1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include "internal.h"
26
27 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)28 static inline void count_compact_event(enum vm_event_item item)
29 {
30 count_vm_event(item);
31 }
32
count_compact_events(enum vm_event_item item,long delta)33 static inline void count_compact_events(enum vm_event_item item, long delta)
34 {
35 count_vm_events(item, delta);
36 }
37 #else
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
40 #endif
41
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
46
47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51
release_freepages(struct list_head * freelist)52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54 struct page *page, *next;
55 unsigned long high_pfn = 0;
56
57 list_for_each_entry_safe(page, next, freelist, lru) {
58 unsigned long pfn = page_to_pfn(page);
59 list_del(&page->lru);
60 __free_page(page);
61 if (pfn > high_pfn)
62 high_pfn = pfn;
63 }
64
65 return high_pfn;
66 }
67
map_pages(struct list_head * list)68 static void map_pages(struct list_head *list)
69 {
70 unsigned int i, order, nr_pages;
71 struct page *page, *next;
72 LIST_HEAD(tmp_list);
73
74 list_for_each_entry_safe(page, next, list, lru) {
75 list_del(&page->lru);
76
77 order = page_private(page);
78 nr_pages = 1 << order;
79
80 post_alloc_hook(page, order, __GFP_MOVABLE);
81 if (order)
82 split_page(page, order);
83
84 for (i = 0; i < nr_pages; i++) {
85 list_add(&page->lru, &tmp_list);
86 page++;
87 }
88 }
89
90 list_splice(&tmp_list, list);
91 }
92
93 #ifdef CONFIG_COMPACTION
94
PageMovable(struct page * page)95 int PageMovable(struct page *page)
96 {
97 struct address_space *mapping;
98
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 if (!__PageMovable(page))
101 return 0;
102
103 mapping = page_mapping(page);
104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105 return 1;
106
107 return 0;
108 }
109 EXPORT_SYMBOL(PageMovable);
110
__SetPageMovable(struct page * page,struct address_space * mapping)111 void __SetPageMovable(struct page *page, struct address_space *mapping)
112 {
113 VM_BUG_ON_PAGE(!PageLocked(page), page);
114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116 }
117 EXPORT_SYMBOL(__SetPageMovable);
118
__ClearPageMovable(struct page * page)119 void __ClearPageMovable(struct page *page)
120 {
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(!PageMovable(page), page);
123 /*
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
127 */
128 page->mapping = (void *)((unsigned long)page->mapping &
129 PAGE_MAPPING_MOVABLE);
130 }
131 EXPORT_SYMBOL(__ClearPageMovable);
132
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
135
136 /*
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140 */
defer_compaction(struct zone * zone,int order)141 void defer_compaction(struct zone *zone, int order)
142 {
143 zone->compact_considered = 0;
144 zone->compact_defer_shift++;
145
146 if (order < zone->compact_order_failed)
147 zone->compact_order_failed = order;
148
149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152 trace_mm_compaction_defer_compaction(zone, order);
153 }
154
155 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)156 bool compaction_deferred(struct zone *zone, int order)
157 {
158 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160 if (order < zone->compact_order_failed)
161 return false;
162
163 /* Avoid possible overflow */
164 if (++zone->compact_considered > defer_limit)
165 zone->compact_considered = defer_limit;
166
167 if (zone->compact_considered >= defer_limit)
168 return false;
169
170 trace_mm_compaction_deferred(zone, order);
171
172 return true;
173 }
174
175 /*
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
179 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)180 void compaction_defer_reset(struct zone *zone, int order,
181 bool alloc_success)
182 {
183 if (alloc_success) {
184 zone->compact_considered = 0;
185 zone->compact_defer_shift = 0;
186 }
187 if (order >= zone->compact_order_failed)
188 zone->compact_order_failed = order + 1;
189
190 trace_mm_compaction_defer_reset(zone, order);
191 }
192
193 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)194 bool compaction_restarting(struct zone *zone, int order)
195 {
196 if (order < zone->compact_order_failed)
197 return false;
198
199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201 }
202
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)204 static inline bool isolation_suitable(struct compact_control *cc,
205 struct page *page)
206 {
207 if (cc->ignore_skip_hint)
208 return true;
209
210 return !get_pageblock_skip(page);
211 }
212
reset_cached_positions(struct zone * zone)213 static void reset_cached_positions(struct zone *zone)
214 {
215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217 zone->compact_cached_free_pfn =
218 pageblock_start_pfn(zone_end_pfn(zone) - 1);
219 }
220
221 /*
222 * Compound pages of >= pageblock_order should consistenly be skipped until
223 * released. It is always pointless to compact pages of such order (if they are
224 * migratable), and the pageblocks they occupy cannot contain any free pages.
225 */
pageblock_skip_persistent(struct page * page)226 static bool pageblock_skip_persistent(struct page *page)
227 {
228 if (!PageCompound(page))
229 return false;
230
231 page = compound_head(page);
232
233 if (compound_order(page) >= pageblock_order)
234 return true;
235
236 return false;
237 }
238
239 /*
240 * This function is called to clear all cached information on pageblocks that
241 * should be skipped for page isolation when the migrate and free page scanner
242 * meet.
243 */
__reset_isolation_suitable(struct zone * zone)244 static void __reset_isolation_suitable(struct zone *zone)
245 {
246 unsigned long start_pfn = zone->zone_start_pfn;
247 unsigned long end_pfn = zone_end_pfn(zone);
248 unsigned long pfn;
249
250 zone->compact_blockskip_flush = false;
251
252 /* Walk the zone and mark every pageblock as suitable for isolation */
253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
254 struct page *page;
255
256 cond_resched();
257
258 page = pfn_to_online_page(pfn);
259 if (!page)
260 continue;
261 if (zone != page_zone(page))
262 continue;
263 if (pageblock_skip_persistent(page))
264 continue;
265
266 clear_pageblock_skip(page);
267 }
268
269 reset_cached_positions(zone);
270 }
271
reset_isolation_suitable(pg_data_t * pgdat)272 void reset_isolation_suitable(pg_data_t *pgdat)
273 {
274 int zoneid;
275
276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
277 struct zone *zone = &pgdat->node_zones[zoneid];
278 if (!populated_zone(zone))
279 continue;
280
281 /* Only flush if a full compaction finished recently */
282 if (zone->compact_blockskip_flush)
283 __reset_isolation_suitable(zone);
284 }
285 }
286
287 /*
288 * If no pages were isolated then mark this pageblock to be skipped in the
289 * future. The information is later cleared by __reset_isolation_suitable().
290 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)291 static void update_pageblock_skip(struct compact_control *cc,
292 struct page *page, unsigned long nr_isolated,
293 bool migrate_scanner)
294 {
295 struct zone *zone = cc->zone;
296 unsigned long pfn;
297
298 if (cc->no_set_skip_hint)
299 return;
300
301 if (!page)
302 return;
303
304 if (nr_isolated)
305 return;
306
307 set_pageblock_skip(page);
308
309 pfn = page_to_pfn(page);
310
311 /* Update where async and sync compaction should restart */
312 if (migrate_scanner) {
313 if (pfn > zone->compact_cached_migrate_pfn[0])
314 zone->compact_cached_migrate_pfn[0] = pfn;
315 if (cc->mode != MIGRATE_ASYNC &&
316 pfn > zone->compact_cached_migrate_pfn[1])
317 zone->compact_cached_migrate_pfn[1] = pfn;
318 } else {
319 if (pfn < zone->compact_cached_free_pfn)
320 zone->compact_cached_free_pfn = pfn;
321 }
322 }
323 #else
isolation_suitable(struct compact_control * cc,struct page * page)324 static inline bool isolation_suitable(struct compact_control *cc,
325 struct page *page)
326 {
327 return true;
328 }
329
pageblock_skip_persistent(struct page * page)330 static inline bool pageblock_skip_persistent(struct page *page)
331 {
332 return false;
333 }
334
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)335 static inline void update_pageblock_skip(struct compact_control *cc,
336 struct page *page, unsigned long nr_isolated,
337 bool migrate_scanner)
338 {
339 }
340 #endif /* CONFIG_COMPACTION */
341
342 /*
343 * Compaction requires the taking of some coarse locks that are potentially
344 * very heavily contended. For async compaction, back out if the lock cannot
345 * be taken immediately. For sync compaction, spin on the lock if needed.
346 *
347 * Returns true if the lock is held
348 * Returns false if the lock is not held and compaction should abort
349 */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)350 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
351 struct compact_control *cc)
352 {
353 if (cc->mode == MIGRATE_ASYNC) {
354 if (!spin_trylock_irqsave(lock, *flags)) {
355 cc->contended = true;
356 return false;
357 }
358 } else {
359 spin_lock_irqsave(lock, *flags);
360 }
361
362 return true;
363 }
364
365 /*
366 * Compaction requires the taking of some coarse locks that are potentially
367 * very heavily contended. The lock should be periodically unlocked to avoid
368 * having disabled IRQs for a long time, even when there is nobody waiting on
369 * the lock. It might also be that allowing the IRQs will result in
370 * need_resched() becoming true. If scheduling is needed, async compaction
371 * aborts. Sync compaction schedules.
372 * Either compaction type will also abort if a fatal signal is pending.
373 * In either case if the lock was locked, it is dropped and not regained.
374 *
375 * Returns true if compaction should abort due to fatal signal pending, or
376 * async compaction due to need_resched()
377 * Returns false when compaction can continue (sync compaction might have
378 * scheduled)
379 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)380 static bool compact_unlock_should_abort(spinlock_t *lock,
381 unsigned long flags, bool *locked, struct compact_control *cc)
382 {
383 if (*locked) {
384 spin_unlock_irqrestore(lock, flags);
385 *locked = false;
386 }
387
388 if (fatal_signal_pending(current)) {
389 cc->contended = true;
390 return true;
391 }
392
393 if (need_resched()) {
394 if (cc->mode == MIGRATE_ASYNC) {
395 cc->contended = true;
396 return true;
397 }
398 cond_resched();
399 }
400
401 return false;
402 }
403
404 /*
405 * Aside from avoiding lock contention, compaction also periodically checks
406 * need_resched() and either schedules in sync compaction or aborts async
407 * compaction. This is similar to what compact_unlock_should_abort() does, but
408 * is used where no lock is concerned.
409 *
410 * Returns false when no scheduling was needed, or sync compaction scheduled.
411 * Returns true when async compaction should abort.
412 */
compact_should_abort(struct compact_control * cc)413 static inline bool compact_should_abort(struct compact_control *cc)
414 {
415 /* async compaction aborts if contended */
416 if (need_resched()) {
417 if (cc->mode == MIGRATE_ASYNC) {
418 cc->contended = true;
419 return true;
420 }
421
422 cond_resched();
423 }
424
425 return false;
426 }
427
428 /*
429 * Isolate free pages onto a private freelist. If @strict is true, will abort
430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
431 * (even though it may still end up isolating some pages).
432 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)433 static unsigned long isolate_freepages_block(struct compact_control *cc,
434 unsigned long *start_pfn,
435 unsigned long end_pfn,
436 struct list_head *freelist,
437 bool strict)
438 {
439 int nr_scanned = 0, total_isolated = 0;
440 struct page *cursor, *valid_page = NULL;
441 unsigned long flags = 0;
442 bool locked = false;
443 unsigned long blockpfn = *start_pfn;
444 unsigned int order;
445
446 cursor = pfn_to_page(blockpfn);
447
448 /* Isolate free pages. */
449 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
450 int isolated;
451 struct page *page = cursor;
452
453 /*
454 * Periodically drop the lock (if held) regardless of its
455 * contention, to give chance to IRQs. Abort if fatal signal
456 * pending or async compaction detects need_resched()
457 */
458 if (!(blockpfn % SWAP_CLUSTER_MAX)
459 && compact_unlock_should_abort(&cc->zone->lock, flags,
460 &locked, cc))
461 break;
462
463 nr_scanned++;
464 if (!pfn_valid_within(blockpfn))
465 goto isolate_fail;
466
467 if (!valid_page)
468 valid_page = page;
469
470 /*
471 * For compound pages such as THP and hugetlbfs, we can save
472 * potentially a lot of iterations if we skip them at once.
473 * The check is racy, but we can consider only valid values
474 * and the only danger is skipping too much.
475 */
476 if (PageCompound(page)) {
477 const unsigned int order = compound_order(page);
478
479 if (likely(order < MAX_ORDER)) {
480 blockpfn += (1UL << order) - 1;
481 cursor += (1UL << order) - 1;
482 }
483 goto isolate_fail;
484 }
485
486 if (!PageBuddy(page))
487 goto isolate_fail;
488
489 /*
490 * If we already hold the lock, we can skip some rechecking.
491 * Note that if we hold the lock now, checked_pageblock was
492 * already set in some previous iteration (or strict is true),
493 * so it is correct to skip the suitable migration target
494 * recheck as well.
495 */
496 if (!locked) {
497 /*
498 * The zone lock must be held to isolate freepages.
499 * Unfortunately this is a very coarse lock and can be
500 * heavily contended if there are parallel allocations
501 * or parallel compactions. For async compaction do not
502 * spin on the lock and we acquire the lock as late as
503 * possible.
504 */
505 locked = compact_trylock_irqsave(&cc->zone->lock,
506 &flags, cc);
507 if (!locked)
508 break;
509
510 /* Recheck this is a buddy page under lock */
511 if (!PageBuddy(page))
512 goto isolate_fail;
513 }
514
515 /* Found a free page, will break it into order-0 pages */
516 order = page_order(page);
517 isolated = __isolate_free_page(page, order);
518 if (!isolated)
519 break;
520 set_page_private(page, order);
521
522 total_isolated += isolated;
523 cc->nr_freepages += isolated;
524 list_add_tail(&page->lru, freelist);
525
526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
527 blockpfn += isolated;
528 break;
529 }
530 /* Advance to the end of split page */
531 blockpfn += isolated - 1;
532 cursor += isolated - 1;
533 continue;
534
535 isolate_fail:
536 if (strict)
537 break;
538 else
539 continue;
540
541 }
542
543 if (locked)
544 spin_unlock_irqrestore(&cc->zone->lock, flags);
545
546 /*
547 * There is a tiny chance that we have read bogus compound_order(),
548 * so be careful to not go outside of the pageblock.
549 */
550 if (unlikely(blockpfn > end_pfn))
551 blockpfn = end_pfn;
552
553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
554 nr_scanned, total_isolated);
555
556 /* Record how far we have got within the block */
557 *start_pfn = blockpfn;
558
559 /*
560 * If strict isolation is requested by CMA then check that all the
561 * pages requested were isolated. If there were any failures, 0 is
562 * returned and CMA will fail.
563 */
564 if (strict && blockpfn < end_pfn)
565 total_isolated = 0;
566
567 /* Update the pageblock-skip if the whole pageblock was scanned */
568 if (blockpfn == end_pfn)
569 update_pageblock_skip(cc, valid_page, total_isolated, false);
570
571 cc->total_free_scanned += nr_scanned;
572 if (total_isolated)
573 count_compact_events(COMPACTISOLATED, total_isolated);
574 return total_isolated;
575 }
576
577 /**
578 * isolate_freepages_range() - isolate free pages.
579 * @cc: Compaction control structure.
580 * @start_pfn: The first PFN to start isolating.
581 * @end_pfn: The one-past-last PFN.
582 *
583 * Non-free pages, invalid PFNs, or zone boundaries within the
584 * [start_pfn, end_pfn) range are considered errors, cause function to
585 * undo its actions and return zero.
586 *
587 * Otherwise, function returns one-past-the-last PFN of isolated page
588 * (which may be greater then end_pfn if end fell in a middle of
589 * a free page).
590 */
591 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)592 isolate_freepages_range(struct compact_control *cc,
593 unsigned long start_pfn, unsigned long end_pfn)
594 {
595 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
596 LIST_HEAD(freelist);
597
598 pfn = start_pfn;
599 block_start_pfn = pageblock_start_pfn(pfn);
600 if (block_start_pfn < cc->zone->zone_start_pfn)
601 block_start_pfn = cc->zone->zone_start_pfn;
602 block_end_pfn = pageblock_end_pfn(pfn);
603
604 for (; pfn < end_pfn; pfn += isolated,
605 block_start_pfn = block_end_pfn,
606 block_end_pfn += pageblock_nr_pages) {
607 /* Protect pfn from changing by isolate_freepages_block */
608 unsigned long isolate_start_pfn = pfn;
609
610 block_end_pfn = min(block_end_pfn, end_pfn);
611
612 /*
613 * pfn could pass the block_end_pfn if isolated freepage
614 * is more than pageblock order. In this case, we adjust
615 * scanning range to right one.
616 */
617 if (pfn >= block_end_pfn) {
618 block_start_pfn = pageblock_start_pfn(pfn);
619 block_end_pfn = pageblock_end_pfn(pfn);
620 block_end_pfn = min(block_end_pfn, end_pfn);
621 }
622
623 if (!pageblock_pfn_to_page(block_start_pfn,
624 block_end_pfn, cc->zone))
625 break;
626
627 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
628 block_end_pfn, &freelist, true);
629
630 /*
631 * In strict mode, isolate_freepages_block() returns 0 if
632 * there are any holes in the block (ie. invalid PFNs or
633 * non-free pages).
634 */
635 if (!isolated)
636 break;
637
638 /*
639 * If we managed to isolate pages, it is always (1 << n) *
640 * pageblock_nr_pages for some non-negative n. (Max order
641 * page may span two pageblocks).
642 */
643 }
644
645 /* __isolate_free_page() does not map the pages */
646 map_pages(&freelist);
647
648 if (pfn < end_pfn) {
649 /* Loop terminated early, cleanup. */
650 release_freepages(&freelist);
651 return 0;
652 }
653
654 /* We don't use freelists for anything. */
655 return pfn;
656 }
657
658 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)659 static bool too_many_isolated(struct zone *zone)
660 {
661 unsigned long active, inactive, isolated;
662
663 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
664 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
665 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
666 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
667 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
668 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
669
670 return isolated > (inactive + active) / 2;
671 }
672
673 /**
674 * isolate_migratepages_block() - isolate all migrate-able pages within
675 * a single pageblock
676 * @cc: Compaction control structure.
677 * @low_pfn: The first PFN to isolate
678 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
679 * @isolate_mode: Isolation mode to be used.
680 *
681 * Isolate all pages that can be migrated from the range specified by
682 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
683 * Returns zero if there is a fatal signal pending, otherwise PFN of the
684 * first page that was not scanned (which may be both less, equal to or more
685 * than end_pfn).
686 *
687 * The pages are isolated on cc->migratepages list (not required to be empty),
688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
689 * is neither read nor updated.
690 */
691 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)692 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
693 unsigned long end_pfn, isolate_mode_t isolate_mode)
694 {
695 struct zone *zone = cc->zone;
696 unsigned long nr_scanned = 0, nr_isolated = 0;
697 struct lruvec *lruvec;
698 unsigned long flags = 0;
699 bool locked = false;
700 struct page *page = NULL, *valid_page = NULL;
701 unsigned long start_pfn = low_pfn;
702 bool skip_on_failure = false;
703 unsigned long next_skip_pfn = 0;
704
705 /*
706 * Ensure that there are not too many pages isolated from the LRU
707 * list by either parallel reclaimers or compaction. If there are,
708 * delay for some time until fewer pages are isolated
709 */
710 while (unlikely(too_many_isolated(zone))) {
711 /* async migration should just abort */
712 if (cc->mode == MIGRATE_ASYNC)
713 return 0;
714
715 congestion_wait(BLK_RW_ASYNC, HZ/10);
716
717 if (fatal_signal_pending(current))
718 return 0;
719 }
720
721 if (compact_should_abort(cc))
722 return 0;
723
724 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
725 skip_on_failure = true;
726 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
727 }
728
729 /* Time to isolate some pages for migration */
730 for (; low_pfn < end_pfn; low_pfn++) {
731
732 if (skip_on_failure && low_pfn >= next_skip_pfn) {
733 /*
734 * We have isolated all migration candidates in the
735 * previous order-aligned block, and did not skip it due
736 * to failure. We should migrate the pages now and
737 * hopefully succeed compaction.
738 */
739 if (nr_isolated)
740 break;
741
742 /*
743 * We failed to isolate in the previous order-aligned
744 * block. Set the new boundary to the end of the
745 * current block. Note we can't simply increase
746 * next_skip_pfn by 1 << order, as low_pfn might have
747 * been incremented by a higher number due to skipping
748 * a compound or a high-order buddy page in the
749 * previous loop iteration.
750 */
751 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
752 }
753
754 /*
755 * Periodically drop the lock (if held) regardless of its
756 * contention, to give chance to IRQs. Abort async compaction
757 * if contended.
758 */
759 if (!(low_pfn % SWAP_CLUSTER_MAX)
760 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
761 &locked, cc))
762 break;
763
764 if (!pfn_valid_within(low_pfn))
765 goto isolate_fail;
766 nr_scanned++;
767
768 page = pfn_to_page(low_pfn);
769
770 if (!valid_page)
771 valid_page = page;
772
773 /*
774 * Skip if free. We read page order here without zone lock
775 * which is generally unsafe, but the race window is small and
776 * the worst thing that can happen is that we skip some
777 * potential isolation targets.
778 */
779 if (PageBuddy(page)) {
780 unsigned long freepage_order = page_order_unsafe(page);
781
782 /*
783 * Without lock, we cannot be sure that what we got is
784 * a valid page order. Consider only values in the
785 * valid order range to prevent low_pfn overflow.
786 */
787 if (freepage_order > 0 && freepage_order < MAX_ORDER)
788 low_pfn += (1UL << freepage_order) - 1;
789 continue;
790 }
791
792 /*
793 * Regardless of being on LRU, compound pages such as THP and
794 * hugetlbfs are not to be compacted. We can potentially save
795 * a lot of iterations if we skip them at once. The check is
796 * racy, but we can consider only valid values and the only
797 * danger is skipping too much.
798 */
799 if (PageCompound(page)) {
800 const unsigned int order = compound_order(page);
801
802 if (likely(order < MAX_ORDER))
803 low_pfn += (1UL << order) - 1;
804 goto isolate_fail;
805 }
806
807 /*
808 * Check may be lockless but that's ok as we recheck later.
809 * It's possible to migrate LRU and non-lru movable pages.
810 * Skip any other type of page
811 */
812 if (!PageLRU(page)) {
813 /*
814 * __PageMovable can return false positive so we need
815 * to verify it under page_lock.
816 */
817 if (unlikely(__PageMovable(page)) &&
818 !PageIsolated(page)) {
819 if (locked) {
820 spin_unlock_irqrestore(zone_lru_lock(zone),
821 flags);
822 locked = false;
823 }
824
825 if (!isolate_movable_page(page, isolate_mode))
826 goto isolate_success;
827 }
828
829 goto isolate_fail;
830 }
831
832 /*
833 * Migration will fail if an anonymous page is pinned in memory,
834 * so avoid taking lru_lock and isolating it unnecessarily in an
835 * admittedly racy check.
836 */
837 if (!page_mapping(page) &&
838 page_count(page) > page_mapcount(page))
839 goto isolate_fail;
840
841 /*
842 * Only allow to migrate anonymous pages in GFP_NOFS context
843 * because those do not depend on fs locks.
844 */
845 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
846 goto isolate_fail;
847
848 /* If we already hold the lock, we can skip some rechecking */
849 if (!locked) {
850 locked = compact_trylock_irqsave(zone_lru_lock(zone),
851 &flags, cc);
852 if (!locked)
853 break;
854
855 /* Recheck PageLRU and PageCompound under lock */
856 if (!PageLRU(page))
857 goto isolate_fail;
858
859 /*
860 * Page become compound since the non-locked check,
861 * and it's on LRU. It can only be a THP so the order
862 * is safe to read and it's 0 for tail pages.
863 */
864 if (unlikely(PageCompound(page))) {
865 low_pfn += (1UL << compound_order(page)) - 1;
866 goto isolate_fail;
867 }
868 }
869
870 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
871
872 /* Try isolate the page */
873 if (__isolate_lru_page(page, isolate_mode) != 0)
874 goto isolate_fail;
875
876 VM_BUG_ON_PAGE(PageCompound(page), page);
877
878 /* Successfully isolated */
879 del_page_from_lru_list(page, lruvec, page_lru(page));
880 inc_node_page_state(page,
881 NR_ISOLATED_ANON + page_is_file_cache(page));
882
883 isolate_success:
884 list_add(&page->lru, &cc->migratepages);
885 cc->nr_migratepages++;
886 nr_isolated++;
887
888 /*
889 * Record where we could have freed pages by migration and not
890 * yet flushed them to buddy allocator.
891 * - this is the lowest page that was isolated and likely be
892 * then freed by migration.
893 */
894 if (!cc->last_migrated_pfn)
895 cc->last_migrated_pfn = low_pfn;
896
897 /* Avoid isolating too much */
898 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
899 ++low_pfn;
900 break;
901 }
902
903 continue;
904 isolate_fail:
905 if (!skip_on_failure)
906 continue;
907
908 /*
909 * We have isolated some pages, but then failed. Release them
910 * instead of migrating, as we cannot form the cc->order buddy
911 * page anyway.
912 */
913 if (nr_isolated) {
914 if (locked) {
915 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
916 locked = false;
917 }
918 putback_movable_pages(&cc->migratepages);
919 cc->nr_migratepages = 0;
920 cc->last_migrated_pfn = 0;
921 nr_isolated = 0;
922 }
923
924 if (low_pfn < next_skip_pfn) {
925 low_pfn = next_skip_pfn - 1;
926 /*
927 * The check near the loop beginning would have updated
928 * next_skip_pfn too, but this is a bit simpler.
929 */
930 next_skip_pfn += 1UL << cc->order;
931 }
932 }
933
934 /*
935 * The PageBuddy() check could have potentially brought us outside
936 * the range to be scanned.
937 */
938 if (unlikely(low_pfn > end_pfn))
939 low_pfn = end_pfn;
940
941 if (locked)
942 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
943
944 /*
945 * Update the pageblock-skip information and cached scanner pfn,
946 * if the whole pageblock was scanned without isolating any page.
947 */
948 if (low_pfn == end_pfn)
949 update_pageblock_skip(cc, valid_page, nr_isolated, true);
950
951 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
952 nr_scanned, nr_isolated);
953
954 cc->total_migrate_scanned += nr_scanned;
955 if (nr_isolated)
956 count_compact_events(COMPACTISOLATED, nr_isolated);
957
958 return low_pfn;
959 }
960
961 /**
962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
963 * @cc: Compaction control structure.
964 * @start_pfn: The first PFN to start isolating.
965 * @end_pfn: The one-past-last PFN.
966 *
967 * Returns zero if isolation fails fatally due to e.g. pending signal.
968 * Otherwise, function returns one-past-the-last PFN of isolated page
969 * (which may be greater than end_pfn if end fell in a middle of a THP page).
970 */
971 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)972 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
973 unsigned long end_pfn)
974 {
975 unsigned long pfn, block_start_pfn, block_end_pfn;
976
977 /* Scan block by block. First and last block may be incomplete */
978 pfn = start_pfn;
979 block_start_pfn = pageblock_start_pfn(pfn);
980 if (block_start_pfn < cc->zone->zone_start_pfn)
981 block_start_pfn = cc->zone->zone_start_pfn;
982 block_end_pfn = pageblock_end_pfn(pfn);
983
984 for (; pfn < end_pfn; pfn = block_end_pfn,
985 block_start_pfn = block_end_pfn,
986 block_end_pfn += pageblock_nr_pages) {
987
988 block_end_pfn = min(block_end_pfn, end_pfn);
989
990 if (!pageblock_pfn_to_page(block_start_pfn,
991 block_end_pfn, cc->zone))
992 continue;
993
994 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
995 ISOLATE_UNEVICTABLE);
996
997 if (!pfn)
998 break;
999
1000 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1001 break;
1002 }
1003
1004 return pfn;
1005 }
1006
1007 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008 #ifdef CONFIG_COMPACTION
1009
suitable_migration_source(struct compact_control * cc,struct page * page)1010 static bool suitable_migration_source(struct compact_control *cc,
1011 struct page *page)
1012 {
1013 int block_mt;
1014
1015 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016 return true;
1017
1018 block_mt = get_pageblock_migratetype(page);
1019
1020 if (cc->migratetype == MIGRATE_MOVABLE)
1021 return is_migrate_movable(block_mt);
1022 else
1023 return block_mt == cc->migratetype;
1024 }
1025
1026 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1027 static bool suitable_migration_target(struct compact_control *cc,
1028 struct page *page)
1029 {
1030 /* If the page is a large free page, then disallow migration */
1031 if (PageBuddy(page)) {
1032 /*
1033 * We are checking page_order without zone->lock taken. But
1034 * the only small danger is that we skip a potentially suitable
1035 * pageblock, so it's not worth to check order for valid range.
1036 */
1037 if (page_order_unsafe(page) >= pageblock_order)
1038 return false;
1039 }
1040
1041 if (cc->ignore_block_suitable)
1042 return true;
1043
1044 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045 if (is_migrate_movable(get_pageblock_migratetype(page)))
1046 return true;
1047
1048 /* Otherwise skip the block */
1049 return false;
1050 }
1051
1052 /*
1053 * Test whether the free scanner has reached the same or lower pageblock than
1054 * the migration scanner, and compaction should thus terminate.
1055 */
compact_scanners_met(struct compact_control * cc)1056 static inline bool compact_scanners_met(struct compact_control *cc)
1057 {
1058 return (cc->free_pfn >> pageblock_order)
1059 <= (cc->migrate_pfn >> pageblock_order);
1060 }
1061
1062 /*
1063 * Based on information in the current compact_control, find blocks
1064 * suitable for isolating free pages from and then isolate them.
1065 */
isolate_freepages(struct compact_control * cc)1066 static void isolate_freepages(struct compact_control *cc)
1067 {
1068 struct zone *zone = cc->zone;
1069 struct page *page;
1070 unsigned long block_start_pfn; /* start of current pageblock */
1071 unsigned long isolate_start_pfn; /* exact pfn we start at */
1072 unsigned long block_end_pfn; /* end of current pageblock */
1073 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1074 struct list_head *freelist = &cc->freepages;
1075
1076 /*
1077 * Initialise the free scanner. The starting point is where we last
1078 * successfully isolated from, zone-cached value, or the end of the
1079 * zone when isolating for the first time. For looping we also need
1080 * this pfn aligned down to the pageblock boundary, because we do
1081 * block_start_pfn -= pageblock_nr_pages in the for loop.
1082 * For ending point, take care when isolating in last pageblock of a
1083 * a zone which ends in the middle of a pageblock.
1084 * The low boundary is the end of the pageblock the migration scanner
1085 * is using.
1086 */
1087 isolate_start_pfn = cc->free_pfn;
1088 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1090 zone_end_pfn(zone));
1091 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1092
1093 /*
1094 * Isolate free pages until enough are available to migrate the
1095 * pages on cc->migratepages. We stop searching if the migrate
1096 * and free page scanners meet or enough free pages are isolated.
1097 */
1098 for (; block_start_pfn >= low_pfn;
1099 block_end_pfn = block_start_pfn,
1100 block_start_pfn -= pageblock_nr_pages,
1101 isolate_start_pfn = block_start_pfn) {
1102 /*
1103 * This can iterate a massively long zone without finding any
1104 * suitable migration targets, so periodically check if we need
1105 * to schedule, or even abort async compaction.
1106 */
1107 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1108 && compact_should_abort(cc))
1109 break;
1110
1111 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1112 zone);
1113 if (!page)
1114 continue;
1115
1116 /* Check the block is suitable for migration */
1117 if (!suitable_migration_target(cc, page))
1118 continue;
1119
1120 /* If isolation recently failed, do not retry */
1121 if (!isolation_suitable(cc, page))
1122 continue;
1123
1124 /* Found a block suitable for isolating free pages from. */
1125 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1126 freelist, false);
1127
1128 /*
1129 * If we isolated enough freepages, or aborted due to lock
1130 * contention, terminate.
1131 */
1132 if ((cc->nr_freepages >= cc->nr_migratepages)
1133 || cc->contended) {
1134 if (isolate_start_pfn >= block_end_pfn) {
1135 /*
1136 * Restart at previous pageblock if more
1137 * freepages can be isolated next time.
1138 */
1139 isolate_start_pfn =
1140 block_start_pfn - pageblock_nr_pages;
1141 }
1142 break;
1143 } else if (isolate_start_pfn < block_end_pfn) {
1144 /*
1145 * If isolation failed early, do not continue
1146 * needlessly.
1147 */
1148 break;
1149 }
1150 }
1151
1152 /* __isolate_free_page() does not map the pages */
1153 map_pages(freelist);
1154
1155 /*
1156 * Record where the free scanner will restart next time. Either we
1157 * broke from the loop and set isolate_start_pfn based on the last
1158 * call to isolate_freepages_block(), or we met the migration scanner
1159 * and the loop terminated due to isolate_start_pfn < low_pfn
1160 */
1161 cc->free_pfn = isolate_start_pfn;
1162 }
1163
1164 /*
1165 * This is a migrate-callback that "allocates" freepages by taking pages
1166 * from the isolated freelists in the block we are migrating to.
1167 */
compaction_alloc(struct page * migratepage,unsigned long data)1168 static struct page *compaction_alloc(struct page *migratepage,
1169 unsigned long data)
1170 {
1171 struct compact_control *cc = (struct compact_control *)data;
1172 struct page *freepage;
1173
1174 /*
1175 * Isolate free pages if necessary, and if we are not aborting due to
1176 * contention.
1177 */
1178 if (list_empty(&cc->freepages)) {
1179 if (!cc->contended)
1180 isolate_freepages(cc);
1181
1182 if (list_empty(&cc->freepages))
1183 return NULL;
1184 }
1185
1186 freepage = list_entry(cc->freepages.next, struct page, lru);
1187 list_del(&freepage->lru);
1188 cc->nr_freepages--;
1189
1190 return freepage;
1191 }
1192
1193 /*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist. All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
compaction_free(struct page * page,unsigned long data)1198 static void compaction_free(struct page *page, unsigned long data)
1199 {
1200 struct compact_control *cc = (struct compact_control *)data;
1201
1202 list_add(&page->lru, &cc->freepages);
1203 cc->nr_freepages++;
1204 }
1205
1206 /* possible outcome of isolate_migratepages */
1207 typedef enum {
1208 ISOLATE_ABORT, /* Abort compaction now */
1209 ISOLATE_NONE, /* No pages isolated, continue scanning */
1210 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1211 } isolate_migrate_t;
1212
1213 /*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1218
1219 /*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1224 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225 struct compact_control *cc)
1226 {
1227 unsigned long block_start_pfn;
1228 unsigned long block_end_pfn;
1229 unsigned long low_pfn;
1230 struct page *page;
1231 const isolate_mode_t isolate_mode =
1232 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1234
1235 /*
1236 * Start at where we last stopped, or beginning of the zone as
1237 * initialized by compact_zone()
1238 */
1239 low_pfn = cc->migrate_pfn;
1240 block_start_pfn = pageblock_start_pfn(low_pfn);
1241 if (block_start_pfn < zone->zone_start_pfn)
1242 block_start_pfn = zone->zone_start_pfn;
1243
1244 /* Only scan within a pageblock boundary */
1245 block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247 /*
1248 * Iterate over whole pageblocks until we find the first suitable.
1249 * Do not cross the free scanner.
1250 */
1251 for (; block_end_pfn <= cc->free_pfn;
1252 low_pfn = block_end_pfn,
1253 block_start_pfn = block_end_pfn,
1254 block_end_pfn += pageblock_nr_pages) {
1255
1256 /*
1257 * This can potentially iterate a massively long zone with
1258 * many pageblocks unsuitable, so periodically check if we
1259 * need to schedule, or even abort async compaction.
1260 */
1261 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262 && compact_should_abort(cc))
1263 break;
1264
1265 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266 zone);
1267 if (!page)
1268 continue;
1269
1270 /* If isolation recently failed, do not retry */
1271 if (!isolation_suitable(cc, page))
1272 continue;
1273
1274 /*
1275 * For async compaction, also only scan in MOVABLE blocks.
1276 * Async compaction is optimistic to see if the minimum amount
1277 * of work satisfies the allocation.
1278 */
1279 if (!suitable_migration_source(cc, page))
1280 continue;
1281
1282 /* Perform the isolation */
1283 low_pfn = isolate_migratepages_block(cc, low_pfn,
1284 block_end_pfn, isolate_mode);
1285
1286 if (!low_pfn || cc->contended)
1287 return ISOLATE_ABORT;
1288
1289 /*
1290 * Either we isolated something and proceed with migration. Or
1291 * we failed and compact_zone should decide if we should
1292 * continue or not.
1293 */
1294 break;
1295 }
1296
1297 /* Record where migration scanner will be restarted. */
1298 cc->migrate_pfn = low_pfn;
1299
1300 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301 }
1302
1303 /*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
is_via_compact_memory(int order)1307 static inline bool is_via_compact_memory(int order)
1308 {
1309 return order == -1;
1310 }
1311
__compact_finished(struct zone * zone,struct compact_control * cc)1312 static enum compact_result __compact_finished(struct zone *zone,
1313 struct compact_control *cc)
1314 {
1315 unsigned int order;
1316 const int migratetype = cc->migratetype;
1317
1318 if (cc->contended || fatal_signal_pending(current))
1319 return COMPACT_CONTENDED;
1320
1321 /* Compaction run completes if the migrate and free scanner meet */
1322 if (compact_scanners_met(cc)) {
1323 /* Let the next compaction start anew. */
1324 reset_cached_positions(zone);
1325
1326 /*
1327 * Mark that the PG_migrate_skip information should be cleared
1328 * by kswapd when it goes to sleep. kcompactd does not set the
1329 * flag itself as the decision to be clear should be directly
1330 * based on an allocation request.
1331 */
1332 if (cc->direct_compaction)
1333 zone->compact_blockskip_flush = true;
1334
1335 if (cc->whole_zone)
1336 return COMPACT_COMPLETE;
1337 else
1338 return COMPACT_PARTIAL_SKIPPED;
1339 }
1340
1341 if (is_via_compact_memory(cc->order))
1342 return COMPACT_CONTINUE;
1343
1344 if (cc->finishing_block) {
1345 /*
1346 * We have finished the pageblock, but better check again that
1347 * we really succeeded.
1348 */
1349 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350 cc->finishing_block = false;
1351 else
1352 return COMPACT_CONTINUE;
1353 }
1354
1355 /* Direct compactor: Is a suitable page free? */
1356 for (order = cc->order; order < MAX_ORDER; order++) {
1357 struct free_area *area = &zone->free_area[order];
1358 bool can_steal;
1359
1360 /* Job done if page is free of the right migratetype */
1361 if (!list_empty(&area->free_list[migratetype]))
1362 return COMPACT_SUCCESS;
1363
1364 #ifdef CONFIG_CMA
1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366 if (migratetype == MIGRATE_MOVABLE &&
1367 !list_empty(&area->free_list[MIGRATE_CMA]))
1368 return COMPACT_SUCCESS;
1369 #endif
1370 /*
1371 * Job done if allocation would steal freepages from
1372 * other migratetype buddy lists.
1373 */
1374 if (find_suitable_fallback(area, order, migratetype,
1375 true, &can_steal) != -1) {
1376
1377 /* movable pages are OK in any pageblock */
1378 if (migratetype == MIGRATE_MOVABLE)
1379 return COMPACT_SUCCESS;
1380
1381 /*
1382 * We are stealing for a non-movable allocation. Make
1383 * sure we finish compacting the current pageblock
1384 * first so it is as free as possible and we won't
1385 * have to steal another one soon. This only applies
1386 * to sync compaction, as async compaction operates
1387 * on pageblocks of the same migratetype.
1388 */
1389 if (cc->mode == MIGRATE_ASYNC ||
1390 IS_ALIGNED(cc->migrate_pfn,
1391 pageblock_nr_pages)) {
1392 return COMPACT_SUCCESS;
1393 }
1394
1395 cc->finishing_block = true;
1396 return COMPACT_CONTINUE;
1397 }
1398 }
1399
1400 return COMPACT_NO_SUITABLE_PAGE;
1401 }
1402
compact_finished(struct zone * zone,struct compact_control * cc)1403 static enum compact_result compact_finished(struct zone *zone,
1404 struct compact_control *cc)
1405 {
1406 int ret;
1407
1408 ret = __compact_finished(zone, cc);
1409 trace_mm_compaction_finished(zone, cc->order, ret);
1410 if (ret == COMPACT_NO_SUITABLE_PAGE)
1411 ret = COMPACT_CONTINUE;
1412
1413 return ret;
1414 }
1415
1416 /*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 * COMPACT_SKIPPED - If there are too few free pages for compaction
1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1421 * COMPACT_CONTINUE - If compaction should run now
1422 */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1423 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424 unsigned int alloc_flags,
1425 int classzone_idx,
1426 unsigned long wmark_target)
1427 {
1428 unsigned long watermark;
1429
1430 if (is_via_compact_memory(order))
1431 return COMPACT_CONTINUE;
1432
1433 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434 /*
1435 * If watermarks for high-order allocation are already met, there
1436 * should be no need for compaction at all.
1437 */
1438 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439 alloc_flags))
1440 return COMPACT_SUCCESS;
1441
1442 /*
1443 * Watermarks for order-0 must be met for compaction to be able to
1444 * isolate free pages for migration targets. This means that the
1445 * watermark and alloc_flags have to match, or be more pessimistic than
1446 * the check in __isolate_free_page(). We don't use the direct
1447 * compactor's alloc_flags, as they are not relevant for freepage
1448 * isolation. We however do use the direct compactor's classzone_idx to
1449 * skip over zones where lowmem reserves would prevent allocation even
1450 * if compaction succeeds.
1451 * For costly orders, we require low watermark instead of min for
1452 * compaction to proceed to increase its chances.
1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454 * suitable migration targets
1455 */
1456 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457 low_wmark_pages(zone) : min_wmark_pages(zone);
1458 watermark += compact_gap(order);
1459 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460 ALLOC_CMA, wmark_target))
1461 return COMPACT_SKIPPED;
1462
1463 return COMPACT_CONTINUE;
1464 }
1465
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1466 enum compact_result compaction_suitable(struct zone *zone, int order,
1467 unsigned int alloc_flags,
1468 int classzone_idx)
1469 {
1470 enum compact_result ret;
1471 int fragindex;
1472
1473 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474 zone_page_state(zone, NR_FREE_PAGES));
1475 /*
1476 * fragmentation index determines if allocation failures are due to
1477 * low memory or external fragmentation
1478 *
1479 * index of -1000 would imply allocations might succeed depending on
1480 * watermarks, but we already failed the high-order watermark check
1481 * index towards 0 implies failure is due to lack of memory
1482 * index towards 1000 implies failure is due to fragmentation
1483 *
1484 * Only compact if a failure would be due to fragmentation. Also
1485 * ignore fragindex for non-costly orders where the alternative to
1486 * a successful reclaim/compaction is OOM. Fragindex and the
1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488 * excessive compaction for costly orders, but it should not be at the
1489 * expense of system stability.
1490 */
1491 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492 fragindex = fragmentation_index(zone, order);
1493 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494 ret = COMPACT_NOT_SUITABLE_ZONE;
1495 }
1496
1497 trace_mm_compaction_suitable(zone, order, ret);
1498 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499 ret = COMPACT_SKIPPED;
1500
1501 return ret;
1502 }
1503
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)1504 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505 int alloc_flags)
1506 {
1507 struct zone *zone;
1508 struct zoneref *z;
1509
1510 /*
1511 * Make sure at least one zone would pass __compaction_suitable if we continue
1512 * retrying the reclaim.
1513 */
1514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515 ac->nodemask) {
1516 unsigned long available;
1517 enum compact_result compact_result;
1518
1519 /*
1520 * Do not consider all the reclaimable memory because we do not
1521 * want to trash just for a single high order allocation which
1522 * is even not guaranteed to appear even if __compaction_suitable
1523 * is happy about the watermark check.
1524 */
1525 available = zone_reclaimable_pages(zone) / order;
1526 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527 compact_result = __compaction_suitable(zone, order, alloc_flags,
1528 ac_classzone_idx(ac), available);
1529 if (compact_result != COMPACT_SKIPPED)
1530 return true;
1531 }
1532
1533 return false;
1534 }
1535
compact_zone(struct zone * zone,struct compact_control * cc)1536 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1537 {
1538 enum compact_result ret;
1539 unsigned long start_pfn = zone->zone_start_pfn;
1540 unsigned long end_pfn = zone_end_pfn(zone);
1541 const bool sync = cc->mode != MIGRATE_ASYNC;
1542
1543 /*
1544 * These counters track activities during zone compaction. Initialize
1545 * them before compacting a new zone.
1546 */
1547 cc->total_migrate_scanned = 0;
1548 cc->total_free_scanned = 0;
1549 cc->nr_migratepages = 0;
1550 cc->nr_freepages = 0;
1551 INIT_LIST_HEAD(&cc->freepages);
1552 INIT_LIST_HEAD(&cc->migratepages);
1553
1554 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1555 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1556 cc->classzone_idx);
1557 /* Compaction is likely to fail */
1558 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1559 return ret;
1560
1561 /* huh, compaction_suitable is returning something unexpected */
1562 VM_BUG_ON(ret != COMPACT_CONTINUE);
1563
1564 /*
1565 * Clear pageblock skip if there were failures recently and compaction
1566 * is about to be retried after being deferred.
1567 */
1568 if (compaction_restarting(zone, cc->order))
1569 __reset_isolation_suitable(zone);
1570
1571 /*
1572 * Setup to move all movable pages to the end of the zone. Used cached
1573 * information on where the scanners should start (unless we explicitly
1574 * want to compact the whole zone), but check that it is initialised
1575 * by ensuring the values are within zone boundaries.
1576 */
1577 if (cc->whole_zone) {
1578 cc->migrate_pfn = start_pfn;
1579 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1580 } else {
1581 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1582 cc->free_pfn = zone->compact_cached_free_pfn;
1583 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1584 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1585 zone->compact_cached_free_pfn = cc->free_pfn;
1586 }
1587 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1588 cc->migrate_pfn = start_pfn;
1589 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1590 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1591 }
1592
1593 if (cc->migrate_pfn == start_pfn)
1594 cc->whole_zone = true;
1595 }
1596
1597 cc->last_migrated_pfn = 0;
1598
1599 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1600 cc->free_pfn, end_pfn, sync);
1601
1602 migrate_prep_local();
1603
1604 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1605 int err;
1606
1607 switch (isolate_migratepages(zone, cc)) {
1608 case ISOLATE_ABORT:
1609 ret = COMPACT_CONTENDED;
1610 putback_movable_pages(&cc->migratepages);
1611 cc->nr_migratepages = 0;
1612 goto out;
1613 case ISOLATE_NONE:
1614 /*
1615 * We haven't isolated and migrated anything, but
1616 * there might still be unflushed migrations from
1617 * previous cc->order aligned block.
1618 */
1619 goto check_drain;
1620 case ISOLATE_SUCCESS:
1621 ;
1622 }
1623
1624 err = migrate_pages(&cc->migratepages, compaction_alloc,
1625 compaction_free, (unsigned long)cc, cc->mode,
1626 MR_COMPACTION);
1627
1628 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1629 &cc->migratepages);
1630
1631 /* All pages were either migrated or will be released */
1632 cc->nr_migratepages = 0;
1633 if (err) {
1634 putback_movable_pages(&cc->migratepages);
1635 /*
1636 * migrate_pages() may return -ENOMEM when scanners meet
1637 * and we want compact_finished() to detect it
1638 */
1639 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1640 ret = COMPACT_CONTENDED;
1641 goto out;
1642 }
1643 /*
1644 * We failed to migrate at least one page in the current
1645 * order-aligned block, so skip the rest of it.
1646 */
1647 if (cc->direct_compaction &&
1648 (cc->mode == MIGRATE_ASYNC)) {
1649 cc->migrate_pfn = block_end_pfn(
1650 cc->migrate_pfn - 1, cc->order);
1651 /* Draining pcplists is useless in this case */
1652 cc->last_migrated_pfn = 0;
1653
1654 }
1655 }
1656
1657 check_drain:
1658 /*
1659 * Has the migration scanner moved away from the previous
1660 * cc->order aligned block where we migrated from? If yes,
1661 * flush the pages that were freed, so that they can merge and
1662 * compact_finished() can detect immediately if allocation
1663 * would succeed.
1664 */
1665 if (cc->order > 0 && cc->last_migrated_pfn) {
1666 int cpu;
1667 unsigned long current_block_start =
1668 block_start_pfn(cc->migrate_pfn, cc->order);
1669
1670 if (cc->last_migrated_pfn < current_block_start) {
1671 cpu = get_cpu();
1672 lru_add_drain_cpu(cpu);
1673 drain_local_pages(zone);
1674 put_cpu();
1675 /* No more flushing until we migrate again */
1676 cc->last_migrated_pfn = 0;
1677 }
1678 }
1679
1680 }
1681
1682 out:
1683 /*
1684 * Release free pages and update where the free scanner should restart,
1685 * so we don't leave any returned pages behind in the next attempt.
1686 */
1687 if (cc->nr_freepages > 0) {
1688 unsigned long free_pfn = release_freepages(&cc->freepages);
1689
1690 cc->nr_freepages = 0;
1691 VM_BUG_ON(free_pfn == 0);
1692 /* The cached pfn is always the first in a pageblock */
1693 free_pfn = pageblock_start_pfn(free_pfn);
1694 /*
1695 * Only go back, not forward. The cached pfn might have been
1696 * already reset to zone end in compact_finished()
1697 */
1698 if (free_pfn > zone->compact_cached_free_pfn)
1699 zone->compact_cached_free_pfn = free_pfn;
1700 }
1701
1702 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1703 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1704
1705 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1706 cc->free_pfn, end_pfn, sync, ret);
1707
1708 return ret;
1709 }
1710
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx)1711 static enum compact_result compact_zone_order(struct zone *zone, int order,
1712 gfp_t gfp_mask, enum compact_priority prio,
1713 unsigned int alloc_flags, int classzone_idx)
1714 {
1715 enum compact_result ret;
1716 struct compact_control cc = {
1717 .order = order,
1718 .gfp_mask = gfp_mask,
1719 .zone = zone,
1720 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1721 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1722 .alloc_flags = alloc_flags,
1723 .classzone_idx = classzone_idx,
1724 .direct_compaction = true,
1725 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1726 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1727 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1728 };
1729
1730 ret = compact_zone(zone, &cc);
1731
1732 VM_BUG_ON(!list_empty(&cc.freepages));
1733 VM_BUG_ON(!list_empty(&cc.migratepages));
1734
1735 return ret;
1736 }
1737
1738 int sysctl_extfrag_threshold = 500;
1739
1740 /**
1741 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1742 * @gfp_mask: The GFP mask of the current allocation
1743 * @order: The order of the current allocation
1744 * @alloc_flags: The allocation flags of the current allocation
1745 * @ac: The context of current allocation
1746 * @prio: Determines how hard direct compaction should try to succeed
1747 *
1748 * This is the main entry point for direct page compaction.
1749 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio)1750 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1751 unsigned int alloc_flags, const struct alloc_context *ac,
1752 enum compact_priority prio)
1753 {
1754 int may_perform_io = gfp_mask & __GFP_IO;
1755 struct zoneref *z;
1756 struct zone *zone;
1757 enum compact_result rc = COMPACT_SKIPPED;
1758
1759 /*
1760 * Check if the GFP flags allow compaction - GFP_NOIO is really
1761 * tricky context because the migration might require IO
1762 */
1763 if (!may_perform_io)
1764 return COMPACT_SKIPPED;
1765
1766 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1767
1768 /* Compact each zone in the list */
1769 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1770 ac->nodemask) {
1771 enum compact_result status;
1772
1773 if (prio > MIN_COMPACT_PRIORITY
1774 && compaction_deferred(zone, order)) {
1775 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1776 continue;
1777 }
1778
1779 status = compact_zone_order(zone, order, gfp_mask, prio,
1780 alloc_flags, ac_classzone_idx(ac));
1781 rc = max(status, rc);
1782
1783 /* The allocation should succeed, stop compacting */
1784 if (status == COMPACT_SUCCESS) {
1785 /*
1786 * We think the allocation will succeed in this zone,
1787 * but it is not certain, hence the false. The caller
1788 * will repeat this with true if allocation indeed
1789 * succeeds in this zone.
1790 */
1791 compaction_defer_reset(zone, order, false);
1792
1793 break;
1794 }
1795
1796 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1797 status == COMPACT_PARTIAL_SKIPPED))
1798 /*
1799 * We think that allocation won't succeed in this zone
1800 * so we defer compaction there. If it ends up
1801 * succeeding after all, it will be reset.
1802 */
1803 defer_compaction(zone, order);
1804
1805 /*
1806 * We might have stopped compacting due to need_resched() in
1807 * async compaction, or due to a fatal signal detected. In that
1808 * case do not try further zones
1809 */
1810 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1811 || fatal_signal_pending(current))
1812 break;
1813 }
1814
1815 return rc;
1816 }
1817
1818
1819 /* Compact all zones within a node */
compact_node(int nid)1820 static void compact_node(int nid)
1821 {
1822 pg_data_t *pgdat = NODE_DATA(nid);
1823 int zoneid;
1824 struct zone *zone;
1825 struct compact_control cc = {
1826 .order = -1,
1827 .mode = MIGRATE_SYNC,
1828 .ignore_skip_hint = true,
1829 .whole_zone = true,
1830 .gfp_mask = GFP_KERNEL,
1831 };
1832
1833
1834 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1835
1836 zone = &pgdat->node_zones[zoneid];
1837 if (!populated_zone(zone))
1838 continue;
1839
1840 cc.zone = zone;
1841
1842 compact_zone(zone, &cc);
1843
1844 VM_BUG_ON(!list_empty(&cc.freepages));
1845 VM_BUG_ON(!list_empty(&cc.migratepages));
1846 }
1847 }
1848
1849 /* Compact all nodes in the system */
compact_nodes(void)1850 static void compact_nodes(void)
1851 {
1852 int nid;
1853
1854 /* Flush pending updates to the LRU lists */
1855 lru_add_drain_all();
1856
1857 for_each_online_node(nid)
1858 compact_node(nid);
1859 }
1860
1861 /* The written value is actually unused, all memory is compacted */
1862 int sysctl_compact_memory;
1863
1864 /*
1865 * This is the entry point for compacting all nodes via
1866 * /proc/sys/vm/compact_memory
1867 */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1868 int sysctl_compaction_handler(struct ctl_table *table, int write,
1869 void __user *buffer, size_t *length, loff_t *ppos)
1870 {
1871 if (write)
1872 compact_nodes();
1873
1874 return 0;
1875 }
1876
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1877 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1878 void __user *buffer, size_t *length, loff_t *ppos)
1879 {
1880 proc_dointvec_minmax(table, write, buffer, length, ppos);
1881
1882 return 0;
1883 }
1884
1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1886 static ssize_t sysfs_compact_node(struct device *dev,
1887 struct device_attribute *attr,
1888 const char *buf, size_t count)
1889 {
1890 int nid = dev->id;
1891
1892 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1893 /* Flush pending updates to the LRU lists */
1894 lru_add_drain_all();
1895
1896 compact_node(nid);
1897 }
1898
1899 return count;
1900 }
1901 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1902
compaction_register_node(struct node * node)1903 int compaction_register_node(struct node *node)
1904 {
1905 return device_create_file(&node->dev, &dev_attr_compact);
1906 }
1907
compaction_unregister_node(struct node * node)1908 void compaction_unregister_node(struct node *node)
1909 {
1910 return device_remove_file(&node->dev, &dev_attr_compact);
1911 }
1912 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1913
kcompactd_work_requested(pg_data_t * pgdat)1914 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1915 {
1916 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1917 }
1918
kcompactd_node_suitable(pg_data_t * pgdat)1919 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1920 {
1921 int zoneid;
1922 struct zone *zone;
1923 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1924
1925 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1926 zone = &pgdat->node_zones[zoneid];
1927
1928 if (!populated_zone(zone))
1929 continue;
1930
1931 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1932 classzone_idx) == COMPACT_CONTINUE)
1933 return true;
1934 }
1935
1936 return false;
1937 }
1938
kcompactd_do_work(pg_data_t * pgdat)1939 static void kcompactd_do_work(pg_data_t *pgdat)
1940 {
1941 /*
1942 * With no special task, compact all zones so that a page of requested
1943 * order is allocatable.
1944 */
1945 int zoneid;
1946 struct zone *zone;
1947 struct compact_control cc = {
1948 .order = pgdat->kcompactd_max_order,
1949 .classzone_idx = pgdat->kcompactd_classzone_idx,
1950 .mode = MIGRATE_SYNC_LIGHT,
1951 .ignore_skip_hint = false,
1952 .gfp_mask = GFP_KERNEL,
1953 };
1954 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1955 cc.classzone_idx);
1956 count_compact_event(KCOMPACTD_WAKE);
1957
1958 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1959 int status;
1960
1961 zone = &pgdat->node_zones[zoneid];
1962 if (!populated_zone(zone))
1963 continue;
1964
1965 if (compaction_deferred(zone, cc.order))
1966 continue;
1967
1968 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1969 COMPACT_CONTINUE)
1970 continue;
1971
1972 if (kthread_should_stop())
1973 return;
1974
1975 cc.zone = zone;
1976 status = compact_zone(zone, &cc);
1977
1978 if (status == COMPACT_SUCCESS) {
1979 compaction_defer_reset(zone, cc.order, false);
1980 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1981 /*
1982 * Buddy pages may become stranded on pcps that could
1983 * otherwise coalesce on the zone's free area for
1984 * order >= cc.order. This is ratelimited by the
1985 * upcoming deferral.
1986 */
1987 drain_all_pages(zone);
1988
1989 /*
1990 * We use sync migration mode here, so we defer like
1991 * sync direct compaction does.
1992 */
1993 defer_compaction(zone, cc.order);
1994 }
1995
1996 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1997 cc.total_migrate_scanned);
1998 count_compact_events(KCOMPACTD_FREE_SCANNED,
1999 cc.total_free_scanned);
2000
2001 VM_BUG_ON(!list_empty(&cc.freepages));
2002 VM_BUG_ON(!list_empty(&cc.migratepages));
2003 }
2004
2005 /*
2006 * Regardless of success, we are done until woken up next. But remember
2007 * the requested order/classzone_idx in case it was higher/tighter than
2008 * our current ones
2009 */
2010 if (pgdat->kcompactd_max_order <= cc.order)
2011 pgdat->kcompactd_max_order = 0;
2012 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2013 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2014 }
2015
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)2016 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2017 {
2018 if (!order)
2019 return;
2020
2021 if (pgdat->kcompactd_max_order < order)
2022 pgdat->kcompactd_max_order = order;
2023
2024 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2025 pgdat->kcompactd_classzone_idx = classzone_idx;
2026
2027 /*
2028 * Pairs with implicit barrier in wait_event_freezable()
2029 * such that wakeups are not missed.
2030 */
2031 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2032 return;
2033
2034 if (!kcompactd_node_suitable(pgdat))
2035 return;
2036
2037 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2038 classzone_idx);
2039 wake_up_interruptible(&pgdat->kcompactd_wait);
2040 }
2041
2042 /*
2043 * The background compaction daemon, started as a kernel thread
2044 * from the init process.
2045 */
kcompactd(void * p)2046 static int kcompactd(void *p)
2047 {
2048 pg_data_t *pgdat = (pg_data_t*)p;
2049 struct task_struct *tsk = current;
2050
2051 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2052
2053 if (!cpumask_empty(cpumask))
2054 set_cpus_allowed_ptr(tsk, cpumask);
2055
2056 set_freezable();
2057
2058 pgdat->kcompactd_max_order = 0;
2059 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2060
2061 while (!kthread_should_stop()) {
2062 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2063 wait_event_freezable(pgdat->kcompactd_wait,
2064 kcompactd_work_requested(pgdat));
2065
2066 kcompactd_do_work(pgdat);
2067 }
2068
2069 return 0;
2070 }
2071
2072 /*
2073 * This kcompactd start function will be called by init and node-hot-add.
2074 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2075 */
kcompactd_run(int nid)2076 int kcompactd_run(int nid)
2077 {
2078 pg_data_t *pgdat = NODE_DATA(nid);
2079 int ret = 0;
2080
2081 if (pgdat->kcompactd)
2082 return 0;
2083
2084 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2085 if (IS_ERR(pgdat->kcompactd)) {
2086 pr_err("Failed to start kcompactd on node %d\n", nid);
2087 ret = PTR_ERR(pgdat->kcompactd);
2088 pgdat->kcompactd = NULL;
2089 }
2090 return ret;
2091 }
2092
2093 /*
2094 * Called by memory hotplug when all memory in a node is offlined. Caller must
2095 * hold mem_hotplug_begin/end().
2096 */
kcompactd_stop(int nid)2097 void kcompactd_stop(int nid)
2098 {
2099 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2100
2101 if (kcompactd) {
2102 kthread_stop(kcompactd);
2103 NODE_DATA(nid)->kcompactd = NULL;
2104 }
2105 }
2106
2107 /*
2108 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2109 * not required for correctness. So if the last cpu in a node goes
2110 * away, we get changed to run anywhere: as the first one comes back,
2111 * restore their cpu bindings.
2112 */
kcompactd_cpu_online(unsigned int cpu)2113 static int kcompactd_cpu_online(unsigned int cpu)
2114 {
2115 int nid;
2116
2117 for_each_node_state(nid, N_MEMORY) {
2118 pg_data_t *pgdat = NODE_DATA(nid);
2119 const struct cpumask *mask;
2120
2121 mask = cpumask_of_node(pgdat->node_id);
2122
2123 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2124 /* One of our CPUs online: restore mask */
2125 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2126 }
2127 return 0;
2128 }
2129
kcompactd_init(void)2130 static int __init kcompactd_init(void)
2131 {
2132 int nid;
2133 int ret;
2134
2135 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2136 "mm/compaction:online",
2137 kcompactd_cpu_online, NULL);
2138 if (ret < 0) {
2139 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2140 return ret;
2141 }
2142
2143 for_each_node_state(nid, N_MEMORY)
2144 kcompactd_run(nid);
2145 return 0;
2146 }
2147 subsys_initcall(kcompactd_init)
2148
2149 #endif /* CONFIG_COMPACTION */
2150