1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126
clean_acked_data_disable(struct inet_connection_sock * icsk)127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133
clean_acked_data_flush(void)134 void clean_acked_data_flush(void)
135 {
136 static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140
141 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 struct bpf_sock_ops_kern sock_ops;
150
151 if (likely(!unknown_opt && !parse_all_opt))
152 return;
153
154 /* The skb will be handled in the
155 * bpf_skops_established() or
156 * bpf_skops_write_hdr_opt().
157 */
158 switch (sk->sk_state) {
159 case TCP_SYN_RECV:
160 case TCP_SYN_SENT:
161 case TCP_LISTEN:
162 return;
163 }
164
165 sock_owned_by_me(sk);
166
167 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 sock_ops.is_fullsock = 1;
170 sock_ops.sk = sk;
171 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172
173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 struct sk_buff *skb)
178 {
179 struct bpf_sock_ops_kern sock_ops;
180
181 sock_owned_by_me(sk);
182
183 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 sock_ops.op = bpf_op;
185 sock_ops.is_fullsock = 1;
186 sock_ops.sk = sk;
187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 if (skb)
189 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190
191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 struct sk_buff *skb)
200 {
201 }
202 #endif
203
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 unsigned int len)
206 {
207 static bool __once __read_mostly;
208
209 if (!__once) {
210 struct net_device *dev;
211
212 __once = true;
213
214 rcu_read_lock();
215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 if (!dev || len >= dev->mtu)
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev ? dev->name : "Unknown driver");
219 rcu_read_unlock();
220 }
221 }
222
223 /* Adapt the MSS value used to make delayed ack decision to the
224 * real world.
225 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 struct inet_connection_sock *icsk = inet_csk(sk);
229 const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 unsigned int len;
231
232 icsk->icsk_ack.last_seg_size = 0;
233
234 /* skb->len may jitter because of SACKs, even if peer
235 * sends good full-sized frames.
236 */
237 len = skb_shinfo(skb)->gso_size ? : skb->len;
238 if (len >= icsk->icsk_ack.rcv_mss) {
239 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 tcp_sk(sk)->advmss);
241 /* Account for possibly-removed options */
242 if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 MAX_TCP_OPTION_SPACE))
244 tcp_gro_dev_warn(sk, skb, len);
245 } else {
246 /* Otherwise, we make more careful check taking into account,
247 * that SACKs block is variable.
248 *
249 * "len" is invariant segment length, including TCP header.
250 */
251 len += skb->data - skb_transport_header(skb);
252 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 /* If PSH is not set, packet should be
254 * full sized, provided peer TCP is not badly broken.
255 * This observation (if it is correct 8)) allows
256 * to handle super-low mtu links fairly.
257 */
258 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 /* Subtract also invariant (if peer is RFC compliant),
261 * tcp header plus fixed timestamp option length.
262 * Resulting "len" is MSS free of SACK jitter.
263 */
264 len -= tcp_sk(sk)->tcp_header_len;
265 icsk->icsk_ack.last_seg_size = len;
266 if (len == lss) {
267 icsk->icsk_ack.rcv_mss = len;
268 return;
269 }
270 }
271 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 }
275 }
276
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 struct inet_connection_sock *icsk = inet_csk(sk);
280 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281
282 if (quickacks == 0)
283 quickacks = 2;
284 quickacks = min(quickacks, max_quickacks);
285 if (quickacks > icsk->icsk_ack.quick)
286 icsk->icsk_ack.quick = quickacks;
287 }
288
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 struct inet_connection_sock *icsk = inet_csk(sk);
292
293 tcp_incr_quickack(sk, max_quickacks);
294 inet_csk_exit_pingpong_mode(sk);
295 icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298
299 /* Send ACKs quickly, if "quick" count is not exhausted
300 * and the session is not interactive.
301 */
302
tcp_in_quickack_mode(struct sock * sk)303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 const struct inet_connection_sock *icsk = inet_csk(sk);
306 const struct dst_entry *dst = __sk_dst_get(sk);
307
308 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311
tcp_ecn_queue_cwr(struct tcp_sock * tp)312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 if (tp->ecn_flags & TCP_ECN_OK)
315 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 if (tcp_hdr(skb)->cwr) {
321 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322
323 /* If the sender is telling us it has entered CWR, then its
324 * cwnd may be very low (even just 1 packet), so we should ACK
325 * immediately.
326 */
327 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 }
330 }
331
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 struct tcp_sock *tp = tcp_sk(sk);
340
341 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 case INET_ECN_NOT_ECT:
343 /* Funny extension: if ECT is not set on a segment,
344 * and we already seen ECT on a previous segment,
345 * it is probably a retransmit.
346 */
347 if (tp->ecn_flags & TCP_ECN_SEEN)
348 tcp_enter_quickack_mode(sk, 2);
349 break;
350 case INET_ECN_CE:
351 if (tcp_ca_needs_ecn(sk))
352 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353
354 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 /* Better not delay acks, sender can have a very low cwnd */
356 tcp_enter_quickack_mode(sk, 2);
357 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 }
359 tp->ecn_flags |= TCP_ECN_SEEN;
360 break;
361 default:
362 if (tcp_ca_needs_ecn(sk))
363 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 tp->ecn_flags |= TCP_ECN_SEEN;
365 break;
366 }
367 }
368
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 __tcp_ecn_check_ce(sk, skb);
373 }
374
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 return true;
391 return false;
392 }
393
394 /* Buffer size and advertised window tuning.
395 *
396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397 */
398
tcp_sndbuf_expand(struct sock * sk)399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 const struct tcp_sock *tp = tcp_sk(sk);
402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 int sndmem, per_mss;
404 u32 nr_segs;
405
406 /* Worst case is non GSO/TSO : each frame consumes one skb
407 * and skb->head is kmalloced using power of two area of memory
408 */
409 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 MAX_TCP_HEADER +
411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412
413 per_mss = roundup_pow_of_two(per_mss) +
414 SKB_DATA_ALIGN(sizeof(struct sk_buff));
415
416 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418
419 /* Fast Recovery (RFC 5681 3.2) :
420 * Cubic needs 1.7 factor, rounded to 2 to include
421 * extra cushion (application might react slowly to EPOLLOUT)
422 */
423 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 sndmem *= nr_segs * per_mss;
425
426 if (sk->sk_sndbuf < sndmem)
427 WRITE_ONCE(sk->sk_sndbuf,
428 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 }
430
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432 *
433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
434 * forward and advertised in receiver window (tp->rcv_wnd) and
435 * "application buffer", required to isolate scheduling/application
436 * latencies from network.
437 * window_clamp is maximal advertised window. It can be less than
438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
439 * is reserved for "application" buffer. The less window_clamp is
440 * the smoother our behaviour from viewpoint of network, but the lower
441 * throughput and the higher sensitivity of the connection to losses. 8)
442 *
443 * rcv_ssthresh is more strict window_clamp used at "slow start"
444 * phase to predict further behaviour of this connection.
445 * It is used for two goals:
446 * - to enforce header prediction at sender, even when application
447 * requires some significant "application buffer". It is check #1.
448 * - to prevent pruning of receive queue because of misprediction
449 * of receiver window. Check #2.
450 *
451 * The scheme does not work when sender sends good segments opening
452 * window and then starts to feed us spaghetti. But it should work
453 * in common situations. Otherwise, we have to rely on queue collapsing.
454 */
455
456 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 {
459 struct tcp_sock *tp = tcp_sk(sk);
460 /* Optimize this! */
461 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463
464 while (tp->rcv_ssthresh <= window) {
465 if (truesize <= skb->len)
466 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467
468 truesize >>= 1;
469 window >>= 1;
470 }
471 return 0;
472 }
473
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 {
476 struct tcp_sock *tp = tcp_sk(sk);
477 int room;
478
479 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480
481 /* Check #1 */
482 if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 int incr;
484
485 /* Check #2. Increase window, if skb with such overhead
486 * will fit to rcvbuf in future.
487 */
488 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 incr = 2 * tp->advmss;
490 else
491 incr = __tcp_grow_window(sk, skb);
492
493 if (incr) {
494 incr = max_t(int, incr, 2 * skb->len);
495 tp->rcv_ssthresh += min(room, incr);
496 inet_csk(sk)->icsk_ack.quick |= 1;
497 }
498 }
499 }
500
501 /* 3. Try to fixup all. It is made immediately after connection enters
502 * established state.
503 */
tcp_init_buffer_space(struct sock * sk)504 static void tcp_init_buffer_space(struct sock *sk)
505 {
506 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 struct tcp_sock *tp = tcp_sk(sk);
508 int maxwin;
509
510 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 tcp_sndbuf_expand(sk);
512
513 tcp_mstamp_refresh(tp);
514 tp->rcvq_space.time = tp->tcp_mstamp;
515 tp->rcvq_space.seq = tp->copied_seq;
516
517 maxwin = tcp_full_space(sk);
518
519 if (tp->window_clamp >= maxwin) {
520 tp->window_clamp = maxwin;
521
522 if (tcp_app_win && maxwin > 4 * tp->advmss)
523 tp->window_clamp = max(maxwin -
524 (maxwin >> tcp_app_win),
525 4 * tp->advmss);
526 }
527
528 /* Force reservation of one segment. */
529 if (tcp_app_win &&
530 tp->window_clamp > 2 * tp->advmss &&
531 tp->window_clamp + tp->advmss > maxwin)
532 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
533
534 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
535 tp->snd_cwnd_stamp = tcp_jiffies32;
536 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
537 (u32)TCP_INIT_CWND * tp->advmss);
538 }
539
540 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)541 static void tcp_clamp_window(struct sock *sk)
542 {
543 struct tcp_sock *tp = tcp_sk(sk);
544 struct inet_connection_sock *icsk = inet_csk(sk);
545 struct net *net = sock_net(sk);
546
547 icsk->icsk_ack.quick = 0;
548
549 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
550 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
551 !tcp_under_memory_pressure(sk) &&
552 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
553 WRITE_ONCE(sk->sk_rcvbuf,
554 min(atomic_read(&sk->sk_rmem_alloc),
555 net->ipv4.sysctl_tcp_rmem[2]));
556 }
557 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
558 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
559 }
560
561 /* Initialize RCV_MSS value.
562 * RCV_MSS is an our guess about MSS used by the peer.
563 * We haven't any direct information about the MSS.
564 * It's better to underestimate the RCV_MSS rather than overestimate.
565 * Overestimations make us ACKing less frequently than needed.
566 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
567 */
tcp_initialize_rcv_mss(struct sock * sk)568 void tcp_initialize_rcv_mss(struct sock *sk)
569 {
570 const struct tcp_sock *tp = tcp_sk(sk);
571 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
572
573 hint = min(hint, tp->rcv_wnd / 2);
574 hint = min(hint, TCP_MSS_DEFAULT);
575 hint = max(hint, TCP_MIN_MSS);
576
577 inet_csk(sk)->icsk_ack.rcv_mss = hint;
578 }
579 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
580
581 /* Receiver "autotuning" code.
582 *
583 * The algorithm for RTT estimation w/o timestamps is based on
584 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585 * <https://public.lanl.gov/radiant/pubs.html#DRS>
586 *
587 * More detail on this code can be found at
588 * <http://staff.psc.edu/jheffner/>,
589 * though this reference is out of date. A new paper
590 * is pending.
591 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)592 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
593 {
594 u32 new_sample = tp->rcv_rtt_est.rtt_us;
595 long m = sample;
596
597 if (new_sample != 0) {
598 /* If we sample in larger samples in the non-timestamp
599 * case, we could grossly overestimate the RTT especially
600 * with chatty applications or bulk transfer apps which
601 * are stalled on filesystem I/O.
602 *
603 * Also, since we are only going for a minimum in the
604 * non-timestamp case, we do not smooth things out
605 * else with timestamps disabled convergence takes too
606 * long.
607 */
608 if (!win_dep) {
609 m -= (new_sample >> 3);
610 new_sample += m;
611 } else {
612 m <<= 3;
613 if (m < new_sample)
614 new_sample = m;
615 }
616 } else {
617 /* No previous measure. */
618 new_sample = m << 3;
619 }
620
621 tp->rcv_rtt_est.rtt_us = new_sample;
622 }
623
tcp_rcv_rtt_measure(struct tcp_sock * tp)624 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
625 {
626 u32 delta_us;
627
628 if (tp->rcv_rtt_est.time == 0)
629 goto new_measure;
630 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 return;
632 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
633 if (!delta_us)
634 delta_us = 1;
635 tcp_rcv_rtt_update(tp, delta_us, 1);
636
637 new_measure:
638 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
639 tp->rcv_rtt_est.time = tp->tcp_mstamp;
640 }
641
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)642 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
643 const struct sk_buff *skb)
644 {
645 struct tcp_sock *tp = tcp_sk(sk);
646
647 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 return;
649 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
650
651 if (TCP_SKB_CB(skb)->end_seq -
652 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
653 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
654 u32 delta_us;
655
656 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
657 if (!delta)
658 delta = 1;
659 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
660 tcp_rcv_rtt_update(tp, delta_us, 0);
661 }
662 }
663 }
664
665 /*
666 * This function should be called every time data is copied to user space.
667 * It calculates the appropriate TCP receive buffer space.
668 */
tcp_rcv_space_adjust(struct sock * sk)669 void tcp_rcv_space_adjust(struct sock *sk)
670 {
671 struct tcp_sock *tp = tcp_sk(sk);
672 u32 copied;
673 int time;
674
675 trace_tcp_rcv_space_adjust(sk);
676
677 tcp_mstamp_refresh(tp);
678 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
679 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
680 return;
681
682 /* Number of bytes copied to user in last RTT */
683 copied = tp->copied_seq - tp->rcvq_space.seq;
684 if (copied <= tp->rcvq_space.space)
685 goto new_measure;
686
687 /* A bit of theory :
688 * copied = bytes received in previous RTT, our base window
689 * To cope with packet losses, we need a 2x factor
690 * To cope with slow start, and sender growing its cwin by 100 %
691 * every RTT, we need a 4x factor, because the ACK we are sending
692 * now is for the next RTT, not the current one :
693 * <prev RTT . ><current RTT .. ><next RTT .... >
694 */
695
696 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
697 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
698 int rcvmem, rcvbuf;
699 u64 rcvwin, grow;
700
701 /* minimal window to cope with packet losses, assuming
702 * steady state. Add some cushion because of small variations.
703 */
704 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
705
706 /* Accommodate for sender rate increase (eg. slow start) */
707 grow = rcvwin * (copied - tp->rcvq_space.space);
708 do_div(grow, tp->rcvq_space.space);
709 rcvwin += (grow << 1);
710
711 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
712 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
713 rcvmem += 128;
714
715 do_div(rcvwin, tp->advmss);
716 rcvbuf = min_t(u64, rcvwin * rcvmem,
717 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
718 if (rcvbuf > sk->sk_rcvbuf) {
719 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
720
721 /* Make the window clamp follow along. */
722 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
723 }
724 }
725 tp->rcvq_space.space = copied;
726
727 new_measure:
728 tp->rcvq_space.seq = tp->copied_seq;
729 tp->rcvq_space.time = tp->tcp_mstamp;
730 }
731
732 /* There is something which you must keep in mind when you analyze the
733 * behavior of the tp->ato delayed ack timeout interval. When a
734 * connection starts up, we want to ack as quickly as possible. The
735 * problem is that "good" TCP's do slow start at the beginning of data
736 * transmission. The means that until we send the first few ACK's the
737 * sender will sit on his end and only queue most of his data, because
738 * he can only send snd_cwnd unacked packets at any given time. For
739 * each ACK we send, he increments snd_cwnd and transmits more of his
740 * queue. -DaveM
741 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)742 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
743 {
744 struct tcp_sock *tp = tcp_sk(sk);
745 struct inet_connection_sock *icsk = inet_csk(sk);
746 u32 now;
747
748 inet_csk_schedule_ack(sk);
749
750 tcp_measure_rcv_mss(sk, skb);
751
752 tcp_rcv_rtt_measure(tp);
753
754 now = tcp_jiffies32;
755
756 if (!icsk->icsk_ack.ato) {
757 /* The _first_ data packet received, initialize
758 * delayed ACK engine.
759 */
760 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
761 icsk->icsk_ack.ato = TCP_ATO_MIN;
762 } else {
763 int m = now - icsk->icsk_ack.lrcvtime;
764
765 if (m <= TCP_ATO_MIN / 2) {
766 /* The fastest case is the first. */
767 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
768 } else if (m < icsk->icsk_ack.ato) {
769 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
770 if (icsk->icsk_ack.ato > icsk->icsk_rto)
771 icsk->icsk_ack.ato = icsk->icsk_rto;
772 } else if (m > icsk->icsk_rto) {
773 /* Too long gap. Apparently sender failed to
774 * restart window, so that we send ACKs quickly.
775 */
776 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
777 sk_mem_reclaim(sk);
778 }
779 }
780 icsk->icsk_ack.lrcvtime = now;
781
782 tcp_ecn_check_ce(sk, skb);
783
784 if (skb->len >= 128)
785 tcp_grow_window(sk, skb);
786 }
787
788 /* Called to compute a smoothed rtt estimate. The data fed to this
789 * routine either comes from timestamps, or from segments that were
790 * known _not_ to have been retransmitted [see Karn/Partridge
791 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792 * piece by Van Jacobson.
793 * NOTE: the next three routines used to be one big routine.
794 * To save cycles in the RFC 1323 implementation it was better to break
795 * it up into three procedures. -- erics
796 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)797 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
798 {
799 struct tcp_sock *tp = tcp_sk(sk);
800 long m = mrtt_us; /* RTT */
801 u32 srtt = tp->srtt_us;
802
803 /* The following amusing code comes from Jacobson's
804 * article in SIGCOMM '88. Note that rtt and mdev
805 * are scaled versions of rtt and mean deviation.
806 * This is designed to be as fast as possible
807 * m stands for "measurement".
808 *
809 * On a 1990 paper the rto value is changed to:
810 * RTO = rtt + 4 * mdev
811 *
812 * Funny. This algorithm seems to be very broken.
813 * These formulae increase RTO, when it should be decreased, increase
814 * too slowly, when it should be increased quickly, decrease too quickly
815 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 * does not matter how to _calculate_ it. Seems, it was trap
817 * that VJ failed to avoid. 8)
818 */
819 if (srtt != 0) {
820 m -= (srtt >> 3); /* m is now error in rtt est */
821 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
822 if (m < 0) {
823 m = -m; /* m is now abs(error) */
824 m -= (tp->mdev_us >> 2); /* similar update on mdev */
825 /* This is similar to one of Eifel findings.
826 * Eifel blocks mdev updates when rtt decreases.
827 * This solution is a bit different: we use finer gain
828 * for mdev in this case (alpha*beta).
829 * Like Eifel it also prevents growth of rto,
830 * but also it limits too fast rto decreases,
831 * happening in pure Eifel.
832 */
833 if (m > 0)
834 m >>= 3;
835 } else {
836 m -= (tp->mdev_us >> 2); /* similar update on mdev */
837 }
838 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
839 if (tp->mdev_us > tp->mdev_max_us) {
840 tp->mdev_max_us = tp->mdev_us;
841 if (tp->mdev_max_us > tp->rttvar_us)
842 tp->rttvar_us = tp->mdev_max_us;
843 }
844 if (after(tp->snd_una, tp->rtt_seq)) {
845 if (tp->mdev_max_us < tp->rttvar_us)
846 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
847 tp->rtt_seq = tp->snd_nxt;
848 tp->mdev_max_us = tcp_rto_min_us(sk);
849
850 tcp_bpf_rtt(sk);
851 }
852 } else {
853 /* no previous measure. */
854 srtt = m << 3; /* take the measured time to be rtt */
855 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
856 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
857 tp->mdev_max_us = tp->rttvar_us;
858 tp->rtt_seq = tp->snd_nxt;
859
860 tcp_bpf_rtt(sk);
861 }
862 tp->srtt_us = max(1U, srtt);
863 }
864
tcp_update_pacing_rate(struct sock * sk)865 static void tcp_update_pacing_rate(struct sock *sk)
866 {
867 const struct tcp_sock *tp = tcp_sk(sk);
868 u64 rate;
869
870 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
872
873 /* current rate is (cwnd * mss) / srtt
874 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 * In Congestion Avoidance phase, set it to 120 % the current rate.
876 *
877 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 * end of slow start and should slow down.
880 */
881 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
882 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 else
884 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
885
886 rate *= max(tp->snd_cwnd, tp->packets_out);
887
888 if (likely(tp->srtt_us))
889 do_div(rate, tp->srtt_us);
890
891 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 * without any lock. We want to make sure compiler wont store
893 * intermediate values in this location.
894 */
895 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
896 sk->sk_max_pacing_rate));
897 }
898
899 /* Calculate rto without backoff. This is the second half of Van Jacobson's
900 * routine referred to above.
901 */
tcp_set_rto(struct sock * sk)902 static void tcp_set_rto(struct sock *sk)
903 {
904 const struct tcp_sock *tp = tcp_sk(sk);
905 /* Old crap is replaced with new one. 8)
906 *
907 * More seriously:
908 * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 * It cannot be less due to utterly erratic ACK generation made
910 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 * to do with delayed acks, because at cwnd>2 true delack timeout
912 * is invisible. Actually, Linux-2.4 also generates erratic
913 * ACKs in some circumstances.
914 */
915 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
916
917 /* 2. Fixups made earlier cannot be right.
918 * If we do not estimate RTO correctly without them,
919 * all the algo is pure shit and should be replaced
920 * with correct one. It is exactly, which we pretend to do.
921 */
922
923 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 * guarantees that rto is higher.
925 */
926 tcp_bound_rto(sk);
927 }
928
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)929 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
930 {
931 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
932
933 if (!cwnd)
934 cwnd = TCP_INIT_CWND;
935 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
936 }
937
938 struct tcp_sacktag_state {
939 /* Timestamps for earliest and latest never-retransmitted segment
940 * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 * but congestion control should still get an accurate delay signal.
942 */
943 u64 first_sackt;
944 u64 last_sackt;
945 u32 reord;
946 u32 sack_delivered;
947 int flag;
948 unsigned int mss_now;
949 struct rate_sample *rate;
950 };
951
952 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953 * and spurious retransmission information if this DSACK is unlikely caused by
954 * sender's action:
955 * - DSACKed sequence range is larger than maximum receiver's window.
956 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
957 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)958 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
959 u32 end_seq, struct tcp_sacktag_state *state)
960 {
961 u32 seq_len, dup_segs = 1;
962
963 if (!before(start_seq, end_seq))
964 return 0;
965
966 seq_len = end_seq - start_seq;
967 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 if (seq_len > tp->max_window)
969 return 0;
970 if (seq_len > tp->mss_cache)
971 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
972
973 tp->dsack_dups += dup_segs;
974 /* Skip the DSACK if dup segs weren't retransmitted by sender */
975 if (tp->dsack_dups > tp->total_retrans)
976 return 0;
977
978 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
979 tp->rack.dsack_seen = 1;
980
981 state->flag |= FLAG_DSACKING_ACK;
982 /* A spurious retransmission is delivered */
983 state->sack_delivered += dup_segs;
984
985 return dup_segs;
986 }
987
988 /* It's reordering when higher sequence was delivered (i.e. sacked) before
989 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990 * distance is approximated in full-mss packet distance ("reordering").
991 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)992 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
993 const int ts)
994 {
995 struct tcp_sock *tp = tcp_sk(sk);
996 const u32 mss = tp->mss_cache;
997 u32 fack, metric;
998
999 fack = tcp_highest_sack_seq(tp);
1000 if (!before(low_seq, fack))
1001 return;
1002
1003 metric = fack - low_seq;
1004 if ((metric > tp->reordering * mss) && mss) {
1005 #if FASTRETRANS_DEBUG > 1
1006 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008 tp->reordering,
1009 0,
1010 tp->sacked_out,
1011 tp->undo_marker ? tp->undo_retrans : 0);
1012 #endif
1013 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015 }
1016
1017 /* This exciting event is worth to be remembered. 8) */
1018 tp->reord_seen++;
1019 NET_INC_STATS(sock_net(sk),
1020 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021 }
1022
1023 /* This must be called before lost_out or retrans_out are updated
1024 * on a new loss, because we want to know if all skbs previously
1025 * known to be lost have already been retransmitted, indicating
1026 * that this newly lost skb is our next skb to retransmit.
1027 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1028 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029 {
1030 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031 (tp->retransmit_skb_hint &&
1032 before(TCP_SKB_CB(skb)->seq,
1033 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034 tp->retransmit_skb_hint = skb;
1035 }
1036
1037 /* Sum the number of packets on the wire we have marked as lost, and
1038 * notify the congestion control module that the given skb was marked lost.
1039 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1040 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041 {
1042 tp->lost += tcp_skb_pcount(skb);
1043 }
1044
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1045 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046 {
1047 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1048 struct tcp_sock *tp = tcp_sk(sk);
1049
1050 if (sacked & TCPCB_SACKED_ACKED)
1051 return;
1052
1053 tcp_verify_retransmit_hint(tp, skb);
1054 if (sacked & TCPCB_LOST) {
1055 if (sacked & TCPCB_SACKED_RETRANS) {
1056 /* Account for retransmits that are lost again */
1057 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058 tp->retrans_out -= tcp_skb_pcount(skb);
1059 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060 tcp_skb_pcount(skb));
1061 tcp_notify_skb_loss_event(tp, skb);
1062 }
1063 } else {
1064 tp->lost_out += tcp_skb_pcount(skb);
1065 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066 tcp_notify_skb_loss_event(tp, skb);
1067 }
1068 }
1069
1070 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1071 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072 bool ece_ack)
1073 {
1074 tp->delivered += delivered;
1075 if (ece_ack)
1076 tp->delivered_ce += delivered;
1077 }
1078
1079 /* This procedure tags the retransmission queue when SACKs arrive.
1080 *
1081 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 * Packets in queue with these bits set are counted in variables
1083 * sacked_out, retrans_out and lost_out, correspondingly.
1084 *
1085 * Valid combinations are:
1086 * Tag InFlight Description
1087 * 0 1 - orig segment is in flight.
1088 * S 0 - nothing flies, orig reached receiver.
1089 * L 0 - nothing flies, orig lost by net.
1090 * R 2 - both orig and retransmit are in flight.
1091 * L|R 1 - orig is lost, retransmit is in flight.
1092 * S|R 1 - orig reached receiver, retrans is still in flight.
1093 * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 * but it is equivalent to plain S and code short-curcuits it to S.
1095 * L|S is logically invalid, it would mean -1 packet in flight 8))
1096 *
1097 * These 6 states form finite state machine, controlled by the following events:
1098 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 * 3. Loss detection event of two flavors:
1101 * A. Scoreboard estimator decided the packet is lost.
1102 * A'. Reno "three dupacks" marks head of queue lost.
1103 * B. SACK arrives sacking SND.NXT at the moment, when the
1104 * segment was retransmitted.
1105 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106 *
1107 * It is pleasant to note, that state diagram turns out to be commutative,
1108 * so that we are allowed not to be bothered by order of our actions,
1109 * when multiple events arrive simultaneously. (see the function below).
1110 *
1111 * Reordering detection.
1112 * --------------------
1113 * Reordering metric is maximal distance, which a packet can be displaced
1114 * in packet stream. With SACKs we can estimate it:
1115 *
1116 * 1. SACK fills old hole and the corresponding segment was not
1117 * ever retransmitted -> reordering. Alas, we cannot use it
1118 * when segment was retransmitted.
1119 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 * for retransmitted and already SACKed segment -> reordering..
1121 * Both of these heuristics are not used in Loss state, when we cannot
1122 * account for retransmits accurately.
1123 *
1124 * SACK block validation.
1125 * ----------------------
1126 *
1127 * SACK block range validation checks that the received SACK block fits to
1128 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 * Note that SND.UNA is not included to the range though being valid because
1130 * it means that the receiver is rather inconsistent with itself reporting
1131 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 * perfectly valid, however, in light of RFC2018 which explicitly states
1133 * that "SACK block MUST reflect the newest segment. Even if the newest
1134 * segment is going to be discarded ...", not that it looks very clever
1135 * in case of head skb. Due to potentional receiver driven attacks, we
1136 * choose to avoid immediate execution of a walk in write queue due to
1137 * reneging and defer head skb's loss recovery to standard loss recovery
1138 * procedure that will eventually trigger (nothing forbids us doing this).
1139 *
1140 * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 * there's no guarantee that it will be before snd_nxt (n). The problem
1143 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144 * wrap (s_w):
1145 *
1146 * <- outs wnd -> <- wrapzone ->
1147 * u e n u_w e_w s n_w
1148 * | | | | | | |
1149 * |<------------+------+----- TCP seqno space --------------+---------->|
1150 * ...-- <2^31 ->| |<--------...
1151 * ...---- >2^31 ------>| |<--------...
1152 *
1153 * Current code wouldn't be vulnerable but it's better still to discard such
1154 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 * equal to the ideal case (infinite seqno space without wrap caused issues).
1158 *
1159 * With D-SACK the lower bound is extended to cover sequence space below
1160 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 * again, D-SACK block must not to go across snd_una (for the same reason as
1162 * for the normal SACK blocks, explained above). But there all simplicity
1163 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 * fully below undo_marker they do not affect behavior in anyway and can
1165 * therefore be safely ignored. In rare cases (which are more or less
1166 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 * fragmentation and packet reordering past skb's retransmission. To consider
1168 * them correctly, the acceptable range must be extended even more though
1169 * the exact amount is rather hard to quantify. However, tp->max_window can
1170 * be used as an exaggerated estimate.
1171 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1172 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173 u32 start_seq, u32 end_seq)
1174 {
1175 /* Too far in future, or reversed (interpretation is ambiguous) */
1176 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177 return false;
1178
1179 /* Nasty start_seq wrap-around check (see comments above) */
1180 if (!before(start_seq, tp->snd_nxt))
1181 return false;
1182
1183 /* In outstanding window? ...This is valid exit for D-SACKs too.
1184 * start_seq == snd_una is non-sensical (see comments above)
1185 */
1186 if (after(start_seq, tp->snd_una))
1187 return true;
1188
1189 if (!is_dsack || !tp->undo_marker)
1190 return false;
1191
1192 /* ...Then it's D-SACK, and must reside below snd_una completely */
1193 if (after(end_seq, tp->snd_una))
1194 return false;
1195
1196 if (!before(start_seq, tp->undo_marker))
1197 return true;
1198
1199 /* Too old */
1200 if (!after(end_seq, tp->undo_marker))
1201 return false;
1202
1203 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 * start_seq < undo_marker and end_seq >= undo_marker.
1205 */
1206 return !before(start_seq, end_seq - tp->max_window);
1207 }
1208
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1209 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210 struct tcp_sack_block_wire *sp, int num_sacks,
1211 u32 prior_snd_una, struct tcp_sacktag_state *state)
1212 {
1213 struct tcp_sock *tp = tcp_sk(sk);
1214 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 u32 dup_segs;
1217
1218 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 } else if (num_sacks > 1) {
1221 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223
1224 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 return false;
1226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227 } else {
1228 return false;
1229 }
1230
1231 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232 if (!dup_segs) { /* Skip dubious DSACK */
1233 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234 return false;
1235 }
1236
1237 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238
1239 /* D-SACK for already forgotten data... Do dumb counting. */
1240 if (tp->undo_marker && tp->undo_retrans > 0 &&
1241 !after(end_seq_0, prior_snd_una) &&
1242 after(end_seq_0, tp->undo_marker))
1243 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244
1245 return true;
1246 }
1247
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1253 *
1254 * FIXME: this could be merged to shift decision code
1255 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 u32 start_seq, u32 end_seq)
1258 {
1259 int err;
1260 bool in_sack;
1261 unsigned int pkt_len;
1262 unsigned int mss;
1263
1264 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266
1267 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269 mss = tcp_skb_mss(skb);
1270 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271
1272 if (!in_sack) {
1273 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274 if (pkt_len < mss)
1275 pkt_len = mss;
1276 } else {
1277 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278 if (pkt_len < mss)
1279 return -EINVAL;
1280 }
1281
1282 /* Round if necessary so that SACKs cover only full MSSes
1283 * and/or the remaining small portion (if present)
1284 */
1285 if (pkt_len > mss) {
1286 unsigned int new_len = (pkt_len / mss) * mss;
1287 if (!in_sack && new_len < pkt_len)
1288 new_len += mss;
1289 pkt_len = new_len;
1290 }
1291
1292 if (pkt_len >= skb->len && !in_sack)
1293 return 0;
1294
1295 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296 pkt_len, mss, GFP_ATOMIC);
1297 if (err < 0)
1298 return err;
1299 }
1300
1301 return in_sack;
1302 }
1303
1304 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1305 static u8 tcp_sacktag_one(struct sock *sk,
1306 struct tcp_sacktag_state *state, u8 sacked,
1307 u32 start_seq, u32 end_seq,
1308 int dup_sack, int pcount,
1309 u64 xmit_time)
1310 {
1311 struct tcp_sock *tp = tcp_sk(sk);
1312
1313 /* Account D-SACK for retransmitted packet. */
1314 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315 if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 after(end_seq, tp->undo_marker))
1317 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1318 if ((sacked & TCPCB_SACKED_ACKED) &&
1319 before(start_seq, state->reord))
1320 state->reord = start_seq;
1321 }
1322
1323 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 if (!after(end_seq, tp->snd_una))
1325 return sacked;
1326
1327 if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329
1330 if (sacked & TCPCB_SACKED_RETRANS) {
1331 /* If the segment is not tagged as lost,
1332 * we do not clear RETRANS, believing
1333 * that retransmission is still in flight.
1334 */
1335 if (sacked & TCPCB_LOST) {
1336 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 tp->lost_out -= pcount;
1338 tp->retrans_out -= pcount;
1339 }
1340 } else {
1341 if (!(sacked & TCPCB_RETRANS)) {
1342 /* New sack for not retransmitted frame,
1343 * which was in hole. It is reordering.
1344 */
1345 if (before(start_seq,
1346 tcp_highest_sack_seq(tp)) &&
1347 before(start_seq, state->reord))
1348 state->reord = start_seq;
1349
1350 if (!after(end_seq, tp->high_seq))
1351 state->flag |= FLAG_ORIG_SACK_ACKED;
1352 if (state->first_sackt == 0)
1353 state->first_sackt = xmit_time;
1354 state->last_sackt = xmit_time;
1355 }
1356
1357 if (sacked & TCPCB_LOST) {
1358 sacked &= ~TCPCB_LOST;
1359 tp->lost_out -= pcount;
1360 }
1361 }
1362
1363 sacked |= TCPCB_SACKED_ACKED;
1364 state->flag |= FLAG_DATA_SACKED;
1365 tp->sacked_out += pcount;
1366 /* Out-of-order packets delivered */
1367 state->sack_delivered += pcount;
1368
1369 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 if (tp->lost_skb_hint &&
1371 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372 tp->lost_cnt_hint += pcount;
1373 }
1374
1375 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 * are accounted above as well.
1378 */
1379 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 sacked &= ~TCPCB_SACKED_RETRANS;
1381 tp->retrans_out -= pcount;
1382 }
1383
1384 return sacked;
1385 }
1386
1387 /* Shift newly-SACKed bytes from this skb to the immediately previous
1388 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1390 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391 struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 unsigned int pcount, int shifted, int mss,
1394 bool dup_sack)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1398 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1399
1400 BUG_ON(!pcount);
1401
1402 /* Adjust counters and hints for the newly sacked sequence
1403 * range but discard the return value since prev is already
1404 * marked. We must tag the range first because the seq
1405 * advancement below implicitly advances
1406 * tcp_highest_sack_seq() when skb is highest_sack.
1407 */
1408 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409 start_seq, end_seq, dup_sack, pcount,
1410 tcp_skb_timestamp_us(skb));
1411 tcp_rate_skb_delivered(sk, skb, state->rate);
1412
1413 if (skb == tp->lost_skb_hint)
1414 tp->lost_cnt_hint += pcount;
1415
1416 TCP_SKB_CB(prev)->end_seq += shifted;
1417 TCP_SKB_CB(skb)->seq += shifted;
1418
1419 tcp_skb_pcount_add(prev, pcount);
1420 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421 tcp_skb_pcount_add(skb, -pcount);
1422
1423 /* When we're adding to gso_segs == 1, gso_size will be zero,
1424 * in theory this shouldn't be necessary but as long as DSACK
1425 * code can come after this skb later on it's better to keep
1426 * setting gso_size to something.
1427 */
1428 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430
1431 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 if (tcp_skb_pcount(skb) <= 1)
1433 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434
1435 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437
1438 if (skb->len > 0) {
1439 BUG_ON(!tcp_skb_pcount(skb));
1440 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441 return false;
1442 }
1443
1444 /* Whole SKB was eaten :-) */
1445
1446 if (skb == tp->retransmit_skb_hint)
1447 tp->retransmit_skb_hint = prev;
1448 if (skb == tp->lost_skb_hint) {
1449 tp->lost_skb_hint = prev;
1450 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451 }
1452
1453 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456 TCP_SKB_CB(prev)->end_seq++;
1457
1458 if (skb == tcp_highest_sack(sk))
1459 tcp_advance_highest_sack(sk, skb);
1460
1461 tcp_skb_collapse_tstamp(prev, skb);
1462 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464
1465 tcp_rtx_queue_unlink_and_free(skb, sk);
1466
1467 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468
1469 return true;
1470 }
1471
1472 /* I wish gso_size would have a bit more sane initialization than
1473 * something-or-zero which complicates things
1474 */
tcp_skb_seglen(const struct sk_buff * skb)1475 static int tcp_skb_seglen(const struct sk_buff *skb)
1476 {
1477 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478 }
1479
1480 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1481 static int skb_can_shift(const struct sk_buff *skb)
1482 {
1483 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484 }
1485
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1486 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487 int pcount, int shiftlen)
1488 {
1489 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 * to make sure not storing more than 65535 * 8 bytes per skb,
1492 * even if current MSS is bigger.
1493 */
1494 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 return 0;
1496 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 return 0;
1498 return skb_shift(to, from, shiftlen);
1499 }
1500
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502 * skb.
1503 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1504 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505 struct tcp_sacktag_state *state,
1506 u32 start_seq, u32 end_seq,
1507 bool dup_sack)
1508 {
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 struct sk_buff *prev;
1511 int mss;
1512 int pcount = 0;
1513 int len;
1514 int in_sack;
1515
1516 /* Normally R but no L won't result in plain S */
1517 if (!dup_sack &&
1518 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 goto fallback;
1520 if (!skb_can_shift(skb))
1521 goto fallback;
1522 /* This frame is about to be dropped (was ACKed). */
1523 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 goto fallback;
1525
1526 /* Can only happen with delayed DSACK + discard craziness */
1527 prev = skb_rb_prev(skb);
1528 if (!prev)
1529 goto fallback;
1530
1531 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 goto fallback;
1533
1534 if (!tcp_skb_can_collapse(prev, skb))
1535 goto fallback;
1536
1537 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539
1540 if (in_sack) {
1541 len = skb->len;
1542 pcount = tcp_skb_pcount(skb);
1543 mss = tcp_skb_seglen(skb);
1544
1545 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 * drop this restriction as unnecessary
1547 */
1548 if (mss != tcp_skb_seglen(prev))
1549 goto fallback;
1550 } else {
1551 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 goto noop;
1553 /* CHECKME: This is non-MSS split case only?, this will
1554 * cause skipped skbs due to advancing loop btw, original
1555 * has that feature too
1556 */
1557 if (tcp_skb_pcount(skb) <= 1)
1558 goto noop;
1559
1560 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 if (!in_sack) {
1562 /* TODO: head merge to next could be attempted here
1563 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 * though it might not be worth of the additional hassle
1565 *
1566 * ...we can probably just fallback to what was done
1567 * previously. We could try merging non-SACKed ones
1568 * as well but it probably isn't going to buy off
1569 * because later SACKs might again split them, and
1570 * it would make skb timestamp tracking considerably
1571 * harder problem.
1572 */
1573 goto fallback;
1574 }
1575
1576 len = end_seq - TCP_SKB_CB(skb)->seq;
1577 BUG_ON(len < 0);
1578 BUG_ON(len > skb->len);
1579
1580 /* MSS boundaries should be honoured or else pcount will
1581 * severely break even though it makes things bit trickier.
1582 * Optimize common case to avoid most of the divides
1583 */
1584 mss = tcp_skb_mss(skb);
1585
1586 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 * drop this restriction as unnecessary
1588 */
1589 if (mss != tcp_skb_seglen(prev))
1590 goto fallback;
1591
1592 if (len == mss) {
1593 pcount = 1;
1594 } else if (len < mss) {
1595 goto noop;
1596 } else {
1597 pcount = len / mss;
1598 len = pcount * mss;
1599 }
1600 }
1601
1602 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604 goto fallback;
1605
1606 if (!tcp_skb_shift(prev, skb, pcount, len))
1607 goto fallback;
1608 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609 goto out;
1610
1611 /* Hole filled allows collapsing with the next as well, this is very
1612 * useful when hole on every nth skb pattern happens
1613 */
1614 skb = skb_rb_next(prev);
1615 if (!skb)
1616 goto out;
1617
1618 if (!skb_can_shift(skb) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1622
1623 len = skb->len;
1624 pcount = tcp_skb_pcount(skb);
1625 if (tcp_skb_shift(prev, skb, pcount, len))
1626 tcp_shifted_skb(sk, prev, skb, state, pcount,
1627 len, mss, 0);
1628
1629 out:
1630 return prev;
1631
1632 noop:
1633 return skb;
1634
1635 fallback:
1636 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637 return NULL;
1638 }
1639
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1640 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641 struct tcp_sack_block *next_dup,
1642 struct tcp_sacktag_state *state,
1643 u32 start_seq, u32 end_seq,
1644 bool dup_sack_in)
1645 {
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 struct sk_buff *tmp;
1648
1649 skb_rbtree_walk_from(skb) {
1650 int in_sack = 0;
1651 bool dup_sack = dup_sack_in;
1652
1653 /* queue is in-order => we can short-circuit the walk early */
1654 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655 break;
1656
1657 if (next_dup &&
1658 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659 in_sack = tcp_match_skb_to_sack(sk, skb,
1660 next_dup->start_seq,
1661 next_dup->end_seq);
1662 if (in_sack > 0)
1663 dup_sack = true;
1664 }
1665
1666 /* skb reference here is a bit tricky to get right, since
1667 * shifting can eat and free both this skb and the next,
1668 * so not even _safe variant of the loop is enough.
1669 */
1670 if (in_sack <= 0) {
1671 tmp = tcp_shift_skb_data(sk, skb, state,
1672 start_seq, end_seq, dup_sack);
1673 if (tmp) {
1674 if (tmp != skb) {
1675 skb = tmp;
1676 continue;
1677 }
1678
1679 in_sack = 0;
1680 } else {
1681 in_sack = tcp_match_skb_to_sack(sk, skb,
1682 start_seq,
1683 end_seq);
1684 }
1685 }
1686
1687 if (unlikely(in_sack < 0))
1688 break;
1689
1690 if (in_sack) {
1691 TCP_SKB_CB(skb)->sacked =
1692 tcp_sacktag_one(sk,
1693 state,
1694 TCP_SKB_CB(skb)->sacked,
1695 TCP_SKB_CB(skb)->seq,
1696 TCP_SKB_CB(skb)->end_seq,
1697 dup_sack,
1698 tcp_skb_pcount(skb),
1699 tcp_skb_timestamp_us(skb));
1700 tcp_rate_skb_delivered(sk, skb, state->rate);
1701 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702 list_del_init(&skb->tcp_tsorted_anchor);
1703
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708 }
1709 return skb;
1710 }
1711
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1712 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1713 {
1714 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715 struct sk_buff *skb;
1716
1717 while (*p) {
1718 parent = *p;
1719 skb = rb_to_skb(parent);
1720 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721 p = &parent->rb_left;
1722 continue;
1723 }
1724 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725 p = &parent->rb_right;
1726 continue;
1727 }
1728 return skb;
1729 }
1730 return NULL;
1731 }
1732
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1733 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1734 u32 skip_to_seq)
1735 {
1736 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737 return skb;
1738
1739 return tcp_sacktag_bsearch(sk, skip_to_seq);
1740 }
1741
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1742 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743 struct sock *sk,
1744 struct tcp_sack_block *next_dup,
1745 struct tcp_sacktag_state *state,
1746 u32 skip_to_seq)
1747 {
1748 if (!next_dup)
1749 return skb;
1750
1751 if (before(next_dup->start_seq, skip_to_seq)) {
1752 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754 next_dup->start_seq, next_dup->end_seq,
1755 1);
1756 }
1757
1758 return skb;
1759 }
1760
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1761 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762 {
1763 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764 }
1765
1766 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1767 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768 u32 prior_snd_una, struct tcp_sacktag_state *state)
1769 {
1770 struct tcp_sock *tp = tcp_sk(sk);
1771 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772 TCP_SKB_CB(ack_skb)->sacked);
1773 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774 struct tcp_sack_block sp[TCP_NUM_SACKS];
1775 struct tcp_sack_block *cache;
1776 struct sk_buff *skb;
1777 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778 int used_sacks;
1779 bool found_dup_sack = false;
1780 int i, j;
1781 int first_sack_index;
1782
1783 state->flag = 0;
1784 state->reord = tp->snd_nxt;
1785
1786 if (!tp->sacked_out)
1787 tcp_highest_sack_reset(sk);
1788
1789 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790 num_sacks, prior_snd_una, state);
1791
1792 /* Eliminate too old ACKs, but take into
1793 * account more or less fresh ones, they can
1794 * contain valid SACK info.
1795 */
1796 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797 return 0;
1798
1799 if (!tp->packets_out)
1800 goto out;
1801
1802 used_sacks = 0;
1803 first_sack_index = 0;
1804 for (i = 0; i < num_sacks; i++) {
1805 bool dup_sack = !i && found_dup_sack;
1806
1807 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809
1810 if (!tcp_is_sackblock_valid(tp, dup_sack,
1811 sp[used_sacks].start_seq,
1812 sp[used_sacks].end_seq)) {
1813 int mib_idx;
1814
1815 if (dup_sack) {
1816 if (!tp->undo_marker)
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818 else
1819 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820 } else {
1821 /* Don't count olds caused by ACK reordering */
1822 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823 !after(sp[used_sacks].end_seq, tp->snd_una))
1824 continue;
1825 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1826 }
1827
1828 NET_INC_STATS(sock_net(sk), mib_idx);
1829 if (i == 0)
1830 first_sack_index = -1;
1831 continue;
1832 }
1833
1834 /* Ignore very old stuff early */
1835 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836 if (i == 0)
1837 first_sack_index = -1;
1838 continue;
1839 }
1840
1841 used_sacks++;
1842 }
1843
1844 /* order SACK blocks to allow in order walk of the retrans queue */
1845 for (i = used_sacks - 1; i > 0; i--) {
1846 for (j = 0; j < i; j++) {
1847 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848 swap(sp[j], sp[j + 1]);
1849
1850 /* Track where the first SACK block goes to */
1851 if (j == first_sack_index)
1852 first_sack_index = j + 1;
1853 }
1854 }
1855 }
1856
1857 state->mss_now = tcp_current_mss(sk);
1858 skb = NULL;
1859 i = 0;
1860
1861 if (!tp->sacked_out) {
1862 /* It's already past, so skip checking against it */
1863 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864 } else {
1865 cache = tp->recv_sack_cache;
1866 /* Skip empty blocks in at head of the cache */
1867 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868 !cache->end_seq)
1869 cache++;
1870 }
1871
1872 while (i < used_sacks) {
1873 u32 start_seq = sp[i].start_seq;
1874 u32 end_seq = sp[i].end_seq;
1875 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876 struct tcp_sack_block *next_dup = NULL;
1877
1878 if (found_dup_sack && ((i + 1) == first_sack_index))
1879 next_dup = &sp[i + 1];
1880
1881 /* Skip too early cached blocks */
1882 while (tcp_sack_cache_ok(tp, cache) &&
1883 !before(start_seq, cache->end_seq))
1884 cache++;
1885
1886 /* Can skip some work by looking recv_sack_cache? */
1887 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888 after(end_seq, cache->start_seq)) {
1889
1890 /* Head todo? */
1891 if (before(start_seq, cache->start_seq)) {
1892 skb = tcp_sacktag_skip(skb, sk, start_seq);
1893 skb = tcp_sacktag_walk(skb, sk, next_dup,
1894 state,
1895 start_seq,
1896 cache->start_seq,
1897 dup_sack);
1898 }
1899
1900 /* Rest of the block already fully processed? */
1901 if (!after(end_seq, cache->end_seq))
1902 goto advance_sp;
1903
1904 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905 state,
1906 cache->end_seq);
1907
1908 /* ...tail remains todo... */
1909 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910 /* ...but better entrypoint exists! */
1911 skb = tcp_highest_sack(sk);
1912 if (!skb)
1913 break;
1914 cache++;
1915 goto walk;
1916 }
1917
1918 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919 /* Check overlap against next cached too (past this one already) */
1920 cache++;
1921 continue;
1922 }
1923
1924 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925 skb = tcp_highest_sack(sk);
1926 if (!skb)
1927 break;
1928 }
1929 skb = tcp_sacktag_skip(skb, sk, start_seq);
1930
1931 walk:
1932 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933 start_seq, end_seq, dup_sack);
1934
1935 advance_sp:
1936 i++;
1937 }
1938
1939 /* Clear the head of the cache sack blocks so we can skip it next time */
1940 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941 tp->recv_sack_cache[i].start_seq = 0;
1942 tp->recv_sack_cache[i].end_seq = 0;
1943 }
1944 for (j = 0; j < used_sacks; j++)
1945 tp->recv_sack_cache[i++] = sp[j];
1946
1947 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948 tcp_check_sack_reordering(sk, state->reord, 0);
1949
1950 tcp_verify_left_out(tp);
1951 out:
1952
1953 #if FASTRETRANS_DEBUG > 0
1954 WARN_ON((int)tp->sacked_out < 0);
1955 WARN_ON((int)tp->lost_out < 0);
1956 WARN_ON((int)tp->retrans_out < 0);
1957 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958 #endif
1959 return state->flag;
1960 }
1961
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1965 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1966 {
1967 u32 holes;
1968
1969 holes = max(tp->lost_out, 1U);
1970 holes = min(holes, tp->packets_out);
1971
1972 if ((tp->sacked_out + holes) > tp->packets_out) {
1973 tp->sacked_out = tp->packets_out - holes;
1974 return true;
1975 }
1976 return false;
1977 }
1978
1979 /* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1982 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1983 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984 {
1985 struct tcp_sock *tp = tcp_sk(sk);
1986
1987 if (!tcp_limit_reno_sacked(tp))
1988 return;
1989
1990 tp->reordering = min_t(u32, tp->packets_out + addend,
1991 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992 tp->reord_seen++;
1993 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1994 }
1995
1996 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1997
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)1998 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1999 {
2000 if (num_dupack) {
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 u32 prior_sacked = tp->sacked_out;
2003 s32 delivered;
2004
2005 tp->sacked_out += num_dupack;
2006 tcp_check_reno_reordering(sk, 0);
2007 delivered = tp->sacked_out - prior_sacked;
2008 if (delivered > 0)
2009 tcp_count_delivered(tp, delivered, ece_ack);
2010 tcp_verify_left_out(tp);
2011 }
2012 }
2013
2014 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2015
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2016 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017 {
2018 struct tcp_sock *tp = tcp_sk(sk);
2019
2020 if (acked > 0) {
2021 /* One ACK acked hole. The rest eat duplicate ACKs. */
2022 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023 ece_ack);
2024 if (acked - 1 >= tp->sacked_out)
2025 tp->sacked_out = 0;
2026 else
2027 tp->sacked_out -= acked - 1;
2028 }
2029 tcp_check_reno_reordering(sk, acked);
2030 tcp_verify_left_out(tp);
2031 }
2032
tcp_reset_reno_sack(struct tcp_sock * tp)2033 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2034 {
2035 tp->sacked_out = 0;
2036 }
2037
tcp_clear_retrans(struct tcp_sock * tp)2038 void tcp_clear_retrans(struct tcp_sock *tp)
2039 {
2040 tp->retrans_out = 0;
2041 tp->lost_out = 0;
2042 tp->undo_marker = 0;
2043 tp->undo_retrans = -1;
2044 tp->sacked_out = 0;
2045 }
2046
tcp_init_undo(struct tcp_sock * tp)2047 static inline void tcp_init_undo(struct tcp_sock *tp)
2048 {
2049 tp->undo_marker = tp->snd_una;
2050 /* Retransmission still in flight may cause DSACKs later. */
2051 tp->undo_retrans = tp->retrans_out ? : -1;
2052 }
2053
tcp_is_rack(const struct sock * sk)2054 static bool tcp_is_rack(const struct sock *sk)
2055 {
2056 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2057 }
2058
2059 /* If we detect SACK reneging, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2062 */
tcp_timeout_mark_lost(struct sock * sk)2063 static void tcp_timeout_mark_lost(struct sock *sk)
2064 {
2065 struct tcp_sock *tp = tcp_sk(sk);
2066 struct sk_buff *skb, *head;
2067 bool is_reneg; /* is receiver reneging on SACKs? */
2068
2069 head = tcp_rtx_queue_head(sk);
2070 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071 if (is_reneg) {
2072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073 tp->sacked_out = 0;
2074 /* Mark SACK reneging until we recover from this loss event. */
2075 tp->is_sack_reneg = 1;
2076 } else if (tcp_is_reno(tp)) {
2077 tcp_reset_reno_sack(tp);
2078 }
2079
2080 skb = head;
2081 skb_rbtree_walk_from(skb) {
2082 if (is_reneg)
2083 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084 else if (tcp_is_rack(sk) && skb != head &&
2085 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086 continue; /* Don't mark recently sent ones lost yet */
2087 tcp_mark_skb_lost(sk, skb);
2088 }
2089 tcp_verify_left_out(tp);
2090 tcp_clear_all_retrans_hints(tp);
2091 }
2092
2093 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2094 void tcp_enter_loss(struct sock *sk)
2095 {
2096 const struct inet_connection_sock *icsk = inet_csk(sk);
2097 struct tcp_sock *tp = tcp_sk(sk);
2098 struct net *net = sock_net(sk);
2099 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2100
2101 tcp_timeout_mark_lost(sk);
2102
2103 /* Reduce ssthresh if it has not yet been made inside this window. */
2104 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105 !after(tp->high_seq, tp->snd_una) ||
2106 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108 tp->prior_cwnd = tp->snd_cwnd;
2109 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 tcp_ca_event(sk, CA_EVENT_LOSS);
2111 tcp_init_undo(tp);
2112 }
2113 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2114 tp->snd_cwnd_cnt = 0;
2115 tp->snd_cwnd_stamp = tcp_jiffies32;
2116
2117 /* Timeout in disordered state after receiving substantial DUPACKs
2118 * suggests that the degree of reordering is over-estimated.
2119 */
2120 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122 tp->reordering = min_t(unsigned int, tp->reordering,
2123 net->ipv4.sysctl_tcp_reordering);
2124 tcp_set_ca_state(sk, TCP_CA_Loss);
2125 tp->high_seq = tp->snd_nxt;
2126 tcp_ecn_queue_cwr(tp);
2127
2128 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129 * loss recovery is underway except recurring timeout(s) on
2130 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131 */
2132 tp->frto = net->ipv4.sysctl_tcp_frto &&
2133 (new_recovery || icsk->icsk_retransmits) &&
2134 !inet_csk(sk)->icsk_mtup.probe_size;
2135 }
2136
2137 /* If ACK arrived pointing to a remembered SACK, it means that our
2138 * remembered SACKs do not reflect real state of receiver i.e.
2139 * receiver _host_ is heavily congested (or buggy).
2140 *
2141 * To avoid big spurious retransmission bursts due to transient SACK
2142 * scoreboard oddities that look like reneging, we give the receiver a
2143 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 * restore sanity to the SACK scoreboard. If the apparent reneging
2145 * persists until this RTO then we'll clear the SACK scoreboard.
2146 */
tcp_check_sack_reneging(struct sock * sk,int flag)2147 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148 {
2149 if (flag & FLAG_SACK_RENEGING) {
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152 msecs_to_jiffies(10));
2153
2154 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155 delay, TCP_RTO_MAX);
2156 return true;
2157 }
2158 return false;
2159 }
2160
2161 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 * counter when SACK is enabled (without SACK, sacked_out is used for
2163 * that purpose).
2164 *
2165 * With reordering, holes may still be in flight, so RFC3517 recovery
2166 * uses pure sacked_out (total number of SACKed segments) even though
2167 * it violates the RFC that uses duplicate ACKs, often these are equal
2168 * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 * they differ. Since neither occurs due to loss, TCP should really
2170 * ignore them.
2171 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2172 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173 {
2174 return tp->sacked_out + 1;
2175 }
2176
2177 /* Linux NewReno/SACK/ECN state machine.
2178 * --------------------------------------
2179 *
2180 * "Open" Normal state, no dubious events, fast path.
2181 * "Disorder" In all the respects it is "Open",
2182 * but requires a bit more attention. It is entered when
2183 * we see some SACKs or dupacks. It is split of "Open"
2184 * mainly to move some processing from fast path to slow one.
2185 * "CWR" CWND was reduced due to some Congestion Notification event.
2186 * It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery" CWND was reduced, we are fast-retransmitting.
2188 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2189 *
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2193 * * SACK
2194 * * Duplicate ACK.
2195 * * ECN ECE.
2196 *
2197 * Counting packets in flight is pretty simple.
2198 *
2199 * in_flight = packets_out - left_out + retrans_out
2200 *
2201 * packets_out is SND.NXT-SND.UNA counted in packets.
2202 *
2203 * retrans_out is number of retransmitted segments.
2204 *
2205 * left_out is number of segments left network, but not ACKed yet.
2206 *
2207 * left_out = sacked_out + lost_out
2208 *
2209 * sacked_out: Packets, which arrived to receiver out of order
2210 * and hence not ACKed. With SACKs this number is simply
2211 * amount of SACKed data. Even without SACKs
2212 * it is easy to give pretty reliable estimate of this number,
2213 * counting duplicate ACKs.
2214 *
2215 * lost_out: Packets lost by network. TCP has no explicit
2216 * "loss notification" feedback from network (for now).
2217 * It means that this number can be only _guessed_.
2218 * Actually, it is the heuristics to predict lossage that
2219 * distinguishes different algorithms.
2220 *
2221 * F.e. after RTO, when all the queue is considered as lost,
2222 * lost_out = packets_out and in_flight = retrans_out.
2223 *
2224 * Essentially, we have now a few algorithms detecting
2225 * lost packets.
2226 *
2227 * If the receiver supports SACK:
2228 *
2229 * RFC6675/3517: It is the conventional algorithm. A packet is
2230 * considered lost if the number of higher sequence packets
2231 * SACKed is greater than or equal the DUPACK thoreshold
2232 * (reordering). This is implemented in tcp_mark_head_lost and
2233 * tcp_update_scoreboard.
2234 *
2235 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 * (2017-) that checks timing instead of counting DUPACKs.
2237 * Essentially a packet is considered lost if it's not S/ACKed
2238 * after RTT + reordering_window, where both metrics are
2239 * dynamically measured and adjusted. This is implemented in
2240 * tcp_rack_mark_lost.
2241 *
2242 * If the receiver does not support SACK:
2243 *
2244 * NewReno (RFC6582): in Recovery we assume that one segment
2245 * is lost (classic Reno). While we are in Recovery and
2246 * a partial ACK arrives, we assume that one more packet
2247 * is lost (NewReno). This heuristics are the same in NewReno
2248 * and SACK.
2249 *
2250 * Really tricky (and requiring careful tuning) part of algorithm
2251 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 * The first determines the moment _when_ we should reduce CWND and,
2253 * hence, slow down forward transmission. In fact, it determines the moment
2254 * when we decide that hole is caused by loss, rather than by a reorder.
2255 *
2256 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 * holes, caused by lost packets.
2258 *
2259 * And the most logically complicated part of algorithm is undo
2260 * heuristics. We detect false retransmits due to both too early
2261 * fast retransmit (reordering) and underestimated RTO, analyzing
2262 * timestamps and D-SACKs. When we detect that some segments were
2263 * retransmitted by mistake and CWND reduction was wrong, we undo
2264 * window reduction and abort recovery phase. This logic is hidden
2265 * inside several functions named tcp_try_undo_<something>.
2266 */
2267
2268 /* This function decides, when we should leave Disordered state
2269 * and enter Recovery phase, reducing congestion window.
2270 *
2271 * Main question: may we further continue forward transmission
2272 * with the same cwnd?
2273 */
tcp_time_to_recover(struct sock * sk,int flag)2274 static bool tcp_time_to_recover(struct sock *sk, int flag)
2275 {
2276 struct tcp_sock *tp = tcp_sk(sk);
2277
2278 /* Trick#1: The loss is proven. */
2279 if (tp->lost_out)
2280 return true;
2281
2282 /* Not-A-Trick#2 : Classic rule... */
2283 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284 return true;
2285
2286 return false;
2287 }
2288
2289 /* Detect loss in event "A" above by marking head of queue up as lost.
2290 * For RFC3517 SACK, a segment is considered lost if it
2291 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 * the maximum SACKed segments to pass before reaching this limit.
2293 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2294 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295 {
2296 struct tcp_sock *tp = tcp_sk(sk);
2297 struct sk_buff *skb;
2298 int cnt;
2299 /* Use SACK to deduce losses of new sequences sent during recovery */
2300 const u32 loss_high = tp->snd_nxt;
2301
2302 WARN_ON(packets > tp->packets_out);
2303 skb = tp->lost_skb_hint;
2304 if (skb) {
2305 /* Head already handled? */
2306 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307 return;
2308 cnt = tp->lost_cnt_hint;
2309 } else {
2310 skb = tcp_rtx_queue_head(sk);
2311 cnt = 0;
2312 }
2313
2314 skb_rbtree_walk_from(skb) {
2315 /* TODO: do this better */
2316 /* this is not the most efficient way to do this... */
2317 tp->lost_skb_hint = skb;
2318 tp->lost_cnt_hint = cnt;
2319
2320 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321 break;
2322
2323 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2324 cnt += tcp_skb_pcount(skb);
2325
2326 if (cnt > packets)
2327 break;
2328
2329 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330 tcp_mark_skb_lost(sk, skb);
2331
2332 if (mark_head)
2333 break;
2334 }
2335 tcp_verify_left_out(tp);
2336 }
2337
2338 /* Account newly detected lost packet(s) */
2339
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2340 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341 {
2342 struct tcp_sock *tp = tcp_sk(sk);
2343
2344 if (tcp_is_sack(tp)) {
2345 int sacked_upto = tp->sacked_out - tp->reordering;
2346 if (sacked_upto >= 0)
2347 tcp_mark_head_lost(sk, sacked_upto, 0);
2348 else if (fast_rexmit)
2349 tcp_mark_head_lost(sk, 1, 1);
2350 }
2351 }
2352
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2353 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354 {
2355 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356 before(tp->rx_opt.rcv_tsecr, when);
2357 }
2358
2359 /* skb is spurious retransmitted if the returned timestamp echo
2360 * reply is prior to the skb transmission time
2361 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2362 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363 const struct sk_buff *skb)
2364 {
2365 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2367 }
2368
2369 /* Nothing was retransmitted or returned timestamp is less
2370 * than timestamp of the first retransmission.
2371 */
tcp_packet_delayed(const struct tcp_sock * tp)2372 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373 {
2374 return tp->retrans_stamp &&
2375 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2376 }
2377
2378 /* Undo procedures. */
2379
2380 /* We can clear retrans_stamp when there are no retransmissions in the
2381 * window. It would seem that it is trivially available for us in
2382 * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 * what will happen if errors occur when sending retransmission for the
2384 * second time. ...It could the that such segment has only
2385 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 * the head skb is enough except for some reneging corner cases that
2387 * are not worth the effort.
2388 *
2389 * Main reason for all this complexity is the fact that connection dying
2390 * time now depends on the validity of the retrans_stamp, in particular,
2391 * that successive retransmissions of a segment must not advance
2392 * retrans_stamp under any conditions.
2393 */
tcp_any_retrans_done(const struct sock * sk)2394 static bool tcp_any_retrans_done(const struct sock *sk)
2395 {
2396 const struct tcp_sock *tp = tcp_sk(sk);
2397 struct sk_buff *skb;
2398
2399 if (tp->retrans_out)
2400 return true;
2401
2402 skb = tcp_rtx_queue_head(sk);
2403 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404 return true;
2405
2406 return false;
2407 }
2408
DBGUNDO(struct sock * sk,const char * msg)2409 static void DBGUNDO(struct sock *sk, const char *msg)
2410 {
2411 #if FASTRETRANS_DEBUG > 1
2412 struct tcp_sock *tp = tcp_sk(sk);
2413 struct inet_sock *inet = inet_sk(sk);
2414
2415 if (sk->sk_family == AF_INET) {
2416 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417 msg,
2418 &inet->inet_daddr, ntohs(inet->inet_dport),
2419 tp->snd_cwnd, tcp_left_out(tp),
2420 tp->snd_ssthresh, tp->prior_ssthresh,
2421 tp->packets_out);
2422 }
2423 #if IS_ENABLED(CONFIG_IPV6)
2424 else if (sk->sk_family == AF_INET6) {
2425 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426 msg,
2427 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428 tp->snd_cwnd, tcp_left_out(tp),
2429 tp->snd_ssthresh, tp->prior_ssthresh,
2430 tp->packets_out);
2431 }
2432 #endif
2433 #endif
2434 }
2435
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2436 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437 {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439
2440 if (unmark_loss) {
2441 struct sk_buff *skb;
2442
2443 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2445 }
2446 tp->lost_out = 0;
2447 tcp_clear_all_retrans_hints(tp);
2448 }
2449
2450 if (tp->prior_ssthresh) {
2451 const struct inet_connection_sock *icsk = inet_csk(sk);
2452
2453 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454
2455 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456 tp->snd_ssthresh = tp->prior_ssthresh;
2457 tcp_ecn_withdraw_cwr(tp);
2458 }
2459 }
2460 tp->snd_cwnd_stamp = tcp_jiffies32;
2461 tp->undo_marker = 0;
2462 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2463 }
2464
tcp_may_undo(const struct tcp_sock * tp)2465 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466 {
2467 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2468 }
2469
2470 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2471 static bool tcp_try_undo_recovery(struct sock *sk)
2472 {
2473 struct tcp_sock *tp = tcp_sk(sk);
2474
2475 if (tcp_may_undo(tp)) {
2476 int mib_idx;
2477
2478 /* Happy end! We did not retransmit anything
2479 * or our original transmission succeeded.
2480 */
2481 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482 tcp_undo_cwnd_reduction(sk, false);
2483 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485 else
2486 mib_idx = LINUX_MIB_TCPFULLUNDO;
2487
2488 NET_INC_STATS(sock_net(sk), mib_idx);
2489 } else if (tp->rack.reo_wnd_persist) {
2490 tp->rack.reo_wnd_persist--;
2491 }
2492 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493 /* Hold old state until something *above* high_seq
2494 * is ACKed. For Reno it is MUST to prevent false
2495 * fast retransmits (RFC2582). SACK TCP is safe. */
2496 if (!tcp_any_retrans_done(sk))
2497 tp->retrans_stamp = 0;
2498 return true;
2499 }
2500 tcp_set_ca_state(sk, TCP_CA_Open);
2501 tp->is_sack_reneg = 0;
2502 return false;
2503 }
2504
2505 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2506 static bool tcp_try_undo_dsack(struct sock *sk)
2507 {
2508 struct tcp_sock *tp = tcp_sk(sk);
2509
2510 if (tp->undo_marker && !tp->undo_retrans) {
2511 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512 tp->rack.reo_wnd_persist + 1);
2513 DBGUNDO(sk, "D-SACK");
2514 tcp_undo_cwnd_reduction(sk, false);
2515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516 return true;
2517 }
2518 return false;
2519 }
2520
2521 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2522 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523 {
2524 struct tcp_sock *tp = tcp_sk(sk);
2525
2526 if (frto_undo || tcp_may_undo(tp)) {
2527 tcp_undo_cwnd_reduction(sk, true);
2528
2529 DBGUNDO(sk, "partial loss");
2530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531 if (frto_undo)
2532 NET_INC_STATS(sock_net(sk),
2533 LINUX_MIB_TCPSPURIOUSRTOS);
2534 inet_csk(sk)->icsk_retransmits = 0;
2535 if (frto_undo || tcp_is_sack(tp)) {
2536 tcp_set_ca_state(sk, TCP_CA_Open);
2537 tp->is_sack_reneg = 0;
2538 }
2539 return true;
2540 }
2541 return false;
2542 }
2543
2544 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 * It computes the number of packets to send (sndcnt) based on packets newly
2546 * delivered:
2547 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 * cwnd reductions across a full RTT.
2549 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 * But when the retransmits are acked without further losses, PRR
2551 * slow starts cwnd up to ssthresh to speed up the recovery.
2552 */
tcp_init_cwnd_reduction(struct sock * sk)2553 static void tcp_init_cwnd_reduction(struct sock *sk)
2554 {
2555 struct tcp_sock *tp = tcp_sk(sk);
2556
2557 tp->high_seq = tp->snd_nxt;
2558 tp->tlp_high_seq = 0;
2559 tp->snd_cwnd_cnt = 0;
2560 tp->prior_cwnd = tp->snd_cwnd;
2561 tp->prr_delivered = 0;
2562 tp->prr_out = 0;
2563 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564 tcp_ecn_queue_cwr(tp);
2565 }
2566
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2567 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570 int sndcnt = 0;
2571 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572
2573 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574 return;
2575
2576 tp->prr_delivered += newly_acked_sacked;
2577 if (delta < 0) {
2578 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579 tp->prior_cwnd - 1;
2580 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2582 FLAG_RETRANS_DATA_ACKED) {
2583 sndcnt = min_t(int, delta,
2584 max_t(int, tp->prr_delivered - tp->prr_out,
2585 newly_acked_sacked) + 1);
2586 } else {
2587 sndcnt = min(delta, newly_acked_sacked);
2588 }
2589 /* Force a fast retransmit upon entering fast recovery */
2590 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2591 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2592 }
2593
tcp_end_cwnd_reduction(struct sock * sk)2594 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2595 {
2596 struct tcp_sock *tp = tcp_sk(sk);
2597
2598 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2599 return;
2600
2601 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2602 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2603 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2604 tp->snd_cwnd = tp->snd_ssthresh;
2605 tp->snd_cwnd_stamp = tcp_jiffies32;
2606 }
2607 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2608 }
2609
2610 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2611 void tcp_enter_cwr(struct sock *sk)
2612 {
2613 struct tcp_sock *tp = tcp_sk(sk);
2614
2615 tp->prior_ssthresh = 0;
2616 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2617 tp->undo_marker = 0;
2618 tcp_init_cwnd_reduction(sk);
2619 tcp_set_ca_state(sk, TCP_CA_CWR);
2620 }
2621 }
2622 EXPORT_SYMBOL(tcp_enter_cwr);
2623
tcp_try_keep_open(struct sock * sk)2624 static void tcp_try_keep_open(struct sock *sk)
2625 {
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 int state = TCP_CA_Open;
2628
2629 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2630 state = TCP_CA_Disorder;
2631
2632 if (inet_csk(sk)->icsk_ca_state != state) {
2633 tcp_set_ca_state(sk, state);
2634 tp->high_seq = tp->snd_nxt;
2635 }
2636 }
2637
tcp_try_to_open(struct sock * sk,int flag)2638 static void tcp_try_to_open(struct sock *sk, int flag)
2639 {
2640 struct tcp_sock *tp = tcp_sk(sk);
2641
2642 tcp_verify_left_out(tp);
2643
2644 if (!tcp_any_retrans_done(sk))
2645 tp->retrans_stamp = 0;
2646
2647 if (flag & FLAG_ECE)
2648 tcp_enter_cwr(sk);
2649
2650 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2651 tcp_try_keep_open(sk);
2652 }
2653 }
2654
tcp_mtup_probe_failed(struct sock * sk)2655 static void tcp_mtup_probe_failed(struct sock *sk)
2656 {
2657 struct inet_connection_sock *icsk = inet_csk(sk);
2658
2659 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2660 icsk->icsk_mtup.probe_size = 0;
2661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2662 }
2663
tcp_mtup_probe_success(struct sock * sk)2664 static void tcp_mtup_probe_success(struct sock *sk)
2665 {
2666 struct tcp_sock *tp = tcp_sk(sk);
2667 struct inet_connection_sock *icsk = inet_csk(sk);
2668
2669 /* FIXME: breaks with very large cwnd */
2670 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2671 tp->snd_cwnd = tp->snd_cwnd *
2672 tcp_mss_to_mtu(sk, tp->mss_cache) /
2673 icsk->icsk_mtup.probe_size;
2674 tp->snd_cwnd_cnt = 0;
2675 tp->snd_cwnd_stamp = tcp_jiffies32;
2676 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2677
2678 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2679 icsk->icsk_mtup.probe_size = 0;
2680 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2681 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2682 }
2683
2684 /* Do a simple retransmit without using the backoff mechanisms in
2685 * tcp_timer. This is used for path mtu discovery.
2686 * The socket is already locked here.
2687 */
tcp_simple_retransmit(struct sock * sk)2688 void tcp_simple_retransmit(struct sock *sk)
2689 {
2690 const struct inet_connection_sock *icsk = inet_csk(sk);
2691 struct tcp_sock *tp = tcp_sk(sk);
2692 struct sk_buff *skb;
2693 unsigned int mss = tcp_current_mss(sk);
2694
2695 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2696 if (tcp_skb_seglen(skb) > mss)
2697 tcp_mark_skb_lost(sk, skb);
2698 }
2699
2700 tcp_clear_retrans_hints_partial(tp);
2701
2702 if (!tp->lost_out)
2703 return;
2704
2705 if (tcp_is_reno(tp))
2706 tcp_limit_reno_sacked(tp);
2707
2708 tcp_verify_left_out(tp);
2709
2710 /* Don't muck with the congestion window here.
2711 * Reason is that we do not increase amount of _data_
2712 * in network, but units changed and effective
2713 * cwnd/ssthresh really reduced now.
2714 */
2715 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2716 tp->high_seq = tp->snd_nxt;
2717 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2718 tp->prior_ssthresh = 0;
2719 tp->undo_marker = 0;
2720 tcp_set_ca_state(sk, TCP_CA_Loss);
2721 }
2722 tcp_xmit_retransmit_queue(sk);
2723 }
2724 EXPORT_SYMBOL(tcp_simple_retransmit);
2725
tcp_enter_recovery(struct sock * sk,bool ece_ack)2726 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2727 {
2728 struct tcp_sock *tp = tcp_sk(sk);
2729 int mib_idx;
2730
2731 if (tcp_is_reno(tp))
2732 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2733 else
2734 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2735
2736 NET_INC_STATS(sock_net(sk), mib_idx);
2737
2738 tp->prior_ssthresh = 0;
2739 tcp_init_undo(tp);
2740
2741 if (!tcp_in_cwnd_reduction(sk)) {
2742 if (!ece_ack)
2743 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2744 tcp_init_cwnd_reduction(sk);
2745 }
2746 tcp_set_ca_state(sk, TCP_CA_Recovery);
2747 }
2748
2749 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2750 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2751 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2752 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2753 int *rexmit)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 bool recovered = !before(tp->snd_una, tp->high_seq);
2757
2758 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2759 tcp_try_undo_loss(sk, false))
2760 return;
2761
2762 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2763 /* Step 3.b. A timeout is spurious if not all data are
2764 * lost, i.e., never-retransmitted data are (s)acked.
2765 */
2766 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2767 tcp_try_undo_loss(sk, true))
2768 return;
2769
2770 if (after(tp->snd_nxt, tp->high_seq)) {
2771 if (flag & FLAG_DATA_SACKED || num_dupack)
2772 tp->frto = 0; /* Step 3.a. loss was real */
2773 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2774 tp->high_seq = tp->snd_nxt;
2775 /* Step 2.b. Try send new data (but deferred until cwnd
2776 * is updated in tcp_ack()). Otherwise fall back to
2777 * the conventional recovery.
2778 */
2779 if (!tcp_write_queue_empty(sk) &&
2780 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2781 *rexmit = REXMIT_NEW;
2782 return;
2783 }
2784 tp->frto = 0;
2785 }
2786 }
2787
2788 if (recovered) {
2789 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2790 tcp_try_undo_recovery(sk);
2791 return;
2792 }
2793 if (tcp_is_reno(tp)) {
2794 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2795 * delivered. Lower inflight to clock out (re)tranmissions.
2796 */
2797 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2798 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2799 else if (flag & FLAG_SND_UNA_ADVANCED)
2800 tcp_reset_reno_sack(tp);
2801 }
2802 *rexmit = REXMIT_LOST;
2803 }
2804
tcp_force_fast_retransmit(struct sock * sk)2805 static bool tcp_force_fast_retransmit(struct sock *sk)
2806 {
2807 struct tcp_sock *tp = tcp_sk(sk);
2808
2809 return after(tcp_highest_sack_seq(tp),
2810 tp->snd_una + tp->reordering * tp->mss_cache);
2811 }
2812
2813 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2814 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2815 bool *do_lost)
2816 {
2817 struct tcp_sock *tp = tcp_sk(sk);
2818
2819 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2820 /* Plain luck! Hole if filled with delayed
2821 * packet, rather than with a retransmit. Check reordering.
2822 */
2823 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2824
2825 /* We are getting evidence that the reordering degree is higher
2826 * than we realized. If there are no retransmits out then we
2827 * can undo. Otherwise we clock out new packets but do not
2828 * mark more packets lost or retransmit more.
2829 */
2830 if (tp->retrans_out)
2831 return true;
2832
2833 if (!tcp_any_retrans_done(sk))
2834 tp->retrans_stamp = 0;
2835
2836 DBGUNDO(sk, "partial recovery");
2837 tcp_undo_cwnd_reduction(sk, true);
2838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2839 tcp_try_keep_open(sk);
2840 } else {
2841 /* Partial ACK arrived. Force fast retransmit. */
2842 *do_lost = tcp_force_fast_retransmit(sk);
2843 }
2844 return false;
2845 }
2846
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2847 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2848 {
2849 struct tcp_sock *tp = tcp_sk(sk);
2850
2851 if (tcp_rtx_queue_empty(sk))
2852 return;
2853
2854 if (unlikely(tcp_is_reno(tp))) {
2855 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2856 } else if (tcp_is_rack(sk)) {
2857 u32 prior_retrans = tp->retrans_out;
2858
2859 if (tcp_rack_mark_lost(sk))
2860 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2861 if (prior_retrans > tp->retrans_out)
2862 *ack_flag |= FLAG_LOST_RETRANS;
2863 }
2864 }
2865
2866 /* Process an event, which can update packets-in-flight not trivially.
2867 * Main goal of this function is to calculate new estimate for left_out,
2868 * taking into account both packets sitting in receiver's buffer and
2869 * packets lost by network.
2870 *
2871 * Besides that it updates the congestion state when packet loss or ECN
2872 * is detected. But it does not reduce the cwnd, it is done by the
2873 * congestion control later.
2874 *
2875 * It does _not_ decide what to send, it is made in function
2876 * tcp_xmit_retransmit_queue().
2877 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2878 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2879 int num_dupack, int *ack_flag, int *rexmit)
2880 {
2881 struct inet_connection_sock *icsk = inet_csk(sk);
2882 struct tcp_sock *tp = tcp_sk(sk);
2883 int fast_rexmit = 0, flag = *ack_flag;
2884 bool ece_ack = flag & FLAG_ECE;
2885 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2886 tcp_force_fast_retransmit(sk));
2887
2888 if (!tp->packets_out && tp->sacked_out)
2889 tp->sacked_out = 0;
2890
2891 /* Now state machine starts.
2892 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2893 if (ece_ack)
2894 tp->prior_ssthresh = 0;
2895
2896 /* B. In all the states check for reneging SACKs. */
2897 if (tcp_check_sack_reneging(sk, flag))
2898 return;
2899
2900 /* C. Check consistency of the current state. */
2901 tcp_verify_left_out(tp);
2902
2903 /* D. Check state exit conditions. State can be terminated
2904 * when high_seq is ACKed. */
2905 if (icsk->icsk_ca_state == TCP_CA_Open) {
2906 WARN_ON(tp->retrans_out != 0);
2907 tp->retrans_stamp = 0;
2908 } else if (!before(tp->snd_una, tp->high_seq)) {
2909 switch (icsk->icsk_ca_state) {
2910 case TCP_CA_CWR:
2911 /* CWR is to be held something *above* high_seq
2912 * is ACKed for CWR bit to reach receiver. */
2913 if (tp->snd_una != tp->high_seq) {
2914 tcp_end_cwnd_reduction(sk);
2915 tcp_set_ca_state(sk, TCP_CA_Open);
2916 }
2917 break;
2918
2919 case TCP_CA_Recovery:
2920 if (tcp_is_reno(tp))
2921 tcp_reset_reno_sack(tp);
2922 if (tcp_try_undo_recovery(sk))
2923 return;
2924 tcp_end_cwnd_reduction(sk);
2925 break;
2926 }
2927 }
2928
2929 /* E. Process state. */
2930 switch (icsk->icsk_ca_state) {
2931 case TCP_CA_Recovery:
2932 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2933 if (tcp_is_reno(tp))
2934 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2935 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2936 return;
2937
2938 if (tcp_try_undo_dsack(sk))
2939 tcp_try_keep_open(sk);
2940
2941 tcp_identify_packet_loss(sk, ack_flag);
2942 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2943 if (!tcp_time_to_recover(sk, flag))
2944 return;
2945 /* Undo reverts the recovery state. If loss is evident,
2946 * starts a new recovery (e.g. reordering then loss);
2947 */
2948 tcp_enter_recovery(sk, ece_ack);
2949 }
2950 break;
2951 case TCP_CA_Loss:
2952 tcp_process_loss(sk, flag, num_dupack, rexmit);
2953 tcp_identify_packet_loss(sk, ack_flag);
2954 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2955 (*ack_flag & FLAG_LOST_RETRANS)))
2956 return;
2957 /* Change state if cwnd is undone or retransmits are lost */
2958 fallthrough;
2959 default:
2960 if (tcp_is_reno(tp)) {
2961 if (flag & FLAG_SND_UNA_ADVANCED)
2962 tcp_reset_reno_sack(tp);
2963 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2964 }
2965
2966 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2967 tcp_try_undo_dsack(sk);
2968
2969 tcp_identify_packet_loss(sk, ack_flag);
2970 if (!tcp_time_to_recover(sk, flag)) {
2971 tcp_try_to_open(sk, flag);
2972 return;
2973 }
2974
2975 /* MTU probe failure: don't reduce cwnd */
2976 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2977 icsk->icsk_mtup.probe_size &&
2978 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2979 tcp_mtup_probe_failed(sk);
2980 /* Restores the reduction we did in tcp_mtup_probe() */
2981 tp->snd_cwnd++;
2982 tcp_simple_retransmit(sk);
2983 return;
2984 }
2985
2986 /* Otherwise enter Recovery state */
2987 tcp_enter_recovery(sk, ece_ack);
2988 fast_rexmit = 1;
2989 }
2990
2991 if (!tcp_is_rack(sk) && do_lost)
2992 tcp_update_scoreboard(sk, fast_rexmit);
2993 *rexmit = REXMIT_LOST;
2994 }
2995
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2996 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2997 {
2998 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2999 struct tcp_sock *tp = tcp_sk(sk);
3000
3001 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3002 /* If the remote keeps returning delayed ACKs, eventually
3003 * the min filter would pick it up and overestimate the
3004 * prop. delay when it expires. Skip suspected delayed ACKs.
3005 */
3006 return;
3007 }
3008 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3009 rtt_us ? : jiffies_to_usecs(1));
3010 }
3011
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3012 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3013 long seq_rtt_us, long sack_rtt_us,
3014 long ca_rtt_us, struct rate_sample *rs)
3015 {
3016 const struct tcp_sock *tp = tcp_sk(sk);
3017
3018 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3019 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3020 * Karn's algorithm forbids taking RTT if some retransmitted data
3021 * is acked (RFC6298).
3022 */
3023 if (seq_rtt_us < 0)
3024 seq_rtt_us = sack_rtt_us;
3025
3026 /* RTTM Rule: A TSecr value received in a segment is used to
3027 * update the averaged RTT measurement only if the segment
3028 * acknowledges some new data, i.e., only if it advances the
3029 * left edge of the send window.
3030 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3031 */
3032 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3033 flag & FLAG_ACKED) {
3034 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3035
3036 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3037 if (!delta)
3038 delta = 1;
3039 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3040 ca_rtt_us = seq_rtt_us;
3041 }
3042 }
3043 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3044 if (seq_rtt_us < 0)
3045 return false;
3046
3047 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3048 * always taken together with ACK, SACK, or TS-opts. Any negative
3049 * values will be skipped with the seq_rtt_us < 0 check above.
3050 */
3051 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3052 tcp_rtt_estimator(sk, seq_rtt_us);
3053 tcp_set_rto(sk);
3054
3055 /* RFC6298: only reset backoff on valid RTT measurement. */
3056 inet_csk(sk)->icsk_backoff = 0;
3057 return true;
3058 }
3059
3060 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3061 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3062 {
3063 struct rate_sample rs;
3064 long rtt_us = -1L;
3065
3066 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3067 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3068
3069 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3070 }
3071
3072
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3073 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3074 {
3075 const struct inet_connection_sock *icsk = inet_csk(sk);
3076
3077 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3078 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3079 }
3080
3081 /* Restart timer after forward progress on connection.
3082 * RFC2988 recommends to restart timer to now+rto.
3083 */
tcp_rearm_rto(struct sock * sk)3084 void tcp_rearm_rto(struct sock *sk)
3085 {
3086 const struct inet_connection_sock *icsk = inet_csk(sk);
3087 struct tcp_sock *tp = tcp_sk(sk);
3088
3089 /* If the retrans timer is currently being used by Fast Open
3090 * for SYN-ACK retrans purpose, stay put.
3091 */
3092 if (rcu_access_pointer(tp->fastopen_rsk))
3093 return;
3094
3095 if (!tp->packets_out) {
3096 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3097 } else {
3098 u32 rto = inet_csk(sk)->icsk_rto;
3099 /* Offset the time elapsed after installing regular RTO */
3100 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3101 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3102 s64 delta_us = tcp_rto_delta_us(sk);
3103 /* delta_us may not be positive if the socket is locked
3104 * when the retrans timer fires and is rescheduled.
3105 */
3106 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3107 }
3108 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3109 TCP_RTO_MAX);
3110 }
3111 }
3112
3113 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3114 static void tcp_set_xmit_timer(struct sock *sk)
3115 {
3116 if (!tcp_schedule_loss_probe(sk, true))
3117 tcp_rearm_rto(sk);
3118 }
3119
3120 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3121 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3122 {
3123 struct tcp_sock *tp = tcp_sk(sk);
3124 u32 packets_acked;
3125
3126 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3127
3128 packets_acked = tcp_skb_pcount(skb);
3129 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3130 return 0;
3131 packets_acked -= tcp_skb_pcount(skb);
3132
3133 if (packets_acked) {
3134 BUG_ON(tcp_skb_pcount(skb) == 0);
3135 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3136 }
3137
3138 return packets_acked;
3139 }
3140
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3141 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3142 u32 prior_snd_una)
3143 {
3144 const struct skb_shared_info *shinfo;
3145
3146 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3147 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3148 return;
3149
3150 shinfo = skb_shinfo(skb);
3151 if (!before(shinfo->tskey, prior_snd_una) &&
3152 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3153 tcp_skb_tsorted_save(skb) {
3154 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3155 } tcp_skb_tsorted_restore(skb);
3156 }
3157 }
3158
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160 * is before the ack sequence we can discard it as it's confirmed to have
3161 * arrived at the other end.
3162 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3163 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3164 u32 prior_snd_una,
3165 struct tcp_sacktag_state *sack, bool ece_ack)
3166 {
3167 const struct inet_connection_sock *icsk = inet_csk(sk);
3168 u64 first_ackt, last_ackt;
3169 struct tcp_sock *tp = tcp_sk(sk);
3170 u32 prior_sacked = tp->sacked_out;
3171 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3172 struct sk_buff *skb, *next;
3173 bool fully_acked = true;
3174 long sack_rtt_us = -1L;
3175 long seq_rtt_us = -1L;
3176 long ca_rtt_us = -1L;
3177 u32 pkts_acked = 0;
3178 u32 last_in_flight = 0;
3179 bool rtt_update;
3180 int flag = 0;
3181
3182 first_ackt = 0;
3183
3184 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3185 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3186 const u32 start_seq = scb->seq;
3187 u8 sacked = scb->sacked;
3188 u32 acked_pcount;
3189
3190 /* Determine how many packets and what bytes were acked, tso and else */
3191 if (after(scb->end_seq, tp->snd_una)) {
3192 if (tcp_skb_pcount(skb) == 1 ||
3193 !after(tp->snd_una, scb->seq))
3194 break;
3195
3196 acked_pcount = tcp_tso_acked(sk, skb);
3197 if (!acked_pcount)
3198 break;
3199 fully_acked = false;
3200 } else {
3201 acked_pcount = tcp_skb_pcount(skb);
3202 }
3203
3204 if (unlikely(sacked & TCPCB_RETRANS)) {
3205 if (sacked & TCPCB_SACKED_RETRANS)
3206 tp->retrans_out -= acked_pcount;
3207 flag |= FLAG_RETRANS_DATA_ACKED;
3208 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3209 last_ackt = tcp_skb_timestamp_us(skb);
3210 WARN_ON_ONCE(last_ackt == 0);
3211 if (!first_ackt)
3212 first_ackt = last_ackt;
3213
3214 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3215 if (before(start_seq, reord))
3216 reord = start_seq;
3217 if (!after(scb->end_seq, tp->high_seq))
3218 flag |= FLAG_ORIG_SACK_ACKED;
3219 }
3220
3221 if (sacked & TCPCB_SACKED_ACKED) {
3222 tp->sacked_out -= acked_pcount;
3223 } else if (tcp_is_sack(tp)) {
3224 tcp_count_delivered(tp, acked_pcount, ece_ack);
3225 if (!tcp_skb_spurious_retrans(tp, skb))
3226 tcp_rack_advance(tp, sacked, scb->end_seq,
3227 tcp_skb_timestamp_us(skb));
3228 }
3229 if (sacked & TCPCB_LOST)
3230 tp->lost_out -= acked_pcount;
3231
3232 tp->packets_out -= acked_pcount;
3233 pkts_acked += acked_pcount;
3234 tcp_rate_skb_delivered(sk, skb, sack->rate);
3235
3236 /* Initial outgoing SYN's get put onto the write_queue
3237 * just like anything else we transmit. It is not
3238 * true data, and if we misinform our callers that
3239 * this ACK acks real data, we will erroneously exit
3240 * connection startup slow start one packet too
3241 * quickly. This is severely frowned upon behavior.
3242 */
3243 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3244 flag |= FLAG_DATA_ACKED;
3245 } else {
3246 flag |= FLAG_SYN_ACKED;
3247 tp->retrans_stamp = 0;
3248 }
3249
3250 if (!fully_acked)
3251 break;
3252
3253 tcp_ack_tstamp(sk, skb, prior_snd_una);
3254
3255 next = skb_rb_next(skb);
3256 if (unlikely(skb == tp->retransmit_skb_hint))
3257 tp->retransmit_skb_hint = NULL;
3258 if (unlikely(skb == tp->lost_skb_hint))
3259 tp->lost_skb_hint = NULL;
3260 tcp_highest_sack_replace(sk, skb, next);
3261 tcp_rtx_queue_unlink_and_free(skb, sk);
3262 }
3263
3264 if (!skb)
3265 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3266
3267 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3268 tp->snd_up = tp->snd_una;
3269
3270 if (skb) {
3271 tcp_ack_tstamp(sk, skb, prior_snd_una);
3272 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3273 flag |= FLAG_SACK_RENEGING;
3274 }
3275
3276 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3277 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3278 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3279
3280 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3281 last_in_flight && !prior_sacked && fully_acked &&
3282 sack->rate->prior_delivered + 1 == tp->delivered &&
3283 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3284 /* Conservatively mark a delayed ACK. It's typically
3285 * from a lone runt packet over the round trip to
3286 * a receiver w/o out-of-order or CE events.
3287 */
3288 flag |= FLAG_ACK_MAYBE_DELAYED;
3289 }
3290 }
3291 if (sack->first_sackt) {
3292 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3293 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3294 }
3295 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3296 ca_rtt_us, sack->rate);
3297
3298 if (flag & FLAG_ACKED) {
3299 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3300 if (unlikely(icsk->icsk_mtup.probe_size &&
3301 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3302 tcp_mtup_probe_success(sk);
3303 }
3304
3305 if (tcp_is_reno(tp)) {
3306 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3307
3308 /* If any of the cumulatively ACKed segments was
3309 * retransmitted, non-SACK case cannot confirm that
3310 * progress was due to original transmission due to
3311 * lack of TCPCB_SACKED_ACKED bits even if some of
3312 * the packets may have been never retransmitted.
3313 */
3314 if (flag & FLAG_RETRANS_DATA_ACKED)
3315 flag &= ~FLAG_ORIG_SACK_ACKED;
3316 } else {
3317 int delta;
3318
3319 /* Non-retransmitted hole got filled? That's reordering */
3320 if (before(reord, prior_fack))
3321 tcp_check_sack_reordering(sk, reord, 0);
3322
3323 delta = prior_sacked - tp->sacked_out;
3324 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3325 }
3326 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3327 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3328 tcp_skb_timestamp_us(skb))) {
3329 /* Do not re-arm RTO if the sack RTT is measured from data sent
3330 * after when the head was last (re)transmitted. Otherwise the
3331 * timeout may continue to extend in loss recovery.
3332 */
3333 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3334 }
3335
3336 if (icsk->icsk_ca_ops->pkts_acked) {
3337 struct ack_sample sample = { .pkts_acked = pkts_acked,
3338 .rtt_us = sack->rate->rtt_us,
3339 .in_flight = last_in_flight };
3340
3341 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3342 }
3343
3344 #if FASTRETRANS_DEBUG > 0
3345 WARN_ON((int)tp->sacked_out < 0);
3346 WARN_ON((int)tp->lost_out < 0);
3347 WARN_ON((int)tp->retrans_out < 0);
3348 if (!tp->packets_out && tcp_is_sack(tp)) {
3349 icsk = inet_csk(sk);
3350 if (tp->lost_out) {
3351 pr_debug("Leak l=%u %d\n",
3352 tp->lost_out, icsk->icsk_ca_state);
3353 tp->lost_out = 0;
3354 }
3355 if (tp->sacked_out) {
3356 pr_debug("Leak s=%u %d\n",
3357 tp->sacked_out, icsk->icsk_ca_state);
3358 tp->sacked_out = 0;
3359 }
3360 if (tp->retrans_out) {
3361 pr_debug("Leak r=%u %d\n",
3362 tp->retrans_out, icsk->icsk_ca_state);
3363 tp->retrans_out = 0;
3364 }
3365 }
3366 #endif
3367 return flag;
3368 }
3369
tcp_ack_probe(struct sock * sk)3370 static void tcp_ack_probe(struct sock *sk)
3371 {
3372 struct inet_connection_sock *icsk = inet_csk(sk);
3373 struct sk_buff *head = tcp_send_head(sk);
3374 const struct tcp_sock *tp = tcp_sk(sk);
3375
3376 /* Was it a usable window open? */
3377 if (!head)
3378 return;
3379 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3380 icsk->icsk_backoff = 0;
3381 icsk->icsk_probes_tstamp = 0;
3382 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3383 /* Socket must be waked up by subsequent tcp_data_snd_check().
3384 * This function is not for random using!
3385 */
3386 } else {
3387 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3388
3389 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3390 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3391 }
3392 }
3393
tcp_ack_is_dubious(const struct sock * sk,const int flag)3394 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3395 {
3396 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3397 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3398 }
3399
3400 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3401 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3402 {
3403 /* If reordering is high then always grow cwnd whenever data is
3404 * delivered regardless of its ordering. Otherwise stay conservative
3405 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3406 * new SACK or ECE mark may first advance cwnd here and later reduce
3407 * cwnd in tcp_fastretrans_alert() based on more states.
3408 */
3409 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3410 return flag & FLAG_FORWARD_PROGRESS;
3411
3412 return flag & FLAG_DATA_ACKED;
3413 }
3414
3415 /* The "ultimate" congestion control function that aims to replace the rigid
3416 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3417 * It's called toward the end of processing an ACK with precise rate
3418 * information. All transmission or retransmission are delayed afterwards.
3419 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3420 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3421 int flag, const struct rate_sample *rs)
3422 {
3423 const struct inet_connection_sock *icsk = inet_csk(sk);
3424
3425 if (icsk->icsk_ca_ops->cong_control) {
3426 icsk->icsk_ca_ops->cong_control(sk, rs);
3427 return;
3428 }
3429
3430 if (tcp_in_cwnd_reduction(sk)) {
3431 /* Reduce cwnd if state mandates */
3432 tcp_cwnd_reduction(sk, acked_sacked, flag);
3433 } else if (tcp_may_raise_cwnd(sk, flag)) {
3434 /* Advance cwnd if state allows */
3435 tcp_cong_avoid(sk, ack, acked_sacked);
3436 }
3437 tcp_update_pacing_rate(sk);
3438 }
3439
3440 /* Check that window update is acceptable.
3441 * The function assumes that snd_una<=ack<=snd_next.
3442 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3443 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3444 const u32 ack, const u32 ack_seq,
3445 const u32 nwin)
3446 {
3447 return after(ack, tp->snd_una) ||
3448 after(ack_seq, tp->snd_wl1) ||
3449 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3450 }
3451
3452 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3453 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3454 {
3455 u32 delta = ack - tp->snd_una;
3456
3457 sock_owned_by_me((struct sock *)tp);
3458 tp->bytes_acked += delta;
3459 tp->snd_una = ack;
3460 }
3461
3462 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3463 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3464 {
3465 u32 delta = seq - tp->rcv_nxt;
3466
3467 sock_owned_by_me((struct sock *)tp);
3468 tp->bytes_received += delta;
3469 WRITE_ONCE(tp->rcv_nxt, seq);
3470 }
3471
3472 /* Update our send window.
3473 *
3474 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3475 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3476 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3477 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3478 u32 ack_seq)
3479 {
3480 struct tcp_sock *tp = tcp_sk(sk);
3481 int flag = 0;
3482 u32 nwin = ntohs(tcp_hdr(skb)->window);
3483
3484 if (likely(!tcp_hdr(skb)->syn))
3485 nwin <<= tp->rx_opt.snd_wscale;
3486
3487 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3488 flag |= FLAG_WIN_UPDATE;
3489 tcp_update_wl(tp, ack_seq);
3490
3491 if (tp->snd_wnd != nwin) {
3492 tp->snd_wnd = nwin;
3493
3494 /* Note, it is the only place, where
3495 * fast path is recovered for sending TCP.
3496 */
3497 tp->pred_flags = 0;
3498 tcp_fast_path_check(sk);
3499
3500 if (!tcp_write_queue_empty(sk))
3501 tcp_slow_start_after_idle_check(sk);
3502
3503 if (nwin > tp->max_window) {
3504 tp->max_window = nwin;
3505 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3506 }
3507 }
3508 }
3509
3510 tcp_snd_una_update(tp, ack);
3511
3512 return flag;
3513 }
3514
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3515 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3516 u32 *last_oow_ack_time)
3517 {
3518 if (*last_oow_ack_time) {
3519 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3520
3521 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3522 NET_INC_STATS(net, mib_idx);
3523 return true; /* rate-limited: don't send yet! */
3524 }
3525 }
3526
3527 *last_oow_ack_time = tcp_jiffies32;
3528
3529 return false; /* not rate-limited: go ahead, send dupack now! */
3530 }
3531
3532 /* Return true if we're currently rate-limiting out-of-window ACKs and
3533 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3534 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3535 * attacks that send repeated SYNs or ACKs for the same connection. To
3536 * do this, we do not send a duplicate SYNACK or ACK if the remote
3537 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3538 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3539 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3540 int mib_idx, u32 *last_oow_ack_time)
3541 {
3542 /* Data packets without SYNs are not likely part of an ACK loop. */
3543 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3544 !tcp_hdr(skb)->syn)
3545 return false;
3546
3547 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3548 }
3549
3550 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3551 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3552 {
3553 /* unprotected vars, we dont care of overwrites */
3554 static u32 challenge_timestamp;
3555 static unsigned int challenge_count;
3556 struct tcp_sock *tp = tcp_sk(sk);
3557 struct net *net = sock_net(sk);
3558 u32 count, now;
3559
3560 /* First check our per-socket dupack rate limit. */
3561 if (__tcp_oow_rate_limited(net,
3562 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3563 &tp->last_oow_ack_time))
3564 return;
3565
3566 /* Then check host-wide RFC 5961 rate limit. */
3567 now = jiffies / HZ;
3568 if (now != challenge_timestamp) {
3569 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3570 u32 half = (ack_limit + 1) >> 1;
3571
3572 challenge_timestamp = now;
3573 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3574 }
3575 count = READ_ONCE(challenge_count);
3576 if (count > 0) {
3577 WRITE_ONCE(challenge_count, count - 1);
3578 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3579 tcp_send_ack(sk);
3580 }
3581 }
3582
tcp_store_ts_recent(struct tcp_sock * tp)3583 static void tcp_store_ts_recent(struct tcp_sock *tp)
3584 {
3585 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3586 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3587 }
3588
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3589 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3590 {
3591 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3592 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3593 * extra check below makes sure this can only happen
3594 * for pure ACK frames. -DaveM
3595 *
3596 * Not only, also it occurs for expired timestamps.
3597 */
3598
3599 if (tcp_paws_check(&tp->rx_opt, 0))
3600 tcp_store_ts_recent(tp);
3601 }
3602 }
3603
3604 /* This routine deals with acks during a TLP episode and ends an episode by
3605 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3606 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3607 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3608 {
3609 struct tcp_sock *tp = tcp_sk(sk);
3610
3611 if (before(ack, tp->tlp_high_seq))
3612 return;
3613
3614 if (!tp->tlp_retrans) {
3615 /* TLP of new data has been acknowledged */
3616 tp->tlp_high_seq = 0;
3617 } else if (flag & FLAG_DSACKING_ACK) {
3618 /* This DSACK means original and TLP probe arrived; no loss */
3619 tp->tlp_high_seq = 0;
3620 } else if (after(ack, tp->tlp_high_seq)) {
3621 /* ACK advances: there was a loss, so reduce cwnd. Reset
3622 * tlp_high_seq in tcp_init_cwnd_reduction()
3623 */
3624 tcp_init_cwnd_reduction(sk);
3625 tcp_set_ca_state(sk, TCP_CA_CWR);
3626 tcp_end_cwnd_reduction(sk);
3627 tcp_try_keep_open(sk);
3628 NET_INC_STATS(sock_net(sk),
3629 LINUX_MIB_TCPLOSSPROBERECOVERY);
3630 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3631 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3632 /* Pure dupack: original and TLP probe arrived; no loss */
3633 tp->tlp_high_seq = 0;
3634 }
3635 }
3636
tcp_in_ack_event(struct sock * sk,u32 flags)3637 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3638 {
3639 const struct inet_connection_sock *icsk = inet_csk(sk);
3640
3641 if (icsk->icsk_ca_ops->in_ack_event)
3642 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3643 }
3644
3645 /* Congestion control has updated the cwnd already. So if we're in
3646 * loss recovery then now we do any new sends (for FRTO) or
3647 * retransmits (for CA_Loss or CA_recovery) that make sense.
3648 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3649 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3650 {
3651 struct tcp_sock *tp = tcp_sk(sk);
3652
3653 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3654 return;
3655
3656 if (unlikely(rexmit == REXMIT_NEW)) {
3657 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3658 TCP_NAGLE_OFF);
3659 if (after(tp->snd_nxt, tp->high_seq))
3660 return;
3661 tp->frto = 0;
3662 }
3663 tcp_xmit_retransmit_queue(sk);
3664 }
3665
3666 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3667 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3668 {
3669 const struct net *net = sock_net(sk);
3670 struct tcp_sock *tp = tcp_sk(sk);
3671 u32 delivered;
3672
3673 delivered = tp->delivered - prior_delivered;
3674 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3675 if (flag & FLAG_ECE)
3676 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3677
3678 return delivered;
3679 }
3680
3681 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3682 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3683 {
3684 struct inet_connection_sock *icsk = inet_csk(sk);
3685 struct tcp_sock *tp = tcp_sk(sk);
3686 struct tcp_sacktag_state sack_state;
3687 struct rate_sample rs = { .prior_delivered = 0 };
3688 u32 prior_snd_una = tp->snd_una;
3689 bool is_sack_reneg = tp->is_sack_reneg;
3690 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3691 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3692 int num_dupack = 0;
3693 int prior_packets = tp->packets_out;
3694 u32 delivered = tp->delivered;
3695 u32 lost = tp->lost;
3696 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3697 u32 prior_fack;
3698
3699 sack_state.first_sackt = 0;
3700 sack_state.rate = &rs;
3701 sack_state.sack_delivered = 0;
3702
3703 /* We very likely will need to access rtx queue. */
3704 prefetch(sk->tcp_rtx_queue.rb_node);
3705
3706 /* If the ack is older than previous acks
3707 * then we can probably ignore it.
3708 */
3709 if (before(ack, prior_snd_una)) {
3710 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3711 if (before(ack, prior_snd_una - tp->max_window)) {
3712 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3713 tcp_send_challenge_ack(sk, skb);
3714 return -1;
3715 }
3716 goto old_ack;
3717 }
3718
3719 /* If the ack includes data we haven't sent yet, discard
3720 * this segment (RFC793 Section 3.9).
3721 */
3722 if (after(ack, tp->snd_nxt))
3723 return -1;
3724
3725 if (after(ack, prior_snd_una)) {
3726 flag |= FLAG_SND_UNA_ADVANCED;
3727 icsk->icsk_retransmits = 0;
3728
3729 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3730 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3731 if (icsk->icsk_clean_acked)
3732 icsk->icsk_clean_acked(sk, ack);
3733 #endif
3734 }
3735
3736 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3737 rs.prior_in_flight = tcp_packets_in_flight(tp);
3738
3739 /* ts_recent update must be made after we are sure that the packet
3740 * is in window.
3741 */
3742 if (flag & FLAG_UPDATE_TS_RECENT)
3743 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3744
3745 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3746 FLAG_SND_UNA_ADVANCED) {
3747 /* Window is constant, pure forward advance.
3748 * No more checks are required.
3749 * Note, we use the fact that SND.UNA>=SND.WL2.
3750 */
3751 tcp_update_wl(tp, ack_seq);
3752 tcp_snd_una_update(tp, ack);
3753 flag |= FLAG_WIN_UPDATE;
3754
3755 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3756
3757 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3758 } else {
3759 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3760
3761 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3762 flag |= FLAG_DATA;
3763 else
3764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3765
3766 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3767
3768 if (TCP_SKB_CB(skb)->sacked)
3769 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3770 &sack_state);
3771
3772 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3773 flag |= FLAG_ECE;
3774 ack_ev_flags |= CA_ACK_ECE;
3775 }
3776
3777 if (sack_state.sack_delivered)
3778 tcp_count_delivered(tp, sack_state.sack_delivered,
3779 flag & FLAG_ECE);
3780
3781 if (flag & FLAG_WIN_UPDATE)
3782 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3783
3784 tcp_in_ack_event(sk, ack_ev_flags);
3785 }
3786
3787 /* This is a deviation from RFC3168 since it states that:
3788 * "When the TCP data sender is ready to set the CWR bit after reducing
3789 * the congestion window, it SHOULD set the CWR bit only on the first
3790 * new data packet that it transmits."
3791 * We accept CWR on pure ACKs to be more robust
3792 * with widely-deployed TCP implementations that do this.
3793 */
3794 tcp_ecn_accept_cwr(sk, skb);
3795
3796 /* We passed data and got it acked, remove any soft error
3797 * log. Something worked...
3798 */
3799 sk->sk_err_soft = 0;
3800 icsk->icsk_probes_out = 0;
3801 tp->rcv_tstamp = tcp_jiffies32;
3802 if (!prior_packets)
3803 goto no_queue;
3804
3805 /* See if we can take anything off of the retransmit queue. */
3806 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3807 flag & FLAG_ECE);
3808
3809 tcp_rack_update_reo_wnd(sk, &rs);
3810
3811 if (tp->tlp_high_seq)
3812 tcp_process_tlp_ack(sk, ack, flag);
3813
3814 if (tcp_ack_is_dubious(sk, flag)) {
3815 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3816 num_dupack = 1;
3817 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3818 if (!(flag & FLAG_DATA))
3819 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3820 }
3821 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3822 &rexmit);
3823 }
3824
3825 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3826 if (flag & FLAG_SET_XMIT_TIMER)
3827 tcp_set_xmit_timer(sk);
3828
3829 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3830 sk_dst_confirm(sk);
3831
3832 delivered = tcp_newly_delivered(sk, delivered, flag);
3833 lost = tp->lost - lost; /* freshly marked lost */
3834 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3835 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3836 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3837 tcp_xmit_recovery(sk, rexmit);
3838 return 1;
3839
3840 no_queue:
3841 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3842 if (flag & FLAG_DSACKING_ACK) {
3843 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3844 &rexmit);
3845 tcp_newly_delivered(sk, delivered, flag);
3846 }
3847 /* If this ack opens up a zero window, clear backoff. It was
3848 * being used to time the probes, and is probably far higher than
3849 * it needs to be for normal retransmission.
3850 */
3851 tcp_ack_probe(sk);
3852
3853 if (tp->tlp_high_seq)
3854 tcp_process_tlp_ack(sk, ack, flag);
3855 return 1;
3856
3857 old_ack:
3858 /* If data was SACKed, tag it and see if we should send more data.
3859 * If data was DSACKed, see if we can undo a cwnd reduction.
3860 */
3861 if (TCP_SKB_CB(skb)->sacked) {
3862 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3863 &sack_state);
3864 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3865 &rexmit);
3866 tcp_newly_delivered(sk, delivered, flag);
3867 tcp_xmit_recovery(sk, rexmit);
3868 }
3869
3870 return 0;
3871 }
3872
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3873 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3874 bool syn, struct tcp_fastopen_cookie *foc,
3875 bool exp_opt)
3876 {
3877 /* Valid only in SYN or SYN-ACK with an even length. */
3878 if (!foc || !syn || len < 0 || (len & 1))
3879 return;
3880
3881 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3882 len <= TCP_FASTOPEN_COOKIE_MAX)
3883 memcpy(foc->val, cookie, len);
3884 else if (len != 0)
3885 len = -1;
3886 foc->len = len;
3887 foc->exp = exp_opt;
3888 }
3889
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3890 static bool smc_parse_options(const struct tcphdr *th,
3891 struct tcp_options_received *opt_rx,
3892 const unsigned char *ptr,
3893 int opsize)
3894 {
3895 #if IS_ENABLED(CONFIG_SMC)
3896 if (static_branch_unlikely(&tcp_have_smc)) {
3897 if (th->syn && !(opsize & 1) &&
3898 opsize >= TCPOLEN_EXP_SMC_BASE &&
3899 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3900 opt_rx->smc_ok = 1;
3901 return true;
3902 }
3903 }
3904 #endif
3905 return false;
3906 }
3907
3908 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3909 * value on success.
3910 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3911 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3912 {
3913 const unsigned char *ptr = (const unsigned char *)(th + 1);
3914 int length = (th->doff * 4) - sizeof(struct tcphdr);
3915 u16 mss = 0;
3916
3917 while (length > 0) {
3918 int opcode = *ptr++;
3919 int opsize;
3920
3921 switch (opcode) {
3922 case TCPOPT_EOL:
3923 return mss;
3924 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3925 length--;
3926 continue;
3927 default:
3928 if (length < 2)
3929 return mss;
3930 opsize = *ptr++;
3931 if (opsize < 2) /* "silly options" */
3932 return mss;
3933 if (opsize > length)
3934 return mss; /* fail on partial options */
3935 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3936 u16 in_mss = get_unaligned_be16(ptr);
3937
3938 if (in_mss) {
3939 if (user_mss && user_mss < in_mss)
3940 in_mss = user_mss;
3941 mss = in_mss;
3942 }
3943 }
3944 ptr += opsize - 2;
3945 length -= opsize;
3946 }
3947 }
3948 return mss;
3949 }
3950
3951 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3952 * But, this can also be called on packets in the established flow when
3953 * the fast version below fails.
3954 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3955 void tcp_parse_options(const struct net *net,
3956 const struct sk_buff *skb,
3957 struct tcp_options_received *opt_rx, int estab,
3958 struct tcp_fastopen_cookie *foc)
3959 {
3960 const unsigned char *ptr;
3961 const struct tcphdr *th = tcp_hdr(skb);
3962 int length = (th->doff * 4) - sizeof(struct tcphdr);
3963
3964 ptr = (const unsigned char *)(th + 1);
3965 opt_rx->saw_tstamp = 0;
3966 opt_rx->saw_unknown = 0;
3967
3968 while (length > 0) {
3969 int opcode = *ptr++;
3970 int opsize;
3971
3972 switch (opcode) {
3973 case TCPOPT_EOL:
3974 return;
3975 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3976 length--;
3977 continue;
3978 default:
3979 if (length < 2)
3980 return;
3981 opsize = *ptr++;
3982 if (opsize < 2) /* "silly options" */
3983 return;
3984 if (opsize > length)
3985 return; /* don't parse partial options */
3986 switch (opcode) {
3987 case TCPOPT_MSS:
3988 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3989 u16 in_mss = get_unaligned_be16(ptr);
3990 if (in_mss) {
3991 if (opt_rx->user_mss &&
3992 opt_rx->user_mss < in_mss)
3993 in_mss = opt_rx->user_mss;
3994 opt_rx->mss_clamp = in_mss;
3995 }
3996 }
3997 break;
3998 case TCPOPT_WINDOW:
3999 if (opsize == TCPOLEN_WINDOW && th->syn &&
4000 !estab && net->ipv4.sysctl_tcp_window_scaling) {
4001 __u8 snd_wscale = *(__u8 *)ptr;
4002 opt_rx->wscale_ok = 1;
4003 if (snd_wscale > TCP_MAX_WSCALE) {
4004 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4005 __func__,
4006 snd_wscale,
4007 TCP_MAX_WSCALE);
4008 snd_wscale = TCP_MAX_WSCALE;
4009 }
4010 opt_rx->snd_wscale = snd_wscale;
4011 }
4012 break;
4013 case TCPOPT_TIMESTAMP:
4014 if ((opsize == TCPOLEN_TIMESTAMP) &&
4015 ((estab && opt_rx->tstamp_ok) ||
4016 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4017 opt_rx->saw_tstamp = 1;
4018 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4019 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4020 }
4021 break;
4022 case TCPOPT_SACK_PERM:
4023 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4024 !estab && net->ipv4.sysctl_tcp_sack) {
4025 opt_rx->sack_ok = TCP_SACK_SEEN;
4026 tcp_sack_reset(opt_rx);
4027 }
4028 break;
4029
4030 case TCPOPT_SACK:
4031 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4032 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4033 opt_rx->sack_ok) {
4034 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4035 }
4036 break;
4037 #ifdef CONFIG_TCP_MD5SIG
4038 case TCPOPT_MD5SIG:
4039 /*
4040 * The MD5 Hash has already been
4041 * checked (see tcp_v{4,6}_do_rcv()).
4042 */
4043 break;
4044 #endif
4045 case TCPOPT_FASTOPEN:
4046 tcp_parse_fastopen_option(
4047 opsize - TCPOLEN_FASTOPEN_BASE,
4048 ptr, th->syn, foc, false);
4049 break;
4050
4051 case TCPOPT_EXP:
4052 /* Fast Open option shares code 254 using a
4053 * 16 bits magic number.
4054 */
4055 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4056 get_unaligned_be16(ptr) ==
4057 TCPOPT_FASTOPEN_MAGIC) {
4058 tcp_parse_fastopen_option(opsize -
4059 TCPOLEN_EXP_FASTOPEN_BASE,
4060 ptr + 2, th->syn, foc, true);
4061 break;
4062 }
4063
4064 if (smc_parse_options(th, opt_rx, ptr, opsize))
4065 break;
4066
4067 opt_rx->saw_unknown = 1;
4068 break;
4069
4070 default:
4071 opt_rx->saw_unknown = 1;
4072 }
4073 ptr += opsize-2;
4074 length -= opsize;
4075 }
4076 }
4077 }
4078 EXPORT_SYMBOL(tcp_parse_options);
4079
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4080 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4081 {
4082 const __be32 *ptr = (const __be32 *)(th + 1);
4083
4084 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4085 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4086 tp->rx_opt.saw_tstamp = 1;
4087 ++ptr;
4088 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4089 ++ptr;
4090 if (*ptr)
4091 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4092 else
4093 tp->rx_opt.rcv_tsecr = 0;
4094 return true;
4095 }
4096 return false;
4097 }
4098
4099 /* Fast parse options. This hopes to only see timestamps.
4100 * If it is wrong it falls back on tcp_parse_options().
4101 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4102 static bool tcp_fast_parse_options(const struct net *net,
4103 const struct sk_buff *skb,
4104 const struct tcphdr *th, struct tcp_sock *tp)
4105 {
4106 /* In the spirit of fast parsing, compare doff directly to constant
4107 * values. Because equality is used, short doff can be ignored here.
4108 */
4109 if (th->doff == (sizeof(*th) / 4)) {
4110 tp->rx_opt.saw_tstamp = 0;
4111 return false;
4112 } else if (tp->rx_opt.tstamp_ok &&
4113 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4114 if (tcp_parse_aligned_timestamp(tp, th))
4115 return true;
4116 }
4117
4118 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4119 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4120 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4121
4122 return true;
4123 }
4124
4125 #ifdef CONFIG_TCP_MD5SIG
4126 /*
4127 * Parse MD5 Signature option
4128 */
tcp_parse_md5sig_option(const struct tcphdr * th)4129 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4130 {
4131 int length = (th->doff << 2) - sizeof(*th);
4132 const u8 *ptr = (const u8 *)(th + 1);
4133
4134 /* If not enough data remaining, we can short cut */
4135 while (length >= TCPOLEN_MD5SIG) {
4136 int opcode = *ptr++;
4137 int opsize;
4138
4139 switch (opcode) {
4140 case TCPOPT_EOL:
4141 return NULL;
4142 case TCPOPT_NOP:
4143 length--;
4144 continue;
4145 default:
4146 opsize = *ptr++;
4147 if (opsize < 2 || opsize > length)
4148 return NULL;
4149 if (opcode == TCPOPT_MD5SIG)
4150 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4151 }
4152 ptr += opsize - 2;
4153 length -= opsize;
4154 }
4155 return NULL;
4156 }
4157 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4158 #endif
4159
4160 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4161 *
4162 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4163 * it can pass through stack. So, the following predicate verifies that
4164 * this segment is not used for anything but congestion avoidance or
4165 * fast retransmit. Moreover, we even are able to eliminate most of such
4166 * second order effects, if we apply some small "replay" window (~RTO)
4167 * to timestamp space.
4168 *
4169 * All these measures still do not guarantee that we reject wrapped ACKs
4170 * on networks with high bandwidth, when sequence space is recycled fastly,
4171 * but it guarantees that such events will be very rare and do not affect
4172 * connection seriously. This doesn't look nice, but alas, PAWS is really
4173 * buggy extension.
4174 *
4175 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4176 * states that events when retransmit arrives after original data are rare.
4177 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4178 * the biggest problem on large power networks even with minor reordering.
4179 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4180 * up to bandwidth of 18Gigabit/sec. 8) ]
4181 */
4182
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4183 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4184 {
4185 const struct tcp_sock *tp = tcp_sk(sk);
4186 const struct tcphdr *th = tcp_hdr(skb);
4187 u32 seq = TCP_SKB_CB(skb)->seq;
4188 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4189
4190 return (/* 1. Pure ACK with correct sequence number. */
4191 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4192
4193 /* 2. ... and duplicate ACK. */
4194 ack == tp->snd_una &&
4195
4196 /* 3. ... and does not update window. */
4197 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4198
4199 /* 4. ... and sits in replay window. */
4200 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4201 }
4202
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4203 static inline bool tcp_paws_discard(const struct sock *sk,
4204 const struct sk_buff *skb)
4205 {
4206 const struct tcp_sock *tp = tcp_sk(sk);
4207
4208 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4209 !tcp_disordered_ack(sk, skb);
4210 }
4211
4212 /* Check segment sequence number for validity.
4213 *
4214 * Segment controls are considered valid, if the segment
4215 * fits to the window after truncation to the window. Acceptability
4216 * of data (and SYN, FIN, of course) is checked separately.
4217 * See tcp_data_queue(), for example.
4218 *
4219 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4220 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4221 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4222 * (borrowed from freebsd)
4223 */
4224
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4225 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4226 {
4227 return !before(end_seq, tp->rcv_wup) &&
4228 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4229 }
4230
4231 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4232 void tcp_reset(struct sock *sk)
4233 {
4234 trace_tcp_receive_reset(sk);
4235
4236 /* We want the right error as BSD sees it (and indeed as we do). */
4237 switch (sk->sk_state) {
4238 case TCP_SYN_SENT:
4239 sk->sk_err = ECONNREFUSED;
4240 break;
4241 case TCP_CLOSE_WAIT:
4242 sk->sk_err = EPIPE;
4243 break;
4244 case TCP_CLOSE:
4245 return;
4246 default:
4247 sk->sk_err = ECONNRESET;
4248 }
4249 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4250 smp_wmb();
4251
4252 tcp_write_queue_purge(sk);
4253 tcp_done(sk);
4254
4255 if (!sock_flag(sk, SOCK_DEAD))
4256 sk->sk_error_report(sk);
4257 }
4258
4259 /*
4260 * Process the FIN bit. This now behaves as it is supposed to work
4261 * and the FIN takes effect when it is validly part of sequence
4262 * space. Not before when we get holes.
4263 *
4264 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4265 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4266 * TIME-WAIT)
4267 *
4268 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4269 * close and we go into CLOSING (and later onto TIME-WAIT)
4270 *
4271 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4272 */
tcp_fin(struct sock * sk)4273 void tcp_fin(struct sock *sk)
4274 {
4275 struct tcp_sock *tp = tcp_sk(sk);
4276
4277 inet_csk_schedule_ack(sk);
4278
4279 sk->sk_shutdown |= RCV_SHUTDOWN;
4280 sock_set_flag(sk, SOCK_DONE);
4281
4282 switch (sk->sk_state) {
4283 case TCP_SYN_RECV:
4284 case TCP_ESTABLISHED:
4285 /* Move to CLOSE_WAIT */
4286 tcp_set_state(sk, TCP_CLOSE_WAIT);
4287 inet_csk_enter_pingpong_mode(sk);
4288 break;
4289
4290 case TCP_CLOSE_WAIT:
4291 case TCP_CLOSING:
4292 /* Received a retransmission of the FIN, do
4293 * nothing.
4294 */
4295 break;
4296 case TCP_LAST_ACK:
4297 /* RFC793: Remain in the LAST-ACK state. */
4298 break;
4299
4300 case TCP_FIN_WAIT1:
4301 /* This case occurs when a simultaneous close
4302 * happens, we must ack the received FIN and
4303 * enter the CLOSING state.
4304 */
4305 tcp_send_ack(sk);
4306 tcp_set_state(sk, TCP_CLOSING);
4307 break;
4308 case TCP_FIN_WAIT2:
4309 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4310 tcp_send_ack(sk);
4311 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4312 break;
4313 default:
4314 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4315 * cases we should never reach this piece of code.
4316 */
4317 pr_err("%s: Impossible, sk->sk_state=%d\n",
4318 __func__, sk->sk_state);
4319 break;
4320 }
4321
4322 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4323 * Probably, we should reset in this case. For now drop them.
4324 */
4325 skb_rbtree_purge(&tp->out_of_order_queue);
4326 if (tcp_is_sack(tp))
4327 tcp_sack_reset(&tp->rx_opt);
4328 sk_mem_reclaim(sk);
4329
4330 if (!sock_flag(sk, SOCK_DEAD)) {
4331 sk->sk_state_change(sk);
4332
4333 /* Do not send POLL_HUP for half duplex close. */
4334 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4335 sk->sk_state == TCP_CLOSE)
4336 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4337 else
4338 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4339 }
4340 }
4341
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4342 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4343 u32 end_seq)
4344 {
4345 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4346 if (before(seq, sp->start_seq))
4347 sp->start_seq = seq;
4348 if (after(end_seq, sp->end_seq))
4349 sp->end_seq = end_seq;
4350 return true;
4351 }
4352 return false;
4353 }
4354
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4355 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4356 {
4357 struct tcp_sock *tp = tcp_sk(sk);
4358
4359 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4360 int mib_idx;
4361
4362 if (before(seq, tp->rcv_nxt))
4363 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4364 else
4365 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4366
4367 NET_INC_STATS(sock_net(sk), mib_idx);
4368
4369 tp->rx_opt.dsack = 1;
4370 tp->duplicate_sack[0].start_seq = seq;
4371 tp->duplicate_sack[0].end_seq = end_seq;
4372 }
4373 }
4374
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4375 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4376 {
4377 struct tcp_sock *tp = tcp_sk(sk);
4378
4379 if (!tp->rx_opt.dsack)
4380 tcp_dsack_set(sk, seq, end_seq);
4381 else
4382 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4383 }
4384
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4385 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4386 {
4387 /* When the ACK path fails or drops most ACKs, the sender would
4388 * timeout and spuriously retransmit the same segment repeatedly.
4389 * The receiver remembers and reflects via DSACKs. Leverage the
4390 * DSACK state and change the txhash to re-route speculatively.
4391 */
4392 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4393 sk_rethink_txhash(sk))
4394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4395 }
4396
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4397 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4398 {
4399 struct tcp_sock *tp = tcp_sk(sk);
4400
4401 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4402 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4403 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4404 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4405
4406 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4407 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4408
4409 tcp_rcv_spurious_retrans(sk, skb);
4410 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4411 end_seq = tp->rcv_nxt;
4412 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4413 }
4414 }
4415
4416 tcp_send_ack(sk);
4417 }
4418
4419 /* These routines update the SACK block as out-of-order packets arrive or
4420 * in-order packets close up the sequence space.
4421 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4422 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4423 {
4424 int this_sack;
4425 struct tcp_sack_block *sp = &tp->selective_acks[0];
4426 struct tcp_sack_block *swalk = sp + 1;
4427
4428 /* See if the recent change to the first SACK eats into
4429 * or hits the sequence space of other SACK blocks, if so coalesce.
4430 */
4431 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4432 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4433 int i;
4434
4435 /* Zap SWALK, by moving every further SACK up by one slot.
4436 * Decrease num_sacks.
4437 */
4438 tp->rx_opt.num_sacks--;
4439 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4440 sp[i] = sp[i + 1];
4441 continue;
4442 }
4443 this_sack++;
4444 swalk++;
4445 }
4446 }
4447
tcp_sack_compress_send_ack(struct sock * sk)4448 static void tcp_sack_compress_send_ack(struct sock *sk)
4449 {
4450 struct tcp_sock *tp = tcp_sk(sk);
4451
4452 if (!tp->compressed_ack)
4453 return;
4454
4455 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4456 __sock_put(sk);
4457
4458 /* Since we have to send one ack finally,
4459 * substract one from tp->compressed_ack to keep
4460 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4461 */
4462 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4463 tp->compressed_ack - 1);
4464
4465 tp->compressed_ack = 0;
4466 tcp_send_ack(sk);
4467 }
4468
4469 /* Reasonable amount of sack blocks included in TCP SACK option
4470 * The max is 4, but this becomes 3 if TCP timestamps are there.
4471 * Given that SACK packets might be lost, be conservative and use 2.
4472 */
4473 #define TCP_SACK_BLOCKS_EXPECTED 2
4474
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4475 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4476 {
4477 struct tcp_sock *tp = tcp_sk(sk);
4478 struct tcp_sack_block *sp = &tp->selective_acks[0];
4479 int cur_sacks = tp->rx_opt.num_sacks;
4480 int this_sack;
4481
4482 if (!cur_sacks)
4483 goto new_sack;
4484
4485 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4486 if (tcp_sack_extend(sp, seq, end_seq)) {
4487 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4488 tcp_sack_compress_send_ack(sk);
4489 /* Rotate this_sack to the first one. */
4490 for (; this_sack > 0; this_sack--, sp--)
4491 swap(*sp, *(sp - 1));
4492 if (cur_sacks > 1)
4493 tcp_sack_maybe_coalesce(tp);
4494 return;
4495 }
4496 }
4497
4498 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4499 tcp_sack_compress_send_ack(sk);
4500
4501 /* Could not find an adjacent existing SACK, build a new one,
4502 * put it at the front, and shift everyone else down. We
4503 * always know there is at least one SACK present already here.
4504 *
4505 * If the sack array is full, forget about the last one.
4506 */
4507 if (this_sack >= TCP_NUM_SACKS) {
4508 this_sack--;
4509 tp->rx_opt.num_sacks--;
4510 sp--;
4511 }
4512 for (; this_sack > 0; this_sack--, sp--)
4513 *sp = *(sp - 1);
4514
4515 new_sack:
4516 /* Build the new head SACK, and we're done. */
4517 sp->start_seq = seq;
4518 sp->end_seq = end_seq;
4519 tp->rx_opt.num_sacks++;
4520 }
4521
4522 /* RCV.NXT advances, some SACKs should be eaten. */
4523
tcp_sack_remove(struct tcp_sock * tp)4524 static void tcp_sack_remove(struct tcp_sock *tp)
4525 {
4526 struct tcp_sack_block *sp = &tp->selective_acks[0];
4527 int num_sacks = tp->rx_opt.num_sacks;
4528 int this_sack;
4529
4530 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4531 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4532 tp->rx_opt.num_sacks = 0;
4533 return;
4534 }
4535
4536 for (this_sack = 0; this_sack < num_sacks;) {
4537 /* Check if the start of the sack is covered by RCV.NXT. */
4538 if (!before(tp->rcv_nxt, sp->start_seq)) {
4539 int i;
4540
4541 /* RCV.NXT must cover all the block! */
4542 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4543
4544 /* Zap this SACK, by moving forward any other SACKS. */
4545 for (i = this_sack+1; i < num_sacks; i++)
4546 tp->selective_acks[i-1] = tp->selective_acks[i];
4547 num_sacks--;
4548 continue;
4549 }
4550 this_sack++;
4551 sp++;
4552 }
4553 tp->rx_opt.num_sacks = num_sacks;
4554 }
4555
4556 /**
4557 * tcp_try_coalesce - try to merge skb to prior one
4558 * @sk: socket
4559 * @to: prior buffer
4560 * @from: buffer to add in queue
4561 * @fragstolen: pointer to boolean
4562 *
4563 * Before queueing skb @from after @to, try to merge them
4564 * to reduce overall memory use and queue lengths, if cost is small.
4565 * Packets in ofo or receive queues can stay a long time.
4566 * Better try to coalesce them right now to avoid future collapses.
4567 * Returns true if caller should free @from instead of queueing it
4568 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4569 static bool tcp_try_coalesce(struct sock *sk,
4570 struct sk_buff *to,
4571 struct sk_buff *from,
4572 bool *fragstolen)
4573 {
4574 int delta;
4575
4576 *fragstolen = false;
4577
4578 /* Its possible this segment overlaps with prior segment in queue */
4579 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4580 return false;
4581
4582 if (!mptcp_skb_can_collapse(to, from))
4583 return false;
4584
4585 #ifdef CONFIG_TLS_DEVICE
4586 if (from->decrypted != to->decrypted)
4587 return false;
4588 #endif
4589
4590 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4591 return false;
4592
4593 atomic_add(delta, &sk->sk_rmem_alloc);
4594 sk_mem_charge(sk, delta);
4595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4596 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4597 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4598 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4599
4600 if (TCP_SKB_CB(from)->has_rxtstamp) {
4601 TCP_SKB_CB(to)->has_rxtstamp = true;
4602 to->tstamp = from->tstamp;
4603 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4604 }
4605
4606 return true;
4607 }
4608
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4609 static bool tcp_ooo_try_coalesce(struct sock *sk,
4610 struct sk_buff *to,
4611 struct sk_buff *from,
4612 bool *fragstolen)
4613 {
4614 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4615
4616 /* In case tcp_drop() is called later, update to->gso_segs */
4617 if (res) {
4618 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4619 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4620
4621 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4622 }
4623 return res;
4624 }
4625
tcp_drop(struct sock * sk,struct sk_buff * skb)4626 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4627 {
4628 sk_drops_add(sk, skb);
4629 __kfree_skb(skb);
4630 }
4631
4632 /* This one checks to see if we can put data from the
4633 * out_of_order queue into the receive_queue.
4634 */
tcp_ofo_queue(struct sock * sk)4635 static void tcp_ofo_queue(struct sock *sk)
4636 {
4637 struct tcp_sock *tp = tcp_sk(sk);
4638 __u32 dsack_high = tp->rcv_nxt;
4639 bool fin, fragstolen, eaten;
4640 struct sk_buff *skb, *tail;
4641 struct rb_node *p;
4642
4643 p = rb_first(&tp->out_of_order_queue);
4644 while (p) {
4645 skb = rb_to_skb(p);
4646 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4647 break;
4648
4649 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4650 __u32 dsack = dsack_high;
4651 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4652 dsack_high = TCP_SKB_CB(skb)->end_seq;
4653 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4654 }
4655 p = rb_next(p);
4656 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4657
4658 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4659 tcp_drop(sk, skb);
4660 continue;
4661 }
4662
4663 tail = skb_peek_tail(&sk->sk_receive_queue);
4664 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4665 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4666 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4667 if (!eaten)
4668 __skb_queue_tail(&sk->sk_receive_queue, skb);
4669 else
4670 kfree_skb_partial(skb, fragstolen);
4671
4672 if (unlikely(fin)) {
4673 tcp_fin(sk);
4674 /* tcp_fin() purges tp->out_of_order_queue,
4675 * so we must end this loop right now.
4676 */
4677 break;
4678 }
4679 }
4680 }
4681
4682 static bool tcp_prune_ofo_queue(struct sock *sk);
4683 static int tcp_prune_queue(struct sock *sk);
4684
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4685 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4686 unsigned int size)
4687 {
4688 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4689 !sk_rmem_schedule(sk, skb, size)) {
4690
4691 if (tcp_prune_queue(sk) < 0)
4692 return -1;
4693
4694 while (!sk_rmem_schedule(sk, skb, size)) {
4695 if (!tcp_prune_ofo_queue(sk))
4696 return -1;
4697 }
4698 }
4699 return 0;
4700 }
4701
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4702 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4703 {
4704 struct tcp_sock *tp = tcp_sk(sk);
4705 struct rb_node **p, *parent;
4706 struct sk_buff *skb1;
4707 u32 seq, end_seq;
4708 bool fragstolen;
4709
4710 tcp_ecn_check_ce(sk, skb);
4711
4712 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4714 sk->sk_data_ready(sk);
4715 tcp_drop(sk, skb);
4716 return;
4717 }
4718
4719 /* Disable header prediction. */
4720 tp->pred_flags = 0;
4721 inet_csk_schedule_ack(sk);
4722
4723 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4725 seq = TCP_SKB_CB(skb)->seq;
4726 end_seq = TCP_SKB_CB(skb)->end_seq;
4727
4728 p = &tp->out_of_order_queue.rb_node;
4729 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4730 /* Initial out of order segment, build 1 SACK. */
4731 if (tcp_is_sack(tp)) {
4732 tp->rx_opt.num_sacks = 1;
4733 tp->selective_acks[0].start_seq = seq;
4734 tp->selective_acks[0].end_seq = end_seq;
4735 }
4736 rb_link_node(&skb->rbnode, NULL, p);
4737 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4738 tp->ooo_last_skb = skb;
4739 goto end;
4740 }
4741
4742 /* In the typical case, we are adding an skb to the end of the list.
4743 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4744 */
4745 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4746 skb, &fragstolen)) {
4747 coalesce_done:
4748 /* For non sack flows, do not grow window to force DUPACK
4749 * and trigger fast retransmit.
4750 */
4751 if (tcp_is_sack(tp))
4752 tcp_grow_window(sk, skb);
4753 kfree_skb_partial(skb, fragstolen);
4754 skb = NULL;
4755 goto add_sack;
4756 }
4757 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4758 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4759 parent = &tp->ooo_last_skb->rbnode;
4760 p = &parent->rb_right;
4761 goto insert;
4762 }
4763
4764 /* Find place to insert this segment. Handle overlaps on the way. */
4765 parent = NULL;
4766 while (*p) {
4767 parent = *p;
4768 skb1 = rb_to_skb(parent);
4769 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4770 p = &parent->rb_left;
4771 continue;
4772 }
4773 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4774 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4775 /* All the bits are present. Drop. */
4776 NET_INC_STATS(sock_net(sk),
4777 LINUX_MIB_TCPOFOMERGE);
4778 tcp_drop(sk, skb);
4779 skb = NULL;
4780 tcp_dsack_set(sk, seq, end_seq);
4781 goto add_sack;
4782 }
4783 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4784 /* Partial overlap. */
4785 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4786 } else {
4787 /* skb's seq == skb1's seq and skb covers skb1.
4788 * Replace skb1 with skb.
4789 */
4790 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4791 &tp->out_of_order_queue);
4792 tcp_dsack_extend(sk,
4793 TCP_SKB_CB(skb1)->seq,
4794 TCP_SKB_CB(skb1)->end_seq);
4795 NET_INC_STATS(sock_net(sk),
4796 LINUX_MIB_TCPOFOMERGE);
4797 tcp_drop(sk, skb1);
4798 goto merge_right;
4799 }
4800 } else if (tcp_ooo_try_coalesce(sk, skb1,
4801 skb, &fragstolen)) {
4802 goto coalesce_done;
4803 }
4804 p = &parent->rb_right;
4805 }
4806 insert:
4807 /* Insert segment into RB tree. */
4808 rb_link_node(&skb->rbnode, parent, p);
4809 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4810
4811 merge_right:
4812 /* Remove other segments covered by skb. */
4813 while ((skb1 = skb_rb_next(skb)) != NULL) {
4814 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4815 break;
4816 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4817 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4818 end_seq);
4819 break;
4820 }
4821 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4822 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4823 TCP_SKB_CB(skb1)->end_seq);
4824 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4825 tcp_drop(sk, skb1);
4826 }
4827 /* If there is no skb after us, we are the last_skb ! */
4828 if (!skb1)
4829 tp->ooo_last_skb = skb;
4830
4831 add_sack:
4832 if (tcp_is_sack(tp))
4833 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4834 end:
4835 if (skb) {
4836 /* For non sack flows, do not grow window to force DUPACK
4837 * and trigger fast retransmit.
4838 */
4839 if (tcp_is_sack(tp))
4840 tcp_grow_window(sk, skb);
4841 skb_condense(skb);
4842 skb_set_owner_r(skb, sk);
4843 }
4844 }
4845
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4846 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4847 bool *fragstolen)
4848 {
4849 int eaten;
4850 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4851
4852 eaten = (tail &&
4853 tcp_try_coalesce(sk, tail,
4854 skb, fragstolen)) ? 1 : 0;
4855 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4856 if (!eaten) {
4857 __skb_queue_tail(&sk->sk_receive_queue, skb);
4858 skb_set_owner_r(skb, sk);
4859 }
4860 return eaten;
4861 }
4862
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4863 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4864 {
4865 struct sk_buff *skb;
4866 int err = -ENOMEM;
4867 int data_len = 0;
4868 bool fragstolen;
4869
4870 if (size == 0)
4871 return 0;
4872
4873 if (size > PAGE_SIZE) {
4874 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4875
4876 data_len = npages << PAGE_SHIFT;
4877 size = data_len + (size & ~PAGE_MASK);
4878 }
4879 skb = alloc_skb_with_frags(size - data_len, data_len,
4880 PAGE_ALLOC_COSTLY_ORDER,
4881 &err, sk->sk_allocation);
4882 if (!skb)
4883 goto err;
4884
4885 skb_put(skb, size - data_len);
4886 skb->data_len = data_len;
4887 skb->len = size;
4888
4889 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4891 goto err_free;
4892 }
4893
4894 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4895 if (err)
4896 goto err_free;
4897
4898 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4899 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4900 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4901
4902 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4903 WARN_ON_ONCE(fragstolen); /* should not happen */
4904 __kfree_skb(skb);
4905 }
4906 return size;
4907
4908 err_free:
4909 kfree_skb(skb);
4910 err:
4911 return err;
4912
4913 }
4914
tcp_data_ready(struct sock * sk)4915 void tcp_data_ready(struct sock *sk)
4916 {
4917 const struct tcp_sock *tp = tcp_sk(sk);
4918 int avail = tp->rcv_nxt - tp->copied_seq;
4919
4920 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4921 !sock_flag(sk, SOCK_DONE) &&
4922 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4923 return;
4924
4925 sk->sk_data_ready(sk);
4926 }
4927
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4928 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4929 {
4930 struct tcp_sock *tp = tcp_sk(sk);
4931 bool fragstolen;
4932 int eaten;
4933
4934 if (sk_is_mptcp(sk))
4935 mptcp_incoming_options(sk, skb);
4936
4937 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4938 __kfree_skb(skb);
4939 return;
4940 }
4941 skb_dst_drop(skb);
4942 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4943
4944 tp->rx_opt.dsack = 0;
4945
4946 /* Queue data for delivery to the user.
4947 * Packets in sequence go to the receive queue.
4948 * Out of sequence packets to the out_of_order_queue.
4949 */
4950 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4951 if (tcp_receive_window(tp) == 0) {
4952 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4953 goto out_of_window;
4954 }
4955
4956 /* Ok. In sequence. In window. */
4957 queue_and_out:
4958 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4959 sk_forced_mem_schedule(sk, skb->truesize);
4960 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4962 sk->sk_data_ready(sk);
4963 goto drop;
4964 }
4965
4966 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4967 if (skb->len)
4968 tcp_event_data_recv(sk, skb);
4969 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4970 tcp_fin(sk);
4971
4972 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4973 tcp_ofo_queue(sk);
4974
4975 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4976 * gap in queue is filled.
4977 */
4978 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4979 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4980 }
4981
4982 if (tp->rx_opt.num_sacks)
4983 tcp_sack_remove(tp);
4984
4985 tcp_fast_path_check(sk);
4986
4987 if (eaten > 0)
4988 kfree_skb_partial(skb, fragstolen);
4989 if (!sock_flag(sk, SOCK_DEAD))
4990 tcp_data_ready(sk);
4991 return;
4992 }
4993
4994 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4995 tcp_rcv_spurious_retrans(sk, skb);
4996 /* A retransmit, 2nd most common case. Force an immediate ack. */
4997 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4998 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4999
5000 out_of_window:
5001 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5002 inet_csk_schedule_ack(sk);
5003 drop:
5004 tcp_drop(sk, skb);
5005 return;
5006 }
5007
5008 /* Out of window. F.e. zero window probe. */
5009 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5010 goto out_of_window;
5011
5012 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5013 /* Partial packet, seq < rcv_next < end_seq */
5014 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5015
5016 /* If window is closed, drop tail of packet. But after
5017 * remembering D-SACK for its head made in previous line.
5018 */
5019 if (!tcp_receive_window(tp)) {
5020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5021 goto out_of_window;
5022 }
5023 goto queue_and_out;
5024 }
5025
5026 tcp_data_queue_ofo(sk, skb);
5027 }
5028
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5029 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5030 {
5031 if (list)
5032 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5033
5034 return skb_rb_next(skb);
5035 }
5036
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5037 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5038 struct sk_buff_head *list,
5039 struct rb_root *root)
5040 {
5041 struct sk_buff *next = tcp_skb_next(skb, list);
5042
5043 if (list)
5044 __skb_unlink(skb, list);
5045 else
5046 rb_erase(&skb->rbnode, root);
5047
5048 __kfree_skb(skb);
5049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5050
5051 return next;
5052 }
5053
5054 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5055 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5056 {
5057 struct rb_node **p = &root->rb_node;
5058 struct rb_node *parent = NULL;
5059 struct sk_buff *skb1;
5060
5061 while (*p) {
5062 parent = *p;
5063 skb1 = rb_to_skb(parent);
5064 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5065 p = &parent->rb_left;
5066 else
5067 p = &parent->rb_right;
5068 }
5069 rb_link_node(&skb->rbnode, parent, p);
5070 rb_insert_color(&skb->rbnode, root);
5071 }
5072
5073 /* Collapse contiguous sequence of skbs head..tail with
5074 * sequence numbers start..end.
5075 *
5076 * If tail is NULL, this means until the end of the queue.
5077 *
5078 * Segments with FIN/SYN are not collapsed (only because this
5079 * simplifies code)
5080 */
5081 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5082 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5083 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5084 {
5085 struct sk_buff *skb = head, *n;
5086 struct sk_buff_head tmp;
5087 bool end_of_skbs;
5088
5089 /* First, check that queue is collapsible and find
5090 * the point where collapsing can be useful.
5091 */
5092 restart:
5093 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5094 n = tcp_skb_next(skb, list);
5095
5096 /* No new bits? It is possible on ofo queue. */
5097 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5098 skb = tcp_collapse_one(sk, skb, list, root);
5099 if (!skb)
5100 break;
5101 goto restart;
5102 }
5103
5104 /* The first skb to collapse is:
5105 * - not SYN/FIN and
5106 * - bloated or contains data before "start" or
5107 * overlaps to the next one and mptcp allow collapsing.
5108 */
5109 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5110 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5111 before(TCP_SKB_CB(skb)->seq, start))) {
5112 end_of_skbs = false;
5113 break;
5114 }
5115
5116 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5117 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5118 end_of_skbs = false;
5119 break;
5120 }
5121
5122 /* Decided to skip this, advance start seq. */
5123 start = TCP_SKB_CB(skb)->end_seq;
5124 }
5125 if (end_of_skbs ||
5126 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5127 return;
5128
5129 __skb_queue_head_init(&tmp);
5130
5131 while (before(start, end)) {
5132 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5133 struct sk_buff *nskb;
5134
5135 nskb = alloc_skb(copy, GFP_ATOMIC);
5136 if (!nskb)
5137 break;
5138
5139 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5140 #ifdef CONFIG_TLS_DEVICE
5141 nskb->decrypted = skb->decrypted;
5142 #endif
5143 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5144 if (list)
5145 __skb_queue_before(list, skb, nskb);
5146 else
5147 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5148 skb_set_owner_r(nskb, sk);
5149 mptcp_skb_ext_move(nskb, skb);
5150
5151 /* Copy data, releasing collapsed skbs. */
5152 while (copy > 0) {
5153 int offset = start - TCP_SKB_CB(skb)->seq;
5154 int size = TCP_SKB_CB(skb)->end_seq - start;
5155
5156 BUG_ON(offset < 0);
5157 if (size > 0) {
5158 size = min(copy, size);
5159 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5160 BUG();
5161 TCP_SKB_CB(nskb)->end_seq += size;
5162 copy -= size;
5163 start += size;
5164 }
5165 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5166 skb = tcp_collapse_one(sk, skb, list, root);
5167 if (!skb ||
5168 skb == tail ||
5169 !mptcp_skb_can_collapse(nskb, skb) ||
5170 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5171 goto end;
5172 #ifdef CONFIG_TLS_DEVICE
5173 if (skb->decrypted != nskb->decrypted)
5174 goto end;
5175 #endif
5176 }
5177 }
5178 }
5179 end:
5180 skb_queue_walk_safe(&tmp, skb, n)
5181 tcp_rbtree_insert(root, skb);
5182 }
5183
5184 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5185 * and tcp_collapse() them until all the queue is collapsed.
5186 */
tcp_collapse_ofo_queue(struct sock * sk)5187 static void tcp_collapse_ofo_queue(struct sock *sk)
5188 {
5189 struct tcp_sock *tp = tcp_sk(sk);
5190 u32 range_truesize, sum_tiny = 0;
5191 struct sk_buff *skb, *head;
5192 u32 start, end;
5193
5194 skb = skb_rb_first(&tp->out_of_order_queue);
5195 new_range:
5196 if (!skb) {
5197 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5198 return;
5199 }
5200 start = TCP_SKB_CB(skb)->seq;
5201 end = TCP_SKB_CB(skb)->end_seq;
5202 range_truesize = skb->truesize;
5203
5204 for (head = skb;;) {
5205 skb = skb_rb_next(skb);
5206
5207 /* Range is terminated when we see a gap or when
5208 * we are at the queue end.
5209 */
5210 if (!skb ||
5211 after(TCP_SKB_CB(skb)->seq, end) ||
5212 before(TCP_SKB_CB(skb)->end_seq, start)) {
5213 /* Do not attempt collapsing tiny skbs */
5214 if (range_truesize != head->truesize ||
5215 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5216 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5217 head, skb, start, end);
5218 } else {
5219 sum_tiny += range_truesize;
5220 if (sum_tiny > sk->sk_rcvbuf >> 3)
5221 return;
5222 }
5223 goto new_range;
5224 }
5225
5226 range_truesize += skb->truesize;
5227 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5228 start = TCP_SKB_CB(skb)->seq;
5229 if (after(TCP_SKB_CB(skb)->end_seq, end))
5230 end = TCP_SKB_CB(skb)->end_seq;
5231 }
5232 }
5233
5234 /*
5235 * Clean the out-of-order queue to make room.
5236 * We drop high sequences packets to :
5237 * 1) Let a chance for holes to be filled.
5238 * 2) not add too big latencies if thousands of packets sit there.
5239 * (But if application shrinks SO_RCVBUF, we could still end up
5240 * freeing whole queue here)
5241 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5242 *
5243 * Return true if queue has shrunk.
5244 */
tcp_prune_ofo_queue(struct sock * sk)5245 static bool tcp_prune_ofo_queue(struct sock *sk)
5246 {
5247 struct tcp_sock *tp = tcp_sk(sk);
5248 struct rb_node *node, *prev;
5249 int goal;
5250
5251 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5252 return false;
5253
5254 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5255 goal = sk->sk_rcvbuf >> 3;
5256 node = &tp->ooo_last_skb->rbnode;
5257 do {
5258 prev = rb_prev(node);
5259 rb_erase(node, &tp->out_of_order_queue);
5260 goal -= rb_to_skb(node)->truesize;
5261 tcp_drop(sk, rb_to_skb(node));
5262 if (!prev || goal <= 0) {
5263 sk_mem_reclaim(sk);
5264 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5265 !tcp_under_memory_pressure(sk))
5266 break;
5267 goal = sk->sk_rcvbuf >> 3;
5268 }
5269 node = prev;
5270 } while (node);
5271 tp->ooo_last_skb = rb_to_skb(prev);
5272
5273 /* Reset SACK state. A conforming SACK implementation will
5274 * do the same at a timeout based retransmit. When a connection
5275 * is in a sad state like this, we care only about integrity
5276 * of the connection not performance.
5277 */
5278 if (tp->rx_opt.sack_ok)
5279 tcp_sack_reset(&tp->rx_opt);
5280 return true;
5281 }
5282
5283 /* Reduce allocated memory if we can, trying to get
5284 * the socket within its memory limits again.
5285 *
5286 * Return less than zero if we should start dropping frames
5287 * until the socket owning process reads some of the data
5288 * to stabilize the situation.
5289 */
tcp_prune_queue(struct sock * sk)5290 static int tcp_prune_queue(struct sock *sk)
5291 {
5292 struct tcp_sock *tp = tcp_sk(sk);
5293
5294 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5295
5296 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5297 tcp_clamp_window(sk);
5298 else if (tcp_under_memory_pressure(sk))
5299 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5300
5301 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5302 return 0;
5303
5304 tcp_collapse_ofo_queue(sk);
5305 if (!skb_queue_empty(&sk->sk_receive_queue))
5306 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5307 skb_peek(&sk->sk_receive_queue),
5308 NULL,
5309 tp->copied_seq, tp->rcv_nxt);
5310 sk_mem_reclaim(sk);
5311
5312 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5313 return 0;
5314
5315 /* Collapsing did not help, destructive actions follow.
5316 * This must not ever occur. */
5317
5318 tcp_prune_ofo_queue(sk);
5319
5320 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5321 return 0;
5322
5323 /* If we are really being abused, tell the caller to silently
5324 * drop receive data on the floor. It will get retransmitted
5325 * and hopefully then we'll have sufficient space.
5326 */
5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5328
5329 /* Massive buffer overcommit. */
5330 tp->pred_flags = 0;
5331 return -1;
5332 }
5333
tcp_should_expand_sndbuf(const struct sock * sk)5334 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5335 {
5336 const struct tcp_sock *tp = tcp_sk(sk);
5337
5338 /* If the user specified a specific send buffer setting, do
5339 * not modify it.
5340 */
5341 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5342 return false;
5343
5344 /* If we are under global TCP memory pressure, do not expand. */
5345 if (tcp_under_memory_pressure(sk))
5346 return false;
5347
5348 /* If we are under soft global TCP memory pressure, do not expand. */
5349 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5350 return false;
5351
5352 /* If we filled the congestion window, do not expand. */
5353 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5354 return false;
5355
5356 return true;
5357 }
5358
tcp_new_space(struct sock * sk)5359 static void tcp_new_space(struct sock *sk)
5360 {
5361 struct tcp_sock *tp = tcp_sk(sk);
5362
5363 if (tcp_should_expand_sndbuf(sk)) {
5364 tcp_sndbuf_expand(sk);
5365 tp->snd_cwnd_stamp = tcp_jiffies32;
5366 }
5367
5368 sk->sk_write_space(sk);
5369 }
5370
tcp_check_space(struct sock * sk)5371 static void tcp_check_space(struct sock *sk)
5372 {
5373 /* pairs with tcp_poll() */
5374 smp_mb();
5375 if (sk->sk_socket &&
5376 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5377 tcp_new_space(sk);
5378 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5379 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5380 }
5381 }
5382
tcp_data_snd_check(struct sock * sk)5383 static inline void tcp_data_snd_check(struct sock *sk)
5384 {
5385 tcp_push_pending_frames(sk);
5386 tcp_check_space(sk);
5387 }
5388
5389 /*
5390 * Check if sending an ack is needed.
5391 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5392 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5393 {
5394 struct tcp_sock *tp = tcp_sk(sk);
5395 unsigned long rtt, delay;
5396
5397 /* More than one full frame received... */
5398 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5399 /* ... and right edge of window advances far enough.
5400 * (tcp_recvmsg() will send ACK otherwise).
5401 * If application uses SO_RCVLOWAT, we want send ack now if
5402 * we have not received enough bytes to satisfy the condition.
5403 */
5404 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5405 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5406 /* We ACK each frame or... */
5407 tcp_in_quickack_mode(sk) ||
5408 /* Protocol state mandates a one-time immediate ACK */
5409 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5410 send_now:
5411 tcp_send_ack(sk);
5412 return;
5413 }
5414
5415 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5416 tcp_send_delayed_ack(sk);
5417 return;
5418 }
5419
5420 if (!tcp_is_sack(tp) ||
5421 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5422 goto send_now;
5423
5424 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5425 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5426 tp->dup_ack_counter = 0;
5427 }
5428 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5429 tp->dup_ack_counter++;
5430 goto send_now;
5431 }
5432 tp->compressed_ack++;
5433 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5434 return;
5435
5436 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5437
5438 rtt = tp->rcv_rtt_est.rtt_us;
5439 if (tp->srtt_us && tp->srtt_us < rtt)
5440 rtt = tp->srtt_us;
5441
5442 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5443 rtt * (NSEC_PER_USEC >> 3)/20);
5444 sock_hold(sk);
5445 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5446 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5447 HRTIMER_MODE_REL_PINNED_SOFT);
5448 }
5449
tcp_ack_snd_check(struct sock * sk)5450 static inline void tcp_ack_snd_check(struct sock *sk)
5451 {
5452 if (!inet_csk_ack_scheduled(sk)) {
5453 /* We sent a data segment already. */
5454 return;
5455 }
5456 __tcp_ack_snd_check(sk, 1);
5457 }
5458
5459 /*
5460 * This routine is only called when we have urgent data
5461 * signaled. Its the 'slow' part of tcp_urg. It could be
5462 * moved inline now as tcp_urg is only called from one
5463 * place. We handle URGent data wrong. We have to - as
5464 * BSD still doesn't use the correction from RFC961.
5465 * For 1003.1g we should support a new option TCP_STDURG to permit
5466 * either form (or just set the sysctl tcp_stdurg).
5467 */
5468
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5469 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5470 {
5471 struct tcp_sock *tp = tcp_sk(sk);
5472 u32 ptr = ntohs(th->urg_ptr);
5473
5474 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5475 ptr--;
5476 ptr += ntohl(th->seq);
5477
5478 /* Ignore urgent data that we've already seen and read. */
5479 if (after(tp->copied_seq, ptr))
5480 return;
5481
5482 /* Do not replay urg ptr.
5483 *
5484 * NOTE: interesting situation not covered by specs.
5485 * Misbehaving sender may send urg ptr, pointing to segment,
5486 * which we already have in ofo queue. We are not able to fetch
5487 * such data and will stay in TCP_URG_NOTYET until will be eaten
5488 * by recvmsg(). Seems, we are not obliged to handle such wicked
5489 * situations. But it is worth to think about possibility of some
5490 * DoSes using some hypothetical application level deadlock.
5491 */
5492 if (before(ptr, tp->rcv_nxt))
5493 return;
5494
5495 /* Do we already have a newer (or duplicate) urgent pointer? */
5496 if (tp->urg_data && !after(ptr, tp->urg_seq))
5497 return;
5498
5499 /* Tell the world about our new urgent pointer. */
5500 sk_send_sigurg(sk);
5501
5502 /* We may be adding urgent data when the last byte read was
5503 * urgent. To do this requires some care. We cannot just ignore
5504 * tp->copied_seq since we would read the last urgent byte again
5505 * as data, nor can we alter copied_seq until this data arrives
5506 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5507 *
5508 * NOTE. Double Dutch. Rendering to plain English: author of comment
5509 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5510 * and expect that both A and B disappear from stream. This is _wrong_.
5511 * Though this happens in BSD with high probability, this is occasional.
5512 * Any application relying on this is buggy. Note also, that fix "works"
5513 * only in this artificial test. Insert some normal data between A and B and we will
5514 * decline of BSD again. Verdict: it is better to remove to trap
5515 * buggy users.
5516 */
5517 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5518 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5519 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5520 tp->copied_seq++;
5521 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5522 __skb_unlink(skb, &sk->sk_receive_queue);
5523 __kfree_skb(skb);
5524 }
5525 }
5526
5527 tp->urg_data = TCP_URG_NOTYET;
5528 WRITE_ONCE(tp->urg_seq, ptr);
5529
5530 /* Disable header prediction. */
5531 tp->pred_flags = 0;
5532 }
5533
5534 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5535 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5536 {
5537 struct tcp_sock *tp = tcp_sk(sk);
5538
5539 /* Check if we get a new urgent pointer - normally not. */
5540 if (th->urg)
5541 tcp_check_urg(sk, th);
5542
5543 /* Do we wait for any urgent data? - normally not... */
5544 if (tp->urg_data == TCP_URG_NOTYET) {
5545 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5546 th->syn;
5547
5548 /* Is the urgent pointer pointing into this packet? */
5549 if (ptr < skb->len) {
5550 u8 tmp;
5551 if (skb_copy_bits(skb, ptr, &tmp, 1))
5552 BUG();
5553 tp->urg_data = TCP_URG_VALID | tmp;
5554 if (!sock_flag(sk, SOCK_DEAD))
5555 sk->sk_data_ready(sk);
5556 }
5557 }
5558 }
5559
5560 /* Accept RST for rcv_nxt - 1 after a FIN.
5561 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5562 * FIN is sent followed by a RST packet. The RST is sent with the same
5563 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5564 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5565 * ACKs on the closed socket. In addition middleboxes can drop either the
5566 * challenge ACK or a subsequent RST.
5567 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5568 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5569 {
5570 struct tcp_sock *tp = tcp_sk(sk);
5571
5572 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5573 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5574 TCPF_CLOSING));
5575 }
5576
5577 /* Does PAWS and seqno based validation of an incoming segment, flags will
5578 * play significant role here.
5579 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5580 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5581 const struct tcphdr *th, int syn_inerr)
5582 {
5583 struct tcp_sock *tp = tcp_sk(sk);
5584 bool rst_seq_match = false;
5585
5586 /* RFC1323: H1. Apply PAWS check first. */
5587 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5588 tp->rx_opt.saw_tstamp &&
5589 tcp_paws_discard(sk, skb)) {
5590 if (!th->rst) {
5591 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5592 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5593 LINUX_MIB_TCPACKSKIPPEDPAWS,
5594 &tp->last_oow_ack_time))
5595 tcp_send_dupack(sk, skb);
5596 goto discard;
5597 }
5598 /* Reset is accepted even if it did not pass PAWS. */
5599 }
5600
5601 /* Step 1: check sequence number */
5602 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5603 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5604 * (RST) segments are validated by checking their SEQ-fields."
5605 * And page 69: "If an incoming segment is not acceptable,
5606 * an acknowledgment should be sent in reply (unless the RST
5607 * bit is set, if so drop the segment and return)".
5608 */
5609 if (!th->rst) {
5610 if (th->syn)
5611 goto syn_challenge;
5612 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5613 LINUX_MIB_TCPACKSKIPPEDSEQ,
5614 &tp->last_oow_ack_time))
5615 tcp_send_dupack(sk, skb);
5616 } else if (tcp_reset_check(sk, skb)) {
5617 tcp_reset(sk);
5618 }
5619 goto discard;
5620 }
5621
5622 /* Step 2: check RST bit */
5623 if (th->rst) {
5624 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5625 * FIN and SACK too if available):
5626 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5627 * the right-most SACK block,
5628 * then
5629 * RESET the connection
5630 * else
5631 * Send a challenge ACK
5632 */
5633 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5634 tcp_reset_check(sk, skb)) {
5635 rst_seq_match = true;
5636 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5637 struct tcp_sack_block *sp = &tp->selective_acks[0];
5638 int max_sack = sp[0].end_seq;
5639 int this_sack;
5640
5641 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5642 ++this_sack) {
5643 max_sack = after(sp[this_sack].end_seq,
5644 max_sack) ?
5645 sp[this_sack].end_seq : max_sack;
5646 }
5647
5648 if (TCP_SKB_CB(skb)->seq == max_sack)
5649 rst_seq_match = true;
5650 }
5651
5652 if (rst_seq_match)
5653 tcp_reset(sk);
5654 else {
5655 /* Disable TFO if RST is out-of-order
5656 * and no data has been received
5657 * for current active TFO socket
5658 */
5659 if (tp->syn_fastopen && !tp->data_segs_in &&
5660 sk->sk_state == TCP_ESTABLISHED)
5661 tcp_fastopen_active_disable(sk);
5662 tcp_send_challenge_ack(sk, skb);
5663 }
5664 goto discard;
5665 }
5666
5667 /* step 3: check security and precedence [ignored] */
5668
5669 /* step 4: Check for a SYN
5670 * RFC 5961 4.2 : Send a challenge ack
5671 */
5672 if (th->syn) {
5673 syn_challenge:
5674 if (syn_inerr)
5675 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5676 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5677 tcp_send_challenge_ack(sk, skb);
5678 goto discard;
5679 }
5680
5681 bpf_skops_parse_hdr(sk, skb);
5682
5683 return true;
5684
5685 discard:
5686 tcp_drop(sk, skb);
5687 return false;
5688 }
5689
5690 /*
5691 * TCP receive function for the ESTABLISHED state.
5692 *
5693 * It is split into a fast path and a slow path. The fast path is
5694 * disabled when:
5695 * - A zero window was announced from us - zero window probing
5696 * is only handled properly in the slow path.
5697 * - Out of order segments arrived.
5698 * - Urgent data is expected.
5699 * - There is no buffer space left
5700 * - Unexpected TCP flags/window values/header lengths are received
5701 * (detected by checking the TCP header against pred_flags)
5702 * - Data is sent in both directions. Fast path only supports pure senders
5703 * or pure receivers (this means either the sequence number or the ack
5704 * value must stay constant)
5705 * - Unexpected TCP option.
5706 *
5707 * When these conditions are not satisfied it drops into a standard
5708 * receive procedure patterned after RFC793 to handle all cases.
5709 * The first three cases are guaranteed by proper pred_flags setting,
5710 * the rest is checked inline. Fast processing is turned on in
5711 * tcp_data_queue when everything is OK.
5712 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5713 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5714 {
5715 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5716 struct tcp_sock *tp = tcp_sk(sk);
5717 unsigned int len = skb->len;
5718
5719 /* TCP congestion window tracking */
5720 trace_tcp_probe(sk, skb);
5721
5722 tcp_mstamp_refresh(tp);
5723 if (unlikely(!sk->sk_rx_dst))
5724 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5725 /*
5726 * Header prediction.
5727 * The code loosely follows the one in the famous
5728 * "30 instruction TCP receive" Van Jacobson mail.
5729 *
5730 * Van's trick is to deposit buffers into socket queue
5731 * on a device interrupt, to call tcp_recv function
5732 * on the receive process context and checksum and copy
5733 * the buffer to user space. smart...
5734 *
5735 * Our current scheme is not silly either but we take the
5736 * extra cost of the net_bh soft interrupt processing...
5737 * We do checksum and copy also but from device to kernel.
5738 */
5739
5740 tp->rx_opt.saw_tstamp = 0;
5741
5742 /* pred_flags is 0xS?10 << 16 + snd_wnd
5743 * if header_prediction is to be made
5744 * 'S' will always be tp->tcp_header_len >> 2
5745 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5746 * turn it off (when there are holes in the receive
5747 * space for instance)
5748 * PSH flag is ignored.
5749 */
5750
5751 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5752 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5753 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5754 int tcp_header_len = tp->tcp_header_len;
5755
5756 /* Timestamp header prediction: tcp_header_len
5757 * is automatically equal to th->doff*4 due to pred_flags
5758 * match.
5759 */
5760
5761 /* Check timestamp */
5762 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5763 /* No? Slow path! */
5764 if (!tcp_parse_aligned_timestamp(tp, th))
5765 goto slow_path;
5766
5767 /* If PAWS failed, check it more carefully in slow path */
5768 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5769 goto slow_path;
5770
5771 /* DO NOT update ts_recent here, if checksum fails
5772 * and timestamp was corrupted part, it will result
5773 * in a hung connection since we will drop all
5774 * future packets due to the PAWS test.
5775 */
5776 }
5777
5778 if (len <= tcp_header_len) {
5779 /* Bulk data transfer: sender */
5780 if (len == tcp_header_len) {
5781 /* Predicted packet is in window by definition.
5782 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5783 * Hence, check seq<=rcv_wup reduces to:
5784 */
5785 if (tcp_header_len ==
5786 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5787 tp->rcv_nxt == tp->rcv_wup)
5788 tcp_store_ts_recent(tp);
5789
5790 /* We know that such packets are checksummed
5791 * on entry.
5792 */
5793 tcp_ack(sk, skb, 0);
5794 __kfree_skb(skb);
5795 tcp_data_snd_check(sk);
5796 /* When receiving pure ack in fast path, update
5797 * last ts ecr directly instead of calling
5798 * tcp_rcv_rtt_measure_ts()
5799 */
5800 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5801 return;
5802 } else { /* Header too small */
5803 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5804 goto discard;
5805 }
5806 } else {
5807 int eaten = 0;
5808 bool fragstolen = false;
5809
5810 if (tcp_checksum_complete(skb))
5811 goto csum_error;
5812
5813 if ((int)skb->truesize > sk->sk_forward_alloc)
5814 goto step5;
5815
5816 /* Predicted packet is in window by definition.
5817 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5818 * Hence, check seq<=rcv_wup reduces to:
5819 */
5820 if (tcp_header_len ==
5821 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5822 tp->rcv_nxt == tp->rcv_wup)
5823 tcp_store_ts_recent(tp);
5824
5825 tcp_rcv_rtt_measure_ts(sk, skb);
5826
5827 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5828
5829 /* Bulk data transfer: receiver */
5830 __skb_pull(skb, tcp_header_len);
5831 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5832
5833 tcp_event_data_recv(sk, skb);
5834
5835 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5836 /* Well, only one small jumplet in fast path... */
5837 tcp_ack(sk, skb, FLAG_DATA);
5838 tcp_data_snd_check(sk);
5839 if (!inet_csk_ack_scheduled(sk))
5840 goto no_ack;
5841 } else {
5842 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5843 }
5844
5845 __tcp_ack_snd_check(sk, 0);
5846 no_ack:
5847 if (eaten)
5848 kfree_skb_partial(skb, fragstolen);
5849 tcp_data_ready(sk);
5850 return;
5851 }
5852 }
5853
5854 slow_path:
5855 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5856 goto csum_error;
5857
5858 if (!th->ack && !th->rst && !th->syn)
5859 goto discard;
5860
5861 /*
5862 * Standard slow path.
5863 */
5864
5865 if (!tcp_validate_incoming(sk, skb, th, 1))
5866 return;
5867
5868 step5:
5869 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5870 goto discard;
5871
5872 tcp_rcv_rtt_measure_ts(sk, skb);
5873
5874 /* Process urgent data. */
5875 tcp_urg(sk, skb, th);
5876
5877 /* step 7: process the segment text */
5878 tcp_data_queue(sk, skb);
5879
5880 tcp_data_snd_check(sk);
5881 tcp_ack_snd_check(sk);
5882 return;
5883
5884 csum_error:
5885 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5886 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5887
5888 discard:
5889 tcp_drop(sk, skb);
5890 }
5891 EXPORT_SYMBOL(tcp_rcv_established);
5892
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5893 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5894 {
5895 struct inet_connection_sock *icsk = inet_csk(sk);
5896 struct tcp_sock *tp = tcp_sk(sk);
5897
5898 tcp_mtup_init(sk);
5899 icsk->icsk_af_ops->rebuild_header(sk);
5900 tcp_init_metrics(sk);
5901
5902 /* Initialize the congestion window to start the transfer.
5903 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5904 * retransmitted. In light of RFC6298 more aggressive 1sec
5905 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5906 * retransmission has occurred.
5907 */
5908 if (tp->total_retrans > 1 && tp->undo_marker)
5909 tp->snd_cwnd = 1;
5910 else
5911 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5912 tp->snd_cwnd_stamp = tcp_jiffies32;
5913
5914 bpf_skops_established(sk, bpf_op, skb);
5915 /* Initialize congestion control unless BPF initialized it already: */
5916 if (!icsk->icsk_ca_initialized)
5917 tcp_init_congestion_control(sk);
5918 tcp_init_buffer_space(sk);
5919 }
5920
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5921 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5922 {
5923 struct tcp_sock *tp = tcp_sk(sk);
5924 struct inet_connection_sock *icsk = inet_csk(sk);
5925
5926 tcp_set_state(sk, TCP_ESTABLISHED);
5927 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5928
5929 if (skb) {
5930 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5931 security_inet_conn_established(sk, skb);
5932 sk_mark_napi_id(sk, skb);
5933 }
5934
5935 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5936
5937 /* Prevent spurious tcp_cwnd_restart() on first data
5938 * packet.
5939 */
5940 tp->lsndtime = tcp_jiffies32;
5941
5942 if (sock_flag(sk, SOCK_KEEPOPEN))
5943 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5944
5945 if (!tp->rx_opt.snd_wscale)
5946 __tcp_fast_path_on(tp, tp->snd_wnd);
5947 else
5948 tp->pred_flags = 0;
5949 }
5950
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5951 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5952 struct tcp_fastopen_cookie *cookie)
5953 {
5954 struct tcp_sock *tp = tcp_sk(sk);
5955 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5956 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5957 bool syn_drop = false;
5958
5959 if (mss == tp->rx_opt.user_mss) {
5960 struct tcp_options_received opt;
5961
5962 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5963 tcp_clear_options(&opt);
5964 opt.user_mss = opt.mss_clamp = 0;
5965 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5966 mss = opt.mss_clamp;
5967 }
5968
5969 if (!tp->syn_fastopen) {
5970 /* Ignore an unsolicited cookie */
5971 cookie->len = -1;
5972 } else if (tp->total_retrans) {
5973 /* SYN timed out and the SYN-ACK neither has a cookie nor
5974 * acknowledges data. Presumably the remote received only
5975 * the retransmitted (regular) SYNs: either the original
5976 * SYN-data or the corresponding SYN-ACK was dropped.
5977 */
5978 syn_drop = (cookie->len < 0 && data);
5979 } else if (cookie->len < 0 && !tp->syn_data) {
5980 /* We requested a cookie but didn't get it. If we did not use
5981 * the (old) exp opt format then try so next time (try_exp=1).
5982 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5983 */
5984 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5985 }
5986
5987 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5988
5989 if (data) { /* Retransmit unacked data in SYN */
5990 if (tp->total_retrans)
5991 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5992 else
5993 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5994 skb_rbtree_walk_from(data) {
5995 if (__tcp_retransmit_skb(sk, data, 1))
5996 break;
5997 }
5998 tcp_rearm_rto(sk);
5999 NET_INC_STATS(sock_net(sk),
6000 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6001 return true;
6002 }
6003 tp->syn_data_acked = tp->syn_data;
6004 if (tp->syn_data_acked) {
6005 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6006 /* SYN-data is counted as two separate packets in tcp_ack() */
6007 if (tp->delivered > 1)
6008 --tp->delivered;
6009 }
6010
6011 tcp_fastopen_add_skb(sk, synack);
6012
6013 return false;
6014 }
6015
smc_check_reset_syn(struct tcp_sock * tp)6016 static void smc_check_reset_syn(struct tcp_sock *tp)
6017 {
6018 #if IS_ENABLED(CONFIG_SMC)
6019 if (static_branch_unlikely(&tcp_have_smc)) {
6020 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6021 tp->syn_smc = 0;
6022 }
6023 #endif
6024 }
6025
tcp_try_undo_spurious_syn(struct sock * sk)6026 static void tcp_try_undo_spurious_syn(struct sock *sk)
6027 {
6028 struct tcp_sock *tp = tcp_sk(sk);
6029 u32 syn_stamp;
6030
6031 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6032 * spurious if the ACK's timestamp option echo value matches the
6033 * original SYN timestamp.
6034 */
6035 syn_stamp = tp->retrans_stamp;
6036 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6037 syn_stamp == tp->rx_opt.rcv_tsecr)
6038 tp->undo_marker = 0;
6039 }
6040
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6041 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6042 const struct tcphdr *th)
6043 {
6044 struct inet_connection_sock *icsk = inet_csk(sk);
6045 struct tcp_sock *tp = tcp_sk(sk);
6046 struct tcp_fastopen_cookie foc = { .len = -1 };
6047 int saved_clamp = tp->rx_opt.mss_clamp;
6048 bool fastopen_fail;
6049
6050 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6051 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6052 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6053
6054 if (th->ack) {
6055 /* rfc793:
6056 * "If the state is SYN-SENT then
6057 * first check the ACK bit
6058 * If the ACK bit is set
6059 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6060 * a reset (unless the RST bit is set, if so drop
6061 * the segment and return)"
6062 */
6063 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6064 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6065 /* Previous FIN/ACK or RST/ACK might be ignored. */
6066 if (icsk->icsk_retransmits == 0)
6067 inet_csk_reset_xmit_timer(sk,
6068 ICSK_TIME_RETRANS,
6069 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6070 goto reset_and_undo;
6071 }
6072
6073 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6074 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6075 tcp_time_stamp(tp))) {
6076 NET_INC_STATS(sock_net(sk),
6077 LINUX_MIB_PAWSACTIVEREJECTED);
6078 goto reset_and_undo;
6079 }
6080
6081 /* Now ACK is acceptable.
6082 *
6083 * "If the RST bit is set
6084 * If the ACK was acceptable then signal the user "error:
6085 * connection reset", drop the segment, enter CLOSED state,
6086 * delete TCB, and return."
6087 */
6088
6089 if (th->rst) {
6090 tcp_reset(sk);
6091 goto discard;
6092 }
6093
6094 /* rfc793:
6095 * "fifth, if neither of the SYN or RST bits is set then
6096 * drop the segment and return."
6097 *
6098 * See note below!
6099 * --ANK(990513)
6100 */
6101 if (!th->syn)
6102 goto discard_and_undo;
6103
6104 /* rfc793:
6105 * "If the SYN bit is on ...
6106 * are acceptable then ...
6107 * (our SYN has been ACKed), change the connection
6108 * state to ESTABLISHED..."
6109 */
6110
6111 tcp_ecn_rcv_synack(tp, th);
6112
6113 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6114 tcp_try_undo_spurious_syn(sk);
6115 tcp_ack(sk, skb, FLAG_SLOWPATH);
6116
6117 /* Ok.. it's good. Set up sequence numbers and
6118 * move to established.
6119 */
6120 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6121 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6122
6123 /* RFC1323: The window in SYN & SYN/ACK segments is
6124 * never scaled.
6125 */
6126 tp->snd_wnd = ntohs(th->window);
6127
6128 if (!tp->rx_opt.wscale_ok) {
6129 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6130 tp->window_clamp = min(tp->window_clamp, 65535U);
6131 }
6132
6133 if (tp->rx_opt.saw_tstamp) {
6134 tp->rx_opt.tstamp_ok = 1;
6135 tp->tcp_header_len =
6136 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6137 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6138 tcp_store_ts_recent(tp);
6139 } else {
6140 tp->tcp_header_len = sizeof(struct tcphdr);
6141 }
6142
6143 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6144 tcp_initialize_rcv_mss(sk);
6145
6146 /* Remember, tcp_poll() does not lock socket!
6147 * Change state from SYN-SENT only after copied_seq
6148 * is initialized. */
6149 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6150
6151 smc_check_reset_syn(tp);
6152
6153 smp_mb();
6154
6155 tcp_finish_connect(sk, skb);
6156
6157 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6158 tcp_rcv_fastopen_synack(sk, skb, &foc);
6159
6160 if (!sock_flag(sk, SOCK_DEAD)) {
6161 sk->sk_state_change(sk);
6162 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6163 }
6164 if (fastopen_fail)
6165 return -1;
6166 if (sk->sk_write_pending ||
6167 icsk->icsk_accept_queue.rskq_defer_accept ||
6168 inet_csk_in_pingpong_mode(sk)) {
6169 /* Save one ACK. Data will be ready after
6170 * several ticks, if write_pending is set.
6171 *
6172 * It may be deleted, but with this feature tcpdumps
6173 * look so _wonderfully_ clever, that I was not able
6174 * to stand against the temptation 8) --ANK
6175 */
6176 inet_csk_schedule_ack(sk);
6177 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6178 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6179 TCP_DELACK_MAX, TCP_RTO_MAX);
6180
6181 discard:
6182 tcp_drop(sk, skb);
6183 return 0;
6184 } else {
6185 tcp_send_ack(sk);
6186 }
6187 return -1;
6188 }
6189
6190 /* No ACK in the segment */
6191
6192 if (th->rst) {
6193 /* rfc793:
6194 * "If the RST bit is set
6195 *
6196 * Otherwise (no ACK) drop the segment and return."
6197 */
6198
6199 goto discard_and_undo;
6200 }
6201
6202 /* PAWS check. */
6203 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6204 tcp_paws_reject(&tp->rx_opt, 0))
6205 goto discard_and_undo;
6206
6207 if (th->syn) {
6208 /* We see SYN without ACK. It is attempt of
6209 * simultaneous connect with crossed SYNs.
6210 * Particularly, it can be connect to self.
6211 */
6212 tcp_set_state(sk, TCP_SYN_RECV);
6213
6214 if (tp->rx_opt.saw_tstamp) {
6215 tp->rx_opt.tstamp_ok = 1;
6216 tcp_store_ts_recent(tp);
6217 tp->tcp_header_len =
6218 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6219 } else {
6220 tp->tcp_header_len = sizeof(struct tcphdr);
6221 }
6222
6223 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6224 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6225 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6226
6227 /* RFC1323: The window in SYN & SYN/ACK segments is
6228 * never scaled.
6229 */
6230 tp->snd_wnd = ntohs(th->window);
6231 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6232 tp->max_window = tp->snd_wnd;
6233
6234 tcp_ecn_rcv_syn(tp, th);
6235
6236 tcp_mtup_init(sk);
6237 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6238 tcp_initialize_rcv_mss(sk);
6239
6240 tcp_send_synack(sk);
6241 #if 0
6242 /* Note, we could accept data and URG from this segment.
6243 * There are no obstacles to make this (except that we must
6244 * either change tcp_recvmsg() to prevent it from returning data
6245 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6246 *
6247 * However, if we ignore data in ACKless segments sometimes,
6248 * we have no reasons to accept it sometimes.
6249 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6250 * is not flawless. So, discard packet for sanity.
6251 * Uncomment this return to process the data.
6252 */
6253 return -1;
6254 #else
6255 goto discard;
6256 #endif
6257 }
6258 /* "fifth, if neither of the SYN or RST bits is set then
6259 * drop the segment and return."
6260 */
6261
6262 discard_and_undo:
6263 tcp_clear_options(&tp->rx_opt);
6264 tp->rx_opt.mss_clamp = saved_clamp;
6265 goto discard;
6266
6267 reset_and_undo:
6268 tcp_clear_options(&tp->rx_opt);
6269 tp->rx_opt.mss_clamp = saved_clamp;
6270 return 1;
6271 }
6272
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6273 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6274 {
6275 struct request_sock *req;
6276
6277 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6278 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6279 */
6280 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6281 tcp_try_undo_loss(sk, false);
6282
6283 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6284 tcp_sk(sk)->retrans_stamp = 0;
6285 inet_csk(sk)->icsk_retransmits = 0;
6286
6287 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6288 * we no longer need req so release it.
6289 */
6290 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6291 lockdep_sock_is_held(sk));
6292 reqsk_fastopen_remove(sk, req, false);
6293
6294 /* Re-arm the timer because data may have been sent out.
6295 * This is similar to the regular data transmission case
6296 * when new data has just been ack'ed.
6297 *
6298 * (TFO) - we could try to be more aggressive and
6299 * retransmitting any data sooner based on when they
6300 * are sent out.
6301 */
6302 tcp_rearm_rto(sk);
6303 }
6304
6305 /*
6306 * This function implements the receiving procedure of RFC 793 for
6307 * all states except ESTABLISHED and TIME_WAIT.
6308 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6309 * address independent.
6310 */
6311
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6312 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6313 {
6314 struct tcp_sock *tp = tcp_sk(sk);
6315 struct inet_connection_sock *icsk = inet_csk(sk);
6316 const struct tcphdr *th = tcp_hdr(skb);
6317 struct request_sock *req;
6318 int queued = 0;
6319 bool acceptable;
6320
6321 switch (sk->sk_state) {
6322 case TCP_CLOSE:
6323 goto discard;
6324
6325 case TCP_LISTEN:
6326 if (th->ack)
6327 return 1;
6328
6329 if (th->rst)
6330 goto discard;
6331
6332 if (th->syn) {
6333 if (th->fin)
6334 goto discard;
6335 /* It is possible that we process SYN packets from backlog,
6336 * so we need to make sure to disable BH and RCU right there.
6337 */
6338 rcu_read_lock();
6339 local_bh_disable();
6340 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6341 local_bh_enable();
6342 rcu_read_unlock();
6343
6344 if (!acceptable)
6345 return 1;
6346 consume_skb(skb);
6347 return 0;
6348 }
6349 goto discard;
6350
6351 case TCP_SYN_SENT:
6352 tp->rx_opt.saw_tstamp = 0;
6353 tcp_mstamp_refresh(tp);
6354 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6355 if (queued >= 0)
6356 return queued;
6357
6358 /* Do step6 onward by hand. */
6359 tcp_urg(sk, skb, th);
6360 __kfree_skb(skb);
6361 tcp_data_snd_check(sk);
6362 return 0;
6363 }
6364
6365 tcp_mstamp_refresh(tp);
6366 tp->rx_opt.saw_tstamp = 0;
6367 req = rcu_dereference_protected(tp->fastopen_rsk,
6368 lockdep_sock_is_held(sk));
6369 if (req) {
6370 bool req_stolen;
6371
6372 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6373 sk->sk_state != TCP_FIN_WAIT1);
6374
6375 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6376 goto discard;
6377 }
6378
6379 if (!th->ack && !th->rst && !th->syn)
6380 goto discard;
6381
6382 if (!tcp_validate_incoming(sk, skb, th, 0))
6383 return 0;
6384
6385 /* step 5: check the ACK field */
6386 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6387 FLAG_UPDATE_TS_RECENT |
6388 FLAG_NO_CHALLENGE_ACK) > 0;
6389
6390 if (!acceptable) {
6391 if (sk->sk_state == TCP_SYN_RECV)
6392 return 1; /* send one RST */
6393 tcp_send_challenge_ack(sk, skb);
6394 goto discard;
6395 }
6396 switch (sk->sk_state) {
6397 case TCP_SYN_RECV:
6398 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6399 if (!tp->srtt_us)
6400 tcp_synack_rtt_meas(sk, req);
6401
6402 if (req) {
6403 tcp_rcv_synrecv_state_fastopen(sk);
6404 } else {
6405 tcp_try_undo_spurious_syn(sk);
6406 tp->retrans_stamp = 0;
6407 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6408 skb);
6409 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6410 }
6411 smp_mb();
6412 tcp_set_state(sk, TCP_ESTABLISHED);
6413 sk->sk_state_change(sk);
6414
6415 /* Note, that this wakeup is only for marginal crossed SYN case.
6416 * Passively open sockets are not waked up, because
6417 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6418 */
6419 if (sk->sk_socket)
6420 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6421
6422 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6423 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6424 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6425
6426 if (tp->rx_opt.tstamp_ok)
6427 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6428
6429 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6430 tcp_update_pacing_rate(sk);
6431
6432 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6433 tp->lsndtime = tcp_jiffies32;
6434
6435 tcp_initialize_rcv_mss(sk);
6436 tcp_fast_path_on(tp);
6437 break;
6438
6439 case TCP_FIN_WAIT1: {
6440 int tmo;
6441
6442 if (req)
6443 tcp_rcv_synrecv_state_fastopen(sk);
6444
6445 if (tp->snd_una != tp->write_seq)
6446 break;
6447
6448 tcp_set_state(sk, TCP_FIN_WAIT2);
6449 sk->sk_shutdown |= SEND_SHUTDOWN;
6450
6451 sk_dst_confirm(sk);
6452
6453 if (!sock_flag(sk, SOCK_DEAD)) {
6454 /* Wake up lingering close() */
6455 sk->sk_state_change(sk);
6456 break;
6457 }
6458
6459 if (tp->linger2 < 0) {
6460 tcp_done(sk);
6461 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6462 return 1;
6463 }
6464 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6465 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6466 /* Receive out of order FIN after close() */
6467 if (tp->syn_fastopen && th->fin)
6468 tcp_fastopen_active_disable(sk);
6469 tcp_done(sk);
6470 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6471 return 1;
6472 }
6473
6474 tmo = tcp_fin_time(sk);
6475 if (tmo > TCP_TIMEWAIT_LEN) {
6476 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6477 } else if (th->fin || sock_owned_by_user(sk)) {
6478 /* Bad case. We could lose such FIN otherwise.
6479 * It is not a big problem, but it looks confusing
6480 * and not so rare event. We still can lose it now,
6481 * if it spins in bh_lock_sock(), but it is really
6482 * marginal case.
6483 */
6484 inet_csk_reset_keepalive_timer(sk, tmo);
6485 } else {
6486 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6487 goto discard;
6488 }
6489 break;
6490 }
6491
6492 case TCP_CLOSING:
6493 if (tp->snd_una == tp->write_seq) {
6494 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6495 goto discard;
6496 }
6497 break;
6498
6499 case TCP_LAST_ACK:
6500 if (tp->snd_una == tp->write_seq) {
6501 tcp_update_metrics(sk);
6502 tcp_done(sk);
6503 goto discard;
6504 }
6505 break;
6506 }
6507
6508 /* step 6: check the URG bit */
6509 tcp_urg(sk, skb, th);
6510
6511 /* step 7: process the segment text */
6512 switch (sk->sk_state) {
6513 case TCP_CLOSE_WAIT:
6514 case TCP_CLOSING:
6515 case TCP_LAST_ACK:
6516 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6517 if (sk_is_mptcp(sk))
6518 mptcp_incoming_options(sk, skb);
6519 break;
6520 }
6521 fallthrough;
6522 case TCP_FIN_WAIT1:
6523 case TCP_FIN_WAIT2:
6524 /* RFC 793 says to queue data in these states,
6525 * RFC 1122 says we MUST send a reset.
6526 * BSD 4.4 also does reset.
6527 */
6528 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6529 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6530 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6532 tcp_reset(sk);
6533 return 1;
6534 }
6535 }
6536 fallthrough;
6537 case TCP_ESTABLISHED:
6538 tcp_data_queue(sk, skb);
6539 queued = 1;
6540 break;
6541 }
6542
6543 /* tcp_data could move socket to TIME-WAIT */
6544 if (sk->sk_state != TCP_CLOSE) {
6545 tcp_data_snd_check(sk);
6546 tcp_ack_snd_check(sk);
6547 }
6548
6549 if (!queued) {
6550 discard:
6551 tcp_drop(sk, skb);
6552 }
6553 return 0;
6554 }
6555 EXPORT_SYMBOL(tcp_rcv_state_process);
6556
pr_drop_req(struct request_sock * req,__u16 port,int family)6557 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6558 {
6559 struct inet_request_sock *ireq = inet_rsk(req);
6560
6561 if (family == AF_INET)
6562 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6563 &ireq->ir_rmt_addr, port);
6564 #if IS_ENABLED(CONFIG_IPV6)
6565 else if (family == AF_INET6)
6566 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6567 &ireq->ir_v6_rmt_addr, port);
6568 #endif
6569 }
6570
6571 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6572 *
6573 * If we receive a SYN packet with these bits set, it means a
6574 * network is playing bad games with TOS bits. In order to
6575 * avoid possible false congestion notifications, we disable
6576 * TCP ECN negotiation.
6577 *
6578 * Exception: tcp_ca wants ECN. This is required for DCTCP
6579 * congestion control: Linux DCTCP asserts ECT on all packets,
6580 * including SYN, which is most optimal solution; however,
6581 * others, such as FreeBSD do not.
6582 *
6583 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6584 * set, indicating the use of a future TCP extension (such as AccECN). See
6585 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6586 * extensions.
6587 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6588 static void tcp_ecn_create_request(struct request_sock *req,
6589 const struct sk_buff *skb,
6590 const struct sock *listen_sk,
6591 const struct dst_entry *dst)
6592 {
6593 const struct tcphdr *th = tcp_hdr(skb);
6594 const struct net *net = sock_net(listen_sk);
6595 bool th_ecn = th->ece && th->cwr;
6596 bool ect, ecn_ok;
6597 u32 ecn_ok_dst;
6598
6599 if (!th_ecn)
6600 return;
6601
6602 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6603 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6604 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6605
6606 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6607 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6608 tcp_bpf_ca_needs_ecn((struct sock *)req))
6609 inet_rsk(req)->ecn_ok = 1;
6610 }
6611
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6612 static void tcp_openreq_init(struct request_sock *req,
6613 const struct tcp_options_received *rx_opt,
6614 struct sk_buff *skb, const struct sock *sk)
6615 {
6616 struct inet_request_sock *ireq = inet_rsk(req);
6617
6618 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6619 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6620 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6621 tcp_rsk(req)->snt_synack = 0;
6622 tcp_rsk(req)->last_oow_ack_time = 0;
6623 req->mss = rx_opt->mss_clamp;
6624 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6625 ireq->tstamp_ok = rx_opt->tstamp_ok;
6626 ireq->sack_ok = rx_opt->sack_ok;
6627 ireq->snd_wscale = rx_opt->snd_wscale;
6628 ireq->wscale_ok = rx_opt->wscale_ok;
6629 ireq->acked = 0;
6630 ireq->ecn_ok = 0;
6631 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6632 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6633 ireq->ir_mark = inet_request_mark(sk, skb);
6634 #if IS_ENABLED(CONFIG_SMC)
6635 ireq->smc_ok = rx_opt->smc_ok;
6636 #endif
6637 }
6638
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6639 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6640 struct sock *sk_listener,
6641 bool attach_listener)
6642 {
6643 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6644 attach_listener);
6645
6646 if (req) {
6647 struct inet_request_sock *ireq = inet_rsk(req);
6648
6649 ireq->ireq_opt = NULL;
6650 #if IS_ENABLED(CONFIG_IPV6)
6651 ireq->pktopts = NULL;
6652 #endif
6653 atomic64_set(&ireq->ir_cookie, 0);
6654 ireq->ireq_state = TCP_NEW_SYN_RECV;
6655 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6656 ireq->ireq_family = sk_listener->sk_family;
6657 }
6658
6659 return req;
6660 }
6661 EXPORT_SYMBOL(inet_reqsk_alloc);
6662
6663 /*
6664 * Return true if a syncookie should be sent
6665 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6666 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6667 {
6668 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6669 const char *msg = "Dropping request";
6670 bool want_cookie = false;
6671 struct net *net = sock_net(sk);
6672
6673 #ifdef CONFIG_SYN_COOKIES
6674 if (net->ipv4.sysctl_tcp_syncookies) {
6675 msg = "Sending cookies";
6676 want_cookie = true;
6677 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6678 } else
6679 #endif
6680 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6681
6682 if (!queue->synflood_warned &&
6683 net->ipv4.sysctl_tcp_syncookies != 2 &&
6684 xchg(&queue->synflood_warned, 1) == 0)
6685 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6686 proto, sk->sk_num, msg);
6687
6688 return want_cookie;
6689 }
6690
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6691 static void tcp_reqsk_record_syn(const struct sock *sk,
6692 struct request_sock *req,
6693 const struct sk_buff *skb)
6694 {
6695 if (tcp_sk(sk)->save_syn) {
6696 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6697 struct saved_syn *saved_syn;
6698 u32 mac_hdrlen;
6699 void *base;
6700
6701 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6702 base = skb_mac_header(skb);
6703 mac_hdrlen = skb_mac_header_len(skb);
6704 len += mac_hdrlen;
6705 } else {
6706 base = skb_network_header(skb);
6707 mac_hdrlen = 0;
6708 }
6709
6710 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6711 GFP_ATOMIC);
6712 if (saved_syn) {
6713 saved_syn->mac_hdrlen = mac_hdrlen;
6714 saved_syn->network_hdrlen = skb_network_header_len(skb);
6715 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6716 memcpy(saved_syn->data, base, len);
6717 req->saved_syn = saved_syn;
6718 }
6719 }
6720 }
6721
6722 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6723 * used for SYN cookie generation.
6724 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6725 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6726 const struct tcp_request_sock_ops *af_ops,
6727 struct sock *sk, struct tcphdr *th)
6728 {
6729 struct tcp_sock *tp = tcp_sk(sk);
6730 u16 mss;
6731
6732 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6733 !inet_csk_reqsk_queue_is_full(sk))
6734 return 0;
6735
6736 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6737 return 0;
6738
6739 if (sk_acceptq_is_full(sk)) {
6740 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6741 return 0;
6742 }
6743
6744 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6745 if (!mss)
6746 mss = af_ops->mss_clamp;
6747
6748 return mss;
6749 }
6750 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6751
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6752 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6753 const struct tcp_request_sock_ops *af_ops,
6754 struct sock *sk, struct sk_buff *skb)
6755 {
6756 struct tcp_fastopen_cookie foc = { .len = -1 };
6757 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6758 struct tcp_options_received tmp_opt;
6759 struct tcp_sock *tp = tcp_sk(sk);
6760 struct net *net = sock_net(sk);
6761 struct sock *fastopen_sk = NULL;
6762 struct request_sock *req;
6763 bool want_cookie = false;
6764 struct dst_entry *dst;
6765 struct flowi fl;
6766
6767 /* TW buckets are converted to open requests without
6768 * limitations, they conserve resources and peer is
6769 * evidently real one.
6770 */
6771 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6772 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6773 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6774 if (!want_cookie)
6775 goto drop;
6776 }
6777
6778 if (sk_acceptq_is_full(sk)) {
6779 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6780 goto drop;
6781 }
6782
6783 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6784 if (!req)
6785 goto drop;
6786
6787 req->syncookie = want_cookie;
6788 tcp_rsk(req)->af_specific = af_ops;
6789 tcp_rsk(req)->ts_off = 0;
6790 #if IS_ENABLED(CONFIG_MPTCP)
6791 tcp_rsk(req)->is_mptcp = 0;
6792 #endif
6793
6794 tcp_clear_options(&tmp_opt);
6795 tmp_opt.mss_clamp = af_ops->mss_clamp;
6796 tmp_opt.user_mss = tp->rx_opt.user_mss;
6797 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6798 want_cookie ? NULL : &foc);
6799
6800 if (want_cookie && !tmp_opt.saw_tstamp)
6801 tcp_clear_options(&tmp_opt);
6802
6803 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6804 tmp_opt.smc_ok = 0;
6805
6806 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6807 tcp_openreq_init(req, &tmp_opt, skb, sk);
6808 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6809
6810 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6811 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6812
6813 af_ops->init_req(req, sk, skb);
6814
6815 if (security_inet_conn_request(sk, skb, req))
6816 goto drop_and_free;
6817
6818 if (tmp_opt.tstamp_ok)
6819 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6820
6821 dst = af_ops->route_req(sk, &fl, req);
6822 if (!dst)
6823 goto drop_and_free;
6824
6825 if (!want_cookie && !isn) {
6826 /* Kill the following clause, if you dislike this way. */
6827 if (!net->ipv4.sysctl_tcp_syncookies &&
6828 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6829 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6830 !tcp_peer_is_proven(req, dst)) {
6831 /* Without syncookies last quarter of
6832 * backlog is filled with destinations,
6833 * proven to be alive.
6834 * It means that we continue to communicate
6835 * to destinations, already remembered
6836 * to the moment of synflood.
6837 */
6838 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6839 rsk_ops->family);
6840 goto drop_and_release;
6841 }
6842
6843 isn = af_ops->init_seq(skb);
6844 }
6845
6846 tcp_ecn_create_request(req, skb, sk, dst);
6847
6848 if (want_cookie) {
6849 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6850 if (!tmp_opt.tstamp_ok)
6851 inet_rsk(req)->ecn_ok = 0;
6852 }
6853
6854 tcp_rsk(req)->snt_isn = isn;
6855 tcp_rsk(req)->txhash = net_tx_rndhash();
6856 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6857 tcp_openreq_init_rwin(req, sk, dst);
6858 sk_rx_queue_set(req_to_sk(req), skb);
6859 if (!want_cookie) {
6860 tcp_reqsk_record_syn(sk, req, skb);
6861 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6862 }
6863 if (fastopen_sk) {
6864 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6865 &foc, TCP_SYNACK_FASTOPEN, skb);
6866 /* Add the child socket directly into the accept queue */
6867 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6868 reqsk_fastopen_remove(fastopen_sk, req, false);
6869 bh_unlock_sock(fastopen_sk);
6870 sock_put(fastopen_sk);
6871 goto drop_and_free;
6872 }
6873 sk->sk_data_ready(sk);
6874 bh_unlock_sock(fastopen_sk);
6875 sock_put(fastopen_sk);
6876 } else {
6877 tcp_rsk(req)->tfo_listener = false;
6878 if (!want_cookie)
6879 inet_csk_reqsk_queue_hash_add(sk, req,
6880 tcp_timeout_init((struct sock *)req));
6881 af_ops->send_synack(sk, dst, &fl, req, &foc,
6882 !want_cookie ? TCP_SYNACK_NORMAL :
6883 TCP_SYNACK_COOKIE,
6884 skb);
6885 if (want_cookie) {
6886 reqsk_free(req);
6887 return 0;
6888 }
6889 }
6890 reqsk_put(req);
6891 return 0;
6892
6893 drop_and_release:
6894 dst_release(dst);
6895 drop_and_free:
6896 __reqsk_free(req);
6897 drop:
6898 tcp_listendrop(sk);
6899 return 0;
6900 }
6901 EXPORT_SYMBOL(tcp_conn_request);
6902