1 /**
2 * @file
3 * Transmission Control Protocol for IP
4 * See also @ref tcp_raw
5 *
6 * @defgroup tcp_raw TCP
7 * @ingroup callbackstyle_api
8 * Transmission Control Protocol for IP\n
9 * @see @ref api
10 *
11 * Common functions for the TCP implementation, such as functions
12 * for manipulating the data structures and the TCP timer functions. TCP functions
13 * related to input and output is found in tcp_in.c and tcp_out.c respectively.\n
14 *
15 * TCP connection setup
16 * --------------------
17 * The functions used for setting up connections is similar to that of
18 * the sequential API and of the BSD socket API. A new TCP connection
19 * identifier (i.e., a protocol control block - PCB) is created with the
20 * tcp_new() function. This PCB can then be either set to listen for new
21 * incoming connections or be explicitly connected to another host.
22 * - tcp_new()
23 * - tcp_bind()
24 * - tcp_listen() and tcp_listen_with_backlog()
25 * - tcp_accept()
26 * - tcp_connect()
27 *
28 * Sending TCP data
29 * ----------------
30 * TCP data is sent by enqueueing the data with a call to tcp_write() and
31 * triggering to send by calling tcp_output(). When the data is successfully
32 * transmitted to the remote host, the application will be notified with a
33 * call to a specified callback function.
34 * - tcp_write()
35 * - tcp_output()
36 * - tcp_sent()
37 *
38 * Receiving TCP data
39 * ------------------
40 * TCP data reception is callback based - an application specified
41 * callback function is called when new data arrives. When the
42 * application has taken the data, it has to call the tcp_recved()
43 * function to indicate that TCP can advertise increase the receive
44 * window.
45 * - tcp_recv()
46 * - tcp_recved()
47 *
48 * Application polling
49 * -------------------
50 * When a connection is idle (i.e., no data is either transmitted or
51 * received), lwIP will repeatedly poll the application by calling a
52 * specified callback function. This can be used either as a watchdog
53 * timer for killing connections that have stayed idle for too long, or
54 * as a method of waiting for memory to become available. For instance,
55 * if a call to tcp_write() has failed because memory wasn't available,
56 * the application may use the polling functionality to call tcp_write()
57 * again when the connection has been idle for a while.
58 * - tcp_poll()
59 *
60 * Closing and aborting connections
61 * --------------------------------
62 * - tcp_close()
63 * - tcp_abort()
64 * - tcp_err()
65 *
66 */
67
68 /*
69 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without modification,
73 * are permitted provided that the following conditions are met:
74 *
75 * 1. Redistributions of source code must retain the above copyright notice,
76 * this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright notice,
78 * this list of conditions and the following disclaimer in the documentation
79 * and/or other materials provided with the distribution.
80 * 3. The name of the author may not be used to endorse or promote products
81 * derived from this software without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
84 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
85 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
86 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
87 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
88 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
91 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
92 * OF SUCH DAMAGE.
93 *
94 * This file is part of the lwIP TCP/IP stack.
95 *
96 * Author: Adam Dunkels <adam@sics.se>
97 *
98 */
99
100 #include "lwip/opt.h"
101
102 #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
103
104 #include "lwip/def.h"
105 #include "lwip/mem.h"
106 #include "lwip/memp.h"
107 #include "lwip/tcp.h"
108 #include "lwip/priv/tcp_priv.h"
109 #include "lwip/debug.h"
110 #include "lwip/stats.h"
111 #include "lwip/ip6.h"
112 #include "lwip/ip6_addr.h"
113 #include "lwip/nd6.h"
114
115 #include <string.h>
116
117 #ifdef LWIP_HOOK_FILENAME
118 #include LWIP_HOOK_FILENAME
119 #endif
120
121 #ifndef TCP_LOCAL_PORT_RANGE_START
122 /* From http://www.iana.org/assignments/port-numbers:
123 "The Dynamic and/or Private Ports are those from 49152 through 65535" */
124 #define TCP_LOCAL_PORT_RANGE_START 0xc000
125 #define TCP_LOCAL_PORT_RANGE_END 0xffff
126 #define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & (u16_t)~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START))
127 #endif
128
129 #if LWIP_TCP_KEEPALIVE
130 #define TCP_KEEP_DUR(pcb) ((pcb)->keep_cnt * (pcb)->keep_intvl)
131 #define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl)
132 #else /* LWIP_TCP_KEEPALIVE */
133 #define TCP_KEEP_DUR(pcb) TCP_MAXIDLE
134 #define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT
135 #endif /* LWIP_TCP_KEEPALIVE */
136
137 /* As initial send MSS, we use TCP_MSS but limit it to 536. */
138 #if TCP_MSS > 536
139 #define INITIAL_MSS 536
140 #else
141 #define INITIAL_MSS TCP_MSS
142 #endif
143
144 static const char *const tcp_state_str[] = {
145 "CLOSED",
146 "LISTEN",
147 "SYN_SENT",
148 "SYN_RCVD",
149 "ESTABLISHED",
150 "FIN_WAIT_1",
151 "FIN_WAIT_2",
152 "CLOSE_WAIT",
153 "CLOSING",
154 "LAST_ACK",
155 "TIME_WAIT"
156 };
157
158 /* last local TCP port */
159 static volatile u16_t tcp_port = TCP_LOCAL_PORT_RANGE_START;
160
161 /* Incremented every coarse grained timer shot (typically every 500 ms). */
162 u32_t tcp_ticks;
163 static const u8_t tcp_backoff[13] =
164 { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
165 /* Times per slowtmr hits */
166 static const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
167
168 /* The TCP PCB lists. */
169
170 /** List of all TCP PCBs bound but not yet (connected || listening) */
171 struct tcp_pcb *tcp_bound_pcbs;
172 /** List of all TCP PCBs in LISTEN state */
173 union tcp_listen_pcbs_t tcp_listen_pcbs;
174 /** List of all TCP PCBs that are in a state in which
175 * they accept or send data. */
176 struct tcp_pcb *tcp_active_pcbs;
177 /** List of all TCP PCBs in TIME-WAIT state */
178 struct tcp_pcb *tcp_tw_pcbs;
179
180 /** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
181 struct tcp_pcb **const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
182 &tcp_active_pcbs, &tcp_tw_pcbs
183 };
184
185 u8_t tcp_active_pcbs_changed;
186
187 /** Timer counter to handle calling slow-timer from tcp_tmr() */
188 static u8_t tcp_timer;
189 static u8_t tcp_timer_ctr;
190 static u16_t tcp_new_port(void);
191
192 static err_t tcp_close_shutdown_fin(struct tcp_pcb *pcb);
193 #if LWIP_TCP_PCB_NUM_EXT_ARGS
194 static void tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args);
195 #endif
196
197 /**
198 * Initialize this module.
199 */
200 void
tcp_init(void)201 tcp_init(void)
202 {
203 #ifdef LWIP_RAND
204 tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND());
205 #endif /* LWIP_RAND */
206 }
207
208 /** Free a tcp pcb */
209 void
tcp_free(struct tcp_pcb * pcb)210 tcp_free(struct tcp_pcb *pcb)
211 {
212 LWIP_ASSERT("tcp_free: LISTEN", pcb->state != LISTEN);
213 #if LWIP_TCP_PCB_NUM_EXT_ARGS
214 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
215 #endif
216 memp_free(MEMP_TCP_PCB, pcb);
217 }
218
219 /** Free a tcp listen pcb */
220 static void
tcp_free_listen(struct tcp_pcb * pcb)221 tcp_free_listen(struct tcp_pcb *pcb)
222 {
223 LWIP_ASSERT("tcp_free_listen: !LISTEN", pcb->state != LISTEN);
224 #if LWIP_TCP_PCB_NUM_EXT_ARGS
225 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
226 #endif
227 memp_free(MEMP_TCP_PCB_LISTEN, pcb);
228 }
229
230 /**
231 * Called periodically to dispatch TCP timers.
232 */
233 void
tcp_tmr(void)234 tcp_tmr(void)
235 {
236 /* Call tcp_fasttmr() every 250 ms */
237 tcp_fasttmr();
238
239 if (++tcp_timer & 1) {
240 /* Call tcp_slowtmr() every 500 ms, i.e., every other timer
241 tcp_tmr() is called. */
242 tcp_slowtmr();
243 }
244 }
245
246 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
247 /** Called when a listen pcb is closed. Iterates one pcb list and removes the
248 * closed listener pcb from pcb->listener if matching.
249 */
250 static void
tcp_remove_listener(struct tcp_pcb * list,struct tcp_pcb_listen * lpcb)251 tcp_remove_listener(struct tcp_pcb *list, struct tcp_pcb_listen *lpcb)
252 {
253 struct tcp_pcb *pcb;
254
255 LWIP_ASSERT("tcp_remove_listener: invalid listener", lpcb != NULL);
256
257 for (pcb = list; pcb != NULL; pcb = pcb->next) {
258 if (pcb->listener == lpcb) {
259 pcb->listener = NULL;
260 }
261 }
262 }
263 #endif
264
265 /** Called when a listen pcb is closed. Iterates all pcb lists and removes the
266 * closed listener pcb from pcb->listener if matching.
267 */
268 static void
tcp_listen_closed(struct tcp_pcb * pcb)269 tcp_listen_closed(struct tcp_pcb *pcb)
270 {
271 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
272 size_t i;
273 LWIP_ASSERT("pcb != NULL", pcb != NULL);
274 LWIP_ASSERT("pcb->state == LISTEN", pcb->state == LISTEN);
275 for (i = 1; i < LWIP_ARRAYSIZE(tcp_pcb_lists); i++) {
276 tcp_remove_listener(*tcp_pcb_lists[i], (struct tcp_pcb_listen *)pcb);
277 }
278 #endif
279 LWIP_UNUSED_ARG(pcb);
280 }
281
282 #if TCP_LISTEN_BACKLOG
283 /** @ingroup tcp_raw
284 * Delay accepting a connection in respect to the listen backlog:
285 * the number of outstanding connections is increased until
286 * tcp_backlog_accepted() is called.
287 *
288 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
289 * or else the backlog feature will get out of sync!
290 *
291 * @param pcb the connection pcb which is not fully accepted yet
292 */
293 void
tcp_backlog_delayed(struct tcp_pcb * pcb)294 tcp_backlog_delayed(struct tcp_pcb *pcb)
295 {
296 LWIP_ASSERT("pcb != NULL", pcb != NULL);
297 LWIP_ASSERT_CORE_LOCKED();
298 if ((pcb->flags & TF_BACKLOGPEND) == 0) {
299 if (pcb->listener != NULL) {
300 pcb->listener->accepts_pending++;
301 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
302 tcp_set_flags(pcb, TF_BACKLOGPEND);
303 }
304 }
305 }
306
307 /** @ingroup tcp_raw
308 * A delayed-accept a connection is accepted (or closed/aborted): decreases
309 * the number of outstanding connections after calling tcp_backlog_delayed().
310 *
311 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
312 * or else the backlog feature will get out of sync!
313 *
314 * @param pcb the connection pcb which is now fully accepted (or closed/aborted)
315 */
316 void
tcp_backlog_accepted(struct tcp_pcb * pcb)317 tcp_backlog_accepted(struct tcp_pcb *pcb)
318 {
319 LWIP_ASSERT("pcb != NULL", pcb != NULL);
320 LWIP_ASSERT_CORE_LOCKED();
321 if ((pcb->flags & TF_BACKLOGPEND) != 0) {
322 if (pcb->listener != NULL) {
323 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
324 pcb->listener->accepts_pending--;
325 tcp_clear_flags(pcb, TF_BACKLOGPEND);
326 }
327 }
328 }
329 #endif /* TCP_LISTEN_BACKLOG */
330
331 /**
332 * Closes the TX side of a connection held by the PCB.
333 * For tcp_close(), a RST is sent if the application didn't receive all data
334 * (tcp_recved() not called for all data passed to recv callback).
335 *
336 * Listening pcbs are freed and may not be referenced any more.
337 * Connection pcbs are freed if not yet connected and may not be referenced
338 * any more. If a connection is established (at least SYN received or in
339 * a closing state), the connection is closed, and put in a closing state.
340 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
341 * unsafe to reference it.
342 *
343 * @param pcb the tcp_pcb to close
344 * @return ERR_OK if connection has been closed
345 * another err_t if closing failed and pcb is not freed
346 */
347 static err_t
tcp_close_shutdown(struct tcp_pcb * pcb,u8_t rst_on_unacked_data)348 tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
349 {
350 LWIP_ASSERT("tcp_close_shutdown: invalid pcb", pcb != NULL);
351
352 if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) {
353 if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) {
354 /* Not all data received by application, send RST to tell the remote
355 side about this. */
356 LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
357
358 /* don't call tcp_abort here: we must not deallocate the pcb since
359 that might not be expected when calling tcp_close */
360 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
361 pcb->local_port, pcb->remote_port);
362
363 tcp_pcb_purge(pcb);
364 TCP_RMV_ACTIVE(pcb);
365 /* Deallocate the pcb since we already sent a RST for it */
366 if (tcp_input_pcb == pcb) {
367 /* prevent using a deallocated pcb: free it from tcp_input later */
368 tcp_trigger_input_pcb_close();
369 } else {
370 tcp_free(pcb);
371 }
372 return ERR_OK;
373 }
374 }
375
376 /* - states which free the pcb are handled here,
377 - states which send FIN and change state are handled in tcp_close_shutdown_fin() */
378 switch (pcb->state) {
379 case CLOSED:
380 /* Closing a pcb in the CLOSED state might seem erroneous,
381 * however, it is in this state once allocated and as yet unused
382 * and the user needs some way to free it should the need arise.
383 * Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
384 * or for a pcb that has been used and then entered the CLOSED state
385 * is erroneous, but this should never happen as the pcb has in those cases
386 * been freed, and so any remaining handles are bogus. */
387 if (pcb->local_port != 0) {
388 TCP_RMV(&tcp_bound_pcbs, pcb);
389 }
390 tcp_free(pcb);
391 break;
392 case LISTEN:
393 tcp_listen_closed(pcb);
394 tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
395 tcp_free_listen(pcb);
396 break;
397 case SYN_SENT:
398 TCP_PCB_REMOVE_ACTIVE(pcb);
399 tcp_free(pcb);
400 MIB2_STATS_INC(mib2.tcpattemptfails);
401 break;
402 default:
403 return tcp_close_shutdown_fin(pcb);
404 }
405 return ERR_OK;
406 }
407
408 static err_t
tcp_close_shutdown_fin(struct tcp_pcb * pcb)409 tcp_close_shutdown_fin(struct tcp_pcb *pcb)
410 {
411 err_t err;
412 LWIP_ASSERT("pcb != NULL", pcb != NULL);
413
414 switch (pcb->state) {
415 case SYN_RCVD:
416 err = tcp_send_fin(pcb);
417 if (err == ERR_OK) {
418 tcp_backlog_accepted(pcb);
419 MIB2_STATS_INC(mib2.tcpattemptfails);
420 pcb->state = FIN_WAIT_1;
421 }
422 break;
423 case ESTABLISHED:
424 err = tcp_send_fin(pcb);
425 if (err == ERR_OK) {
426 MIB2_STATS_INC(mib2.tcpestabresets);
427 pcb->state = FIN_WAIT_1;
428 }
429 break;
430 case CLOSE_WAIT:
431 err = tcp_send_fin(pcb);
432 if (err == ERR_OK) {
433 MIB2_STATS_INC(mib2.tcpestabresets);
434 pcb->state = LAST_ACK;
435 }
436 break;
437 default:
438 /* Has already been closed, do nothing. */
439 return ERR_OK;
440 }
441
442 if (err == ERR_OK) {
443 /* To ensure all data has been sent when tcp_close returns, we have
444 to make sure tcp_output doesn't fail.
445 Since we don't really have to ensure all data has been sent when tcp_close
446 returns (unsent data is sent from tcp timer functions, also), we don't care
447 for the return value of tcp_output for now. */
448 tcp_output(pcb);
449 } else if (err == ERR_MEM) {
450 /* Mark this pcb for closing. Closing is retried from tcp_tmr. */
451 tcp_set_flags(pcb, TF_CLOSEPEND);
452 /* We have to return ERR_OK from here to indicate to the callers that this
453 pcb should not be used any more as it will be freed soon via tcp_tmr.
454 This is OK here since sending FIN does not guarantee a time frime for
455 actually freeing the pcb, either (it is left in closure states for
456 remote ACK or timeout) */
457 return ERR_OK;
458 }
459 return err;
460 }
461
462 /**
463 * @ingroup tcp_raw
464 * Closes the connection held by the PCB.
465 *
466 * Listening pcbs are freed and may not be referenced any more.
467 * Connection pcbs are freed if not yet connected and may not be referenced
468 * any more. If a connection is established (at least SYN received or in
469 * a closing state), the connection is closed, and put in a closing state.
470 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
471 * unsafe to reference it (unless an error is returned).
472 *
473 * The function may return ERR_MEM if no memory
474 * was available for closing the connection. If so, the application
475 * should wait and try again either by using the acknowledgment
476 * callback or the polling functionality. If the close succeeds, the
477 * function returns ERR_OK.
478 *
479 * @param pcb the tcp_pcb to close
480 * @return ERR_OK if connection has been closed
481 * another err_t if closing failed and pcb is not freed
482 */
483 err_t
tcp_close(struct tcp_pcb * pcb)484 tcp_close(struct tcp_pcb *pcb)
485 {
486 LWIP_ASSERT_CORE_LOCKED();
487
488 LWIP_ERROR("tcp_close: invalid pcb", pcb != NULL, return ERR_ARG);
489 LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
490
491 tcp_debug_print_state(pcb->state);
492
493 if (pcb->state != LISTEN) {
494 /* Set a flag not to receive any more data... */
495 tcp_set_flags(pcb, TF_RXCLOSED);
496 }
497 /* ... and close */
498 return tcp_close_shutdown(pcb, 1);
499 }
500
501 /**
502 * @ingroup tcp_raw
503 * Causes all or part of a full-duplex connection of this PCB to be shut down.
504 * This doesn't deallocate the PCB unless shutting down both sides!
505 * Shutting down both sides is the same as calling tcp_close, so if it succeds
506 * (i.e. returns ER_OK), the PCB must not be referenced any more!
507 *
508 * @param pcb PCB to shutdown
509 * @param shut_rx shut down receive side if this is != 0
510 * @param shut_tx shut down send side if this is != 0
511 * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
512 * another err_t on error.
513 */
514 err_t
tcp_shutdown(struct tcp_pcb * pcb,int shut_rx,int shut_tx)515 tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
516 {
517 LWIP_ASSERT_CORE_LOCKED();
518
519 LWIP_ERROR("tcp_shutdown: invalid pcb", pcb != NULL, return ERR_ARG);
520
521 if (pcb->state == LISTEN) {
522 return ERR_CONN;
523 }
524 if (shut_rx) {
525 /* shut down the receive side: set a flag not to receive any more data... */
526 tcp_set_flags(pcb, TF_RXCLOSED);
527 if (shut_tx) {
528 /* shutting down the tx AND rx side is the same as closing for the raw API */
529 return tcp_close_shutdown(pcb, 1);
530 }
531 /* ... and free buffered data */
532 if (pcb->refused_data != NULL) {
533 pbuf_free(pcb->refused_data);
534 pcb->refused_data = NULL;
535 }
536 }
537 if (shut_tx) {
538 /* This can't happen twice since if it succeeds, the pcb's state is changed.
539 Only close in these states as the others directly deallocate the PCB */
540 switch (pcb->state) {
541 case SYN_RCVD:
542 case ESTABLISHED:
543 case CLOSE_WAIT:
544 return tcp_close_shutdown(pcb, (u8_t)shut_rx);
545 default:
546 /* Not (yet?) connected, cannot shutdown the TX side as that would bring us
547 into CLOSED state, where the PCB is deallocated. */
548 return ERR_CONN;
549 }
550 }
551 return ERR_OK;
552 }
553
554 /**
555 * Abandons a connection and optionally sends a RST to the remote
556 * host. Deletes the local protocol control block. This is done when
557 * a connection is killed because of shortage of memory.
558 *
559 * @param pcb the tcp_pcb to abort
560 * @param reset boolean to indicate whether a reset should be sent
561 */
562 void
tcp_abandon(struct tcp_pcb * pcb,int reset)563 tcp_abandon(struct tcp_pcb *pcb, int reset)
564 {
565 u32_t seqno, ackno;
566 #if LWIP_CALLBACK_API
567 tcp_err_fn errf;
568 #endif /* LWIP_CALLBACK_API */
569 void *errf_arg;
570
571 LWIP_ASSERT_CORE_LOCKED();
572
573 LWIP_ERROR("tcp_abandon: invalid pcb", pcb != NULL, return);
574
575 /* pcb->state LISTEN not allowed here */
576 LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
577 pcb->state != LISTEN);
578 /* Figure out on which TCP PCB list we are, and remove us. If we
579 are in an active state, call the receive function associated with
580 the PCB with a NULL argument, and send an RST to the remote end. */
581 if (pcb->state == TIME_WAIT) {
582 tcp_pcb_remove(&tcp_tw_pcbs, pcb);
583 tcp_free(pcb);
584 } else {
585 int send_rst = 0;
586 u16_t local_port = 0;
587 enum tcp_state last_state;
588 seqno = pcb->snd_nxt;
589 ackno = pcb->rcv_nxt;
590 #if LWIP_CALLBACK_API
591 errf = pcb->errf;
592 #endif /* LWIP_CALLBACK_API */
593 errf_arg = pcb->callback_arg;
594 if (pcb->state == CLOSED) {
595 if (pcb->local_port != 0) {
596 /* bound, not yet opened */
597 TCP_RMV(&tcp_bound_pcbs, pcb);
598 }
599 } else {
600 send_rst = reset;
601 local_port = pcb->local_port;
602 TCP_PCB_REMOVE_ACTIVE(pcb);
603 }
604 if (pcb->unacked != NULL) {
605 tcp_segs_free(pcb->unacked);
606 }
607 if (pcb->unsent != NULL) {
608 tcp_segs_free(pcb->unsent);
609 }
610 #if TCP_QUEUE_OOSEQ
611 if (pcb->ooseq != NULL) {
612 tcp_segs_free(pcb->ooseq);
613 }
614 #endif /* TCP_QUEUE_OOSEQ */
615 tcp_backlog_accepted(pcb);
616 if (send_rst) {
617 LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
618 tcp_rst(pcb, seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port);
619 }
620 last_state = pcb->state;
621 tcp_free(pcb);
622 TCP_EVENT_ERR(last_state, errf, errf_arg, ERR_ABRT);
623 }
624 }
625
626 /**
627 * @ingroup tcp_raw
628 * Aborts the connection by sending a RST (reset) segment to the remote
629 * host. The pcb is deallocated. This function never fails.
630 *
631 * ATTENTION: When calling this from one of the TCP callbacks, make
632 * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
633 * or you will risk accessing deallocated memory or memory leaks!
634 *
635 * @param pcb the tcp pcb to abort
636 */
637 void
tcp_abort(struct tcp_pcb * pcb)638 tcp_abort(struct tcp_pcb *pcb)
639 {
640 tcp_abandon(pcb, 1);
641 }
642
643 /**
644 * @ingroup tcp_raw
645 * Binds the connection to a local port number and IP address. If the
646 * IP address is not given (i.e., ipaddr == IP_ANY_TYPE), the connection is
647 * bound to all local IP addresses.
648 * If another connection is bound to the same port, the function will
649 * return ERR_USE, otherwise ERR_OK is returned.
650 *
651 * @param pcb the tcp_pcb to bind (no check is done whether this pcb is
652 * already bound!)
653 * @param ipaddr the local ip address to bind to (use IPx_ADDR_ANY to bind
654 * to any local address
655 * @param port the local port to bind to
656 * @return ERR_USE if the port is already in use
657 * ERR_VAL if bind failed because the PCB is not in a valid state
658 * ERR_OK if bound
659 */
660 err_t
tcp_bind(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port)661 tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port)
662 {
663 int i;
664 int max_pcb_list = NUM_TCP_PCB_LISTS;
665 struct tcp_pcb *cpcb;
666 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
667 ip_addr_t zoned_ipaddr;
668 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
669
670 LWIP_ASSERT_CORE_LOCKED();
671
672 #if LWIP_IPV4
673 /* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */
674 if (ipaddr == NULL) {
675 ipaddr = IP4_ADDR_ANY;
676 }
677 #else /* LWIP_IPV4 */
678 LWIP_ERROR("tcp_bind: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
679 #endif /* LWIP_IPV4 */
680
681 LWIP_ERROR("tcp_bind: invalid pcb", pcb != NULL, return ERR_ARG);
682
683 LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
684
685 #if SO_REUSE
686 /* Unless the REUSEADDR flag is set,
687 we have to check the pcbs in TIME-WAIT state, also.
688 We do not dump TIME_WAIT pcb's; they can still be matched by incoming
689 packets using both local and remote IP addresses and ports to distinguish.
690 */
691 if (ip_get_option(pcb, SOF_REUSEADDR)) {
692 max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT;
693 }
694 #endif /* SO_REUSE */
695
696 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
697 /* If the given IP address should have a zone but doesn't, assign one now.
698 * This is legacy support: scope-aware callers should always provide properly
699 * zoned source addresses. Do the zone selection before the address-in-use
700 * check below; as such we have to make a temporary copy of the address. */
701 if (IP_IS_V6(ipaddr) && ip6_addr_lacks_zone(ip_2_ip6(ipaddr), IP6_UNICAST)) {
702 ip_addr_copy(zoned_ipaddr, *ipaddr);
703 ip6_addr_select_zone(ip_2_ip6(&zoned_ipaddr), ip_2_ip6(&zoned_ipaddr));
704 ipaddr = &zoned_ipaddr;
705 }
706 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
707
708 if (port == 0) {
709 port = tcp_new_port();
710 if (port == 0) {
711 return ERR_BUF;
712 }
713 } else {
714 /* Check if the address already is in use (on all lists) */
715 for (i = 0; i < max_pcb_list; i++) {
716 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
717 if (cpcb->local_port == port) {
718 #if SO_REUSE
719 /* Omit checking for the same port if both pcbs have REUSEADDR set.
720 For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in
721 tcp_connect. */
722 if (!ip_get_option(pcb, SOF_REUSEADDR) ||
723 !ip_get_option(cpcb, SOF_REUSEADDR))
724 #endif /* SO_REUSE */
725 {
726 /* @todo: check accept_any_ip_version */
727 if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) &&
728 (ip_addr_isany(&cpcb->local_ip) ||
729 ip_addr_isany(ipaddr) ||
730 ip_addr_cmp(&cpcb->local_ip, ipaddr))) {
731 return ERR_USE;
732 }
733 }
734 }
735 }
736 }
737 }
738
739 if (!ip_addr_isany(ipaddr)
740 #if LWIP_IPV4 && LWIP_IPV6
741 || (IP_GET_TYPE(ipaddr) != IP_GET_TYPE(&pcb->local_ip))
742 #endif /* LWIP_IPV4 && LWIP_IPV6 */
743 ) {
744 ip_addr_set(&pcb->local_ip, ipaddr);
745 }
746 pcb->local_port = port;
747 TCP_REG(&tcp_bound_pcbs, pcb);
748 LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port));
749 return ERR_OK;
750 }
751
752 /**
753 * @ingroup tcp_raw
754 * Binds the connection to a netif and IP address.
755 * After calling this function, all packets received via this PCB
756 * are guaranteed to have come in via the specified netif, and all
757 * outgoing packets will go out via the specified netif.
758 *
759 * @param pcb the tcp_pcb to bind.
760 * @param netif the netif to bind to. Can be NULL.
761 */
762 void
tcp_bind_netif(struct tcp_pcb * pcb,const struct netif * netif)763 tcp_bind_netif(struct tcp_pcb *pcb, const struct netif *netif)
764 {
765 LWIP_ASSERT_CORE_LOCKED();
766 if (netif != NULL) {
767 pcb->netif_idx = netif_get_index(netif);
768 } else {
769 pcb->netif_idx = NETIF_NO_INDEX;
770 }
771 }
772
773 #if LWIP_CALLBACK_API
774 /**
775 * Default accept callback if no accept callback is specified by the user.
776 */
777 static err_t
tcp_accept_null(void * arg,struct tcp_pcb * pcb,err_t err)778 tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err)
779 {
780 LWIP_UNUSED_ARG(arg);
781 LWIP_UNUSED_ARG(err);
782
783 LWIP_ASSERT("tcp_accept_null: invalid pcb", pcb != NULL);
784
785 tcp_abort(pcb);
786
787 return ERR_ABRT;
788 }
789 #endif /* LWIP_CALLBACK_API */
790
791 /**
792 * @ingroup tcp_raw
793 * Set the state of the connection to be LISTEN, which means that it
794 * is able to accept incoming connections. The protocol control block
795 * is reallocated in order to consume less memory. Setting the
796 * connection to LISTEN is an irreversible process.
797 * When an incoming connection is accepted, the function specified with
798 * the tcp_accept() function will be called. The pcb has to be bound
799 * to a local port with the tcp_bind() function.
800 *
801 * The tcp_listen() function returns a new connection identifier, and
802 * the one passed as an argument to the function will be
803 * deallocated. The reason for this behavior is that less memory is
804 * needed for a connection that is listening, so tcp_listen() will
805 * reclaim the memory needed for the original connection and allocate a
806 * new smaller memory block for the listening connection.
807 *
808 * tcp_listen() may return NULL if no memory was available for the
809 * listening connection. If so, the memory associated with the pcb
810 * passed as an argument to tcp_listen() will not be deallocated.
811 *
812 * The backlog limits the number of outstanding connections
813 * in the listen queue to the value specified by the backlog argument.
814 * To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
815 *
816 * @param pcb the original tcp_pcb
817 * @param backlog the incoming connections queue limit
818 * @return tcp_pcb used for listening, consumes less memory.
819 *
820 * @note The original tcp_pcb is freed. This function therefore has to be
821 * called like this:
822 * tpcb = tcp_listen_with_backlog(tpcb, backlog);
823 */
824 struct tcp_pcb *
tcp_listen_with_backlog(struct tcp_pcb * pcb,u8_t backlog)825 tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
826 {
827 LWIP_ASSERT_CORE_LOCKED();
828 return tcp_listen_with_backlog_and_err(pcb, backlog, NULL);
829 }
830
831 /**
832 * @ingroup tcp_raw
833 * Set the state of the connection to be LISTEN, which means that it
834 * is able to accept incoming connections. The protocol control block
835 * is reallocated in order to consume less memory. Setting the
836 * connection to LISTEN is an irreversible process.
837 *
838 * @param pcb the original tcp_pcb
839 * @param backlog the incoming connections queue limit
840 * @param err when NULL is returned, this contains the error reason
841 * @return tcp_pcb used for listening, consumes less memory.
842 *
843 * @note The original tcp_pcb is freed. This function therefore has to be
844 * called like this:
845 * tpcb = tcp_listen_with_backlog_and_err(tpcb, backlog, &err);
846 */
847 struct tcp_pcb *
tcp_listen_with_backlog_and_err(struct tcp_pcb * pcb,u8_t backlog,err_t * err)848 tcp_listen_with_backlog_and_err(struct tcp_pcb *pcb, u8_t backlog, err_t *err)
849 {
850 struct tcp_pcb_listen *lpcb = NULL;
851 err_t res;
852
853 LWIP_UNUSED_ARG(backlog);
854
855 LWIP_ASSERT_CORE_LOCKED();
856
857 LWIP_ERROR("tcp_listen_with_backlog_and_err: invalid pcb", pcb != NULL, res = ERR_ARG; goto done);
858 LWIP_ERROR("tcp_listen_with_backlog_and_err: pcb already connected", pcb->state == CLOSED, res = ERR_CLSD; goto done);
859
860 /* already listening? */
861 if (pcb->state == LISTEN) {
862 lpcb = (struct tcp_pcb_listen *)pcb;
863 res = ERR_ALREADY;
864 goto done;
865 }
866 #if SO_REUSE
867 if (ip_get_option(pcb, SOF_REUSEADDR)) {
868 /* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage
869 is declared (listen-/connection-pcb), we have to make sure now that
870 this port is only used once for every local IP. */
871 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
872 if ((lpcb->local_port == pcb->local_port) &&
873 ip_addr_cmp(&lpcb->local_ip, &pcb->local_ip)) {
874 /* this address/port is already used */
875 lpcb = NULL;
876 res = ERR_USE;
877 goto done;
878 }
879 }
880 }
881 #endif /* SO_REUSE */
882 lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN);
883 if (lpcb == NULL) {
884 res = ERR_MEM;
885 goto done;
886 }
887 lpcb->callback_arg = pcb->callback_arg;
888 lpcb->local_port = pcb->local_port;
889 lpcb->state = LISTEN;
890 lpcb->prio = pcb->prio;
891 lpcb->so_options = pcb->so_options;
892 lpcb->netif_idx = NETIF_NO_INDEX;
893 lpcb->ttl = pcb->ttl;
894 lpcb->tos = pcb->tos;
895 #if LWIP_IPV4 && LWIP_IPV6
896 IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type);
897 #endif /* LWIP_IPV4 && LWIP_IPV6 */
898 ip_addr_copy(lpcb->local_ip, pcb->local_ip);
899 if (pcb->local_port != 0) {
900 TCP_RMV(&tcp_bound_pcbs, pcb);
901 }
902 #if LWIP_TCP_PCB_NUM_EXT_ARGS
903 /* copy over ext_args to listening pcb */
904 memcpy(&lpcb->ext_args, &pcb->ext_args, sizeof(pcb->ext_args));
905 #endif
906 tcp_free(pcb);
907 #if LWIP_CALLBACK_API
908 lpcb->accept = tcp_accept_null;
909 #endif /* LWIP_CALLBACK_API */
910 #if TCP_LISTEN_BACKLOG
911 lpcb->accepts_pending = 0;
912 tcp_backlog_set(lpcb, backlog);
913 #endif /* TCP_LISTEN_BACKLOG */
914 TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb);
915 res = ERR_OK;
916 done:
917 if (err != NULL) {
918 *err = res;
919 }
920 return (struct tcp_pcb *)lpcb;
921 }
922
923 /**
924 * Update the state that tracks the available window space to advertise.
925 *
926 * Returns how much extra window would be advertised if we sent an
927 * update now.
928 */
929 u32_t
tcp_update_rcv_ann_wnd(struct tcp_pcb * pcb)930 tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb)
931 {
932 u32_t new_right_edge;
933
934 LWIP_ASSERT("tcp_update_rcv_ann_wnd: invalid pcb", pcb != NULL);
935 new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd;
936
937 if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND / 2), pcb->mss))) {
938 /* we can advertise more window */
939 pcb->rcv_ann_wnd = pcb->rcv_wnd;
940 return new_right_edge - pcb->rcv_ann_right_edge;
941 } else {
942 if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) {
943 /* Can happen due to other end sending out of advertised window,
944 * but within actual available (but not yet advertised) window */
945 pcb->rcv_ann_wnd = 0;
946 } else {
947 /* keep the right edge of window constant */
948 u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt;
949 #if !LWIP_WND_SCALE
950 LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff);
951 #endif
952 pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd;
953 }
954 return 0;
955 }
956 }
957
958 /**
959 * @ingroup tcp_raw
960 * This function should be called by the application when it has
961 * processed the data. The purpose is to advertise a larger window
962 * when the data has been processed.
963 *
964 * @param pcb the tcp_pcb for which data is read
965 * @param len the amount of bytes that have been read by the application
966 */
967 void
tcp_recved(struct tcp_pcb * pcb,u16_t len)968 tcp_recved(struct tcp_pcb *pcb, u16_t len)
969 {
970 u32_t wnd_inflation;
971 tcpwnd_size_t rcv_wnd;
972
973 LWIP_ASSERT_CORE_LOCKED();
974
975 LWIP_ERROR("tcp_recved: invalid pcb", pcb != NULL, return);
976
977 /* pcb->state LISTEN not allowed here */
978 LWIP_ASSERT("don't call tcp_recved for listen-pcbs",
979 pcb->state != LISTEN);
980
981 rcv_wnd = (tcpwnd_size_t)(pcb->rcv_wnd + len);
982 if ((rcv_wnd > TCP_WND_MAX(pcb)) || (rcv_wnd < pcb->rcv_wnd)) {
983 /* window got too big or tcpwnd_size_t overflow */
984 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: window got too big or tcpwnd_size_t overflow\n"));
985 pcb->rcv_wnd = TCP_WND_MAX(pcb);
986 } else {
987 pcb->rcv_wnd = rcv_wnd;
988 }
989
990 wnd_inflation = tcp_update_rcv_ann_wnd(pcb);
991
992 /* If the change in the right edge of window is significant (default
993 * watermark is TCP_WND/4), then send an explicit update now.
994 * Otherwise wait for a packet to be sent in the normal course of
995 * events (or more window to be available later) */
996 if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD) {
997 tcp_ack_now(pcb);
998 tcp_output(pcb);
999 }
1000
1001 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n",
1002 len, pcb->rcv_wnd, (u16_t)(TCP_WND_MAX(pcb) - pcb->rcv_wnd)));
1003 }
1004
1005 /**
1006 * Allocate a new local TCP port.
1007 *
1008 * @return a new (free) local TCP port number
1009 */
1010 static u16_t
tcp_new_port(void)1011 tcp_new_port(void)
1012 {
1013 u8_t i;
1014 u16_t n = 0;
1015 struct tcp_pcb *pcb;
1016
1017 again:
1018 tcp_port++;
1019 if (tcp_port == TCP_LOCAL_PORT_RANGE_END) {
1020 tcp_port = TCP_LOCAL_PORT_RANGE_START;
1021 }
1022 /* Check all PCB lists. */
1023 for (i = 0; i < NUM_TCP_PCB_LISTS; i++) {
1024 for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) {
1025 if (pcb->local_port == tcp_port) {
1026 n++;
1027 if (n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) {
1028 return 0;
1029 }
1030 goto again;
1031 }
1032 }
1033 }
1034 return tcp_port;
1035 }
1036
1037 /**
1038 * @ingroup tcp_raw
1039 * Connects to another host. The function given as the "connected"
1040 * argument will be called when the connection has been established.
1041 * Sets up the pcb to connect to the remote host and sends the
1042 * initial SYN segment which opens the connection.
1043 *
1044 * The tcp_connect() function returns immediately; it does not wait for
1045 * the connection to be properly setup. Instead, it will call the
1046 * function specified as the fourth argument (the "connected" argument)
1047 * when the connection is established. If the connection could not be
1048 * properly established, either because the other host refused the
1049 * connection or because the other host didn't answer, the "err"
1050 * callback function of this pcb (registered with tcp_err, see below)
1051 * will be called.
1052 *
1053 * The tcp_connect() function can return ERR_MEM if no memory is
1054 * available for enqueueing the SYN segment. If the SYN indeed was
1055 * enqueued successfully, the tcp_connect() function returns ERR_OK.
1056 *
1057 * @param pcb the tcp_pcb used to establish the connection
1058 * @param ipaddr the remote ip address to connect to
1059 * @param port the remote tcp port to connect to
1060 * @param connected callback function to call when connected (on error,
1061 the err calback will be called)
1062 * @return ERR_VAL if invalid arguments are given
1063 * ERR_OK if connect request has been sent
1064 * other err_t values if connect request couldn't be sent
1065 */
1066 err_t
tcp_connect(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port,tcp_connected_fn connected)1067 tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port,
1068 tcp_connected_fn connected)
1069 {
1070 struct netif *netif = NULL;
1071 err_t ret;
1072 u32_t iss;
1073 u16_t old_local_port;
1074
1075 LWIP_ASSERT_CORE_LOCKED();
1076
1077 LWIP_ERROR("tcp_connect: invalid pcb", pcb != NULL, return ERR_ARG);
1078 LWIP_ERROR("tcp_connect: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
1079
1080 LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN);
1081
1082 LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port));
1083 ip_addr_set(&pcb->remote_ip, ipaddr);
1084 pcb->remote_port = port;
1085
1086 if (pcb->netif_idx != NETIF_NO_INDEX) {
1087 netif = netif_get_by_index(pcb->netif_idx);
1088 } else {
1089 /* check if we have a route to the remote host */
1090 netif = ip_route(&pcb->local_ip, &pcb->remote_ip);
1091 }
1092 if (netif == NULL) {
1093 /* Don't even try to send a SYN packet if we have no route since that will fail. */
1094 return ERR_RTE;
1095 }
1096
1097 /* check if local IP has been assigned to pcb, if not, get one */
1098 if (ip_addr_isany(&pcb->local_ip)) {
1099 const ip_addr_t *local_ip = ip_netif_get_local_ip(netif, ipaddr);
1100 if (local_ip == NULL) {
1101 return ERR_RTE;
1102 }
1103 ip_addr_copy(pcb->local_ip, *local_ip);
1104 }
1105
1106 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
1107 /* If the given IP address should have a zone but doesn't, assign one now.
1108 * Given that we already have the target netif, this is easy and cheap. */
1109 if (IP_IS_V6(&pcb->remote_ip) &&
1110 ip6_addr_lacks_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST)) {
1111 ip6_addr_assign_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST, netif);
1112 }
1113 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
1114
1115 old_local_port = pcb->local_port;
1116 if (pcb->local_port == 0) {
1117 pcb->local_port = tcp_new_port();
1118 if (pcb->local_port == 0) {
1119 return ERR_BUF;
1120 }
1121 } else {
1122 #if SO_REUSE
1123 if (ip_get_option(pcb, SOF_REUSEADDR)) {
1124 /* Since SOF_REUSEADDR allows reusing a local address, we have to make sure
1125 now that the 5-tuple is unique. */
1126 struct tcp_pcb *cpcb;
1127 int i;
1128 /* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */
1129 for (i = 2; i < NUM_TCP_PCB_LISTS; i++) {
1130 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
1131 if ((cpcb->local_port == pcb->local_port) &&
1132 (cpcb->remote_port == port) &&
1133 ip_addr_cmp(&cpcb->local_ip, &pcb->local_ip) &&
1134 ip_addr_cmp(&cpcb->remote_ip, ipaddr)) {
1135 /* linux returns EISCONN here, but ERR_USE should be OK for us */
1136 return ERR_USE;
1137 }
1138 }
1139 }
1140 }
1141 #endif /* SO_REUSE */
1142 }
1143
1144 iss = tcp_next_iss(pcb);
1145 pcb->rcv_nxt = 0;
1146 pcb->snd_nxt = iss;
1147 pcb->lastack = iss - 1;
1148 pcb->snd_wl2 = iss - 1;
1149 pcb->snd_lbb = iss - 1;
1150 /* Start with a window that does not need scaling. When window scaling is
1151 enabled and used, the window is enlarged when both sides agree on scaling. */
1152 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1153 pcb->rcv_ann_right_edge = pcb->rcv_nxt;
1154 pcb->snd_wnd = TCP_WND;
1155 /* As initial send MSS, we use TCP_MSS but limit it to 536.
1156 The send MSS is updated when an MSS option is received. */
1157 pcb->mss = INITIAL_MSS;
1158 #if TCP_CALCULATE_EFF_SEND_MSS
1159 pcb->mss = tcp_eff_send_mss_netif(pcb->mss, netif, &pcb->remote_ip);
1160 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
1161 pcb->cwnd = 1;
1162 #if LWIP_CALLBACK_API
1163 pcb->connected = connected;
1164 #else /* LWIP_CALLBACK_API */
1165 LWIP_UNUSED_ARG(connected);
1166 #endif /* LWIP_CALLBACK_API */
1167
1168 /* Send a SYN together with the MSS option. */
1169 ret = tcp_enqueue_flags(pcb, TCP_SYN);
1170 if (ret == ERR_OK) {
1171 /* SYN segment was enqueued, changed the pcbs state now */
1172 pcb->state = SYN_SENT;
1173 if (old_local_port != 0) {
1174 TCP_RMV(&tcp_bound_pcbs, pcb);
1175 }
1176 TCP_REG_ACTIVE(pcb);
1177 MIB2_STATS_INC(mib2.tcpactiveopens);
1178
1179 tcp_output(pcb);
1180 }
1181 return ret;
1182 }
1183
1184 /**
1185 * Called every 500 ms and implements the retransmission timer and the timer that
1186 * removes PCBs that have been in TIME-WAIT for enough time. It also increments
1187 * various timers such as the inactivity timer in each PCB.
1188 *
1189 * Automatically called from tcp_tmr().
1190 */
1191 void
tcp_slowtmr(void)1192 tcp_slowtmr(void)
1193 {
1194 struct tcp_pcb *pcb, *prev;
1195 tcpwnd_size_t eff_wnd;
1196 u8_t pcb_remove; /* flag if a PCB should be removed */
1197 u8_t pcb_reset; /* flag if a RST should be sent when removing */
1198 err_t err;
1199
1200 err = ERR_OK;
1201
1202 ++tcp_ticks;
1203 ++tcp_timer_ctr;
1204
1205 tcp_slowtmr_start:
1206 /* Steps through all of the active PCBs. */
1207 prev = NULL;
1208 pcb = tcp_active_pcbs;
1209 if (pcb == NULL) {
1210 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n"));
1211 }
1212 while (pcb != NULL) {
1213 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n"));
1214 LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED);
1215 LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN);
1216 LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT);
1217 if (pcb->last_timer == tcp_timer_ctr) {
1218 /* skip this pcb, we have already processed it */
1219 prev = pcb;
1220 pcb = pcb->next;
1221 continue;
1222 }
1223 pcb->last_timer = tcp_timer_ctr;
1224
1225 pcb_remove = 0;
1226 pcb_reset = 0;
1227
1228 if (pcb->state == SYN_SENT && pcb->nrtx >= TCP_SYNMAXRTX) {
1229 ++pcb_remove;
1230 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n"));
1231 } else if (pcb->nrtx >= TCP_MAXRTX) {
1232 ++pcb_remove;
1233 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n"));
1234 } else {
1235 if (pcb->persist_backoff > 0) {
1236 LWIP_ASSERT("tcp_slowtimr: persist ticking with in-flight data", pcb->unacked == NULL);
1237 LWIP_ASSERT("tcp_slowtimr: persist ticking with empty send buffer", pcb->unsent != NULL);
1238 if (pcb->persist_probe >= TCP_MAXRTX) {
1239 ++pcb_remove; /* max probes reached */
1240 } else {
1241 u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
1242 if (pcb->persist_cnt < backoff_cnt) {
1243 pcb->persist_cnt++;
1244 }
1245 if (pcb->persist_cnt >= backoff_cnt) {
1246 int next_slot = 1; /* increment timer to next slot */
1247 /* If snd_wnd is zero, send 1 byte probes */
1248 if (pcb->snd_wnd == 0) {
1249 if (tcp_zero_window_probe(pcb) != ERR_OK) {
1250 next_slot = 0; /* try probe again with current slot */
1251 }
1252 /* snd_wnd not fully closed, split unsent head and fill window */
1253 } else {
1254 if (tcp_split_unsent_seg(pcb, (u16_t)pcb->snd_wnd) == ERR_OK) {
1255 if (tcp_output(pcb) == ERR_OK) {
1256 /* sending will cancel persist timer, else retry with current slot */
1257 next_slot = 0;
1258 }
1259 }
1260 }
1261 if (next_slot) {
1262 pcb->persist_cnt = 0;
1263 if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) {
1264 pcb->persist_backoff++;
1265 }
1266 }
1267 }
1268 }
1269 } else {
1270 /* Increase the retransmission timer if it is running */
1271 if ((pcb->rtime >= 0) && (pcb->rtime < 0x7FFF)) {
1272 ++pcb->rtime;
1273 }
1274
1275 if (pcb->rtime >= pcb->rto) {
1276 /* Time for a retransmission. */
1277 LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F
1278 " pcb->rto %"S16_F"\n",
1279 pcb->rtime, pcb->rto));
1280 /* If prepare phase fails but we have unsent data but no unacked data,
1281 still execute the backoff calculations below, as this means we somehow
1282 failed to send segment. */
1283 if ((tcp_rexmit_rto_prepare(pcb) == ERR_OK) || ((pcb->unacked == NULL) && (pcb->unsent != NULL))) {
1284 /* Double retransmission time-out unless we are trying to
1285 * connect to somebody (i.e., we are in SYN_SENT). */
1286 if (pcb->state != SYN_SENT) {
1287 u8_t backoff_idx = LWIP_MIN(pcb->nrtx, sizeof(tcp_backoff) - 1);
1288 int calc_rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[backoff_idx];
1289 pcb->rto = (s16_t)LWIP_MIN(calc_rto, 0x7FFF);
1290 }
1291
1292 /* Reset the retransmission timer. */
1293 pcb->rtime = 0;
1294
1295 /* Reduce congestion window and ssthresh. */
1296 eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd);
1297 pcb->ssthresh = eff_wnd >> 1;
1298 if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) {
1299 pcb->ssthresh = (tcpwnd_size_t)(pcb->mss << 1);
1300 }
1301 pcb->cwnd = pcb->mss;
1302 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F
1303 " ssthresh %"TCPWNDSIZE_F"\n",
1304 pcb->cwnd, pcb->ssthresh));
1305 pcb->bytes_acked = 0;
1306
1307 /* The following needs to be called AFTER cwnd is set to one
1308 mss - STJ */
1309 tcp_rexmit_rto_commit(pcb);
1310 }
1311 }
1312 }
1313 }
1314 /* Check if this PCB has stayed too long in FIN-WAIT-2 */
1315 if (pcb->state == FIN_WAIT_2) {
1316 /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
1317 if (pcb->flags & TF_RXCLOSED) {
1318 /* PCB was fully closed (either through close() or SHUT_RDWR):
1319 normal FIN-WAIT timeout handling. */
1320 if ((u32_t)(tcp_ticks - pcb->tmr) >
1321 TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) {
1322 ++pcb_remove;
1323 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n"));
1324 }
1325 }
1326 }
1327
1328 /* Check if KEEPALIVE should be sent */
1329 if (ip_get_option(pcb, SOF_KEEPALIVE) &&
1330 ((pcb->state == ESTABLISHED) ||
1331 (pcb->state == CLOSE_WAIT))) {
1332 if ((u32_t)(tcp_ticks - pcb->tmr) >
1333 (pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL) {
1334 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to "));
1335 ip_addr_debug_print_val(TCP_DEBUG, pcb->remote_ip);
1336 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
1337
1338 ++pcb_remove;
1339 ++pcb_reset;
1340 } else if ((u32_t)(tcp_ticks - pcb->tmr) >
1341 (pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb))
1342 / TCP_SLOW_INTERVAL) {
1343 err = tcp_keepalive(pcb);
1344 if (err == ERR_OK) {
1345 pcb->keep_cnt_sent++;
1346 }
1347 }
1348 }
1349
1350 /* If this PCB has queued out of sequence data, but has been
1351 inactive for too long, will drop the data (it will eventually
1352 be retransmitted). */
1353 #if TCP_QUEUE_OOSEQ
1354 if (pcb->ooseq != NULL &&
1355 (tcp_ticks - pcb->tmr >= (u32_t)pcb->rto * TCP_OOSEQ_TIMEOUT)) {
1356 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n"));
1357 tcp_free_ooseq(pcb);
1358 }
1359 #endif /* TCP_QUEUE_OOSEQ */
1360
1361 /* Check if this PCB has stayed too long in SYN-RCVD */
1362 if (pcb->state == SYN_RCVD) {
1363 if ((u32_t)(tcp_ticks - pcb->tmr) >
1364 TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) {
1365 ++pcb_remove;
1366 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n"));
1367 }
1368 }
1369
1370 /* Check if this PCB has stayed too long in LAST-ACK */
1371 if (pcb->state == LAST_ACK) {
1372 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1373 ++pcb_remove;
1374 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n"));
1375 }
1376 }
1377
1378 /* If the PCB should be removed, do it. */
1379 if (pcb_remove) {
1380 struct tcp_pcb *pcb2;
1381 #if LWIP_CALLBACK_API
1382 tcp_err_fn err_fn = pcb->errf;
1383 #endif /* LWIP_CALLBACK_API */
1384 void *err_arg;
1385 enum tcp_state last_state;
1386 tcp_pcb_purge(pcb);
1387 /* Remove PCB from tcp_active_pcbs list. */
1388 if (prev != NULL) {
1389 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs);
1390 prev->next = pcb->next;
1391 } else {
1392 /* This PCB was the first. */
1393 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb);
1394 tcp_active_pcbs = pcb->next;
1395 }
1396
1397 if (pcb_reset) {
1398 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
1399 pcb->local_port, pcb->remote_port);
1400 }
1401
1402 err_arg = pcb->callback_arg;
1403 last_state = pcb->state;
1404 pcb2 = pcb;
1405 pcb = pcb->next;
1406 tcp_free(pcb2);
1407
1408 tcp_active_pcbs_changed = 0;
1409 TCP_EVENT_ERR(last_state, err_fn, err_arg, ERR_ABRT);
1410 if (tcp_active_pcbs_changed) {
1411 goto tcp_slowtmr_start;
1412 }
1413 } else {
1414 /* get the 'next' element now and work with 'prev' below (in case of abort) */
1415 prev = pcb;
1416 pcb = pcb->next;
1417
1418 /* We check if we should poll the connection. */
1419 ++prev->polltmr;
1420 if (prev->polltmr >= prev->pollinterval) {
1421 prev->polltmr = 0;
1422 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n"));
1423 tcp_active_pcbs_changed = 0;
1424 TCP_EVENT_POLL(prev, err);
1425 if (tcp_active_pcbs_changed) {
1426 goto tcp_slowtmr_start;
1427 }
1428 /* if err == ERR_ABRT, 'prev' is already deallocated */
1429 if (err == ERR_OK) {
1430 tcp_output(prev);
1431 }
1432 }
1433 }
1434 }
1435
1436
1437 /* Steps through all of the TIME-WAIT PCBs. */
1438 prev = NULL;
1439 pcb = tcp_tw_pcbs;
1440 while (pcb != NULL) {
1441 LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
1442 pcb_remove = 0;
1443
1444 /* Check if this PCB has stayed long enough in TIME-WAIT */
1445 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1446 ++pcb_remove;
1447 }
1448
1449 /* If the PCB should be removed, do it. */
1450 if (pcb_remove) {
1451 struct tcp_pcb *pcb2;
1452 tcp_pcb_purge(pcb);
1453 /* Remove PCB from tcp_tw_pcbs list. */
1454 if (prev != NULL) {
1455 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs);
1456 prev->next = pcb->next;
1457 } else {
1458 /* This PCB was the first. */
1459 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb);
1460 tcp_tw_pcbs = pcb->next;
1461 }
1462 pcb2 = pcb;
1463 pcb = pcb->next;
1464 tcp_free(pcb2);
1465 } else {
1466 prev = pcb;
1467 pcb = pcb->next;
1468 }
1469 }
1470 }
1471
1472 /**
1473 * Is called every TCP_FAST_INTERVAL (250 ms) and process data previously
1474 * "refused" by upper layer (application) and sends delayed ACKs or pending FINs.
1475 *
1476 * Automatically called from tcp_tmr().
1477 */
1478 void
tcp_fasttmr(void)1479 tcp_fasttmr(void)
1480 {
1481 struct tcp_pcb *pcb;
1482
1483 ++tcp_timer_ctr;
1484
1485 tcp_fasttmr_start:
1486 pcb = tcp_active_pcbs;
1487
1488 while (pcb != NULL) {
1489 if (pcb->last_timer != tcp_timer_ctr) {
1490 struct tcp_pcb *next;
1491 pcb->last_timer = tcp_timer_ctr;
1492 /* send delayed ACKs */
1493 if (pcb->flags & TF_ACK_DELAY) {
1494 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n"));
1495 tcp_ack_now(pcb);
1496 tcp_output(pcb);
1497 tcp_clear_flags(pcb, TF_ACK_DELAY | TF_ACK_NOW);
1498 }
1499 /* send pending FIN */
1500 if (pcb->flags & TF_CLOSEPEND) {
1501 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: pending FIN\n"));
1502 tcp_clear_flags(pcb, TF_CLOSEPEND);
1503 tcp_close_shutdown_fin(pcb);
1504 }
1505
1506 next = pcb->next;
1507
1508 /* If there is data which was previously "refused" by upper layer */
1509 if (pcb->refused_data != NULL) {
1510 tcp_active_pcbs_changed = 0;
1511 tcp_process_refused_data(pcb);
1512 if (tcp_active_pcbs_changed) {
1513 /* application callback has changed the pcb list: restart the loop */
1514 goto tcp_fasttmr_start;
1515 }
1516 }
1517 pcb = next;
1518 } else {
1519 pcb = pcb->next;
1520 }
1521 }
1522 }
1523
1524 /** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */
1525 void
tcp_txnow(void)1526 tcp_txnow(void)
1527 {
1528 struct tcp_pcb *pcb;
1529
1530 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1531 if (pcb->flags & TF_NAGLEMEMERR) {
1532 tcp_output(pcb);
1533 }
1534 }
1535 }
1536
1537 /** Pass pcb->refused_data to the recv callback */
1538 err_t
tcp_process_refused_data(struct tcp_pcb * pcb)1539 tcp_process_refused_data(struct tcp_pcb *pcb)
1540 {
1541 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1542 struct pbuf *rest;
1543 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1544
1545 LWIP_ERROR("tcp_process_refused_data: invalid pcb", pcb != NULL, return ERR_ARG);
1546
1547 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1548 while (pcb->refused_data != NULL)
1549 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1550 {
1551 err_t err;
1552 u8_t refused_flags = pcb->refused_data->flags;
1553 /* set pcb->refused_data to NULL in case the callback frees it and then
1554 closes the pcb */
1555 struct pbuf *refused_data = pcb->refused_data;
1556 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1557 pbuf_split_64k(refused_data, &rest);
1558 pcb->refused_data = rest;
1559 #else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1560 pcb->refused_data = NULL;
1561 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1562 /* Notify again application with data previously received. */
1563 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n"));
1564 TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err);
1565 if (err == ERR_OK) {
1566 /* did refused_data include a FIN? */
1567 if ((refused_flags & PBUF_FLAG_TCP_FIN)
1568 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1569 && (rest == NULL)
1570 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1571 ) {
1572 /* correct rcv_wnd as the application won't call tcp_recved()
1573 for the FIN's seqno */
1574 if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) {
1575 pcb->rcv_wnd++;
1576 }
1577 TCP_EVENT_CLOSED(pcb, err);
1578 if (err == ERR_ABRT) {
1579 return ERR_ABRT;
1580 }
1581 }
1582 } else if (err == ERR_ABRT) {
1583 /* if err == ERR_ABRT, 'pcb' is already deallocated */
1584 /* Drop incoming packets because pcb is "full" (only if the incoming
1585 segment contains data). */
1586 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n"));
1587 return ERR_ABRT;
1588 } else {
1589 /* data is still refused, pbuf is still valid (go on for ACK-only packets) */
1590 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1591 if (rest != NULL) {
1592 pbuf_cat(refused_data, rest);
1593 }
1594 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1595 pcb->refused_data = refused_data;
1596 return ERR_INPROGRESS;
1597 }
1598 }
1599 return ERR_OK;
1600 }
1601
1602 /**
1603 * Deallocates a list of TCP segments (tcp_seg structures).
1604 *
1605 * @param seg tcp_seg list of TCP segments to free
1606 */
1607 void
tcp_segs_free(struct tcp_seg * seg)1608 tcp_segs_free(struct tcp_seg *seg)
1609 {
1610 while (seg != NULL) {
1611 struct tcp_seg *next = seg->next;
1612 tcp_seg_free(seg);
1613 seg = next;
1614 }
1615 }
1616
1617 /**
1618 * Frees a TCP segment (tcp_seg structure).
1619 *
1620 * @param seg single tcp_seg to free
1621 */
1622 void
tcp_seg_free(struct tcp_seg * seg)1623 tcp_seg_free(struct tcp_seg *seg)
1624 {
1625 if (seg != NULL) {
1626 if (seg->p != NULL) {
1627 pbuf_free(seg->p);
1628 #if TCP_DEBUG
1629 seg->p = NULL;
1630 #endif /* TCP_DEBUG */
1631 }
1632 memp_free(MEMP_TCP_SEG, seg);
1633 }
1634 }
1635
1636 /**
1637 * @ingroup tcp
1638 * Sets the priority of a connection.
1639 *
1640 * @param pcb the tcp_pcb to manipulate
1641 * @param prio new priority
1642 */
1643 void
tcp_setprio(struct tcp_pcb * pcb,u8_t prio)1644 tcp_setprio(struct tcp_pcb *pcb, u8_t prio)
1645 {
1646 LWIP_ASSERT_CORE_LOCKED();
1647
1648 LWIP_ERROR("tcp_setprio: invalid pcb", pcb != NULL, return);
1649
1650 pcb->prio = prio;
1651 }
1652
1653 #if TCP_QUEUE_OOSEQ
1654 /**
1655 * Returns a copy of the given TCP segment.
1656 * The pbuf and data are not copied, only the pointers
1657 *
1658 * @param seg the old tcp_seg
1659 * @return a copy of seg
1660 */
1661 struct tcp_seg *
tcp_seg_copy(struct tcp_seg * seg)1662 tcp_seg_copy(struct tcp_seg *seg)
1663 {
1664 struct tcp_seg *cseg;
1665
1666 LWIP_ASSERT("tcp_seg_copy: invalid seg", seg != NULL);
1667
1668 cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
1669 if (cseg == NULL) {
1670 return NULL;
1671 }
1672 SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg));
1673 pbuf_ref(cseg->p);
1674 return cseg;
1675 }
1676 #endif /* TCP_QUEUE_OOSEQ */
1677
1678 #if LWIP_CALLBACK_API
1679 /**
1680 * Default receive callback that is called if the user didn't register
1681 * a recv callback for the pcb.
1682 */
1683 err_t
tcp_recv_null(void * arg,struct tcp_pcb * pcb,struct pbuf * p,err_t err)1684 tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
1685 {
1686 LWIP_UNUSED_ARG(arg);
1687
1688 LWIP_ERROR("tcp_recv_null: invalid pcb", pcb != NULL, return ERR_ARG);
1689
1690 if (p != NULL) {
1691 tcp_recved(pcb, p->tot_len);
1692 pbuf_free(p);
1693 } else if (err == ERR_OK) {
1694 return tcp_close(pcb);
1695 }
1696 return ERR_OK;
1697 }
1698 #endif /* LWIP_CALLBACK_API */
1699
1700 /**
1701 * Kills the oldest active connection that has a lower priority than 'prio'.
1702 *
1703 * @param prio minimum priority
1704 */
1705 static void
tcp_kill_prio(u8_t prio)1706 tcp_kill_prio(u8_t prio)
1707 {
1708 struct tcp_pcb *pcb, *inactive;
1709 u32_t inactivity;
1710 u8_t mprio;
1711
1712 mprio = LWIP_MIN(TCP_PRIO_MAX, prio);
1713
1714 /* We want to kill connections with a lower prio, so bail out if
1715 * supplied prio is 0 - there can never be a lower prio
1716 */
1717 if (mprio == 0) {
1718 return;
1719 }
1720
1721 /* We only want kill connections with a lower prio, so decrement prio by one
1722 * and start searching for oldest connection with same or lower priority than mprio.
1723 * We want to find the connections with the lowest possible prio, and among
1724 * these the one with the longest inactivity time.
1725 */
1726 mprio--;
1727
1728 inactivity = 0;
1729 inactive = NULL;
1730 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1731 /* lower prio is always a kill candidate */
1732 if ((pcb->prio < mprio) ||
1733 /* longer inactivity is also a kill candidate */
1734 ((pcb->prio == mprio) && ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity))) {
1735 inactivity = tcp_ticks - pcb->tmr;
1736 inactive = pcb;
1737 mprio = pcb->prio;
1738 }
1739 }
1740 if (inactive != NULL) {
1741 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n",
1742 (void *)inactive, inactivity));
1743 tcp_abort(inactive);
1744 }
1745 }
1746
1747 /**
1748 * Kills the oldest connection that is in specific state.
1749 * Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available.
1750 */
1751 static void
tcp_kill_state(enum tcp_state state)1752 tcp_kill_state(enum tcp_state state)
1753 {
1754 struct tcp_pcb *pcb, *inactive;
1755 u32_t inactivity;
1756
1757 LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK));
1758
1759 inactivity = 0;
1760 inactive = NULL;
1761 /* Go through the list of active pcbs and get the oldest pcb that is in state
1762 CLOSING/LAST_ACK. */
1763 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1764 if (pcb->state == state) {
1765 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1766 inactivity = tcp_ticks - pcb->tmr;
1767 inactive = pcb;
1768 }
1769 }
1770 }
1771 if (inactive != NULL) {
1772 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n",
1773 tcp_state_str[state], (void *)inactive, inactivity));
1774 /* Don't send a RST, since no data is lost. */
1775 tcp_abandon(inactive, 0);
1776 }
1777 }
1778
1779 /**
1780 * Kills the oldest connection that is in TIME_WAIT state.
1781 * Called from tcp_alloc() if no more connections are available.
1782 */
1783 static void
tcp_kill_timewait(void)1784 tcp_kill_timewait(void)
1785 {
1786 struct tcp_pcb *pcb, *inactive;
1787 u32_t inactivity;
1788
1789 inactivity = 0;
1790 inactive = NULL;
1791 /* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */
1792 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
1793 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1794 inactivity = tcp_ticks - pcb->tmr;
1795 inactive = pcb;
1796 }
1797 }
1798 if (inactive != NULL) {
1799 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n",
1800 (void *)inactive, inactivity));
1801 tcp_abort(inactive);
1802 }
1803 }
1804
1805 /* Called when allocating a pcb fails.
1806 * In this case, we want to handle all pcbs that want to close first: if we can
1807 * now send the FIN (which failed before), the pcb might be in a state that is
1808 * OK for us to now free it.
1809 */
1810 static void
tcp_handle_closepend(void)1811 tcp_handle_closepend(void)
1812 {
1813 struct tcp_pcb *pcb = tcp_active_pcbs;
1814
1815 while (pcb != NULL) {
1816 struct tcp_pcb *next = pcb->next;
1817 /* send pending FIN */
1818 if (pcb->flags & TF_CLOSEPEND) {
1819 LWIP_DEBUGF(TCP_DEBUG, ("tcp_handle_closepend: pending FIN\n"));
1820 tcp_clear_flags(pcb, TF_CLOSEPEND);
1821 tcp_close_shutdown_fin(pcb);
1822 }
1823 pcb = next;
1824 }
1825 }
1826
1827 /**
1828 * Allocate a new tcp_pcb structure.
1829 *
1830 * @param prio priority for the new pcb
1831 * @return a new tcp_pcb that initially is in state CLOSED
1832 */
1833 struct tcp_pcb *
tcp_alloc(u8_t prio)1834 tcp_alloc(u8_t prio)
1835 {
1836 struct tcp_pcb *pcb;
1837
1838 LWIP_ASSERT_CORE_LOCKED();
1839
1840 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1841 if (pcb == NULL) {
1842 /* Try to send FIN for all pcbs stuck in TF_CLOSEPEND first */
1843 tcp_handle_closepend();
1844
1845 /* Try killing oldest connection in TIME-WAIT. */
1846 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n"));
1847 tcp_kill_timewait();
1848 /* Try to allocate a tcp_pcb again. */
1849 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1850 if (pcb == NULL) {
1851 /* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */
1852 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n"));
1853 tcp_kill_state(LAST_ACK);
1854 /* Try to allocate a tcp_pcb again. */
1855 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1856 if (pcb == NULL) {
1857 /* Try killing oldest connection in CLOSING. */
1858 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n"));
1859 tcp_kill_state(CLOSING);
1860 /* Try to allocate a tcp_pcb again. */
1861 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1862 if (pcb == NULL) {
1863 /* Try killing oldest active connection with lower priority than the new one. */
1864 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing oldest connection with prio lower than %d\n", prio));
1865 tcp_kill_prio(prio);
1866 /* Try to allocate a tcp_pcb again. */
1867 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1868 if (pcb != NULL) {
1869 /* adjust err stats: memp_malloc failed multiple times before */
1870 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1871 }
1872 }
1873 if (pcb != NULL) {
1874 /* adjust err stats: memp_malloc failed multiple times before */
1875 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1876 }
1877 }
1878 if (pcb != NULL) {
1879 /* adjust err stats: memp_malloc failed multiple times before */
1880 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1881 }
1882 }
1883 if (pcb != NULL) {
1884 /* adjust err stats: memp_malloc failed above */
1885 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1886 }
1887 }
1888 if (pcb != NULL) {
1889 /* zero out the whole pcb, so there is no need to initialize members to zero */
1890 memset(pcb, 0, sizeof(struct tcp_pcb));
1891 pcb->prio = prio;
1892 pcb->snd_buf = TCP_SND_BUF;
1893 /* Start with a window that does not need scaling. When window scaling is
1894 enabled and used, the window is enlarged when both sides agree on scaling. */
1895 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1896 pcb->ttl = TCP_TTL;
1897 /* As initial send MSS, we use TCP_MSS but limit it to 536.
1898 The send MSS is updated when an MSS option is received. */
1899 pcb->mss = INITIAL_MSS;
1900 pcb->rto = 3000 / TCP_SLOW_INTERVAL;
1901 pcb->sv = 3000 / TCP_SLOW_INTERVAL;
1902 pcb->rtime = -1;
1903 pcb->cwnd = 1;
1904 pcb->tmr = tcp_ticks;
1905 pcb->last_timer = tcp_timer_ctr;
1906
1907 /* RFC 5681 recommends setting ssthresh abritrarily high and gives an example
1908 of using the largest advertised receive window. We've seen complications with
1909 receiving TCPs that use window scaling and/or window auto-tuning where the
1910 initial advertised window is very small and then grows rapidly once the
1911 connection is established. To avoid these complications, we set ssthresh to the
1912 largest effective cwnd (amount of in-flight data) that the sender can have. */
1913 pcb->ssthresh = TCP_SND_BUF;
1914
1915 #if LWIP_CALLBACK_API
1916 pcb->recv = tcp_recv_null;
1917 #endif /* LWIP_CALLBACK_API */
1918
1919 /* Init KEEPALIVE timer */
1920 pcb->keep_idle = TCP_KEEPIDLE_DEFAULT;
1921
1922 #if LWIP_TCP_KEEPALIVE
1923 pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT;
1924 pcb->keep_cnt = TCP_KEEPCNT_DEFAULT;
1925 #endif /* LWIP_TCP_KEEPALIVE */
1926 }
1927 return pcb;
1928 }
1929
1930 /**
1931 * @ingroup tcp_raw
1932 * Creates a new TCP protocol control block but doesn't place it on
1933 * any of the TCP PCB lists.
1934 * The pcb is not put on any list until binding using tcp_bind().
1935 * If memory is not available for creating the new pcb, NULL is returned.
1936 *
1937 * @internal: Maybe there should be a idle TCP PCB list where these
1938 * PCBs are put on. Port reservation using tcp_bind() is implemented but
1939 * allocated pcbs that are not bound can't be killed automatically if wanting
1940 * to allocate a pcb with higher prio (@see tcp_kill_prio())
1941 *
1942 * @return a new tcp_pcb that initially is in state CLOSED
1943 */
1944 struct tcp_pcb *
tcp_new(void)1945 tcp_new(void)
1946 {
1947 return tcp_alloc(TCP_PRIO_NORMAL);
1948 }
1949
1950 /**
1951 * @ingroup tcp_raw
1952 * Creates a new TCP protocol control block but doesn't
1953 * place it on any of the TCP PCB lists.
1954 * The pcb is not put on any list until binding using tcp_bind().
1955 *
1956 * @param type IP address type, see @ref lwip_ip_addr_type definitions.
1957 * If you want to listen to IPv4 and IPv6 (dual-stack) connections,
1958 * supply @ref IPADDR_TYPE_ANY as argument and bind to @ref IP_ANY_TYPE.
1959 * @return a new tcp_pcb that initially is in state CLOSED
1960 */
1961 struct tcp_pcb *
tcp_new_ip_type(u8_t type)1962 tcp_new_ip_type(u8_t type)
1963 {
1964 struct tcp_pcb *pcb;
1965 pcb = tcp_alloc(TCP_PRIO_NORMAL);
1966 #if LWIP_IPV4 && LWIP_IPV6
1967 if (pcb != NULL) {
1968 IP_SET_TYPE_VAL(pcb->local_ip, type);
1969 IP_SET_TYPE_VAL(pcb->remote_ip, type);
1970 }
1971 #else
1972 LWIP_UNUSED_ARG(type);
1973 #endif /* LWIP_IPV4 && LWIP_IPV6 */
1974 return pcb;
1975 }
1976
1977 /**
1978 * @ingroup tcp_raw
1979 * Specifies the program specific state that should be passed to all
1980 * other callback functions. The "pcb" argument is the current TCP
1981 * connection control block, and the "arg" argument is the argument
1982 * that will be passed to the callbacks.
1983 *
1984 * @param pcb tcp_pcb to set the callback argument
1985 * @param arg void pointer argument to pass to callback functions
1986 */
1987 void
tcp_arg(struct tcp_pcb * pcb,void * arg)1988 tcp_arg(struct tcp_pcb *pcb, void *arg)
1989 {
1990 LWIP_ASSERT_CORE_LOCKED();
1991 /* This function is allowed to be called for both listen pcbs and
1992 connection pcbs. */
1993 if (pcb != NULL) {
1994 pcb->callback_arg = arg;
1995 }
1996 }
1997 #if LWIP_CALLBACK_API
1998
1999 /**
2000 * @ingroup tcp_raw
2001 * Sets the callback function that will be called when new data
2002 * arrives. The callback function will be passed a NULL pbuf to
2003 * indicate that the remote host has closed the connection. If the
2004 * callback function returns ERR_OK or ERR_ABRT it must have
2005 * freed the pbuf, otherwise it must not have freed it.
2006 *
2007 * @param pcb tcp_pcb to set the recv callback
2008 * @param recv callback function to call for this pcb when data is received
2009 */
2010 void
tcp_recv(struct tcp_pcb * pcb,tcp_recv_fn recv)2011 tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv)
2012 {
2013 LWIP_ASSERT_CORE_LOCKED();
2014 if (pcb != NULL) {
2015 LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN);
2016 pcb->recv = recv;
2017 }
2018 }
2019
2020 /**
2021 * @ingroup tcp_raw
2022 * Specifies the callback function that should be called when data has
2023 * successfully been received (i.e., acknowledged) by the remote
2024 * host. The len argument passed to the callback function gives the
2025 * amount bytes that was acknowledged by the last acknowledgment.
2026 *
2027 * @param pcb tcp_pcb to set the sent callback
2028 * @param sent callback function to call for this pcb when data is successfully sent
2029 */
2030 void
tcp_sent(struct tcp_pcb * pcb,tcp_sent_fn sent)2031 tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent)
2032 {
2033 LWIP_ASSERT_CORE_LOCKED();
2034 if (pcb != NULL) {
2035 LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN);
2036 pcb->sent = sent;
2037 }
2038 }
2039
2040 /**
2041 * @ingroup tcp_raw
2042 * Used to specify the function that should be called when a fatal error
2043 * has occurred on the connection.
2044 *
2045 * If a connection is aborted because of an error, the application is
2046 * alerted of this event by the err callback. Errors that might abort a
2047 * connection are when there is a shortage of memory. The callback
2048 * function to be called is set using the tcp_err() function.
2049 *
2050 * @note The corresponding pcb is already freed when this callback is called!
2051 *
2052 * @param pcb tcp_pcb to set the err callback
2053 * @param err callback function to call for this pcb when a fatal error
2054 * has occurred on the connection
2055 */
2056 void
tcp_err(struct tcp_pcb * pcb,tcp_err_fn err)2057 tcp_err(struct tcp_pcb *pcb, tcp_err_fn err)
2058 {
2059 LWIP_ASSERT_CORE_LOCKED();
2060 if (pcb != NULL) {
2061 LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN);
2062 pcb->errf = err;
2063 }
2064 }
2065
2066 /**
2067 * @ingroup tcp_raw
2068 * Used for specifying the function that should be called when a
2069 * LISTENing connection has been connected to another host.
2070 *
2071 * @param pcb tcp_pcb to set the accept callback
2072 * @param accept callback function to call for this pcb when LISTENing
2073 * connection has been connected to another host
2074 */
2075 void
tcp_accept(struct tcp_pcb * pcb,tcp_accept_fn accept)2076 tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept)
2077 {
2078 LWIP_ASSERT_CORE_LOCKED();
2079 if ((pcb != NULL) && (pcb->state == LISTEN)) {
2080 struct tcp_pcb_listen *lpcb = (struct tcp_pcb_listen *)pcb;
2081 lpcb->accept = accept;
2082 }
2083 }
2084 #endif /* LWIP_CALLBACK_API */
2085
2086
2087 /**
2088 * @ingroup tcp_raw
2089 * Specifies the polling interval and the callback function that should
2090 * be called to poll the application. The interval is specified in
2091 * number of TCP coarse grained timer shots, which typically occurs
2092 * twice a second. An interval of 10 means that the application would
2093 * be polled every 5 seconds.
2094 *
2095 * When a connection is idle (i.e., no data is either transmitted or
2096 * received), lwIP will repeatedly poll the application by calling a
2097 * specified callback function. This can be used either as a watchdog
2098 * timer for killing connections that have stayed idle for too long, or
2099 * as a method of waiting for memory to become available. For instance,
2100 * if a call to tcp_write() has failed because memory wasn't available,
2101 * the application may use the polling functionality to call tcp_write()
2102 * again when the connection has been idle for a while.
2103 */
2104 void
tcp_poll(struct tcp_pcb * pcb,tcp_poll_fn poll,u8_t interval)2105 tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval)
2106 {
2107 LWIP_ASSERT_CORE_LOCKED();
2108
2109 LWIP_ERROR("tcp_poll: invalid pcb", pcb != NULL, return);
2110 LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN);
2111
2112 #if LWIP_CALLBACK_API
2113 pcb->poll = poll;
2114 #else /* LWIP_CALLBACK_API */
2115 LWIP_UNUSED_ARG(poll);
2116 #endif /* LWIP_CALLBACK_API */
2117 pcb->pollinterval = interval;
2118 }
2119
2120 /**
2121 * Purges a TCP PCB. Removes any buffered data and frees the buffer memory
2122 * (pcb->ooseq, pcb->unsent and pcb->unacked are freed).
2123 *
2124 * @param pcb tcp_pcb to purge. The pcb itself is not deallocated!
2125 */
2126 void
tcp_pcb_purge(struct tcp_pcb * pcb)2127 tcp_pcb_purge(struct tcp_pcb *pcb)
2128 {
2129 LWIP_ERROR("tcp_pcb_purge: invalid pcb", pcb != NULL, return);
2130
2131 if (pcb->state != CLOSED &&
2132 pcb->state != TIME_WAIT &&
2133 pcb->state != LISTEN) {
2134
2135 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n"));
2136
2137 tcp_backlog_accepted(pcb);
2138
2139 if (pcb->refused_data != NULL) {
2140 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n"));
2141 pbuf_free(pcb->refused_data);
2142 pcb->refused_data = NULL;
2143 }
2144 if (pcb->unsent != NULL) {
2145 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n"));
2146 }
2147 if (pcb->unacked != NULL) {
2148 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n"));
2149 }
2150 #if TCP_QUEUE_OOSEQ
2151 if (pcb->ooseq != NULL) {
2152 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n"));
2153 tcp_free_ooseq(pcb);
2154 }
2155 #endif /* TCP_QUEUE_OOSEQ */
2156
2157 /* Stop the retransmission timer as it will expect data on unacked
2158 queue if it fires */
2159 pcb->rtime = -1;
2160
2161 tcp_segs_free(pcb->unsent);
2162 tcp_segs_free(pcb->unacked);
2163 pcb->unacked = pcb->unsent = NULL;
2164 #if TCP_OVERSIZE
2165 pcb->unsent_oversize = 0;
2166 #endif /* TCP_OVERSIZE */
2167 }
2168 }
2169
2170 /**
2171 * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first.
2172 *
2173 * @param pcblist PCB list to purge.
2174 * @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated!
2175 */
2176 void
tcp_pcb_remove(struct tcp_pcb ** pcblist,struct tcp_pcb * pcb)2177 tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb)
2178 {
2179 LWIP_ASSERT("tcp_pcb_remove: invalid pcb", pcb != NULL);
2180 LWIP_ASSERT("tcp_pcb_remove: invalid pcblist", pcblist != NULL);
2181
2182 TCP_RMV(pcblist, pcb);
2183
2184 tcp_pcb_purge(pcb);
2185
2186 /* if there is an outstanding delayed ACKs, send it */
2187 if ((pcb->state != TIME_WAIT) &&
2188 (pcb->state != LISTEN) &&
2189 (pcb->flags & TF_ACK_DELAY)) {
2190 tcp_ack_now(pcb);
2191 tcp_output(pcb);
2192 }
2193
2194 if (pcb->state != LISTEN) {
2195 LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL);
2196 LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL);
2197 #if TCP_QUEUE_OOSEQ
2198 LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL);
2199 #endif /* TCP_QUEUE_OOSEQ */
2200 }
2201
2202 pcb->state = CLOSED;
2203 /* reset the local port to prevent the pcb from being 'bound' */
2204 pcb->local_port = 0;
2205
2206 LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane());
2207 }
2208
2209 /**
2210 * Calculates a new initial sequence number for new connections.
2211 *
2212 * @return u32_t pseudo random sequence number
2213 */
2214 u32_t
tcp_next_iss(struct tcp_pcb * pcb)2215 tcp_next_iss(struct tcp_pcb *pcb)
2216 {
2217 #ifdef LWIP_HOOK_TCP_ISN
2218 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2219 return LWIP_HOOK_TCP_ISN(&pcb->local_ip, pcb->local_port, &pcb->remote_ip, pcb->remote_port);
2220 #else /* LWIP_HOOK_TCP_ISN */
2221 static u32_t iss = 6510;
2222
2223 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2224 LWIP_UNUSED_ARG(pcb);
2225
2226 iss += tcp_ticks; /* XXX */
2227 return iss;
2228 #endif /* LWIP_HOOK_TCP_ISN */
2229 }
2230
2231 #if TCP_CALCULATE_EFF_SEND_MSS
2232 /**
2233 * Calculates the effective send mss that can be used for a specific IP address
2234 * by calculating the minimum of TCP_MSS and the mtu (if set) of the target
2235 * netif (if not NULL).
2236 */
2237 u16_t
tcp_eff_send_mss_netif(u16_t sendmss,struct netif * outif,const ip_addr_t * dest)2238 tcp_eff_send_mss_netif(u16_t sendmss, struct netif *outif, const ip_addr_t *dest)
2239 {
2240 u16_t mss_s;
2241 u16_t mtu;
2242
2243 LWIP_UNUSED_ARG(dest); /* in case IPv6 is disabled */
2244
2245 LWIP_ASSERT("tcp_eff_send_mss_netif: invalid dst_ip", dest != NULL);
2246
2247 #if LWIP_IPV6
2248 #if LWIP_IPV4
2249 if (IP_IS_V6(dest))
2250 #endif /* LWIP_IPV4 */
2251 {
2252 /* First look in destination cache, to see if there is a Path MTU. */
2253 mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif);
2254 }
2255 #if LWIP_IPV4
2256 else
2257 #endif /* LWIP_IPV4 */
2258 #endif /* LWIP_IPV6 */
2259 #if LWIP_IPV4
2260 {
2261 if (outif == NULL) {
2262 return sendmss;
2263 }
2264 mtu = outif->mtu;
2265 }
2266 #endif /* LWIP_IPV4 */
2267
2268 if (mtu != 0) {
2269 u16_t offset;
2270 #if LWIP_IPV6
2271 #if LWIP_IPV4
2272 if (IP_IS_V6(dest))
2273 #endif /* LWIP_IPV4 */
2274 {
2275 offset = IP6_HLEN + TCP_HLEN;
2276 }
2277 #if LWIP_IPV4
2278 else
2279 #endif /* LWIP_IPV4 */
2280 #endif /* LWIP_IPV6 */
2281 #if LWIP_IPV4
2282 {
2283 offset = IP_HLEN + TCP_HLEN;
2284 }
2285 #endif /* LWIP_IPV4 */
2286 mss_s = (mtu > offset) ? (u16_t)(mtu - offset) : 0;
2287 /* RFC 1122, chap 4.2.2.6:
2288 * Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
2289 * We correct for TCP options in tcp_write(), and don't support IP options.
2290 */
2291 sendmss = LWIP_MIN(sendmss, mss_s);
2292 }
2293 return sendmss;
2294 }
2295 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
2296
2297 /** Helper function for tcp_netif_ip_addr_changed() that iterates a pcb list */
2298 static void
tcp_netif_ip_addr_changed_pcblist(const ip_addr_t * old_addr,struct tcp_pcb * pcb_list)2299 tcp_netif_ip_addr_changed_pcblist(const ip_addr_t *old_addr, struct tcp_pcb *pcb_list)
2300 {
2301 struct tcp_pcb *pcb;
2302 pcb = pcb_list;
2303
2304 LWIP_ASSERT("tcp_netif_ip_addr_changed_pcblist: invalid old_addr", old_addr != NULL);
2305
2306 while (pcb != NULL) {
2307 /* PCB bound to current local interface address? */
2308 if (ip_addr_cmp(&pcb->local_ip, old_addr)
2309 #if LWIP_AUTOIP
2310 /* connections to link-local addresses must persist (RFC3927 ch. 1.9) */
2311 && (!IP_IS_V4_VAL(pcb->local_ip) || !ip4_addr_islinklocal(ip_2_ip4(&pcb->local_ip)))
2312 #endif /* LWIP_AUTOIP */
2313 ) {
2314 /* this connection must be aborted */
2315 struct tcp_pcb *next = pcb->next;
2316 LWIP_DEBUGF(NETIF_DEBUG | LWIP_DBG_STATE, ("netif_set_ipaddr: aborting TCP pcb %p\n", (void *)pcb));
2317 tcp_abort(pcb);
2318 pcb = next;
2319 } else {
2320 pcb = pcb->next;
2321 }
2322 }
2323 }
2324
2325 /** This function is called from netif.c when address is changed or netif is removed
2326 *
2327 * @param old_addr IP address of the netif before change
2328 * @param new_addr IP address of the netif after change or NULL if netif has been removed
2329 */
2330 void
tcp_netif_ip_addr_changed(const ip_addr_t * old_addr,const ip_addr_t * new_addr)2331 tcp_netif_ip_addr_changed(const ip_addr_t *old_addr, const ip_addr_t *new_addr)
2332 {
2333 struct tcp_pcb_listen *lpcb;
2334
2335 if (!ip_addr_isany(old_addr)) {
2336 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_active_pcbs);
2337 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_bound_pcbs);
2338
2339 if (!ip_addr_isany(new_addr)) {
2340 /* PCB bound to current local interface address? */
2341 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
2342 /* PCB bound to current local interface address? */
2343 if (ip_addr_cmp(&lpcb->local_ip, old_addr)) {
2344 /* The PCB is listening to the old ipaddr and
2345 * is set to listen to the new one instead */
2346 ip_addr_copy(lpcb->local_ip, *new_addr);
2347 }
2348 }
2349 }
2350 }
2351 }
2352
2353 const char *
tcp_debug_state_str(enum tcp_state s)2354 tcp_debug_state_str(enum tcp_state s)
2355 {
2356 return tcp_state_str[s];
2357 }
2358
2359 err_t
tcp_tcp_get_tcp_addrinfo(struct tcp_pcb * pcb,int local,ip_addr_t * addr,u16_t * port)2360 tcp_tcp_get_tcp_addrinfo(struct tcp_pcb *pcb, int local, ip_addr_t *addr, u16_t *port)
2361 {
2362 if (pcb) {
2363 if (local) {
2364 if (addr) {
2365 *addr = pcb->local_ip;
2366 }
2367 if (port) {
2368 *port = pcb->local_port;
2369 }
2370 } else {
2371 if (addr) {
2372 *addr = pcb->remote_ip;
2373 }
2374 if (port) {
2375 *port = pcb->remote_port;
2376 }
2377 }
2378 return ERR_OK;
2379 }
2380 return ERR_VAL;
2381 }
2382
2383 #if TCP_QUEUE_OOSEQ
2384 /* Free all ooseq pbufs (and possibly reset SACK state) */
2385 void
tcp_free_ooseq(struct tcp_pcb * pcb)2386 tcp_free_ooseq(struct tcp_pcb *pcb)
2387 {
2388 if (pcb->ooseq) {
2389 tcp_segs_free(pcb->ooseq);
2390 pcb->ooseq = NULL;
2391 #if LWIP_TCP_SACK_OUT
2392 memset(pcb->rcv_sacks, 0, sizeof(pcb->rcv_sacks));
2393 #endif /* LWIP_TCP_SACK_OUT */
2394 }
2395 }
2396 #endif /* TCP_QUEUE_OOSEQ */
2397
2398 #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG
2399 /**
2400 * Print a tcp header for debugging purposes.
2401 *
2402 * @param tcphdr pointer to a struct tcp_hdr
2403 */
2404 void
tcp_debug_print(struct tcp_hdr * tcphdr)2405 tcp_debug_print(struct tcp_hdr *tcphdr)
2406 {
2407 LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n"));
2408 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2409 LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n",
2410 lwip_ntohs(tcphdr->src), lwip_ntohs(tcphdr->dest)));
2411 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2412 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n",
2413 lwip_ntohl(tcphdr->seqno)));
2414 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2415 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n",
2416 lwip_ntohl(tcphdr->ackno)));
2417 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2418 LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (",
2419 TCPH_HDRLEN(tcphdr),
2420 (u16_t)(TCPH_FLAGS(tcphdr) >> 5 & 1),
2421 (u16_t)(TCPH_FLAGS(tcphdr) >> 4 & 1),
2422 (u16_t)(TCPH_FLAGS(tcphdr) >> 3 & 1),
2423 (u16_t)(TCPH_FLAGS(tcphdr) >> 2 & 1),
2424 (u16_t)(TCPH_FLAGS(tcphdr) >> 1 & 1),
2425 (u16_t)(TCPH_FLAGS(tcphdr) & 1),
2426 lwip_ntohs(tcphdr->wnd)));
2427 tcp_debug_print_flags(TCPH_FLAGS(tcphdr));
2428 LWIP_DEBUGF(TCP_DEBUG, ("), win)\n"));
2429 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2430 LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n",
2431 lwip_ntohs(tcphdr->chksum), lwip_ntohs(tcphdr->urgp)));
2432 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2433 }
2434
2435 /**
2436 * Print a tcp state for debugging purposes.
2437 *
2438 * @param s enum tcp_state to print
2439 */
2440 void
tcp_debug_print_state(enum tcp_state s)2441 tcp_debug_print_state(enum tcp_state s)
2442 {
2443 LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s]));
2444 }
2445
2446 /**
2447 * Print tcp flags for debugging purposes.
2448 *
2449 * @param flags tcp flags, all active flags are printed
2450 */
2451 void
tcp_debug_print_flags(u8_t flags)2452 tcp_debug_print_flags(u8_t flags)
2453 {
2454 if (flags & TCP_FIN) {
2455 LWIP_DEBUGF(TCP_DEBUG, ("FIN "));
2456 }
2457 if (flags & TCP_SYN) {
2458 LWIP_DEBUGF(TCP_DEBUG, ("SYN "));
2459 }
2460 if (flags & TCP_RST) {
2461 LWIP_DEBUGF(TCP_DEBUG, ("RST "));
2462 }
2463 if (flags & TCP_PSH) {
2464 LWIP_DEBUGF(TCP_DEBUG, ("PSH "));
2465 }
2466 if (flags & TCP_ACK) {
2467 LWIP_DEBUGF(TCP_DEBUG, ("ACK "));
2468 }
2469 if (flags & TCP_URG) {
2470 LWIP_DEBUGF(TCP_DEBUG, ("URG "));
2471 }
2472 if (flags & TCP_ECE) {
2473 LWIP_DEBUGF(TCP_DEBUG, ("ECE "));
2474 }
2475 if (flags & TCP_CWR) {
2476 LWIP_DEBUGF(TCP_DEBUG, ("CWR "));
2477 }
2478 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
2479 }
2480
2481 /**
2482 * Print all tcp_pcbs in every list for debugging purposes.
2483 */
2484 void
tcp_debug_print_pcbs(void)2485 tcp_debug_print_pcbs(void)
2486 {
2487 struct tcp_pcb *pcb;
2488 struct tcp_pcb_listen *pcbl;
2489
2490 LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n"));
2491 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2492 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2493 pcb->local_port, pcb->remote_port,
2494 pcb->snd_nxt, pcb->rcv_nxt));
2495 tcp_debug_print_state(pcb->state);
2496 }
2497
2498 LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n"));
2499 for (pcbl = tcp_listen_pcbs.listen_pcbs; pcbl != NULL; pcbl = pcbl->next) {
2500 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F" ", pcbl->local_port));
2501 tcp_debug_print_state(pcbl->state);
2502 }
2503
2504 LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n"));
2505 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2506 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2507 pcb->local_port, pcb->remote_port,
2508 pcb->snd_nxt, pcb->rcv_nxt));
2509 tcp_debug_print_state(pcb->state);
2510 }
2511 }
2512
2513 /**
2514 * Check state consistency of the tcp_pcb lists.
2515 */
2516 s16_t
tcp_pcbs_sane(void)2517 tcp_pcbs_sane(void)
2518 {
2519 struct tcp_pcb *pcb;
2520 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2521 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED);
2522 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN);
2523 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
2524 }
2525 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2526 LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
2527 }
2528 return 1;
2529 }
2530 #endif /* TCP_DEBUG */
2531
2532 #if LWIP_TCP_PCB_NUM_EXT_ARGS
2533 /**
2534 * @defgroup tcp_raw_extargs ext arguments
2535 * @ingroup tcp_raw
2536 * Additional data storage per tcp pcb\n
2537 * @see @ref tcp_raw
2538 *
2539 * When LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2540 * includes a number of additional argument entries in an array.
2541 *
2542 * To support memory management, in addition to a 'void *', callbacks can be
2543 * provided to manage transition from listening pcbs to connections and to
2544 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2545 *
2546 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2547 * to store and load arguments from this index for a given pcb.
2548 */
2549
2550 static u8_t tcp_ext_arg_id;
2551
2552 /**
2553 * @ingroup tcp_raw_extargs
2554 * Allocate an index to store data in ext_args member of struct tcp_pcb.
2555 * Returned value is an index in mentioned array.
2556 * The index is *global* over all pcbs!
2557 *
2558 * When @ref LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2559 * includes a number of additional argument entries in an array.
2560 *
2561 * To support memory management, in addition to a 'void *', callbacks can be
2562 * provided to manage transition from listening pcbs to connections and to
2563 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2564 *
2565 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2566 * to store and load arguments from this index for a given pcb.
2567 *
2568 * @return a unique index into struct tcp_pcb.ext_args
2569 */
2570 u8_t
tcp_ext_arg_alloc_id(void)2571 tcp_ext_arg_alloc_id(void)
2572 {
2573 u8_t result = tcp_ext_arg_id;
2574 tcp_ext_arg_id++;
2575
2576 LWIP_ASSERT_CORE_LOCKED();
2577
2578 #if LWIP_TCP_PCB_NUM_EXT_ARGS >= 255
2579 #error LWIP_TCP_PCB_NUM_EXT_ARGS
2580 #endif
2581 LWIP_ASSERT("Increase LWIP_TCP_PCB_NUM_EXT_ARGS in lwipopts.h", result < LWIP_TCP_PCB_NUM_EXT_ARGS);
2582 return result;
2583 }
2584
2585 /**
2586 * @ingroup tcp_raw_extargs
2587 * Set callbacks for a given index of ext_args on the specified pcb.
2588 *
2589 * @param pcb tcp_pcb for which to set the callback
2590 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2591 * @param callbacks callback table (const since it is referenced, not copied!)
2592 */
2593 void
tcp_ext_arg_set_callbacks(struct tcp_pcb * pcb,uint8_t id,const struct tcp_ext_arg_callbacks * const callbacks)2594 tcp_ext_arg_set_callbacks(struct tcp_pcb *pcb, uint8_t id, const struct tcp_ext_arg_callbacks * const callbacks)
2595 {
2596 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2597 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2598 LWIP_ASSERT("callbacks != NULL", callbacks != NULL);
2599
2600 LWIP_ASSERT_CORE_LOCKED();
2601
2602 pcb->ext_args[id].callbacks = callbacks;
2603 }
2604
2605 /**
2606 * @ingroup tcp_raw_extargs
2607 * Set data for a given index of ext_args on the specified pcb.
2608 *
2609 * @param pcb tcp_pcb for which to set the data
2610 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2611 * @param arg data pointer to set
2612 */
tcp_ext_arg_set(struct tcp_pcb * pcb,uint8_t id,void * arg)2613 void tcp_ext_arg_set(struct tcp_pcb *pcb, uint8_t id, void *arg)
2614 {
2615 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2616 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2617
2618 LWIP_ASSERT_CORE_LOCKED();
2619
2620 pcb->ext_args[id].data = arg;
2621 }
2622
2623 /**
2624 * @ingroup tcp_raw_extargs
2625 * Set data for a given index of ext_args on the specified pcb.
2626 *
2627 * @param pcb tcp_pcb for which to set the data
2628 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2629 * @return data pointer at the given index
2630 */
tcp_ext_arg_get(const struct tcp_pcb * pcb,uint8_t id)2631 void *tcp_ext_arg_get(const struct tcp_pcb *pcb, uint8_t id)
2632 {
2633 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2634 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2635
2636 LWIP_ASSERT_CORE_LOCKED();
2637
2638 return pcb->ext_args[id].data;
2639 }
2640
2641 /** This function calls the "destroy" callback for all ext_args once a pcb is
2642 * freed.
2643 */
2644 static void
tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args * ext_args)2645 tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args)
2646 {
2647 int i;
2648 LWIP_ASSERT("ext_args != NULL", ext_args != NULL);
2649
2650 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2651 if (ext_args[i].callbacks != NULL) {
2652 if (ext_args[i].callbacks->destroy != NULL) {
2653 ext_args[i].callbacks->destroy((u8_t)i, ext_args[i].data);
2654 }
2655 }
2656 }
2657 }
2658
2659 /** This function calls the "passive_open" callback for all ext_args if a connection
2660 * is in the process of being accepted. This is called just after the SYN is
2661 * received and before a SYN/ACK is sent, to allow to modify the very first
2662 * segment sent even on passive open. Naturally, the "accepted" callback of the
2663 * pcb has not been called yet!
2664 */
2665 err_t
tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen * lpcb,struct tcp_pcb * cpcb)2666 tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen *lpcb, struct tcp_pcb *cpcb)
2667 {
2668 int i;
2669 LWIP_ASSERT("lpcb != NULL", lpcb != NULL);
2670 LWIP_ASSERT("cpcb != NULL", cpcb != NULL);
2671
2672 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2673 if (lpcb->ext_args[i].callbacks != NULL) {
2674 if (lpcb->ext_args[i].callbacks->passive_open != NULL) {
2675 err_t err = lpcb->ext_args[i].callbacks->passive_open((u8_t)i, lpcb, cpcb);
2676 if (err != ERR_OK) {
2677 return err;
2678 }
2679 }
2680 }
2681 }
2682 return ERR_OK;
2683 }
2684 #endif /* LWIP_TCP_PCB_NUM_EXT_ARGS */
2685
2686 #endif /* LWIP_TCP */
2687