1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include <openssl/ct.h>
23
24 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
25 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
26
27 SSL3_ENC_METHOD const TLSv1_enc_data = {
28 tls1_enc,
29 tls1_mac,
30 tls1_setup_key_block,
31 tls1_generate_master_secret,
32 tls1_change_cipher_state,
33 tls1_final_finish_mac,
34 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
35 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
36 tls1_alert_code,
37 tls1_export_keying_material,
38 0,
39 ssl3_set_handshake_header,
40 tls_close_construct_packet,
41 ssl3_handshake_write
42 };
43
44 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
45 tls1_enc,
46 tls1_mac,
47 tls1_setup_key_block,
48 tls1_generate_master_secret,
49 tls1_change_cipher_state,
50 tls1_final_finish_mac,
51 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
52 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
53 tls1_alert_code,
54 tls1_export_keying_material,
55 SSL_ENC_FLAG_EXPLICIT_IV,
56 ssl3_set_handshake_header,
57 tls_close_construct_packet,
58 ssl3_handshake_write
59 };
60
61 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
62 tls1_enc,
63 tls1_mac,
64 tls1_setup_key_block,
65 tls1_generate_master_secret,
66 tls1_change_cipher_state,
67 tls1_final_finish_mac,
68 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70 tls1_alert_code,
71 tls1_export_keying_material,
72 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74 ssl3_set_handshake_header,
75 tls_close_construct_packet,
76 ssl3_handshake_write
77 };
78
79 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80 tls13_enc,
81 tls1_mac,
82 tls13_setup_key_block,
83 tls13_generate_master_secret,
84 tls13_change_cipher_state,
85 tls13_final_finish_mac,
86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88 tls13_alert_code,
89 tls13_export_keying_material,
90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91 ssl3_set_handshake_header,
92 tls_close_construct_packet,
93 ssl3_handshake_write
94 };
95
tls1_default_timeout(void)96 long tls1_default_timeout(void)
97 {
98 /*
99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100 * http, the cache would over fill
101 */
102 return (60 * 60 * 2);
103 }
104
tls1_new(SSL * s)105 int tls1_new(SSL *s)
106 {
107 if (!ssl3_new(s))
108 return 0;
109 if (!s->method->ssl_clear(s))
110 return 0;
111
112 return 1;
113 }
114
tls1_free(SSL * s)115 void tls1_free(SSL *s)
116 {
117 OPENSSL_free(s->ext.session_ticket);
118 ssl3_free(s);
119 }
120
tls1_clear(SSL * s)121 int tls1_clear(SSL *s)
122 {
123 if (!ssl3_clear(s))
124 return 0;
125
126 if (s->method->version == TLS_ANY_VERSION)
127 s->version = TLS_MAX_VERSION;
128 else
129 s->version = s->method->version;
130
131 return 1;
132 }
133
134 #ifndef OPENSSL_NO_EC
135
136 /*
137 * Table of curve information.
138 * Do not delete entries or reorder this array! It is used as a lookup
139 * table: the index of each entry is one less than the TLS curve id.
140 */
141 static const TLS_GROUP_INFO nid_list[] = {
142 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
143 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
144 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
145 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
146 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
147 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
148 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
149 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
150 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
151 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
152 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
153 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
154 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
155 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
156 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
157 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
158 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
159 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
160 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
161 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
162 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
163 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
164 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
165 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
166 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
167 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
168 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
169 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
170 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
171 {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */
172 };
173
174 static const unsigned char ecformats_default[] = {
175 TLSEXT_ECPOINTFORMAT_uncompressed,
176 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
178 };
179
180 /* The default curves */
181 static const uint16_t eccurves_default[] = {
182 29, /* X25519 (29) */
183 23, /* secp256r1 (23) */
184 30, /* X448 (30) */
185 25, /* secp521r1 (25) */
186 24, /* secp384r1 (24) */
187 };
188
189 static const uint16_t suiteb_curves[] = {
190 TLSEXT_curve_P_256,
191 TLSEXT_curve_P_384
192 };
193
tls1_group_id_lookup(uint16_t group_id)194 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
195 {
196 /* ECC curves from RFC 4492 and RFC 7027 */
197 if (group_id < 1 || group_id > OSSL_NELEM(nid_list))
198 return NULL;
199 return &nid_list[group_id - 1];
200 }
201
tls1_nid2group_id(int nid)202 static uint16_t tls1_nid2group_id(int nid)
203 {
204 size_t i;
205 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
206 if (nid_list[i].nid == nid)
207 return (uint16_t)(i + 1);
208 }
209 return 0;
210 }
211
212 /*
213 * Set *pgroups to the supported groups list and *pgroupslen to
214 * the number of groups supported.
215 */
tls1_get_supported_groups(SSL * s,const uint16_t ** pgroups,size_t * pgroupslen)216 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
217 size_t *pgroupslen)
218 {
219
220 /* For Suite B mode only include P-256, P-384 */
221 switch (tls1_suiteb(s)) {
222 case SSL_CERT_FLAG_SUITEB_128_LOS:
223 *pgroups = suiteb_curves;
224 *pgroupslen = OSSL_NELEM(suiteb_curves);
225 break;
226
227 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
228 *pgroups = suiteb_curves;
229 *pgroupslen = 1;
230 break;
231
232 case SSL_CERT_FLAG_SUITEB_192_LOS:
233 *pgroups = suiteb_curves + 1;
234 *pgroupslen = 1;
235 break;
236
237 default:
238 if (s->ext.supportedgroups == NULL) {
239 *pgroups = eccurves_default;
240 *pgroupslen = OSSL_NELEM(eccurves_default);
241 } else {
242 *pgroups = s->ext.supportedgroups;
243 *pgroupslen = s->ext.supportedgroups_len;
244 }
245 break;
246 }
247 }
248
249 /* See if curve is allowed by security callback */
tls_curve_allowed(SSL * s,uint16_t curve,int op)250 int tls_curve_allowed(SSL *s, uint16_t curve, int op)
251 {
252 const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve);
253 unsigned char ctmp[2];
254
255 if (cinfo == NULL)
256 return 0;
257 # ifdef OPENSSL_NO_EC2M
258 if (cinfo->flags & TLS_CURVE_CHAR2)
259 return 0;
260 # endif
261 ctmp[0] = curve >> 8;
262 ctmp[1] = curve & 0xff;
263 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp);
264 }
265
266 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)267 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
268 {
269 size_t i;
270 for (i = 0; i < listlen; i++)
271 if (list[i] == id)
272 return 1;
273 return 0;
274 }
275
276 /*-
277 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
278 * if there is no match.
279 * For nmatch == -1, return number of matches
280 * For nmatch == -2, return the id of the group to use for
281 * a tmp key, or 0 if there is no match.
282 */
tls1_shared_group(SSL * s,int nmatch)283 uint16_t tls1_shared_group(SSL *s, int nmatch)
284 {
285 const uint16_t *pref, *supp;
286 size_t num_pref, num_supp, i;
287 int k;
288
289 /* Can't do anything on client side */
290 if (s->server == 0)
291 return 0;
292 if (nmatch == -2) {
293 if (tls1_suiteb(s)) {
294 /*
295 * For Suite B ciphersuite determines curve: we already know
296 * these are acceptable due to previous checks.
297 */
298 unsigned long cid = s->s3->tmp.new_cipher->id;
299
300 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
301 return TLSEXT_curve_P_256;
302 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
303 return TLSEXT_curve_P_384;
304 /* Should never happen */
305 return 0;
306 }
307 /* If not Suite B just return first preference shared curve */
308 nmatch = 0;
309 }
310 /*
311 * If server preference set, our groups are the preference order
312 * otherwise peer decides.
313 */
314 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
315 tls1_get_supported_groups(s, &pref, &num_pref);
316 tls1_get_peer_groups(s, &supp, &num_supp);
317 } else {
318 tls1_get_peer_groups(s, &pref, &num_pref);
319 tls1_get_supported_groups(s, &supp, &num_supp);
320 }
321
322 for (k = 0, i = 0; i < num_pref; i++) {
323 uint16_t id = pref[i];
324
325 if (!tls1_in_list(id, supp, num_supp)
326 || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED))
327 continue;
328 if (nmatch == k)
329 return id;
330 k++;
331 }
332 if (nmatch == -1)
333 return k;
334 /* Out of range (nmatch > k). */
335 return 0;
336 }
337
tls1_set_groups(uint16_t ** pext,size_t * pextlen,int * groups,size_t ngroups)338 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
339 int *groups, size_t ngroups)
340 {
341 uint16_t *glist;
342 size_t i;
343 /*
344 * Bitmap of groups included to detect duplicates: only works while group
345 * ids < 32
346 */
347 unsigned long dup_list = 0;
348
349 if (ngroups == 0) {
350 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
351 return 0;
352 }
353 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
354 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
355 return 0;
356 }
357 for (i = 0; i < ngroups; i++) {
358 unsigned long idmask;
359 uint16_t id;
360 /* TODO(TLS1.3): Convert for DH groups */
361 id = tls1_nid2group_id(groups[i]);
362 idmask = 1L << id;
363 if (!id || (dup_list & idmask)) {
364 OPENSSL_free(glist);
365 return 0;
366 }
367 dup_list |= idmask;
368 glist[i] = id;
369 }
370 OPENSSL_free(*pext);
371 *pext = glist;
372 *pextlen = ngroups;
373 return 1;
374 }
375
376 # define MAX_CURVELIST OSSL_NELEM(nid_list)
377
378 typedef struct {
379 size_t nidcnt;
380 int nid_arr[MAX_CURVELIST];
381 } nid_cb_st;
382
nid_cb(const char * elem,int len,void * arg)383 static int nid_cb(const char *elem, int len, void *arg)
384 {
385 nid_cb_st *narg = arg;
386 size_t i;
387 int nid;
388 char etmp[20];
389 if (elem == NULL)
390 return 0;
391 if (narg->nidcnt == MAX_CURVELIST)
392 return 0;
393 if (len > (int)(sizeof(etmp) - 1))
394 return 0;
395 memcpy(etmp, elem, len);
396 etmp[len] = 0;
397 nid = EC_curve_nist2nid(etmp);
398 if (nid == NID_undef)
399 nid = OBJ_sn2nid(etmp);
400 if (nid == NID_undef)
401 nid = OBJ_ln2nid(etmp);
402 if (nid == NID_undef)
403 return 0;
404 for (i = 0; i < narg->nidcnt; i++)
405 if (narg->nid_arr[i] == nid)
406 return 0;
407 narg->nid_arr[narg->nidcnt++] = nid;
408 return 1;
409 }
410
411 /* Set groups based on a colon separate list */
tls1_set_groups_list(uint16_t ** pext,size_t * pextlen,const char * str)412 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
413 {
414 nid_cb_st ncb;
415 ncb.nidcnt = 0;
416 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
417 return 0;
418 if (pext == NULL)
419 return 1;
420 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
421 }
422 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)423 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
424 {
425 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
426 const EC_GROUP *grp;
427
428 if (ec == NULL)
429 return 0;
430 grp = EC_KEY_get0_group(ec);
431 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
432 }
433
434 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL * s,EVP_PKEY * pkey)435 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
436 {
437 const EC_KEY *ec;
438 const EC_GROUP *grp;
439 unsigned char comp_id;
440 size_t i;
441
442 /* If not an EC key nothing to check */
443 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
444 return 1;
445 ec = EVP_PKEY_get0_EC_KEY(pkey);
446 grp = EC_KEY_get0_group(ec);
447
448 /* Get required compression id */
449 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
450 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
451 } else if (SSL_IS_TLS13(s)) {
452 /*
453 * ec_point_formats extension is not used in TLSv1.3 so we ignore
454 * this check.
455 */
456 return 1;
457 } else {
458 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
459
460 if (field_type == NID_X9_62_prime_field)
461 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
462 else if (field_type == NID_X9_62_characteristic_two_field)
463 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
464 else
465 return 0;
466 }
467 /*
468 * If point formats extension present check it, otherwise everything is
469 * supported (see RFC4492).
470 */
471 if (s->ext.peer_ecpointformats == NULL)
472 return 1;
473
474 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
475 if (s->ext.peer_ecpointformats[i] == comp_id)
476 return 1;
477 }
478 return 0;
479 }
480
481 /* Check a group id matches preferences */
tls1_check_group_id(SSL * s,uint16_t group_id,int check_own_groups)482 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
483 {
484 const uint16_t *groups;
485 size_t groups_len;
486
487 if (group_id == 0)
488 return 0;
489
490 /* Check for Suite B compliance */
491 if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) {
492 unsigned long cid = s->s3->tmp.new_cipher->id;
493
494 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
495 if (group_id != TLSEXT_curve_P_256)
496 return 0;
497 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
498 if (group_id != TLSEXT_curve_P_384)
499 return 0;
500 } else {
501 /* Should never happen */
502 return 0;
503 }
504 }
505
506 if (check_own_groups) {
507 /* Check group is one of our preferences */
508 tls1_get_supported_groups(s, &groups, &groups_len);
509 if (!tls1_in_list(group_id, groups, groups_len))
510 return 0;
511 }
512
513 if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
514 return 0;
515
516 /* For clients, nothing more to check */
517 if (!s->server)
518 return 1;
519
520 /* Check group is one of peers preferences */
521 tls1_get_peer_groups(s, &groups, &groups_len);
522
523 /*
524 * RFC 4492 does not require the supported elliptic curves extension
525 * so if it is not sent we can just choose any curve.
526 * It is invalid to send an empty list in the supported groups
527 * extension, so groups_len == 0 always means no extension.
528 */
529 if (groups_len == 0)
530 return 1;
531 return tls1_in_list(group_id, groups, groups_len);
532 }
533
tls1_get_formatlist(SSL * s,const unsigned char ** pformats,size_t * num_formats)534 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
535 size_t *num_formats)
536 {
537 /*
538 * If we have a custom point format list use it otherwise use default
539 */
540 if (s->ext.ecpointformats) {
541 *pformats = s->ext.ecpointformats;
542 *num_formats = s->ext.ecpointformats_len;
543 } else {
544 *pformats = ecformats_default;
545 /* For Suite B we don't support char2 fields */
546 if (tls1_suiteb(s))
547 *num_formats = sizeof(ecformats_default) - 1;
548 else
549 *num_formats = sizeof(ecformats_default);
550 }
551 }
552
553 /*
554 * Check cert parameters compatible with extensions: currently just checks EC
555 * certificates have compatible curves and compression.
556 */
tls1_check_cert_param(SSL * s,X509 * x,int check_ee_md)557 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
558 {
559 uint16_t group_id;
560 EVP_PKEY *pkey;
561 pkey = X509_get0_pubkey(x);
562 if (pkey == NULL)
563 return 0;
564 /* If not EC nothing to do */
565 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
566 return 1;
567 /* Check compression */
568 if (!tls1_check_pkey_comp(s, pkey))
569 return 0;
570 group_id = tls1_get_group_id(pkey);
571 /*
572 * For a server we allow the certificate to not be in our list of supported
573 * groups.
574 */
575 if (!tls1_check_group_id(s, group_id, !s->server))
576 return 0;
577 /*
578 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
579 * SHA384+P-384.
580 */
581 if (check_ee_md && tls1_suiteb(s)) {
582 int check_md;
583 size_t i;
584
585 /* Check to see we have necessary signing algorithm */
586 if (group_id == TLSEXT_curve_P_256)
587 check_md = NID_ecdsa_with_SHA256;
588 else if (group_id == TLSEXT_curve_P_384)
589 check_md = NID_ecdsa_with_SHA384;
590 else
591 return 0; /* Should never happen */
592 for (i = 0; i < s->shared_sigalgslen; i++) {
593 if (check_md == s->shared_sigalgs[i]->sigandhash)
594 return 1;;
595 }
596 return 0;
597 }
598 return 1;
599 }
600
601 /*
602 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
603 * @s: SSL connection
604 * @cid: Cipher ID we're considering using
605 *
606 * Checks that the kECDHE cipher suite we're considering using
607 * is compatible with the client extensions.
608 *
609 * Returns 0 when the cipher can't be used or 1 when it can.
610 */
tls1_check_ec_tmp_key(SSL * s,unsigned long cid)611 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
612 {
613 /* If not Suite B just need a shared group */
614 if (!tls1_suiteb(s))
615 return tls1_shared_group(s, 0) != 0;
616 /*
617 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
618 * curves permitted.
619 */
620 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
621 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
622 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
623 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
624
625 return 0;
626 }
627
628 #else
629
tls1_check_cert_param(SSL * s,X509 * x,int set_ee_md)630 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
631 {
632 return 1;
633 }
634
635 #endif /* OPENSSL_NO_EC */
636
637 /* Default sigalg schemes */
638 static const uint16_t tls12_sigalgs[] = {
639 #ifndef OPENSSL_NO_EC
640 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
641 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
642 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
643 TLSEXT_SIGALG_ed25519,
644 TLSEXT_SIGALG_ed448,
645 #endif
646
647 TLSEXT_SIGALG_rsa_pss_pss_sha256,
648 TLSEXT_SIGALG_rsa_pss_pss_sha384,
649 TLSEXT_SIGALG_rsa_pss_pss_sha512,
650 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
651 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
652 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
653
654 TLSEXT_SIGALG_rsa_pkcs1_sha256,
655 TLSEXT_SIGALG_rsa_pkcs1_sha384,
656 TLSEXT_SIGALG_rsa_pkcs1_sha512,
657
658 #ifndef OPENSSL_NO_EC
659 TLSEXT_SIGALG_ecdsa_sha224,
660 TLSEXT_SIGALG_ecdsa_sha1,
661 #endif
662 TLSEXT_SIGALG_rsa_pkcs1_sha224,
663 TLSEXT_SIGALG_rsa_pkcs1_sha1,
664 #ifndef OPENSSL_NO_DSA
665 TLSEXT_SIGALG_dsa_sha224,
666 TLSEXT_SIGALG_dsa_sha1,
667
668 TLSEXT_SIGALG_dsa_sha256,
669 TLSEXT_SIGALG_dsa_sha384,
670 TLSEXT_SIGALG_dsa_sha512,
671 #endif
672 #ifndef OPENSSL_NO_GOST
673 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
674 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
675 TLSEXT_SIGALG_gostr34102001_gostr3411,
676 #endif
677 };
678
679 #ifndef OPENSSL_NO_EC
680 static const uint16_t suiteb_sigalgs[] = {
681 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
682 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
683 };
684 #endif
685
686 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
687 #ifndef OPENSSL_NO_EC
688 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
689 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
690 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
691 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
692 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
693 NID_ecdsa_with_SHA384, NID_secp384r1},
694 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
695 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
696 NID_ecdsa_with_SHA512, NID_secp521r1},
697 {"ed25519", TLSEXT_SIGALG_ed25519,
698 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
699 NID_undef, NID_undef},
700 {"ed448", TLSEXT_SIGALG_ed448,
701 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
702 NID_undef, NID_undef},
703 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
704 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
705 NID_ecdsa_with_SHA224, NID_undef},
706 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
707 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
708 NID_ecdsa_with_SHA1, NID_undef},
709 #endif
710 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
711 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
712 NID_undef, NID_undef},
713 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
714 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
715 NID_undef, NID_undef},
716 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
717 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
718 NID_undef, NID_undef},
719 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
720 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
721 NID_undef, NID_undef},
722 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
723 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
724 NID_undef, NID_undef},
725 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
726 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
727 NID_undef, NID_undef},
728 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
729 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
730 NID_sha256WithRSAEncryption, NID_undef},
731 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
732 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
733 NID_sha384WithRSAEncryption, NID_undef},
734 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
735 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
736 NID_sha512WithRSAEncryption, NID_undef},
737 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
738 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
739 NID_sha224WithRSAEncryption, NID_undef},
740 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
741 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
742 NID_sha1WithRSAEncryption, NID_undef},
743 #ifndef OPENSSL_NO_DSA
744 {NULL, TLSEXT_SIGALG_dsa_sha256,
745 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
746 NID_dsa_with_SHA256, NID_undef},
747 {NULL, TLSEXT_SIGALG_dsa_sha384,
748 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
749 NID_undef, NID_undef},
750 {NULL, TLSEXT_SIGALG_dsa_sha512,
751 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
752 NID_undef, NID_undef},
753 {NULL, TLSEXT_SIGALG_dsa_sha224,
754 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
755 NID_undef, NID_undef},
756 {NULL, TLSEXT_SIGALG_dsa_sha1,
757 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
758 NID_dsaWithSHA1, NID_undef},
759 #endif
760 #ifndef OPENSSL_NO_GOST
761 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
762 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
763 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
764 NID_undef, NID_undef},
765 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
766 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
767 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
768 NID_undef, NID_undef},
769 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
770 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
771 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
772 NID_undef, NID_undef}
773 #endif
774 };
775 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
776 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
777 "rsa_pkcs1_md5_sha1", 0,
778 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
779 EVP_PKEY_RSA, SSL_PKEY_RSA,
780 NID_undef, NID_undef
781 };
782
783 /*
784 * Default signature algorithm values used if signature algorithms not present.
785 * From RFC5246. Note: order must match certificate index order.
786 */
787 static const uint16_t tls_default_sigalg[] = {
788 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
789 0, /* SSL_PKEY_RSA_PSS_SIGN */
790 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
791 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
792 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
793 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
794 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
795 0, /* SSL_PKEY_ED25519 */
796 0, /* SSL_PKEY_ED448 */
797 };
798
799 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(uint16_t sigalg)800 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
801 {
802 size_t i;
803 const SIGALG_LOOKUP *s;
804
805 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
806 i++, s++) {
807 if (s->sigalg == sigalg)
808 return s;
809 }
810 return NULL;
811 }
812 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)813 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
814 {
815 const EVP_MD *md;
816 if (lu == NULL)
817 return 0;
818 /* lu->hash == NID_undef means no associated digest */
819 if (lu->hash == NID_undef) {
820 md = NULL;
821 } else {
822 md = ssl_md(lu->hash_idx);
823 if (md == NULL)
824 return 0;
825 }
826 if (pmd)
827 *pmd = md;
828 return 1;
829 }
830
831 /*
832 * Check if key is large enough to generate RSA-PSS signature.
833 *
834 * The key must greater than or equal to 2 * hash length + 2.
835 * SHA512 has a hash length of 64 bytes, which is incompatible
836 * with a 128 byte (1024 bit) key.
837 */
838 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
rsa_pss_check_min_key_size(const RSA * rsa,const SIGALG_LOOKUP * lu)839 static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu)
840 {
841 const EVP_MD *md;
842
843 if (rsa == NULL)
844 return 0;
845 if (!tls1_lookup_md(lu, &md) || md == NULL)
846 return 0;
847 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
848 return 0;
849 return 1;
850 }
851
852 /*
853 * Returns a signature algorithm when the peer did not send a list of supported
854 * signature algorithms. The signature algorithm is fixed for the certificate
855 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
856 * certificate type from |s| will be used.
857 * Returns the signature algorithm to use, or NULL on error.
858 */
tls1_get_legacy_sigalg(const SSL * s,int idx)859 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
860 {
861 if (idx == -1) {
862 if (s->server) {
863 size_t i;
864
865 /* Work out index corresponding to ciphersuite */
866 for (i = 0; i < SSL_PKEY_NUM; i++) {
867 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
868
869 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) {
870 idx = i;
871 break;
872 }
873 }
874
875 /*
876 * Some GOST ciphersuites allow more than one signature algorithms
877 * */
878 if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
879 int real_idx;
880
881 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
882 real_idx--) {
883 if (s->cert->pkeys[real_idx].privatekey != NULL) {
884 idx = real_idx;
885 break;
886 }
887 }
888 }
889 } else {
890 idx = s->cert->key - s->cert->pkeys;
891 }
892 }
893 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
894 return NULL;
895 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
896 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
897
898 if (!tls1_lookup_md(lu, NULL))
899 return NULL;
900 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
901 return NULL;
902 return lu;
903 }
904 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
905 return NULL;
906 return &legacy_rsa_sigalg;
907 }
908 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL * s,const EVP_PKEY * pkey)909 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
910 {
911 size_t idx;
912 const SIGALG_LOOKUP *lu;
913
914 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
915 return 0;
916 lu = tls1_get_legacy_sigalg(s, idx);
917 if (lu == NULL)
918 return 0;
919 s->s3->tmp.peer_sigalg = lu;
920 return 1;
921 }
922
tls12_get_psigalgs(SSL * s,int sent,const uint16_t ** psigs)923 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
924 {
925 /*
926 * If Suite B mode use Suite B sigalgs only, ignore any other
927 * preferences.
928 */
929 #ifndef OPENSSL_NO_EC
930 switch (tls1_suiteb(s)) {
931 case SSL_CERT_FLAG_SUITEB_128_LOS:
932 *psigs = suiteb_sigalgs;
933 return OSSL_NELEM(suiteb_sigalgs);
934
935 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
936 *psigs = suiteb_sigalgs;
937 return 1;
938
939 case SSL_CERT_FLAG_SUITEB_192_LOS:
940 *psigs = suiteb_sigalgs + 1;
941 return 1;
942 }
943 #endif
944 /*
945 * We use client_sigalgs (if not NULL) if we're a server
946 * and sending a certificate request or if we're a client and
947 * determining which shared algorithm to use.
948 */
949 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
950 *psigs = s->cert->client_sigalgs;
951 return s->cert->client_sigalgslen;
952 } else if (s->cert->conf_sigalgs) {
953 *psigs = s->cert->conf_sigalgs;
954 return s->cert->conf_sigalgslen;
955 } else {
956 *psigs = tls12_sigalgs;
957 return OSSL_NELEM(tls12_sigalgs);
958 }
959 }
960
961 #ifndef OPENSSL_NO_EC
962 /*
963 * Called by servers only. Checks that we have a sig alg that supports the
964 * specified EC curve.
965 */
tls_check_sigalg_curve(const SSL * s,int curve)966 int tls_check_sigalg_curve(const SSL *s, int curve)
967 {
968 const uint16_t *sigs;
969 size_t siglen, i;
970
971 if (s->cert->conf_sigalgs) {
972 sigs = s->cert->conf_sigalgs;
973 siglen = s->cert->conf_sigalgslen;
974 } else {
975 sigs = tls12_sigalgs;
976 siglen = OSSL_NELEM(tls12_sigalgs);
977 }
978
979 for (i = 0; i < siglen; i++) {
980 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
981
982 if (lu == NULL)
983 continue;
984 if (lu->sig == EVP_PKEY_EC
985 && lu->curve != NID_undef
986 && curve == lu->curve)
987 return 1;
988 }
989
990 return 0;
991 }
992 #endif
993
994 /*
995 * Return the number of security bits for the signature algorithm, or 0 on
996 * error.
997 */
sigalg_security_bits(const SIGALG_LOOKUP * lu)998 static int sigalg_security_bits(const SIGALG_LOOKUP *lu)
999 {
1000 const EVP_MD *md = NULL;
1001 int secbits = 0;
1002
1003 if (!tls1_lookup_md(lu, &md))
1004 return 0;
1005 if (md != NULL)
1006 {
1007 /* Security bits: half digest bits */
1008 secbits = EVP_MD_size(md) * 4;
1009 } else {
1010 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1011 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1012 secbits = 128;
1013 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1014 secbits = 224;
1015 }
1016 return secbits;
1017 }
1018
1019 /*
1020 * Check signature algorithm is consistent with sent supported signature
1021 * algorithms and if so set relevant digest and signature scheme in
1022 * s.
1023 */
tls12_check_peer_sigalg(SSL * s,uint16_t sig,EVP_PKEY * pkey)1024 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1025 {
1026 const uint16_t *sent_sigs;
1027 const EVP_MD *md = NULL;
1028 char sigalgstr[2];
1029 size_t sent_sigslen, i, cidx;
1030 int pkeyid = EVP_PKEY_id(pkey);
1031 const SIGALG_LOOKUP *lu;
1032 int secbits = 0;
1033
1034 /* Should never happen */
1035 if (pkeyid == -1)
1036 return -1;
1037 if (SSL_IS_TLS13(s)) {
1038 /* Disallow DSA for TLS 1.3 */
1039 if (pkeyid == EVP_PKEY_DSA) {
1040 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1041 SSL_R_WRONG_SIGNATURE_TYPE);
1042 return 0;
1043 }
1044 /* Only allow PSS for TLS 1.3 */
1045 if (pkeyid == EVP_PKEY_RSA)
1046 pkeyid = EVP_PKEY_RSA_PSS;
1047 }
1048 lu = tls1_lookup_sigalg(sig);
1049 /*
1050 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1051 * is consistent with signature: RSA keys can be used for RSA-PSS
1052 */
1053 if (lu == NULL
1054 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1055 || (pkeyid != lu->sig
1056 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1057 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1058 SSL_R_WRONG_SIGNATURE_TYPE);
1059 return 0;
1060 }
1061 /* Check the sigalg is consistent with the key OID */
1062 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1063 || lu->sig_idx != (int)cidx) {
1064 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1065 SSL_R_WRONG_SIGNATURE_TYPE);
1066 return 0;
1067 }
1068
1069 #ifndef OPENSSL_NO_EC
1070 if (pkeyid == EVP_PKEY_EC) {
1071
1072 /* Check point compression is permitted */
1073 if (!tls1_check_pkey_comp(s, pkey)) {
1074 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1075 SSL_F_TLS12_CHECK_PEER_SIGALG,
1076 SSL_R_ILLEGAL_POINT_COMPRESSION);
1077 return 0;
1078 }
1079
1080 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1081 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1082 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1083 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1084
1085 if (lu->curve != NID_undef && curve != lu->curve) {
1086 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1087 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1088 return 0;
1089 }
1090 }
1091 if (!SSL_IS_TLS13(s)) {
1092 /* Check curve matches extensions */
1093 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1094 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1095 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1096 return 0;
1097 }
1098 if (tls1_suiteb(s)) {
1099 /* Check sigalg matches a permissible Suite B value */
1100 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1101 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1102 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1103 SSL_F_TLS12_CHECK_PEER_SIGALG,
1104 SSL_R_WRONG_SIGNATURE_TYPE);
1105 return 0;
1106 }
1107 }
1108 }
1109 } else if (tls1_suiteb(s)) {
1110 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1111 SSL_R_WRONG_SIGNATURE_TYPE);
1112 return 0;
1113 }
1114 #endif
1115
1116 /* Check signature matches a type we sent */
1117 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1118 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1119 if (sig == *sent_sigs)
1120 break;
1121 }
1122 /* Allow fallback to SHA1 if not strict mode */
1123 if (i == sent_sigslen && (lu->hash != NID_sha1
1124 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1125 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1126 SSL_R_WRONG_SIGNATURE_TYPE);
1127 return 0;
1128 }
1129 if (!tls1_lookup_md(lu, &md)) {
1130 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1131 SSL_R_UNKNOWN_DIGEST);
1132 return 0;
1133 }
1134 /*
1135 * Make sure security callback allows algorithm. For historical
1136 * reasons we have to pass the sigalg as a two byte char array.
1137 */
1138 sigalgstr[0] = (sig >> 8) & 0xff;
1139 sigalgstr[1] = sig & 0xff;
1140 secbits = sigalg_security_bits(lu);
1141 if (secbits == 0 ||
1142 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1143 md != NULL ? EVP_MD_type(md) : NID_undef,
1144 (void *)sigalgstr)) {
1145 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1146 SSL_R_WRONG_SIGNATURE_TYPE);
1147 return 0;
1148 }
1149 /* Store the sigalg the peer uses */
1150 s->s3->tmp.peer_sigalg = lu;
1151 return 1;
1152 }
1153
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)1154 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1155 {
1156 if (s->s3->tmp.peer_sigalg == NULL)
1157 return 0;
1158 *pnid = s->s3->tmp.peer_sigalg->sig;
1159 return 1;
1160 }
1161
SSL_get_signature_type_nid(const SSL * s,int * pnid)1162 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1163 {
1164 if (s->s3->tmp.sigalg == NULL)
1165 return 0;
1166 *pnid = s->s3->tmp.sigalg->sig;
1167 return 1;
1168 }
1169
1170 /*
1171 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1172 * supported, doesn't appear in supported signature algorithms, isn't supported
1173 * by the enabled protocol versions or by the security level.
1174 *
1175 * This function should only be used for checking which ciphers are supported
1176 * by the client.
1177 *
1178 * Call ssl_cipher_disabled() to check that it's enabled or not.
1179 */
ssl_set_client_disabled(SSL * s)1180 int ssl_set_client_disabled(SSL *s)
1181 {
1182 s->s3->tmp.mask_a = 0;
1183 s->s3->tmp.mask_k = 0;
1184 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1185 if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver,
1186 &s->s3->tmp.max_ver, NULL) != 0)
1187 return 0;
1188 #ifndef OPENSSL_NO_PSK
1189 /* with PSK there must be client callback set */
1190 if (!s->psk_client_callback) {
1191 s->s3->tmp.mask_a |= SSL_aPSK;
1192 s->s3->tmp.mask_k |= SSL_PSK;
1193 }
1194 #endif /* OPENSSL_NO_PSK */
1195 #ifndef OPENSSL_NO_SRP
1196 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1197 s->s3->tmp.mask_a |= SSL_aSRP;
1198 s->s3->tmp.mask_k |= SSL_kSRP;
1199 }
1200 #endif
1201 return 1;
1202 }
1203
1204 /*
1205 * ssl_cipher_disabled - check that a cipher is disabled or not
1206 * @s: SSL connection that you want to use the cipher on
1207 * @c: cipher to check
1208 * @op: Security check that you want to do
1209 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1210 *
1211 * Returns 1 when it's disabled, 0 when enabled.
1212 */
ssl_cipher_disabled(const SSL * s,const SSL_CIPHER * c,int op,int ecdhe)1213 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1214 {
1215 if (c->algorithm_mkey & s->s3->tmp.mask_k
1216 || c->algorithm_auth & s->s3->tmp.mask_a)
1217 return 1;
1218 if (s->s3->tmp.max_ver == 0)
1219 return 1;
1220 if (!SSL_IS_DTLS(s)) {
1221 int min_tls = c->min_tls;
1222
1223 /*
1224 * For historical reasons we will allow ECHDE to be selected by a server
1225 * in SSLv3 if we are a client
1226 */
1227 if (min_tls == TLS1_VERSION && ecdhe
1228 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1229 min_tls = SSL3_VERSION;
1230
1231 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1232 return 1;
1233 }
1234 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1235 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1236 return 1;
1237
1238 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1239 }
1240
tls_use_ticket(SSL * s)1241 int tls_use_ticket(SSL *s)
1242 {
1243 if ((s->options & SSL_OP_NO_TICKET))
1244 return 0;
1245 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1246 }
1247
tls1_set_server_sigalgs(SSL * s)1248 int tls1_set_server_sigalgs(SSL *s)
1249 {
1250 size_t i;
1251
1252 /* Clear any shared signature algorithms */
1253 OPENSSL_free(s->shared_sigalgs);
1254 s->shared_sigalgs = NULL;
1255 s->shared_sigalgslen = 0;
1256 /* Clear certificate validity flags */
1257 for (i = 0; i < SSL_PKEY_NUM; i++)
1258 s->s3->tmp.valid_flags[i] = 0;
1259 /*
1260 * If peer sent no signature algorithms check to see if we support
1261 * the default algorithm for each certificate type
1262 */
1263 if (s->s3->tmp.peer_cert_sigalgs == NULL
1264 && s->s3->tmp.peer_sigalgs == NULL) {
1265 const uint16_t *sent_sigs;
1266 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1267
1268 for (i = 0; i < SSL_PKEY_NUM; i++) {
1269 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1270 size_t j;
1271
1272 if (lu == NULL)
1273 continue;
1274 /* Check default matches a type we sent */
1275 for (j = 0; j < sent_sigslen; j++) {
1276 if (lu->sigalg == sent_sigs[j]) {
1277 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1278 break;
1279 }
1280 }
1281 }
1282 return 1;
1283 }
1284
1285 if (!tls1_process_sigalgs(s)) {
1286 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1287 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1288 return 0;
1289 }
1290 if (s->shared_sigalgs != NULL)
1291 return 1;
1292
1293 /* Fatal error if no shared signature algorithms */
1294 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1295 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1296 return 0;
1297 }
1298
1299 /*-
1300 * Gets the ticket information supplied by the client if any.
1301 *
1302 * hello: The parsed ClientHello data
1303 * ret: (output) on return, if a ticket was decrypted, then this is set to
1304 * point to the resulting session.
1305 */
tls_get_ticket_from_client(SSL * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)1306 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1307 SSL_SESSION **ret)
1308 {
1309 size_t size;
1310 RAW_EXTENSION *ticketext;
1311
1312 *ret = NULL;
1313 s->ext.ticket_expected = 0;
1314
1315 /*
1316 * If tickets disabled or not supported by the protocol version
1317 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1318 * resumption.
1319 */
1320 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1321 return SSL_TICKET_NONE;
1322
1323 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1324 if (!ticketext->present)
1325 return SSL_TICKET_NONE;
1326
1327 size = PACKET_remaining(&ticketext->data);
1328
1329 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1330 hello->session_id, hello->session_id_len, ret);
1331 }
1332
1333 /*-
1334 * tls_decrypt_ticket attempts to decrypt a session ticket.
1335 *
1336 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1337 * expecting a pre-shared key ciphersuite, in which case we have no use for
1338 * session tickets and one will never be decrypted, nor will
1339 * s->ext.ticket_expected be set to 1.
1340 *
1341 * Side effects:
1342 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1343 * a new session ticket to the client because the client indicated support
1344 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1345 * a session ticket or we couldn't use the one it gave us, or if
1346 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1347 * Otherwise, s->ext.ticket_expected is set to 0.
1348 *
1349 * etick: points to the body of the session ticket extension.
1350 * eticklen: the length of the session tickets extension.
1351 * sess_id: points at the session ID.
1352 * sesslen: the length of the session ID.
1353 * psess: (output) on return, if a ticket was decrypted, then this is set to
1354 * point to the resulting session.
1355 */
tls_decrypt_ticket(SSL * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)1356 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1357 size_t eticklen, const unsigned char *sess_id,
1358 size_t sesslen, SSL_SESSION **psess)
1359 {
1360 SSL_SESSION *sess = NULL;
1361 unsigned char *sdec;
1362 const unsigned char *p;
1363 int slen, renew_ticket = 0, declen;
1364 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1365 size_t mlen;
1366 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1367 HMAC_CTX *hctx = NULL;
1368 EVP_CIPHER_CTX *ctx = NULL;
1369 SSL_CTX *tctx = s->session_ctx;
1370
1371 if (eticklen == 0) {
1372 /*
1373 * The client will accept a ticket but doesn't currently have
1374 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1375 */
1376 ret = SSL_TICKET_EMPTY;
1377 goto end;
1378 }
1379 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1380 /*
1381 * Indicate that the ticket couldn't be decrypted rather than
1382 * generating the session from ticket now, trigger
1383 * abbreviated handshake based on external mechanism to
1384 * calculate the master secret later.
1385 */
1386 ret = SSL_TICKET_NO_DECRYPT;
1387 goto end;
1388 }
1389
1390 /* Need at least keyname + iv */
1391 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1392 ret = SSL_TICKET_NO_DECRYPT;
1393 goto end;
1394 }
1395
1396 /* Initialize session ticket encryption and HMAC contexts */
1397 hctx = HMAC_CTX_new();
1398 if (hctx == NULL) {
1399 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1400 goto end;
1401 }
1402 ctx = EVP_CIPHER_CTX_new();
1403 if (ctx == NULL) {
1404 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1405 goto end;
1406 }
1407 if (tctx->ext.ticket_key_cb) {
1408 unsigned char *nctick = (unsigned char *)etick;
1409 int rv = tctx->ext.ticket_key_cb(s, nctick,
1410 nctick + TLSEXT_KEYNAME_LENGTH,
1411 ctx, hctx, 0);
1412 if (rv < 0) {
1413 ret = SSL_TICKET_FATAL_ERR_OTHER;
1414 goto end;
1415 }
1416 if (rv == 0) {
1417 ret = SSL_TICKET_NO_DECRYPT;
1418 goto end;
1419 }
1420 if (rv == 2)
1421 renew_ticket = 1;
1422 } else {
1423 /* Check key name matches */
1424 if (memcmp(etick, tctx->ext.tick_key_name,
1425 TLSEXT_KEYNAME_LENGTH) != 0) {
1426 ret = SSL_TICKET_NO_DECRYPT;
1427 goto end;
1428 }
1429 if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key,
1430 sizeof(tctx->ext.secure->tick_hmac_key),
1431 EVP_sha256(), NULL) <= 0
1432 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1433 tctx->ext.secure->tick_aes_key,
1434 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1435 ret = SSL_TICKET_FATAL_ERR_OTHER;
1436 goto end;
1437 }
1438 if (SSL_IS_TLS13(s))
1439 renew_ticket = 1;
1440 }
1441 /*
1442 * Attempt to process session ticket, first conduct sanity and integrity
1443 * checks on ticket.
1444 */
1445 mlen = HMAC_size(hctx);
1446 if (mlen == 0) {
1447 ret = SSL_TICKET_FATAL_ERR_OTHER;
1448 goto end;
1449 }
1450
1451 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1452 if (eticklen <=
1453 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1454 ret = SSL_TICKET_NO_DECRYPT;
1455 goto end;
1456 }
1457 eticklen -= mlen;
1458 /* Check HMAC of encrypted ticket */
1459 if (HMAC_Update(hctx, etick, eticklen) <= 0
1460 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1461 ret = SSL_TICKET_FATAL_ERR_OTHER;
1462 goto end;
1463 }
1464
1465 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1466 ret = SSL_TICKET_NO_DECRYPT;
1467 goto end;
1468 }
1469 /* Attempt to decrypt session data */
1470 /* Move p after IV to start of encrypted ticket, update length */
1471 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1472 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1473 sdec = OPENSSL_malloc(eticklen);
1474 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1475 (int)eticklen) <= 0) {
1476 OPENSSL_free(sdec);
1477 ret = SSL_TICKET_FATAL_ERR_OTHER;
1478 goto end;
1479 }
1480 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1481 OPENSSL_free(sdec);
1482 ret = SSL_TICKET_NO_DECRYPT;
1483 goto end;
1484 }
1485 slen += declen;
1486 p = sdec;
1487
1488 sess = d2i_SSL_SESSION(NULL, &p, slen);
1489 slen -= p - sdec;
1490 OPENSSL_free(sdec);
1491 if (sess) {
1492 /* Some additional consistency checks */
1493 if (slen != 0) {
1494 SSL_SESSION_free(sess);
1495 sess = NULL;
1496 ret = SSL_TICKET_NO_DECRYPT;
1497 goto end;
1498 }
1499 /*
1500 * The session ID, if non-empty, is used by some clients to detect
1501 * that the ticket has been accepted. So we copy it to the session
1502 * structure. If it is empty set length to zero as required by
1503 * standard.
1504 */
1505 if (sesslen) {
1506 memcpy(sess->session_id, sess_id, sesslen);
1507 sess->session_id_length = sesslen;
1508 }
1509 if (renew_ticket)
1510 ret = SSL_TICKET_SUCCESS_RENEW;
1511 else
1512 ret = SSL_TICKET_SUCCESS;
1513 goto end;
1514 }
1515 ERR_clear_error();
1516 /*
1517 * For session parse failure, indicate that we need to send a new ticket.
1518 */
1519 ret = SSL_TICKET_NO_DECRYPT;
1520
1521 end:
1522 EVP_CIPHER_CTX_free(ctx);
1523 HMAC_CTX_free(hctx);
1524
1525 /*
1526 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1527 * detected above. The callback is responsible for checking |ret| before it
1528 * performs any action
1529 */
1530 if (s->session_ctx->decrypt_ticket_cb != NULL
1531 && (ret == SSL_TICKET_EMPTY
1532 || ret == SSL_TICKET_NO_DECRYPT
1533 || ret == SSL_TICKET_SUCCESS
1534 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1535 size_t keyname_len = eticklen;
1536 int retcb;
1537
1538 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1539 keyname_len = TLSEXT_KEYNAME_LENGTH;
1540 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1541 ret,
1542 s->session_ctx->ticket_cb_data);
1543 switch (retcb) {
1544 case SSL_TICKET_RETURN_ABORT:
1545 ret = SSL_TICKET_FATAL_ERR_OTHER;
1546 break;
1547
1548 case SSL_TICKET_RETURN_IGNORE:
1549 ret = SSL_TICKET_NONE;
1550 SSL_SESSION_free(sess);
1551 sess = NULL;
1552 break;
1553
1554 case SSL_TICKET_RETURN_IGNORE_RENEW:
1555 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1556 ret = SSL_TICKET_NO_DECRYPT;
1557 /* else the value of |ret| will already do the right thing */
1558 SSL_SESSION_free(sess);
1559 sess = NULL;
1560 break;
1561
1562 case SSL_TICKET_RETURN_USE:
1563 case SSL_TICKET_RETURN_USE_RENEW:
1564 if (ret != SSL_TICKET_SUCCESS
1565 && ret != SSL_TICKET_SUCCESS_RENEW)
1566 ret = SSL_TICKET_FATAL_ERR_OTHER;
1567 else if (retcb == SSL_TICKET_RETURN_USE)
1568 ret = SSL_TICKET_SUCCESS;
1569 else
1570 ret = SSL_TICKET_SUCCESS_RENEW;
1571 break;
1572
1573 default:
1574 ret = SSL_TICKET_FATAL_ERR_OTHER;
1575 }
1576 }
1577
1578 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1579 switch (ret) {
1580 case SSL_TICKET_NO_DECRYPT:
1581 case SSL_TICKET_SUCCESS_RENEW:
1582 case SSL_TICKET_EMPTY:
1583 s->ext.ticket_expected = 1;
1584 }
1585 }
1586
1587 *psess = sess;
1588
1589 return ret;
1590 }
1591
1592 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL * s,int op,const SIGALG_LOOKUP * lu)1593 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1594 {
1595 unsigned char sigalgstr[2];
1596 int secbits;
1597
1598 /* See if sigalgs is recognised and if hash is enabled */
1599 if (!tls1_lookup_md(lu, NULL))
1600 return 0;
1601 /* DSA is not allowed in TLS 1.3 */
1602 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1603 return 0;
1604 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1605 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION
1606 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1607 || lu->hash_idx == SSL_MD_MD5_IDX
1608 || lu->hash_idx == SSL_MD_SHA224_IDX))
1609 return 0;
1610
1611 /* See if public key algorithm allowed */
1612 if (ssl_cert_is_disabled(lu->sig_idx))
1613 return 0;
1614
1615 if (lu->sig == NID_id_GostR3410_2012_256
1616 || lu->sig == NID_id_GostR3410_2012_512
1617 || lu->sig == NID_id_GostR3410_2001) {
1618 /* We never allow GOST sig algs on the server with TLSv1.3 */
1619 if (s->server && SSL_IS_TLS13(s))
1620 return 0;
1621 if (!s->server
1622 && s->method->version == TLS_ANY_VERSION
1623 && s->s3->tmp.max_ver >= TLS1_3_VERSION) {
1624 int i, num;
1625 STACK_OF(SSL_CIPHER) *sk;
1626
1627 /*
1628 * We're a client that could negotiate TLSv1.3. We only allow GOST
1629 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1630 * ciphersuites enabled.
1631 */
1632
1633 if (s->s3->tmp.min_ver >= TLS1_3_VERSION)
1634 return 0;
1635
1636 sk = SSL_get_ciphers(s);
1637 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1638 for (i = 0; i < num; i++) {
1639 const SSL_CIPHER *c;
1640
1641 c = sk_SSL_CIPHER_value(sk, i);
1642 /* Skip disabled ciphers */
1643 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1644 continue;
1645
1646 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1647 break;
1648 }
1649 if (i == num)
1650 return 0;
1651 }
1652 }
1653
1654 /* Finally see if security callback allows it */
1655 secbits = sigalg_security_bits(lu);
1656 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1657 sigalgstr[1] = lu->sigalg & 0xff;
1658 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1659 }
1660
1661 /*
1662 * Get a mask of disabled public key algorithms based on supported signature
1663 * algorithms. For example if no signature algorithm supports RSA then RSA is
1664 * disabled.
1665 */
1666
ssl_set_sig_mask(uint32_t * pmask_a,SSL * s,int op)1667 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1668 {
1669 const uint16_t *sigalgs;
1670 size_t i, sigalgslen;
1671 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1672 /*
1673 * Go through all signature algorithms seeing if we support any
1674 * in disabled_mask.
1675 */
1676 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1677 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1678 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1679 const SSL_CERT_LOOKUP *clu;
1680
1681 if (lu == NULL)
1682 continue;
1683
1684 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1685 if (clu == NULL)
1686 continue;
1687
1688 /* If algorithm is disabled see if we can enable it */
1689 if ((clu->amask & disabled_mask) != 0
1690 && tls12_sigalg_allowed(s, op, lu))
1691 disabled_mask &= ~clu->amask;
1692 }
1693 *pmask_a |= disabled_mask;
1694 }
1695
tls12_copy_sigalgs(SSL * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)1696 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1697 const uint16_t *psig, size_t psiglen)
1698 {
1699 size_t i;
1700 int rv = 0;
1701
1702 for (i = 0; i < psiglen; i++, psig++) {
1703 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1704
1705 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1706 continue;
1707 if (!WPACKET_put_bytes_u16(pkt, *psig))
1708 return 0;
1709 /*
1710 * If TLS 1.3 must have at least one valid TLS 1.3 message
1711 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1712 */
1713 if (rv == 0 && (!SSL_IS_TLS13(s)
1714 || (lu->sig != EVP_PKEY_RSA
1715 && lu->hash != NID_sha1
1716 && lu->hash != NID_sha224)))
1717 rv = 1;
1718 }
1719 if (rv == 0)
1720 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1721 return rv;
1722 }
1723
1724 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)1725 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1726 const uint16_t *pref, size_t preflen,
1727 const uint16_t *allow, size_t allowlen)
1728 {
1729 const uint16_t *ptmp, *atmp;
1730 size_t i, j, nmatch = 0;
1731 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1732 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1733
1734 /* Skip disabled hashes or signature algorithms */
1735 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1736 continue;
1737 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1738 if (*ptmp == *atmp) {
1739 nmatch++;
1740 if (shsig)
1741 *shsig++ = lu;
1742 break;
1743 }
1744 }
1745 }
1746 return nmatch;
1747 }
1748
1749 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL * s)1750 static int tls1_set_shared_sigalgs(SSL *s)
1751 {
1752 const uint16_t *pref, *allow, *conf;
1753 size_t preflen, allowlen, conflen;
1754 size_t nmatch;
1755 const SIGALG_LOOKUP **salgs = NULL;
1756 CERT *c = s->cert;
1757 unsigned int is_suiteb = tls1_suiteb(s);
1758
1759 OPENSSL_free(s->shared_sigalgs);
1760 s->shared_sigalgs = NULL;
1761 s->shared_sigalgslen = 0;
1762 /* If client use client signature algorithms if not NULL */
1763 if (!s->server && c->client_sigalgs && !is_suiteb) {
1764 conf = c->client_sigalgs;
1765 conflen = c->client_sigalgslen;
1766 } else if (c->conf_sigalgs && !is_suiteb) {
1767 conf = c->conf_sigalgs;
1768 conflen = c->conf_sigalgslen;
1769 } else
1770 conflen = tls12_get_psigalgs(s, 0, &conf);
1771 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1772 pref = conf;
1773 preflen = conflen;
1774 allow = s->s3->tmp.peer_sigalgs;
1775 allowlen = s->s3->tmp.peer_sigalgslen;
1776 } else {
1777 allow = conf;
1778 allowlen = conflen;
1779 pref = s->s3->tmp.peer_sigalgs;
1780 preflen = s->s3->tmp.peer_sigalgslen;
1781 }
1782 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1783 if (nmatch) {
1784 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1785 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1786 return 0;
1787 }
1788 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1789 } else {
1790 salgs = NULL;
1791 }
1792 s->shared_sigalgs = salgs;
1793 s->shared_sigalgslen = nmatch;
1794 return 1;
1795 }
1796
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)1797 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1798 {
1799 unsigned int stmp;
1800 size_t size, i;
1801 uint16_t *buf;
1802
1803 size = PACKET_remaining(pkt);
1804
1805 /* Invalid data length */
1806 if (size == 0 || (size & 1) != 0)
1807 return 0;
1808
1809 size >>= 1;
1810
1811 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1812 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1813 return 0;
1814 }
1815 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1816 buf[i] = stmp;
1817
1818 if (i != size) {
1819 OPENSSL_free(buf);
1820 return 0;
1821 }
1822
1823 OPENSSL_free(*pdest);
1824 *pdest = buf;
1825 *pdestlen = size;
1826
1827 return 1;
1828 }
1829
tls1_save_sigalgs(SSL * s,PACKET * pkt,int cert)1830 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1831 {
1832 /* Extension ignored for inappropriate versions */
1833 if (!SSL_USE_SIGALGS(s))
1834 return 1;
1835 /* Should never happen */
1836 if (s->cert == NULL)
1837 return 0;
1838
1839 if (cert)
1840 return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs,
1841 &s->s3->tmp.peer_cert_sigalgslen);
1842 else
1843 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs,
1844 &s->s3->tmp.peer_sigalgslen);
1845
1846 }
1847
1848 /* Set preferred digest for each key type */
1849
tls1_process_sigalgs(SSL * s)1850 int tls1_process_sigalgs(SSL *s)
1851 {
1852 size_t i;
1853 uint32_t *pvalid = s->s3->tmp.valid_flags;
1854
1855 if (!tls1_set_shared_sigalgs(s))
1856 return 0;
1857
1858 for (i = 0; i < SSL_PKEY_NUM; i++)
1859 pvalid[i] = 0;
1860
1861 for (i = 0; i < s->shared_sigalgslen; i++) {
1862 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
1863 int idx = sigptr->sig_idx;
1864
1865 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1866 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1867 continue;
1868 /* If not disabled indicate we can explicitly sign */
1869 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1870 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1871 }
1872 return 1;
1873 }
1874
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)1875 int SSL_get_sigalgs(SSL *s, int idx,
1876 int *psign, int *phash, int *psignhash,
1877 unsigned char *rsig, unsigned char *rhash)
1878 {
1879 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1880 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1881 if (psig == NULL || numsigalgs > INT_MAX)
1882 return 0;
1883 if (idx >= 0) {
1884 const SIGALG_LOOKUP *lu;
1885
1886 if (idx >= (int)numsigalgs)
1887 return 0;
1888 psig += idx;
1889 if (rhash != NULL)
1890 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1891 if (rsig != NULL)
1892 *rsig = (unsigned char)(*psig & 0xff);
1893 lu = tls1_lookup_sigalg(*psig);
1894 if (psign != NULL)
1895 *psign = lu != NULL ? lu->sig : NID_undef;
1896 if (phash != NULL)
1897 *phash = lu != NULL ? lu->hash : NID_undef;
1898 if (psignhash != NULL)
1899 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1900 }
1901 return (int)numsigalgs;
1902 }
1903
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)1904 int SSL_get_shared_sigalgs(SSL *s, int idx,
1905 int *psign, int *phash, int *psignhash,
1906 unsigned char *rsig, unsigned char *rhash)
1907 {
1908 const SIGALG_LOOKUP *shsigalgs;
1909 if (s->shared_sigalgs == NULL
1910 || idx < 0
1911 || idx >= (int)s->shared_sigalgslen
1912 || s->shared_sigalgslen > INT_MAX)
1913 return 0;
1914 shsigalgs = s->shared_sigalgs[idx];
1915 if (phash != NULL)
1916 *phash = shsigalgs->hash;
1917 if (psign != NULL)
1918 *psign = shsigalgs->sig;
1919 if (psignhash != NULL)
1920 *psignhash = shsigalgs->sigandhash;
1921 if (rsig != NULL)
1922 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1923 if (rhash != NULL)
1924 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1925 return (int)s->shared_sigalgslen;
1926 }
1927
1928 /* Maximum possible number of unique entries in sigalgs array */
1929 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1930
1931 typedef struct {
1932 size_t sigalgcnt;
1933 /* TLSEXT_SIGALG_XXX values */
1934 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
1935 } sig_cb_st;
1936
get_sigorhash(int * psig,int * phash,const char * str)1937 static void get_sigorhash(int *psig, int *phash, const char *str)
1938 {
1939 if (strcmp(str, "RSA") == 0) {
1940 *psig = EVP_PKEY_RSA;
1941 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1942 *psig = EVP_PKEY_RSA_PSS;
1943 } else if (strcmp(str, "DSA") == 0) {
1944 *psig = EVP_PKEY_DSA;
1945 } else if (strcmp(str, "ECDSA") == 0) {
1946 *psig = EVP_PKEY_EC;
1947 } else {
1948 *phash = OBJ_sn2nid(str);
1949 if (*phash == NID_undef)
1950 *phash = OBJ_ln2nid(str);
1951 }
1952 }
1953 /* Maximum length of a signature algorithm string component */
1954 #define TLS_MAX_SIGSTRING_LEN 40
1955
sig_cb(const char * elem,int len,void * arg)1956 static int sig_cb(const char *elem, int len, void *arg)
1957 {
1958 sig_cb_st *sarg = arg;
1959 size_t i;
1960 const SIGALG_LOOKUP *s;
1961 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1962 int sig_alg = NID_undef, hash_alg = NID_undef;
1963 if (elem == NULL)
1964 return 0;
1965 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1966 return 0;
1967 if (len > (int)(sizeof(etmp) - 1))
1968 return 0;
1969 memcpy(etmp, elem, len);
1970 etmp[len] = 0;
1971 p = strchr(etmp, '+');
1972 /*
1973 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
1974 * if there's no '+' in the provided name, look for the new-style combined
1975 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
1976 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
1977 * rsa_pss_rsae_* that differ only by public key OID; in such cases
1978 * we will pick the _rsae_ variant, by virtue of them appearing earlier
1979 * in the table.
1980 */
1981 if (p == NULL) {
1982 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1983 i++, s++) {
1984 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1985 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
1986 break;
1987 }
1988 }
1989 if (i == OSSL_NELEM(sigalg_lookup_tbl))
1990 return 0;
1991 } else {
1992 *p = 0;
1993 p++;
1994 if (*p == 0)
1995 return 0;
1996 get_sigorhash(&sig_alg, &hash_alg, etmp);
1997 get_sigorhash(&sig_alg, &hash_alg, p);
1998 if (sig_alg == NID_undef || hash_alg == NID_undef)
1999 return 0;
2000 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2001 i++, s++) {
2002 if (s->hash == hash_alg && s->sig == sig_alg) {
2003 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2004 break;
2005 }
2006 }
2007 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2008 return 0;
2009 }
2010
2011 /* Reject duplicates */
2012 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2013 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2014 sarg->sigalgcnt--;
2015 return 0;
2016 }
2017 }
2018 return 1;
2019 }
2020
2021 /*
2022 * Set supported signature algorithms based on a colon separated list of the
2023 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2024 */
tls1_set_sigalgs_list(CERT * c,const char * str,int client)2025 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2026 {
2027 sig_cb_st sig;
2028 sig.sigalgcnt = 0;
2029 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2030 return 0;
2031 if (c == NULL)
2032 return 1;
2033 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2034 }
2035
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)2036 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2037 int client)
2038 {
2039 uint16_t *sigalgs;
2040
2041 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2042 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2043 return 0;
2044 }
2045 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2046
2047 if (client) {
2048 OPENSSL_free(c->client_sigalgs);
2049 c->client_sigalgs = sigalgs;
2050 c->client_sigalgslen = salglen;
2051 } else {
2052 OPENSSL_free(c->conf_sigalgs);
2053 c->conf_sigalgs = sigalgs;
2054 c->conf_sigalgslen = salglen;
2055 }
2056
2057 return 1;
2058 }
2059
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)2060 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2061 {
2062 uint16_t *sigalgs, *sptr;
2063 size_t i;
2064
2065 if (salglen & 1)
2066 return 0;
2067 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2068 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2069 return 0;
2070 }
2071 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2072 size_t j;
2073 const SIGALG_LOOKUP *curr;
2074 int md_id = *psig_nids++;
2075 int sig_id = *psig_nids++;
2076
2077 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2078 j++, curr++) {
2079 if (curr->hash == md_id && curr->sig == sig_id) {
2080 *sptr++ = curr->sigalg;
2081 break;
2082 }
2083 }
2084
2085 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2086 goto err;
2087 }
2088
2089 if (client) {
2090 OPENSSL_free(c->client_sigalgs);
2091 c->client_sigalgs = sigalgs;
2092 c->client_sigalgslen = salglen / 2;
2093 } else {
2094 OPENSSL_free(c->conf_sigalgs);
2095 c->conf_sigalgs = sigalgs;
2096 c->conf_sigalgslen = salglen / 2;
2097 }
2098
2099 return 1;
2100
2101 err:
2102 OPENSSL_free(sigalgs);
2103 return 0;
2104 }
2105
tls1_check_sig_alg(SSL * s,X509 * x,int default_nid)2106 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2107 {
2108 int sig_nid, use_pc_sigalgs = 0;
2109 size_t i;
2110 const SIGALG_LOOKUP *sigalg;
2111 size_t sigalgslen;
2112 if (default_nid == -1)
2113 return 1;
2114 sig_nid = X509_get_signature_nid(x);
2115 if (default_nid)
2116 return sig_nid == default_nid ? 1 : 0;
2117
2118 if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) {
2119 /*
2120 * If we're in TLSv1.3 then we only get here if we're checking the
2121 * chain. If the peer has specified peer_cert_sigalgs then we use them
2122 * otherwise we default to normal sigalgs.
2123 */
2124 sigalgslen = s->s3->tmp.peer_cert_sigalgslen;
2125 use_pc_sigalgs = 1;
2126 } else {
2127 sigalgslen = s->shared_sigalgslen;
2128 }
2129 for (i = 0; i < sigalgslen; i++) {
2130 sigalg = use_pc_sigalgs
2131 ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i])
2132 : s->shared_sigalgs[i];
2133 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2134 return 1;
2135 }
2136 return 0;
2137 }
2138
2139 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)2140 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2141 {
2142 X509_NAME *nm;
2143 int i;
2144 nm = X509_get_issuer_name(x);
2145 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2146 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2147 return 1;
2148 }
2149 return 0;
2150 }
2151
2152 /*
2153 * Check certificate chain is consistent with TLS extensions and is usable by
2154 * server. This servers two purposes: it allows users to check chains before
2155 * passing them to the server and it allows the server to check chains before
2156 * attempting to use them.
2157 */
2158
2159 /* Flags which need to be set for a certificate when strict mode not set */
2160
2161 #define CERT_PKEY_VALID_FLAGS \
2162 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2163 /* Strict mode flags */
2164 #define CERT_PKEY_STRICT_FLAGS \
2165 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2166 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2167
tls1_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)2168 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2169 int idx)
2170 {
2171 int i;
2172 int rv = 0;
2173 int check_flags = 0, strict_mode;
2174 CERT_PKEY *cpk = NULL;
2175 CERT *c = s->cert;
2176 uint32_t *pvalid;
2177 unsigned int suiteb_flags = tls1_suiteb(s);
2178 /* idx == -1 means checking server chains */
2179 if (idx != -1) {
2180 /* idx == -2 means checking client certificate chains */
2181 if (idx == -2) {
2182 cpk = c->key;
2183 idx = (int)(cpk - c->pkeys);
2184 } else
2185 cpk = c->pkeys + idx;
2186 pvalid = s->s3->tmp.valid_flags + idx;
2187 x = cpk->x509;
2188 pk = cpk->privatekey;
2189 chain = cpk->chain;
2190 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2191 /* If no cert or key, forget it */
2192 if (!x || !pk)
2193 goto end;
2194 } else {
2195 size_t certidx;
2196
2197 if (!x || !pk)
2198 return 0;
2199
2200 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2201 return 0;
2202 idx = certidx;
2203 pvalid = s->s3->tmp.valid_flags + idx;
2204
2205 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2206 check_flags = CERT_PKEY_STRICT_FLAGS;
2207 else
2208 check_flags = CERT_PKEY_VALID_FLAGS;
2209 strict_mode = 1;
2210 }
2211
2212 if (suiteb_flags) {
2213 int ok;
2214 if (check_flags)
2215 check_flags |= CERT_PKEY_SUITEB;
2216 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2217 if (ok == X509_V_OK)
2218 rv |= CERT_PKEY_SUITEB;
2219 else if (!check_flags)
2220 goto end;
2221 }
2222
2223 /*
2224 * Check all signature algorithms are consistent with signature
2225 * algorithms extension if TLS 1.2 or later and strict mode.
2226 */
2227 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2228 int default_nid;
2229 int rsign = 0;
2230 if (s->s3->tmp.peer_cert_sigalgs != NULL
2231 || s->s3->tmp.peer_sigalgs != NULL) {
2232 default_nid = 0;
2233 /* If no sigalgs extension use defaults from RFC5246 */
2234 } else {
2235 switch (idx) {
2236 case SSL_PKEY_RSA:
2237 rsign = EVP_PKEY_RSA;
2238 default_nid = NID_sha1WithRSAEncryption;
2239 break;
2240
2241 case SSL_PKEY_DSA_SIGN:
2242 rsign = EVP_PKEY_DSA;
2243 default_nid = NID_dsaWithSHA1;
2244 break;
2245
2246 case SSL_PKEY_ECC:
2247 rsign = EVP_PKEY_EC;
2248 default_nid = NID_ecdsa_with_SHA1;
2249 break;
2250
2251 case SSL_PKEY_GOST01:
2252 rsign = NID_id_GostR3410_2001;
2253 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2254 break;
2255
2256 case SSL_PKEY_GOST12_256:
2257 rsign = NID_id_GostR3410_2012_256;
2258 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2259 break;
2260
2261 case SSL_PKEY_GOST12_512:
2262 rsign = NID_id_GostR3410_2012_512;
2263 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2264 break;
2265
2266 default:
2267 default_nid = -1;
2268 break;
2269 }
2270 }
2271 /*
2272 * If peer sent no signature algorithms extension and we have set
2273 * preferred signature algorithms check we support sha1.
2274 */
2275 if (default_nid > 0 && c->conf_sigalgs) {
2276 size_t j;
2277 const uint16_t *p = c->conf_sigalgs;
2278 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2279 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2280
2281 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2282 break;
2283 }
2284 if (j == c->conf_sigalgslen) {
2285 if (check_flags)
2286 goto skip_sigs;
2287 else
2288 goto end;
2289 }
2290 }
2291 /* Check signature algorithm of each cert in chain */
2292 if (SSL_IS_TLS13(s)) {
2293 /*
2294 * We only get here if the application has called SSL_check_chain(),
2295 * so check_flags is always set.
2296 */
2297 if (find_sig_alg(s, x, pk) != NULL)
2298 rv |= CERT_PKEY_EE_SIGNATURE;
2299 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2300 if (!check_flags)
2301 goto end;
2302 } else
2303 rv |= CERT_PKEY_EE_SIGNATURE;
2304 rv |= CERT_PKEY_CA_SIGNATURE;
2305 for (i = 0; i < sk_X509_num(chain); i++) {
2306 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2307 if (check_flags) {
2308 rv &= ~CERT_PKEY_CA_SIGNATURE;
2309 break;
2310 } else
2311 goto end;
2312 }
2313 }
2314 }
2315 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2316 else if (check_flags)
2317 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2318 skip_sigs:
2319 /* Check cert parameters are consistent */
2320 if (tls1_check_cert_param(s, x, 1))
2321 rv |= CERT_PKEY_EE_PARAM;
2322 else if (!check_flags)
2323 goto end;
2324 if (!s->server)
2325 rv |= CERT_PKEY_CA_PARAM;
2326 /* In strict mode check rest of chain too */
2327 else if (strict_mode) {
2328 rv |= CERT_PKEY_CA_PARAM;
2329 for (i = 0; i < sk_X509_num(chain); i++) {
2330 X509 *ca = sk_X509_value(chain, i);
2331 if (!tls1_check_cert_param(s, ca, 0)) {
2332 if (check_flags) {
2333 rv &= ~CERT_PKEY_CA_PARAM;
2334 break;
2335 } else
2336 goto end;
2337 }
2338 }
2339 }
2340 if (!s->server && strict_mode) {
2341 STACK_OF(X509_NAME) *ca_dn;
2342 int check_type = 0;
2343 switch (EVP_PKEY_id(pk)) {
2344 case EVP_PKEY_RSA:
2345 check_type = TLS_CT_RSA_SIGN;
2346 break;
2347 case EVP_PKEY_DSA:
2348 check_type = TLS_CT_DSS_SIGN;
2349 break;
2350 case EVP_PKEY_EC:
2351 check_type = TLS_CT_ECDSA_SIGN;
2352 break;
2353 }
2354 if (check_type) {
2355 const uint8_t *ctypes = s->s3->tmp.ctype;
2356 size_t j;
2357
2358 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2359 if (*ctypes == check_type) {
2360 rv |= CERT_PKEY_CERT_TYPE;
2361 break;
2362 }
2363 }
2364 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2365 goto end;
2366 } else {
2367 rv |= CERT_PKEY_CERT_TYPE;
2368 }
2369
2370 ca_dn = s->s3->tmp.peer_ca_names;
2371
2372 if (!sk_X509_NAME_num(ca_dn))
2373 rv |= CERT_PKEY_ISSUER_NAME;
2374
2375 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2376 if (ssl_check_ca_name(ca_dn, x))
2377 rv |= CERT_PKEY_ISSUER_NAME;
2378 }
2379 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2380 for (i = 0; i < sk_X509_num(chain); i++) {
2381 X509 *xtmp = sk_X509_value(chain, i);
2382 if (ssl_check_ca_name(ca_dn, xtmp)) {
2383 rv |= CERT_PKEY_ISSUER_NAME;
2384 break;
2385 }
2386 }
2387 }
2388 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2389 goto end;
2390 } else
2391 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2392
2393 if (!check_flags || (rv & check_flags) == check_flags)
2394 rv |= CERT_PKEY_VALID;
2395
2396 end:
2397
2398 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2399 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2400 else
2401 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2402
2403 /*
2404 * When checking a CERT_PKEY structure all flags are irrelevant if the
2405 * chain is invalid.
2406 */
2407 if (!check_flags) {
2408 if (rv & CERT_PKEY_VALID) {
2409 *pvalid = rv;
2410 } else {
2411 /* Preserve sign and explicit sign flag, clear rest */
2412 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2413 return 0;
2414 }
2415 }
2416 return rv;
2417 }
2418
2419 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL * s)2420 void tls1_set_cert_validity(SSL *s)
2421 {
2422 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2423 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2424 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2425 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2426 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2427 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2428 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2429 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2430 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2431 }
2432
2433 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)2434 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2435 {
2436 return tls1_check_chain(s, x, pk, chain, -1);
2437 }
2438
2439 #ifndef OPENSSL_NO_DH
ssl_get_auto_dh(SSL * s)2440 DH *ssl_get_auto_dh(SSL *s)
2441 {
2442 DH *dhp = NULL;
2443 BIGNUM *p = NULL, *g = NULL;
2444 int dh_secbits = 80;
2445 if (s->cert->dh_tmp_auto != 2) {
2446 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2447 if (s->s3->tmp.new_cipher->strength_bits == 256)
2448 dh_secbits = 128;
2449 else
2450 dh_secbits = 80;
2451 } else {
2452 if (s->s3->tmp.cert == NULL)
2453 return NULL;
2454 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2455 }
2456 }
2457
2458 dhp = DH_new();
2459 if (dhp == NULL)
2460 return NULL;
2461 g = BN_new();
2462 if (g == NULL || !BN_set_word(g, 2)) {
2463 DH_free(dhp);
2464 BN_free(g);
2465 return NULL;
2466 }
2467 if (dh_secbits >= 192)
2468 p = BN_get_rfc3526_prime_8192(NULL);
2469 else if (dh_secbits >= 152)
2470 p = BN_get_rfc3526_prime_4096(NULL);
2471 else if (dh_secbits >= 128)
2472 p = BN_get_rfc3526_prime_3072(NULL);
2473 else if (dh_secbits >= 112)
2474 p = BN_get_rfc3526_prime_2048(NULL);
2475 else
2476 p = BN_get_rfc2409_prime_1024(NULL);
2477 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2478 DH_free(dhp);
2479 BN_free(p);
2480 BN_free(g);
2481 return NULL;
2482 }
2483 return dhp;
2484 }
2485 #endif
2486
ssl_security_cert_key(SSL * s,SSL_CTX * ctx,X509 * x,int op)2487 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2488 {
2489 int secbits = -1;
2490 EVP_PKEY *pkey = X509_get0_pubkey(x);
2491 if (pkey) {
2492 /*
2493 * If no parameters this will return -1 and fail using the default
2494 * security callback for any non-zero security level. This will
2495 * reject keys which omit parameters but this only affects DSA and
2496 * omission of parameters is never (?) done in practice.
2497 */
2498 secbits = EVP_PKEY_security_bits(pkey);
2499 }
2500 if (s)
2501 return ssl_security(s, op, secbits, 0, x);
2502 else
2503 return ssl_ctx_security(ctx, op, secbits, 0, x);
2504 }
2505
ssl_security_cert_sig(SSL * s,SSL_CTX * ctx,X509 * x,int op)2506 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2507 {
2508 /* Lookup signature algorithm digest */
2509 int secbits, nid, pknid;
2510 /* Don't check signature if self signed */
2511 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2512 return 1;
2513 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2514 secbits = -1;
2515 /* If digest NID not defined use signature NID */
2516 if (nid == NID_undef)
2517 nid = pknid;
2518 if (s)
2519 return ssl_security(s, op, secbits, nid, x);
2520 else
2521 return ssl_ctx_security(ctx, op, secbits, nid, x);
2522 }
2523
ssl_security_cert(SSL * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)2524 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2525 {
2526 if (vfy)
2527 vfy = SSL_SECOP_PEER;
2528 if (is_ee) {
2529 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2530 return SSL_R_EE_KEY_TOO_SMALL;
2531 } else {
2532 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2533 return SSL_R_CA_KEY_TOO_SMALL;
2534 }
2535 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2536 return SSL_R_CA_MD_TOO_WEAK;
2537 return 1;
2538 }
2539
2540 /*
2541 * Check security of a chain, if |sk| includes the end entity certificate then
2542 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2543 * one to the peer. Return values: 1 if ok otherwise error code to use
2544 */
2545
ssl_security_cert_chain(SSL * s,STACK_OF (X509)* sk,X509 * x,int vfy)2546 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2547 {
2548 int rv, start_idx, i;
2549 if (x == NULL) {
2550 x = sk_X509_value(sk, 0);
2551 start_idx = 1;
2552 } else
2553 start_idx = 0;
2554
2555 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2556 if (rv != 1)
2557 return rv;
2558
2559 for (i = start_idx; i < sk_X509_num(sk); i++) {
2560 x = sk_X509_value(sk, i);
2561 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2562 if (rv != 1)
2563 return rv;
2564 }
2565 return 1;
2566 }
2567
2568 /*
2569 * For TLS 1.2 servers check if we have a certificate which can be used
2570 * with the signature algorithm "lu" and return index of certificate.
2571 */
2572
tls12_get_cert_sigalg_idx(const SSL * s,const SIGALG_LOOKUP * lu)2573 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2574 {
2575 int sig_idx = lu->sig_idx;
2576 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2577
2578 /* If not recognised or not supported by cipher mask it is not suitable */
2579 if (clu == NULL
2580 || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0
2581 || (clu->nid == EVP_PKEY_RSA_PSS
2582 && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2583 return -1;
2584
2585 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2586 }
2587
2588 /*
2589 * Checks the given cert against signature_algorithm_cert restrictions sent by
2590 * the peer (if any) as well as whether the hash from the sigalg is usable with
2591 * the key.
2592 * Returns true if the cert is usable and false otherwise.
2593 */
check_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)2594 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2595 EVP_PKEY *pkey)
2596 {
2597 const SIGALG_LOOKUP *lu;
2598 int mdnid, pknid, default_mdnid;
2599 size_t i;
2600
2601 /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */
2602 ERR_set_mark();
2603 if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 &&
2604 sig->hash != default_mdnid)
2605 return 0;
2606
2607 /* If it didn't report a mandatory NID, for whatever reasons,
2608 * just clear the error and allow all hashes to be used. */
2609 ERR_pop_to_mark();
2610
2611 if (s->s3->tmp.peer_cert_sigalgs != NULL) {
2612 for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) {
2613 lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]);
2614 if (lu == NULL
2615 || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2616 continue;
2617 /*
2618 * TODO this does not differentiate between the
2619 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2620 * have a chain here that lets us look at the key OID in the
2621 * signing certificate.
2622 */
2623 if (mdnid == lu->hash && pknid == lu->sig)
2624 return 1;
2625 }
2626 return 0;
2627 }
2628 return 1;
2629 }
2630
2631 /*
2632 * Returns true if |s| has a usable certificate configured for use
2633 * with signature scheme |sig|.
2634 * "Usable" includes a check for presence as well as applying
2635 * the signature_algorithm_cert restrictions sent by the peer (if any).
2636 * Returns false if no usable certificate is found.
2637 */
has_usable_cert(SSL * s,const SIGALG_LOOKUP * sig,int idx)2638 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2639 {
2640 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2641 if (idx == -1)
2642 idx = sig->sig_idx;
2643 if (!ssl_has_cert(s, idx))
2644 return 0;
2645
2646 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2647 s->cert->pkeys[idx].privatekey);
2648 }
2649
2650 /*
2651 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2652 * specified signature scheme |sig|, or false otherwise.
2653 */
is_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)2654 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2655 EVP_PKEY *pkey)
2656 {
2657 size_t idx;
2658
2659 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2660 return 0;
2661
2662 /* Check the key is consistent with the sig alg */
2663 if ((int)idx != sig->sig_idx)
2664 return 0;
2665
2666 return check_cert_usable(s, sig, x, pkey);
2667 }
2668
2669 /*
2670 * Find a signature scheme that works with the supplied certificate |x| and key
2671 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2672 * available certs/keys to find one that works.
2673 */
find_sig_alg(SSL * s,X509 * x,EVP_PKEY * pkey)2674 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2675 {
2676 const SIGALG_LOOKUP *lu = NULL;
2677 size_t i;
2678 #ifndef OPENSSL_NO_EC
2679 int curve = -1;
2680 #endif
2681 EVP_PKEY *tmppkey;
2682
2683 /* Look for a shared sigalgs matching possible certificates */
2684 for (i = 0; i < s->shared_sigalgslen; i++) {
2685 lu = s->shared_sigalgs[i];
2686
2687 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2688 if (lu->hash == NID_sha1
2689 || lu->hash == NID_sha224
2690 || lu->sig == EVP_PKEY_DSA
2691 || lu->sig == EVP_PKEY_RSA)
2692 continue;
2693 /* Check that we have a cert, and signature_algorithms_cert */
2694 if (!tls1_lookup_md(lu, NULL))
2695 continue;
2696 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2697 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2698 continue;
2699
2700 tmppkey = (pkey != NULL) ? pkey
2701 : s->cert->pkeys[lu->sig_idx].privatekey;
2702
2703 if (lu->sig == EVP_PKEY_EC) {
2704 #ifndef OPENSSL_NO_EC
2705 if (curve == -1) {
2706 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey);
2707 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2708 }
2709 if (lu->curve != NID_undef && curve != lu->curve)
2710 continue;
2711 #else
2712 continue;
2713 #endif
2714 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2715 /* validate that key is large enough for the signature algorithm */
2716 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu))
2717 continue;
2718 }
2719 break;
2720 }
2721
2722 if (i == s->shared_sigalgslen)
2723 return NULL;
2724
2725 return lu;
2726 }
2727
2728 /*
2729 * Choose an appropriate signature algorithm based on available certificates
2730 * Sets chosen certificate and signature algorithm.
2731 *
2732 * For servers if we fail to find a required certificate it is a fatal error,
2733 * an appropriate error code is set and a TLS alert is sent.
2734 *
2735 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2736 * a fatal error: we will either try another certificate or not present one
2737 * to the server. In this case no error is set.
2738 */
tls_choose_sigalg(SSL * s,int fatalerrs)2739 int tls_choose_sigalg(SSL *s, int fatalerrs)
2740 {
2741 const SIGALG_LOOKUP *lu = NULL;
2742 int sig_idx = -1;
2743
2744 s->s3->tmp.cert = NULL;
2745 s->s3->tmp.sigalg = NULL;
2746
2747 if (SSL_IS_TLS13(s)) {
2748 lu = find_sig_alg(s, NULL, NULL);
2749 if (lu == NULL) {
2750 if (!fatalerrs)
2751 return 1;
2752 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2753 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2754 return 0;
2755 }
2756 } else {
2757 /* If ciphersuite doesn't require a cert nothing to do */
2758 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT))
2759 return 1;
2760 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2761 return 1;
2762
2763 if (SSL_USE_SIGALGS(s)) {
2764 size_t i;
2765 if (s->s3->tmp.peer_sigalgs != NULL) {
2766 #ifndef OPENSSL_NO_EC
2767 int curve;
2768
2769 /* For Suite B need to match signature algorithm to curve */
2770 if (tls1_suiteb(s)) {
2771 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2772 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2773 } else {
2774 curve = -1;
2775 }
2776 #endif
2777
2778 /*
2779 * Find highest preference signature algorithm matching
2780 * cert type
2781 */
2782 for (i = 0; i < s->shared_sigalgslen; i++) {
2783 lu = s->shared_sigalgs[i];
2784
2785 if (s->server) {
2786 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2787 continue;
2788 } else {
2789 int cc_idx = s->cert->key - s->cert->pkeys;
2790
2791 sig_idx = lu->sig_idx;
2792 if (cc_idx != sig_idx)
2793 continue;
2794 }
2795 /* Check that we have a cert, and sig_algs_cert */
2796 if (!has_usable_cert(s, lu, sig_idx))
2797 continue;
2798 if (lu->sig == EVP_PKEY_RSA_PSS) {
2799 /* validate that key is large enough for the signature algorithm */
2800 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2801
2802 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu))
2803 continue;
2804 }
2805 #ifndef OPENSSL_NO_EC
2806 if (curve == -1 || lu->curve == curve)
2807 #endif
2808 break;
2809 }
2810 #ifndef OPENSSL_NO_GOST
2811 /*
2812 * Some Windows-based implementations do not send GOST algorithms indication
2813 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2814 * we have to assume GOST support.
2815 */
2816 if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2817 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2818 if (!fatalerrs)
2819 return 1;
2820 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2821 SSL_F_TLS_CHOOSE_SIGALG,
2822 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2823 return 0;
2824 } else {
2825 i = 0;
2826 sig_idx = lu->sig_idx;
2827 }
2828 }
2829 #endif
2830 if (i == s->shared_sigalgslen) {
2831 if (!fatalerrs)
2832 return 1;
2833 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2834 SSL_F_TLS_CHOOSE_SIGALG,
2835 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2836 return 0;
2837 }
2838 } else {
2839 /*
2840 * If we have no sigalg use defaults
2841 */
2842 const uint16_t *sent_sigs;
2843 size_t sent_sigslen;
2844
2845 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2846 if (!fatalerrs)
2847 return 1;
2848 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2849 ERR_R_INTERNAL_ERROR);
2850 return 0;
2851 }
2852
2853 /* Check signature matches a type we sent */
2854 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2855 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2856 if (lu->sigalg == *sent_sigs
2857 && has_usable_cert(s, lu, lu->sig_idx))
2858 break;
2859 }
2860 if (i == sent_sigslen) {
2861 if (!fatalerrs)
2862 return 1;
2863 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2864 SSL_F_TLS_CHOOSE_SIGALG,
2865 SSL_R_WRONG_SIGNATURE_TYPE);
2866 return 0;
2867 }
2868 }
2869 } else {
2870 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2871 if (!fatalerrs)
2872 return 1;
2873 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2874 ERR_R_INTERNAL_ERROR);
2875 return 0;
2876 }
2877 }
2878 }
2879 if (sig_idx == -1)
2880 sig_idx = lu->sig_idx;
2881 s->s3->tmp.cert = &s->cert->pkeys[sig_idx];
2882 s->cert->key = s->s3->tmp.cert;
2883 s->s3->tmp.sigalg = lu;
2884 return 1;
2885 }
2886
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)2887 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
2888 {
2889 if (mode != TLSEXT_max_fragment_length_DISABLED
2890 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2891 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2892 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2893 return 0;
2894 }
2895
2896 ctx->ext.max_fragment_len_mode = mode;
2897 return 1;
2898 }
2899
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)2900 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
2901 {
2902 if (mode != TLSEXT_max_fragment_length_DISABLED
2903 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2904 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2905 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2906 return 0;
2907 }
2908
2909 ssl->ext.max_fragment_len_mode = mode;
2910 return 1;
2911 }
2912
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)2913 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
2914 {
2915 return session->ext.max_fragment_len_mode;
2916 }
2917