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3831 	 * Shrink them them and try again
3832 	 */
3833 	if (!page && !drained) {
3834 		unreserve_highatomic_pageblock(ac, false);
3835 		drain_all_pages(NULL);
3836 		drained = true;
3837 		goto retry;
3838 	}
3839 
3840 	return page;
3841 }
3842 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3843 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3844 			     const struct alloc_context *ac)
3845 {
3846 	struct zoneref *z;
3847 	struct zone *zone;
3848 	pg_data_t *last_pgdat = NULL;
3849 	enum zone_type high_zoneidx = ac->high_zoneidx;
3850 
3851 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3852 					ac->nodemask) {
3853 		if (last_pgdat != zone->zone_pgdat)
3854 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3855 		last_pgdat = zone->zone_pgdat;
3856 	}
3857 }
3858 
3859 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)3860 gfp_to_alloc_flags(gfp_t gfp_mask)
3861 {
3862 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3863 
3864 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3865 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3866 
3867 	/*
3868 	 * The caller may dip into page reserves a bit more if the caller
3869 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3870 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3871 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3872 	 */
3873 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3874 
3875 	if (gfp_mask & __GFP_ATOMIC) {
3876 		/*
3877 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3878 		 * if it can't schedule.
3879 		 */
3880 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3881 			alloc_flags |= ALLOC_HARDER;
3882 		/*
3883 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3884 		 * comment for __cpuset_node_allowed().
3885 		 */
3886 		alloc_flags &= ~ALLOC_CPUSET;
3887 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3888 		alloc_flags |= ALLOC_HARDER;
3889 
3890 #ifdef CONFIG_CMA
3891 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3892 		alloc_flags |= ALLOC_CMA;
3893 #endif
3894 	return alloc_flags;
3895 }
3896 
oom_reserves_allowed(struct task_struct * tsk)3897 static bool oom_reserves_allowed(struct task_struct *tsk)
3898 {
3899 	if (!tsk_is_oom_victim(tsk))
3900 		return false;
3901 
3902 	/*
3903 	 * !MMU doesn't have oom reaper so give access to memory reserves
3904 	 * only to the thread with TIF_MEMDIE set
3905 	 */
3906 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3907 		return false;
3908 
3909 	return true;
3910 }
3911 
3912 /*
3913  * Distinguish requests which really need access to full memory
3914  * reserves from oom victims which can live with a portion of it
3915  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3916 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3917 {
3918 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3919 		return 0;
3920 	if (gfp_mask & __GFP_MEMALLOC)
3921 		return ALLOC_NO_WATERMARKS;
3922 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3923 		return ALLOC_NO_WATERMARKS;
3924 	if (!in_interrupt()) {
3925 		if (current->flags & PF_MEMALLOC)
3926 			return ALLOC_NO_WATERMARKS;
3927 		else if (oom_reserves_allowed(current))
3928 			return ALLOC_OOM;
3929 	}
3930 
3931 	return 0;
3932 }
3933 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3934 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3935 {
3936 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3937 }
3938 
3939 /*
3940  * Checks whether it makes sense to retry the reclaim to make a forward progress
3941  * for the given allocation request.
3942  *
3943  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3944  * without success, or when we couldn't even meet the watermark if we
3945  * reclaimed all remaining pages on the LRU lists.
3946  *
3947  * Returns true if a retry is viable or false to enter the oom path.
3948  */
3949 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3950 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3951 		     struct alloc_context *ac, int alloc_flags,
3952 		     bool did_some_progress, int *no_progress_loops)
3953 {
3954 	struct zone *zone;
3955 	struct zoneref *z;
3956 
3957 	/*
3958 	 * Costly allocations might have made a progress but this doesn't mean
3959 	 * their order will become available due to high fragmentation so
3960 	 * always increment the no progress counter for them
3961 	 */
3962 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3963 		*no_progress_loops = 0;
3964 	else
3965 		(*no_progress_loops)++;
3966 
3967 	/*
3968 	 * Make sure we converge to OOM if we cannot make any progress
3969 	 * several times in the row.
3970 	 */
3971 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3972 		/* Before OOM, exhaust highatomic_reserve */
3973 		return unreserve_highatomic_pageblock(ac, true);
3974 	}
3975 
3976 	/*
3977 	 * Keep reclaiming pages while there is a chance this will lead
3978 	 * somewhere.  If none of the target zones can satisfy our allocation
3979 	 * request even if all reclaimable pages are considered then we are
3980 	 * screwed and have to go OOM.
3981 	 */
3982 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3983 					ac->nodemask) {
3984 		unsigned long available;
3985 		unsigned long reclaimable;
3986 		unsigned long min_wmark = min_wmark_pages(zone);
3987 		bool wmark;
3988 
3989 		available = reclaimable = zone_reclaimable_pages(zone);
3990 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3991 
3992 		/*
3993 		 * Would the allocation succeed if we reclaimed all
3994 		 * reclaimable pages?
3995 		 */
3996 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3997 				ac_classzone_idx(ac), alloc_flags, available);
3998 		trace_reclaim_retry_zone(z, order, reclaimable,
3999 				available, min_wmark, *no_progress_loops, wmark);
4000 		if (wmark) {
4001 			/*
4002 			 * If we didn't make any progress and have a lot of
4003 			 * dirty + writeback pages then we should wait for
4004 			 * an IO to complete to slow down the reclaim and
4005 			 * prevent from pre mature OOM
4006 			 */
4007 			if (!did_some_progress) {
4008 				unsigned long write_pending;
4009 
4010 				write_pending = zone_page_state_snapshot(zone,
4011 							NR_ZONE_WRITE_PENDING);
4012 
4013 				if (2 * write_pending > reclaimable) {
4014 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4015 					return true;
4016 				}
4017 			}
4018 
4019 			/*
4020 			 * Memory allocation/reclaim might be called from a WQ
4021 			 * context and the current implementation of the WQ
4022 			 * concurrency control doesn't recognize that
4023 			 * a particular WQ is congested if the worker thread is
4024 			 * looping without ever sleeping. Therefore we have to
4025 			 * do a short sleep here rather than calling
4026 			 * cond_resched().
4027 			 */
4028 			if (current->flags & PF_WQ_WORKER)
4029 				schedule_timeout_uninterruptible(1);
4030 			else
4031 				cond_resched();
4032 
4033 			return true;
4034 		}
4035 	}
4036 
4037 	return false;
4038 }
4039 
4040 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4041 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4042 {
4043 	/*
4044 	 * It's possible that cpuset's mems_allowed and the nodemask from
4045 	 * mempolicy don't intersect. This should be normally dealt with by
4046 	 * policy_nodemask(), but it's possible to race with cpuset update in
4047 	 * such a way the check therein was true, and then it became false
4048 	 * before we got our cpuset_mems_cookie here.
4049 	 * This assumes that for all allocations, ac->nodemask can come only
4050 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4051 	 * when it does not intersect with the cpuset restrictions) or the
4052 	 * caller can deal with a violated nodemask.
4053 	 */
4054 	if (cpusets_enabled() && ac->nodemask &&
4055 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4056 		ac->nodemask = NULL;
4057 		return true;
4058 	}
4059 
4060 	/*
4061 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4062 	 * possible to race with parallel threads in such a way that our
4063 	 * allocation can fail while the mask is being updated. If we are about
4064 	 * to fail, check if the cpuset changed during allocation and if so,
4065 	 * retry.
4066 	 */
4067 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4068 		return true;
4069 
4070 	return false;
4071 }
4072 
4073 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4074 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4075 						struct alloc_context *ac)
4076 {
4077 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4078 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4079 	struct page *page = NULL;
4080 	unsigned int alloc_flags;
4081 	unsigned long did_some_progress;
4082 	enum compact_priority compact_priority;
4083 	enum compact_result compact_result;
4084 	int compaction_retries;
4085 	int no_progress_loops;
4086 	unsigned int cpuset_mems_cookie;
4087 	int reserve_flags;
4088 
4089 	/*
4090 	 * We also sanity check to catch abuse of atomic reserves being used by
4091 	 * callers that are not in atomic context.
4092 	 */
4093 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4094 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4095 		gfp_mask &= ~__GFP_ATOMIC;
4096 
4097 retry_cpuset:
4098 	compaction_retries = 0;
4099 	no_progress_loops = 0;
4100 	compact_priority = DEF_COMPACT_PRIORITY;
4101 	cpuset_mems_cookie = read_mems_allowed_begin();
4102 
4103 	/*
4104 	 * The fast path uses conservative alloc_flags to succeed only until
4105 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4106 	 * alloc_flags precisely. So we do that now.
4107 	 */
4108 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4109 
4110 	/*
4111 	 * We need to recalculate the starting point for the zonelist iterator
4112 	 * because we might have used different nodemask in the fast path, or
4113 	 * there was a cpuset modification and we are retrying - otherwise we
4114 	 * could end up iterating over non-eligible zones endlessly.
4115 	 */
4116 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4117 					ac->high_zoneidx, ac->nodemask);
4118 	if (!ac->preferred_zoneref->zone)
4119 		goto nopage;
4120 
4121 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4122 		wake_all_kswapds(order, gfp_mask, ac);
4123 
4124 	/*
4125 	 * The adjusted alloc_flags might result in immediate success, so try
4126 	 * that first
4127 	 */
4128 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4129 	if (page)
4130 		goto got_pg;
4131 
4132 	/*
4133 	 * For costly allocations, try direct compaction first, as it's likely
4134 	 * that we have enough base pages and don't need to reclaim. For non-
4135 	 * movable high-order allocations, do that as well, as compaction will
4136 	 * try prevent permanent fragmentation by migrating from blocks of the
4137 	 * same migratetype.
4138 	 * Don't try this for allocations that are allowed to ignore
4139 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4140 	 */
4141 	if (can_direct_reclaim &&
4142 			(costly_order ||
4143 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4144 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4145 		page = __alloc_pages_direct_compact(gfp_mask, order,
4146 						alloc_flags, ac,
4147 						INIT_COMPACT_PRIORITY,
4148 						&compact_result);
4149 		if (page)
4150 			goto got_pg;
4151 
4152 		/*
4153 		 * Checks for costly allocations with __GFP_NORETRY, which
4154 		 * includes THP page fault allocations
4155 		 */
4156 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4157 			/*
4158 			 * If compaction is deferred for high-order allocations,
4159 			 * it is because sync compaction recently failed. If
4160 			 * this is the case and the caller requested a THP
4161 			 * allocation, we do not want to heavily disrupt the
4162 			 * system, so we fail the allocation instead of entering
4163 			 * direct reclaim.
4164 			 */
4165 			if (compact_result == COMPACT_DEFERRED)
4166 				goto nopage;
4167 
4168 			/*
4169 			 * Looks like reclaim/compaction is worth trying, but
4170 			 * sync compaction could be very expensive, so keep
4171 			 * using async compaction.
4172 			 */
4173 			compact_priority = INIT_COMPACT_PRIORITY;
4174 		}
4175 	}
4176 
4177 retry:
4178 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4179 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4180 		wake_all_kswapds(order, gfp_mask, ac);
4181 
4182 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4183 	if (reserve_flags)
4184 		alloc_flags = reserve_flags;
4185 
4186 	/*
4187 	 * Reset the nodemask and zonelist iterators if memory policies can be
4188 	 * ignored. These allocations are high priority and system rather than
4189 	 * user oriented.
4190 	 */
4191 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4192 		ac->nodemask = NULL;
4193 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4194 					ac->high_zoneidx, ac->nodemask);
4195 	}
4196 
4197 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4198 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4199 	if (page)
4200 		goto got_pg;
4201 
4202 	/* Caller is not willing to reclaim, we can't balance anything */
4203 	if (!can_direct_reclaim)
4204 		goto nopage;
4205 
4206 	/* Avoid recursion of direct reclaim */
4207 	if (current->flags & PF_MEMALLOC)
4208 		goto nopage;
4209 
4210 	/* Try direct reclaim and then allocating */
4211 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4212 							&did_some_progress);
4213 	if (page)
4214 		goto got_pg;
4215 
4216 	/* Try direct compaction and then allocating */
4217 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4218 					compact_priority, &compact_result);
4219 	if (page)
4220 		goto got_pg;
4221 
4222 	/* Do not loop if specifically requested */
4223 	if (gfp_mask & __GFP_NORETRY)
4224 		goto nopage;
4225 
4226 	/*
4227 	 * Do not retry costly high order allocations unless they are
4228 	 * __GFP_RETRY_MAYFAIL
4229 	 */
4230 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4231 		goto nopage;
4232 
4233 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4234 				 did_some_progress > 0, &no_progress_loops))
4235 		goto retry;
4236 
4237 	/*
4238 	 * It doesn't make any sense to retry for the compaction if the order-0
4239 	 * reclaim is not able to make any progress because the current
4240 	 * implementation of the compaction depends on the sufficient amount
4241 	 * of free memory (see __compaction_suitable)
4242 	 */
4243 	if (did_some_progress > 0 &&
4244 			should_compact_retry(ac, order, alloc_flags,
4245 				compact_result, &compact_priority,
4246 				&compaction_retries))
4247 		goto retry;
4248 
4249 
4250 	/* Deal with possible cpuset update races before we start OOM killing */
4251 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4252 		goto retry_cpuset;
4253 
4254 	/* Reclaim has failed us, start killing things */
4255 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4256 	if (page)
4257 		goto got_pg;
4258 
4259 	/* Avoid allocations with no watermarks from looping endlessly */
4260 	if (tsk_is_oom_victim(current) &&
4261 	    (alloc_flags == ALLOC_OOM ||
4262 	     (gfp_mask & __GFP_NOMEMALLOC)))
4263 		goto nopage;
4264 
4265 	/* Retry as long as the OOM killer is making progress */
4266 	if (did_some_progress) {
4267 		no_progress_loops = 0;
4268 		goto retry;
4269 	}
4270 
4271 nopage:
4272 	/* Deal with possible cpuset update races before we fail */
4273 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4274 		goto retry_cpuset;
4275 
4276 	/*
4277 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278 	 * we always retry
4279 	 */
4280 	if (gfp_mask & __GFP_NOFAIL) {
4281 		/*
4282 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 		 * of any new users that actually require GFP_NOWAIT
4284 		 */
4285 		if (WARN_ON_ONCE(!can_direct_reclaim))
4286 			goto fail;
4287 
4288 		/*
4289 		 * PF_MEMALLOC request from this context is rather bizarre
4290 		 * because we cannot reclaim anything and only can loop waiting
4291 		 * for somebody to do a work for us
4292 		 */
4293 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4294 
4295 		/*
4296 		 * non failing costly orders are a hard requirement which we
4297 		 * are not prepared for much so let's warn about these users
4298 		 * so that we can identify them and convert them to something
4299 		 * else.
4300 		 */
4301 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4302 
4303 		/*
4304 		 * Help non-failing allocations by giving them access to memory
4305 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4306 		 * could deplete whole memory reserves which would just make
4307 		 * the situation worse
4308 		 */
4309 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4310 		if (page)
4311 			goto got_pg;
4312 
4313 		cond_resched();
4314 		goto retry;
4315 	}
4316 fail:
4317 	warn_alloc(gfp_mask, ac->nodemask,
4318 			"page allocation failure: order:%u", order);
4319 got_pg:
4320 	return page;
4321 }
4322 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4323 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4324 		int preferred_nid, nodemask_t *nodemask,
4325 		struct alloc_context *ac, gfp_t *alloc_mask,
4326 		unsigned int *alloc_flags)
4327 {
4328 	ac->high_zoneidx = gfp_zone(gfp_mask);
4329 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4330 	ac->nodemask = nodemask;
4331 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4332 
4333 	if (cpusets_enabled()) {
4334 		*alloc_mask |= __GFP_HARDWALL;
4335 		if (!ac->nodemask)
4336 			ac->nodemask = &cpuset_current_mems_allowed;
4337 		else
4338 			*alloc_flags |= ALLOC_CPUSET;
4339 	}
4340 
4341 	fs_reclaim_acquire(gfp_mask);
4342 	fs_reclaim_release(gfp_mask);
4343 
4344 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4345 
4346 	if (should_fail_alloc_page(gfp_mask, order))
4347 		return false;
4348 
4349 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4350 		*alloc_flags |= ALLOC_CMA;
4351 
4352 	return true;
4353 }
4354 
4355 /* Determine whether to spread dirty pages and what the first usable zone */
finalise_ac(gfp_t gfp_mask,struct alloc_context * ac)4356 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4357 {
4358 	/* Dirty zone balancing only done in the fast path */
4359 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4360 
4361 	/*
4362 	 * The preferred zone is used for statistics but crucially it is
4363 	 * also used as the starting point for the zonelist iterator. It
4364 	 * may get reset for allocations that ignore memory policies.
4365 	 */
4366 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4367 					ac->high_zoneidx, ac->nodemask);
4368 }
4369 
4370 /*
4371  * This is the 'heart' of the zoned buddy allocator.
4372  */
4373 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4374 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4375 							nodemask_t *nodemask)
4376 {
4377 	struct page *page;
4378 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4379 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4380 	struct alloc_context ac = { };
4381 
4382 	/*
4383 	 * There are several places where we assume that the order value is sane
4384 	 * so bail out early if the request is out of bound.
4385 	 */
4386 	if (unlikely(order >= MAX_ORDER)) {
4387 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4388 		return NULL;
4389 	}
4390 
4391 	gfp_mask &= gfp_allowed_mask;
4392 	alloc_mask = gfp_mask;
4393 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4394 		return NULL;
4395 
4396 	finalise_ac(gfp_mask, &ac);
4397 
4398 	/* First allocation attempt */
4399 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4400 	if (likely(page))
4401 		goto out;
4402 
4403 	/*
4404 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4405 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4406 	 * from a particular context which has been marked by
4407 	 * memalloc_no{fs,io}_{save,restore}.
4408 	 */
4409 	alloc_mask = current_gfp_context(gfp_mask);
4410 	ac.spread_dirty_pages = false;
4411 
4412 	/*
4413 	 * Restore the original nodemask if it was potentially replaced with
4414 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4415 	 */
4416 	if (unlikely(ac.nodemask != nodemask))
4417 		ac.nodemask = nodemask;
4418 
4419 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4420 
4421 out:
4422 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4423 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4424 		__free_pages(page, order);
4425 		page = NULL;
4426 	}
4427 
4428 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4429 
4430 	return page;
4431 }
4432 EXPORT_SYMBOL(__alloc_pages_nodemask);
4433 
4434 /*
4435  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4436  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4437  * you need to access high mem.
4438  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4439 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4440 {
4441 	struct page *page;
4442 
4443 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4444 	if (!page)
4445 		return 0;
4446 	return (unsigned long) page_address(page);
4447 }
4448 EXPORT_SYMBOL(__get_free_pages);
4449 
get_zeroed_page(gfp_t gfp_mask)4450 unsigned long get_zeroed_page(gfp_t gfp_mask)
4451 {
4452 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4453 }
4454 EXPORT_SYMBOL(get_zeroed_page);
4455 
free_the_page(struct page * page,unsigned int order)4456 static inline void free_the_page(struct page *page, unsigned int order)
4457 {
4458 	if (order == 0)		/* Via pcp? */
4459 		free_unref_page(page);
4460 	else
4461 		__free_pages_ok(page, order);
4462 }
4463 
__free_pages(struct page * page,unsigned int order)4464 void __free_pages(struct page *page, unsigned int order)
4465 {
4466 	if (put_page_testzero(page))
4467 		free_the_page(page, order);
4468 }
4469 EXPORT_SYMBOL(__free_pages);
4470 
free_pages(unsigned long addr,unsigned int order)4471 void free_pages(unsigned long addr, unsigned int order)
4472 {
4473 	if (addr != 0) {
4474 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4475 		__free_pages(virt_to_page((void *)addr), order);
4476 	}
4477 }
4478 
4479 EXPORT_SYMBOL(free_pages);
4480 
4481 /*
4482  * Page Fragment:
4483  *  An arbitrary-length arbitrary-offset area of memory which resides
4484  *  within a 0 or higher order page.  Multiple fragments within that page
4485  *  are individually refcounted, in the page's reference counter.
4486  *
4487  * The page_frag functions below provide a simple allocation framework for
4488  * page fragments.  This is used by the network stack and network device
4489  * drivers to provide a backing region of memory for use as either an
4490  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4491  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4492 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4493 					     gfp_t gfp_mask)
4494 {
4495 	struct page *page = NULL;
4496 	gfp_t gfp = gfp_mask;
4497 
4498 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4499 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4500 		    __GFP_NOMEMALLOC;
4501 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4502 				PAGE_FRAG_CACHE_MAX_ORDER);
4503 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4504 #endif
4505 	if (unlikely(!page))
4506 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4507 
4508 	nc->va = page ? page_address(page) : NULL;
4509 
4510 	return page;
4511 }
4512 
__page_frag_cache_drain(struct page * page,unsigned int count)4513 void __page_frag_cache_drain(struct page *page, unsigned int count)
4514 {
4515 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4516 
4517 	if (page_ref_sub_and_test(page, count))
4518 		free_the_page(page, compound_order(page));
4519 }
4520 EXPORT_SYMBOL(__page_frag_cache_drain);
4521 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)4522 void *page_frag_alloc(struct page_frag_cache *nc,
4523 		      unsigned int fragsz, gfp_t gfp_mask)
4524 {
4525 	unsigned int size = PAGE_SIZE;
4526 	struct page *page;
4527 	int offset;
4528 
4529 	if (unlikely(!nc->va)) {
4530 refill:
4531 		page = __page_frag_cache_refill(nc, gfp_mask);
4532 		if (!page)
4533 			return NULL;
4534 
4535 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4536 		/* if size can vary use size else just use PAGE_SIZE */
4537 		size = nc->size;
4538 #endif
4539 		/* Even if we own the page, we do not use atomic_set().
4540 		 * This would break get_page_unless_zero() users.
4541 		 */
4542 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4543 
4544 		/* reset page count bias and offset to start of new frag */
4545 		nc->pfmemalloc = page_is_pfmemalloc(page);
4546 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4547 		nc->offset = size;
4548 	}
4549 
4550 	offset = nc->offset - fragsz;
4551 	if (unlikely(offset < 0)) {
4552 		page = virt_to_page(nc->va);
4553 
4554 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4555 			goto refill;
4556 
4557 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4558 		/* if size can vary use size else just use PAGE_SIZE */
4559 		size = nc->size;
4560 #endif
4561 		/* OK, page count is 0, we can safely set it */
4562 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4563 
4564 		/* reset page count bias and offset to start of new frag */
4565 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4566 		offset = size - fragsz;
4567 	}
4568 
4569 	nc->pagecnt_bias--;
4570 	nc->offset = offset;
4571 
4572 	return nc->va + offset;
4573 }
4574 EXPORT_SYMBOL(page_frag_alloc);
4575 
4576 /*
4577  * Frees a page fragment allocated out of either a compound or order 0 page.
4578  */
page_frag_free(void * addr)4579 void page_frag_free(void *addr)
4580 {
4581 	struct page *page = virt_to_head_page(addr);
4582 
4583 	if (unlikely(put_page_testzero(page)))
4584 		free_the_page(page, compound_order(page));
4585 }
4586 EXPORT_SYMBOL(page_frag_free);
4587 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4588 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4589 		size_t size)
4590 {
4591 	if (addr) {
4592 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4593 		unsigned long used = addr + PAGE_ALIGN(size);
4594 
4595 		split_page(virt_to_page((void *)addr), order);
4596 		while (used < alloc_end) {
4597 			free_page(used);
4598 			used += PAGE_SIZE;
4599 		}
4600 	}
4601 	return (void *)addr;
4602 }
4603 
4604 /**
4605  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4606  * @size: the number of bytes to allocate
4607  * @gfp_mask: GFP flags for the allocation
4608  *
4609  * This function is similar to alloc_pages(), except that it allocates the
4610  * minimum number of pages to satisfy the request.  alloc_pages() can only
4611  * allocate memory in power-of-two pages.
4612  *
4613  * This function is also limited by MAX_ORDER.
4614  *
4615  * Memory allocated by this function must be released by free_pages_exact().
4616  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4617 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4618 {
4619 	unsigned int order = get_order(size);
4620 	unsigned long addr;
4621 
4622 	addr = __get_free_pages(gfp_mask, order);
4623 	return make_alloc_exact(addr, order, size);
4624 }
4625 EXPORT_SYMBOL(alloc_pages_exact);
4626 
4627 /**
4628  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4629  *			   pages on a node.
4630  * @nid: the preferred node ID where memory should be allocated
4631  * @size: the number of bytes to allocate
4632  * @gfp_mask: GFP flags for the allocation
4633  *
4634  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4635  * back.
4636  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4637 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4638 {
4639 	unsigned int order = get_order(size);
4640 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4641 	if (!p)
4642 		return NULL;
4643 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4644 }
4645 
4646 /**
4647  * free_pages_exact - release memory allocated via alloc_pages_exact()
4648  * @virt: the value returned by alloc_pages_exact.
4649  * @size: size of allocation, same value as passed to alloc_pages_exact().
4650  *
4651  * Release the memory allocated by a previous call to alloc_pages_exact.
4652  */
free_pages_exact(void * virt,size_t size)4653 void free_pages_exact(void *virt, size_t size)
4654 {
4655 	unsigned long addr = (unsigned long)virt;
4656 	unsigned long end = addr + PAGE_ALIGN(size);
4657 
4658 	while (addr < end) {
4659 		free_page(addr);
4660 		addr += PAGE_SIZE;
4661 	}
4662 }
4663 EXPORT_SYMBOL(free_pages_exact);
4664 
4665 /**
4666  * nr_free_zone_pages - count number of pages beyond high watermark
4667  * @offset: The zone index of the highest zone
4668  *
4669  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4670  * high watermark within all zones at or below a given zone index.  For each
4671  * zone, the number of pages is calculated as:
4672  *
4673  *     nr_free_zone_pages = managed_pages - high_pages
4674  */
nr_free_zone_pages(int offset)4675 static unsigned long nr_free_zone_pages(int offset)
4676 {
4677 	struct zoneref *z;
4678 	struct zone *zone;
4679 
4680 	/* Just pick one node, since fallback list is circular */
4681 	unsigned long sum = 0;
4682 
4683 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4684 
4685 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4686 		unsigned long size = zone->managed_pages;
4687 		unsigned long high = high_wmark_pages(zone);
4688 		if (size > high)
4689 			sum += size - high;
4690 	}
4691 
4692 	return sum;
4693 }
4694 
4695 /**
4696  * nr_free_buffer_pages - count number of pages beyond high watermark
4697  *
4698  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4699  * watermark within ZONE_DMA and ZONE_NORMAL.
4700  */
nr_free_buffer_pages(void)4701 unsigned long nr_free_buffer_pages(void)
4702 {
4703 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4704 }
4705 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4706 
4707 /**
4708  * nr_free_pagecache_pages - count number of pages beyond high watermark
4709  *
4710  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4711  * high watermark within all zones.
4712  */
nr_free_pagecache_pages(void)4713 unsigned long nr_free_pagecache_pages(void)
4714 {
4715 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4716 }
4717 
show_node(struct zone * zone)4718 static inline void show_node(struct zone *zone)
4719 {
4720 	if (IS_ENABLED(CONFIG_NUMA))
4721 		printk("Node %d ", zone_to_nid(zone));
4722 }
4723 
si_mem_available(void)4724 long si_mem_available(void)
4725 {
4726 	long available;
4727 	unsigned long pagecache;
4728 	unsigned long wmark_low = 0;
4729 	unsigned long pages[NR_LRU_LISTS];
4730 	struct zone *zone;
4731 	int lru;
4732 
4733 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4734 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4735 
4736 	for_each_zone(zone)
4737 		wmark_low += zone->watermark[WMARK_LOW];
4738 
4739 	/*
4740 	 * Estimate the amount of memory available for userspace allocations,
4741 	 * without causing swapping.
4742 	 */
4743 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4744 
4745 	/*
4746 	 * Not all the page cache can be freed, otherwise the system will
4747 	 * start swapping. Assume at least half of the page cache, or the
4748 	 * low watermark worth of cache, needs to stay.
4749 	 */
4750 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4751 	pagecache -= min(pagecache / 2, wmark_low);
4752 	available += pagecache;
4753 
4754 	/*
4755 	 * Part of the reclaimable slab consists of items that are in use,
4756 	 * and cannot be freed. Cap this estimate at the low watermark.
4757 	 */
4758 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4759 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4760 			 wmark_low);
4761 
4762 	/*
4763 	 * Part of the kernel memory, which can be released under memory
4764 	 * pressure.
4765 	 */
4766 	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4767 		PAGE_SHIFT;
4768 
4769 	if (available < 0)
4770 		available = 0;
4771 	return available;
4772 }
4773 EXPORT_SYMBOL_GPL(si_mem_available);
4774 
si_meminfo(struct sysinfo * val)4775 void si_meminfo(struct sysinfo *val)
4776 {
4777 	val->totalram = totalram_pages;
4778 	val->sharedram = global_node_page_state(NR_SHMEM);
4779 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4780 	val->bufferram = nr_blockdev_pages();
4781 	val->totalhigh = totalhigh_pages;
4782 	val->freehigh = nr_free_highpages();
4783 	val->mem_unit = PAGE_SIZE;
4784 }
4785 
4786 EXPORT_SYMBOL(si_meminfo);
4787 
4788 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)4789 void si_meminfo_node(struct sysinfo *val, int nid)
4790 {
4791 	int zone_type;		/* needs to be signed */
4792 	unsigned long managed_pages = 0;
4793 	unsigned long managed_highpages = 0;
4794 	unsigned long free_highpages = 0;
4795 	pg_data_t *pgdat = NODE_DATA(nid);
4796 
4797 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4798 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4799 	val->totalram = managed_pages;
4800 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4801 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4802 #ifdef CONFIG_HIGHMEM
4803 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4804 		struct zone *zone = &pgdat->node_zones[zone_type];
4805 
4806 		if (is_highmem(zone)) {
4807 			managed_highpages += zone->managed_pages;
4808 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4809 		}
4810 	}
4811 	val->totalhigh = managed_highpages;
4812 	val->freehigh = free_highpages;
4813 #else
4814 	val->totalhigh = managed_highpages;
4815 	val->freehigh = free_highpages;
4816 #endif
4817 	val->mem_unit = PAGE_SIZE;
4818 }
4819 #endif
4820 
4821 /*
4822  * Determine whether the node should be displayed or not, depending on whether
4823  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4824  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)4825 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4826 {
4827 	if (!(flags & SHOW_MEM_FILTER_NODES))
4828 		return false;
4829 
4830 	/*
4831 	 * no node mask - aka implicit memory numa policy. Do not bother with
4832 	 * the synchronization - read_mems_allowed_begin - because we do not
4833 	 * have to be precise here.
4834 	 */
4835 	if (!nodemask)
4836 		nodemask = &cpuset_current_mems_allowed;
4837 
4838 	return !node_isset(nid, *nodemask);
4839 }
4840 
4841 #define K(x) ((x) << (PAGE_SHIFT-10))
4842 
show_migration_types(unsigned char type)4843 static void show_migration_types(unsigned char type)
4844 {
4845 	static const char types[MIGRATE_TYPES] = {
4846 		[MIGRATE_UNMOVABLE]	= 'U',
4847 		[MIGRATE_MOVABLE]	= 'M',
4848 		[MIGRATE_RECLAIMABLE]	= 'E',
4849 		[MIGRATE_HIGHATOMIC]	= 'H',
4850 #ifdef CONFIG_CMA
4851 		[MIGRATE_CMA]		= 'C',
4852 #endif
4853 #ifdef CONFIG_MEMORY_ISOLATION
4854 		[MIGRATE_ISOLATE]	= 'I',
4855 #endif
4856 	};
4857 	char tmp[MIGRATE_TYPES + 1];
4858 	char *p = tmp;
4859 	int i;
4860 
4861 	for (i = 0; i < MIGRATE_TYPES; i++) {
4862 		if (type & (1 << i))
4863 			*p++ = types[i];
4864 	}
4865 
4866 	*p = '\0';
4867 	printk(KERN_CONT "(%s) ", tmp);
4868 }
4869 
4870 /*
4871  * Show free area list (used inside shift_scroll-lock stuff)
4872  * We also calculate the percentage fragmentation. We do this by counting the
4873  * memory on each free list with the exception of the first item on the list.
4874  *
4875  * Bits in @filter:
4876  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4877  *   cpuset.
4878  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)4879 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4880 {
4881 	unsigned long free_pcp = 0;
4882 	int cpu;
4883 	struct zone *zone;
4884 	pg_data_t *pgdat;
4885 
4886 	for_each_populated_zone(zone) {
4887 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4888 			continue;
4889 
4890 		for_each_online_cpu(cpu)
4891 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4892 	}
4893 
4894 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4895 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4896 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4897 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4898 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4899 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4900 		global_node_page_state(NR_ACTIVE_ANON),
4901 		global_node_page_state(NR_INACTIVE_ANON),
4902 		global_node_page_state(NR_ISOLATED_ANON),
4903 		global_node_page_state(NR_ACTIVE_FILE),
4904 		global_node_page_state(NR_INACTIVE_FILE),
4905 		global_node_page_state(NR_ISOLATED_FILE),
4906 		global_node_page_state(NR_UNEVICTABLE),
4907 		global_node_page_state(NR_FILE_DIRTY),
4908 		global_node_page_state(NR_WRITEBACK),
4909 		global_node_page_state(NR_UNSTABLE_NFS),
4910 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4911 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4912 		global_node_page_state(NR_FILE_MAPPED),
4913 		global_node_page_state(NR_SHMEM),
4914 		global_zone_page_state(NR_PAGETABLE),
4915 		global_zone_page_state(NR_BOUNCE),
4916 		global_zone_page_state(NR_FREE_PAGES),
4917 		free_pcp,
4918 		global_zone_page_state(NR_FREE_CMA_PAGES));
4919 
4920 	for_each_online_pgdat(pgdat) {
4921 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4922 			continue;
4923 
4924 		printk("Node %d"
4925 			" active_anon:%lukB"
4926 			" inactive_anon:%lukB"
4927 			" active_file:%lukB"
4928 			" inactive_file:%lukB"
4929 			" unevictable:%lukB"
4930 			" isolated(anon):%lukB"
4931 			" isolated(file):%lukB"
4932 			" mapped:%lukB"
4933 			" dirty:%lukB"
4934 			" writeback:%lukB"
4935 			" shmem:%lukB"
4936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4937 			" shmem_thp: %lukB"
4938 			" shmem_pmdmapped: %lukB"
4939 			" anon_thp: %lukB"
4940 #endif
4941 			" writeback_tmp:%lukB"
4942 			" unstable:%lukB"
4943 			" all_unreclaimable? %s"
4944 			"\n",
4945 			pgdat->node_id,
4946 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4947 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4948 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4949 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4950 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4951 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4952 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4953 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4954 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4955 			K(node_page_state(pgdat, NR_WRITEBACK)),
4956 			K(node_page_state(pgdat, NR_SHMEM)),
4957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4958 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4959 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4960 					* HPAGE_PMD_NR),
4961 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4962 #endif
4963 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4964 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4965 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4966 				"yes" : "no");
4967 	}
4968 
4969 	for_each_populated_zone(zone) {
4970 		int i;
4971 
4972 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4973 			continue;
4974 
4975 		free_pcp = 0;
4976 		for_each_online_cpu(cpu)
4977 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4978 
4979 		show_node(zone);
4980 		printk(KERN_CONT
4981 			"%s"
4982 			" free:%lukB"
4983 			" min:%lukB"
4984 			" low:%lukB"
4985 			" high:%lukB"
4986 			" active_anon:%lukB"
4987 			" inactive_anon:%lukB"
4988 			" active_file:%lukB"
4989 			" inactive_file:%lukB"
4990 			" unevictable:%lukB"
4991 			" writepending:%lukB"
4992 			" present:%lukB"
4993 			" managed:%lukB"
4994 			" mlocked:%lukB"
4995 			" kernel_stack:%lukB"
4996 			" pagetables:%lukB"
4997 			" bounce:%lukB"
4998 			" free_pcp:%lukB"
4999 			" local_pcp:%ukB"
5000 			" free_cma:%lukB"
5001 			"\n",
5002 			zone->name,
5003 			K(zone_page_state(zone, NR_FREE_PAGES)),
5004 			K(min_wmark_pages(zone)),
5005 			K(low_wmark_pages(zone)),
5006 			K(high_wmark_pages(zone)),
5007 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5008 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5009 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5010 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5011 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5012 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5013 			K(zone->present_pages),
5014 			K(zone->managed_pages),
5015 			K(zone_page_state(zone, NR_MLOCK)),
5016 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5017 			K(zone_page_state(zone, NR_PAGETABLE)),
5018 			K(zone_page_state(zone, NR_BOUNCE)),
5019 			K(free_pcp),
5020 			K(this_cpu_read(zone->pageset->pcp.count)),
5021 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5022 		printk("lowmem_reserve[]:");
5023 		for (i = 0; i < MAX_NR_ZONES; i++)
5024 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5025 		printk(KERN_CONT "\n");
5026 	}
5027 
5028 	for_each_populated_zone(zone) {
5029 		unsigned int order;
5030 		unsigned long nr[MAX_ORDER], flags, total = 0;
5031 		unsigned char types[MAX_ORDER];
5032 
5033 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5034 			continue;
5035 		show_node(zone);
5036 		printk(KERN_CONT "%s: ", zone->name);
5037 
5038 		spin_lock_irqsave(&zone->lock, flags);
5039 		for (order = 0; order < MAX_ORDER; order++) {
5040 			struct free_area *area = &zone->free_area[order];
5041 			int type;
5042 
5043 			nr[order] = area->nr_free;
5044 			total += nr[order] << order;
5045 
5046 			types[order] = 0;
5047 			for (type = 0; type < MIGRATE_TYPES; type++) {
5048 				if (!list_empty(&area->free_list[type]))
5049 					types[order] |= 1 << type;
5050 			}
5051 		}
5052 		spin_unlock_irqrestore(&zone->lock, flags);
5053 		for (order = 0; order < MAX_ORDER; order++) {
5054 			printk(KERN_CONT "%lu*%lukB ",
5055 			       nr[order], K(1UL) << order);
5056 			if (nr[order])
5057 				show_migration_types(types[order]);
5058 		}
5059 		printk(KERN_CONT "= %lukB\n", K(total));
5060 	}
5061 
5062 	hugetlb_show_meminfo();
5063 
5064 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5065 
5066 	show_swap_cache_info();
5067 }
5068 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5069 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5070 {
5071 	zoneref->zone = zone;
5072 	zoneref->zone_idx = zone_idx(zone);
5073 }
5074 
5075 /*
5076  * Builds allocation fallback zone lists.
5077  *
5078  * Add all populated zones of a node to the zonelist.
5079  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5080 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5081 {
5082 	struct zone *zone;
5083 	enum zone_type zone_type = MAX_NR_ZONES;
5084 	int nr_zones = 0;
5085 
5086 	do {
5087 		zone_type--;
5088 		zone = pgdat->node_zones + zone_type;
5089 		if (managed_zone(zone)) {
5090 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5091 			check_highest_zone(zone_type);
5092 		}
5093 	} while (zone_type);
5094 
5095 	return nr_zones;
5096 }
5097 
5098 #ifdef CONFIG_NUMA
5099 
__parse_numa_zonelist_order(char * s)5100 static int __parse_numa_zonelist_order(char *s)
5101 {
5102 	/*
5103 	 * We used to support different zonlists modes but they turned
5104 	 * out to be just not useful. Let's keep the warning in place
5105 	 * if somebody still use the cmd line parameter so that we do
5106 	 * not fail it silently
5107 	 */
5108 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5109 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5110 		return -EINVAL;
5111 	}
5112 	return 0;
5113 }
5114 
setup_numa_zonelist_order(char * s)5115 static __init int setup_numa_zonelist_order(char *s)
5116 {
5117 	if (!s)
5118 		return 0;
5119 
5120 	return __parse_numa_zonelist_order(s);
5121 }
5122 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5123 
5124 char numa_zonelist_order[] = "Node";
5125 
5126 /*
5127  * sysctl handler for numa_zonelist_order
5128  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5129 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5130 		void __user *buffer, size_t *length,
5131 		loff_t *ppos)
5132 {
5133 	char *str;
5134 	int ret;
5135 
5136 	if (!write)
5137 		return proc_dostring(table, write, buffer, length, ppos);
5138 	str = memdup_user_nul(buffer, 16);
5139 	if (IS_ERR(str))
5140 		return PTR_ERR(str);
5141 
5142 	ret = __parse_numa_zonelist_order(str);
5143 	kfree(str);
5144 	return ret;
5145 }
5146 
5147 
5148 #define MAX_NODE_LOAD (nr_online_nodes)
5149 static int node_load[MAX_NUMNODES];
5150 
5151 /**
5152  * find_next_best_node - find the next node that should appear in a given node's fallback list
5153  * @node: node whose fallback list we're appending
5154  * @used_node_mask: nodemask_t of already used nodes
5155  *
5156  * We use a number of factors to determine which is the next node that should
5157  * appear on a given node's fallback list.  The node should not have appeared
5158  * already in @node's fallback list, and it should be the next closest node
5159  * according to the distance array (which contains arbitrary distance values
5160  * from each node to each node in the system), and should also prefer nodes
5161  * with no CPUs, since presumably they'll have very little allocation pressure
5162  * on them otherwise.
5163  * It returns -1 if no node is found.
5164  */
find_next_best_node(int node,nodemask_t * used_node_mask)5165 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5166 {
5167 	int n, val;
5168 	int min_val = INT_MAX;
5169 	int best_node = NUMA_NO_NODE;
5170 	const struct cpumask *tmp = cpumask_of_node(0);
5171 
5172 	/* Use the local node if we haven't already */
5173 	if (!node_isset(node, *used_node_mask)) {
5174 		node_set(node, *used_node_mask);
5175 		return node;
5176 	}
5177 
5178 	for_each_node_state(n, N_MEMORY) {
5179 
5180 		/* Don't want a node to appear more than once */
5181 		if (node_isset(n, *used_node_mask))
5182 			continue;
5183 
5184 		/* Use the distance array to find the distance */
5185 		val = node_distance(node, n);
5186 
5187 		/* Penalize nodes under us ("prefer the next node") */
5188 		val += (n < node);
5189 
5190 		/* Give preference to headless and unused nodes */
5191 		tmp = cpumask_of_node(n);
5192 		if (!cpumask_empty(tmp))
5193 			val += PENALTY_FOR_NODE_WITH_CPUS;
5194 
5195 		/* Slight preference for less loaded node */
5196 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5197 		val += node_load[n];
5198 
5199 		if (val < min_val) {
5200 			min_val = val;
5201 			best_node = n;
5202 		}
5203 	}
5204 
5205 	if (best_node >= 0)
5206 		node_set(best_node, *used_node_mask);
5207 
5208 	return best_node;
5209 }
5210 
5211 
5212 /*
5213  * Build zonelists ordered by node and zones within node.
5214  * This results in maximum locality--normal zone overflows into local
5215  * DMA zone, if any--but risks exhausting DMA zone.
5216  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5217 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5218 		unsigned nr_nodes)
5219 {
5220 	struct zoneref *zonerefs;
5221 	int i;
5222 
5223 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5224 
5225 	for (i = 0; i < nr_nodes; i++) {
5226 		int nr_zones;
5227 
5228 		pg_data_t *node = NODE_DATA(node_order[i]);
5229 
5230 		nr_zones = build_zonerefs_node(node, zonerefs);
5231 		zonerefs += nr_zones;
5232 	}
5233 	zonerefs->zone = NULL;
5234 	zonerefs->zone_idx = 0;
5235 }
5236 
5237 /*
5238  * Build gfp_thisnode zonelists
5239  */
build_thisnode_zonelists(pg_data_t * pgdat)5240 static void build_thisnode_zonelists(pg_data_t *pgdat)
5241 {
5242 	struct zoneref *zonerefs;
5243 	int nr_zones;
5244 
5245 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5246 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5247 	zonerefs += nr_zones;
5248 	zonerefs->zone = NULL;
5249 	zonerefs->zone_idx = 0;
5250 }
5251 
5252 /*
5253  * Build zonelists ordered by zone and nodes within zones.
5254  * This results in conserving DMA zone[s] until all Normal memory is
5255  * exhausted, but results in overflowing to remote node while memory
5256  * may still exist in local DMA zone.
5257  */
5258 
build_zonelists(pg_data_t * pgdat)5259 static void build_zonelists(pg_data_t *pgdat)
5260 {
5261 	static int node_order[MAX_NUMNODES];
5262 	int node, load, nr_nodes = 0;
5263 	nodemask_t used_mask;
5264 	int local_node, prev_node;
5265 
5266 	/* NUMA-aware ordering of nodes */
5267 	local_node = pgdat->node_id;
5268 	load = nr_online_nodes;
5269 	prev_node = local_node;
5270 	nodes_clear(used_mask);
5271 
5272 	memset(node_order, 0, sizeof(node_order));
5273 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5274 		/*
5275 		 * We don't want to pressure a particular node.
5276 		 * So adding penalty to the first node in same
5277 		 * distance group to make it round-robin.
5278 		 */
5279 		if (node_distance(local_node, node) !=
5280 		    node_distance(local_node, prev_node))
5281 			node_load[node] = load;
5282 
5283 		node_order[nr_nodes++] = node;
5284 		prev_node = node;
5285 		load--;
5286 	}
5287 
5288 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5289 	build_thisnode_zonelists(pgdat);
5290 }
5291 
5292 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5293 /*
5294  * Return node id of node used for "local" allocations.
5295  * I.e., first node id of first zone in arg node's generic zonelist.
5296  * Used for initializing percpu 'numa_mem', which is used primarily
5297  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5298  */
local_memory_node(int node)5299 int local_memory_node(int node)
5300 {
5301 	struct zoneref *z;
5302 
5303 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5304 				   gfp_zone(GFP_KERNEL),
5305 				   NULL);
5306 	return zone_to_nid(z->zone);
5307 }
5308 #endif
5309 
5310 static void setup_min_unmapped_ratio(void);
5311 static void setup_min_slab_ratio(void);
5312 #else	/* CONFIG_NUMA */
5313 
build_zonelists(pg_data_t * pgdat)5314 static void build_zonelists(pg_data_t *pgdat)
5315 {
5316 	int node, local_node;
5317 	struct zoneref *zonerefs;
5318 	int nr_zones;
5319 
5320 	local_node = pgdat->node_id;
5321 
5322 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5323 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5324 	zonerefs += nr_zones;
5325 
5326 	/*
5327 	 * Now we build the zonelist so that it contains the zones
5328 	 * of all the other nodes.
5329 	 * We don't want to pressure a particular node, so when
5330 	 * building the zones for node N, we make sure that the
5331 	 * zones coming right after the local ones are those from
5332 	 * node N+1 (modulo N)
5333 	 */
5334 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5335 		if (!node_online(node))
5336 			continue;
5337 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5338 		zonerefs += nr_zones;
5339 	}
5340 	for (node = 0; node < local_node; node++) {
5341 		if (!node_online(node))
5342 			continue;
5343 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5344 		zonerefs += nr_zones;
5345 	}
5346 
5347 	zonerefs->zone = NULL;
5348 	zonerefs->zone_idx = 0;
5349 }
5350 
5351 #endif	/* CONFIG_NUMA */
5352 
5353 /*
5354  * Boot pageset table. One per cpu which is going to be used for all
5355  * zones and all nodes. The parameters will be set in such a way
5356  * that an item put on a list will immediately be handed over to
5357  * the buddy list. This is safe since pageset manipulation is done
5358  * with interrupts disabled.
5359  *
5360  * The boot_pagesets must be kept even after bootup is complete for
5361  * unused processors and/or zones. They do play a role for bootstrapping
5362  * hotplugged processors.
5363  *
5364  * zoneinfo_show() and maybe other functions do
5365  * not check if the processor is online before following the pageset pointer.
5366  * Other parts of the kernel may not check if the zone is available.
5367  */
5368 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5369 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5370 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5371 
__build_all_zonelists(void * data)5372 static void __build_all_zonelists(void *data)
5373 {
5374 	int nid;
5375 	int __maybe_unused cpu;
5376 	pg_data_t *self = data;
5377 	static DEFINE_SPINLOCK(lock);
5378 
5379 	spin_lock(&lock);
5380 
5381 #ifdef CONFIG_NUMA
5382 	memset(node_load, 0, sizeof(node_load));
5383 #endif
5384 
5385 	/*
5386 	 * This node is hotadded and no memory is yet present.   So just
5387 	 * building zonelists is fine - no need to touch other nodes.
5388 	 */
5389 	if (self && !node_online(self->node_id)) {
5390 		build_zonelists(self);
5391 	} else {
5392 		for_each_online_node(nid) {
5393 			pg_data_t *pgdat = NODE_DATA(nid);
5394 
5395 			build_zonelists(pgdat);
5396 		}
5397 
5398 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5399 		/*
5400 		 * We now know the "local memory node" for each node--
5401 		 * i.e., the node of the first zone in the generic zonelist.
5402 		 * Set up numa_mem percpu variable for on-line cpus.  During
5403 		 * boot, only the boot cpu should be on-line;  we'll init the
5404 		 * secondary cpus' numa_mem as they come on-line.  During
5405 		 * node/memory hotplug, we'll fixup all on-line cpus.
5406 		 */
5407 		for_each_online_cpu(cpu)
5408 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5409 #endif
5410 	}
5411 
5412 	spin_unlock(&lock);
5413 }
5414 
5415 static noinline void __init
build_all_zonelists_init(void)5416 build_all_zonelists_init(void)
5417 {
5418 	int cpu;
5419 
5420 	__build_all_zonelists(NULL);
5421 
5422 	/*
5423 	 * Initialize the boot_pagesets that are going to be used
5424 	 * for bootstrapping processors. The real pagesets for
5425 	 * each zone will be allocated later when the per cpu
5426 	 * allocator is available.
5427 	 *
5428 	 * boot_pagesets are used also for bootstrapping offline
5429 	 * cpus if the system is already booted because the pagesets
5430 	 * are needed to initialize allocators on a specific cpu too.
5431 	 * F.e. the percpu allocator needs the page allocator which
5432 	 * needs the percpu allocator in order to allocate its pagesets
5433 	 * (a chicken-egg dilemma).
5434 	 */
5435 	for_each_possible_cpu(cpu)
5436 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5437 
5438 	mminit_verify_zonelist();
5439 	cpuset_init_current_mems_allowed();
5440 }
5441 
5442 /*
5443  * unless system_state == SYSTEM_BOOTING.
5444  *
5445  * __ref due to call of __init annotated helper build_all_zonelists_init
5446  * [protected by SYSTEM_BOOTING].
5447  */
build_all_zonelists(pg_data_t * pgdat)5448 void __ref build_all_zonelists(pg_data_t *pgdat)
5449 {
5450 	if (system_state == SYSTEM_BOOTING) {
5451 		build_all_zonelists_init();
5452 	} else {
5453 		__build_all_zonelists(pgdat);
5454 		/* cpuset refresh routine should be here */
5455 	}
5456 	vm_total_pages = nr_free_pagecache_pages();
5457 	/*
5458 	 * Disable grouping by mobility if the number of pages in the
5459 	 * system is too low to allow the mechanism to work. It would be
5460 	 * more accurate, but expensive to check per-zone. This check is
5461 	 * made on memory-hotadd so a system can start with mobility
5462 	 * disabled and enable it later
5463 	 */
5464 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5465 		page_group_by_mobility_disabled = 1;
5466 	else
5467 		page_group_by_mobility_disabled = 0;
5468 
5469 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5470 		nr_online_nodes,
5471 		page_group_by_mobility_disabled ? "off" : "on",
5472 		vm_total_pages);
5473 #ifdef CONFIG_NUMA
5474 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5475 #endif
5476 }
5477 
5478 /*
5479  * Initially all pages are reserved - free ones are freed
5480  * up by free_all_bootmem() once the early boot process is
5481  * done. Non-atomic initialization, single-pass.
5482  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum meminit_context context,struct vmem_altmap * altmap)5483 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5484 		unsigned long start_pfn, enum meminit_context context,
5485 		struct vmem_altmap *altmap)
5486 {
5487 	unsigned long end_pfn = start_pfn + size;
5488 	pg_data_t *pgdat = NODE_DATA(nid);
5489 	unsigned long pfn;
5490 	unsigned long nr_initialised = 0;
5491 	struct page *page;
5492 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5493 	struct memblock_region *r = NULL, *tmp;
5494 #endif
5495 
5496 	if (highest_memmap_pfn < end_pfn - 1)
5497 		highest_memmap_pfn = end_pfn - 1;
5498 
5499 	/*
5500 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5501 	 * memory
5502 	 */
5503 	if (altmap && start_pfn == altmap->base_pfn)
5504 		start_pfn += altmap->reserve;
5505 
5506 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5507 		/*
5508 		 * There can be holes in boot-time mem_map[]s handed to this
5509 		 * function.  They do not exist on hotplugged memory.
5510 		 */
5511 		if (context != MEMINIT_EARLY)
5512 			goto not_early;
5513 
5514 		if (!early_pfn_valid(pfn))
5515 			continue;
5516 		if (!early_pfn_in_nid(pfn, nid))
5517 			continue;
5518 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5519 			break;
5520 
5521 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5522 		/*
5523 		 * Check given memblock attribute by firmware which can affect
5524 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5525 		 * mirrored, it's an overlapped memmap init. skip it.
5526 		 */
5527 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5528 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5529 				for_each_memblock(memory, tmp)
5530 					if (pfn < memblock_region_memory_end_pfn(tmp))
5531 						break;
5532 				r = tmp;
5533 			}
5534 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5535 			    memblock_is_mirror(r)) {
5536 				/* already initialized as NORMAL */
5537 				pfn = memblock_region_memory_end_pfn(r);
5538 				continue;
5539 			}
5540 		}
5541 #endif
5542 
5543 not_early:
5544 		page = pfn_to_page(pfn);
5545 		__init_single_page(page, pfn, zone, nid);
5546 		if (context == MEMINIT_HOTPLUG)
5547 			SetPageReserved(page);
5548 
5549 		/*
5550 		 * Mark the block movable so that blocks are reserved for
5551 		 * movable at startup. This will force kernel allocations
5552 		 * to reserve their blocks rather than leaking throughout
5553 		 * the address space during boot when many long-lived
5554 		 * kernel allocations are made.
5555 		 *
5556 		 * bitmap is created for zone's valid pfn range. but memmap
5557 		 * can be created for invalid pages (for alignment)
5558 		 * check here not to call set_pageblock_migratetype() against
5559 		 * pfn out of zone.
5560 		 *
5561 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
5562 		 * because this is done early in sparse_add_one_section
5563 		 */
5564 		if (!(pfn & (pageblock_nr_pages - 1))) {
5565 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5566 			cond_resched();
5567 		}
5568 	}
5569 }
5570 
zone_init_free_lists(struct zone * zone)5571 static void __meminit zone_init_free_lists(struct zone *zone)
5572 {
5573 	unsigned int order, t;
5574 	for_each_migratetype_order(order, t) {
5575 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5576 		zone->free_area[order].nr_free = 0;
5577 	}
5578 }
5579 
5580 #ifndef __HAVE_ARCH_MEMMAP_INIT
5581 #define memmap_init(size, nid, zone, start_pfn) \
5582 	memmap_init_zone((size), (nid), (zone), (start_pfn), \
5583 			 MEMINIT_EARLY, NULL)
5584 #endif
5585 
zone_batchsize(struct zone * zone)5586 static int zone_batchsize(struct zone *zone)
5587 {
5588 #ifdef CONFIG_MMU
5589 	int batch;
5590 
5591 	/*
5592 	 * The per-cpu-pages pools are set to around 1000th of the
5593 	 * size of the zone.
5594 	 */
5595 	batch = zone->managed_pages / 1024;
5596 	/* But no more than a meg. */
5597 	if (batch * PAGE_SIZE > 1024 * 1024)
5598 		batch = (1024 * 1024) / PAGE_SIZE;
5599 	batch /= 4;		/* We effectively *= 4 below */
5600 	if (batch < 1)
5601 		batch = 1;
5602 
5603 	/*
5604 	 * Clamp the batch to a 2^n - 1 value. Having a power
5605 	 * of 2 value was found to be more likely to have
5606 	 * suboptimal cache aliasing properties in some cases.
5607 	 *
5608 	 * For example if 2 tasks are alternately allocating
5609 	 * batches of pages, one task can end up with a lot
5610 	 * of pages of one half of the possible page colors
5611 	 * and the other with pages of the other colors.
5612 	 */
5613 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5614 
5615 	return batch;
5616 
5617 #else
5618 	/* The deferral and batching of frees should be suppressed under NOMMU
5619 	 * conditions.
5620 	 *
5621 	 * The problem is that NOMMU needs to be able to allocate large chunks
5622 	 * of contiguous memory as there's no hardware page translation to
5623 	 * assemble apparent contiguous memory from discontiguous pages.
5624 	 *
5625 	 * Queueing large contiguous runs of pages for batching, however,
5626 	 * causes the pages to actually be freed in smaller chunks.  As there
5627 	 * can be a significant delay between the individual batches being
5628 	 * recycled, this leads to the once large chunks of space being
5629 	 * fragmented and becoming unavailable for high-order allocations.
5630 	 */
5631 	return 0;
5632 #endif
5633 }
5634 
5635 /*
5636  * pcp->high and pcp->batch values are related and dependent on one another:
5637  * ->batch must never be higher then ->high.
5638  * The following function updates them in a safe manner without read side
5639  * locking.
5640  *
5641  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5642  * those fields changing asynchronously (acording the the above rule).
5643  *
5644  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5645  * outside of boot time (or some other assurance that no concurrent updaters
5646  * exist).
5647  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5648 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5649 		unsigned long batch)
5650 {
5651        /* start with a fail safe value for batch */
5652 	pcp->batch = 1;
5653 	smp_wmb();
5654 
5655        /* Update high, then batch, in order */
5656 	pcp->high = high;
5657 	smp_wmb();
5658 
5659 	pcp->batch = batch;
5660 }
5661 
5662 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)5663 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5664 {
5665 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5666 }
5667 
pageset_init(struct per_cpu_pageset * p)5668 static void pageset_init(struct per_cpu_pageset *p)
5669 {
5670 	struct per_cpu_pages *pcp;
5671 	int migratetype;
5672 
5673 	memset(p, 0, sizeof(*p));
5674 
5675 	pcp = &p->pcp;
5676 	pcp->count = 0;
5677 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5678 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5679 }
5680 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)5681 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5682 {
5683 	pageset_init(p);
5684 	pageset_set_batch(p, batch);
5685 }
5686 
5687 /*
5688  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5689  * to the value high for the pageset p.
5690  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)5691 static void pageset_set_high(struct per_cpu_pageset *p,
5692 				unsigned long high)
5693 {
5694 	unsigned long batch = max(1UL, high / 4);
5695 	if ((high / 4) > (PAGE_SHIFT * 8))
5696 		batch = PAGE_SHIFT * 8;
5697 
5698 	pageset_update(&p->pcp, high, batch);
5699 }
5700 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)5701 static void pageset_set_high_and_batch(struct zone *zone,
5702 				       struct per_cpu_pageset *pcp)
5703 {
5704 	if (percpu_pagelist_fraction)
5705 		pageset_set_high(pcp,
5706 			(zone->managed_pages /
5707 				percpu_pagelist_fraction));
5708 	else
5709 		pageset_set_batch(pcp, zone_batchsize(zone));
5710 }
5711 
zone_pageset_init(struct zone * zone,int cpu)5712 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5713 {
5714 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5715 
5716 	pageset_init(pcp);
5717 	pageset_set_high_and_batch(zone, pcp);
5718 }
5719 
setup_zone_pageset(struct zone * zone)5720 void __meminit setup_zone_pageset(struct zone *zone)
5721 {
5722 	int cpu;
5723 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5724 	for_each_possible_cpu(cpu)
5725 		zone_pageset_init(zone, cpu);
5726 }
5727 
5728 /*
5729  * Allocate per cpu pagesets and initialize them.
5730  * Before this call only boot pagesets were available.
5731  */
setup_per_cpu_pageset(void)5732 void __init setup_per_cpu_pageset(void)
5733 {
5734 	struct pglist_data *pgdat;
5735 	struct zone *zone;
5736 
5737 	for_each_populated_zone(zone)
5738 		setup_zone_pageset(zone);
5739 
5740 	for_each_online_pgdat(pgdat)
5741 		pgdat->per_cpu_nodestats =
5742 			alloc_percpu(struct per_cpu_nodestat);
5743 }
5744 
zone_pcp_init(struct zone * zone)5745 static __meminit void zone_pcp_init(struct zone *zone)
5746 {
5747 	/*
5748 	 * per cpu subsystem is not up at this point. The following code
5749 	 * relies on the ability of the linker to provide the
5750 	 * offset of a (static) per cpu variable into the per cpu area.
5751 	 */
5752 	zone->pageset = &boot_pageset;
5753 
5754 	if (populated_zone(zone))
5755 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5756 			zone->name, zone->present_pages,
5757 					 zone_batchsize(zone));
5758 }
5759 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)5760 void __meminit init_currently_empty_zone(struct zone *zone,
5761 					unsigned long zone_start_pfn,
5762 					unsigned long size)
5763 {
5764 	struct pglist_data *pgdat = zone->zone_pgdat;
5765 	int zone_idx = zone_idx(zone) + 1;
5766 
5767 	if (zone_idx > pgdat->nr_zones)
5768 		pgdat->nr_zones = zone_idx;
5769 
5770 	zone->zone_start_pfn = zone_start_pfn;
5771 
5772 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5773 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5774 			pgdat->node_id,
5775 			(unsigned long)zone_idx(zone),
5776 			zone_start_pfn, (zone_start_pfn + size));
5777 
5778 	zone_init_free_lists(zone);
5779 	zone->initialized = 1;
5780 }
5781 
5782 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5783 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5784 
5785 /*
5786  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5787  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)5788 int __meminit __early_pfn_to_nid(unsigned long pfn,
5789 					struct mminit_pfnnid_cache *state)
5790 {
5791 	unsigned long start_pfn, end_pfn;
5792 	int nid;
5793 
5794 	if (state->last_start <= pfn && pfn < state->last_end)
5795 		return state->last_nid;
5796 
5797 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5798 	if (nid != -1) {
5799 		state->last_start = start_pfn;
5800 		state->last_end = end_pfn;
5801 		state->last_nid = nid;
5802 	}
5803 
5804 	return nid;
5805 }
5806 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5807 
5808 /**
5809  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5810  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5811  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5812  *
5813  * If an architecture guarantees that all ranges registered contain no holes
5814  * and may be freed, this this function may be used instead of calling
5815  * memblock_free_early_nid() manually.
5816  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)5817 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5818 {
5819 	unsigned long start_pfn, end_pfn;
5820 	int i, this_nid;
5821 
5822 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5823 		start_pfn = min(start_pfn, max_low_pfn);
5824 		end_pfn = min(end_pfn, max_low_pfn);
5825 
5826 		if (start_pfn < end_pfn)
5827 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5828 					(end_pfn - start_pfn) << PAGE_SHIFT,
5829 					this_nid);
5830 	}
5831 }
5832 
5833 /**
5834  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5835  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5836  *
5837  * If an architecture guarantees that all ranges registered contain no holes and may
5838  * be freed, this function may be used instead of calling memory_present() manually.
5839  */
sparse_memory_present_with_active_regions(int nid)5840 void __init sparse_memory_present_with_active_regions(int nid)
5841 {
5842 	unsigned long start_pfn, end_pfn;
5843 	int i, this_nid;
5844 
5845 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5846 		memory_present(this_nid, start_pfn, end_pfn);
5847 }
5848 
5849 /**
5850  * get_pfn_range_for_nid - Return the start and end page frames for a node
5851  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5852  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5853  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5854  *
5855  * It returns the start and end page frame of a node based on information
5856  * provided by memblock_set_node(). If called for a node
5857  * with no available memory, a warning is printed and the start and end
5858  * PFNs will be 0.
5859  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)5860 void __meminit get_pfn_range_for_nid(unsigned int nid,
5861 			unsigned long *start_pfn, unsigned long *end_pfn)
5862 {
5863 	unsigned long this_start_pfn, this_end_pfn;
5864 	int i;
5865 
5866 	*start_pfn = -1UL;
5867 	*end_pfn = 0;
5868 
5869 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5870 		*start_pfn = min(*start_pfn, this_start_pfn);
5871 		*end_pfn = max(*end_pfn, this_end_pfn);
5872 	}
5873 
5874 	if (*start_pfn == -1UL)
5875 		*start_pfn = 0;
5876 }
5877 
5878 /*
5879  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5880  * assumption is made that zones within a node are ordered in monotonic
5881  * increasing memory addresses so that the "highest" populated zone is used
5882  */
find_usable_zone_for_movable(void)5883 static void __init find_usable_zone_for_movable(void)
5884 {
5885 	int zone_index;
5886 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5887 		if (zone_index == ZONE_MOVABLE)
5888 			continue;
5889 
5890 		if (arch_zone_highest_possible_pfn[zone_index] >
5891 				arch_zone_lowest_possible_pfn[zone_index])
5892 			break;
5893 	}
5894 
5895 	VM_BUG_ON(zone_index == -1);
5896 	movable_zone = zone_index;
5897 }
5898 
5899 /*
5900  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5901  * because it is sized independent of architecture. Unlike the other zones,
5902  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5903  * in each node depending on the size of each node and how evenly kernelcore
5904  * is distributed. This helper function adjusts the zone ranges
5905  * provided by the architecture for a given node by using the end of the
5906  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5907  * zones within a node are in order of monotonic increases memory addresses
5908  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)5909 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5910 					unsigned long zone_type,
5911 					unsigned long node_start_pfn,
5912 					unsigned long node_end_pfn,
5913 					unsigned long *zone_start_pfn,
5914 					unsigned long *zone_end_pfn)
5915 {
5916 	/* Only adjust if ZONE_MOVABLE is on this node */
5917 	if (zone_movable_pfn[nid]) {
5918 		/* Size ZONE_MOVABLE */
5919 		if (zone_type == ZONE_MOVABLE) {
5920 			*zone_start_pfn = zone_movable_pfn[nid];
5921 			*zone_end_pfn = min(node_end_pfn,
5922 				arch_zone_highest_possible_pfn[movable_zone]);
5923 
5924 		/* Adjust for ZONE_MOVABLE starting within this range */
5925 		} else if (!mirrored_kernelcore &&
5926 			*zone_start_pfn < zone_movable_pfn[nid] &&
5927 			*zone_end_pfn > zone_movable_pfn[nid]) {
5928 			*zone_end_pfn = zone_movable_pfn[nid];
5929 
5930 		/* Check if this whole range is within ZONE_MOVABLE */
5931 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5932 			*zone_start_pfn = *zone_end_pfn;
5933 	}
5934 }
5935 
5936 /*
5937  * Return the number of pages a zone spans in a node, including holes
5938  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5939  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)5940 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5941 					unsigned long zone_type,
5942 					unsigned long node_start_pfn,
5943 					unsigned long node_end_pfn,
5944 					unsigned long *zone_start_pfn,
5945 					unsigned long *zone_end_pfn,
5946 					unsigned long *ignored)
5947 {
5948 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5949 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5950 	/* When hotadd a new node from cpu_up(), the node should be empty */
5951 	if (!node_start_pfn && !node_end_pfn)
5952 		return 0;
5953 
5954 	/* Get the start and end of the zone */
5955 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5956 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5957 	adjust_zone_range_for_zone_movable(nid, zone_type,
5958 				node_start_pfn, node_end_pfn,
5959 				zone_start_pfn, zone_end_pfn);
5960 
5961 	/* Check that this node has pages within the zone's required range */
5962 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5963 		return 0;
5964 
5965 	/* Move the zone boundaries inside the node if necessary */
5966 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5967 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5968 
5969 	/* Return the spanned pages */
5970 	return *zone_end_pfn - *zone_start_pfn;
5971 }
5972 
5973 /*
5974  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5975  * then all holes in the requested range will be accounted for.
5976  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)5977 unsigned long __meminit __absent_pages_in_range(int nid,
5978 				unsigned long range_start_pfn,
5979 				unsigned long range_end_pfn)
5980 {
5981 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5982 	unsigned long start_pfn, end_pfn;
5983 	int i;
5984 
5985 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5986 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5987 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5988 		nr_absent -= end_pfn - start_pfn;
5989 	}
5990 	return nr_absent;
5991 }
5992 
5993 /**
5994  * absent_pages_in_range - Return number of page frames in holes within a range
5995  * @start_pfn: The start PFN to start searching for holes
5996  * @end_pfn: The end PFN to stop searching for holes
5997  *
5998  * It returns the number of pages frames in memory holes within a range.
5999  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6000 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6001 							unsigned long end_pfn)
6002 {
6003 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6004 }
6005 
6006 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)6007 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6008 					unsigned long zone_type,
6009 					unsigned long node_start_pfn,
6010 					unsigned long node_end_pfn,
6011 					unsigned long *ignored)
6012 {
6013 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6014 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6015 	unsigned long zone_start_pfn, zone_end_pfn;
6016 	unsigned long nr_absent;
6017 
6018 	/* When hotadd a new node from cpu_up(), the node should be empty */
6019 	if (!node_start_pfn && !node_end_pfn)
6020 		return 0;
6021 
6022 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6023 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6024 
6025 	adjust_zone_range_for_zone_movable(nid, zone_type,
6026 			node_start_pfn, node_end_pfn,
6027 			&zone_start_pfn, &zone_end_pfn);
6028 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6029 
6030 	/*
6031 	 * ZONE_MOVABLE handling.
6032 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6033 	 * and vice versa.
6034 	 */
6035 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6036 		unsigned long start_pfn, end_pfn;
6037 		struct memblock_region *r;
6038 
6039 		for_each_memblock(memory, r) {
6040 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6041 					  zone_start_pfn, zone_end_pfn);
6042 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6043 					zone_start_pfn, zone_end_pfn);
6044 
6045 			if (zone_type == ZONE_MOVABLE &&
6046 			    memblock_is_mirror(r))
6047 				nr_absent += end_pfn - start_pfn;
6048 
6049 			if (zone_type == ZONE_NORMAL &&
6050 			    !memblock_is_mirror(r))
6051 				nr_absent += end_pfn - start_pfn;
6052 		}
6053 	}
6054 
6055 	return nr_absent;
6056 }
6057 
6058 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)6059 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6060 					unsigned long zone_type,
6061 					unsigned long node_start_pfn,
6062 					unsigned long node_end_pfn,
6063 					unsigned long *zone_start_pfn,
6064 					unsigned long *zone_end_pfn,
6065 					unsigned long *zones_size)
6066 {
6067 	unsigned int zone;
6068 
6069 	*zone_start_pfn = node_start_pfn;
6070 	for (zone = 0; zone < zone_type; zone++)
6071 		*zone_start_pfn += zones_size[zone];
6072 
6073 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6074 
6075 	return zones_size[zone_type];
6076 }
6077 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)6078 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6079 						unsigned long zone_type,
6080 						unsigned long node_start_pfn,
6081 						unsigned long node_end_pfn,
6082 						unsigned long *zholes_size)
6083 {
6084 	if (!zholes_size)
6085 		return 0;
6086 
6087 	return zholes_size[zone_type];
6088 }
6089 
6090 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6091 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)6092 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6093 						unsigned long node_start_pfn,
6094 						unsigned long node_end_pfn,
6095 						unsigned long *zones_size,
6096 						unsigned long *zholes_size)
6097 {
6098 	unsigned long realtotalpages = 0, totalpages = 0;
6099 	enum zone_type i;
6100 
6101 	for (i = 0; i < MAX_NR_ZONES; i++) {
6102 		struct zone *zone = pgdat->node_zones + i;
6103 		unsigned long zone_start_pfn, zone_end_pfn;
6104 		unsigned long size, real_size;
6105 
6106 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6107 						  node_start_pfn,
6108 						  node_end_pfn,
6109 						  &zone_start_pfn,
6110 						  &zone_end_pfn,
6111 						  zones_size);
6112 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6113 						  node_start_pfn, node_end_pfn,
6114 						  zholes_size);
6115 		if (size)
6116 			zone->zone_start_pfn = zone_start_pfn;
6117 		else
6118 			zone->zone_start_pfn = 0;
6119 		zone->spanned_pages = size;
6120 		zone->present_pages = real_size;
6121 
6122 		totalpages += size;
6123 		realtotalpages += real_size;
6124 	}
6125 
6126 	pgdat->node_spanned_pages = totalpages;
6127 	pgdat->node_present_pages = realtotalpages;
6128 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6129 							realtotalpages);
6130 }
6131 
6132 #ifndef CONFIG_SPARSEMEM
6133 /*
6134  * Calculate the size of the zone->blockflags rounded to an unsigned long
6135  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6136  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6137  * round what is now in bits to nearest long in bits, then return it in
6138  * bytes.
6139  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6140 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6141 {
6142 	unsigned long usemapsize;
6143 
6144 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6145 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6146 	usemapsize = usemapsize >> pageblock_order;
6147 	usemapsize *= NR_PAGEBLOCK_BITS;
6148 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6149 
6150 	return usemapsize / 8;
6151 }
6152 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6153 static void __ref setup_usemap(struct pglist_data *pgdat,
6154 				struct zone *zone,
6155 				unsigned long zone_start_pfn,
6156 				unsigned long zonesize)
6157 {
6158 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6159 	zone->pageblock_flags = NULL;
6160 	if (usemapsize)
6161 		zone->pageblock_flags =
6162 			memblock_virt_alloc_node_nopanic(usemapsize,
6163 							 pgdat->node_id);
6164 }
6165 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6166 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6167 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6168 #endif /* CONFIG_SPARSEMEM */
6169 
6170 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6171 
6172 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6173 void __init set_pageblock_order(void)
6174 {
6175 	unsigned int order;
6176 
6177 	/* Check that pageblock_nr_pages has not already been setup */
6178 	if (pageblock_order)
6179 		return;
6180 
6181 	if (HPAGE_SHIFT > PAGE_SHIFT)
6182 		order = HUGETLB_PAGE_ORDER;
6183 	else
6184 		order = MAX_ORDER - 1;
6185 
6186 	/*
6187 	 * Assume the largest contiguous order of interest is a huge page.
6188 	 * This value may be variable depending on boot parameters on IA64 and
6189 	 * powerpc.
6190 	 */
6191 	pageblock_order = order;
6192 }
6193 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6194 
6195 /*
6196  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6197  * is unused as pageblock_order is set at compile-time. See
6198  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6199  * the kernel config
6200  */
set_pageblock_order(void)6201 void __init set_pageblock_order(void)
6202 {
6203 }
6204 
6205 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6206 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6207 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6208 						unsigned long present_pages)
6209 {
6210 	unsigned long pages = spanned_pages;
6211 
6212 	/*
6213 	 * Provide a more accurate estimation if there are holes within
6214 	 * the zone and SPARSEMEM is in use. If there are holes within the
6215 	 * zone, each populated memory region may cost us one or two extra
6216 	 * memmap pages due to alignment because memmap pages for each
6217 	 * populated regions may not be naturally aligned on page boundary.
6218 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6219 	 */
6220 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6221 	    IS_ENABLED(CONFIG_SPARSEMEM))
6222 		pages = present_pages;
6223 
6224 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6225 }
6226 
6227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)6228 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6229 {
6230 	spin_lock_init(&pgdat->split_queue_lock);
6231 	INIT_LIST_HEAD(&pgdat->split_queue);
6232 	pgdat->split_queue_len = 0;
6233 }
6234 #else
pgdat_init_split_queue(struct pglist_data * pgdat)6235 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6236 #endif
6237 
6238 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)6239 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6240 {
6241 	init_waitqueue_head(&pgdat->kcompactd_wait);
6242 }
6243 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)6244 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6245 #endif
6246 
pgdat_init_internals(struct pglist_data * pgdat)6247 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6248 {
6249 	pgdat_resize_init(pgdat);
6250 
6251 	pgdat_init_split_queue(pgdat);
6252 	pgdat_init_kcompactd(pgdat);
6253 
6254 	init_waitqueue_head(&pgdat->kswapd_wait);
6255 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6256 
6257 	pgdat_page_ext_init(pgdat);
6258 	spin_lock_init(&pgdat->lru_lock);
6259 	lruvec_init(node_lruvec(pgdat));
6260 }
6261 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)6262 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6263 							unsigned long remaining_pages)
6264 {
6265 	zone->managed_pages = remaining_pages;
6266 	zone_set_nid(zone, nid);
6267 	zone->name = zone_names[idx];
6268 	zone->zone_pgdat = NODE_DATA(nid);
6269 	spin_lock_init(&zone->lock);
6270 	zone_seqlock_init(zone);
6271 	zone_pcp_init(zone);
6272 }
6273 
6274 /*
6275  * Set up the zone data structures
6276  * - init pgdat internals
6277  * - init all zones belonging to this node
6278  *
6279  * NOTE: this function is only called during memory hotplug
6280  */
6281 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)6282 void __ref free_area_init_core_hotplug(int nid)
6283 {
6284 	enum zone_type z;
6285 	pg_data_t *pgdat = NODE_DATA(nid);
6286 
6287 	pgdat_init_internals(pgdat);
6288 	for (z = 0; z < MAX_NR_ZONES; z++)
6289 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6290 }
6291 #endif
6292 
6293 /*
6294  * Set up the zone data structures:
6295  *   - mark all pages reserved
6296  *   - mark all memory queues empty
6297  *   - clear the memory bitmaps
6298  *
6299  * NOTE: pgdat should get zeroed by caller.
6300  * NOTE: this function is only called during early init.
6301  */
free_area_init_core(struct pglist_data * pgdat)6302 static void __init free_area_init_core(struct pglist_data *pgdat)
6303 {
6304 	enum zone_type j;
6305 	int nid = pgdat->node_id;
6306 
6307 	pgdat_init_internals(pgdat);
6308 	pgdat->per_cpu_nodestats = &boot_nodestats;
6309 
6310 	for (j = 0; j < MAX_NR_ZONES; j++) {
6311 		struct zone *zone = pgdat->node_zones + j;
6312 		unsigned long size, freesize, memmap_pages;
6313 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6314 
6315 		size = zone->spanned_pages;
6316 		freesize = zone->present_pages;
6317 
6318 		/*
6319 		 * Adjust freesize so that it accounts for how much memory
6320 		 * is used by this zone for memmap. This affects the watermark
6321 		 * and per-cpu initialisations
6322 		 */
6323 		memmap_pages = calc_memmap_size(size, freesize);
6324 		if (!is_highmem_idx(j)) {
6325 			if (freesize >= memmap_pages) {
6326 				freesize -= memmap_pages;
6327 				if (memmap_pages)
6328 					printk(KERN_DEBUG
6329 					       "  %s zone: %lu pages used for memmap\n",
6330 					       zone_names[j], memmap_pages);
6331 			} else
6332 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6333 					zone_names[j], memmap_pages, freesize);
6334 		}
6335 
6336 		/* Account for reserved pages */
6337 		if (j == 0 && freesize > dma_reserve) {
6338 			freesize -= dma_reserve;
6339 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6340 					zone_names[0], dma_reserve);
6341 		}
6342 
6343 		if (!is_highmem_idx(j))
6344 			nr_kernel_pages += freesize;
6345 		/* Charge for highmem memmap if there are enough kernel pages */
6346 		else if (nr_kernel_pages > memmap_pages * 2)
6347 			nr_kernel_pages -= memmap_pages;
6348 		nr_all_pages += freesize;
6349 
6350 		/*
6351 		 * Set an approximate value for lowmem here, it will be adjusted
6352 		 * when the bootmem allocator frees pages into the buddy system.
6353 		 * And all highmem pages will be managed by the buddy system.
6354 		 */
6355 		zone_init_internals(zone, j, nid, freesize);
6356 
6357 		if (!size)
6358 			continue;
6359 
6360 		set_pageblock_order();
6361 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6362 		init_currently_empty_zone(zone, zone_start_pfn, size);
6363 		memmap_init(size, nid, j, zone_start_pfn);
6364 	}
6365 }
6366 
6367 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)6368 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6369 {
6370 	unsigned long __maybe_unused start = 0;
6371 	unsigned long __maybe_unused offset = 0;
6372 
6373 	/* Skip empty nodes */
6374 	if (!pgdat->node_spanned_pages)
6375 		return;
6376 
6377 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6378 	offset = pgdat->node_start_pfn - start;
6379 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6380 	if (!pgdat->node_mem_map) {
6381 		unsigned long size, end;
6382 		struct page *map;
6383 
6384 		/*
6385 		 * The zone's endpoints aren't required to be MAX_ORDER
6386 		 * aligned but the node_mem_map endpoints must be in order
6387 		 * for the buddy allocator to function correctly.
6388 		 */
6389 		end = pgdat_end_pfn(pgdat);
6390 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6391 		size =  (end - start) * sizeof(struct page);
6392 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6393 		pgdat->node_mem_map = map + offset;
6394 	}
6395 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6396 				__func__, pgdat->node_id, (unsigned long)pgdat,
6397 				(unsigned long)pgdat->node_mem_map);
6398 #ifndef CONFIG_NEED_MULTIPLE_NODES
6399 	/*
6400 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6401 	 */
6402 	if (pgdat == NODE_DATA(0)) {
6403 		mem_map = NODE_DATA(0)->node_mem_map;
6404 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6405 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6406 			mem_map -= offset;
6407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6408 	}
6409 #endif
6410 }
6411 #else
alloc_node_mem_map(struct pglist_data * pgdat)6412 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6413 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6414 
6415 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)6416 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6417 {
6418 	/*
6419 	 * We start only with one section of pages, more pages are added as
6420 	 * needed until the rest of deferred pages are initialized.
6421 	 */
6422 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6423 						pgdat->node_spanned_pages);
6424 	pgdat->first_deferred_pfn = ULONG_MAX;
6425 }
6426 #else
pgdat_set_deferred_range(pg_data_t * pgdat)6427 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6428 #endif
6429 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)6430 void __init free_area_init_node(int nid, unsigned long *zones_size,
6431 				   unsigned long node_start_pfn,
6432 				   unsigned long *zholes_size)
6433 {
6434 	pg_data_t *pgdat = NODE_DATA(nid);
6435 	unsigned long start_pfn = 0;
6436 	unsigned long end_pfn = 0;
6437 
6438 	/* pg_data_t should be reset to zero when it's allocated */
6439 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6440 
6441 	pgdat->node_id = nid;
6442 	pgdat->node_start_pfn = node_start_pfn;
6443 	pgdat->per_cpu_nodestats = NULL;
6444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6445 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6446 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6447 		(u64)start_pfn << PAGE_SHIFT,
6448 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6449 #else
6450 	start_pfn = node_start_pfn;
6451 #endif
6452 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6453 				  zones_size, zholes_size);
6454 
6455 	alloc_node_mem_map(pgdat);
6456 	pgdat_set_deferred_range(pgdat);
6457 
6458 	free_area_init_core(pgdat);
6459 }
6460 
6461 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6462 
6463 /*
6464  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6465  * pages zeroed
6466  */
zero_pfn_range(unsigned long spfn,unsigned long epfn)6467 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6468 {
6469 	unsigned long pfn;
6470 	u64 pgcnt = 0;
6471 
6472 	for (pfn = spfn; pfn < epfn; pfn++) {
6473 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6474 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6475 				+ pageblock_nr_pages - 1;
6476 			continue;
6477 		}
6478 		mm_zero_struct_page(pfn_to_page(pfn));
6479 		pgcnt++;
6480 	}
6481 
6482 	return pgcnt;
6483 }
6484 
6485 /*
6486  * Only struct pages that are backed by physical memory are zeroed and
6487  * initialized by going through __init_single_page(). But, there are some
6488  * struct pages which are reserved in memblock allocator and their fields
6489  * may be accessed (for example page_to_pfn() on some configuration accesses
6490  * flags). We must explicitly zero those struct pages.
6491  *
6492  * This function also addresses a similar issue where struct pages are left
6493  * uninitialized because the physical address range is not covered by
6494  * memblock.memory or memblock.reserved. That could happen when memblock
6495  * layout is manually configured via memmap=, or when the highest physical
6496  * address (max_pfn) does not end on a section boundary.
6497  */
zero_resv_unavail(void)6498 void __init zero_resv_unavail(void)
6499 {
6500 	phys_addr_t start, end;
6501 	u64 i, pgcnt;
6502 	phys_addr_t next = 0;
6503 
6504 	/*
6505 	 * Loop through unavailable ranges not covered by memblock.memory.
6506 	 */
6507 	pgcnt = 0;
6508 	for_each_mem_range(i, &memblock.memory, NULL,
6509 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6510 		if (next < start)
6511 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6512 		next = end;
6513 	}
6514 
6515 	/*
6516 	 * Early sections always have a fully populated memmap for the whole
6517 	 * section - see pfn_valid(). If the last section has holes at the
6518 	 * end and that section is marked "online", the memmap will be
6519 	 * considered initialized. Make sure that memmap has a well defined
6520 	 * state.
6521 	 */
6522 	pgcnt += zero_pfn_range(PFN_DOWN(next),
6523 				round_up(max_pfn, PAGES_PER_SECTION));
6524 
6525 	/*
6526 	 * Struct pages that do not have backing memory. This could be because
6527 	 * firmware is using some of this memory, or for some other reasons.
6528 	 */
6529 	if (pgcnt)
6530 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6531 }
6532 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6533 
6534 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6535 
6536 #if MAX_NUMNODES > 1
6537 /*
6538  * Figure out the number of possible node ids.
6539  */
setup_nr_node_ids(void)6540 void __init setup_nr_node_ids(void)
6541 {
6542 	unsigned int highest;
6543 
6544 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6545 	nr_node_ids = highest + 1;
6546 }
6547 #endif
6548 
6549 /**
6550  * node_map_pfn_alignment - determine the maximum internode alignment
6551  *
6552  * This function should be called after node map is populated and sorted.
6553  * It calculates the maximum power of two alignment which can distinguish
6554  * all the nodes.
6555  *
6556  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6557  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6558  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6559  * shifted, 1GiB is enough and this function will indicate so.
6560  *
6561  * This is used to test whether pfn -> nid mapping of the chosen memory
6562  * model has fine enough granularity to avoid incorrect mapping for the
6563  * populated node map.
6564  *
6565  * Returns the determined alignment in pfn's.  0 if there is no alignment
6566  * requirement (single node).
6567  */
node_map_pfn_alignment(void)6568 unsigned long __init node_map_pfn_alignment(void)
6569 {
6570 	unsigned long accl_mask = 0, last_end = 0;
6571 	unsigned long start, end, mask;
6572 	int last_nid = -1;
6573 	int i, nid;
6574 
6575 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6576 		if (!start || last_nid < 0 || last_nid == nid) {
6577 			last_nid = nid;
6578 			last_end = end;
6579 			continue;
6580 		}
6581 
6582 		/*
6583 		 * Start with a mask granular enough to pin-point to the
6584 		 * start pfn and tick off bits one-by-one until it becomes
6585 		 * too coarse to separate the current node from the last.
6586 		 */
6587 		mask = ~((1 << __ffs(start)) - 1);
6588 		while (mask && last_end <= (start & (mask << 1)))
6589 			mask <<= 1;
6590 
6591 		/* accumulate all internode masks */
6592 		accl_mask |= mask;
6593 	}
6594 
6595 	/* convert mask to number of pages */
6596 	return ~accl_mask + 1;
6597 }
6598 
6599 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)6600 static unsigned long __init find_min_pfn_for_node(int nid)
6601 {
6602 	unsigned long min_pfn = ULONG_MAX;
6603 	unsigned long start_pfn;
6604 	int i;
6605 
6606 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6607 		min_pfn = min(min_pfn, start_pfn);
6608 
6609 	if (min_pfn == ULONG_MAX) {
6610 		pr_warn("Could not find start_pfn for node %d\n", nid);
6611 		return 0;
6612 	}
6613 
6614 	return min_pfn;
6615 }
6616 
6617 /**
6618  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6619  *
6620  * It returns the minimum PFN based on information provided via
6621  * memblock_set_node().
6622  */
find_min_pfn_with_active_regions(void)6623 unsigned long __init find_min_pfn_with_active_regions(void)
6624 {
6625 	return find_min_pfn_for_node(MAX_NUMNODES);
6626 }
6627 
6628 /*
6629  * early_calculate_totalpages()
6630  * Sum pages in active regions for movable zone.
6631  * Populate N_MEMORY for calculating usable_nodes.
6632  */
early_calculate_totalpages(void)6633 static unsigned long __init early_calculate_totalpages(void)
6634 {
6635 	unsigned long totalpages = 0;
6636 	unsigned long start_pfn, end_pfn;
6637 	int i, nid;
6638 
6639 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6640 		unsigned long pages = end_pfn - start_pfn;
6641 
6642 		totalpages += pages;
6643 		if (pages)
6644 			node_set_state(nid, N_MEMORY);
6645 	}
6646 	return totalpages;
6647 }
6648 
6649 /*
6650  * Find the PFN the Movable zone begins in each node. Kernel memory
6651  * is spread evenly between nodes as long as the nodes have enough
6652  * memory. When they don't, some nodes will have more kernelcore than
6653  * others
6654  */
find_zone_movable_pfns_for_nodes(void)6655 static void __init find_zone_movable_pfns_for_nodes(void)
6656 {
6657 	int i, nid;
6658 	unsigned long usable_startpfn;
6659 	unsigned long kernelcore_node, kernelcore_remaining;
6660 	/* save the state before borrow the nodemask */
6661 	nodemask_t saved_node_state = node_states[N_MEMORY];
6662 	unsigned long totalpages = early_calculate_totalpages();
6663 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6664 	struct memblock_region *r;
6665 
6666 	/* Need to find movable_zone earlier when movable_node is specified. */
6667 	find_usable_zone_for_movable();
6668 
6669 	/*
6670 	 * If movable_node is specified, ignore kernelcore and movablecore
6671 	 * options.
6672 	 */
6673 	if (movable_node_is_enabled()) {
6674 		for_each_memblock(memory, r) {
6675 			if (!memblock_is_hotpluggable(r))
6676 				continue;
6677 
6678 			nid = r->nid;
6679 
6680 			usable_startpfn = PFN_DOWN(r->base);
6681 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6682 				min(usable_startpfn, zone_movable_pfn[nid]) :
6683 				usable_startpfn;
6684 		}
6685 
6686 		goto out2;
6687 	}
6688 
6689 	/*
6690 	 * If kernelcore=mirror is specified, ignore movablecore option
6691 	 */
6692 	if (mirrored_kernelcore) {
6693 		bool mem_below_4gb_not_mirrored = false;
6694 
6695 		for_each_memblock(memory, r) {
6696 			if (memblock_is_mirror(r))
6697 				continue;
6698 
6699 			nid = r->nid;
6700 
6701 			usable_startpfn = memblock_region_memory_base_pfn(r);
6702 
6703 			if (usable_startpfn < 0x100000) {
6704 				mem_below_4gb_not_mirrored = true;
6705 				continue;
6706 			}
6707 
6708 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6709 				min(usable_startpfn, zone_movable_pfn[nid]) :
6710 				usable_startpfn;
6711 		}
6712 
6713 		if (mem_below_4gb_not_mirrored)
6714 			pr_warn("This configuration results in unmirrored kernel memory.");
6715 
6716 		goto out2;
6717 	}
6718 
6719 	/*
6720 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6721 	 * amount of necessary memory.
6722 	 */
6723 	if (required_kernelcore_percent)
6724 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6725 				       10000UL;
6726 	if (required_movablecore_percent)
6727 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6728 					10000UL;
6729 
6730 	/*
6731 	 * If movablecore= was specified, calculate what size of
6732 	 * kernelcore that corresponds so that memory usable for
6733 	 * any allocation type is evenly spread. If both kernelcore
6734 	 * and movablecore are specified, then the value of kernelcore
6735 	 * will be used for required_kernelcore if it's greater than
6736 	 * what movablecore would have allowed.
6737 	 */
6738 	if (required_movablecore) {
6739 		unsigned long corepages;
6740 
6741 		/*
6742 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6743 		 * was requested by the user
6744 		 */
6745 		required_movablecore =
6746 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6747 		required_movablecore = min(totalpages, required_movablecore);
6748 		corepages = totalpages - required_movablecore;
6749 
6750 		required_kernelcore = max(required_kernelcore, corepages);
6751 	}
6752 
6753 	/*
6754 	 * If kernelcore was not specified or kernelcore size is larger
6755 	 * than totalpages, there is no ZONE_MOVABLE.
6756 	 */
6757 	if (!required_kernelcore || required_kernelcore >= totalpages)
6758 		goto out;
6759 
6760 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6761 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6762 
6763 restart:
6764 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6765 	kernelcore_node = required_kernelcore / usable_nodes;
6766 	for_each_node_state(nid, N_MEMORY) {
6767 		unsigned long start_pfn, end_pfn;
6768 
6769 		/*
6770 		 * Recalculate kernelcore_node if the division per node
6771 		 * now exceeds what is necessary to satisfy the requested
6772 		 * amount of memory for the kernel
6773 		 */
6774 		if (required_kernelcore < kernelcore_node)
6775 			kernelcore_node = required_kernelcore / usable_nodes;
6776 
6777 		/*
6778 		 * As the map is walked, we track how much memory is usable
6779 		 * by the kernel using kernelcore_remaining. When it is
6780 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6781 		 */
6782 		kernelcore_remaining = kernelcore_node;
6783 
6784 		/* Go through each range of PFNs within this node */
6785 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6786 			unsigned long size_pages;
6787 
6788 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6789 			if (start_pfn >= end_pfn)
6790 				continue;
6791 
6792 			/* Account for what is only usable for kernelcore */
6793 			if (start_pfn < usable_startpfn) {
6794 				unsigned long kernel_pages;
6795 				kernel_pages = min(end_pfn, usable_startpfn)
6796 								- start_pfn;
6797 
6798 				kernelcore_remaining -= min(kernel_pages,
6799 							kernelcore_remaining);
6800 				required_kernelcore -= min(kernel_pages,
6801 							required_kernelcore);
6802 
6803 				/* Continue if range is now fully accounted */
6804 				if (end_pfn <= usable_startpfn) {
6805 
6806 					/*
6807 					 * Push zone_movable_pfn to the end so
6808 					 * that if we have to rebalance
6809 					 * kernelcore across nodes, we will
6810 					 * not double account here
6811 					 */
6812 					zone_movable_pfn[nid] = end_pfn;
6813 					continue;
6814 				}
6815 				start_pfn = usable_startpfn;
6816 			}
6817 
6818 			/*
6819 			 * The usable PFN range for ZONE_MOVABLE is from
6820 			 * start_pfn->end_pfn. Calculate size_pages as the
6821 			 * number of pages used as kernelcore
6822 			 */
6823 			size_pages = end_pfn - start_pfn;
6824 			if (size_pages > kernelcore_remaining)
6825 				size_pages = kernelcore_remaining;
6826 			zone_movable_pfn[nid] = start_pfn + size_pages;
6827 
6828 			/*
6829 			 * Some kernelcore has been met, update counts and
6830 			 * break if the kernelcore for this node has been
6831 			 * satisfied
6832 			 */
6833 			required_kernelcore -= min(required_kernelcore,
6834 								size_pages);
6835 			kernelcore_remaining -= size_pages;
6836 			if (!kernelcore_remaining)
6837 				break;
6838 		}
6839 	}
6840 
6841 	/*
6842 	 * If there is still required_kernelcore, we do another pass with one
6843 	 * less node in the count. This will push zone_movable_pfn[nid] further
6844 	 * along on the nodes that still have memory until kernelcore is
6845 	 * satisfied
6846 	 */
6847 	usable_nodes--;
6848 	if (usable_nodes && required_kernelcore > usable_nodes)
6849 		goto restart;
6850 
6851 out2:
6852 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6853 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6854 		zone_movable_pfn[nid] =
6855 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6856 
6857 out:
6858 	/* restore the node_state */
6859 	node_states[N_MEMORY] = saved_node_state;
6860 }
6861 
6862 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)6863 static void check_for_memory(pg_data_t *pgdat, int nid)
6864 {
6865 	enum zone_type zone_type;
6866 
6867 	if (N_MEMORY == N_NORMAL_MEMORY)
6868 		return;
6869 
6870 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6871 		struct zone *zone = &pgdat->node_zones[zone_type];
6872 		if (populated_zone(zone)) {
6873 			node_set_state(nid, N_HIGH_MEMORY);
6874 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6875 			    zone_type <= ZONE_NORMAL)
6876 				node_set_state(nid, N_NORMAL_MEMORY);
6877 			break;
6878 		}
6879 	}
6880 }
6881 
6882 /**
6883  * free_area_init_nodes - Initialise all pg_data_t and zone data
6884  * @max_zone_pfn: an array of max PFNs for each zone
6885  *
6886  * This will call free_area_init_node() for each active node in the system.
6887  * Using the page ranges provided by memblock_set_node(), the size of each
6888  * zone in each node and their holes is calculated. If the maximum PFN
6889  * between two adjacent zones match, it is assumed that the zone is empty.
6890  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6891  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6892  * starts where the previous one ended. For example, ZONE_DMA32 starts
6893  * at arch_max_dma_pfn.
6894  */
free_area_init_nodes(unsigned long * max_zone_pfn)6895 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6896 {
6897 	unsigned long start_pfn, end_pfn;
6898 	int i, nid;
6899 
6900 	/* Record where the zone boundaries are */
6901 	memset(arch_zone_lowest_possible_pfn, 0,
6902 				sizeof(arch_zone_lowest_possible_pfn));
6903 	memset(arch_zone_highest_possible_pfn, 0,
6904 				sizeof(arch_zone_highest_possible_pfn));
6905 
6906 	start_pfn = find_min_pfn_with_active_regions();
6907 
6908 	for (i = 0; i < MAX_NR_ZONES; i++) {
6909 		if (i == ZONE_MOVABLE)
6910 			continue;
6911 
6912 		end_pfn = max(max_zone_pfn[i], start_pfn);
6913 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6914 		arch_zone_highest_possible_pfn[i] = end_pfn;
6915 
6916 		start_pfn = end_pfn;
6917 	}
6918 
6919 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6920 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6921 	find_zone_movable_pfns_for_nodes();
6922 
6923 	/* Print out the zone ranges */
6924 	pr_info("Zone ranges:\n");
6925 	for (i = 0; i < MAX_NR_ZONES; i++) {
6926 		if (i == ZONE_MOVABLE)
6927 			continue;
6928 		pr_info("  %-8s ", zone_names[i]);
6929 		if (arch_zone_lowest_possible_pfn[i] ==
6930 				arch_zone_highest_possible_pfn[i])
6931 			pr_cont("empty\n");
6932 		else
6933 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6934 				(u64)arch_zone_lowest_possible_pfn[i]
6935 					<< PAGE_SHIFT,
6936 				((u64)arch_zone_highest_possible_pfn[i]
6937 					<< PAGE_SHIFT) - 1);
6938 	}
6939 
6940 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6941 	pr_info("Movable zone start for each node\n");
6942 	for (i = 0; i < MAX_NUMNODES; i++) {
6943 		if (zone_movable_pfn[i])
6944 			pr_info("  Node %d: %#018Lx\n", i,
6945 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6946 	}
6947 
6948 	/* Print out the early node map */
6949 	pr_info("Early memory node ranges\n");
6950 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6951 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6952 			(u64)start_pfn << PAGE_SHIFT,
6953 			((u64)end_pfn << PAGE_SHIFT) - 1);
6954 
6955 	/* Initialise every node */
6956 	mminit_verify_pageflags_layout();
6957 	setup_nr_node_ids();
6958 	zero_resv_unavail();
6959 	for_each_online_node(nid) {
6960 		pg_data_t *pgdat = NODE_DATA(nid);
6961 		free_area_init_node(nid, NULL,
6962 				find_min_pfn_for_node(nid), NULL);
6963 
6964 		/* Any memory on that node */
6965 		if (pgdat->node_present_pages)
6966 			node_set_state(nid, N_MEMORY);
6967 		check_for_memory(pgdat, nid);
6968 	}
6969 }
6970 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)6971 static int __init cmdline_parse_core(char *p, unsigned long *core,
6972 				     unsigned long *percent)
6973 {
6974 	unsigned long long coremem;
6975 	char *endptr;
6976 
6977 	if (!p)
6978 		return -EINVAL;
6979 
6980 	/* Value may be a percentage of total memory, otherwise bytes */
6981 	coremem = simple_strtoull(p, &endptr, 0);
6982 	if (*endptr == '%') {
6983 		/* Paranoid check for percent values greater than 100 */
6984 		WARN_ON(coremem > 100);
6985 
6986 		*percent = coremem;
6987 	} else {
6988 		coremem = memparse(p, &p);
6989 		/* Paranoid check that UL is enough for the coremem value */
6990 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6991 
6992 		*core = coremem >> PAGE_SHIFT;
6993 		*percent = 0UL;
6994 	}
6995 	return 0;
6996 }
6997 
6998 /*
6999  * kernelcore=size sets the amount of memory for use for allocations that
7000  * cannot be reclaimed or migrated.
7001  */
cmdline_parse_kernelcore(char * p)7002 static int __init cmdline_parse_kernelcore(char *p)
7003 {
7004 	/* parse kernelcore=mirror */
7005 	if (parse_option_str(p, "mirror")) {
7006 		mirrored_kernelcore = true;
7007 		return 0;
7008 	}
7009 
7010 	return cmdline_parse_core(p, &required_kernelcore,
7011 				  &required_kernelcore_percent);
7012 }
7013 
7014 /*
7015  * movablecore=size sets the amount of memory for use for allocations that
7016  * can be reclaimed or migrated.
7017  */
cmdline_parse_movablecore(char * p)7018 static int __init cmdline_parse_movablecore(char *p)
7019 {
7020 	return cmdline_parse_core(p, &required_movablecore,
7021 				  &required_movablecore_percent);
7022 }
7023 
7024 early_param("kernelcore", cmdline_parse_kernelcore);
7025 early_param("movablecore", cmdline_parse_movablecore);
7026 
7027 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7028 
adjust_managed_page_count(struct page * page,long count)7029 void adjust_managed_page_count(struct page *page, long count)
7030 {
7031 	spin_lock(&managed_page_count_lock);
7032 	page_zone(page)->managed_pages += count;
7033 	totalram_pages += count;
7034 #ifdef CONFIG_HIGHMEM
7035 	if (PageHighMem(page))
7036 		totalhigh_pages += count;
7037 #endif
7038 	spin_unlock(&managed_page_count_lock);
7039 }
7040 EXPORT_SYMBOL(adjust_managed_page_count);
7041 
free_reserved_area(void * start,void * end,int poison,char * s)7042 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7043 {
7044 	void *pos;
7045 	unsigned long pages = 0;
7046 
7047 	start = (void *)PAGE_ALIGN((unsigned long)start);
7048 	end = (void *)((unsigned long)end & PAGE_MASK);
7049 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7050 		struct page *page = virt_to_page(pos);
7051 		void *direct_map_addr;
7052 
7053 		/*
7054 		 * 'direct_map_addr' might be different from 'pos'
7055 		 * because some architectures' virt_to_page()
7056 		 * work with aliases.  Getting the direct map
7057 		 * address ensures that we get a _writeable_
7058 		 * alias for the memset().
7059 		 */
7060 		direct_map_addr = page_address(page);
7061 		if ((unsigned int)poison <= 0xFF)
7062 			memset(direct_map_addr, poison, PAGE_SIZE);
7063 
7064 		free_reserved_page(page);
7065 	}
7066 
7067 	if (pages && s)
7068 		pr_info("Freeing %s memory: %ldK\n",
7069 			s, pages << (PAGE_SHIFT - 10));
7070 
7071 	return pages;
7072 }
7073 EXPORT_SYMBOL(free_reserved_area);
7074 
7075 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)7076 void free_highmem_page(struct page *page)
7077 {
7078 	__free_reserved_page(page);
7079 	totalram_pages++;
7080 	page_zone(page)->managed_pages++;
7081 	totalhigh_pages++;
7082 }
7083 #endif
7084 
7085 
mem_init_print_info(const char * str)7086 void __init mem_init_print_info(const char *str)
7087 {
7088 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7089 	unsigned long init_code_size, init_data_size;
7090 
7091 	physpages = get_num_physpages();
7092 	codesize = _etext - _stext;
7093 	datasize = _edata - _sdata;
7094 	rosize = __end_rodata - __start_rodata;
7095 	bss_size = __bss_stop - __bss_start;
7096 	init_data_size = __init_end - __init_begin;
7097 	init_code_size = _einittext - _sinittext;
7098 
7099 	/*
7100 	 * Detect special cases and adjust section sizes accordingly:
7101 	 * 1) .init.* may be embedded into .data sections
7102 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7103 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7104 	 * 3) .rodata.* may be embedded into .text or .data sections.
7105 	 */
7106 #define adj_init_size(start, end, size, pos, adj) \
7107 	do { \
7108 		if (start <= pos && pos < end && size > adj) \
7109 			size -= adj; \
7110 	} while (0)
7111 
7112 	adj_init_size(__init_begin, __init_end, init_data_size,
7113 		     _sinittext, init_code_size);
7114 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7115 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7116 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7117 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7118 
7119 #undef	adj_init_size
7120 
7121 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7122 #ifdef	CONFIG_HIGHMEM
7123 		", %luK highmem"
7124 #endif
7125 		"%s%s)\n",
7126 		nr_free_pages() << (PAGE_SHIFT - 10),
7127 		physpages << (PAGE_SHIFT - 10),
7128 		codesize >> 10, datasize >> 10, rosize >> 10,
7129 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7130 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7131 		totalcma_pages << (PAGE_SHIFT - 10),
7132 #ifdef	CONFIG_HIGHMEM
7133 		totalhigh_pages << (PAGE_SHIFT - 10),
7134 #endif
7135 		str ? ", " : "", str ? str : "");
7136 }
7137 
7138 /**
7139  * set_dma_reserve - set the specified number of pages reserved in the first zone
7140  * @new_dma_reserve: The number of pages to mark reserved
7141  *
7142  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7143  * In the DMA zone, a significant percentage may be consumed by kernel image
7144  * and other unfreeable allocations which can skew the watermarks badly. This
7145  * function may optionally be used to account for unfreeable pages in the
7146  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7147  * smaller per-cpu batchsize.
7148  */
set_dma_reserve(unsigned long new_dma_reserve)7149 void __init set_dma_reserve(unsigned long new_dma_reserve)
7150 {
7151 	dma_reserve = new_dma_reserve;
7152 }
7153 
free_area_init(unsigned long * zones_size)7154 void __init free_area_init(unsigned long *zones_size)
7155 {
7156 	zero_resv_unavail();
7157 	free_area_init_node(0, zones_size,
7158 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7159 }
7160 
page_alloc_cpu_dead(unsigned int cpu)7161 static int page_alloc_cpu_dead(unsigned int cpu)
7162 {
7163 
7164 	lru_add_drain_cpu(cpu);
7165 	drain_pages(cpu);
7166 
7167 	/*
7168 	 * Spill the event counters of the dead processor
7169 	 * into the current processors event counters.
7170 	 * This artificially elevates the count of the current
7171 	 * processor.
7172 	 */
7173 	vm_events_fold_cpu(cpu);
7174 
7175 	/*
7176 	 * Zero the differential counters of the dead processor
7177 	 * so that the vm statistics are consistent.
7178 	 *
7179 	 * This is only okay since the processor is dead and cannot
7180 	 * race with what we are doing.
7181 	 */
7182 	cpu_vm_stats_fold(cpu);
7183 	return 0;
7184 }
7185 
page_alloc_init(void)7186 void __init page_alloc_init(void)
7187 {
7188 	int ret;
7189 
7190 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7191 					"mm/page_alloc:dead", NULL,
7192 					page_alloc_cpu_dead);
7193 	WARN_ON(ret < 0);
7194 }
7195 
7196 /*
7197  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7198  *	or min_free_kbytes changes.
7199  */
calculate_totalreserve_pages(void)7200 static void calculate_totalreserve_pages(void)
7201 {
7202 	struct pglist_data *pgdat;
7203 	unsigned long reserve_pages = 0;
7204 	enum zone_type i, j;
7205 
7206 	for_each_online_pgdat(pgdat) {
7207 
7208 		pgdat->totalreserve_pages = 0;
7209 
7210 		for (i = 0; i < MAX_NR_ZONES; i++) {
7211 			struct zone *zone = pgdat->node_zones + i;
7212 			long max = 0;
7213 
7214 			/* Find valid and maximum lowmem_reserve in the zone */
7215 			for (j = i; j < MAX_NR_ZONES; j++) {
7216 				if (zone->lowmem_reserve[j] > max)
7217 					max = zone->lowmem_reserve[j];
7218 			}
7219 
7220 			/* we treat the high watermark as reserved pages. */
7221 			max += high_wmark_pages(zone);
7222 
7223 			if (max > zone->managed_pages)
7224 				max = zone->managed_pages;
7225 
7226 			pgdat->totalreserve_pages += max;
7227 
7228 			reserve_pages += max;
7229 		}
7230 	}
7231 	totalreserve_pages = reserve_pages;
7232 }
7233 
7234 /*
7235  * setup_per_zone_lowmem_reserve - called whenever
7236  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7237  *	has a correct pages reserved value, so an adequate number of
7238  *	pages are left in the zone after a successful __alloc_pages().
7239  */
setup_per_zone_lowmem_reserve(void)7240 static void setup_per_zone_lowmem_reserve(void)
7241 {
7242 	struct pglist_data *pgdat;
7243 	enum zone_type j, idx;
7244 
7245 	for_each_online_pgdat(pgdat) {
7246 		for (j = 0; j < MAX_NR_ZONES; j++) {
7247 			struct zone *zone = pgdat->node_zones + j;
7248 			unsigned long managed_pages = zone->managed_pages;
7249 
7250 			zone->lowmem_reserve[j] = 0;
7251 
7252 			idx = j;
7253 			while (idx) {
7254 				struct zone *lower_zone;
7255 
7256 				idx--;
7257 				lower_zone = pgdat->node_zones + idx;
7258 
7259 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7260 					sysctl_lowmem_reserve_ratio[idx] = 0;
7261 					lower_zone->lowmem_reserve[j] = 0;
7262 				} else {
7263 					lower_zone->lowmem_reserve[j] =
7264 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7265 				}
7266 				managed_pages += lower_zone->managed_pages;
7267 			}
7268 		}
7269 	}
7270 
7271 	/* update totalreserve_pages */
7272 	calculate_totalreserve_pages();
7273 }
7274 
__setup_per_zone_wmarks(void)7275 static void __setup_per_zone_wmarks(void)
7276 {
7277 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7278 	unsigned long lowmem_pages = 0;
7279 	struct zone *zone;
7280 	unsigned long flags;
7281 
7282 	/* Calculate total number of !ZONE_HIGHMEM pages */
7283 	for_each_zone(zone) {
7284 		if (!is_highmem(zone))
7285 			lowmem_pages += zone->managed_pages;
7286 	}
7287 
7288 	for_each_zone(zone) {
7289 		u64 tmp;
7290 
7291 		spin_lock_irqsave(&zone->lock, flags);
7292 		tmp = (u64)pages_min * zone->managed_pages;
7293 		do_div(tmp, lowmem_pages);
7294 		if (is_highmem(zone)) {
7295 			/*
7296 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7297 			 * need highmem pages, so cap pages_min to a small
7298 			 * value here.
7299 			 *
7300 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7301 			 * deltas control asynch page reclaim, and so should
7302 			 * not be capped for highmem.
7303 			 */
7304 			unsigned long min_pages;
7305 
7306 			min_pages = zone->managed_pages / 1024;
7307 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7308 			zone->watermark[WMARK_MIN] = min_pages;
7309 		} else {
7310 			/*
7311 			 * If it's a lowmem zone, reserve a number of pages
7312 			 * proportionate to the zone's size.
7313 			 */
7314 			zone->watermark[WMARK_MIN] = tmp;
7315 		}
7316 
7317 		/*
7318 		 * Set the kswapd watermarks distance according to the
7319 		 * scale factor in proportion to available memory, but
7320 		 * ensure a minimum size on small systems.
7321 		 */
7322 		tmp = max_t(u64, tmp >> 2,
7323 			    mult_frac(zone->managed_pages,
7324 				      watermark_scale_factor, 10000));
7325 
7326 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7327 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7328 
7329 		spin_unlock_irqrestore(&zone->lock, flags);
7330 	}
7331 
7332 	/* update totalreserve_pages */
7333 	calculate_totalreserve_pages();
7334 }
7335 
7336 /**
7337  * setup_per_zone_wmarks - called when min_free_kbytes changes
7338  * or when memory is hot-{added|removed}
7339  *
7340  * Ensures that the watermark[min,low,high] values for each zone are set
7341  * correctly with respect to min_free_kbytes.
7342  */
setup_per_zone_wmarks(void)7343 void setup_per_zone_wmarks(void)
7344 {
7345 	static DEFINE_SPINLOCK(lock);
7346 
7347 	spin_lock(&lock);
7348 	__setup_per_zone_wmarks();
7349 	spin_unlock(&lock);
7350 }
7351 
7352 /*
7353  * Initialise min_free_kbytes.
7354  *
7355  * For small machines we want it small (128k min).  For large machines
7356  * we want it large (64MB max).  But it is not linear, because network
7357  * bandwidth does not increase linearly with machine size.  We use
7358  *
7359  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7360  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7361  *
7362  * which yields
7363  *
7364  * 16MB:	512k
7365  * 32MB:	724k
7366  * 64MB:	1024k
7367  * 128MB:	1448k
7368  * 256MB:	2048k
7369  * 512MB:	2896k
7370  * 1024MB:	4096k
7371  * 2048MB:	5792k
7372  * 4096MB:	8192k
7373  * 8192MB:	11584k
7374  * 16384MB:	16384k
7375  */
init_per_zone_wmark_min(void)7376 int __meminit init_per_zone_wmark_min(void)
7377 {
7378 	unsigned long lowmem_kbytes;
7379 	int new_min_free_kbytes;
7380 
7381 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7382 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7383 
7384 	if (new_min_free_kbytes > user_min_free_kbytes) {
7385 		min_free_kbytes = new_min_free_kbytes;
7386 		if (min_free_kbytes < 128)
7387 			min_free_kbytes = 128;
7388 		if (min_free_kbytes > 65536)
7389 			min_free_kbytes = 65536;
7390 	} else {
7391 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7392 				new_min_free_kbytes, user_min_free_kbytes);
7393 	}
7394 	setup_per_zone_wmarks();
7395 	refresh_zone_stat_thresholds();
7396 	setup_per_zone_lowmem_reserve();
7397 
7398 #ifdef CONFIG_NUMA
7399 	setup_min_unmapped_ratio();
7400 	setup_min_slab_ratio();
7401 #endif
7402 
7403 	khugepaged_min_free_kbytes_update();
7404 
7405 	return 0;
7406 }
postcore_initcall(init_per_zone_wmark_min)7407 postcore_initcall(init_per_zone_wmark_min)
7408 
7409 /*
7410  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7411  *	that we can call two helper functions whenever min_free_kbytes
7412  *	changes.
7413  */
7414 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7415 	void __user *buffer, size_t *length, loff_t *ppos)
7416 {
7417 	int rc;
7418 
7419 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7420 	if (rc)
7421 		return rc;
7422 
7423 	if (write) {
7424 		user_min_free_kbytes = min_free_kbytes;
7425 		setup_per_zone_wmarks();
7426 	}
7427 	return 0;
7428 }
7429 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7430 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7431 	void __user *buffer, size_t *length, loff_t *ppos)
7432 {
7433 	int rc;
7434 
7435 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7436 	if (rc)
7437 		return rc;
7438 
7439 	if (write)
7440 		setup_per_zone_wmarks();
7441 
7442 	return 0;
7443 }
7444 
7445 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)7446 static void setup_min_unmapped_ratio(void)
7447 {
7448 	pg_data_t *pgdat;
7449 	struct zone *zone;
7450 
7451 	for_each_online_pgdat(pgdat)
7452 		pgdat->min_unmapped_pages = 0;
7453 
7454 	for_each_zone(zone)
7455 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7456 				sysctl_min_unmapped_ratio) / 100;
7457 }
7458 
7459 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7460 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7461 	void __user *buffer, size_t *length, loff_t *ppos)
7462 {
7463 	int rc;
7464 
7465 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7466 	if (rc)
7467 		return rc;
7468 
7469 	setup_min_unmapped_ratio();
7470 
7471 	return 0;
7472 }
7473 
setup_min_slab_ratio(void)7474 static void setup_min_slab_ratio(void)
7475 {
7476 	pg_data_t *pgdat;
7477 	struct zone *zone;
7478 
7479 	for_each_online_pgdat(pgdat)
7480 		pgdat->min_slab_pages = 0;
7481 
7482 	for_each_zone(zone)
7483 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7484 				sysctl_min_slab_ratio) / 100;
7485 }
7486 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7487 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7488 	void __user *buffer, size_t *length, loff_t *ppos)
7489 {
7490 	int rc;
7491 
7492 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7493 	if (rc)
7494 		return rc;
7495 
7496 	setup_min_slab_ratio();
7497 
7498 	return 0;
7499 }
7500 #endif
7501 
7502 /*
7503  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7504  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7505  *	whenever sysctl_lowmem_reserve_ratio changes.
7506  *
7507  * The reserve ratio obviously has absolutely no relation with the
7508  * minimum watermarks. The lowmem reserve ratio can only make sense
7509  * if in function of the boot time zone sizes.
7510  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7511 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7512 	void __user *buffer, size_t *length, loff_t *ppos)
7513 {
7514 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7515 	setup_per_zone_lowmem_reserve();
7516 	return 0;
7517 }
7518 
7519 /*
7520  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7521  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7522  * pagelist can have before it gets flushed back to buddy allocator.
7523  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7524 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7525 	void __user *buffer, size_t *length, loff_t *ppos)
7526 {
7527 	struct zone *zone;
7528 	int old_percpu_pagelist_fraction;
7529 	int ret;
7530 
7531 	mutex_lock(&pcp_batch_high_lock);
7532 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7533 
7534 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7535 	if (!write || ret < 0)
7536 		goto out;
7537 
7538 	/* Sanity checking to avoid pcp imbalance */
7539 	if (percpu_pagelist_fraction &&
7540 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7541 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7542 		ret = -EINVAL;
7543 		goto out;
7544 	}
7545 
7546 	/* No change? */
7547 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7548 		goto out;
7549 
7550 	for_each_populated_zone(zone) {
7551 		unsigned int cpu;
7552 
7553 		for_each_possible_cpu(cpu)
7554 			pageset_set_high_and_batch(zone,
7555 					per_cpu_ptr(zone->pageset, cpu));
7556 	}
7557 out:
7558 	mutex_unlock(&pcp_batch_high_lock);
7559 	return ret;
7560 }
7561 
7562 #ifdef CONFIG_NUMA
7563 int hashdist = HASHDIST_DEFAULT;
7564 
set_hashdist(char * str)7565 static int __init set_hashdist(char *str)
7566 {
7567 	if (!str)
7568 		return 0;
7569 	hashdist = simple_strtoul(str, &str, 0);
7570 	return 1;
7571 }
7572 __setup("hashdist=", set_hashdist);
7573 #endif
7574 
7575 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7576 /*
7577  * Returns the number of pages that arch has reserved but
7578  * is not known to alloc_large_system_hash().
7579  */
arch_reserved_kernel_pages(void)7580 static unsigned long __init arch_reserved_kernel_pages(void)
7581 {
7582 	return 0;
7583 }
7584 #endif
7585 
7586 /*
7587  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7588  * machines. As memory size is increased the scale is also increased but at
7589  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7590  * quadruples the scale is increased by one, which means the size of hash table
7591  * only doubles, instead of quadrupling as well.
7592  * Because 32-bit systems cannot have large physical memory, where this scaling
7593  * makes sense, it is disabled on such platforms.
7594  */
7595 #if __BITS_PER_LONG > 32
7596 #define ADAPT_SCALE_BASE	(64ul << 30)
7597 #define ADAPT_SCALE_SHIFT	2
7598 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7599 #endif
7600 
7601 /*
7602  * allocate a large system hash table from bootmem
7603  * - it is assumed that the hash table must contain an exact power-of-2
7604  *   quantity of entries
7605  * - limit is the number of hash buckets, not the total allocation size
7606  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)7607 void *__init alloc_large_system_hash(const char *tablename,
7608 				     unsigned long bucketsize,
7609 				     unsigned long numentries,
7610 				     int scale,
7611 				     int flags,
7612 				     unsigned int *_hash_shift,
7613 				     unsigned int *_hash_mask,
7614 				     unsigned long low_limit,
7615 				     unsigned long high_limit)
7616 {
7617 	unsigned long long max = high_limit;
7618 	unsigned long log2qty, size;
7619 	void *table = NULL;
7620 	gfp_t gfp_flags;
7621 
7622 	/* allow the kernel cmdline to have a say */
7623 	if (!numentries) {
7624 		/* round applicable memory size up to nearest megabyte */
7625 		numentries = nr_kernel_pages;
7626 		numentries -= arch_reserved_kernel_pages();
7627 
7628 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7629 		if (PAGE_SHIFT < 20)
7630 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7631 
7632 #if __BITS_PER_LONG > 32
7633 		if (!high_limit) {
7634 			unsigned long adapt;
7635 
7636 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7637 			     adapt <<= ADAPT_SCALE_SHIFT)
7638 				scale++;
7639 		}
7640 #endif
7641 
7642 		/* limit to 1 bucket per 2^scale bytes of low memory */
7643 		if (scale > PAGE_SHIFT)
7644 			numentries >>= (scale - PAGE_SHIFT);
7645 		else
7646 			numentries <<= (PAGE_SHIFT - scale);
7647 
7648 		/* Make sure we've got at least a 0-order allocation.. */
7649 		if (unlikely(flags & HASH_SMALL)) {
7650 			/* Makes no sense without HASH_EARLY */
7651 			WARN_ON(!(flags & HASH_EARLY));
7652 			if (!(numentries >> *_hash_shift)) {
7653 				numentries = 1UL << *_hash_shift;
7654 				BUG_ON(!numentries);
7655 			}
7656 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7657 			numentries = PAGE_SIZE / bucketsize;
7658 	}
7659 	numentries = roundup_pow_of_two(numentries);
7660 
7661 	/* limit allocation size to 1/16 total memory by default */
7662 	if (max == 0) {
7663 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7664 		do_div(max, bucketsize);
7665 	}
7666 	max = min(max, 0x80000000ULL);
7667 
7668 	if (numentries < low_limit)
7669 		numentries = low_limit;
7670 	if (numentries > max)
7671 		numentries = max;
7672 
7673 	log2qty = ilog2(numentries);
7674 
7675 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7676 	do {
7677 		size = bucketsize << log2qty;
7678 		if (flags & HASH_EARLY) {
7679 			if (flags & HASH_ZERO)
7680 				table = memblock_virt_alloc_nopanic(size, 0);
7681 			else
7682 				table = memblock_virt_alloc_raw(size, 0);
7683 		} else if (hashdist) {
7684 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7685 		} else {
7686 			/*
7687 			 * If bucketsize is not a power-of-two, we may free
7688 			 * some pages at the end of hash table which
7689 			 * alloc_pages_exact() automatically does
7690 			 */
7691 			if (get_order(size) < MAX_ORDER) {
7692 				table = alloc_pages_exact(size, gfp_flags);
7693 				kmemleak_alloc(table, size, 1, gfp_flags);
7694 			}
7695 		}
7696 	} while (!table && size > PAGE_SIZE && --log2qty);
7697 
7698 	if (!table)
7699 		panic("Failed to allocate %s hash table\n", tablename);
7700 
7701 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7702 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7703 
7704 	if (_hash_shift)
7705 		*_hash_shift = log2qty;
7706 	if (_hash_mask)
7707 		*_hash_mask = (1 << log2qty) - 1;
7708 
7709 	return table;
7710 }
7711 
7712 /*
7713  * This function checks whether pageblock includes unmovable pages or not.
7714  * If @count is not zero, it is okay to include less @count unmovable pages
7715  *
7716  * PageLRU check without isolation or lru_lock could race so that
7717  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7718  * check without lock_page also may miss some movable non-lru pages at
7719  * race condition. So you can't expect this function should be exact.
7720  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,int migratetype,bool skip_hwpoisoned_pages)7721 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7722 			 int migratetype,
7723 			 bool skip_hwpoisoned_pages)
7724 {
7725 	unsigned long pfn, iter, found;
7726 
7727 	/*
7728 	 * TODO we could make this much more efficient by not checking every
7729 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7730 	 * that the movable zone guarantees that pages are migratable but
7731 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7732 	 * can still lead to having bootmem allocations in zone_movable.
7733 	 */
7734 
7735 	/*
7736 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7737 	 * CMA pageblocks even when they are not movable in fact so consider
7738 	 * them movable here.
7739 	 */
7740 	if (is_migrate_cma(migratetype) &&
7741 			is_migrate_cma(get_pageblock_migratetype(page)))
7742 		return false;
7743 
7744 	pfn = page_to_pfn(page);
7745 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7746 		unsigned long check = pfn + iter;
7747 
7748 		if (!pfn_valid_within(check))
7749 			continue;
7750 
7751 		page = pfn_to_page(check);
7752 
7753 		if (PageReserved(page))
7754 			goto unmovable;
7755 
7756 		/*
7757 		 * If the zone is movable and we have ruled out all reserved
7758 		 * pages then it should be reasonably safe to assume the rest
7759 		 * is movable.
7760 		 */
7761 		if (zone_idx(zone) == ZONE_MOVABLE)
7762 			continue;
7763 
7764 		/*
7765 		 * Hugepages are not in LRU lists, but they're movable.
7766 		 * We need not scan over tail pages bacause we don't
7767 		 * handle each tail page individually in migration.
7768 		 */
7769 		if (PageHuge(page)) {
7770 			struct page *head = compound_head(page);
7771 			unsigned int skip_pages;
7772 
7773 			if (!hugepage_migration_supported(page_hstate(head)))
7774 				goto unmovable;
7775 
7776 			skip_pages = (1 << compound_order(head)) - (page - head);
7777 			iter += skip_pages - 1;
7778 			continue;
7779 		}
7780 
7781 		/*
7782 		 * We can't use page_count without pin a page
7783 		 * because another CPU can free compound page.
7784 		 * This check already skips compound tails of THP
7785 		 * because their page->_refcount is zero at all time.
7786 		 */
7787 		if (!page_ref_count(page)) {
7788 			if (PageBuddy(page))
7789 				iter += (1 << page_order(page)) - 1;
7790 			continue;
7791 		}
7792 
7793 		/*
7794 		 * The HWPoisoned page may be not in buddy system, and
7795 		 * page_count() is not 0.
7796 		 */
7797 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7798 			continue;
7799 
7800 		if (__PageMovable(page))
7801 			continue;
7802 
7803 		if (!PageLRU(page))
7804 			found++;
7805 		/*
7806 		 * If there are RECLAIMABLE pages, we need to check
7807 		 * it.  But now, memory offline itself doesn't call
7808 		 * shrink_node_slabs() and it still to be fixed.
7809 		 */
7810 		/*
7811 		 * If the page is not RAM, page_count()should be 0.
7812 		 * we don't need more check. This is an _used_ not-movable page.
7813 		 *
7814 		 * The problematic thing here is PG_reserved pages. PG_reserved
7815 		 * is set to both of a memory hole page and a _used_ kernel
7816 		 * page at boot.
7817 		 */
7818 		if (found > count)
7819 			goto unmovable;
7820 	}
7821 	return false;
7822 unmovable:
7823 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7824 	return true;
7825 }
7826 
7827 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7828 
pfn_max_align_down(unsigned long pfn)7829 static unsigned long pfn_max_align_down(unsigned long pfn)
7830 {
7831 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7832 			     pageblock_nr_pages) - 1);
7833 }
7834 
pfn_max_align_up(unsigned long pfn)7835 static unsigned long pfn_max_align_up(unsigned long pfn)
7836 {
7837 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7838 				pageblock_nr_pages));
7839 }
7840 
7841 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)7842 static int __alloc_contig_migrate_range(struct compact_control *cc,
7843 					unsigned long start, unsigned long end)
7844 {
7845 	/* This function is based on compact_zone() from compaction.c. */
7846 	unsigned long nr_reclaimed;
7847 	unsigned long pfn = start;
7848 	unsigned int tries = 0;
7849 	int ret = 0;
7850 
7851 	migrate_prep();
7852 
7853 	while (pfn < end || !list_empty(&cc->migratepages)) {
7854 		if (fatal_signal_pending(current)) {
7855 			ret = -EINTR;
7856 			break;
7857 		}
7858 
7859 		if (list_empty(&cc->migratepages)) {
7860 			cc->nr_migratepages = 0;
7861 			pfn = isolate_migratepages_range(cc, pfn, end);
7862 			if (!pfn) {
7863 				ret = -EINTR;
7864 				break;
7865 			}
7866 			tries = 0;
7867 		} else if (++tries == 5) {
7868 			ret = ret < 0 ? ret : -EBUSY;
7869 			break;
7870 		}
7871 
7872 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7873 							&cc->migratepages);
7874 		cc->nr_migratepages -= nr_reclaimed;
7875 
7876 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7877 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7878 	}
7879 	if (ret < 0) {
7880 		putback_movable_pages(&cc->migratepages);
7881 		return ret;
7882 	}
7883 	return 0;
7884 }
7885 
7886 /**
7887  * alloc_contig_range() -- tries to allocate given range of pages
7888  * @start:	start PFN to allocate
7889  * @end:	one-past-the-last PFN to allocate
7890  * @migratetype:	migratetype of the underlaying pageblocks (either
7891  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7892  *			in range must have the same migratetype and it must
7893  *			be either of the two.
7894  * @gfp_mask:	GFP mask to use during compaction
7895  *
7896  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7897  * aligned.  The PFN range must belong to a single zone.
7898  *
7899  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7900  * pageblocks in the range.  Once isolated, the pageblocks should not
7901  * be modified by others.
7902  *
7903  * Returns zero on success or negative error code.  On success all
7904  * pages which PFN is in [start, end) are allocated for the caller and
7905  * need to be freed with free_contig_range().
7906  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)7907 int alloc_contig_range(unsigned long start, unsigned long end,
7908 		       unsigned migratetype, gfp_t gfp_mask)
7909 {
7910 	unsigned long outer_start, outer_end;
7911 	unsigned int order;
7912 	int ret = 0;
7913 
7914 	struct compact_control cc = {
7915 		.nr_migratepages = 0,
7916 		.order = -1,
7917 		.zone = page_zone(pfn_to_page(start)),
7918 		.mode = MIGRATE_SYNC,
7919 		.ignore_skip_hint = true,
7920 		.no_set_skip_hint = true,
7921 		.gfp_mask = current_gfp_context(gfp_mask),
7922 	};
7923 	INIT_LIST_HEAD(&cc.migratepages);
7924 
7925 	/*
7926 	 * What we do here is we mark all pageblocks in range as
7927 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7928 	 * have different sizes, and due to the way page allocator
7929 	 * work, we align the range to biggest of the two pages so
7930 	 * that page allocator won't try to merge buddies from
7931 	 * different pageblocks and change MIGRATE_ISOLATE to some
7932 	 * other migration type.
7933 	 *
7934 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7935 	 * migrate the pages from an unaligned range (ie. pages that
7936 	 * we are interested in).  This will put all the pages in
7937 	 * range back to page allocator as MIGRATE_ISOLATE.
7938 	 *
7939 	 * When this is done, we take the pages in range from page
7940 	 * allocator removing them from the buddy system.  This way
7941 	 * page allocator will never consider using them.
7942 	 *
7943 	 * This lets us mark the pageblocks back as
7944 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7945 	 * aligned range but not in the unaligned, original range are
7946 	 * put back to page allocator so that buddy can use them.
7947 	 */
7948 
7949 	ret = start_isolate_page_range(pfn_max_align_down(start),
7950 				       pfn_max_align_up(end), migratetype,
7951 				       false);
7952 	if (ret)
7953 		return ret;
7954 
7955 	/*
7956 	 * In case of -EBUSY, we'd like to know which page causes problem.
7957 	 * So, just fall through. test_pages_isolated() has a tracepoint
7958 	 * which will report the busy page.
7959 	 *
7960 	 * It is possible that busy pages could become available before
7961 	 * the call to test_pages_isolated, and the range will actually be
7962 	 * allocated.  So, if we fall through be sure to clear ret so that
7963 	 * -EBUSY is not accidentally used or returned to caller.
7964 	 */
7965 	ret = __alloc_contig_migrate_range(&cc, start, end);
7966 	if (ret && ret != -EBUSY)
7967 		goto done;
7968 	ret =0;
7969 
7970 	/*
7971 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7972 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7973 	 * more, all pages in [start, end) are free in page allocator.
7974 	 * What we are going to do is to allocate all pages from
7975 	 * [start, end) (that is remove them from page allocator).
7976 	 *
7977 	 * The only problem is that pages at the beginning and at the
7978 	 * end of interesting range may be not aligned with pages that
7979 	 * page allocator holds, ie. they can be part of higher order
7980 	 * pages.  Because of this, we reserve the bigger range and
7981 	 * once this is done free the pages we are not interested in.
7982 	 *
7983 	 * We don't have to hold zone->lock here because the pages are
7984 	 * isolated thus they won't get removed from buddy.
7985 	 */
7986 
7987 	lru_add_drain_all();
7988 	drain_all_pages(cc.zone);
7989 
7990 	order = 0;
7991 	outer_start = start;
7992 	while (!PageBuddy(pfn_to_page(outer_start))) {
7993 		if (++order >= MAX_ORDER) {
7994 			outer_start = start;
7995 			break;
7996 		}
7997 		outer_start &= ~0UL << order;
7998 	}
7999 
8000 	if (outer_start != start) {
8001 		order = page_order(pfn_to_page(outer_start));
8002 
8003 		/*
8004 		 * outer_start page could be small order buddy page and
8005 		 * it doesn't include start page. Adjust outer_start
8006 		 * in this case to report failed page properly
8007 		 * on tracepoint in test_pages_isolated()
8008 		 */
8009 		if (outer_start + (1UL << order) <= start)
8010 			outer_start = start;
8011 	}
8012 
8013 	/* Make sure the range is really isolated. */
8014 	if (test_pages_isolated(outer_start, end, false)) {
8015 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8016 			__func__, outer_start, end);
8017 		ret = -EBUSY;
8018 		goto done;
8019 	}
8020 
8021 	/* Grab isolated pages from freelists. */
8022 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8023 	if (!outer_end) {
8024 		ret = -EBUSY;
8025 		goto done;
8026 	}
8027 
8028 	/* Free head and tail (if any) */
8029 	if (start != outer_start)
8030 		free_contig_range(outer_start, start - outer_start);
8031 	if (end != outer_end)
8032 		free_contig_range(end, outer_end - end);
8033 
8034 done:
8035 	undo_isolate_page_range(pfn_max_align_down(start),
8036 				pfn_max_align_up(end), migratetype);
8037 	return ret;
8038 }
8039 
free_contig_range(unsigned long pfn,unsigned nr_pages)8040 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8041 {
8042 	unsigned int count = 0;
8043 
8044 	for (; nr_pages--; pfn++) {
8045 		struct page *page = pfn_to_page(pfn);
8046 
8047 		count += page_count(page) != 1;
8048 		__free_page(page);
8049 	}
8050 	WARN(count != 0, "%d pages are still in use!\n", count);
8051 }
8052 #endif
8053 
8054 /*
8055  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8056  * page high values need to be recalulated.
8057  */
zone_pcp_update(struct zone * zone)8058 void __meminit zone_pcp_update(struct zone *zone)
8059 {
8060 	unsigned cpu;
8061 	mutex_lock(&pcp_batch_high_lock);
8062 	for_each_possible_cpu(cpu)
8063 		pageset_set_high_and_batch(zone,
8064 				per_cpu_ptr(zone->pageset, cpu));
8065 	mutex_unlock(&pcp_batch_high_lock);
8066 }
8067 
zone_pcp_reset(struct zone * zone)8068 void zone_pcp_reset(struct zone *zone)
8069 {
8070 	unsigned long flags;
8071 	int cpu;
8072 	struct per_cpu_pageset *pset;
8073 
8074 	/* avoid races with drain_pages()  */
8075 	local_irq_save(flags);
8076 	if (zone->pageset != &boot_pageset) {
8077 		for_each_online_cpu(cpu) {
8078 			pset = per_cpu_ptr(zone->pageset, cpu);
8079 			drain_zonestat(zone, pset);
8080 		}
8081 		free_percpu(zone->pageset);
8082 		zone->pageset = &boot_pageset;
8083 	}
8084 	local_irq_restore(flags);
8085 }
8086 
8087 #ifdef CONFIG_MEMORY_HOTREMOVE
8088 /*
8089  * All pages in the range must be in a single zone and isolated
8090  * before calling this.
8091  */
8092 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8093 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8094 {
8095 	struct page *page;
8096 	struct zone *zone;
8097 	unsigned int order, i;
8098 	unsigned long pfn;
8099 	unsigned long flags;
8100 	/* find the first valid pfn */
8101 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8102 		if (pfn_valid(pfn))
8103 			break;
8104 	if (pfn == end_pfn)
8105 		return;
8106 	offline_mem_sections(pfn, end_pfn);
8107 	zone = page_zone(pfn_to_page(pfn));
8108 	spin_lock_irqsave(&zone->lock, flags);
8109 	pfn = start_pfn;
8110 	while (pfn < end_pfn) {
8111 		if (!pfn_valid(pfn)) {
8112 			pfn++;
8113 			continue;
8114 		}
8115 		page = pfn_to_page(pfn);
8116 		/*
8117 		 * The HWPoisoned page may be not in buddy system, and
8118 		 * page_count() is not 0.
8119 		 */
8120 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8121 			pfn++;
8122 			SetPageReserved(page);
8123 			continue;
8124 		}
8125 
8126 		BUG_ON(page_count(page));
8127 		BUG_ON(!PageBuddy(page));
8128 		order = page_order(page);
8129 #ifdef CONFIG_DEBUG_VM
8130 		pr_info("remove from free list %lx %d %lx\n",
8131 			pfn, 1 << order, end_pfn);
8132 #endif
8133 		list_del(&page->lru);
8134 		rmv_page_order(page);
8135 		zone->free_area[order].nr_free--;
8136 		for (i = 0; i < (1 << order); i++)
8137 			SetPageReserved((page+i));
8138 		pfn += (1 << order);
8139 	}
8140 	spin_unlock_irqrestore(&zone->lock, flags);
8141 }
8142 #endif
8143 
is_free_buddy_page(struct page * page)8144 bool is_free_buddy_page(struct page *page)
8145 {
8146 	struct zone *zone = page_zone(page);
8147 	unsigned long pfn = page_to_pfn(page);
8148 	unsigned long flags;
8149 	unsigned int order;
8150 
8151 	spin_lock_irqsave(&zone->lock, flags);
8152 	for (order = 0; order < MAX_ORDER; order++) {
8153 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8154 
8155 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8156 			break;
8157 	}
8158 	spin_unlock_irqrestore(&zone->lock, flags);
8159 
8160 	return order < MAX_ORDER;
8161 }
8162 
8163 #ifdef CONFIG_MEMORY_FAILURE
8164 /*
8165  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8166  * test is performed under the zone lock to prevent a race against page
8167  * allocation.
8168  */
set_hwpoison_free_buddy_page(struct page * page)8169 bool set_hwpoison_free_buddy_page(struct page *page)
8170 {
8171 	struct zone *zone = page_zone(page);
8172 	unsigned long pfn = page_to_pfn(page);
8173 	unsigned long flags;
8174 	unsigned int order;
8175 	bool hwpoisoned = false;
8176 
8177 	spin_lock_irqsave(&zone->lock, flags);
8178 	for (order = 0; order < MAX_ORDER; order++) {
8179 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8180 
8181 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8182 			if (!TestSetPageHWPoison(page))
8183 				hwpoisoned = true;
8184 			break;
8185 		}
8186 	}
8187 	spin_unlock_irqrestore(&zone->lock, flags);
8188 
8189 	return hwpoisoned;
8190 }
8191 #endif
8192