1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include "ufshcd.h"
20 #include "ufs_quirks.h"
21 #include "unipro.h"
22 #include "ufs-sysfs.h"
23 #include "ufs_bsg.h"
24 #include "ufshcd-crypto.h"
25 #include <asm/unaligned.h>
26 #include <linux/blkdev.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/ufs.h>
30
31 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
32 UTP_TASK_REQ_COMPL |\
33 UFSHCD_ERROR_MASK)
34 /* UIC command timeout, unit: ms */
35 #define UIC_CMD_TIMEOUT 500
36
37 /* NOP OUT retries waiting for NOP IN response */
38 #define NOP_OUT_RETRIES 10
39 /* Timeout after 50 msecs if NOP OUT hangs without response */
40 #define NOP_OUT_TIMEOUT 50 /* msecs */
41
42 /* Query request retries */
43 #define QUERY_REQ_RETRIES 3
44 /* Query request timeout */
45 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
46
47 /* Task management command timeout */
48 #define TM_CMD_TIMEOUT 100 /* msecs */
49
50 /* maximum number of retries for a general UIC command */
51 #define UFS_UIC_COMMAND_RETRIES 3
52
53 /* maximum number of link-startup retries */
54 #define DME_LINKSTARTUP_RETRIES 3
55
56 /* Maximum retries for Hibern8 enter */
57 #define UIC_HIBERN8_ENTER_RETRIES 3
58
59 /* maximum number of reset retries before giving up */
60 #define MAX_HOST_RESET_RETRIES 5
61
62 /* Expose the flag value from utp_upiu_query.value */
63 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
64
65 /* Interrupt aggregation default timeout, unit: 40us */
66 #define INT_AGGR_DEF_TO 0x02
67
68 /* default delay of autosuspend: 2000 ms */
69 #define RPM_AUTOSUSPEND_DELAY_MS 2000
70
71 /* Default delay of RPM device flush delayed work */
72 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
73
74 /* Default value of wait time before gating device ref clock */
75 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
76
77 /* Polling time to wait for fDeviceInit */
78 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
79
80 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
81 ({ \
82 int _ret; \
83 if (_on) \
84 _ret = ufshcd_enable_vreg(_dev, _vreg); \
85 else \
86 _ret = ufshcd_disable_vreg(_dev, _vreg); \
87 _ret; \
88 })
89
90 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
91 size_t __len = (len); \
92 print_hex_dump(KERN_ERR, prefix_str, \
93 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
94 16, 4, buf, __len, false); \
95 } while (0)
96
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)97 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
98 const char *prefix)
99 {
100 u32 *regs;
101 size_t pos;
102
103 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
104 return -EINVAL;
105
106 regs = kzalloc(len, GFP_ATOMIC);
107 if (!regs)
108 return -ENOMEM;
109
110 for (pos = 0; pos < len; pos += 4)
111 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
112
113 ufshcd_hex_dump(prefix, regs, len);
114 kfree(regs);
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
119
120 enum {
121 UFSHCD_MAX_CHANNEL = 0,
122 UFSHCD_MAX_ID = 1,
123 UFSHCD_CMD_PER_LUN = 32,
124 UFSHCD_CAN_QUEUE = 32,
125 };
126
127 /* UFSHCD states */
128 enum {
129 UFSHCD_STATE_RESET,
130 UFSHCD_STATE_ERROR,
131 UFSHCD_STATE_OPERATIONAL,
132 UFSHCD_STATE_EH_SCHEDULED_FATAL,
133 UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
134 };
135
136 /* UFSHCD error handling flags */
137 enum {
138 UFSHCD_EH_IN_PROGRESS = (1 << 0),
139 };
140
141 /* UFSHCD UIC layer error flags */
142 enum {
143 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
144 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
145 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
146 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
147 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
148 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
149 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
150 };
151
152 #define ufshcd_set_eh_in_progress(h) \
153 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
154 #define ufshcd_eh_in_progress(h) \
155 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
156 #define ufshcd_clear_eh_in_progress(h) \
157 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
158
159 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
160 {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
161 {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
162 {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
163 {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
164 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
165 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
166 };
167
168 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)169 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
170 {
171 return ufs_pm_lvl_states[lvl].dev_state;
172 }
173
174 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)175 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
176 {
177 return ufs_pm_lvl_states[lvl].link_state;
178 }
179
180 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)181 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
182 enum uic_link_state link_state)
183 {
184 enum ufs_pm_level lvl;
185
186 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
187 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
188 (ufs_pm_lvl_states[lvl].link_state == link_state))
189 return lvl;
190 }
191
192 /* if no match found, return the level 0 */
193 return UFS_PM_LVL_0;
194 }
195
196 static struct ufs_dev_fix ufs_fixups[] = {
197 /* UFS cards deviations table */
198 UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
199 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
200 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
201 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
202 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
203 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
204 UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
205 UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
206 UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
207 UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
208 UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
209 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
210 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
211 UFS_DEVICE_QUIRK_PA_TACTIVATE),
212 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
213 UFS_DEVICE_QUIRK_PA_TACTIVATE),
214 END_FIX
215 };
216
217 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
218 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
219 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
220 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
222 static void ufshcd_hba_exit(struct ufs_hba *hba);
223 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
224 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
225 bool skip_ref_clk);
226 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
227 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
228 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
229 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
230 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
231 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
232 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
233 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
234 static irqreturn_t ufshcd_intr(int irq, void *__hba);
235 static int ufshcd_change_power_mode(struct ufs_hba *hba,
236 struct ufs_pa_layer_attr *pwr_mode);
237 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
238 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
239 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
240 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
241 struct ufs_vreg *vreg);
242 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
243 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
244 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
245 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
246 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
247 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
248
ufshcd_valid_tag(struct ufs_hba * hba,int tag)249 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
250 {
251 return tag >= 0 && tag < hba->nutrs;
252 }
253
ufshcd_enable_irq(struct ufs_hba * hba)254 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
255 {
256 if (!hba->is_irq_enabled) {
257 enable_irq(hba->irq);
258 hba->is_irq_enabled = true;
259 }
260 }
261
ufshcd_disable_irq(struct ufs_hba * hba)262 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
263 {
264 if (hba->is_irq_enabled) {
265 disable_irq(hba->irq);
266 hba->is_irq_enabled = false;
267 }
268 }
269
ufshcd_wb_config(struct ufs_hba * hba)270 static inline void ufshcd_wb_config(struct ufs_hba *hba)
271 {
272 int ret;
273
274 if (!ufshcd_is_wb_allowed(hba))
275 return;
276
277 ret = ufshcd_wb_ctrl(hba, true);
278 if (ret)
279 dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
280 else
281 dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
282 ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
283 if (ret)
284 dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
285 __func__, ret);
286 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
287 ufshcd_wb_toggle_flush(hba, true);
288 }
289
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)290 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
291 {
292 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
293 scsi_unblock_requests(hba->host);
294 }
295
ufshcd_scsi_block_requests(struct ufs_hba * hba)296 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
297 {
298 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
299 scsi_block_requests(hba->host);
300 }
301
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)302 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
303 const char *str)
304 {
305 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
306
307 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
308 }
309
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)310 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
311 const char *str)
312 {
313 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
314
315 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
316 }
317
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)318 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
319 const char *str)
320 {
321 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
322
323 trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
324 &descp->input_param1);
325 }
326
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)327 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
328 struct uic_command *ucmd,
329 const char *str)
330 {
331 u32 cmd;
332
333 if (!trace_ufshcd_uic_command_enabled())
334 return;
335
336 if (!strcmp(str, "send"))
337 cmd = ucmd->command;
338 else
339 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
340
341 trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
342 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
343 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
344 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
345 }
346
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)347 static void ufshcd_add_command_trace(struct ufs_hba *hba,
348 unsigned int tag, const char *str)
349 {
350 sector_t lba = -1;
351 u8 opcode = 0;
352 u32 intr, doorbell;
353 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
354 struct scsi_cmnd *cmd = lrbp->cmd;
355 int transfer_len = -1;
356
357 if (!trace_ufshcd_command_enabled()) {
358 /* trace UPIU W/O tracing command */
359 if (cmd)
360 ufshcd_add_cmd_upiu_trace(hba, tag, str);
361 return;
362 }
363
364 if (cmd) { /* data phase exists */
365 /* trace UPIU also */
366 ufshcd_add_cmd_upiu_trace(hba, tag, str);
367 opcode = cmd->cmnd[0];
368 if ((opcode == READ_10) || (opcode == WRITE_10)) {
369 /*
370 * Currently we only fully trace read(10) and write(10)
371 * commands
372 */
373 if (cmd->request && cmd->request->bio)
374 lba = cmd->request->bio->bi_iter.bi_sector;
375 transfer_len = be32_to_cpu(
376 lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
377 }
378 }
379
380 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
381 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
382 trace_ufshcd_command(dev_name(hba->dev), str, tag,
383 doorbell, transfer_len, intr, lba, opcode);
384 }
385
ufshcd_print_clk_freqs(struct ufs_hba * hba)386 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
387 {
388 struct ufs_clk_info *clki;
389 struct list_head *head = &hba->clk_list_head;
390
391 if (list_empty(head))
392 return;
393
394 list_for_each_entry(clki, head, list) {
395 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
396 clki->max_freq)
397 dev_err(hba->dev, "clk: %s, rate: %u\n",
398 clki->name, clki->curr_freq);
399 }
400 }
401
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)402 static void ufshcd_print_err_hist(struct ufs_hba *hba,
403 struct ufs_err_reg_hist *err_hist,
404 char *err_name)
405 {
406 int i;
407 bool found = false;
408
409 for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
410 int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
411
412 if (err_hist->tstamp[p] == 0)
413 continue;
414 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
415 err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
416 found = true;
417 }
418
419 if (!found)
420 dev_err(hba->dev, "No record of %s\n", err_name);
421 }
422
ufshcd_print_host_regs(struct ufs_hba * hba)423 static void ufshcd_print_host_regs(struct ufs_hba *hba)
424 {
425 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
426
427 ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
428 ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
429 ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
430 ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
431 ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
432 ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
433 "auto_hibern8_err");
434 ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
435 ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
436 "link_startup_fail");
437 ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
438 ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
439 "suspend_fail");
440 ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
441 ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
442 ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
443
444 ufshcd_vops_dbg_register_dump(hba);
445 }
446
447 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)448 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
449 {
450 struct ufshcd_lrb *lrbp;
451 int prdt_length;
452 int tag;
453
454 for_each_set_bit(tag, &bitmap, hba->nutrs) {
455 lrbp = &hba->lrb[tag];
456
457 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
458 tag, ktime_to_us(lrbp->issue_time_stamp));
459 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
460 tag, ktime_to_us(lrbp->compl_time_stamp));
461 dev_err(hba->dev,
462 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
463 tag, (u64)lrbp->utrd_dma_addr);
464
465 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
466 sizeof(struct utp_transfer_req_desc));
467 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
468 (u64)lrbp->ucd_req_dma_addr);
469 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
470 sizeof(struct utp_upiu_req));
471 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
472 (u64)lrbp->ucd_rsp_dma_addr);
473 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
474 sizeof(struct utp_upiu_rsp));
475
476 prdt_length = le16_to_cpu(
477 lrbp->utr_descriptor_ptr->prd_table_length);
478 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
479 prdt_length /= sizeof(struct ufshcd_sg_entry);
480
481 dev_err(hba->dev,
482 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
483 tag, prdt_length,
484 (u64)lrbp->ucd_prdt_dma_addr);
485
486 if (pr_prdt)
487 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
488 sizeof(struct ufshcd_sg_entry) * prdt_length);
489 }
490 }
491
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)492 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
493 {
494 int tag;
495
496 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
497 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
498
499 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
500 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
501 }
502 }
503
ufshcd_print_host_state(struct ufs_hba * hba)504 static void ufshcd_print_host_state(struct ufs_hba *hba)
505 {
506 struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
507
508 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
509 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
510 hba->outstanding_reqs, hba->outstanding_tasks);
511 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
512 hba->saved_err, hba->saved_uic_err);
513 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
514 hba->curr_dev_pwr_mode, hba->uic_link_state);
515 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
516 hba->pm_op_in_progress, hba->is_sys_suspended);
517 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
518 hba->auto_bkops_enabled, hba->host->host_self_blocked);
519 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
520 dev_err(hba->dev,
521 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
522 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
523 hba->ufs_stats.hibern8_exit_cnt);
524 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
525 ktime_to_us(hba->ufs_stats.last_intr_ts),
526 hba->ufs_stats.last_intr_status);
527 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
528 hba->eh_flags, hba->req_abort_count);
529 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
530 hba->ufs_version, hba->capabilities, hba->caps);
531 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
532 hba->dev_quirks);
533 if (sdev_ufs)
534 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
535 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
536
537 ufshcd_print_clk_freqs(hba);
538 }
539
540 /**
541 * ufshcd_print_pwr_info - print power params as saved in hba
542 * power info
543 * @hba: per-adapter instance
544 */
ufshcd_print_pwr_info(struct ufs_hba * hba)545 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
546 {
547 static const char * const names[] = {
548 "INVALID MODE",
549 "FAST MODE",
550 "SLOW_MODE",
551 "INVALID MODE",
552 "FASTAUTO_MODE",
553 "SLOWAUTO_MODE",
554 "INVALID MODE",
555 };
556
557 dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
558 __func__,
559 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
560 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
561 names[hba->pwr_info.pwr_rx],
562 names[hba->pwr_info.pwr_tx],
563 hba->pwr_info.hs_rate);
564 }
565
ufshcd_delay_us(unsigned long us,unsigned long tolerance)566 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
567 {
568 if (!us)
569 return;
570
571 if (us < 10)
572 udelay(us);
573 else
574 usleep_range(us, us + tolerance);
575 }
576 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
577
578 /**
579 * ufshcd_wait_for_register - wait for register value to change
580 * @hba: per-adapter interface
581 * @reg: mmio register offset
582 * @mask: mask to apply to the read register value
583 * @val: value to wait for
584 * @interval_us: polling interval in microseconds
585 * @timeout_ms: timeout in milliseconds
586 *
587 * Return:
588 * -ETIMEDOUT on error, zero on success.
589 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)590 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
591 u32 val, unsigned long interval_us,
592 unsigned long timeout_ms)
593 {
594 int err = 0;
595 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
596
597 /* ignore bits that we don't intend to wait on */
598 val = val & mask;
599
600 while ((ufshcd_readl(hba, reg) & mask) != val) {
601 usleep_range(interval_us, interval_us + 50);
602 if (time_after(jiffies, timeout)) {
603 if ((ufshcd_readl(hba, reg) & mask) != val)
604 err = -ETIMEDOUT;
605 break;
606 }
607 }
608
609 return err;
610 }
611
612 /**
613 * ufshcd_get_intr_mask - Get the interrupt bit mask
614 * @hba: Pointer to adapter instance
615 *
616 * Returns interrupt bit mask per version
617 */
ufshcd_get_intr_mask(struct ufs_hba * hba)618 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
619 {
620 u32 intr_mask = 0;
621
622 switch (hba->ufs_version) {
623 case UFSHCI_VERSION_10:
624 intr_mask = INTERRUPT_MASK_ALL_VER_10;
625 break;
626 case UFSHCI_VERSION_11:
627 case UFSHCI_VERSION_20:
628 intr_mask = INTERRUPT_MASK_ALL_VER_11;
629 break;
630 case UFSHCI_VERSION_21:
631 default:
632 intr_mask = INTERRUPT_MASK_ALL_VER_21;
633 break;
634 }
635
636 return intr_mask;
637 }
638
639 /**
640 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
641 * @hba: Pointer to adapter instance
642 *
643 * Returns UFSHCI version supported by the controller
644 */
ufshcd_get_ufs_version(struct ufs_hba * hba)645 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
646 {
647 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
648 return ufshcd_vops_get_ufs_hci_version(hba);
649
650 return ufshcd_readl(hba, REG_UFS_VERSION);
651 }
652
653 /**
654 * ufshcd_is_device_present - Check if any device connected to
655 * the host controller
656 * @hba: pointer to adapter instance
657 *
658 * Returns true if device present, false if no device detected
659 */
ufshcd_is_device_present(struct ufs_hba * hba)660 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
661 {
662 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
663 DEVICE_PRESENT) ? true : false;
664 }
665
666 /**
667 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
668 * @lrbp: pointer to local command reference block
669 *
670 * This function is used to get the OCS field from UTRD
671 * Returns the OCS field in the UTRD
672 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)673 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
674 {
675 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
676 }
677
678 /**
679 * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
680 * @hba: per adapter instance
681 * @pos: position of the bit to be cleared
682 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)683 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
684 {
685 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
686 ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
687 else
688 ufshcd_writel(hba, ~(1 << pos),
689 REG_UTP_TRANSFER_REQ_LIST_CLEAR);
690 }
691
692 /**
693 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
694 * @hba: per adapter instance
695 * @pos: position of the bit to be cleared
696 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)697 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
698 {
699 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
700 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
701 else
702 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
703 }
704
705 /**
706 * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
707 * @hba: per adapter instance
708 * @tag: position of the bit to be cleared
709 */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)710 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
711 {
712 __clear_bit(tag, &hba->outstanding_reqs);
713 }
714
715 /**
716 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
717 * @reg: Register value of host controller status
718 *
719 * Returns integer, 0 on Success and positive value if failed
720 */
ufshcd_get_lists_status(u32 reg)721 static inline int ufshcd_get_lists_status(u32 reg)
722 {
723 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
724 }
725
726 /**
727 * ufshcd_get_uic_cmd_result - Get the UIC command result
728 * @hba: Pointer to adapter instance
729 *
730 * This function gets the result of UIC command completion
731 * Returns 0 on success, non zero value on error
732 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)733 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
734 {
735 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
736 MASK_UIC_COMMAND_RESULT;
737 }
738
739 /**
740 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
741 * @hba: Pointer to adapter instance
742 *
743 * This function gets UIC command argument3
744 * Returns 0 on success, non zero value on error
745 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)746 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
747 {
748 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
749 }
750
751 /**
752 * ufshcd_get_req_rsp - returns the TR response transaction type
753 * @ucd_rsp_ptr: pointer to response UPIU
754 */
755 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)756 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
757 {
758 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
759 }
760
761 /**
762 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
763 * @ucd_rsp_ptr: pointer to response UPIU
764 *
765 * This function gets the response status and scsi_status from response UPIU
766 * Returns the response result code.
767 */
768 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)769 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
770 {
771 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
772 }
773
774 /*
775 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
776 * from response UPIU
777 * @ucd_rsp_ptr: pointer to response UPIU
778 *
779 * Return the data segment length.
780 */
781 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)782 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
783 {
784 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
785 MASK_RSP_UPIU_DATA_SEG_LEN;
786 }
787
788 /**
789 * ufshcd_is_exception_event - Check if the device raised an exception event
790 * @ucd_rsp_ptr: pointer to response UPIU
791 *
792 * The function checks if the device raised an exception event indicated in
793 * the Device Information field of response UPIU.
794 *
795 * Returns true if exception is raised, false otherwise.
796 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)797 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
798 {
799 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
800 MASK_RSP_EXCEPTION_EVENT ? true : false;
801 }
802
803 /**
804 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
805 * @hba: per adapter instance
806 */
807 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)808 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
809 {
810 ufshcd_writel(hba, INT_AGGR_ENABLE |
811 INT_AGGR_COUNTER_AND_TIMER_RESET,
812 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
813 }
814
815 /**
816 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
817 * @hba: per adapter instance
818 * @cnt: Interrupt aggregation counter threshold
819 * @tmout: Interrupt aggregation timeout value
820 */
821 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)822 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
823 {
824 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
825 INT_AGGR_COUNTER_THLD_VAL(cnt) |
826 INT_AGGR_TIMEOUT_VAL(tmout),
827 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
828 }
829
830 /**
831 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
832 * @hba: per adapter instance
833 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)834 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
835 {
836 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
837 }
838
839 /**
840 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
841 * When run-stop registers are set to 1, it indicates the
842 * host controller that it can process the requests
843 * @hba: per adapter instance
844 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)845 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
846 {
847 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
848 REG_UTP_TASK_REQ_LIST_RUN_STOP);
849 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
850 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
851 }
852
853 /**
854 * ufshcd_hba_start - Start controller initialization sequence
855 * @hba: per adapter instance
856 */
ufshcd_hba_start(struct ufs_hba * hba)857 static inline void ufshcd_hba_start(struct ufs_hba *hba)
858 {
859 u32 val = CONTROLLER_ENABLE;
860
861 if (ufshcd_crypto_enable(hba))
862 val |= CRYPTO_GENERAL_ENABLE;
863
864 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
865 }
866
867 /**
868 * ufshcd_is_hba_active - Get controller state
869 * @hba: per adapter instance
870 *
871 * Returns false if controller is active, true otherwise
872 */
ufshcd_is_hba_active(struct ufs_hba * hba)873 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
874 {
875 return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
876 ? false : true;
877 }
878
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)879 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
880 {
881 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
882 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
883 (hba->ufs_version == UFSHCI_VERSION_11))
884 return UFS_UNIPRO_VER_1_41;
885 else
886 return UFS_UNIPRO_VER_1_6;
887 }
888 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
889
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)890 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
891 {
892 /*
893 * If both host and device support UniPro ver1.6 or later, PA layer
894 * parameters tuning happens during link startup itself.
895 *
896 * We can manually tune PA layer parameters if either host or device
897 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
898 * logic simple, we will only do manual tuning if local unipro version
899 * doesn't support ver1.6 or later.
900 */
901 if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
902 return true;
903 else
904 return false;
905 }
906
907 /**
908 * ufshcd_set_clk_freq - set UFS controller clock frequencies
909 * @hba: per adapter instance
910 * @scale_up: If True, set max possible frequency othewise set low frequency
911 *
912 * Returns 0 if successful
913 * Returns < 0 for any other errors
914 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)915 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
916 {
917 int ret = 0;
918 struct ufs_clk_info *clki;
919 struct list_head *head = &hba->clk_list_head;
920
921 if (list_empty(head))
922 goto out;
923
924 list_for_each_entry(clki, head, list) {
925 if (!IS_ERR_OR_NULL(clki->clk)) {
926 if (scale_up && clki->max_freq) {
927 if (clki->curr_freq == clki->max_freq)
928 continue;
929
930 ret = clk_set_rate(clki->clk, clki->max_freq);
931 if (ret) {
932 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
933 __func__, clki->name,
934 clki->max_freq, ret);
935 break;
936 }
937 trace_ufshcd_clk_scaling(dev_name(hba->dev),
938 "scaled up", clki->name,
939 clki->curr_freq,
940 clki->max_freq);
941
942 clki->curr_freq = clki->max_freq;
943
944 } else if (!scale_up && clki->min_freq) {
945 if (clki->curr_freq == clki->min_freq)
946 continue;
947
948 ret = clk_set_rate(clki->clk, clki->min_freq);
949 if (ret) {
950 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
951 __func__, clki->name,
952 clki->min_freq, ret);
953 break;
954 }
955 trace_ufshcd_clk_scaling(dev_name(hba->dev),
956 "scaled down", clki->name,
957 clki->curr_freq,
958 clki->min_freq);
959 clki->curr_freq = clki->min_freq;
960 }
961 }
962 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
963 clki->name, clk_get_rate(clki->clk));
964 }
965
966 out:
967 return ret;
968 }
969
970 /**
971 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
972 * @hba: per adapter instance
973 * @scale_up: True if scaling up and false if scaling down
974 *
975 * Returns 0 if successful
976 * Returns < 0 for any other errors
977 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)978 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
979 {
980 int ret = 0;
981 ktime_t start = ktime_get();
982
983 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
984 if (ret)
985 goto out;
986
987 ret = ufshcd_set_clk_freq(hba, scale_up);
988 if (ret)
989 goto out;
990
991 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
992 if (ret)
993 ufshcd_set_clk_freq(hba, !scale_up);
994
995 out:
996 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
997 (scale_up ? "up" : "down"),
998 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
999 return ret;
1000 }
1001
1002 /**
1003 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1004 * @hba: per adapter instance
1005 * @scale_up: True if scaling up and false if scaling down
1006 *
1007 * Returns true if scaling is required, false otherwise.
1008 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1009 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1010 bool scale_up)
1011 {
1012 struct ufs_clk_info *clki;
1013 struct list_head *head = &hba->clk_list_head;
1014
1015 if (list_empty(head))
1016 return false;
1017
1018 list_for_each_entry(clki, head, list) {
1019 if (!IS_ERR_OR_NULL(clki->clk)) {
1020 if (scale_up && clki->max_freq) {
1021 if (clki->curr_freq == clki->max_freq)
1022 continue;
1023 return true;
1024 } else if (!scale_up && clki->min_freq) {
1025 if (clki->curr_freq == clki->min_freq)
1026 continue;
1027 return true;
1028 }
1029 }
1030 }
1031
1032 return false;
1033 }
1034
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1035 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1036 u64 wait_timeout_us)
1037 {
1038 unsigned long flags;
1039 int ret = 0;
1040 u32 tm_doorbell;
1041 u32 tr_doorbell;
1042 bool timeout = false, do_last_check = false;
1043 ktime_t start;
1044
1045 ufshcd_hold(hba, false);
1046 spin_lock_irqsave(hba->host->host_lock, flags);
1047 /*
1048 * Wait for all the outstanding tasks/transfer requests.
1049 * Verify by checking the doorbell registers are clear.
1050 */
1051 start = ktime_get();
1052 do {
1053 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1054 ret = -EBUSY;
1055 goto out;
1056 }
1057
1058 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1059 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1060 if (!tm_doorbell && !tr_doorbell) {
1061 timeout = false;
1062 break;
1063 } else if (do_last_check) {
1064 break;
1065 }
1066
1067 spin_unlock_irqrestore(hba->host->host_lock, flags);
1068 schedule();
1069 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1070 wait_timeout_us) {
1071 timeout = true;
1072 /*
1073 * We might have scheduled out for long time so make
1074 * sure to check if doorbells are cleared by this time
1075 * or not.
1076 */
1077 do_last_check = true;
1078 }
1079 spin_lock_irqsave(hba->host->host_lock, flags);
1080 } while (tm_doorbell || tr_doorbell);
1081
1082 if (timeout) {
1083 dev_err(hba->dev,
1084 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1085 __func__, tm_doorbell, tr_doorbell);
1086 ret = -EBUSY;
1087 }
1088 out:
1089 spin_unlock_irqrestore(hba->host->host_lock, flags);
1090 ufshcd_release(hba);
1091 return ret;
1092 }
1093
1094 /**
1095 * ufshcd_scale_gear - scale up/down UFS gear
1096 * @hba: per adapter instance
1097 * @scale_up: True for scaling up gear and false for scaling down
1098 *
1099 * Returns 0 for success,
1100 * Returns -EBUSY if scaling can't happen at this time
1101 * Returns non-zero for any other errors
1102 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1103 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1104 {
1105 #define UFS_MIN_GEAR_TO_SCALE_DOWN UFS_HS_G1
1106 int ret = 0;
1107 struct ufs_pa_layer_attr new_pwr_info;
1108
1109 if (scale_up) {
1110 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1111 sizeof(struct ufs_pa_layer_attr));
1112 } else {
1113 memcpy(&new_pwr_info, &hba->pwr_info,
1114 sizeof(struct ufs_pa_layer_attr));
1115
1116 if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1117 || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1118 /* save the current power mode */
1119 memcpy(&hba->clk_scaling.saved_pwr_info.info,
1120 &hba->pwr_info,
1121 sizeof(struct ufs_pa_layer_attr));
1122
1123 /* scale down gear */
1124 new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1125 new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1126 }
1127 }
1128
1129 /* check if the power mode needs to be changed or not? */
1130 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1131 if (ret)
1132 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1133 __func__, ret,
1134 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1135 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1136
1137 return ret;
1138 }
1139
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1140 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1141 {
1142 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
1143 int ret = 0;
1144 /*
1145 * make sure that there are no outstanding requests when
1146 * clock scaling is in progress
1147 */
1148 ufshcd_scsi_block_requests(hba);
1149 down_write(&hba->clk_scaling_lock);
1150 if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1151 ret = -EBUSY;
1152 up_write(&hba->clk_scaling_lock);
1153 ufshcd_scsi_unblock_requests(hba);
1154 }
1155
1156 return ret;
1157 }
1158
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1159 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1160 {
1161 up_write(&hba->clk_scaling_lock);
1162 ufshcd_scsi_unblock_requests(hba);
1163 }
1164
1165 /**
1166 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1167 * @hba: per adapter instance
1168 * @scale_up: True for scaling up and false for scalin down
1169 *
1170 * Returns 0 for success,
1171 * Returns -EBUSY if scaling can't happen at this time
1172 * Returns non-zero for any other errors
1173 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1174 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1175 {
1176 int ret = 0;
1177
1178 /* let's not get into low power until clock scaling is completed */
1179 ufshcd_hold(hba, false);
1180
1181 ret = ufshcd_clock_scaling_prepare(hba);
1182 if (ret)
1183 goto out;
1184
1185 /* scale down the gear before scaling down clocks */
1186 if (!scale_up) {
1187 ret = ufshcd_scale_gear(hba, false);
1188 if (ret)
1189 goto out_unprepare;
1190 }
1191
1192 ret = ufshcd_scale_clks(hba, scale_up);
1193 if (ret) {
1194 if (!scale_up)
1195 ufshcd_scale_gear(hba, true);
1196 goto out_unprepare;
1197 }
1198
1199 /* scale up the gear after scaling up clocks */
1200 if (scale_up) {
1201 ret = ufshcd_scale_gear(hba, true);
1202 if (ret) {
1203 ufshcd_scale_clks(hba, false);
1204 goto out_unprepare;
1205 }
1206 }
1207
1208 /* Enable Write Booster if we have scaled up else disable it */
1209 up_write(&hba->clk_scaling_lock);
1210 ufshcd_wb_ctrl(hba, scale_up);
1211 down_write(&hba->clk_scaling_lock);
1212
1213 out_unprepare:
1214 ufshcd_clock_scaling_unprepare(hba);
1215 out:
1216 ufshcd_release(hba);
1217 return ret;
1218 }
1219
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1220 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1221 {
1222 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1223 clk_scaling.suspend_work);
1224 unsigned long irq_flags;
1225
1226 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1227 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1228 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1229 return;
1230 }
1231 hba->clk_scaling.is_suspended = true;
1232 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1233
1234 __ufshcd_suspend_clkscaling(hba);
1235 }
1236
ufshcd_clk_scaling_resume_work(struct work_struct * work)1237 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1238 {
1239 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1240 clk_scaling.resume_work);
1241 unsigned long irq_flags;
1242
1243 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1244 if (!hba->clk_scaling.is_suspended) {
1245 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1246 return;
1247 }
1248 hba->clk_scaling.is_suspended = false;
1249 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1250
1251 devfreq_resume_device(hba->devfreq);
1252 }
1253
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1254 static int ufshcd_devfreq_target(struct device *dev,
1255 unsigned long *freq, u32 flags)
1256 {
1257 int ret = 0;
1258 struct ufs_hba *hba = dev_get_drvdata(dev);
1259 ktime_t start;
1260 bool scale_up, sched_clk_scaling_suspend_work = false;
1261 struct list_head *clk_list = &hba->clk_list_head;
1262 struct ufs_clk_info *clki;
1263 unsigned long irq_flags;
1264
1265 if (!ufshcd_is_clkscaling_supported(hba))
1266 return -EINVAL;
1267
1268 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1269 /* Override with the closest supported frequency */
1270 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1271 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1272 if (ufshcd_eh_in_progress(hba)) {
1273 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1274 return 0;
1275 }
1276
1277 if (!hba->clk_scaling.active_reqs)
1278 sched_clk_scaling_suspend_work = true;
1279
1280 if (list_empty(clk_list)) {
1281 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1282 goto out;
1283 }
1284
1285 /* Decide based on the rounded-off frequency and update */
1286 scale_up = (*freq == clki->max_freq) ? true : false;
1287 if (!scale_up)
1288 *freq = clki->min_freq;
1289 /* Update the frequency */
1290 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1291 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1292 ret = 0;
1293 goto out; /* no state change required */
1294 }
1295 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1296
1297 pm_runtime_get_noresume(hba->dev);
1298 if (!pm_runtime_active(hba->dev)) {
1299 pm_runtime_put_noidle(hba->dev);
1300 ret = -EAGAIN;
1301 goto out;
1302 }
1303 start = ktime_get();
1304 ret = ufshcd_devfreq_scale(hba, scale_up);
1305 pm_runtime_put(hba->dev);
1306
1307 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1308 (scale_up ? "up" : "down"),
1309 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1310
1311 out:
1312 if (sched_clk_scaling_suspend_work)
1313 queue_work(hba->clk_scaling.workq,
1314 &hba->clk_scaling.suspend_work);
1315
1316 return ret;
1317 }
1318
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1319 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1320 {
1321 int *busy = priv;
1322
1323 WARN_ON_ONCE(reserved);
1324 (*busy)++;
1325 return false;
1326 }
1327
1328 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1329 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1330 {
1331 struct request_queue *q = hba->cmd_queue;
1332 int busy = 0;
1333
1334 blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1335 return busy;
1336 }
1337
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1338 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1339 struct devfreq_dev_status *stat)
1340 {
1341 struct ufs_hba *hba = dev_get_drvdata(dev);
1342 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1343 unsigned long flags;
1344 struct list_head *clk_list = &hba->clk_list_head;
1345 struct ufs_clk_info *clki;
1346 ktime_t curr_t;
1347
1348 if (!ufshcd_is_clkscaling_supported(hba))
1349 return -EINVAL;
1350
1351 memset(stat, 0, sizeof(*stat));
1352
1353 spin_lock_irqsave(hba->host->host_lock, flags);
1354 curr_t = ktime_get();
1355 if (!scaling->window_start_t)
1356 goto start_window;
1357
1358 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1359 /*
1360 * If current frequency is 0, then the ondemand governor considers
1361 * there's no initial frequency set. And it always requests to set
1362 * to max. frequency.
1363 */
1364 stat->current_frequency = clki->curr_freq;
1365 if (scaling->is_busy_started)
1366 scaling->tot_busy_t += ktime_us_delta(curr_t,
1367 scaling->busy_start_t);
1368
1369 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1370 stat->busy_time = scaling->tot_busy_t;
1371 start_window:
1372 scaling->window_start_t = curr_t;
1373 scaling->tot_busy_t = 0;
1374
1375 if (hba->outstanding_reqs) {
1376 scaling->busy_start_t = curr_t;
1377 scaling->is_busy_started = true;
1378 } else {
1379 scaling->busy_start_t = 0;
1380 scaling->is_busy_started = false;
1381 }
1382 spin_unlock_irqrestore(hba->host->host_lock, flags);
1383 return 0;
1384 }
1385
ufshcd_devfreq_init(struct ufs_hba * hba)1386 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1387 {
1388 struct list_head *clk_list = &hba->clk_list_head;
1389 struct ufs_clk_info *clki;
1390 struct devfreq *devfreq;
1391 int ret;
1392
1393 /* Skip devfreq if we don't have any clocks in the list */
1394 if (list_empty(clk_list))
1395 return 0;
1396
1397 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1398 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1399 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1400
1401 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1402 &hba->vps->ondemand_data);
1403 devfreq = devfreq_add_device(hba->dev,
1404 &hba->vps->devfreq_profile,
1405 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1406 &hba->vps->ondemand_data);
1407 if (IS_ERR(devfreq)) {
1408 ret = PTR_ERR(devfreq);
1409 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1410
1411 dev_pm_opp_remove(hba->dev, clki->min_freq);
1412 dev_pm_opp_remove(hba->dev, clki->max_freq);
1413 return ret;
1414 }
1415
1416 hba->devfreq = devfreq;
1417
1418 return 0;
1419 }
1420
ufshcd_devfreq_remove(struct ufs_hba * hba)1421 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1422 {
1423 struct list_head *clk_list = &hba->clk_list_head;
1424 struct ufs_clk_info *clki;
1425
1426 if (!hba->devfreq)
1427 return;
1428
1429 devfreq_remove_device(hba->devfreq);
1430 hba->devfreq = NULL;
1431
1432 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1433 dev_pm_opp_remove(hba->dev, clki->min_freq);
1434 dev_pm_opp_remove(hba->dev, clki->max_freq);
1435 }
1436
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1437 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1438 {
1439 unsigned long flags;
1440
1441 devfreq_suspend_device(hba->devfreq);
1442 spin_lock_irqsave(hba->host->host_lock, flags);
1443 hba->clk_scaling.window_start_t = 0;
1444 spin_unlock_irqrestore(hba->host->host_lock, flags);
1445 }
1446
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1447 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1448 {
1449 unsigned long flags;
1450 bool suspend = false;
1451
1452 if (!ufshcd_is_clkscaling_supported(hba))
1453 return;
1454
1455 spin_lock_irqsave(hba->host->host_lock, flags);
1456 if (!hba->clk_scaling.is_suspended) {
1457 suspend = true;
1458 hba->clk_scaling.is_suspended = true;
1459 }
1460 spin_unlock_irqrestore(hba->host->host_lock, flags);
1461
1462 if (suspend)
1463 __ufshcd_suspend_clkscaling(hba);
1464 }
1465
ufshcd_resume_clkscaling(struct ufs_hba * hba)1466 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1467 {
1468 unsigned long flags;
1469 bool resume = false;
1470
1471 if (!ufshcd_is_clkscaling_supported(hba))
1472 return;
1473
1474 spin_lock_irqsave(hba->host->host_lock, flags);
1475 if (hba->clk_scaling.is_suspended) {
1476 resume = true;
1477 hba->clk_scaling.is_suspended = false;
1478 }
1479 spin_unlock_irqrestore(hba->host->host_lock, flags);
1480
1481 if (resume)
1482 devfreq_resume_device(hba->devfreq);
1483 }
1484
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1485 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1486 struct device_attribute *attr, char *buf)
1487 {
1488 struct ufs_hba *hba = dev_get_drvdata(dev);
1489
1490 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1491 }
1492
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1493 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1494 struct device_attribute *attr, const char *buf, size_t count)
1495 {
1496 struct ufs_hba *hba = dev_get_drvdata(dev);
1497 u32 value;
1498 int err;
1499
1500 if (kstrtou32(buf, 0, &value))
1501 return -EINVAL;
1502
1503 value = !!value;
1504 if (value == hba->clk_scaling.is_allowed)
1505 goto out;
1506
1507 pm_runtime_get_sync(hba->dev);
1508 ufshcd_hold(hba, false);
1509
1510 cancel_work_sync(&hba->clk_scaling.suspend_work);
1511 cancel_work_sync(&hba->clk_scaling.resume_work);
1512
1513 hba->clk_scaling.is_allowed = value;
1514
1515 if (value) {
1516 ufshcd_resume_clkscaling(hba);
1517 } else {
1518 ufshcd_suspend_clkscaling(hba);
1519 err = ufshcd_devfreq_scale(hba, true);
1520 if (err)
1521 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1522 __func__, err);
1523 }
1524
1525 ufshcd_release(hba);
1526 pm_runtime_put_sync(hba->dev);
1527 out:
1528 return count;
1529 }
1530
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1531 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1532 {
1533 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1534 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1535 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1536 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1537 hba->clk_scaling.enable_attr.attr.mode = 0644;
1538 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1539 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1540 }
1541
ufshcd_ungate_work(struct work_struct * work)1542 static void ufshcd_ungate_work(struct work_struct *work)
1543 {
1544 int ret;
1545 unsigned long flags;
1546 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1547 clk_gating.ungate_work);
1548
1549 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1550
1551 spin_lock_irqsave(hba->host->host_lock, flags);
1552 if (hba->clk_gating.state == CLKS_ON) {
1553 spin_unlock_irqrestore(hba->host->host_lock, flags);
1554 goto unblock_reqs;
1555 }
1556
1557 spin_unlock_irqrestore(hba->host->host_lock, flags);
1558 ufshcd_setup_clocks(hba, true);
1559
1560 ufshcd_enable_irq(hba);
1561
1562 /* Exit from hibern8 */
1563 if (ufshcd_can_hibern8_during_gating(hba)) {
1564 /* Prevent gating in this path */
1565 hba->clk_gating.is_suspended = true;
1566 if (ufshcd_is_link_hibern8(hba)) {
1567 ret = ufshcd_uic_hibern8_exit(hba);
1568 if (ret)
1569 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1570 __func__, ret);
1571 else
1572 ufshcd_set_link_active(hba);
1573 }
1574 hba->clk_gating.is_suspended = false;
1575 }
1576 unblock_reqs:
1577 ufshcd_scsi_unblock_requests(hba);
1578 }
1579
1580 /**
1581 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1582 * Also, exit from hibern8 mode and set the link as active.
1583 * @hba: per adapter instance
1584 * @async: This indicates whether caller should ungate clocks asynchronously.
1585 */
ufshcd_hold(struct ufs_hba * hba,bool async)1586 int ufshcd_hold(struct ufs_hba *hba, bool async)
1587 {
1588 int rc = 0;
1589 bool flush_result;
1590 unsigned long flags;
1591
1592 if (!ufshcd_is_clkgating_allowed(hba))
1593 goto out;
1594 spin_lock_irqsave(hba->host->host_lock, flags);
1595 hba->clk_gating.active_reqs++;
1596
1597 start:
1598 switch (hba->clk_gating.state) {
1599 case CLKS_ON:
1600 /*
1601 * Wait for the ungate work to complete if in progress.
1602 * Though the clocks may be in ON state, the link could
1603 * still be in hibner8 state if hibern8 is allowed
1604 * during clock gating.
1605 * Make sure we exit hibern8 state also in addition to
1606 * clocks being ON.
1607 */
1608 if (ufshcd_can_hibern8_during_gating(hba) &&
1609 ufshcd_is_link_hibern8(hba)) {
1610 if (async) {
1611 rc = -EAGAIN;
1612 hba->clk_gating.active_reqs--;
1613 break;
1614 }
1615 spin_unlock_irqrestore(hba->host->host_lock, flags);
1616 flush_result = flush_work(&hba->clk_gating.ungate_work);
1617 if (hba->clk_gating.is_suspended && !flush_result)
1618 goto out;
1619 spin_lock_irqsave(hba->host->host_lock, flags);
1620 goto start;
1621 }
1622 break;
1623 case REQ_CLKS_OFF:
1624 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1625 hba->clk_gating.state = CLKS_ON;
1626 trace_ufshcd_clk_gating(dev_name(hba->dev),
1627 hba->clk_gating.state);
1628 break;
1629 }
1630 /*
1631 * If we are here, it means gating work is either done or
1632 * currently running. Hence, fall through to cancel gating
1633 * work and to enable clocks.
1634 */
1635 fallthrough;
1636 case CLKS_OFF:
1637 hba->clk_gating.state = REQ_CLKS_ON;
1638 trace_ufshcd_clk_gating(dev_name(hba->dev),
1639 hba->clk_gating.state);
1640 if (queue_work(hba->clk_gating.clk_gating_workq,
1641 &hba->clk_gating.ungate_work))
1642 ufshcd_scsi_block_requests(hba);
1643 /*
1644 * fall through to check if we should wait for this
1645 * work to be done or not.
1646 */
1647 fallthrough;
1648 case REQ_CLKS_ON:
1649 if (async) {
1650 rc = -EAGAIN;
1651 hba->clk_gating.active_reqs--;
1652 break;
1653 }
1654
1655 spin_unlock_irqrestore(hba->host->host_lock, flags);
1656 flush_work(&hba->clk_gating.ungate_work);
1657 /* Make sure state is CLKS_ON before returning */
1658 spin_lock_irqsave(hba->host->host_lock, flags);
1659 goto start;
1660 default:
1661 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1662 __func__, hba->clk_gating.state);
1663 break;
1664 }
1665 spin_unlock_irqrestore(hba->host->host_lock, flags);
1666 out:
1667 return rc;
1668 }
1669 EXPORT_SYMBOL_GPL(ufshcd_hold);
1670
ufshcd_gate_work(struct work_struct * work)1671 static void ufshcd_gate_work(struct work_struct *work)
1672 {
1673 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1674 clk_gating.gate_work.work);
1675 unsigned long flags;
1676 int ret;
1677
1678 spin_lock_irqsave(hba->host->host_lock, flags);
1679 /*
1680 * In case you are here to cancel this work the gating state
1681 * would be marked as REQ_CLKS_ON. In this case save time by
1682 * skipping the gating work and exit after changing the clock
1683 * state to CLKS_ON.
1684 */
1685 if (hba->clk_gating.is_suspended ||
1686 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1687 hba->clk_gating.state = CLKS_ON;
1688 trace_ufshcd_clk_gating(dev_name(hba->dev),
1689 hba->clk_gating.state);
1690 goto rel_lock;
1691 }
1692
1693 if (hba->clk_gating.active_reqs
1694 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1695 || ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1696 || hba->active_uic_cmd || hba->uic_async_done)
1697 goto rel_lock;
1698
1699 spin_unlock_irqrestore(hba->host->host_lock, flags);
1700
1701 /* put the link into hibern8 mode before turning off clocks */
1702 if (ufshcd_can_hibern8_during_gating(hba)) {
1703 ret = ufshcd_uic_hibern8_enter(hba);
1704 if (ret) {
1705 hba->clk_gating.state = CLKS_ON;
1706 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1707 __func__, ret);
1708 trace_ufshcd_clk_gating(dev_name(hba->dev),
1709 hba->clk_gating.state);
1710 goto out;
1711 }
1712 ufshcd_set_link_hibern8(hba);
1713 }
1714
1715 ufshcd_disable_irq(hba);
1716
1717 if (!ufshcd_is_link_active(hba))
1718 ufshcd_setup_clocks(hba, false);
1719 else
1720 /* If link is active, device ref_clk can't be switched off */
1721 __ufshcd_setup_clocks(hba, false, true);
1722
1723 /*
1724 * In case you are here to cancel this work the gating state
1725 * would be marked as REQ_CLKS_ON. In this case keep the state
1726 * as REQ_CLKS_ON which would anyway imply that clocks are off
1727 * and a request to turn them on is pending. By doing this way,
1728 * we keep the state machine in tact and this would ultimately
1729 * prevent from doing cancel work multiple times when there are
1730 * new requests arriving before the current cancel work is done.
1731 */
1732 spin_lock_irqsave(hba->host->host_lock, flags);
1733 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1734 hba->clk_gating.state = CLKS_OFF;
1735 trace_ufshcd_clk_gating(dev_name(hba->dev),
1736 hba->clk_gating.state);
1737 }
1738 rel_lock:
1739 spin_unlock_irqrestore(hba->host->host_lock, flags);
1740 out:
1741 return;
1742 }
1743
1744 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1745 static void __ufshcd_release(struct ufs_hba *hba)
1746 {
1747 if (!ufshcd_is_clkgating_allowed(hba))
1748 return;
1749
1750 hba->clk_gating.active_reqs--;
1751
1752 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1753 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1754 hba->outstanding_tasks ||
1755 hba->active_uic_cmd || hba->uic_async_done ||
1756 hba->clk_gating.state == CLKS_OFF)
1757 return;
1758
1759 hba->clk_gating.state = REQ_CLKS_OFF;
1760 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1761 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1762 &hba->clk_gating.gate_work,
1763 msecs_to_jiffies(hba->clk_gating.delay_ms));
1764 }
1765
ufshcd_release(struct ufs_hba * hba)1766 void ufshcd_release(struct ufs_hba *hba)
1767 {
1768 unsigned long flags;
1769
1770 spin_lock_irqsave(hba->host->host_lock, flags);
1771 __ufshcd_release(hba);
1772 spin_unlock_irqrestore(hba->host->host_lock, flags);
1773 }
1774 EXPORT_SYMBOL_GPL(ufshcd_release);
1775
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1776 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1777 struct device_attribute *attr, char *buf)
1778 {
1779 struct ufs_hba *hba = dev_get_drvdata(dev);
1780
1781 return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1782 }
1783
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1784 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1785 struct device_attribute *attr, const char *buf, size_t count)
1786 {
1787 struct ufs_hba *hba = dev_get_drvdata(dev);
1788 unsigned long flags, value;
1789
1790 if (kstrtoul(buf, 0, &value))
1791 return -EINVAL;
1792
1793 spin_lock_irqsave(hba->host->host_lock, flags);
1794 hba->clk_gating.delay_ms = value;
1795 spin_unlock_irqrestore(hba->host->host_lock, flags);
1796 return count;
1797 }
1798
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1799 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1800 struct device_attribute *attr, char *buf)
1801 {
1802 struct ufs_hba *hba = dev_get_drvdata(dev);
1803
1804 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1805 }
1806
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1807 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1808 struct device_attribute *attr, const char *buf, size_t count)
1809 {
1810 struct ufs_hba *hba = dev_get_drvdata(dev);
1811 unsigned long flags;
1812 u32 value;
1813
1814 if (kstrtou32(buf, 0, &value))
1815 return -EINVAL;
1816
1817 value = !!value;
1818 if (value == hba->clk_gating.is_enabled)
1819 goto out;
1820
1821 if (value) {
1822 ufshcd_release(hba);
1823 } else {
1824 spin_lock_irqsave(hba->host->host_lock, flags);
1825 hba->clk_gating.active_reqs++;
1826 spin_unlock_irqrestore(hba->host->host_lock, flags);
1827 }
1828
1829 hba->clk_gating.is_enabled = value;
1830 out:
1831 return count;
1832 }
1833
ufshcd_init_clk_scaling(struct ufs_hba * hba)1834 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1835 {
1836 char wq_name[sizeof("ufs_clkscaling_00")];
1837
1838 if (!ufshcd_is_clkscaling_supported(hba))
1839 return;
1840
1841 INIT_WORK(&hba->clk_scaling.suspend_work,
1842 ufshcd_clk_scaling_suspend_work);
1843 INIT_WORK(&hba->clk_scaling.resume_work,
1844 ufshcd_clk_scaling_resume_work);
1845
1846 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1847 hba->host->host_no);
1848 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1849
1850 ufshcd_clkscaling_init_sysfs(hba);
1851 }
1852
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1853 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1854 {
1855 if (!ufshcd_is_clkscaling_supported(hba))
1856 return;
1857
1858 destroy_workqueue(hba->clk_scaling.workq);
1859 ufshcd_devfreq_remove(hba);
1860 }
1861
ufshcd_init_clk_gating(struct ufs_hba * hba)1862 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1863 {
1864 char wq_name[sizeof("ufs_clk_gating_00")];
1865
1866 if (!ufshcd_is_clkgating_allowed(hba))
1867 return;
1868
1869 hba->clk_gating.state = CLKS_ON;
1870
1871 hba->clk_gating.delay_ms = 150;
1872 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1873 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1874
1875 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1876 hba->host->host_no);
1877 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1878 WQ_MEM_RECLAIM);
1879
1880 hba->clk_gating.is_enabled = true;
1881
1882 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1883 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1884 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1885 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1886 hba->clk_gating.delay_attr.attr.mode = 0644;
1887 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1888 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1889
1890 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1891 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1892 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1893 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1894 hba->clk_gating.enable_attr.attr.mode = 0644;
1895 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1896 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1897 }
1898
ufshcd_exit_clk_gating(struct ufs_hba * hba)1899 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1900 {
1901 if (!ufshcd_is_clkgating_allowed(hba))
1902 return;
1903 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1904 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1905 cancel_work_sync(&hba->clk_gating.ungate_work);
1906 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1907 destroy_workqueue(hba->clk_gating.clk_gating_workq);
1908 }
1909
1910 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1911 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1912 {
1913 bool queue_resume_work = false;
1914 ktime_t curr_t = ktime_get();
1915
1916 if (!ufshcd_is_clkscaling_supported(hba))
1917 return;
1918
1919 if (!hba->clk_scaling.active_reqs++)
1920 queue_resume_work = true;
1921
1922 if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1923 return;
1924
1925 if (queue_resume_work)
1926 queue_work(hba->clk_scaling.workq,
1927 &hba->clk_scaling.resume_work);
1928
1929 if (!hba->clk_scaling.window_start_t) {
1930 hba->clk_scaling.window_start_t = curr_t;
1931 hba->clk_scaling.tot_busy_t = 0;
1932 hba->clk_scaling.is_busy_started = false;
1933 }
1934
1935 if (!hba->clk_scaling.is_busy_started) {
1936 hba->clk_scaling.busy_start_t = curr_t;
1937 hba->clk_scaling.is_busy_started = true;
1938 }
1939 }
1940
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1941 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1942 {
1943 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1944
1945 if (!ufshcd_is_clkscaling_supported(hba))
1946 return;
1947
1948 if (!hba->outstanding_reqs && scaling->is_busy_started) {
1949 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1950 scaling->busy_start_t));
1951 scaling->busy_start_t = 0;
1952 scaling->is_busy_started = false;
1953 }
1954 }
1955 /**
1956 * ufshcd_send_command - Send SCSI or device management commands
1957 * @hba: per adapter instance
1958 * @task_tag: Task tag of the command
1959 */
1960 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1961 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1962 {
1963 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
1964
1965 lrbp->issue_time_stamp = ktime_get();
1966 lrbp->compl_time_stamp = ktime_set(0, 0);
1967 ufshcd_vops_setup_xfer_req(hba, task_tag, (lrbp->cmd ? true : false));
1968 ufshcd_add_command_trace(hba, task_tag, "send");
1969 ufshcd_clk_scaling_start_busy(hba);
1970 __set_bit(task_tag, &hba->outstanding_reqs);
1971 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1972 /* Make sure that doorbell is committed immediately */
1973 wmb();
1974 }
1975
1976 /**
1977 * ufshcd_copy_sense_data - Copy sense data in case of check condition
1978 * @lrbp: pointer to local reference block
1979 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1980 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1981 {
1982 int len;
1983 if (lrbp->sense_buffer &&
1984 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1985 int len_to_copy;
1986
1987 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1988 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1989
1990 memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1991 len_to_copy);
1992 }
1993 }
1994
1995 /**
1996 * ufshcd_copy_query_response() - Copy the Query Response and the data
1997 * descriptor
1998 * @hba: per adapter instance
1999 * @lrbp: pointer to local reference block
2000 */
2001 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2002 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2003 {
2004 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2005
2006 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2007
2008 /* Get the descriptor */
2009 if (hba->dev_cmd.query.descriptor &&
2010 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2011 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2012 GENERAL_UPIU_REQUEST_SIZE;
2013 u16 resp_len;
2014 u16 buf_len;
2015
2016 /* data segment length */
2017 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2018 MASK_QUERY_DATA_SEG_LEN;
2019 buf_len = be16_to_cpu(
2020 hba->dev_cmd.query.request.upiu_req.length);
2021 if (likely(buf_len >= resp_len)) {
2022 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2023 } else {
2024 dev_warn(hba->dev,
2025 "%s: rsp size %d is bigger than buffer size %d",
2026 __func__, resp_len, buf_len);
2027 return -EINVAL;
2028 }
2029 }
2030
2031 return 0;
2032 }
2033
2034 /**
2035 * ufshcd_hba_capabilities - Read controller capabilities
2036 * @hba: per adapter instance
2037 *
2038 * Return: 0 on success, negative on error.
2039 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2040 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2041 {
2042 int err;
2043
2044 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2045
2046 /* nutrs and nutmrs are 0 based values */
2047 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2048 hba->nutmrs =
2049 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2050
2051 /* Read crypto capabilities */
2052 err = ufshcd_hba_init_crypto_capabilities(hba);
2053 if (err)
2054 dev_err(hba->dev, "crypto setup failed\n");
2055
2056 return err;
2057 }
2058
2059 /**
2060 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2061 * to accept UIC commands
2062 * @hba: per adapter instance
2063 * Return true on success, else false
2064 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2065 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2066 {
2067 if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2068 return true;
2069 else
2070 return false;
2071 }
2072
2073 /**
2074 * ufshcd_get_upmcrs - Get the power mode change request status
2075 * @hba: Pointer to adapter instance
2076 *
2077 * This function gets the UPMCRS field of HCS register
2078 * Returns value of UPMCRS field
2079 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2080 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2081 {
2082 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2083 }
2084
2085 /**
2086 * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2087 * @hba: per adapter instance
2088 * @uic_cmd: UIC command
2089 *
2090 * Mutex must be held.
2091 */
2092 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2093 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2094 {
2095 WARN_ON(hba->active_uic_cmd);
2096
2097 hba->active_uic_cmd = uic_cmd;
2098
2099 /* Write Args */
2100 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2101 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2102 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2103
2104 ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2105
2106 /* Write UIC Cmd */
2107 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2108 REG_UIC_COMMAND);
2109 }
2110
2111 /**
2112 * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2113 * @hba: per adapter instance
2114 * @uic_cmd: UIC command
2115 *
2116 * Must be called with mutex held.
2117 * Returns 0 only if success.
2118 */
2119 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2120 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2121 {
2122 int ret;
2123 unsigned long flags;
2124
2125 if (wait_for_completion_timeout(&uic_cmd->done,
2126 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2127 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2128 } else {
2129 ret = -ETIMEDOUT;
2130 dev_err(hba->dev,
2131 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2132 uic_cmd->command, uic_cmd->argument3);
2133
2134 if (!uic_cmd->cmd_active) {
2135 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2136 __func__);
2137 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2138 }
2139 }
2140
2141 spin_lock_irqsave(hba->host->host_lock, flags);
2142 hba->active_uic_cmd = NULL;
2143 spin_unlock_irqrestore(hba->host->host_lock, flags);
2144
2145 return ret;
2146 }
2147
2148 /**
2149 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2150 * @hba: per adapter instance
2151 * @uic_cmd: UIC command
2152 * @completion: initialize the completion only if this is set to true
2153 *
2154 * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2155 * with mutex held and host_lock locked.
2156 * Returns 0 only if success.
2157 */
2158 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2159 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2160 bool completion)
2161 {
2162 if (!ufshcd_ready_for_uic_cmd(hba)) {
2163 dev_err(hba->dev,
2164 "Controller not ready to accept UIC commands\n");
2165 return -EIO;
2166 }
2167
2168 if (completion)
2169 init_completion(&uic_cmd->done);
2170
2171 uic_cmd->cmd_active = 1;
2172 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2179 * @hba: per adapter instance
2180 * @uic_cmd: UIC command
2181 *
2182 * Returns 0 only if success.
2183 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2184 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2185 {
2186 int ret;
2187 unsigned long flags;
2188
2189 ufshcd_hold(hba, false);
2190 mutex_lock(&hba->uic_cmd_mutex);
2191 ufshcd_add_delay_before_dme_cmd(hba);
2192
2193 spin_lock_irqsave(hba->host->host_lock, flags);
2194 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2195 spin_unlock_irqrestore(hba->host->host_lock, flags);
2196 if (!ret)
2197 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2198
2199 mutex_unlock(&hba->uic_cmd_mutex);
2200
2201 ufshcd_release(hba);
2202 return ret;
2203 }
2204
2205 /**
2206 * ufshcd_map_sg - Map scatter-gather list to prdt
2207 * @hba: per adapter instance
2208 * @lrbp: pointer to local reference block
2209 *
2210 * Returns 0 in case of success, non-zero value in case of failure
2211 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2212 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2213 {
2214 struct ufshcd_sg_entry *prd_table;
2215 struct scatterlist *sg;
2216 struct scsi_cmnd *cmd;
2217 int sg_segments;
2218 int i;
2219
2220 cmd = lrbp->cmd;
2221 sg_segments = scsi_dma_map(cmd);
2222 if (sg_segments < 0)
2223 return sg_segments;
2224
2225 if (sg_segments) {
2226
2227 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2228 lrbp->utr_descriptor_ptr->prd_table_length =
2229 cpu_to_le16((sg_segments *
2230 sizeof(struct ufshcd_sg_entry)));
2231 else
2232 lrbp->utr_descriptor_ptr->prd_table_length =
2233 cpu_to_le16((u16) (sg_segments));
2234
2235 prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2236
2237 scsi_for_each_sg(cmd, sg, sg_segments, i) {
2238 prd_table[i].size =
2239 cpu_to_le32(((u32) sg_dma_len(sg))-1);
2240 prd_table[i].base_addr =
2241 cpu_to_le32(lower_32_bits(sg->dma_address));
2242 prd_table[i].upper_addr =
2243 cpu_to_le32(upper_32_bits(sg->dma_address));
2244 prd_table[i].reserved = 0;
2245 }
2246 } else {
2247 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2248 }
2249
2250 return 0;
2251 }
2252
2253 /**
2254 * ufshcd_enable_intr - enable interrupts
2255 * @hba: per adapter instance
2256 * @intrs: interrupt bits
2257 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2258 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2259 {
2260 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2261
2262 if (hba->ufs_version == UFSHCI_VERSION_10) {
2263 u32 rw;
2264 rw = set & INTERRUPT_MASK_RW_VER_10;
2265 set = rw | ((set ^ intrs) & intrs);
2266 } else {
2267 set |= intrs;
2268 }
2269
2270 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2271 }
2272
2273 /**
2274 * ufshcd_disable_intr - disable interrupts
2275 * @hba: per adapter instance
2276 * @intrs: interrupt bits
2277 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2278 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2279 {
2280 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2281
2282 if (hba->ufs_version == UFSHCI_VERSION_10) {
2283 u32 rw;
2284 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2285 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2286 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2287
2288 } else {
2289 set &= ~intrs;
2290 }
2291
2292 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2293 }
2294
2295 /**
2296 * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2297 * descriptor according to request
2298 * @lrbp: pointer to local reference block
2299 * @upiu_flags: flags required in the header
2300 * @cmd_dir: requests data direction
2301 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2302 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2303 u8 *upiu_flags, enum dma_data_direction cmd_dir)
2304 {
2305 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2306 u32 data_direction;
2307 u32 dword_0;
2308 u32 dword_1 = 0;
2309 u32 dword_3 = 0;
2310
2311 if (cmd_dir == DMA_FROM_DEVICE) {
2312 data_direction = UTP_DEVICE_TO_HOST;
2313 *upiu_flags = UPIU_CMD_FLAGS_READ;
2314 } else if (cmd_dir == DMA_TO_DEVICE) {
2315 data_direction = UTP_HOST_TO_DEVICE;
2316 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2317 } else {
2318 data_direction = UTP_NO_DATA_TRANSFER;
2319 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2320 }
2321
2322 dword_0 = data_direction | (lrbp->command_type
2323 << UPIU_COMMAND_TYPE_OFFSET);
2324 if (lrbp->intr_cmd)
2325 dword_0 |= UTP_REQ_DESC_INT_CMD;
2326
2327 /* Prepare crypto related dwords */
2328 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2329
2330 /* Transfer request descriptor header fields */
2331 req_desc->header.dword_0 = cpu_to_le32(dword_0);
2332 req_desc->header.dword_1 = cpu_to_le32(dword_1);
2333 /*
2334 * assigning invalid value for command status. Controller
2335 * updates OCS on command completion, with the command
2336 * status
2337 */
2338 req_desc->header.dword_2 =
2339 cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2340 req_desc->header.dword_3 = cpu_to_le32(dword_3);
2341
2342 req_desc->prd_table_length = 0;
2343 }
2344
2345 /**
2346 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2347 * for scsi commands
2348 * @lrbp: local reference block pointer
2349 * @upiu_flags: flags
2350 */
2351 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2352 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2353 {
2354 struct scsi_cmnd *cmd = lrbp->cmd;
2355 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2356 unsigned short cdb_len;
2357
2358 /* command descriptor fields */
2359 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2360 UPIU_TRANSACTION_COMMAND, upiu_flags,
2361 lrbp->lun, lrbp->task_tag);
2362 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2363 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2364
2365 /* Total EHS length and Data segment length will be zero */
2366 ucd_req_ptr->header.dword_2 = 0;
2367
2368 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2369
2370 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2371 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2372 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2373
2374 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2375 }
2376
2377 /**
2378 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2379 * for query requsts
2380 * @hba: UFS hba
2381 * @lrbp: local reference block pointer
2382 * @upiu_flags: flags
2383 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2384 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2385 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2386 {
2387 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2388 struct ufs_query *query = &hba->dev_cmd.query;
2389 u16 len = be16_to_cpu(query->request.upiu_req.length);
2390
2391 /* Query request header */
2392 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2393 UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2394 lrbp->lun, lrbp->task_tag);
2395 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2396 0, query->request.query_func, 0, 0);
2397
2398 /* Data segment length only need for WRITE_DESC */
2399 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2400 ucd_req_ptr->header.dword_2 =
2401 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2402 else
2403 ucd_req_ptr->header.dword_2 = 0;
2404
2405 /* Copy the Query Request buffer as is */
2406 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2407 QUERY_OSF_SIZE);
2408
2409 /* Copy the Descriptor */
2410 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2411 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2412
2413 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2414 }
2415
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2416 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2417 {
2418 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2419
2420 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2421
2422 /* command descriptor fields */
2423 ucd_req_ptr->header.dword_0 =
2424 UPIU_HEADER_DWORD(
2425 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2426 /* clear rest of the fields of basic header */
2427 ucd_req_ptr->header.dword_1 = 0;
2428 ucd_req_ptr->header.dword_2 = 0;
2429
2430 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2431 }
2432
2433 /**
2434 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2435 * for Device Management Purposes
2436 * @hba: per adapter instance
2437 * @lrbp: pointer to local reference block
2438 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2439 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2440 struct ufshcd_lrb *lrbp)
2441 {
2442 u8 upiu_flags;
2443 int ret = 0;
2444
2445 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2446 (hba->ufs_version == UFSHCI_VERSION_11))
2447 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2448 else
2449 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2450
2451 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2452 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2453 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2454 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2455 ufshcd_prepare_utp_nop_upiu(lrbp);
2456 else
2457 ret = -EINVAL;
2458
2459 return ret;
2460 }
2461
2462 /**
2463 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2464 * for SCSI Purposes
2465 * @hba: per adapter instance
2466 * @lrbp: pointer to local reference block
2467 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2468 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2469 {
2470 u8 upiu_flags;
2471 int ret = 0;
2472
2473 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2474 (hba->ufs_version == UFSHCI_VERSION_11))
2475 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2476 else
2477 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2478
2479 if (likely(lrbp->cmd)) {
2480 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2481 lrbp->cmd->sc_data_direction);
2482 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2483 } else {
2484 ret = -EINVAL;
2485 }
2486
2487 return ret;
2488 }
2489
2490 /**
2491 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2492 * @upiu_wlun_id: UPIU W-LUN id
2493 *
2494 * Returns SCSI W-LUN id
2495 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2496 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2497 {
2498 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2499 }
2500
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2501 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2502 {
2503 struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2504 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2505 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2506 i * sizeof(struct utp_transfer_cmd_desc);
2507 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2508 response_upiu);
2509 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2510
2511 lrb->utr_descriptor_ptr = utrdlp + i;
2512 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2513 i * sizeof(struct utp_transfer_req_desc);
2514 lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2515 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2516 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2517 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2518 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
2519 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2520 }
2521
2522 /**
2523 * ufshcd_queuecommand - main entry point for SCSI requests
2524 * @host: SCSI host pointer
2525 * @cmd: command from SCSI Midlayer
2526 *
2527 * Returns 0 for success, non-zero in case of failure
2528 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2529 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2530 {
2531 struct ufshcd_lrb *lrbp;
2532 struct ufs_hba *hba;
2533 unsigned long flags;
2534 int tag;
2535 int err = 0;
2536
2537 hba = shost_priv(host);
2538
2539 tag = cmd->request->tag;
2540 if (!ufshcd_valid_tag(hba, tag)) {
2541 dev_err(hba->dev,
2542 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2543 __func__, tag, cmd, cmd->request);
2544 BUG();
2545 }
2546
2547 if (!down_read_trylock(&hba->clk_scaling_lock))
2548 return SCSI_MLQUEUE_HOST_BUSY;
2549
2550 hba->req_abort_count = 0;
2551
2552 err = ufshcd_hold(hba, true);
2553 if (err) {
2554 err = SCSI_MLQUEUE_HOST_BUSY;
2555 goto out;
2556 }
2557 WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2558 (hba->clk_gating.state != CLKS_ON));
2559
2560 lrbp = &hba->lrb[tag];
2561
2562 WARN_ON(lrbp->cmd);
2563 lrbp->cmd = cmd;
2564 lrbp->sense_bufflen = UFS_SENSE_SIZE;
2565 lrbp->sense_buffer = cmd->sense_buffer;
2566 lrbp->task_tag = tag;
2567 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2568 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2569
2570 ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2571
2572 lrbp->req_abort_skip = false;
2573
2574 ufshcd_comp_scsi_upiu(hba, lrbp);
2575
2576 err = ufshcd_map_sg(hba, lrbp);
2577 if (err) {
2578 lrbp->cmd = NULL;
2579 ufshcd_release(hba);
2580 goto out;
2581 }
2582 /* Make sure descriptors are ready before ringing the doorbell */
2583 wmb();
2584
2585 spin_lock_irqsave(hba->host->host_lock, flags);
2586 switch (hba->ufshcd_state) {
2587 case UFSHCD_STATE_OPERATIONAL:
2588 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2589 break;
2590 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2591 /*
2592 * pm_runtime_get_sync() is used at error handling preparation
2593 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2594 * PM ops, it can never be finished if we let SCSI layer keep
2595 * retrying it, which gets err handler stuck forever. Neither
2596 * can we let the scsi cmd pass through, because UFS is in bad
2597 * state, the scsi cmd may eventually time out, which will get
2598 * err handler blocked for too long. So, just fail the scsi cmd
2599 * sent from PM ops, err handler can recover PM error anyways.
2600 */
2601 if (hba->pm_op_in_progress) {
2602 hba->force_reset = true;
2603 set_host_byte(cmd, DID_BAD_TARGET);
2604 goto out_compl_cmd;
2605 }
2606 fallthrough;
2607 case UFSHCD_STATE_RESET:
2608 err = SCSI_MLQUEUE_HOST_BUSY;
2609 goto out_compl_cmd;
2610 case UFSHCD_STATE_ERROR:
2611 set_host_byte(cmd, DID_ERROR);
2612 goto out_compl_cmd;
2613 default:
2614 dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2615 __func__, hba->ufshcd_state);
2616 set_host_byte(cmd, DID_BAD_TARGET);
2617 goto out_compl_cmd;
2618 }
2619 ufshcd_send_command(hba, tag);
2620 spin_unlock_irqrestore(hba->host->host_lock, flags);
2621 goto out;
2622
2623 out_compl_cmd:
2624 scsi_dma_unmap(lrbp->cmd);
2625 lrbp->cmd = NULL;
2626 spin_unlock_irqrestore(hba->host->host_lock, flags);
2627 ufshcd_release(hba);
2628 if (!err)
2629 cmd->scsi_done(cmd);
2630 out:
2631 up_read(&hba->clk_scaling_lock);
2632 return err;
2633 }
2634
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2635 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2636 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2637 {
2638 lrbp->cmd = NULL;
2639 lrbp->sense_bufflen = 0;
2640 lrbp->sense_buffer = NULL;
2641 lrbp->task_tag = tag;
2642 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2643 lrbp->intr_cmd = true; /* No interrupt aggregation */
2644 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2645 hba->dev_cmd.type = cmd_type;
2646
2647 return ufshcd_compose_devman_upiu(hba, lrbp);
2648 }
2649
2650 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2651 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2652 {
2653 int err = 0;
2654 unsigned long flags;
2655 u32 mask = 1 << tag;
2656
2657 /* clear outstanding transaction before retry */
2658 spin_lock_irqsave(hba->host->host_lock, flags);
2659 ufshcd_utrl_clear(hba, tag);
2660 spin_unlock_irqrestore(hba->host->host_lock, flags);
2661
2662 /*
2663 * wait for for h/w to clear corresponding bit in door-bell.
2664 * max. wait is 1 sec.
2665 */
2666 err = ufshcd_wait_for_register(hba,
2667 REG_UTP_TRANSFER_REQ_DOOR_BELL,
2668 mask, ~mask, 1000, 1000);
2669
2670 return err;
2671 }
2672
2673 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2674 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2675 {
2676 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2677
2678 /* Get the UPIU response */
2679 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2680 UPIU_RSP_CODE_OFFSET;
2681 return query_res->response;
2682 }
2683
2684 /**
2685 * ufshcd_dev_cmd_completion() - handles device management command responses
2686 * @hba: per adapter instance
2687 * @lrbp: pointer to local reference block
2688 */
2689 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2690 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2691 {
2692 int resp;
2693 int err = 0;
2694
2695 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2696 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2697
2698 switch (resp) {
2699 case UPIU_TRANSACTION_NOP_IN:
2700 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2701 err = -EINVAL;
2702 dev_err(hba->dev, "%s: unexpected response %x\n",
2703 __func__, resp);
2704 }
2705 break;
2706 case UPIU_TRANSACTION_QUERY_RSP:
2707 err = ufshcd_check_query_response(hba, lrbp);
2708 if (!err)
2709 err = ufshcd_copy_query_response(hba, lrbp);
2710 break;
2711 case UPIU_TRANSACTION_REJECT_UPIU:
2712 /* TODO: handle Reject UPIU Response */
2713 err = -EPERM;
2714 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2715 __func__);
2716 break;
2717 default:
2718 err = -EINVAL;
2719 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2720 __func__, resp);
2721 break;
2722 }
2723
2724 return err;
2725 }
2726
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2727 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2728 struct ufshcd_lrb *lrbp, int max_timeout)
2729 {
2730 int err = 0;
2731 unsigned long time_left;
2732 unsigned long flags;
2733
2734 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2735 msecs_to_jiffies(max_timeout));
2736
2737 /* Make sure descriptors are ready before ringing the doorbell */
2738 wmb();
2739 spin_lock_irqsave(hba->host->host_lock, flags);
2740 hba->dev_cmd.complete = NULL;
2741 if (likely(time_left)) {
2742 err = ufshcd_get_tr_ocs(lrbp);
2743 if (!err)
2744 err = ufshcd_dev_cmd_completion(hba, lrbp);
2745 }
2746 spin_unlock_irqrestore(hba->host->host_lock, flags);
2747
2748 if (!time_left) {
2749 err = -ETIMEDOUT;
2750 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2751 __func__, lrbp->task_tag);
2752 if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2753 /* successfully cleared the command, retry if needed */
2754 err = -EAGAIN;
2755 /*
2756 * in case of an error, after clearing the doorbell,
2757 * we also need to clear the outstanding_request
2758 * field in hba
2759 */
2760 ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2761 }
2762
2763 return err;
2764 }
2765
2766 /**
2767 * ufshcd_exec_dev_cmd - API for sending device management requests
2768 * @hba: UFS hba
2769 * @cmd_type: specifies the type (NOP, Query...)
2770 * @timeout: timeout in milliseconds
2771 *
2772 * NOTE: Since there is only one available tag for device management commands,
2773 * it is expected you hold the hba->dev_cmd.lock mutex.
2774 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2775 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2776 enum dev_cmd_type cmd_type, int timeout)
2777 {
2778 struct request_queue *q = hba->cmd_queue;
2779 struct request *req;
2780 struct ufshcd_lrb *lrbp;
2781 int err;
2782 int tag;
2783 struct completion wait;
2784 unsigned long flags;
2785
2786 down_read(&hba->clk_scaling_lock);
2787
2788 /*
2789 * Get free slot, sleep if slots are unavailable.
2790 * Even though we use wait_event() which sleeps indefinitely,
2791 * the maximum wait time is bounded by SCSI request timeout.
2792 */
2793 req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
2794 if (IS_ERR(req)) {
2795 err = PTR_ERR(req);
2796 goto out_unlock;
2797 }
2798 tag = req->tag;
2799 WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
2800 /* Set the timeout such that the SCSI error handler is not activated. */
2801 req->timeout = msecs_to_jiffies(2 * timeout);
2802 blk_mq_start_request(req);
2803
2804 init_completion(&wait);
2805 lrbp = &hba->lrb[tag];
2806 WARN_ON(lrbp->cmd);
2807 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2808 if (unlikely(err))
2809 goto out_put_tag;
2810
2811 hba->dev_cmd.complete = &wait;
2812
2813 ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2814 /* Make sure descriptors are ready before ringing the doorbell */
2815 wmb();
2816 spin_lock_irqsave(hba->host->host_lock, flags);
2817 ufshcd_send_command(hba, tag);
2818 spin_unlock_irqrestore(hba->host->host_lock, flags);
2819
2820 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2821
2822 ufshcd_add_query_upiu_trace(hba, tag,
2823 err ? "query_complete_err" : "query_complete");
2824
2825 out_put_tag:
2826 blk_put_request(req);
2827 out_unlock:
2828 up_read(&hba->clk_scaling_lock);
2829 return err;
2830 }
2831
2832 /**
2833 * ufshcd_init_query() - init the query response and request parameters
2834 * @hba: per-adapter instance
2835 * @request: address of the request pointer to be initialized
2836 * @response: address of the response pointer to be initialized
2837 * @opcode: operation to perform
2838 * @idn: flag idn to access
2839 * @index: LU number to access
2840 * @selector: query/flag/descriptor further identification
2841 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2842 static inline void ufshcd_init_query(struct ufs_hba *hba,
2843 struct ufs_query_req **request, struct ufs_query_res **response,
2844 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2845 {
2846 *request = &hba->dev_cmd.query.request;
2847 *response = &hba->dev_cmd.query.response;
2848 memset(*request, 0, sizeof(struct ufs_query_req));
2849 memset(*response, 0, sizeof(struct ufs_query_res));
2850 (*request)->upiu_req.opcode = opcode;
2851 (*request)->upiu_req.idn = idn;
2852 (*request)->upiu_req.index = index;
2853 (*request)->upiu_req.selector = selector;
2854 }
2855
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2856 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2857 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
2858 {
2859 int ret;
2860 int retries;
2861
2862 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2863 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
2864 if (ret)
2865 dev_dbg(hba->dev,
2866 "%s: failed with error %d, retries %d\n",
2867 __func__, ret, retries);
2868 else
2869 break;
2870 }
2871
2872 if (ret)
2873 dev_err(hba->dev,
2874 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2875 __func__, opcode, idn, ret, retries);
2876 return ret;
2877 }
2878
2879 /**
2880 * ufshcd_query_flag() - API function for sending flag query requests
2881 * @hba: per-adapter instance
2882 * @opcode: flag query to perform
2883 * @idn: flag idn to access
2884 * @index: flag index to access
2885 * @flag_res: the flag value after the query request completes
2886 *
2887 * Returns 0 for success, non-zero in case of failure
2888 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2889 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2890 enum flag_idn idn, u8 index, bool *flag_res)
2891 {
2892 struct ufs_query_req *request = NULL;
2893 struct ufs_query_res *response = NULL;
2894 int err, selector = 0;
2895 int timeout = QUERY_REQ_TIMEOUT;
2896
2897 BUG_ON(!hba);
2898
2899 ufshcd_hold(hba, false);
2900 mutex_lock(&hba->dev_cmd.lock);
2901 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2902 selector);
2903
2904 switch (opcode) {
2905 case UPIU_QUERY_OPCODE_SET_FLAG:
2906 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2907 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2908 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2909 break;
2910 case UPIU_QUERY_OPCODE_READ_FLAG:
2911 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2912 if (!flag_res) {
2913 /* No dummy reads */
2914 dev_err(hba->dev, "%s: Invalid argument for read request\n",
2915 __func__);
2916 err = -EINVAL;
2917 goto out_unlock;
2918 }
2919 break;
2920 default:
2921 dev_err(hba->dev,
2922 "%s: Expected query flag opcode but got = %d\n",
2923 __func__, opcode);
2924 err = -EINVAL;
2925 goto out_unlock;
2926 }
2927
2928 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2929
2930 if (err) {
2931 dev_err(hba->dev,
2932 "%s: Sending flag query for idn %d failed, err = %d\n",
2933 __func__, idn, err);
2934 goto out_unlock;
2935 }
2936
2937 if (flag_res)
2938 *flag_res = (be32_to_cpu(response->upiu_res.value) &
2939 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2940
2941 out_unlock:
2942 mutex_unlock(&hba->dev_cmd.lock);
2943 ufshcd_release(hba);
2944 return err;
2945 }
2946
2947 /**
2948 * ufshcd_query_attr - API function for sending attribute requests
2949 * @hba: per-adapter instance
2950 * @opcode: attribute opcode
2951 * @idn: attribute idn to access
2952 * @index: index field
2953 * @selector: selector field
2954 * @attr_val: the attribute value after the query request completes
2955 *
2956 * Returns 0 for success, non-zero in case of failure
2957 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2958 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2959 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2960 {
2961 struct ufs_query_req *request = NULL;
2962 struct ufs_query_res *response = NULL;
2963 int err;
2964
2965 BUG_ON(!hba);
2966
2967 ufshcd_hold(hba, false);
2968 if (!attr_val) {
2969 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2970 __func__, opcode);
2971 err = -EINVAL;
2972 goto out;
2973 }
2974
2975 mutex_lock(&hba->dev_cmd.lock);
2976 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2977 selector);
2978
2979 switch (opcode) {
2980 case UPIU_QUERY_OPCODE_WRITE_ATTR:
2981 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2982 request->upiu_req.value = cpu_to_be32(*attr_val);
2983 break;
2984 case UPIU_QUERY_OPCODE_READ_ATTR:
2985 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2986 break;
2987 default:
2988 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2989 __func__, opcode);
2990 err = -EINVAL;
2991 goto out_unlock;
2992 }
2993
2994 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2995
2996 if (err) {
2997 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2998 __func__, opcode, idn, index, err);
2999 goto out_unlock;
3000 }
3001
3002 *attr_val = be32_to_cpu(response->upiu_res.value);
3003
3004 out_unlock:
3005 mutex_unlock(&hba->dev_cmd.lock);
3006 out:
3007 ufshcd_release(hba);
3008 return err;
3009 }
3010
3011 /**
3012 * ufshcd_query_attr_retry() - API function for sending query
3013 * attribute with retries
3014 * @hba: per-adapter instance
3015 * @opcode: attribute opcode
3016 * @idn: attribute idn to access
3017 * @index: index field
3018 * @selector: selector field
3019 * @attr_val: the attribute value after the query request
3020 * completes
3021 *
3022 * Returns 0 for success, non-zero in case of failure
3023 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3024 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
3025 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3026 u32 *attr_val)
3027 {
3028 int ret = 0;
3029 u32 retries;
3030
3031 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3032 ret = ufshcd_query_attr(hba, opcode, idn, index,
3033 selector, attr_val);
3034 if (ret)
3035 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3036 __func__, ret, retries);
3037 else
3038 break;
3039 }
3040
3041 if (ret)
3042 dev_err(hba->dev,
3043 "%s: query attribute, idn %d, failed with error %d after %d retires\n",
3044 __func__, idn, ret, QUERY_REQ_RETRIES);
3045 return ret;
3046 }
3047
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3048 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3049 enum query_opcode opcode, enum desc_idn idn, u8 index,
3050 u8 selector, u8 *desc_buf, int *buf_len)
3051 {
3052 struct ufs_query_req *request = NULL;
3053 struct ufs_query_res *response = NULL;
3054 int err;
3055
3056 BUG_ON(!hba);
3057
3058 ufshcd_hold(hba, false);
3059 if (!desc_buf) {
3060 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3061 __func__, opcode);
3062 err = -EINVAL;
3063 goto out;
3064 }
3065
3066 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3067 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3068 __func__, *buf_len);
3069 err = -EINVAL;
3070 goto out;
3071 }
3072
3073 mutex_lock(&hba->dev_cmd.lock);
3074 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3075 selector);
3076 hba->dev_cmd.query.descriptor = desc_buf;
3077 request->upiu_req.length = cpu_to_be16(*buf_len);
3078
3079 switch (opcode) {
3080 case UPIU_QUERY_OPCODE_WRITE_DESC:
3081 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3082 break;
3083 case UPIU_QUERY_OPCODE_READ_DESC:
3084 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3085 break;
3086 default:
3087 dev_err(hba->dev,
3088 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3089 __func__, opcode);
3090 err = -EINVAL;
3091 goto out_unlock;
3092 }
3093
3094 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3095
3096 if (err) {
3097 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3098 __func__, opcode, idn, index, err);
3099 goto out_unlock;
3100 }
3101
3102 *buf_len = be16_to_cpu(response->upiu_res.length);
3103
3104 out_unlock:
3105 hba->dev_cmd.query.descriptor = NULL;
3106 mutex_unlock(&hba->dev_cmd.lock);
3107 out:
3108 ufshcd_release(hba);
3109 return err;
3110 }
3111
3112 /**
3113 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3114 * @hba: per-adapter instance
3115 * @opcode: attribute opcode
3116 * @idn: attribute idn to access
3117 * @index: index field
3118 * @selector: selector field
3119 * @desc_buf: the buffer that contains the descriptor
3120 * @buf_len: length parameter passed to the device
3121 *
3122 * Returns 0 for success, non-zero in case of failure.
3123 * The buf_len parameter will contain, on return, the length parameter
3124 * received on the response.
3125 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3126 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3127 enum query_opcode opcode,
3128 enum desc_idn idn, u8 index,
3129 u8 selector,
3130 u8 *desc_buf, int *buf_len)
3131 {
3132 int err;
3133 int retries;
3134
3135 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3136 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3137 selector, desc_buf, buf_len);
3138 if (!err || err == -EINVAL)
3139 break;
3140 }
3141
3142 return err;
3143 }
3144
3145 /**
3146 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3147 * @hba: Pointer to adapter instance
3148 * @desc_id: descriptor idn value
3149 * @desc_len: mapped desc length (out)
3150 */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3151 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3152 int *desc_len)
3153 {
3154 if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3155 desc_id == QUERY_DESC_IDN_RFU_1)
3156 *desc_len = 0;
3157 else
3158 *desc_len = hba->desc_size[desc_id];
3159 }
3160 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3161
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3162 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3163 enum desc_idn desc_id, int desc_index,
3164 unsigned char desc_len)
3165 {
3166 if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3167 desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3168 /* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3169 * than the RPMB unit, however, both descriptors share the same
3170 * desc_idn, to cover both unit descriptors with one length, we
3171 * choose the normal unit descriptor length by desc_index.
3172 */
3173 hba->desc_size[desc_id] = desc_len;
3174 }
3175
3176 /**
3177 * ufshcd_read_desc_param - read the specified descriptor parameter
3178 * @hba: Pointer to adapter instance
3179 * @desc_id: descriptor idn value
3180 * @desc_index: descriptor index
3181 * @param_offset: offset of the parameter to read
3182 * @param_read_buf: pointer to buffer where parameter would be read
3183 * @param_size: sizeof(param_read_buf)
3184 *
3185 * Return 0 in case of success, non-zero otherwise
3186 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3187 int ufshcd_read_desc_param(struct ufs_hba *hba,
3188 enum desc_idn desc_id,
3189 int desc_index,
3190 u8 param_offset,
3191 u8 *param_read_buf,
3192 u8 param_size)
3193 {
3194 int ret;
3195 u8 *desc_buf;
3196 int buff_len;
3197 bool is_kmalloc = true;
3198
3199 /* Safety check */
3200 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3201 return -EINVAL;
3202
3203 /* Get the length of descriptor */
3204 ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3205 if (!buff_len) {
3206 dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3207 return -EINVAL;
3208 }
3209
3210 if (param_offset >= buff_len) {
3211 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3212 __func__, param_offset, desc_id, buff_len);
3213 return -EINVAL;
3214 }
3215
3216 /* Check whether we need temp memory */
3217 if (param_offset != 0 || param_size < buff_len) {
3218 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3219 if (!desc_buf)
3220 return -ENOMEM;
3221 } else {
3222 desc_buf = param_read_buf;
3223 is_kmalloc = false;
3224 }
3225
3226 /* Request for full descriptor */
3227 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3228 desc_id, desc_index, 0,
3229 desc_buf, &buff_len);
3230
3231 if (ret) {
3232 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3233 __func__, desc_id, desc_index, param_offset, ret);
3234 goto out;
3235 }
3236
3237 /* Sanity check */
3238 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3239 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3240 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3241 ret = -EINVAL;
3242 goto out;
3243 }
3244
3245 /* Update descriptor length */
3246 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3247 ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3248
3249 if (is_kmalloc) {
3250 /* Make sure we don't copy more data than available */
3251 if (param_offset >= buff_len)
3252 ret = -EINVAL;
3253 else
3254 memcpy(param_read_buf, &desc_buf[param_offset],
3255 min_t(u32, param_size, buff_len - param_offset));
3256 }
3257 out:
3258 if (is_kmalloc)
3259 kfree(desc_buf);
3260 return ret;
3261 }
3262
3263 /**
3264 * struct uc_string_id - unicode string
3265 *
3266 * @len: size of this descriptor inclusive
3267 * @type: descriptor type
3268 * @uc: unicode string character
3269 */
3270 struct uc_string_id {
3271 u8 len;
3272 u8 type;
3273 wchar_t uc[];
3274 } __packed;
3275
3276 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3277 static inline char ufshcd_remove_non_printable(u8 ch)
3278 {
3279 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3280 }
3281
3282 /**
3283 * ufshcd_read_string_desc - read string descriptor
3284 * @hba: pointer to adapter instance
3285 * @desc_index: descriptor index
3286 * @buf: pointer to buffer where descriptor would be read,
3287 * the caller should free the memory.
3288 * @ascii: if true convert from unicode to ascii characters
3289 * null terminated string.
3290 *
3291 * Return:
3292 * * string size on success.
3293 * * -ENOMEM: on allocation failure
3294 * * -EINVAL: on a wrong parameter
3295 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3296 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3297 u8 **buf, bool ascii)
3298 {
3299 struct uc_string_id *uc_str;
3300 u8 *str;
3301 int ret;
3302
3303 if (!buf)
3304 return -EINVAL;
3305
3306 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3307 if (!uc_str)
3308 return -ENOMEM;
3309
3310 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3311 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3312 if (ret < 0) {
3313 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3314 QUERY_REQ_RETRIES, ret);
3315 str = NULL;
3316 goto out;
3317 }
3318
3319 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3320 dev_dbg(hba->dev, "String Desc is of zero length\n");
3321 str = NULL;
3322 ret = 0;
3323 goto out;
3324 }
3325
3326 if (ascii) {
3327 ssize_t ascii_len;
3328 int i;
3329 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3330 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3331 str = kzalloc(ascii_len, GFP_KERNEL);
3332 if (!str) {
3333 ret = -ENOMEM;
3334 goto out;
3335 }
3336
3337 /*
3338 * the descriptor contains string in UTF16 format
3339 * we need to convert to utf-8 so it can be displayed
3340 */
3341 ret = utf16s_to_utf8s(uc_str->uc,
3342 uc_str->len - QUERY_DESC_HDR_SIZE,
3343 UTF16_BIG_ENDIAN, str, ascii_len);
3344
3345 /* replace non-printable or non-ASCII characters with spaces */
3346 for (i = 0; i < ret; i++)
3347 str[i] = ufshcd_remove_non_printable(str[i]);
3348
3349 str[ret++] = '\0';
3350
3351 } else {
3352 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3353 if (!str) {
3354 ret = -ENOMEM;
3355 goto out;
3356 }
3357 ret = uc_str->len;
3358 }
3359 out:
3360 *buf = str;
3361 kfree(uc_str);
3362 return ret;
3363 }
3364
3365 /**
3366 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3367 * @hba: Pointer to adapter instance
3368 * @lun: lun id
3369 * @param_offset: offset of the parameter to read
3370 * @param_read_buf: pointer to buffer where parameter would be read
3371 * @param_size: sizeof(param_read_buf)
3372 *
3373 * Return 0 in case of success, non-zero otherwise
3374 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3375 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3376 int lun,
3377 enum unit_desc_param param_offset,
3378 u8 *param_read_buf,
3379 u32 param_size)
3380 {
3381 /*
3382 * Unit descriptors are only available for general purpose LUs (LUN id
3383 * from 0 to 7) and RPMB Well known LU.
3384 */
3385 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3386 return -EOPNOTSUPP;
3387
3388 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3389 param_offset, param_read_buf, param_size);
3390 }
3391
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3392 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3393 {
3394 int err = 0;
3395 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3396
3397 if (hba->dev_info.wspecversion >= 0x300) {
3398 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3399 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3400 &gating_wait);
3401 if (err)
3402 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3403 err, gating_wait);
3404
3405 if (gating_wait == 0) {
3406 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3407 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3408 gating_wait);
3409 }
3410
3411 hba->dev_info.clk_gating_wait_us = gating_wait;
3412 }
3413
3414 return err;
3415 }
3416
3417 /**
3418 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3419 * @hba: per adapter instance
3420 *
3421 * 1. Allocate DMA memory for Command Descriptor array
3422 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3423 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3424 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3425 * (UTMRDL)
3426 * 4. Allocate memory for local reference block(lrb).
3427 *
3428 * Returns 0 for success, non-zero in case of failure
3429 */
ufshcd_memory_alloc(struct ufs_hba * hba)3430 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3431 {
3432 size_t utmrdl_size, utrdl_size, ucdl_size;
3433
3434 /* Allocate memory for UTP command descriptors */
3435 ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3436 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3437 ucdl_size,
3438 &hba->ucdl_dma_addr,
3439 GFP_KERNEL);
3440
3441 /*
3442 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3443 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3444 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3445 * be aligned to 128 bytes as well
3446 */
3447 if (!hba->ucdl_base_addr ||
3448 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3449 dev_err(hba->dev,
3450 "Command Descriptor Memory allocation failed\n");
3451 goto out;
3452 }
3453
3454 /*
3455 * Allocate memory for UTP Transfer descriptors
3456 * UFSHCI requires 1024 byte alignment of UTRD
3457 */
3458 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3459 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3460 utrdl_size,
3461 &hba->utrdl_dma_addr,
3462 GFP_KERNEL);
3463 if (!hba->utrdl_base_addr ||
3464 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3465 dev_err(hba->dev,
3466 "Transfer Descriptor Memory allocation failed\n");
3467 goto out;
3468 }
3469
3470 /*
3471 * Allocate memory for UTP Task Management descriptors
3472 * UFSHCI requires 1024 byte alignment of UTMRD
3473 */
3474 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3475 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3476 utmrdl_size,
3477 &hba->utmrdl_dma_addr,
3478 GFP_KERNEL);
3479 if (!hba->utmrdl_base_addr ||
3480 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3481 dev_err(hba->dev,
3482 "Task Management Descriptor Memory allocation failed\n");
3483 goto out;
3484 }
3485
3486 /* Allocate memory for local reference block */
3487 hba->lrb = devm_kcalloc(hba->dev,
3488 hba->nutrs, sizeof(struct ufshcd_lrb),
3489 GFP_KERNEL);
3490 if (!hba->lrb) {
3491 dev_err(hba->dev, "LRB Memory allocation failed\n");
3492 goto out;
3493 }
3494 return 0;
3495 out:
3496 return -ENOMEM;
3497 }
3498
3499 /**
3500 * ufshcd_host_memory_configure - configure local reference block with
3501 * memory offsets
3502 * @hba: per adapter instance
3503 *
3504 * Configure Host memory space
3505 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3506 * address.
3507 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3508 * and PRDT offset.
3509 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3510 * into local reference block.
3511 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3512 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3513 {
3514 struct utp_transfer_req_desc *utrdlp;
3515 dma_addr_t cmd_desc_dma_addr;
3516 dma_addr_t cmd_desc_element_addr;
3517 u16 response_offset;
3518 u16 prdt_offset;
3519 int cmd_desc_size;
3520 int i;
3521
3522 utrdlp = hba->utrdl_base_addr;
3523
3524 response_offset =
3525 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3526 prdt_offset =
3527 offsetof(struct utp_transfer_cmd_desc, prd_table);
3528
3529 cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3530 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3531
3532 for (i = 0; i < hba->nutrs; i++) {
3533 /* Configure UTRD with command descriptor base address */
3534 cmd_desc_element_addr =
3535 (cmd_desc_dma_addr + (cmd_desc_size * i));
3536 utrdlp[i].command_desc_base_addr_lo =
3537 cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3538 utrdlp[i].command_desc_base_addr_hi =
3539 cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3540
3541 /* Response upiu and prdt offset should be in double words */
3542 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3543 utrdlp[i].response_upiu_offset =
3544 cpu_to_le16(response_offset);
3545 utrdlp[i].prd_table_offset =
3546 cpu_to_le16(prdt_offset);
3547 utrdlp[i].response_upiu_length =
3548 cpu_to_le16(ALIGNED_UPIU_SIZE);
3549 } else {
3550 utrdlp[i].response_upiu_offset =
3551 cpu_to_le16(response_offset >> 2);
3552 utrdlp[i].prd_table_offset =
3553 cpu_to_le16(prdt_offset >> 2);
3554 utrdlp[i].response_upiu_length =
3555 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3556 }
3557
3558 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3559 }
3560 }
3561
3562 /**
3563 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3564 * @hba: per adapter instance
3565 *
3566 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3567 * in order to initialize the Unipro link startup procedure.
3568 * Once the Unipro links are up, the device connected to the controller
3569 * is detected.
3570 *
3571 * Returns 0 on success, non-zero value on failure
3572 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3573 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3574 {
3575 struct uic_command uic_cmd = {0};
3576 int ret;
3577
3578 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3579
3580 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3581 if (ret)
3582 dev_dbg(hba->dev,
3583 "dme-link-startup: error code %d\n", ret);
3584 return ret;
3585 }
3586 /**
3587 * ufshcd_dme_reset - UIC command for DME_RESET
3588 * @hba: per adapter instance
3589 *
3590 * DME_RESET command is issued in order to reset UniPro stack.
3591 * This function now deals with cold reset.
3592 *
3593 * Returns 0 on success, non-zero value on failure
3594 */
ufshcd_dme_reset(struct ufs_hba * hba)3595 static int ufshcd_dme_reset(struct ufs_hba *hba)
3596 {
3597 struct uic_command uic_cmd = {0};
3598 int ret;
3599
3600 uic_cmd.command = UIC_CMD_DME_RESET;
3601
3602 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3603 if (ret)
3604 dev_err(hba->dev,
3605 "dme-reset: error code %d\n", ret);
3606
3607 return ret;
3608 }
3609
3610 /**
3611 * ufshcd_dme_enable - UIC command for DME_ENABLE
3612 * @hba: per adapter instance
3613 *
3614 * DME_ENABLE command is issued in order to enable UniPro stack.
3615 *
3616 * Returns 0 on success, non-zero value on failure
3617 */
ufshcd_dme_enable(struct ufs_hba * hba)3618 static int ufshcd_dme_enable(struct ufs_hba *hba)
3619 {
3620 struct uic_command uic_cmd = {0};
3621 int ret;
3622
3623 uic_cmd.command = UIC_CMD_DME_ENABLE;
3624
3625 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3626 if (ret)
3627 dev_err(hba->dev,
3628 "dme-enable: error code %d\n", ret);
3629
3630 return ret;
3631 }
3632
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3633 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3634 {
3635 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3636 unsigned long min_sleep_time_us;
3637
3638 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3639 return;
3640
3641 /*
3642 * last_dme_cmd_tstamp will be 0 only for 1st call to
3643 * this function
3644 */
3645 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3646 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3647 } else {
3648 unsigned long delta =
3649 (unsigned long) ktime_to_us(
3650 ktime_sub(ktime_get(),
3651 hba->last_dme_cmd_tstamp));
3652
3653 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3654 min_sleep_time_us =
3655 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3656 else
3657 return; /* no more delay required */
3658 }
3659
3660 /* allow sleep for extra 50us if needed */
3661 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3662 }
3663
3664 /**
3665 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3666 * @hba: per adapter instance
3667 * @attr_sel: uic command argument1
3668 * @attr_set: attribute set type as uic command argument2
3669 * @mib_val: setting value as uic command argument3
3670 * @peer: indicate whether peer or local
3671 *
3672 * Returns 0 on success, non-zero value on failure
3673 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3674 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3675 u8 attr_set, u32 mib_val, u8 peer)
3676 {
3677 struct uic_command uic_cmd = {0};
3678 static const char *const action[] = {
3679 "dme-set",
3680 "dme-peer-set"
3681 };
3682 const char *set = action[!!peer];
3683 int ret;
3684 int retries = UFS_UIC_COMMAND_RETRIES;
3685
3686 uic_cmd.command = peer ?
3687 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3688 uic_cmd.argument1 = attr_sel;
3689 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3690 uic_cmd.argument3 = mib_val;
3691
3692 do {
3693 /* for peer attributes we retry upon failure */
3694 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3695 if (ret)
3696 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3697 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3698 } while (ret && peer && --retries);
3699
3700 if (ret)
3701 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3702 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3703 UFS_UIC_COMMAND_RETRIES - retries);
3704
3705 return ret;
3706 }
3707 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3708
3709 /**
3710 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3711 * @hba: per adapter instance
3712 * @attr_sel: uic command argument1
3713 * @mib_val: the value of the attribute as returned by the UIC command
3714 * @peer: indicate whether peer or local
3715 *
3716 * Returns 0 on success, non-zero value on failure
3717 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3718 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3719 u32 *mib_val, u8 peer)
3720 {
3721 struct uic_command uic_cmd = {0};
3722 static const char *const action[] = {
3723 "dme-get",
3724 "dme-peer-get"
3725 };
3726 const char *get = action[!!peer];
3727 int ret;
3728 int retries = UFS_UIC_COMMAND_RETRIES;
3729 struct ufs_pa_layer_attr orig_pwr_info;
3730 struct ufs_pa_layer_attr temp_pwr_info;
3731 bool pwr_mode_change = false;
3732
3733 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3734 orig_pwr_info = hba->pwr_info;
3735 temp_pwr_info = orig_pwr_info;
3736
3737 if (orig_pwr_info.pwr_tx == FAST_MODE ||
3738 orig_pwr_info.pwr_rx == FAST_MODE) {
3739 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3740 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3741 pwr_mode_change = true;
3742 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3743 orig_pwr_info.pwr_rx == SLOW_MODE) {
3744 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3745 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3746 pwr_mode_change = true;
3747 }
3748 if (pwr_mode_change) {
3749 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3750 if (ret)
3751 goto out;
3752 }
3753 }
3754
3755 uic_cmd.command = peer ?
3756 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3757 uic_cmd.argument1 = attr_sel;
3758
3759 do {
3760 /* for peer attributes we retry upon failure */
3761 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3762 if (ret)
3763 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3764 get, UIC_GET_ATTR_ID(attr_sel), ret);
3765 } while (ret && peer && --retries);
3766
3767 if (ret)
3768 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3769 get, UIC_GET_ATTR_ID(attr_sel),
3770 UFS_UIC_COMMAND_RETRIES - retries);
3771
3772 if (mib_val && !ret)
3773 *mib_val = uic_cmd.argument3;
3774
3775 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3776 && pwr_mode_change)
3777 ufshcd_change_power_mode(hba, &orig_pwr_info);
3778 out:
3779 return ret;
3780 }
3781 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3782
3783 /**
3784 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3785 * state) and waits for it to take effect.
3786 *
3787 * @hba: per adapter instance
3788 * @cmd: UIC command to execute
3789 *
3790 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3791 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3792 * and device UniPro link and hence it's final completion would be indicated by
3793 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3794 * addition to normal UIC command completion Status (UCCS). This function only
3795 * returns after the relevant status bits indicate the completion.
3796 *
3797 * Returns 0 on success, non-zero value on failure
3798 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3799 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3800 {
3801 struct completion uic_async_done;
3802 unsigned long flags;
3803 u8 status;
3804 int ret;
3805 bool reenable_intr = false;
3806
3807 mutex_lock(&hba->uic_cmd_mutex);
3808 init_completion(&uic_async_done);
3809 ufshcd_add_delay_before_dme_cmd(hba);
3810
3811 spin_lock_irqsave(hba->host->host_lock, flags);
3812 if (ufshcd_is_link_broken(hba)) {
3813 ret = -ENOLINK;
3814 goto out_unlock;
3815 }
3816 hba->uic_async_done = &uic_async_done;
3817 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3818 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3819 /*
3820 * Make sure UIC command completion interrupt is disabled before
3821 * issuing UIC command.
3822 */
3823 wmb();
3824 reenable_intr = true;
3825 }
3826 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3827 spin_unlock_irqrestore(hba->host->host_lock, flags);
3828 if (ret) {
3829 dev_err(hba->dev,
3830 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3831 cmd->command, cmd->argument3, ret);
3832 goto out;
3833 }
3834
3835 if (!wait_for_completion_timeout(hba->uic_async_done,
3836 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3837 dev_err(hba->dev,
3838 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3839 cmd->command, cmd->argument3);
3840
3841 if (!cmd->cmd_active) {
3842 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
3843 __func__);
3844 goto check_upmcrs;
3845 }
3846
3847 ret = -ETIMEDOUT;
3848 goto out;
3849 }
3850
3851 check_upmcrs:
3852 status = ufshcd_get_upmcrs(hba);
3853 if (status != PWR_LOCAL) {
3854 dev_err(hba->dev,
3855 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3856 cmd->command, status);
3857 ret = (status != PWR_OK) ? status : -1;
3858 }
3859 out:
3860 if (ret) {
3861 ufshcd_print_host_state(hba);
3862 ufshcd_print_pwr_info(hba);
3863 ufshcd_print_host_regs(hba);
3864 }
3865
3866 spin_lock_irqsave(hba->host->host_lock, flags);
3867 hba->active_uic_cmd = NULL;
3868 hba->uic_async_done = NULL;
3869 if (reenable_intr)
3870 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3871 if (ret) {
3872 ufshcd_set_link_broken(hba);
3873 ufshcd_schedule_eh_work(hba);
3874 }
3875 out_unlock:
3876 spin_unlock_irqrestore(hba->host->host_lock, flags);
3877 mutex_unlock(&hba->uic_cmd_mutex);
3878
3879 return ret;
3880 }
3881
3882 /**
3883 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3884 * using DME_SET primitives.
3885 * @hba: per adapter instance
3886 * @mode: powr mode value
3887 *
3888 * Returns 0 on success, non-zero value on failure
3889 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3890 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3891 {
3892 struct uic_command uic_cmd = {0};
3893 int ret;
3894
3895 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3896 ret = ufshcd_dme_set(hba,
3897 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3898 if (ret) {
3899 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3900 __func__, ret);
3901 goto out;
3902 }
3903 }
3904
3905 uic_cmd.command = UIC_CMD_DME_SET;
3906 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3907 uic_cmd.argument3 = mode;
3908 ufshcd_hold(hba, false);
3909 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3910 ufshcd_release(hba);
3911
3912 out:
3913 return ret;
3914 }
3915
ufshcd_link_recovery(struct ufs_hba * hba)3916 int ufshcd_link_recovery(struct ufs_hba *hba)
3917 {
3918 int ret;
3919 unsigned long flags;
3920
3921 spin_lock_irqsave(hba->host->host_lock, flags);
3922 hba->ufshcd_state = UFSHCD_STATE_RESET;
3923 ufshcd_set_eh_in_progress(hba);
3924 spin_unlock_irqrestore(hba->host->host_lock, flags);
3925
3926 /* Reset the attached device */
3927 ufshcd_vops_device_reset(hba);
3928
3929 ret = ufshcd_host_reset_and_restore(hba);
3930
3931 spin_lock_irqsave(hba->host->host_lock, flags);
3932 if (ret)
3933 hba->ufshcd_state = UFSHCD_STATE_ERROR;
3934 ufshcd_clear_eh_in_progress(hba);
3935 spin_unlock_irqrestore(hba->host->host_lock, flags);
3936
3937 if (ret)
3938 dev_err(hba->dev, "%s: link recovery failed, err %d",
3939 __func__, ret);
3940
3941 return ret;
3942 }
3943 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
3944
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3945 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3946 {
3947 int ret;
3948 struct uic_command uic_cmd = {0};
3949 ktime_t start = ktime_get();
3950
3951 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3952
3953 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3954 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3955 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3956 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3957
3958 if (ret)
3959 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3960 __func__, ret);
3961 else
3962 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
3963 POST_CHANGE);
3964
3965 return ret;
3966 }
3967
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3968 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
3969 {
3970 struct uic_command uic_cmd = {0};
3971 int ret;
3972 ktime_t start = ktime_get();
3973
3974 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
3975
3976 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
3977 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3978 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
3979 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3980
3981 if (ret) {
3982 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
3983 __func__, ret);
3984 } else {
3985 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
3986 POST_CHANGE);
3987 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
3988 hba->ufs_stats.hibern8_exit_cnt++;
3989 }
3990
3991 return ret;
3992 }
3993 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
3994
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)3995 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
3996 {
3997 unsigned long flags;
3998 bool update = false;
3999
4000 if (!ufshcd_is_auto_hibern8_supported(hba))
4001 return;
4002
4003 spin_lock_irqsave(hba->host->host_lock, flags);
4004 if (hba->ahit != ahit) {
4005 hba->ahit = ahit;
4006 update = true;
4007 }
4008 spin_unlock_irqrestore(hba->host->host_lock, flags);
4009
4010 if (update && !pm_runtime_suspended(hba->dev)) {
4011 pm_runtime_get_sync(hba->dev);
4012 ufshcd_hold(hba, false);
4013 ufshcd_auto_hibern8_enable(hba);
4014 ufshcd_release(hba);
4015 pm_runtime_put(hba->dev);
4016 }
4017 }
4018 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4019
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4020 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4021 {
4022 unsigned long flags;
4023
4024 if (!ufshcd_is_auto_hibern8_supported(hba))
4025 return;
4026
4027 spin_lock_irqsave(hba->host->host_lock, flags);
4028 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4029 spin_unlock_irqrestore(hba->host->host_lock, flags);
4030 }
4031
4032 /**
4033 * ufshcd_init_pwr_info - setting the POR (power on reset)
4034 * values in hba power info
4035 * @hba: per-adapter instance
4036 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4037 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4038 {
4039 hba->pwr_info.gear_rx = UFS_PWM_G1;
4040 hba->pwr_info.gear_tx = UFS_PWM_G1;
4041 hba->pwr_info.lane_rx = 1;
4042 hba->pwr_info.lane_tx = 1;
4043 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4044 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4045 hba->pwr_info.hs_rate = 0;
4046 }
4047
4048 /**
4049 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4050 * @hba: per-adapter instance
4051 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4052 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4053 {
4054 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4055
4056 if (hba->max_pwr_info.is_valid)
4057 return 0;
4058
4059 pwr_info->pwr_tx = FAST_MODE;
4060 pwr_info->pwr_rx = FAST_MODE;
4061 pwr_info->hs_rate = PA_HS_MODE_B;
4062
4063 /* Get the connected lane count */
4064 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4065 &pwr_info->lane_rx);
4066 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4067 &pwr_info->lane_tx);
4068
4069 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4070 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4071 __func__,
4072 pwr_info->lane_rx,
4073 pwr_info->lane_tx);
4074 return -EINVAL;
4075 }
4076
4077 /*
4078 * First, get the maximum gears of HS speed.
4079 * If a zero value, it means there is no HSGEAR capability.
4080 * Then, get the maximum gears of PWM speed.
4081 */
4082 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4083 if (!pwr_info->gear_rx) {
4084 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4085 &pwr_info->gear_rx);
4086 if (!pwr_info->gear_rx) {
4087 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4088 __func__, pwr_info->gear_rx);
4089 return -EINVAL;
4090 }
4091 pwr_info->pwr_rx = SLOW_MODE;
4092 }
4093
4094 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4095 &pwr_info->gear_tx);
4096 if (!pwr_info->gear_tx) {
4097 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4098 &pwr_info->gear_tx);
4099 if (!pwr_info->gear_tx) {
4100 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4101 __func__, pwr_info->gear_tx);
4102 return -EINVAL;
4103 }
4104 pwr_info->pwr_tx = SLOW_MODE;
4105 }
4106
4107 hba->max_pwr_info.is_valid = true;
4108 return 0;
4109 }
4110
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4111 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4112 struct ufs_pa_layer_attr *pwr_mode)
4113 {
4114 int ret;
4115
4116 /* if already configured to the requested pwr_mode */
4117 if (!hba->force_pmc &&
4118 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4119 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4120 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4121 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4122 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4123 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4124 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4125 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4126 return 0;
4127 }
4128
4129 /*
4130 * Configure attributes for power mode change with below.
4131 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4132 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4133 * - PA_HSSERIES
4134 */
4135 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4136 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4137 pwr_mode->lane_rx);
4138 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4139 pwr_mode->pwr_rx == FAST_MODE)
4140 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4141 else
4142 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4143
4144 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4145 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4146 pwr_mode->lane_tx);
4147 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4148 pwr_mode->pwr_tx == FAST_MODE)
4149 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4150 else
4151 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4152
4153 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4154 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4155 pwr_mode->pwr_rx == FAST_MODE ||
4156 pwr_mode->pwr_tx == FAST_MODE)
4157 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4158 pwr_mode->hs_rate);
4159
4160 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4161 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4162 DL_FC0ProtectionTimeOutVal_Default);
4163 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4164 DL_TC0ReplayTimeOutVal_Default);
4165 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4166 DL_AFC0ReqTimeOutVal_Default);
4167 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4168 DL_FC1ProtectionTimeOutVal_Default);
4169 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4170 DL_TC1ReplayTimeOutVal_Default);
4171 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4172 DL_AFC1ReqTimeOutVal_Default);
4173
4174 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4175 DL_FC0ProtectionTimeOutVal_Default);
4176 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4177 DL_TC0ReplayTimeOutVal_Default);
4178 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4179 DL_AFC0ReqTimeOutVal_Default);
4180 }
4181
4182 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4183 | pwr_mode->pwr_tx);
4184
4185 if (ret) {
4186 dev_err(hba->dev,
4187 "%s: power mode change failed %d\n", __func__, ret);
4188 } else {
4189 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4190 pwr_mode);
4191
4192 memcpy(&hba->pwr_info, pwr_mode,
4193 sizeof(struct ufs_pa_layer_attr));
4194 }
4195
4196 return ret;
4197 }
4198
4199 /**
4200 * ufshcd_config_pwr_mode - configure a new power mode
4201 * @hba: per-adapter instance
4202 * @desired_pwr_mode: desired power configuration
4203 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4204 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4205 struct ufs_pa_layer_attr *desired_pwr_mode)
4206 {
4207 struct ufs_pa_layer_attr final_params = { 0 };
4208 int ret;
4209
4210 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4211 desired_pwr_mode, &final_params);
4212
4213 if (ret)
4214 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4215
4216 ret = ufshcd_change_power_mode(hba, &final_params);
4217
4218 return ret;
4219 }
4220 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4221
4222 /**
4223 * ufshcd_complete_dev_init() - checks device readiness
4224 * @hba: per-adapter instance
4225 *
4226 * Set fDeviceInit flag and poll until device toggles it.
4227 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4228 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4229 {
4230 int err;
4231 bool flag_res = true;
4232 ktime_t timeout;
4233
4234 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4235 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4236 if (err) {
4237 dev_err(hba->dev,
4238 "%s setting fDeviceInit flag failed with error %d\n",
4239 __func__, err);
4240 goto out;
4241 }
4242
4243 /* Poll fDeviceInit flag to be cleared */
4244 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4245 do {
4246 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4247 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4248 if (!flag_res)
4249 break;
4250 usleep_range(5000, 10000);
4251 } while (ktime_before(ktime_get(), timeout));
4252
4253 if (err) {
4254 dev_err(hba->dev,
4255 "%s reading fDeviceInit flag failed with error %d\n",
4256 __func__, err);
4257 } else if (flag_res) {
4258 dev_err(hba->dev,
4259 "%s fDeviceInit was not cleared by the device\n",
4260 __func__);
4261 err = -EBUSY;
4262 }
4263 out:
4264 return err;
4265 }
4266
4267 /**
4268 * ufshcd_make_hba_operational - Make UFS controller operational
4269 * @hba: per adapter instance
4270 *
4271 * To bring UFS host controller to operational state,
4272 * 1. Enable required interrupts
4273 * 2. Configure interrupt aggregation
4274 * 3. Program UTRL and UTMRL base address
4275 * 4. Configure run-stop-registers
4276 *
4277 * Returns 0 on success, non-zero value on failure
4278 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4279 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4280 {
4281 int err = 0;
4282 u32 reg;
4283
4284 /* Enable required interrupts */
4285 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4286
4287 /* Configure interrupt aggregation */
4288 if (ufshcd_is_intr_aggr_allowed(hba))
4289 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4290 else
4291 ufshcd_disable_intr_aggr(hba);
4292
4293 /* Configure UTRL and UTMRL base address registers */
4294 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4295 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4296 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4297 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4298 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4299 REG_UTP_TASK_REQ_LIST_BASE_L);
4300 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4301 REG_UTP_TASK_REQ_LIST_BASE_H);
4302
4303 /*
4304 * Make sure base address and interrupt setup are updated before
4305 * enabling the run/stop registers below.
4306 */
4307 wmb();
4308
4309 /*
4310 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4311 */
4312 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4313 if (!(ufshcd_get_lists_status(reg))) {
4314 ufshcd_enable_run_stop_reg(hba);
4315 } else {
4316 dev_err(hba->dev,
4317 "Host controller not ready to process requests");
4318 err = -EIO;
4319 }
4320
4321 return err;
4322 }
4323 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4324
4325 /**
4326 * ufshcd_hba_stop - Send controller to reset state
4327 * @hba: per adapter instance
4328 */
ufshcd_hba_stop(struct ufs_hba * hba)4329 static inline void ufshcd_hba_stop(struct ufs_hba *hba)
4330 {
4331 unsigned long flags;
4332 int err;
4333
4334 /*
4335 * Obtain the host lock to prevent that the controller is disabled
4336 * while the UFS interrupt handler is active on another CPU.
4337 */
4338 spin_lock_irqsave(hba->host->host_lock, flags);
4339 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4340 spin_unlock_irqrestore(hba->host->host_lock, flags);
4341
4342 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4343 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4344 10, 1);
4345 if (err)
4346 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4347 }
4348
4349 /**
4350 * ufshcd_hba_execute_hce - initialize the controller
4351 * @hba: per adapter instance
4352 *
4353 * The controller resets itself and controller firmware initialization
4354 * sequence kicks off. When controller is ready it will set
4355 * the Host Controller Enable bit to 1.
4356 *
4357 * Returns 0 on success, non-zero value on failure
4358 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4359 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4360 {
4361 int retry;
4362
4363 if (!ufshcd_is_hba_active(hba))
4364 /* change controller state to "reset state" */
4365 ufshcd_hba_stop(hba);
4366
4367 /* UniPro link is disabled at this point */
4368 ufshcd_set_link_off(hba);
4369
4370 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4371
4372 /* start controller initialization sequence */
4373 ufshcd_hba_start(hba);
4374
4375 /*
4376 * To initialize a UFS host controller HCE bit must be set to 1.
4377 * During initialization the HCE bit value changes from 1->0->1.
4378 * When the host controller completes initialization sequence
4379 * it sets the value of HCE bit to 1. The same HCE bit is read back
4380 * to check if the controller has completed initialization sequence.
4381 * So without this delay the value HCE = 1, set in the previous
4382 * instruction might be read back.
4383 * This delay can be changed based on the controller.
4384 */
4385 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4386
4387 /* wait for the host controller to complete initialization */
4388 retry = 50;
4389 while (ufshcd_is_hba_active(hba)) {
4390 if (retry) {
4391 retry--;
4392 } else {
4393 dev_err(hba->dev,
4394 "Controller enable failed\n");
4395 return -EIO;
4396 }
4397 usleep_range(1000, 1100);
4398 }
4399
4400 /* enable UIC related interrupts */
4401 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4402
4403 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4404
4405 return 0;
4406 }
4407
ufshcd_hba_enable(struct ufs_hba * hba)4408 int ufshcd_hba_enable(struct ufs_hba *hba)
4409 {
4410 int ret;
4411
4412 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4413 ufshcd_set_link_off(hba);
4414 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4415
4416 /* enable UIC related interrupts */
4417 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4418 ret = ufshcd_dme_reset(hba);
4419 if (!ret) {
4420 ret = ufshcd_dme_enable(hba);
4421 if (!ret)
4422 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4423 if (ret)
4424 dev_err(hba->dev,
4425 "Host controller enable failed with non-hce\n");
4426 }
4427 } else {
4428 ret = ufshcd_hba_execute_hce(hba);
4429 }
4430
4431 return ret;
4432 }
4433 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4434
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4435 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4436 {
4437 int tx_lanes = 0, i, err = 0;
4438
4439 if (!peer)
4440 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4441 &tx_lanes);
4442 else
4443 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4444 &tx_lanes);
4445 for (i = 0; i < tx_lanes; i++) {
4446 if (!peer)
4447 err = ufshcd_dme_set(hba,
4448 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4449 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4450 0);
4451 else
4452 err = ufshcd_dme_peer_set(hba,
4453 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4454 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4455 0);
4456 if (err) {
4457 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4458 __func__, peer, i, err);
4459 break;
4460 }
4461 }
4462
4463 return err;
4464 }
4465
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4466 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4467 {
4468 return ufshcd_disable_tx_lcc(hba, true);
4469 }
4470
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4471 void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4472 u32 reg)
4473 {
4474 reg_hist->reg[reg_hist->pos] = reg;
4475 reg_hist->tstamp[reg_hist->pos] = ktime_get();
4476 reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4477 }
4478 EXPORT_SYMBOL_GPL(ufshcd_update_reg_hist);
4479
4480 /**
4481 * ufshcd_link_startup - Initialize unipro link startup
4482 * @hba: per adapter instance
4483 *
4484 * Returns 0 for success, non-zero in case of failure
4485 */
ufshcd_link_startup(struct ufs_hba * hba)4486 static int ufshcd_link_startup(struct ufs_hba *hba)
4487 {
4488 int ret;
4489 int retries = DME_LINKSTARTUP_RETRIES;
4490 bool link_startup_again = false;
4491
4492 /*
4493 * If UFS device isn't active then we will have to issue link startup
4494 * 2 times to make sure the device state move to active.
4495 */
4496 if (!ufshcd_is_ufs_dev_active(hba))
4497 link_startup_again = true;
4498
4499 link_startup:
4500 do {
4501 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4502
4503 ret = ufshcd_dme_link_startup(hba);
4504
4505 /* check if device is detected by inter-connect layer */
4506 if (!ret && !ufshcd_is_device_present(hba)) {
4507 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4508 0);
4509 dev_err(hba->dev, "%s: Device not present\n", __func__);
4510 ret = -ENXIO;
4511 goto out;
4512 }
4513
4514 /*
4515 * DME link lost indication is only received when link is up,
4516 * but we can't be sure if the link is up until link startup
4517 * succeeds. So reset the local Uni-Pro and try again.
4518 */
4519 if (ret && ufshcd_hba_enable(hba)) {
4520 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4521 (u32)ret);
4522 goto out;
4523 }
4524 } while (ret && retries--);
4525
4526 if (ret) {
4527 /* failed to get the link up... retire */
4528 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4529 (u32)ret);
4530 goto out;
4531 }
4532
4533 if (link_startup_again) {
4534 link_startup_again = false;
4535 retries = DME_LINKSTARTUP_RETRIES;
4536 goto link_startup;
4537 }
4538
4539 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4540 ufshcd_init_pwr_info(hba);
4541 ufshcd_print_pwr_info(hba);
4542
4543 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4544 ret = ufshcd_disable_device_tx_lcc(hba);
4545 if (ret)
4546 goto out;
4547 }
4548
4549 /* Include any host controller configuration via UIC commands */
4550 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4551 if (ret)
4552 goto out;
4553
4554 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4555 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4556 ret = ufshcd_make_hba_operational(hba);
4557 out:
4558 if (ret) {
4559 dev_err(hba->dev, "link startup failed %d\n", ret);
4560 ufshcd_print_host_state(hba);
4561 ufshcd_print_pwr_info(hba);
4562 ufshcd_print_host_regs(hba);
4563 }
4564 return ret;
4565 }
4566
4567 /**
4568 * ufshcd_verify_dev_init() - Verify device initialization
4569 * @hba: per-adapter instance
4570 *
4571 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4572 * device Transport Protocol (UTP) layer is ready after a reset.
4573 * If the UTP layer at the device side is not initialized, it may
4574 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4575 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4576 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4577 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4578 {
4579 int err = 0;
4580 int retries;
4581
4582 ufshcd_hold(hba, false);
4583 mutex_lock(&hba->dev_cmd.lock);
4584 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4585 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4586 NOP_OUT_TIMEOUT);
4587
4588 if (!err || err == -ETIMEDOUT)
4589 break;
4590
4591 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4592 }
4593 mutex_unlock(&hba->dev_cmd.lock);
4594 ufshcd_release(hba);
4595
4596 if (err)
4597 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4598 return err;
4599 }
4600
4601 /**
4602 * ufshcd_set_queue_depth - set lun queue depth
4603 * @sdev: pointer to SCSI device
4604 *
4605 * Read bLUQueueDepth value and activate scsi tagged command
4606 * queueing. For WLUN, queue depth is set to 1. For best-effort
4607 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4608 * value that host can queue.
4609 */
ufshcd_set_queue_depth(struct scsi_device * sdev)4610 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4611 {
4612 int ret = 0;
4613 u8 lun_qdepth;
4614 struct ufs_hba *hba;
4615
4616 hba = shost_priv(sdev->host);
4617
4618 lun_qdepth = hba->nutrs;
4619 ret = ufshcd_read_unit_desc_param(hba,
4620 ufshcd_scsi_to_upiu_lun(sdev->lun),
4621 UNIT_DESC_PARAM_LU_Q_DEPTH,
4622 &lun_qdepth,
4623 sizeof(lun_qdepth));
4624
4625 /* Some WLUN doesn't support unit descriptor */
4626 if (ret == -EOPNOTSUPP)
4627 lun_qdepth = 1;
4628 else if (!lun_qdepth)
4629 /* eventually, we can figure out the real queue depth */
4630 lun_qdepth = hba->nutrs;
4631 else
4632 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4633
4634 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4635 __func__, lun_qdepth);
4636 scsi_change_queue_depth(sdev, lun_qdepth);
4637 }
4638
4639 /*
4640 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4641 * @hba: per-adapter instance
4642 * @lun: UFS device lun id
4643 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4644 *
4645 * Returns 0 in case of success and b_lu_write_protect status would be returned
4646 * @b_lu_write_protect parameter.
4647 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4648 * Returns -EINVAL in case of invalid parameters passed to this function.
4649 */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4650 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4651 u8 lun,
4652 u8 *b_lu_write_protect)
4653 {
4654 int ret;
4655
4656 if (!b_lu_write_protect)
4657 ret = -EINVAL;
4658 /*
4659 * According to UFS device spec, RPMB LU can't be write
4660 * protected so skip reading bLUWriteProtect parameter for
4661 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4662 */
4663 else if (lun >= hba->dev_info.max_lu_supported)
4664 ret = -ENOTSUPP;
4665 else
4666 ret = ufshcd_read_unit_desc_param(hba,
4667 lun,
4668 UNIT_DESC_PARAM_LU_WR_PROTECT,
4669 b_lu_write_protect,
4670 sizeof(*b_lu_write_protect));
4671 return ret;
4672 }
4673
4674 /**
4675 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4676 * status
4677 * @hba: per-adapter instance
4678 * @sdev: pointer to SCSI device
4679 *
4680 */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4681 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4682 struct scsi_device *sdev)
4683 {
4684 if (hba->dev_info.f_power_on_wp_en &&
4685 !hba->dev_info.is_lu_power_on_wp) {
4686 u8 b_lu_write_protect;
4687
4688 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4689 &b_lu_write_protect) &&
4690 (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4691 hba->dev_info.is_lu_power_on_wp = true;
4692 }
4693 }
4694
4695 /**
4696 * ufshcd_slave_alloc - handle initial SCSI device configurations
4697 * @sdev: pointer to SCSI device
4698 *
4699 * Returns success
4700 */
ufshcd_slave_alloc(struct scsi_device * sdev)4701 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4702 {
4703 struct ufs_hba *hba;
4704
4705 hba = shost_priv(sdev->host);
4706
4707 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4708 sdev->use_10_for_ms = 1;
4709
4710 /* DBD field should be set to 1 in mode sense(10) */
4711 sdev->set_dbd_for_ms = 1;
4712
4713 /* allow SCSI layer to restart the device in case of errors */
4714 sdev->allow_restart = 1;
4715
4716 /* REPORT SUPPORTED OPERATION CODES is not supported */
4717 sdev->no_report_opcodes = 1;
4718
4719 /* WRITE_SAME command is not supported */
4720 sdev->no_write_same = 1;
4721
4722 ufshcd_set_queue_depth(sdev);
4723
4724 ufshcd_get_lu_power_on_wp_status(hba, sdev);
4725
4726 return 0;
4727 }
4728
4729 /**
4730 * ufshcd_change_queue_depth - change queue depth
4731 * @sdev: pointer to SCSI device
4732 * @depth: required depth to set
4733 *
4734 * Change queue depth and make sure the max. limits are not crossed.
4735 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4736 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4737 {
4738 struct ufs_hba *hba = shost_priv(sdev->host);
4739
4740 if (depth > hba->nutrs)
4741 depth = hba->nutrs;
4742 return scsi_change_queue_depth(sdev, depth);
4743 }
4744
4745 /**
4746 * ufshcd_slave_configure - adjust SCSI device configurations
4747 * @sdev: pointer to SCSI device
4748 */
ufshcd_slave_configure(struct scsi_device * sdev)4749 static int ufshcd_slave_configure(struct scsi_device *sdev)
4750 {
4751 struct ufs_hba *hba = shost_priv(sdev->host);
4752 struct request_queue *q = sdev->request_queue;
4753
4754 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4755 if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
4756 blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
4757
4758 if (ufshcd_is_rpm_autosuspend_allowed(hba))
4759 sdev->rpm_autosuspend = 1;
4760
4761 ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4762
4763 return 0;
4764 }
4765
4766 /**
4767 * ufshcd_slave_destroy - remove SCSI device configurations
4768 * @sdev: pointer to SCSI device
4769 */
ufshcd_slave_destroy(struct scsi_device * sdev)4770 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4771 {
4772 struct ufs_hba *hba;
4773
4774 hba = shost_priv(sdev->host);
4775 /* Drop the reference as it won't be needed anymore */
4776 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4777 unsigned long flags;
4778
4779 spin_lock_irqsave(hba->host->host_lock, flags);
4780 hba->sdev_ufs_device = NULL;
4781 spin_unlock_irqrestore(hba->host->host_lock, flags);
4782 }
4783 }
4784
4785 /**
4786 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4787 * @lrbp: pointer to local reference block of completed command
4788 * @scsi_status: SCSI command status
4789 *
4790 * Returns value base on SCSI command status
4791 */
4792 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4793 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4794 {
4795 int result = 0;
4796
4797 switch (scsi_status) {
4798 case SAM_STAT_CHECK_CONDITION:
4799 ufshcd_copy_sense_data(lrbp);
4800 fallthrough;
4801 case SAM_STAT_GOOD:
4802 result |= DID_OK << 16 |
4803 COMMAND_COMPLETE << 8 |
4804 scsi_status;
4805 break;
4806 case SAM_STAT_TASK_SET_FULL:
4807 case SAM_STAT_BUSY:
4808 case SAM_STAT_TASK_ABORTED:
4809 ufshcd_copy_sense_data(lrbp);
4810 result |= scsi_status;
4811 break;
4812 default:
4813 result |= DID_ERROR << 16;
4814 break;
4815 } /* end of switch */
4816
4817 return result;
4818 }
4819
4820 /**
4821 * ufshcd_transfer_rsp_status - Get overall status of the response
4822 * @hba: per adapter instance
4823 * @lrbp: pointer to local reference block of completed command
4824 *
4825 * Returns result of the command to notify SCSI midlayer
4826 */
4827 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4828 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4829 {
4830 int result = 0;
4831 int scsi_status;
4832 int ocs;
4833
4834 /* overall command status of utrd */
4835 ocs = ufshcd_get_tr_ocs(lrbp);
4836
4837 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
4838 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
4839 MASK_RSP_UPIU_RESULT)
4840 ocs = OCS_SUCCESS;
4841 }
4842
4843 switch (ocs) {
4844 case OCS_SUCCESS:
4845 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4846 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4847 switch (result) {
4848 case UPIU_TRANSACTION_RESPONSE:
4849 /*
4850 * get the response UPIU result to extract
4851 * the SCSI command status
4852 */
4853 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4854
4855 /*
4856 * get the result based on SCSI status response
4857 * to notify the SCSI midlayer of the command status
4858 */
4859 scsi_status = result & MASK_SCSI_STATUS;
4860 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4861
4862 /*
4863 * Currently we are only supporting BKOPs exception
4864 * events hence we can ignore BKOPs exception event
4865 * during power management callbacks. BKOPs exception
4866 * event is not expected to be raised in runtime suspend
4867 * callback as it allows the urgent bkops.
4868 * During system suspend, we are anyway forcefully
4869 * disabling the bkops and if urgent bkops is needed
4870 * it will be enabled on system resume. Long term
4871 * solution could be to abort the system suspend if
4872 * UFS device needs urgent BKOPs.
4873 */
4874 if (!hba->pm_op_in_progress &&
4875 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
4876 schedule_work(&hba->eeh_work)) {
4877 /*
4878 * Prevent suspend once eeh_work is scheduled
4879 * to avoid deadlock between ufshcd_suspend
4880 * and exception event handler.
4881 */
4882 pm_runtime_get_noresume(hba->dev);
4883 }
4884 break;
4885 case UPIU_TRANSACTION_REJECT_UPIU:
4886 /* TODO: handle Reject UPIU Response */
4887 result = DID_ERROR << 16;
4888 dev_err(hba->dev,
4889 "Reject UPIU not fully implemented\n");
4890 break;
4891 default:
4892 dev_err(hba->dev,
4893 "Unexpected request response code = %x\n",
4894 result);
4895 result = DID_ERROR << 16;
4896 break;
4897 }
4898 break;
4899 case OCS_ABORTED:
4900 result |= DID_ABORT << 16;
4901 break;
4902 case OCS_INVALID_COMMAND_STATUS:
4903 result |= DID_REQUEUE << 16;
4904 break;
4905 case OCS_INVALID_CMD_TABLE_ATTR:
4906 case OCS_INVALID_PRDT_ATTR:
4907 case OCS_MISMATCH_DATA_BUF_SIZE:
4908 case OCS_MISMATCH_RESP_UPIU_SIZE:
4909 case OCS_PEER_COMM_FAILURE:
4910 case OCS_FATAL_ERROR:
4911 case OCS_DEVICE_FATAL_ERROR:
4912 case OCS_INVALID_CRYPTO_CONFIG:
4913 case OCS_GENERAL_CRYPTO_ERROR:
4914 default:
4915 result |= DID_ERROR << 16;
4916 dev_err(hba->dev,
4917 "OCS error from controller = %x for tag %d\n",
4918 ocs, lrbp->task_tag);
4919 ufshcd_print_host_regs(hba);
4920 ufshcd_print_host_state(hba);
4921 break;
4922 } /* end of switch */
4923
4924 if ((host_byte(result) != DID_OK) &&
4925 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
4926 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4927 return result;
4928 }
4929
4930 /**
4931 * ufshcd_uic_cmd_compl - handle completion of uic command
4932 * @hba: per adapter instance
4933 * @intr_status: interrupt status generated by the controller
4934 *
4935 * Returns
4936 * IRQ_HANDLED - If interrupt is valid
4937 * IRQ_NONE - If invalid interrupt
4938 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4939 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4940 {
4941 irqreturn_t retval = IRQ_NONE;
4942
4943 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4944 hba->active_uic_cmd->argument2 |=
4945 ufshcd_get_uic_cmd_result(hba);
4946 hba->active_uic_cmd->argument3 =
4947 ufshcd_get_dme_attr_val(hba);
4948 if (!hba->uic_async_done)
4949 hba->active_uic_cmd->cmd_active = 0;
4950 complete(&hba->active_uic_cmd->done);
4951 retval = IRQ_HANDLED;
4952 }
4953
4954 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
4955 hba->active_uic_cmd->cmd_active = 0;
4956 complete(hba->uic_async_done);
4957 retval = IRQ_HANDLED;
4958 }
4959
4960 if (retval == IRQ_HANDLED)
4961 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
4962 "complete");
4963 return retval;
4964 }
4965
4966 /**
4967 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4968 * @hba: per adapter instance
4969 * @completed_reqs: requests to complete
4970 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4971 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4972 unsigned long completed_reqs)
4973 {
4974 struct ufshcd_lrb *lrbp;
4975 struct scsi_cmnd *cmd;
4976 int result;
4977 int index;
4978
4979 for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4980 lrbp = &hba->lrb[index];
4981 lrbp->compl_time_stamp = ktime_get();
4982 cmd = lrbp->cmd;
4983 if (cmd) {
4984 ufshcd_add_command_trace(hba, index, "complete");
4985 result = ufshcd_transfer_rsp_status(hba, lrbp);
4986 scsi_dma_unmap(cmd);
4987 cmd->result = result;
4988 /* Mark completed command as NULL in LRB */
4989 lrbp->cmd = NULL;
4990 /* Do not touch lrbp after scsi done */
4991 cmd->scsi_done(cmd);
4992 __ufshcd_release(hba);
4993 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4994 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4995 if (hba->dev_cmd.complete) {
4996 ufshcd_add_command_trace(hba, index,
4997 "dev_complete");
4998 complete(hba->dev_cmd.complete);
4999 }
5000 }
5001 if (ufshcd_is_clkscaling_supported(hba))
5002 hba->clk_scaling.active_reqs--;
5003 }
5004
5005 /* clear corresponding bits of completed commands */
5006 hba->outstanding_reqs ^= completed_reqs;
5007
5008 ufshcd_clk_scaling_update_busy(hba);
5009 }
5010
5011 /**
5012 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5013 * @hba: per adapter instance
5014 *
5015 * Returns
5016 * IRQ_HANDLED - If interrupt is valid
5017 * IRQ_NONE - If invalid interrupt
5018 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5019 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5020 {
5021 unsigned long completed_reqs;
5022 u32 tr_doorbell;
5023
5024 /* Resetting interrupt aggregation counters first and reading the
5025 * DOOR_BELL afterward allows us to handle all the completed requests.
5026 * In order to prevent other interrupts starvation the DB is read once
5027 * after reset. The down side of this solution is the possibility of
5028 * false interrupt if device completes another request after resetting
5029 * aggregation and before reading the DB.
5030 */
5031 if (ufshcd_is_intr_aggr_allowed(hba) &&
5032 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5033 ufshcd_reset_intr_aggr(hba);
5034
5035 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5036 completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5037
5038 if (completed_reqs) {
5039 __ufshcd_transfer_req_compl(hba, completed_reqs);
5040 return IRQ_HANDLED;
5041 } else {
5042 return IRQ_NONE;
5043 }
5044 }
5045
5046 /**
5047 * ufshcd_disable_ee - disable exception event
5048 * @hba: per-adapter instance
5049 * @mask: exception event to disable
5050 *
5051 * Disables exception event in the device so that the EVENT_ALERT
5052 * bit is not set.
5053 *
5054 * Returns zero on success, non-zero error value on failure.
5055 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5056 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5057 {
5058 int err = 0;
5059 u32 val;
5060
5061 if (!(hba->ee_ctrl_mask & mask))
5062 goto out;
5063
5064 val = hba->ee_ctrl_mask & ~mask;
5065 val &= MASK_EE_STATUS;
5066 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5067 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5068 if (!err)
5069 hba->ee_ctrl_mask &= ~mask;
5070 out:
5071 return err;
5072 }
5073
5074 /**
5075 * ufshcd_enable_ee - enable exception event
5076 * @hba: per-adapter instance
5077 * @mask: exception event to enable
5078 *
5079 * Enable corresponding exception event in the device to allow
5080 * device to alert host in critical scenarios.
5081 *
5082 * Returns zero on success, non-zero error value on failure.
5083 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5084 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5085 {
5086 int err = 0;
5087 u32 val;
5088
5089 if (hba->ee_ctrl_mask & mask)
5090 goto out;
5091
5092 val = hba->ee_ctrl_mask | mask;
5093 val &= MASK_EE_STATUS;
5094 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5095 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5096 if (!err)
5097 hba->ee_ctrl_mask |= mask;
5098 out:
5099 return err;
5100 }
5101
5102 /**
5103 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5104 * @hba: per-adapter instance
5105 *
5106 * Allow device to manage background operations on its own. Enabling
5107 * this might lead to inconsistent latencies during normal data transfers
5108 * as the device is allowed to manage its own way of handling background
5109 * operations.
5110 *
5111 * Returns zero on success, non-zero on failure.
5112 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5113 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5114 {
5115 int err = 0;
5116
5117 if (hba->auto_bkops_enabled)
5118 goto out;
5119
5120 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5121 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5122 if (err) {
5123 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5124 __func__, err);
5125 goto out;
5126 }
5127
5128 hba->auto_bkops_enabled = true;
5129 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5130
5131 /* No need of URGENT_BKOPS exception from the device */
5132 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5133 if (err)
5134 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5135 __func__, err);
5136 out:
5137 return err;
5138 }
5139
5140 /**
5141 * ufshcd_disable_auto_bkops - block device in doing background operations
5142 * @hba: per-adapter instance
5143 *
5144 * Disabling background operations improves command response latency but
5145 * has drawback of device moving into critical state where the device is
5146 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5147 * host is idle so that BKOPS are managed effectively without any negative
5148 * impacts.
5149 *
5150 * Returns zero on success, non-zero on failure.
5151 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5152 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5153 {
5154 int err = 0;
5155
5156 if (!hba->auto_bkops_enabled)
5157 goto out;
5158
5159 /*
5160 * If host assisted BKOPs is to be enabled, make sure
5161 * urgent bkops exception is allowed.
5162 */
5163 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5164 if (err) {
5165 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5166 __func__, err);
5167 goto out;
5168 }
5169
5170 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5171 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5172 if (err) {
5173 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5174 __func__, err);
5175 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5176 goto out;
5177 }
5178
5179 hba->auto_bkops_enabled = false;
5180 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5181 hba->is_urgent_bkops_lvl_checked = false;
5182 out:
5183 return err;
5184 }
5185
5186 /**
5187 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5188 * @hba: per adapter instance
5189 *
5190 * After a device reset the device may toggle the BKOPS_EN flag
5191 * to default value. The s/w tracking variables should be updated
5192 * as well. This function would change the auto-bkops state based on
5193 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5194 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5195 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5196 {
5197 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5198 hba->auto_bkops_enabled = false;
5199 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5200 ufshcd_enable_auto_bkops(hba);
5201 } else {
5202 hba->auto_bkops_enabled = true;
5203 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5204 ufshcd_disable_auto_bkops(hba);
5205 }
5206 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5207 hba->is_urgent_bkops_lvl_checked = false;
5208 }
5209
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5210 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5211 {
5212 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5213 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5214 }
5215
5216 /**
5217 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5218 * @hba: per-adapter instance
5219 * @status: bkops_status value
5220 *
5221 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5222 * flag in the device to permit background operations if the device
5223 * bkops_status is greater than or equal to "status" argument passed to
5224 * this function, disable otherwise.
5225 *
5226 * Returns 0 for success, non-zero in case of failure.
5227 *
5228 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5229 * to know whether auto bkops is enabled or disabled after this function
5230 * returns control to it.
5231 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5232 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5233 enum bkops_status status)
5234 {
5235 int err;
5236 u32 curr_status = 0;
5237
5238 err = ufshcd_get_bkops_status(hba, &curr_status);
5239 if (err) {
5240 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5241 __func__, err);
5242 goto out;
5243 } else if (curr_status > BKOPS_STATUS_MAX) {
5244 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5245 __func__, curr_status);
5246 err = -EINVAL;
5247 goto out;
5248 }
5249
5250 if (curr_status >= status)
5251 err = ufshcd_enable_auto_bkops(hba);
5252 else
5253 err = ufshcd_disable_auto_bkops(hba);
5254 out:
5255 return err;
5256 }
5257
5258 /**
5259 * ufshcd_urgent_bkops - handle urgent bkops exception event
5260 * @hba: per-adapter instance
5261 *
5262 * Enable fBackgroundOpsEn flag in the device to permit background
5263 * operations.
5264 *
5265 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5266 * and negative error value for any other failure.
5267 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5268 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5269 {
5270 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5271 }
5272
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5273 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5274 {
5275 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5276 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5277 }
5278
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5279 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5280 {
5281 int err;
5282 u32 curr_status = 0;
5283
5284 if (hba->is_urgent_bkops_lvl_checked)
5285 goto enable_auto_bkops;
5286
5287 err = ufshcd_get_bkops_status(hba, &curr_status);
5288 if (err) {
5289 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5290 __func__, err);
5291 goto out;
5292 }
5293
5294 /*
5295 * We are seeing that some devices are raising the urgent bkops
5296 * exception events even when BKOPS status doesn't indicate performace
5297 * impacted or critical. Handle these device by determining their urgent
5298 * bkops status at runtime.
5299 */
5300 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5301 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5302 __func__, curr_status);
5303 /* update the current status as the urgent bkops level */
5304 hba->urgent_bkops_lvl = curr_status;
5305 hba->is_urgent_bkops_lvl_checked = true;
5306 }
5307
5308 enable_auto_bkops:
5309 err = ufshcd_enable_auto_bkops(hba);
5310 out:
5311 if (err < 0)
5312 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5313 __func__, err);
5314 }
5315
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5316 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5317 {
5318 int ret;
5319 u8 index;
5320 enum query_opcode opcode;
5321
5322 if (!ufshcd_is_wb_allowed(hba))
5323 return 0;
5324
5325 if (!(enable ^ hba->wb_enabled))
5326 return 0;
5327 if (enable)
5328 opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5329 else
5330 opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5331
5332 index = ufshcd_wb_get_query_index(hba);
5333 ret = ufshcd_query_flag_retry(hba, opcode,
5334 QUERY_FLAG_IDN_WB_EN, index, NULL);
5335 if (ret) {
5336 dev_err(hba->dev, "%s write booster %s failed %d\n",
5337 __func__, enable ? "enable" : "disable", ret);
5338 return ret;
5339 }
5340
5341 hba->wb_enabled = enable;
5342 dev_dbg(hba->dev, "%s write booster %s %d\n",
5343 __func__, enable ? "enable" : "disable", ret);
5344
5345 return ret;
5346 }
5347
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5348 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5349 {
5350 int val;
5351 u8 index;
5352
5353 if (set)
5354 val = UPIU_QUERY_OPCODE_SET_FLAG;
5355 else
5356 val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5357
5358 index = ufshcd_wb_get_query_index(hba);
5359 return ufshcd_query_flag_retry(hba, val,
5360 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5361 index, NULL);
5362 }
5363
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5364 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5365 {
5366 if (enable)
5367 ufshcd_wb_buf_flush_enable(hba);
5368 else
5369 ufshcd_wb_buf_flush_disable(hba);
5370
5371 }
5372
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5373 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5374 {
5375 int ret;
5376 u8 index;
5377
5378 if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5379 return 0;
5380
5381 index = ufshcd_wb_get_query_index(hba);
5382 ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5383 QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5384 index, NULL);
5385 if (ret)
5386 dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5387 __func__, ret);
5388 else
5389 hba->wb_buf_flush_enabled = true;
5390
5391 dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5392 return ret;
5393 }
5394
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5395 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5396 {
5397 int ret;
5398 u8 index;
5399
5400 if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5401 return 0;
5402
5403 index = ufshcd_wb_get_query_index(hba);
5404 ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5405 QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5406 index, NULL);
5407 if (ret) {
5408 dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5409 __func__, ret);
5410 } else {
5411 hba->wb_buf_flush_enabled = false;
5412 dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5413 }
5414
5415 return ret;
5416 }
5417
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5418 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5419 u32 avail_buf)
5420 {
5421 u32 cur_buf;
5422 int ret;
5423 u8 index;
5424
5425 index = ufshcd_wb_get_query_index(hba);
5426 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5427 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5428 index, 0, &cur_buf);
5429 if (ret) {
5430 dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5431 __func__, ret);
5432 return false;
5433 }
5434
5435 if (!cur_buf) {
5436 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5437 cur_buf);
5438 return false;
5439 }
5440 /* Let it continue to flush when available buffer exceeds threshold */
5441 if (avail_buf < hba->vps->wb_flush_threshold)
5442 return true;
5443
5444 return false;
5445 }
5446
ufshcd_wb_need_flush(struct ufs_hba * hba)5447 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5448 {
5449 int ret;
5450 u32 avail_buf;
5451 u8 index;
5452
5453 if (!ufshcd_is_wb_allowed(hba))
5454 return false;
5455 /*
5456 * The ufs device needs the vcc to be ON to flush.
5457 * With user-space reduction enabled, it's enough to enable flush
5458 * by checking only the available buffer. The threshold
5459 * defined here is > 90% full.
5460 * With user-space preserved enabled, the current-buffer
5461 * should be checked too because the wb buffer size can reduce
5462 * when disk tends to be full. This info is provided by current
5463 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5464 * keeping vcc on when current buffer is empty.
5465 */
5466 index = ufshcd_wb_get_query_index(hba);
5467 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5468 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5469 index, 0, &avail_buf);
5470 if (ret) {
5471 dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5472 __func__, ret);
5473 return false;
5474 }
5475
5476 if (!hba->dev_info.b_presrv_uspc_en) {
5477 if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5478 return true;
5479 return false;
5480 }
5481
5482 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5483 }
5484
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5485 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5486 {
5487 struct ufs_hba *hba = container_of(to_delayed_work(work),
5488 struct ufs_hba,
5489 rpm_dev_flush_recheck_work);
5490 /*
5491 * To prevent unnecessary VCC power drain after device finishes
5492 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5493 * after a certain delay to recheck the threshold by next runtime
5494 * suspend.
5495 */
5496 pm_runtime_get_sync(hba->dev);
5497 pm_runtime_put_sync(hba->dev);
5498 }
5499
5500 /**
5501 * ufshcd_exception_event_handler - handle exceptions raised by device
5502 * @work: pointer to work data
5503 *
5504 * Read bExceptionEventStatus attribute from the device and handle the
5505 * exception event accordingly.
5506 */
ufshcd_exception_event_handler(struct work_struct * work)5507 static void ufshcd_exception_event_handler(struct work_struct *work)
5508 {
5509 struct ufs_hba *hba;
5510 int err;
5511 u32 status = 0;
5512 hba = container_of(work, struct ufs_hba, eeh_work);
5513
5514 pm_runtime_get_sync(hba->dev);
5515 ufshcd_scsi_block_requests(hba);
5516 err = ufshcd_get_ee_status(hba, &status);
5517 if (err) {
5518 dev_err(hba->dev, "%s: failed to get exception status %d\n",
5519 __func__, err);
5520 goto out;
5521 }
5522
5523 status &= hba->ee_ctrl_mask;
5524
5525 if (status & MASK_EE_URGENT_BKOPS)
5526 ufshcd_bkops_exception_event_handler(hba);
5527
5528 out:
5529 ufshcd_scsi_unblock_requests(hba);
5530 /*
5531 * pm_runtime_get_noresume is called while scheduling
5532 * eeh_work to avoid suspend racing with exception work.
5533 * Hence decrement usage counter using pm_runtime_put_noidle
5534 * to allow suspend on completion of exception event handler.
5535 */
5536 pm_runtime_put_noidle(hba->dev);
5537 pm_runtime_put(hba->dev);
5538 return;
5539 }
5540
5541 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5542 static void ufshcd_complete_requests(struct ufs_hba *hba)
5543 {
5544 ufshcd_transfer_req_compl(hba);
5545 ufshcd_tmc_handler(hba);
5546 }
5547
5548 /**
5549 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5550 * to recover from the DL NAC errors or not.
5551 * @hba: per-adapter instance
5552 *
5553 * Returns true if error handling is required, false otherwise
5554 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5555 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5556 {
5557 unsigned long flags;
5558 bool err_handling = true;
5559
5560 spin_lock_irqsave(hba->host->host_lock, flags);
5561 /*
5562 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5563 * device fatal error and/or DL NAC & REPLAY timeout errors.
5564 */
5565 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5566 goto out;
5567
5568 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5569 ((hba->saved_err & UIC_ERROR) &&
5570 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5571 goto out;
5572
5573 if ((hba->saved_err & UIC_ERROR) &&
5574 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5575 int err;
5576 /*
5577 * wait for 50ms to see if we can get any other errors or not.
5578 */
5579 spin_unlock_irqrestore(hba->host->host_lock, flags);
5580 msleep(50);
5581 spin_lock_irqsave(hba->host->host_lock, flags);
5582
5583 /*
5584 * now check if we have got any other severe errors other than
5585 * DL NAC error?
5586 */
5587 if ((hba->saved_err & INT_FATAL_ERRORS) ||
5588 ((hba->saved_err & UIC_ERROR) &&
5589 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5590 goto out;
5591
5592 /*
5593 * As DL NAC is the only error received so far, send out NOP
5594 * command to confirm if link is still active or not.
5595 * - If we don't get any response then do error recovery.
5596 * - If we get response then clear the DL NAC error bit.
5597 */
5598
5599 spin_unlock_irqrestore(hba->host->host_lock, flags);
5600 err = ufshcd_verify_dev_init(hba);
5601 spin_lock_irqsave(hba->host->host_lock, flags);
5602
5603 if (err)
5604 goto out;
5605
5606 /* Link seems to be alive hence ignore the DL NAC errors */
5607 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5608 hba->saved_err &= ~UIC_ERROR;
5609 /* clear NAC error */
5610 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5611 if (!hba->saved_uic_err)
5612 err_handling = false;
5613 }
5614 out:
5615 spin_unlock_irqrestore(hba->host->host_lock, flags);
5616 return err_handling;
5617 }
5618
5619 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5620 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5621 {
5622 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5623 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5624 }
5625
5626 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5627 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5628 {
5629 /* handle fatal errors only when link is not in error state */
5630 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5631 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5632 ufshcd_is_saved_err_fatal(hba))
5633 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5634 else
5635 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5636 queue_work(hba->eh_wq, &hba->eh_work);
5637 }
5638 }
5639
ufshcd_err_handling_prepare(struct ufs_hba * hba)5640 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5641 {
5642 pm_runtime_get_sync(hba->dev);
5643 if (pm_runtime_suspended(hba->dev)) {
5644 /*
5645 * Don't assume anything of pm_runtime_get_sync(), if
5646 * resume fails, irq and clocks can be OFF, and powers
5647 * can be OFF or in LPM.
5648 */
5649 ufshcd_setup_hba_vreg(hba, true);
5650 ufshcd_enable_irq(hba);
5651 ufshcd_setup_vreg(hba, true);
5652 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5653 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5654 ufshcd_hold(hba, false);
5655 if (!ufshcd_is_clkgating_allowed(hba))
5656 ufshcd_setup_clocks(hba, true);
5657 ufshcd_release(hba);
5658 ufshcd_vops_resume(hba, UFS_RUNTIME_PM);
5659 } else {
5660 ufshcd_hold(hba, false);
5661 if (hba->clk_scaling.is_allowed) {
5662 cancel_work_sync(&hba->clk_scaling.suspend_work);
5663 cancel_work_sync(&hba->clk_scaling.resume_work);
5664 ufshcd_suspend_clkscaling(hba);
5665 }
5666 }
5667 }
5668
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5669 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5670 {
5671 ufshcd_release(hba);
5672 if (hba->clk_scaling.is_allowed)
5673 ufshcd_resume_clkscaling(hba);
5674 pm_runtime_put(hba->dev);
5675 }
5676
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5677 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5678 {
5679 return (hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5680 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5681 ufshcd_is_link_broken(hba))));
5682 }
5683
5684 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5685 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5686 {
5687 struct Scsi_Host *shost = hba->host;
5688 struct scsi_device *sdev;
5689 struct request_queue *q;
5690 int ret;
5691
5692 /*
5693 * Set RPM status of hba device to RPM_ACTIVE,
5694 * this also clears its runtime error.
5695 */
5696 ret = pm_runtime_set_active(hba->dev);
5697 /*
5698 * If hba device had runtime error, we also need to resume those
5699 * scsi devices under hba in case any of them has failed to be
5700 * resumed due to hba runtime resume failure. This is to unblock
5701 * blk_queue_enter in case there are bios waiting inside it.
5702 */
5703 if (!ret) {
5704 shost_for_each_device(sdev, shost) {
5705 q = sdev->request_queue;
5706 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
5707 q->rpm_status == RPM_SUSPENDING))
5708 pm_request_resume(q->dev);
5709 }
5710 }
5711 }
5712 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)5713 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
5714 {
5715 }
5716 #endif
5717
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5718 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
5719 {
5720 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
5721 u32 mode;
5722
5723 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
5724
5725 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
5726 return true;
5727
5728 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
5729 return true;
5730
5731 return false;
5732 }
5733
5734 /**
5735 * ufshcd_err_handler - handle UFS errors that require s/w attention
5736 * @work: pointer to work structure
5737 */
ufshcd_err_handler(struct work_struct * work)5738 static void ufshcd_err_handler(struct work_struct *work)
5739 {
5740 struct ufs_hba *hba;
5741 unsigned long flags;
5742 bool err_xfer = false;
5743 bool err_tm = false;
5744 int err = 0, pmc_err;
5745 int tag;
5746 bool needs_reset = false, needs_restore = false;
5747
5748 hba = container_of(work, struct ufs_hba, eh_work);
5749
5750 spin_lock_irqsave(hba->host->host_lock, flags);
5751 if (ufshcd_err_handling_should_stop(hba)) {
5752 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5753 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5754 spin_unlock_irqrestore(hba->host->host_lock, flags);
5755 return;
5756 }
5757 ufshcd_set_eh_in_progress(hba);
5758 spin_unlock_irqrestore(hba->host->host_lock, flags);
5759 ufshcd_err_handling_prepare(hba);
5760 spin_lock_irqsave(hba->host->host_lock, flags);
5761 ufshcd_scsi_block_requests(hba);
5762 /*
5763 * A full reset and restore might have happened after preparation
5764 * is finished, double check whether we should stop.
5765 */
5766 if (ufshcd_err_handling_should_stop(hba)) {
5767 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5768 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5769 goto out;
5770 }
5771 hba->ufshcd_state = UFSHCD_STATE_RESET;
5772
5773 /* Complete requests that have door-bell cleared by h/w */
5774 ufshcd_complete_requests(hba);
5775
5776 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5777 bool ret;
5778
5779 spin_unlock_irqrestore(hba->host->host_lock, flags);
5780 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5781 ret = ufshcd_quirk_dl_nac_errors(hba);
5782 spin_lock_irqsave(hba->host->host_lock, flags);
5783 if (!ret && !hba->force_reset && ufshcd_is_link_active(hba))
5784 goto skip_err_handling;
5785 }
5786
5787 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5788 ufshcd_is_saved_err_fatal(hba) ||
5789 ((hba->saved_err & UIC_ERROR) &&
5790 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5791 UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5792 needs_reset = true;
5793
5794 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
5795 (hba->saved_uic_err &&
5796 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
5797 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
5798
5799 spin_unlock_irqrestore(hba->host->host_lock, flags);
5800 ufshcd_print_host_state(hba);
5801 ufshcd_print_pwr_info(hba);
5802 ufshcd_print_host_regs(hba);
5803 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5804 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
5805 spin_lock_irqsave(hba->host->host_lock, flags);
5806 }
5807
5808 /*
5809 * if host reset is required then skip clearing the pending
5810 * transfers forcefully because they will get cleared during
5811 * host reset and restore
5812 */
5813 if (needs_reset)
5814 goto do_reset;
5815
5816 /*
5817 * If LINERESET was caught, UFS might have been put to PWM mode,
5818 * check if power mode restore is needed.
5819 */
5820 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
5821 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5822 if (!hba->saved_uic_err)
5823 hba->saved_err &= ~UIC_ERROR;
5824 spin_unlock_irqrestore(hba->host->host_lock, flags);
5825 if (ufshcd_is_pwr_mode_restore_needed(hba))
5826 needs_restore = true;
5827 spin_lock_irqsave(hba->host->host_lock, flags);
5828 if (!hba->saved_err && !needs_restore)
5829 goto skip_err_handling;
5830 }
5831
5832 hba->silence_err_logs = true;
5833 /* release lock as clear command might sleep */
5834 spin_unlock_irqrestore(hba->host->host_lock, flags);
5835 /* Clear pending transfer requests */
5836 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5837 if (ufshcd_try_to_abort_task(hba, tag)) {
5838 err_xfer = true;
5839 goto lock_skip_pending_xfer_clear;
5840 }
5841 }
5842
5843 /* Clear pending task management requests */
5844 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5845 if (ufshcd_clear_tm_cmd(hba, tag)) {
5846 err_tm = true;
5847 goto lock_skip_pending_xfer_clear;
5848 }
5849 }
5850
5851 lock_skip_pending_xfer_clear:
5852 spin_lock_irqsave(hba->host->host_lock, flags);
5853
5854 /* Complete the requests that are cleared by s/w */
5855 ufshcd_complete_requests(hba);
5856 hba->silence_err_logs = false;
5857
5858 if (err_xfer || err_tm) {
5859 needs_reset = true;
5860 goto do_reset;
5861 }
5862
5863 /*
5864 * After all reqs and tasks are cleared from doorbell,
5865 * now it is safe to retore power mode.
5866 */
5867 if (needs_restore) {
5868 spin_unlock_irqrestore(hba->host->host_lock, flags);
5869 /*
5870 * Hold the scaling lock just in case dev cmds
5871 * are sent via bsg and/or sysfs.
5872 */
5873 down_write(&hba->clk_scaling_lock);
5874 hba->force_pmc = true;
5875 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
5876 if (pmc_err) {
5877 needs_reset = true;
5878 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
5879 __func__, pmc_err);
5880 }
5881 hba->force_pmc = false;
5882 ufshcd_print_pwr_info(hba);
5883 up_write(&hba->clk_scaling_lock);
5884 spin_lock_irqsave(hba->host->host_lock, flags);
5885 }
5886
5887 do_reset:
5888 /* Fatal errors need reset */
5889 if (needs_reset) {
5890 unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5891
5892 /*
5893 * ufshcd_reset_and_restore() does the link reinitialization
5894 * which will need atleast one empty doorbell slot to send the
5895 * device management commands (NOP and query commands).
5896 * If there is no slot empty at this moment then free up last
5897 * slot forcefully.
5898 */
5899 if (hba->outstanding_reqs == max_doorbells)
5900 __ufshcd_transfer_req_compl(hba,
5901 (1UL << (hba->nutrs - 1)));
5902
5903 hba->force_reset = false;
5904 spin_unlock_irqrestore(hba->host->host_lock, flags);
5905 err = ufshcd_reset_and_restore(hba);
5906 if (err)
5907 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
5908 __func__, err);
5909 else
5910 ufshcd_recover_pm_error(hba);
5911 spin_lock_irqsave(hba->host->host_lock, flags);
5912 }
5913
5914 skip_err_handling:
5915 if (!needs_reset) {
5916 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5917 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5918 if (hba->saved_err || hba->saved_uic_err)
5919 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5920 __func__, hba->saved_err, hba->saved_uic_err);
5921 }
5922
5923 out:
5924 ufshcd_clear_eh_in_progress(hba);
5925 spin_unlock_irqrestore(hba->host->host_lock, flags);
5926 ufshcd_scsi_unblock_requests(hba);
5927 ufshcd_err_handling_unprepare(hba);
5928 }
5929
5930 /**
5931 * ufshcd_update_uic_error - check and set fatal UIC error flags.
5932 * @hba: per-adapter instance
5933 *
5934 * Returns
5935 * IRQ_HANDLED - If interrupt is valid
5936 * IRQ_NONE - If invalid interrupt
5937 */
ufshcd_update_uic_error(struct ufs_hba * hba)5938 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
5939 {
5940 u32 reg;
5941 irqreturn_t retval = IRQ_NONE;
5942
5943 /* PHY layer error */
5944 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5945 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5946 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
5947 ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5948 /*
5949 * To know whether this error is fatal or not, DB timeout
5950 * must be checked but this error is handled separately.
5951 */
5952 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
5953 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
5954 __func__);
5955
5956 /* Got a LINERESET indication. */
5957 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
5958 struct uic_command *cmd = NULL;
5959
5960 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
5961 if (hba->uic_async_done && hba->active_uic_cmd)
5962 cmd = hba->active_uic_cmd;
5963 /*
5964 * Ignore the LINERESET during power mode change
5965 * operation via DME_SET command.
5966 */
5967 if (cmd && (cmd->command == UIC_CMD_DME_SET))
5968 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5969 }
5970 retval |= IRQ_HANDLED;
5971 }
5972
5973 /* PA_INIT_ERROR is fatal and needs UIC reset */
5974 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5975 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
5976 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
5977 ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5978
5979 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5980 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5981 else if (hba->dev_quirks &
5982 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5983 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5984 hba->uic_error |=
5985 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5986 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5987 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5988 }
5989 retval |= IRQ_HANDLED;
5990 }
5991
5992 /* UIC NL/TL/DME errors needs software retry */
5993 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5994 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
5995 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
5996 ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5997 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5998 retval |= IRQ_HANDLED;
5999 }
6000
6001 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6002 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6003 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6004 ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
6005 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6006 retval |= IRQ_HANDLED;
6007 }
6008
6009 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6010 if ((reg & UIC_DME_ERROR) &&
6011 (reg & UIC_DME_ERROR_CODE_MASK)) {
6012 ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
6013 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6014 retval |= IRQ_HANDLED;
6015 }
6016
6017 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6018 __func__, hba->uic_error);
6019 return retval;
6020 }
6021
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)6022 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
6023 u32 intr_mask)
6024 {
6025 if (!ufshcd_is_auto_hibern8_supported(hba) ||
6026 !ufshcd_is_auto_hibern8_enabled(hba))
6027 return false;
6028
6029 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
6030 return false;
6031
6032 if (hba->active_uic_cmd &&
6033 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
6034 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
6035 return false;
6036
6037 return true;
6038 }
6039
6040 /**
6041 * ufshcd_check_errors - Check for errors that need s/w attention
6042 * @hba: per-adapter instance
6043 *
6044 * Returns
6045 * IRQ_HANDLED - If interrupt is valid
6046 * IRQ_NONE - If invalid interrupt
6047 */
ufshcd_check_errors(struct ufs_hba * hba)6048 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba)
6049 {
6050 bool queue_eh_work = false;
6051 irqreturn_t retval = IRQ_NONE;
6052
6053 if (hba->errors & INT_FATAL_ERRORS) {
6054 ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
6055 queue_eh_work = true;
6056 }
6057
6058 if (hba->errors & UIC_ERROR) {
6059 hba->uic_error = 0;
6060 retval = ufshcd_update_uic_error(hba);
6061 if (hba->uic_error)
6062 queue_eh_work = true;
6063 }
6064
6065 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6066 dev_err(hba->dev,
6067 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6068 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6069 "Enter" : "Exit",
6070 hba->errors, ufshcd_get_upmcrs(hba));
6071 ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
6072 hba->errors);
6073 ufshcd_set_link_broken(hba);
6074 queue_eh_work = true;
6075 }
6076
6077 if (queue_eh_work) {
6078 /*
6079 * update the transfer error masks to sticky bits, let's do this
6080 * irrespective of current ufshcd_state.
6081 */
6082 hba->saved_err |= hba->errors;
6083 hba->saved_uic_err |= hba->uic_error;
6084
6085 /* dump controller state before resetting */
6086 if ((hba->saved_err & (INT_FATAL_ERRORS)) ||
6087 (hba->saved_uic_err &&
6088 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6089 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6090 __func__, hba->saved_err,
6091 hba->saved_uic_err);
6092 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6093 "host_regs: ");
6094 ufshcd_print_pwr_info(hba);
6095 }
6096 ufshcd_schedule_eh_work(hba);
6097 retval |= IRQ_HANDLED;
6098 }
6099 /*
6100 * if (!queue_eh_work) -
6101 * Other errors are either non-fatal where host recovers
6102 * itself without s/w intervention or errors that will be
6103 * handled by the SCSI core layer.
6104 */
6105 return retval;
6106 }
6107
6108 struct ctm_info {
6109 struct ufs_hba *hba;
6110 unsigned long pending;
6111 unsigned int ncpl;
6112 };
6113
ufshcd_compl_tm(struct request * req,void * priv,bool reserved)6114 static bool ufshcd_compl_tm(struct request *req, void *priv, bool reserved)
6115 {
6116 struct ctm_info *const ci = priv;
6117 struct completion *c;
6118
6119 WARN_ON_ONCE(reserved);
6120 if (test_bit(req->tag, &ci->pending))
6121 return true;
6122 ci->ncpl++;
6123 c = req->end_io_data;
6124 if (c)
6125 complete(c);
6126 return true;
6127 }
6128
6129 /**
6130 * ufshcd_tmc_handler - handle task management function completion
6131 * @hba: per adapter instance
6132 *
6133 * Returns
6134 * IRQ_HANDLED - If interrupt is valid
6135 * IRQ_NONE - If invalid interrupt
6136 */
ufshcd_tmc_handler(struct ufs_hba * hba)6137 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6138 {
6139 struct request_queue *q = hba->tmf_queue;
6140 struct ctm_info ci = {
6141 .hba = hba,
6142 .pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL),
6143 };
6144
6145 blk_mq_tagset_busy_iter(q->tag_set, ufshcd_compl_tm, &ci);
6146 return ci.ncpl ? IRQ_HANDLED : IRQ_NONE;
6147 }
6148
6149 /**
6150 * ufshcd_sl_intr - Interrupt service routine
6151 * @hba: per adapter instance
6152 * @intr_status: contains interrupts generated by the controller
6153 *
6154 * Returns
6155 * IRQ_HANDLED - If interrupt is valid
6156 * IRQ_NONE - If invalid interrupt
6157 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6158 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6159 {
6160 irqreturn_t retval = IRQ_NONE;
6161
6162 hba->errors = UFSHCD_ERROR_MASK & intr_status;
6163
6164 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
6165 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
6166
6167 if (hba->errors)
6168 retval |= ufshcd_check_errors(hba);
6169
6170 if (intr_status & UFSHCD_UIC_MASK)
6171 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6172
6173 if (intr_status & UTP_TASK_REQ_COMPL)
6174 retval |= ufshcd_tmc_handler(hba);
6175
6176 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6177 retval |= ufshcd_transfer_req_compl(hba);
6178
6179 return retval;
6180 }
6181
6182 /**
6183 * ufshcd_intr - Main interrupt service routine
6184 * @irq: irq number
6185 * @__hba: pointer to adapter instance
6186 *
6187 * Returns
6188 * IRQ_HANDLED - If interrupt is valid
6189 * IRQ_NONE - If invalid interrupt
6190 */
ufshcd_intr(int irq,void * __hba)6191 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6192 {
6193 u32 intr_status, enabled_intr_status = 0;
6194 irqreturn_t retval = IRQ_NONE;
6195 struct ufs_hba *hba = __hba;
6196 int retries = hba->nutrs;
6197
6198 spin_lock(hba->host->host_lock);
6199 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6200 hba->ufs_stats.last_intr_status = intr_status;
6201 hba->ufs_stats.last_intr_ts = ktime_get();
6202
6203 /*
6204 * There could be max of hba->nutrs reqs in flight and in worst case
6205 * if the reqs get finished 1 by 1 after the interrupt status is
6206 * read, make sure we handle them by checking the interrupt status
6207 * again in a loop until we process all of the reqs before returning.
6208 */
6209 while (intr_status && retries--) {
6210 enabled_intr_status =
6211 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6212 if (intr_status)
6213 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6214 if (enabled_intr_status)
6215 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6216
6217 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6218 }
6219
6220 if (enabled_intr_status && retval == IRQ_NONE &&
6221 !ufshcd_eh_in_progress(hba)) {
6222 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6223 __func__,
6224 intr_status,
6225 hba->ufs_stats.last_intr_status,
6226 enabled_intr_status);
6227 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6228 }
6229
6230 spin_unlock(hba->host->host_lock);
6231 return retval;
6232 }
6233
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6234 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6235 {
6236 int err = 0;
6237 u32 mask = 1 << tag;
6238 unsigned long flags;
6239
6240 if (!test_bit(tag, &hba->outstanding_tasks))
6241 goto out;
6242
6243 spin_lock_irqsave(hba->host->host_lock, flags);
6244 ufshcd_utmrl_clear(hba, tag);
6245 spin_unlock_irqrestore(hba->host->host_lock, flags);
6246
6247 /* poll for max. 1 sec to clear door bell register by h/w */
6248 err = ufshcd_wait_for_register(hba,
6249 REG_UTP_TASK_REQ_DOOR_BELL,
6250 mask, 0, 1000, 1000);
6251 out:
6252 return err;
6253 }
6254
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6255 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6256 struct utp_task_req_desc *treq, u8 tm_function)
6257 {
6258 struct request_queue *q = hba->tmf_queue;
6259 struct Scsi_Host *host = hba->host;
6260 DECLARE_COMPLETION_ONSTACK(wait);
6261 struct request *req;
6262 unsigned long flags;
6263 int task_tag, err;
6264
6265 /*
6266 * blk_get_request() is used here only to get a free tag.
6267 */
6268 req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6269 if (IS_ERR(req))
6270 return PTR_ERR(req);
6271
6272 req->end_io_data = &wait;
6273 ufshcd_hold(hba, false);
6274
6275 spin_lock_irqsave(host->host_lock, flags);
6276 blk_mq_start_request(req);
6277
6278 task_tag = req->tag;
6279 treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6280
6281 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6282 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6283
6284 /* send command to the controller */
6285 __set_bit(task_tag, &hba->outstanding_tasks);
6286
6287 /* Make sure descriptors are ready before ringing the task doorbell */
6288 wmb();
6289
6290 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6291 /* Make sure that doorbell is committed immediately */
6292 wmb();
6293
6294 spin_unlock_irqrestore(host->host_lock, flags);
6295
6296 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6297
6298 /* wait until the task management command is completed */
6299 err = wait_for_completion_io_timeout(&wait,
6300 msecs_to_jiffies(TM_CMD_TIMEOUT));
6301 if (!err) {
6302 /*
6303 * Make sure that ufshcd_compl_tm() does not trigger a
6304 * use-after-free.
6305 */
6306 req->end_io_data = NULL;
6307 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6308 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6309 __func__, tm_function);
6310 if (ufshcd_clear_tm_cmd(hba, task_tag))
6311 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6312 __func__, task_tag);
6313 err = -ETIMEDOUT;
6314 } else {
6315 err = 0;
6316 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6317
6318 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6319 }
6320
6321 spin_lock_irqsave(hba->host->host_lock, flags);
6322 __clear_bit(task_tag, &hba->outstanding_tasks);
6323 spin_unlock_irqrestore(hba->host->host_lock, flags);
6324
6325 ufshcd_release(hba);
6326 blk_put_request(req);
6327
6328 return err;
6329 }
6330
6331 /**
6332 * ufshcd_issue_tm_cmd - issues task management commands to controller
6333 * @hba: per adapter instance
6334 * @lun_id: LUN ID to which TM command is sent
6335 * @task_id: task ID to which the TM command is applicable
6336 * @tm_function: task management function opcode
6337 * @tm_response: task management service response return value
6338 *
6339 * Returns non-zero value on error, zero on success.
6340 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6341 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6342 u8 tm_function, u8 *tm_response)
6343 {
6344 struct utp_task_req_desc treq = { { 0 }, };
6345 int ocs_value, err;
6346
6347 /* Configure task request descriptor */
6348 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6349 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6350
6351 /* Configure task request UPIU */
6352 treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6353 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6354 treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6355
6356 /*
6357 * The host shall provide the same value for LUN field in the basic
6358 * header and for Input Parameter.
6359 */
6360 treq.input_param1 = cpu_to_be32(lun_id);
6361 treq.input_param2 = cpu_to_be32(task_id);
6362
6363 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6364 if (err == -ETIMEDOUT)
6365 return err;
6366
6367 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6368 if (ocs_value != OCS_SUCCESS)
6369 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6370 __func__, ocs_value);
6371 else if (tm_response)
6372 *tm_response = be32_to_cpu(treq.output_param1) &
6373 MASK_TM_SERVICE_RESP;
6374 return err;
6375 }
6376
6377 /**
6378 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6379 * @hba: per-adapter instance
6380 * @req_upiu: upiu request
6381 * @rsp_upiu: upiu reply
6382 * @desc_buff: pointer to descriptor buffer, NULL if NA
6383 * @buff_len: descriptor size, 0 if NA
6384 * @cmd_type: specifies the type (NOP, Query...)
6385 * @desc_op: descriptor operation
6386 *
6387 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6388 * Therefore, it "rides" the device management infrastructure: uses its tag and
6389 * tasks work queues.
6390 *
6391 * Since there is only one available tag for device management commands,
6392 * the caller is expected to hold the hba->dev_cmd.lock mutex.
6393 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6394 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6395 struct utp_upiu_req *req_upiu,
6396 struct utp_upiu_req *rsp_upiu,
6397 u8 *desc_buff, int *buff_len,
6398 enum dev_cmd_type cmd_type,
6399 enum query_opcode desc_op)
6400 {
6401 struct request_queue *q = hba->cmd_queue;
6402 struct request *req;
6403 struct ufshcd_lrb *lrbp;
6404 int err = 0;
6405 int tag;
6406 struct completion wait;
6407 unsigned long flags;
6408 u8 upiu_flags;
6409
6410 down_read(&hba->clk_scaling_lock);
6411
6412 req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6413 if (IS_ERR(req)) {
6414 err = PTR_ERR(req);
6415 goto out_unlock;
6416 }
6417 tag = req->tag;
6418 WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
6419
6420 init_completion(&wait);
6421 lrbp = &hba->lrb[tag];
6422 WARN_ON(lrbp->cmd);
6423
6424 lrbp->cmd = NULL;
6425 lrbp->sense_bufflen = 0;
6426 lrbp->sense_buffer = NULL;
6427 lrbp->task_tag = tag;
6428 lrbp->lun = 0;
6429 lrbp->intr_cmd = true;
6430 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6431 hba->dev_cmd.type = cmd_type;
6432
6433 switch (hba->ufs_version) {
6434 case UFSHCI_VERSION_10:
6435 case UFSHCI_VERSION_11:
6436 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6437 break;
6438 default:
6439 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6440 break;
6441 }
6442
6443 /* update the task tag in the request upiu */
6444 req_upiu->header.dword_0 |= cpu_to_be32(tag);
6445
6446 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6447
6448 /* just copy the upiu request as it is */
6449 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6450 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6451 /* The Data Segment Area is optional depending upon the query
6452 * function value. for WRITE DESCRIPTOR, the data segment
6453 * follows right after the tsf.
6454 */
6455 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6456 *buff_len = 0;
6457 }
6458
6459 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6460
6461 hba->dev_cmd.complete = &wait;
6462
6463 /* Make sure descriptors are ready before ringing the doorbell */
6464 wmb();
6465 spin_lock_irqsave(hba->host->host_lock, flags);
6466 ufshcd_send_command(hba, tag);
6467 spin_unlock_irqrestore(hba->host->host_lock, flags);
6468
6469 /*
6470 * ignore the returning value here - ufshcd_check_query_response is
6471 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6472 * read the response directly ignoring all errors.
6473 */
6474 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6475
6476 /* just copy the upiu response as it is */
6477 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6478 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6479 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6480 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6481 MASK_QUERY_DATA_SEG_LEN;
6482
6483 if (*buff_len >= resp_len) {
6484 memcpy(desc_buff, descp, resp_len);
6485 *buff_len = resp_len;
6486 } else {
6487 dev_warn(hba->dev,
6488 "%s: rsp size %d is bigger than buffer size %d",
6489 __func__, resp_len, *buff_len);
6490 *buff_len = 0;
6491 err = -EINVAL;
6492 }
6493 }
6494
6495 blk_put_request(req);
6496 out_unlock:
6497 up_read(&hba->clk_scaling_lock);
6498 return err;
6499 }
6500
6501 /**
6502 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6503 * @hba: per-adapter instance
6504 * @req_upiu: upiu request
6505 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
6506 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
6507 * @desc_buff: pointer to descriptor buffer, NULL if NA
6508 * @buff_len: descriptor size, 0 if NA
6509 * @desc_op: descriptor operation
6510 *
6511 * Supports UTP Transfer requests (nop and query), and UTP Task
6512 * Management requests.
6513 * It is up to the caller to fill the upiu conent properly, as it will
6514 * be copied without any further input validations.
6515 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6516 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6517 struct utp_upiu_req *req_upiu,
6518 struct utp_upiu_req *rsp_upiu,
6519 int msgcode,
6520 u8 *desc_buff, int *buff_len,
6521 enum query_opcode desc_op)
6522 {
6523 int err;
6524 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6525 struct utp_task_req_desc treq = { { 0 }, };
6526 int ocs_value;
6527 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6528
6529 switch (msgcode) {
6530 case UPIU_TRANSACTION_NOP_OUT:
6531 cmd_type = DEV_CMD_TYPE_NOP;
6532 fallthrough;
6533 case UPIU_TRANSACTION_QUERY_REQ:
6534 ufshcd_hold(hba, false);
6535 mutex_lock(&hba->dev_cmd.lock);
6536 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6537 desc_buff, buff_len,
6538 cmd_type, desc_op);
6539 mutex_unlock(&hba->dev_cmd.lock);
6540 ufshcd_release(hba);
6541
6542 break;
6543 case UPIU_TRANSACTION_TASK_REQ:
6544 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6545 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6546
6547 memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6548
6549 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6550 if (err == -ETIMEDOUT)
6551 break;
6552
6553 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6554 if (ocs_value != OCS_SUCCESS) {
6555 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6556 ocs_value);
6557 break;
6558 }
6559
6560 memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6561
6562 break;
6563 default:
6564 err = -EINVAL;
6565
6566 break;
6567 }
6568
6569 return err;
6570 }
6571
6572 /**
6573 * ufshcd_eh_device_reset_handler - device reset handler registered to
6574 * scsi layer.
6575 * @cmd: SCSI command pointer
6576 *
6577 * Returns SUCCESS/FAILED
6578 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6579 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6580 {
6581 struct Scsi_Host *host;
6582 struct ufs_hba *hba;
6583 u32 pos;
6584 int err;
6585 u8 resp = 0xF, lun;
6586 unsigned long flags;
6587
6588 host = cmd->device->host;
6589 hba = shost_priv(host);
6590
6591 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6592 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6593 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6594 if (!err)
6595 err = resp;
6596 goto out;
6597 }
6598
6599 /* clear the commands that were pending for corresponding LUN */
6600 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6601 if (hba->lrb[pos].lun == lun) {
6602 err = ufshcd_clear_cmd(hba, pos);
6603 if (err)
6604 break;
6605 }
6606 }
6607 spin_lock_irqsave(host->host_lock, flags);
6608 ufshcd_transfer_req_compl(hba);
6609 spin_unlock_irqrestore(host->host_lock, flags);
6610
6611 out:
6612 hba->req_abort_count = 0;
6613 ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6614 if (!err) {
6615 err = SUCCESS;
6616 } else {
6617 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6618 err = FAILED;
6619 }
6620 return err;
6621 }
6622
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6623 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6624 {
6625 struct ufshcd_lrb *lrbp;
6626 int tag;
6627
6628 for_each_set_bit(tag, &bitmap, hba->nutrs) {
6629 lrbp = &hba->lrb[tag];
6630 lrbp->req_abort_skip = true;
6631 }
6632 }
6633
6634 /**
6635 * ufshcd_try_to_abort_task - abort a specific task
6636 * @cmd: SCSI command pointer
6637 *
6638 * Abort the pending command in device by sending UFS_ABORT_TASK task management
6639 * command, and in host controller by clearing the door-bell register. There can
6640 * be race between controller sending the command to the device while abort is
6641 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6642 * really issued and then try to abort it.
6643 *
6644 * Returns zero on success, non-zero on failure
6645 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6646 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6647 {
6648 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6649 int err = 0;
6650 int poll_cnt;
6651 u8 resp = 0xF;
6652 u32 reg;
6653
6654 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6655 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6656 UFS_QUERY_TASK, &resp);
6657 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6658 /* cmd pending in the device */
6659 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6660 __func__, tag);
6661 break;
6662 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6663 /*
6664 * cmd not pending in the device, check if it is
6665 * in transition.
6666 */
6667 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6668 __func__, tag);
6669 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6670 if (reg & (1 << tag)) {
6671 /* sleep for max. 200us to stabilize */
6672 usleep_range(100, 200);
6673 continue;
6674 }
6675 /* command completed already */
6676 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6677 __func__, tag);
6678 goto out;
6679 } else {
6680 dev_err(hba->dev,
6681 "%s: no response from device. tag = %d, err %d\n",
6682 __func__, tag, err);
6683 if (!err)
6684 err = resp; /* service response error */
6685 goto out;
6686 }
6687 }
6688
6689 if (!poll_cnt) {
6690 err = -EBUSY;
6691 goto out;
6692 }
6693
6694 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6695 UFS_ABORT_TASK, &resp);
6696 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6697 if (!err) {
6698 err = resp; /* service response error */
6699 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6700 __func__, tag, err);
6701 }
6702 goto out;
6703 }
6704
6705 err = ufshcd_clear_cmd(hba, tag);
6706 if (err)
6707 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6708 __func__, tag, err);
6709
6710 out:
6711 return err;
6712 }
6713
6714 /**
6715 * ufshcd_abort - scsi host template eh_abort_handler callback
6716 * @cmd: SCSI command pointer
6717 *
6718 * Returns SUCCESS/FAILED
6719 */
ufshcd_abort(struct scsi_cmnd * cmd)6720 static int ufshcd_abort(struct scsi_cmnd *cmd)
6721 {
6722 struct Scsi_Host *host;
6723 struct ufs_hba *hba;
6724 unsigned long flags;
6725 unsigned int tag;
6726 int err = 0;
6727 struct ufshcd_lrb *lrbp;
6728 u32 reg;
6729
6730 host = cmd->device->host;
6731 hba = shost_priv(host);
6732 tag = cmd->request->tag;
6733 lrbp = &hba->lrb[tag];
6734 if (!ufshcd_valid_tag(hba, tag)) {
6735 dev_err(hba->dev,
6736 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6737 __func__, tag, cmd, cmd->request);
6738 BUG();
6739 }
6740
6741 /*
6742 * Task abort to the device W-LUN is illegal. When this command
6743 * will fail, due to spec violation, scsi err handling next step
6744 * will be to send LU reset which, again, is a spec violation.
6745 * To avoid these unnecessary/illegal step we skip to the last error
6746 * handling stage: reset and restore.
6747 */
6748 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6749 return ufshcd_eh_host_reset_handler(cmd);
6750
6751 ufshcd_hold(hba, false);
6752 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6753 /* If command is already aborted/completed, return SUCCESS */
6754 if (!(test_bit(tag, &hba->outstanding_reqs))) {
6755 dev_err(hba->dev,
6756 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6757 __func__, tag, hba->outstanding_reqs, reg);
6758 goto out;
6759 }
6760
6761 /* Print Transfer Request of aborted task */
6762 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6763
6764 /*
6765 * Print detailed info about aborted request.
6766 * As more than one request might get aborted at the same time,
6767 * print full information only for the first aborted request in order
6768 * to reduce repeated printouts. For other aborted requests only print
6769 * basic details.
6770 */
6771 scsi_print_command(hba->lrb[tag].cmd);
6772 if (!hba->req_abort_count) {
6773 ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6774 ufshcd_print_host_regs(hba);
6775 ufshcd_print_host_state(hba);
6776 ufshcd_print_pwr_info(hba);
6777 ufshcd_print_trs(hba, 1 << tag, true);
6778 } else {
6779 ufshcd_print_trs(hba, 1 << tag, false);
6780 }
6781 hba->req_abort_count++;
6782
6783 if (!(reg & (1 << tag))) {
6784 dev_err(hba->dev,
6785 "%s: cmd was completed, but without a notifying intr, tag = %d",
6786 __func__, tag);
6787 goto cleanup;
6788 }
6789
6790 /* Skip task abort in case previous aborts failed and report failure */
6791 if (lrbp->req_abort_skip)
6792 err = -EIO;
6793 else
6794 err = ufshcd_try_to_abort_task(hba, tag);
6795
6796 if (!err) {
6797 cleanup:
6798 spin_lock_irqsave(host->host_lock, flags);
6799 __ufshcd_transfer_req_compl(hba, (1UL << tag));
6800 spin_unlock_irqrestore(host->host_lock, flags);
6801 out:
6802 err = SUCCESS;
6803 } else {
6804 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6805 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6806 err = FAILED;
6807 }
6808
6809 /*
6810 * This ufshcd_release() corresponds to the original scsi cmd that got
6811 * aborted here (as we won't get any IRQ for it).
6812 */
6813 ufshcd_release(hba);
6814 return err;
6815 }
6816
6817 /**
6818 * ufshcd_host_reset_and_restore - reset and restore host controller
6819 * @hba: per-adapter instance
6820 *
6821 * Note that host controller reset may issue DME_RESET to
6822 * local and remote (device) Uni-Pro stack and the attributes
6823 * are reset to default state.
6824 *
6825 * Returns zero on success, non-zero on failure
6826 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6827 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6828 {
6829 int err;
6830 unsigned long flags;
6831
6832 /*
6833 * Stop the host controller and complete the requests
6834 * cleared by h/w
6835 */
6836 ufshcd_hba_stop(hba);
6837
6838 spin_lock_irqsave(hba->host->host_lock, flags);
6839 hba->silence_err_logs = true;
6840 ufshcd_complete_requests(hba);
6841 hba->silence_err_logs = false;
6842 spin_unlock_irqrestore(hba->host->host_lock, flags);
6843
6844 /* scale up clocks to max frequency before full reinitialization */
6845 ufshcd_set_clk_freq(hba, true);
6846
6847 err = ufshcd_hba_enable(hba);
6848 if (err)
6849 goto out;
6850
6851 /* Establish the link again and restore the device */
6852 err = ufshcd_probe_hba(hba, false);
6853
6854 out:
6855 if (err)
6856 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6857 ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6858 return err;
6859 }
6860
6861 /**
6862 * ufshcd_reset_and_restore - reset and re-initialize host/device
6863 * @hba: per-adapter instance
6864 *
6865 * Reset and recover device, host and re-establish link. This
6866 * is helpful to recover the communication in fatal error conditions.
6867 *
6868 * Returns zero on success, non-zero on failure
6869 */
ufshcd_reset_and_restore(struct ufs_hba * hba)6870 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6871 {
6872 u32 saved_err;
6873 u32 saved_uic_err;
6874 int err = 0;
6875 unsigned long flags;
6876 int retries = MAX_HOST_RESET_RETRIES;
6877
6878 /*
6879 * This is a fresh start, cache and clear saved error first,
6880 * in case new error generated during reset and restore.
6881 */
6882 spin_lock_irqsave(hba->host->host_lock, flags);
6883 saved_err = hba->saved_err;
6884 saved_uic_err = hba->saved_uic_err;
6885 hba->saved_err = 0;
6886 hba->saved_uic_err = 0;
6887 spin_unlock_irqrestore(hba->host->host_lock, flags);
6888
6889 do {
6890 /* Reset the attached device */
6891 ufshcd_vops_device_reset(hba);
6892
6893 err = ufshcd_host_reset_and_restore(hba);
6894 } while (err && --retries);
6895
6896 spin_lock_irqsave(hba->host->host_lock, flags);
6897 /*
6898 * Inform scsi mid-layer that we did reset and allow to handle
6899 * Unit Attention properly.
6900 */
6901 scsi_report_bus_reset(hba->host, 0);
6902 if (err) {
6903 hba->saved_err |= saved_err;
6904 hba->saved_uic_err |= saved_uic_err;
6905 }
6906 spin_unlock_irqrestore(hba->host->host_lock, flags);
6907
6908 return err;
6909 }
6910
6911 /**
6912 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6913 * @cmd: SCSI command pointer
6914 *
6915 * Returns SUCCESS/FAILED
6916 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6917 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6918 {
6919 int err = SUCCESS;
6920 unsigned long flags;
6921 struct ufs_hba *hba;
6922
6923 hba = shost_priv(cmd->device->host);
6924
6925 spin_lock_irqsave(hba->host->host_lock, flags);
6926 hba->force_reset = true;
6927 ufshcd_schedule_eh_work(hba);
6928 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
6929 spin_unlock_irqrestore(hba->host->host_lock, flags);
6930
6931 flush_work(&hba->eh_work);
6932
6933 spin_lock_irqsave(hba->host->host_lock, flags);
6934 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
6935 err = FAILED;
6936 spin_unlock_irqrestore(hba->host->host_lock, flags);
6937
6938 return err;
6939 }
6940
6941 /**
6942 * ufshcd_get_max_icc_level - calculate the ICC level
6943 * @sup_curr_uA: max. current supported by the regulator
6944 * @start_scan: row at the desc table to start scan from
6945 * @buff: power descriptor buffer
6946 *
6947 * Returns calculated max ICC level for specific regulator
6948 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6949 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6950 {
6951 int i;
6952 int curr_uA;
6953 u16 data;
6954 u16 unit;
6955
6956 for (i = start_scan; i >= 0; i--) {
6957 data = be16_to_cpup((__be16 *)&buff[2 * i]);
6958 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6959 ATTR_ICC_LVL_UNIT_OFFSET;
6960 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6961 switch (unit) {
6962 case UFSHCD_NANO_AMP:
6963 curr_uA = curr_uA / 1000;
6964 break;
6965 case UFSHCD_MILI_AMP:
6966 curr_uA = curr_uA * 1000;
6967 break;
6968 case UFSHCD_AMP:
6969 curr_uA = curr_uA * 1000 * 1000;
6970 break;
6971 case UFSHCD_MICRO_AMP:
6972 default:
6973 break;
6974 }
6975 if (sup_curr_uA >= curr_uA)
6976 break;
6977 }
6978 if (i < 0) {
6979 i = 0;
6980 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6981 }
6982
6983 return (u32)i;
6984 }
6985
6986 /**
6987 * ufshcd_calc_icc_level - calculate the max ICC level
6988 * In case regulators are not initialized we'll return 0
6989 * @hba: per-adapter instance
6990 * @desc_buf: power descriptor buffer to extract ICC levels from.
6991 * @len: length of desc_buff
6992 *
6993 * Returns calculated ICC level
6994 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6995 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6996 u8 *desc_buf, int len)
6997 {
6998 u32 icc_level = 0;
6999
7000 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7001 !hba->vreg_info.vccq2) {
7002 dev_err(hba->dev,
7003 "%s: Regulator capability was not set, actvIccLevel=%d",
7004 __func__, icc_level);
7005 goto out;
7006 }
7007
7008 if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
7009 icc_level = ufshcd_get_max_icc_level(
7010 hba->vreg_info.vcc->max_uA,
7011 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7012 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7013
7014 if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
7015 icc_level = ufshcd_get_max_icc_level(
7016 hba->vreg_info.vccq->max_uA,
7017 icc_level,
7018 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7019
7020 if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
7021 icc_level = ufshcd_get_max_icc_level(
7022 hba->vreg_info.vccq2->max_uA,
7023 icc_level,
7024 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7025 out:
7026 return icc_level;
7027 }
7028
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7029 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7030 {
7031 int ret;
7032 int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7033 u8 *desc_buf;
7034 u32 icc_level;
7035
7036 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7037 if (!desc_buf)
7038 return;
7039
7040 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7041 desc_buf, buff_len);
7042 if (ret) {
7043 dev_err(hba->dev,
7044 "%s: Failed reading power descriptor.len = %d ret = %d",
7045 __func__, buff_len, ret);
7046 goto out;
7047 }
7048
7049 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7050 buff_len);
7051 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7052
7053 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7054 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7055
7056 if (ret)
7057 dev_err(hba->dev,
7058 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7059 __func__, icc_level, ret);
7060
7061 out:
7062 kfree(desc_buf);
7063 }
7064
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7065 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7066 {
7067 scsi_autopm_get_device(sdev);
7068 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7069 if (sdev->rpm_autosuspend)
7070 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7071 RPM_AUTOSUSPEND_DELAY_MS);
7072 scsi_autopm_put_device(sdev);
7073 }
7074
7075 /**
7076 * ufshcd_scsi_add_wlus - Adds required W-LUs
7077 * @hba: per-adapter instance
7078 *
7079 * UFS device specification requires the UFS devices to support 4 well known
7080 * logical units:
7081 * "REPORT_LUNS" (address: 01h)
7082 * "UFS Device" (address: 50h)
7083 * "RPMB" (address: 44h)
7084 * "BOOT" (address: 30h)
7085 * UFS device's power management needs to be controlled by "POWER CONDITION"
7086 * field of SSU (START STOP UNIT) command. But this "power condition" field
7087 * will take effect only when its sent to "UFS device" well known logical unit
7088 * hence we require the scsi_device instance to represent this logical unit in
7089 * order for the UFS host driver to send the SSU command for power management.
7090 *
7091 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7092 * Block) LU so user space process can control this LU. User space may also
7093 * want to have access to BOOT LU.
7094 *
7095 * This function adds scsi device instances for each of all well known LUs
7096 * (except "REPORT LUNS" LU).
7097 *
7098 * Returns zero on success (all required W-LUs are added successfully),
7099 * non-zero error value on failure (if failed to add any of the required W-LU).
7100 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7101 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7102 {
7103 int ret = 0;
7104 struct scsi_device *sdev_boot;
7105
7106 hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7107 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7108 if (IS_ERR(hba->sdev_ufs_device)) {
7109 ret = PTR_ERR(hba->sdev_ufs_device);
7110 hba->sdev_ufs_device = NULL;
7111 goto out;
7112 }
7113 ufshcd_blk_pm_runtime_init(hba->sdev_ufs_device);
7114 scsi_device_put(hba->sdev_ufs_device);
7115
7116 hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7117 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7118 if (IS_ERR(hba->sdev_rpmb)) {
7119 ret = PTR_ERR(hba->sdev_rpmb);
7120 goto remove_sdev_ufs_device;
7121 }
7122 ufshcd_blk_pm_runtime_init(hba->sdev_rpmb);
7123 scsi_device_put(hba->sdev_rpmb);
7124
7125 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7126 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7127 if (IS_ERR(sdev_boot)) {
7128 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7129 } else {
7130 ufshcd_blk_pm_runtime_init(sdev_boot);
7131 scsi_device_put(sdev_boot);
7132 }
7133 goto out;
7134
7135 remove_sdev_ufs_device:
7136 scsi_remove_device(hba->sdev_ufs_device);
7137 out:
7138 return ret;
7139 }
7140
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7141 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7142 {
7143 struct ufs_dev_info *dev_info = &hba->dev_info;
7144 u8 lun;
7145 u32 d_lu_wb_buf_alloc;
7146
7147 if (!ufshcd_is_wb_allowed(hba))
7148 return;
7149 /*
7150 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7151 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7152 * enabled
7153 */
7154 if (!(dev_info->wspecversion >= 0x310 ||
7155 dev_info->wspecversion == 0x220 ||
7156 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7157 goto wb_disabled;
7158
7159 if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7160 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7161 goto wb_disabled;
7162
7163 dev_info->d_ext_ufs_feature_sup =
7164 get_unaligned_be32(desc_buf +
7165 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7166
7167 if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7168 goto wb_disabled;
7169
7170 /*
7171 * WB may be supported but not configured while provisioning.
7172 * The spec says, in dedicated wb buffer mode,
7173 * a max of 1 lun would have wb buffer configured.
7174 * Now only shared buffer mode is supported.
7175 */
7176 dev_info->b_wb_buffer_type =
7177 desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7178
7179 dev_info->b_presrv_uspc_en =
7180 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7181
7182 if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7183 dev_info->d_wb_alloc_units =
7184 get_unaligned_be32(desc_buf +
7185 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7186 if (!dev_info->d_wb_alloc_units)
7187 goto wb_disabled;
7188 } else {
7189 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7190 d_lu_wb_buf_alloc = 0;
7191 ufshcd_read_unit_desc_param(hba,
7192 lun,
7193 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7194 (u8 *)&d_lu_wb_buf_alloc,
7195 sizeof(d_lu_wb_buf_alloc));
7196 if (d_lu_wb_buf_alloc) {
7197 dev_info->wb_dedicated_lu = lun;
7198 break;
7199 }
7200 }
7201
7202 if (!d_lu_wb_buf_alloc)
7203 goto wb_disabled;
7204 }
7205 return;
7206
7207 wb_disabled:
7208 hba->caps &= ~UFSHCD_CAP_WB_EN;
7209 }
7210
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7211 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7212 {
7213 struct ufs_dev_fix *f;
7214 struct ufs_dev_info *dev_info = &hba->dev_info;
7215
7216 if (!fixups)
7217 return;
7218
7219 for (f = fixups; f->quirk; f++) {
7220 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7221 f->wmanufacturerid == UFS_ANY_VENDOR) &&
7222 ((dev_info->model &&
7223 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7224 !strcmp(f->model, UFS_ANY_MODEL)))
7225 hba->dev_quirks |= f->quirk;
7226 }
7227 }
7228 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7229
ufs_fixup_device_setup(struct ufs_hba * hba)7230 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7231 {
7232 /* fix by general quirk table */
7233 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7234
7235 /* allow vendors to fix quirks */
7236 ufshcd_vops_fixup_dev_quirks(hba);
7237 }
7238
ufs_get_device_desc(struct ufs_hba * hba)7239 static int ufs_get_device_desc(struct ufs_hba *hba)
7240 {
7241 int err;
7242 u8 model_index;
7243 u8 *desc_buf;
7244 struct ufs_dev_info *dev_info = &hba->dev_info;
7245
7246 desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7247 if (!desc_buf) {
7248 err = -ENOMEM;
7249 goto out;
7250 }
7251
7252 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7253 hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7254 if (err) {
7255 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7256 __func__, err);
7257 goto out;
7258 }
7259
7260 /*
7261 * getting vendor (manufacturerID) and Bank Index in big endian
7262 * format
7263 */
7264 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7265 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7266
7267 /* getting Specification Version in big endian format */
7268 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7269 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7270
7271 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7272
7273 err = ufshcd_read_string_desc(hba, model_index,
7274 &dev_info->model, SD_ASCII_STD);
7275 if (err < 0) {
7276 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7277 __func__, err);
7278 goto out;
7279 }
7280
7281 ufs_fixup_device_setup(hba);
7282
7283 ufshcd_wb_probe(hba, desc_buf);
7284
7285 /*
7286 * ufshcd_read_string_desc returns size of the string
7287 * reset the error value
7288 */
7289 err = 0;
7290
7291 out:
7292 kfree(desc_buf);
7293 return err;
7294 }
7295
ufs_put_device_desc(struct ufs_hba * hba)7296 static void ufs_put_device_desc(struct ufs_hba *hba)
7297 {
7298 struct ufs_dev_info *dev_info = &hba->dev_info;
7299
7300 kfree(dev_info->model);
7301 dev_info->model = NULL;
7302 }
7303
7304 /**
7305 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7306 * @hba: per-adapter instance
7307 *
7308 * PA_TActivate parameter can be tuned manually if UniPro version is less than
7309 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7310 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7311 * the hibern8 exit latency.
7312 *
7313 * Returns zero on success, non-zero error value on failure.
7314 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7315 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7316 {
7317 int ret = 0;
7318 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7319
7320 ret = ufshcd_dme_peer_get(hba,
7321 UIC_ARG_MIB_SEL(
7322 RX_MIN_ACTIVATETIME_CAPABILITY,
7323 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7324 &peer_rx_min_activatetime);
7325 if (ret)
7326 goto out;
7327
7328 /* make sure proper unit conversion is applied */
7329 tuned_pa_tactivate =
7330 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7331 / PA_TACTIVATE_TIME_UNIT_US);
7332 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7333 tuned_pa_tactivate);
7334
7335 out:
7336 return ret;
7337 }
7338
7339 /**
7340 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7341 * @hba: per-adapter instance
7342 *
7343 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7344 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7345 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7346 * This optimal value can help reduce the hibern8 exit latency.
7347 *
7348 * Returns zero on success, non-zero error value on failure.
7349 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7350 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7351 {
7352 int ret = 0;
7353 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7354 u32 max_hibern8_time, tuned_pa_hibern8time;
7355
7356 ret = ufshcd_dme_get(hba,
7357 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7358 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7359 &local_tx_hibern8_time_cap);
7360 if (ret)
7361 goto out;
7362
7363 ret = ufshcd_dme_peer_get(hba,
7364 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7365 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7366 &peer_rx_hibern8_time_cap);
7367 if (ret)
7368 goto out;
7369
7370 max_hibern8_time = max(local_tx_hibern8_time_cap,
7371 peer_rx_hibern8_time_cap);
7372 /* make sure proper unit conversion is applied */
7373 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7374 / PA_HIBERN8_TIME_UNIT_US);
7375 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7376 tuned_pa_hibern8time);
7377 out:
7378 return ret;
7379 }
7380
7381 /**
7382 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7383 * less than device PA_TACTIVATE time.
7384 * @hba: per-adapter instance
7385 *
7386 * Some UFS devices require host PA_TACTIVATE to be lower than device
7387 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7388 * for such devices.
7389 *
7390 * Returns zero on success, non-zero error value on failure.
7391 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7392 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7393 {
7394 int ret = 0;
7395 u32 granularity, peer_granularity;
7396 u32 pa_tactivate, peer_pa_tactivate;
7397 u32 pa_tactivate_us, peer_pa_tactivate_us;
7398 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7399
7400 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7401 &granularity);
7402 if (ret)
7403 goto out;
7404
7405 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7406 &peer_granularity);
7407 if (ret)
7408 goto out;
7409
7410 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7411 (granularity > PA_GRANULARITY_MAX_VAL)) {
7412 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7413 __func__, granularity);
7414 return -EINVAL;
7415 }
7416
7417 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7418 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7419 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7420 __func__, peer_granularity);
7421 return -EINVAL;
7422 }
7423
7424 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7425 if (ret)
7426 goto out;
7427
7428 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7429 &peer_pa_tactivate);
7430 if (ret)
7431 goto out;
7432
7433 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7434 peer_pa_tactivate_us = peer_pa_tactivate *
7435 gran_to_us_table[peer_granularity - 1];
7436
7437 if (pa_tactivate_us > peer_pa_tactivate_us) {
7438 u32 new_peer_pa_tactivate;
7439
7440 new_peer_pa_tactivate = pa_tactivate_us /
7441 gran_to_us_table[peer_granularity - 1];
7442 new_peer_pa_tactivate++;
7443 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7444 new_peer_pa_tactivate);
7445 }
7446
7447 out:
7448 return ret;
7449 }
7450
ufshcd_tune_unipro_params(struct ufs_hba * hba)7451 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7452 {
7453 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7454 ufshcd_tune_pa_tactivate(hba);
7455 ufshcd_tune_pa_hibern8time(hba);
7456 }
7457
7458 ufshcd_vops_apply_dev_quirks(hba);
7459
7460 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7461 /* set 1ms timeout for PA_TACTIVATE */
7462 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7463
7464 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7465 ufshcd_quirk_tune_host_pa_tactivate(hba);
7466 }
7467
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7468 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7469 {
7470 hba->ufs_stats.hibern8_exit_cnt = 0;
7471 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7472 hba->req_abort_count = 0;
7473 }
7474
ufshcd_device_geo_params_init(struct ufs_hba * hba)7475 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7476 {
7477 int err;
7478 size_t buff_len;
7479 u8 *desc_buf;
7480
7481 buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7482 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7483 if (!desc_buf) {
7484 err = -ENOMEM;
7485 goto out;
7486 }
7487
7488 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7489 desc_buf, buff_len);
7490 if (err) {
7491 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7492 __func__, err);
7493 goto out;
7494 }
7495
7496 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7497 hba->dev_info.max_lu_supported = 32;
7498 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7499 hba->dev_info.max_lu_supported = 8;
7500
7501 out:
7502 kfree(desc_buf);
7503 return err;
7504 }
7505
7506 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7507 {19200000, REF_CLK_FREQ_19_2_MHZ},
7508 {26000000, REF_CLK_FREQ_26_MHZ},
7509 {38400000, REF_CLK_FREQ_38_4_MHZ},
7510 {52000000, REF_CLK_FREQ_52_MHZ},
7511 {0, REF_CLK_FREQ_INVAL},
7512 };
7513
7514 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7515 ufs_get_bref_clk_from_hz(unsigned long freq)
7516 {
7517 int i;
7518
7519 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7520 if (ufs_ref_clk_freqs[i].freq_hz == freq)
7521 return ufs_ref_clk_freqs[i].val;
7522
7523 return REF_CLK_FREQ_INVAL;
7524 }
7525
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7526 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7527 {
7528 unsigned long freq;
7529
7530 freq = clk_get_rate(refclk);
7531
7532 hba->dev_ref_clk_freq =
7533 ufs_get_bref_clk_from_hz(freq);
7534
7535 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7536 dev_err(hba->dev,
7537 "invalid ref_clk setting = %ld\n", freq);
7538 }
7539
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7540 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7541 {
7542 int err;
7543 u32 ref_clk;
7544 u32 freq = hba->dev_ref_clk_freq;
7545
7546 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7547 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7548
7549 if (err) {
7550 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7551 err);
7552 goto out;
7553 }
7554
7555 if (ref_clk == freq)
7556 goto out; /* nothing to update */
7557
7558 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7559 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7560
7561 if (err) {
7562 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7563 ufs_ref_clk_freqs[freq].freq_hz);
7564 goto out;
7565 }
7566
7567 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7568 ufs_ref_clk_freqs[freq].freq_hz);
7569
7570 out:
7571 return err;
7572 }
7573
ufshcd_device_params_init(struct ufs_hba * hba)7574 static int ufshcd_device_params_init(struct ufs_hba *hba)
7575 {
7576 bool flag;
7577 int ret, i;
7578
7579 /* Init device descriptor sizes */
7580 for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7581 hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7582
7583 /* Init UFS geometry descriptor related parameters */
7584 ret = ufshcd_device_geo_params_init(hba);
7585 if (ret)
7586 goto out;
7587
7588 /* Check and apply UFS device quirks */
7589 ret = ufs_get_device_desc(hba);
7590 if (ret) {
7591 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7592 __func__, ret);
7593 goto out;
7594 }
7595
7596 ufshcd_get_ref_clk_gating_wait(hba);
7597
7598 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7599 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7600 hba->dev_info.f_power_on_wp_en = flag;
7601
7602 /* Probe maximum power mode co-supported by both UFS host and device */
7603 if (ufshcd_get_max_pwr_mode(hba))
7604 dev_err(hba->dev,
7605 "%s: Failed getting max supported power mode\n",
7606 __func__);
7607 out:
7608 return ret;
7609 }
7610
7611 /**
7612 * ufshcd_add_lus - probe and add UFS logical units
7613 * @hba: per-adapter instance
7614 */
ufshcd_add_lus(struct ufs_hba * hba)7615 static int ufshcd_add_lus(struct ufs_hba *hba)
7616 {
7617 int ret;
7618
7619 /* Add required well known logical units to scsi mid layer */
7620 ret = ufshcd_scsi_add_wlus(hba);
7621 if (ret)
7622 goto out;
7623
7624 /* Initialize devfreq after UFS device is detected */
7625 if (ufshcd_is_clkscaling_supported(hba)) {
7626 memcpy(&hba->clk_scaling.saved_pwr_info.info,
7627 &hba->pwr_info,
7628 sizeof(struct ufs_pa_layer_attr));
7629 hba->clk_scaling.saved_pwr_info.is_valid = true;
7630 if (!hba->devfreq) {
7631 ret = ufshcd_devfreq_init(hba);
7632 if (ret)
7633 goto out;
7634 }
7635
7636 hba->clk_scaling.is_allowed = true;
7637 }
7638
7639 ufs_bsg_probe(hba);
7640 scsi_scan_host(hba->host);
7641 pm_runtime_put_sync(hba->dev);
7642
7643 out:
7644 return ret;
7645 }
7646
7647 static int
7648 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp);
7649
ufshcd_clear_ua_wlun(struct ufs_hba * hba,u8 wlun)7650 static int ufshcd_clear_ua_wlun(struct ufs_hba *hba, u8 wlun)
7651 {
7652 struct scsi_device *sdp;
7653 unsigned long flags;
7654 int ret = 0;
7655
7656 spin_lock_irqsave(hba->host->host_lock, flags);
7657 if (wlun == UFS_UPIU_UFS_DEVICE_WLUN)
7658 sdp = hba->sdev_ufs_device;
7659 else if (wlun == UFS_UPIU_RPMB_WLUN)
7660 sdp = hba->sdev_rpmb;
7661 else
7662 BUG();
7663 if (sdp) {
7664 ret = scsi_device_get(sdp);
7665 if (!ret && !scsi_device_online(sdp)) {
7666 ret = -ENODEV;
7667 scsi_device_put(sdp);
7668 }
7669 } else {
7670 ret = -ENODEV;
7671 }
7672 spin_unlock_irqrestore(hba->host->host_lock, flags);
7673 if (ret)
7674 goto out_err;
7675
7676 ret = ufshcd_send_request_sense(hba, sdp);
7677 scsi_device_put(sdp);
7678 out_err:
7679 if (ret)
7680 dev_err(hba->dev, "%s: UAC clear LU=%x ret = %d\n",
7681 __func__, wlun, ret);
7682 return ret;
7683 }
7684
ufshcd_clear_ua_wluns(struct ufs_hba * hba)7685 static int ufshcd_clear_ua_wluns(struct ufs_hba *hba)
7686 {
7687 int ret = 0;
7688
7689 if (!hba->wlun_dev_clr_ua)
7690 goto out;
7691
7692 ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_UFS_DEVICE_WLUN);
7693 if (!ret)
7694 ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_RPMB_WLUN);
7695 if (!ret)
7696 hba->wlun_dev_clr_ua = false;
7697 out:
7698 if (ret)
7699 dev_err(hba->dev, "%s: Failed to clear UAC WLUNS ret = %d\n",
7700 __func__, ret);
7701 return ret;
7702 }
7703
7704 /**
7705 * ufshcd_probe_hba - probe hba to detect device and initialize
7706 * @hba: per-adapter instance
7707 * @async: asynchronous execution or not
7708 *
7709 * Execute link-startup and verify device initialization
7710 */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7711 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7712 {
7713 int ret;
7714 unsigned long flags;
7715 ktime_t start = ktime_get();
7716
7717 ret = ufshcd_link_startup(hba);
7718 if (ret)
7719 goto out;
7720
7721 /* Debug counters initialization */
7722 ufshcd_clear_dbg_ufs_stats(hba);
7723
7724 /* UniPro link is active now */
7725 ufshcd_set_link_active(hba);
7726
7727 /* Verify device initialization by sending NOP OUT UPIU */
7728 ret = ufshcd_verify_dev_init(hba);
7729 if (ret)
7730 goto out;
7731
7732 /* Initiate UFS initialization, and waiting until completion */
7733 ret = ufshcd_complete_dev_init(hba);
7734 if (ret)
7735 goto out;
7736
7737 /*
7738 * Initialize UFS device parameters used by driver, these
7739 * parameters are associated with UFS descriptors.
7740 */
7741 if (async) {
7742 ret = ufshcd_device_params_init(hba);
7743 if (ret)
7744 goto out;
7745 }
7746
7747 ufshcd_tune_unipro_params(hba);
7748
7749 /* UFS device is also active now */
7750 ufshcd_set_ufs_dev_active(hba);
7751 ufshcd_force_reset_auto_bkops(hba);
7752 hba->wlun_dev_clr_ua = true;
7753
7754 /* Gear up to HS gear if supported */
7755 if (hba->max_pwr_info.is_valid) {
7756 /*
7757 * Set the right value to bRefClkFreq before attempting to
7758 * switch to HS gears.
7759 */
7760 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7761 ufshcd_set_dev_ref_clk(hba);
7762 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7763 if (ret) {
7764 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7765 __func__, ret);
7766 goto out;
7767 }
7768 ufshcd_print_pwr_info(hba);
7769 }
7770
7771 /*
7772 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7773 * and for removable UFS card as well, hence always set the parameter.
7774 * Note: Error handler may issue the device reset hence resetting
7775 * bActiveICCLevel as well so it is always safe to set this here.
7776 */
7777 ufshcd_set_active_icc_lvl(hba);
7778
7779 ufshcd_wb_config(hba);
7780 /* Enable Auto-Hibernate if configured */
7781 ufshcd_auto_hibern8_enable(hba);
7782
7783 out:
7784 spin_lock_irqsave(hba->host->host_lock, flags);
7785 if (ret)
7786 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7787 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7788 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7789 spin_unlock_irqrestore(hba->host->host_lock, flags);
7790
7791 trace_ufshcd_init(dev_name(hba->dev), ret,
7792 ktime_to_us(ktime_sub(ktime_get(), start)),
7793 hba->curr_dev_pwr_mode, hba->uic_link_state);
7794 return ret;
7795 }
7796
7797 /**
7798 * ufshcd_async_scan - asynchronous execution for probing hba
7799 * @data: data pointer to pass to this function
7800 * @cookie: cookie data
7801 */
ufshcd_async_scan(void * data,async_cookie_t cookie)7802 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7803 {
7804 struct ufs_hba *hba = (struct ufs_hba *)data;
7805 int ret;
7806
7807 /* Initialize hba, detect and initialize UFS device */
7808 ret = ufshcd_probe_hba(hba, true);
7809 if (ret)
7810 goto out;
7811
7812 /* Probe and add UFS logical units */
7813 ret = ufshcd_add_lus(hba);
7814 out:
7815 /*
7816 * If we failed to initialize the device or the device is not
7817 * present, turn off the power/clocks etc.
7818 */
7819 if (ret) {
7820 pm_runtime_put_sync(hba->dev);
7821 ufshcd_exit_clk_scaling(hba);
7822 ufshcd_hba_exit(hba);
7823 } else {
7824 ufshcd_clear_ua_wluns(hba);
7825 }
7826 }
7827
7828 static const struct attribute_group *ufshcd_driver_groups[] = {
7829 &ufs_sysfs_unit_descriptor_group,
7830 &ufs_sysfs_lun_attributes_group,
7831 NULL,
7832 };
7833
7834 static struct ufs_hba_variant_params ufs_hba_vps = {
7835 .hba_enable_delay_us = 1000,
7836 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
7837 .devfreq_profile.polling_ms = 100,
7838 .devfreq_profile.target = ufshcd_devfreq_target,
7839 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
7840 .ondemand_data.upthreshold = 70,
7841 .ondemand_data.downdifferential = 5,
7842 };
7843
7844 static struct scsi_host_template ufshcd_driver_template = {
7845 .module = THIS_MODULE,
7846 .name = UFSHCD,
7847 .proc_name = UFSHCD,
7848 .queuecommand = ufshcd_queuecommand,
7849 .slave_alloc = ufshcd_slave_alloc,
7850 .slave_configure = ufshcd_slave_configure,
7851 .slave_destroy = ufshcd_slave_destroy,
7852 .change_queue_depth = ufshcd_change_queue_depth,
7853 .eh_abort_handler = ufshcd_abort,
7854 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7855 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
7856 .this_id = -1,
7857 .sg_tablesize = SG_ALL,
7858 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
7859 .can_queue = UFSHCD_CAN_QUEUE,
7860 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
7861 .max_host_blocked = 1,
7862 .track_queue_depth = 1,
7863 .sdev_groups = ufshcd_driver_groups,
7864 .dma_boundary = PAGE_SIZE - 1,
7865 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
7866 };
7867
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7868 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7869 int ua)
7870 {
7871 int ret;
7872
7873 if (!vreg)
7874 return 0;
7875
7876 /*
7877 * "set_load" operation shall be required on those regulators
7878 * which specifically configured current limitation. Otherwise
7879 * zero max_uA may cause unexpected behavior when regulator is
7880 * enabled or set as high power mode.
7881 */
7882 if (!vreg->max_uA)
7883 return 0;
7884
7885 ret = regulator_set_load(vreg->reg, ua);
7886 if (ret < 0) {
7887 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7888 __func__, vreg->name, ua, ret);
7889 }
7890
7891 return ret;
7892 }
7893
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7894 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7895 struct ufs_vreg *vreg)
7896 {
7897 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7898 }
7899
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7900 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7901 struct ufs_vreg *vreg)
7902 {
7903 if (!vreg)
7904 return 0;
7905
7906 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7907 }
7908
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7909 static int ufshcd_config_vreg(struct device *dev,
7910 struct ufs_vreg *vreg, bool on)
7911 {
7912 int ret = 0;
7913 struct regulator *reg;
7914 const char *name;
7915 int min_uV, uA_load;
7916
7917 BUG_ON(!vreg);
7918
7919 reg = vreg->reg;
7920 name = vreg->name;
7921
7922 if (regulator_count_voltages(reg) > 0) {
7923 uA_load = on ? vreg->max_uA : 0;
7924 ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7925 if (ret)
7926 goto out;
7927
7928 if (vreg->min_uV && vreg->max_uV) {
7929 min_uV = on ? vreg->min_uV : 0;
7930 ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7931 if (ret)
7932 dev_err(dev,
7933 "%s: %s set voltage failed, err=%d\n",
7934 __func__, name, ret);
7935 }
7936 }
7937 out:
7938 return ret;
7939 }
7940
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7941 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7942 {
7943 int ret = 0;
7944
7945 if (!vreg || vreg->enabled)
7946 goto out;
7947
7948 ret = ufshcd_config_vreg(dev, vreg, true);
7949 if (!ret)
7950 ret = regulator_enable(vreg->reg);
7951
7952 if (!ret)
7953 vreg->enabled = true;
7954 else
7955 dev_err(dev, "%s: %s enable failed, err=%d\n",
7956 __func__, vreg->name, ret);
7957 out:
7958 return ret;
7959 }
7960
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7961 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7962 {
7963 int ret = 0;
7964
7965 if (!vreg || !vreg->enabled)
7966 goto out;
7967
7968 ret = regulator_disable(vreg->reg);
7969
7970 if (!ret) {
7971 /* ignore errors on applying disable config */
7972 ufshcd_config_vreg(dev, vreg, false);
7973 vreg->enabled = false;
7974 } else {
7975 dev_err(dev, "%s: %s disable failed, err=%d\n",
7976 __func__, vreg->name, ret);
7977 }
7978 out:
7979 return ret;
7980 }
7981
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7982 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7983 {
7984 int ret = 0;
7985 struct device *dev = hba->dev;
7986 struct ufs_vreg_info *info = &hba->vreg_info;
7987
7988 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7989 if (ret)
7990 goto out;
7991
7992 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7993 if (ret)
7994 goto out;
7995
7996 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7997
7998 out:
7999 if (ret) {
8000 ufshcd_toggle_vreg(dev, info->vccq2, false);
8001 ufshcd_toggle_vreg(dev, info->vccq, false);
8002 ufshcd_toggle_vreg(dev, info->vcc, false);
8003 }
8004 return ret;
8005 }
8006
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8007 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8008 {
8009 struct ufs_vreg_info *info = &hba->vreg_info;
8010
8011 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8012 }
8013
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8014 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8015 {
8016 int ret = 0;
8017
8018 if (!vreg)
8019 goto out;
8020
8021 vreg->reg = devm_regulator_get(dev, vreg->name);
8022 if (IS_ERR(vreg->reg)) {
8023 ret = PTR_ERR(vreg->reg);
8024 dev_err(dev, "%s: %s get failed, err=%d\n",
8025 __func__, vreg->name, ret);
8026 }
8027 out:
8028 return ret;
8029 }
8030
ufshcd_init_vreg(struct ufs_hba * hba)8031 static int ufshcd_init_vreg(struct ufs_hba *hba)
8032 {
8033 int ret = 0;
8034 struct device *dev = hba->dev;
8035 struct ufs_vreg_info *info = &hba->vreg_info;
8036
8037 ret = ufshcd_get_vreg(dev, info->vcc);
8038 if (ret)
8039 goto out;
8040
8041 ret = ufshcd_get_vreg(dev, info->vccq);
8042 if (!ret)
8043 ret = ufshcd_get_vreg(dev, info->vccq2);
8044 out:
8045 return ret;
8046 }
8047
ufshcd_init_hba_vreg(struct ufs_hba * hba)8048 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8049 {
8050 struct ufs_vreg_info *info = &hba->vreg_info;
8051
8052 if (info)
8053 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8054
8055 return 0;
8056 }
8057
__ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)8058 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
8059 bool skip_ref_clk)
8060 {
8061 int ret = 0;
8062 struct ufs_clk_info *clki;
8063 struct list_head *head = &hba->clk_list_head;
8064 unsigned long flags;
8065 ktime_t start = ktime_get();
8066 bool clk_state_changed = false;
8067
8068 if (list_empty(head))
8069 goto out;
8070
8071 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8072 if (ret)
8073 return ret;
8074
8075 list_for_each_entry(clki, head, list) {
8076 if (!IS_ERR_OR_NULL(clki->clk)) {
8077 if (skip_ref_clk && !strcmp(clki->name, "ref_clk"))
8078 continue;
8079
8080 clk_state_changed = on ^ clki->enabled;
8081 if (on && !clki->enabled) {
8082 ret = clk_prepare_enable(clki->clk);
8083 if (ret) {
8084 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8085 __func__, clki->name, ret);
8086 goto out;
8087 }
8088 } else if (!on && clki->enabled) {
8089 clk_disable_unprepare(clki->clk);
8090 }
8091 clki->enabled = on;
8092 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8093 clki->name, on ? "en" : "dis");
8094 }
8095 }
8096
8097 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8098 if (ret)
8099 return ret;
8100
8101 out:
8102 if (ret) {
8103 list_for_each_entry(clki, head, list) {
8104 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8105 clk_disable_unprepare(clki->clk);
8106 }
8107 } else if (!ret && on) {
8108 spin_lock_irqsave(hba->host->host_lock, flags);
8109 hba->clk_gating.state = CLKS_ON;
8110 trace_ufshcd_clk_gating(dev_name(hba->dev),
8111 hba->clk_gating.state);
8112 spin_unlock_irqrestore(hba->host->host_lock, flags);
8113 }
8114
8115 if (clk_state_changed)
8116 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8117 (on ? "on" : "off"),
8118 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8119 return ret;
8120 }
8121
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8122 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8123 {
8124 return __ufshcd_setup_clocks(hba, on, false);
8125 }
8126
ufshcd_init_clocks(struct ufs_hba * hba)8127 static int ufshcd_init_clocks(struct ufs_hba *hba)
8128 {
8129 int ret = 0;
8130 struct ufs_clk_info *clki;
8131 struct device *dev = hba->dev;
8132 struct list_head *head = &hba->clk_list_head;
8133
8134 if (list_empty(head))
8135 goto out;
8136
8137 list_for_each_entry(clki, head, list) {
8138 if (!clki->name)
8139 continue;
8140
8141 clki->clk = devm_clk_get(dev, clki->name);
8142 if (IS_ERR(clki->clk)) {
8143 ret = PTR_ERR(clki->clk);
8144 dev_err(dev, "%s: %s clk get failed, %d\n",
8145 __func__, clki->name, ret);
8146 goto out;
8147 }
8148
8149 /*
8150 * Parse device ref clk freq as per device tree "ref_clk".
8151 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8152 * in ufshcd_alloc_host().
8153 */
8154 if (!strcmp(clki->name, "ref_clk"))
8155 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8156
8157 if (clki->max_freq) {
8158 ret = clk_set_rate(clki->clk, clki->max_freq);
8159 if (ret) {
8160 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8161 __func__, clki->name,
8162 clki->max_freq, ret);
8163 goto out;
8164 }
8165 clki->curr_freq = clki->max_freq;
8166 }
8167 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8168 clki->name, clk_get_rate(clki->clk));
8169 }
8170 out:
8171 return ret;
8172 }
8173
ufshcd_variant_hba_init(struct ufs_hba * hba)8174 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8175 {
8176 int err = 0;
8177
8178 if (!hba->vops)
8179 goto out;
8180
8181 err = ufshcd_vops_init(hba);
8182 if (err)
8183 goto out;
8184
8185 err = ufshcd_vops_setup_regulators(hba, true);
8186 if (err)
8187 ufshcd_vops_exit(hba);
8188 out:
8189 if (err)
8190 dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8191 __func__, ufshcd_get_var_name(hba), err);
8192 return err;
8193 }
8194
ufshcd_variant_hba_exit(struct ufs_hba * hba)8195 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8196 {
8197 if (!hba->vops)
8198 return;
8199
8200 ufshcd_vops_setup_regulators(hba, false);
8201
8202 ufshcd_vops_exit(hba);
8203 }
8204
ufshcd_hba_init(struct ufs_hba * hba)8205 static int ufshcd_hba_init(struct ufs_hba *hba)
8206 {
8207 int err;
8208
8209 /*
8210 * Handle host controller power separately from the UFS device power
8211 * rails as it will help controlling the UFS host controller power
8212 * collapse easily which is different than UFS device power collapse.
8213 * Also, enable the host controller power before we go ahead with rest
8214 * of the initialization here.
8215 */
8216 err = ufshcd_init_hba_vreg(hba);
8217 if (err)
8218 goto out;
8219
8220 err = ufshcd_setup_hba_vreg(hba, true);
8221 if (err)
8222 goto out;
8223
8224 err = ufshcd_init_clocks(hba);
8225 if (err)
8226 goto out_disable_hba_vreg;
8227
8228 err = ufshcd_setup_clocks(hba, true);
8229 if (err)
8230 goto out_disable_hba_vreg;
8231
8232 err = ufshcd_init_vreg(hba);
8233 if (err)
8234 goto out_disable_clks;
8235
8236 err = ufshcd_setup_vreg(hba, true);
8237 if (err)
8238 goto out_disable_clks;
8239
8240 err = ufshcd_variant_hba_init(hba);
8241 if (err)
8242 goto out_disable_vreg;
8243
8244 hba->is_powered = true;
8245 goto out;
8246
8247 out_disable_vreg:
8248 ufshcd_setup_vreg(hba, false);
8249 out_disable_clks:
8250 ufshcd_setup_clocks(hba, false);
8251 out_disable_hba_vreg:
8252 ufshcd_setup_hba_vreg(hba, false);
8253 out:
8254 return err;
8255 }
8256
ufshcd_hba_exit(struct ufs_hba * hba)8257 static void ufshcd_hba_exit(struct ufs_hba *hba)
8258 {
8259 if (hba->is_powered) {
8260 ufshcd_variant_hba_exit(hba);
8261 ufshcd_setup_vreg(hba, false);
8262 ufshcd_suspend_clkscaling(hba);
8263 if (ufshcd_is_clkscaling_supported(hba))
8264 if (hba->devfreq)
8265 ufshcd_suspend_clkscaling(hba);
8266 ufshcd_setup_clocks(hba, false);
8267 ufshcd_setup_hba_vreg(hba, false);
8268 hba->is_powered = false;
8269 ufs_put_device_desc(hba);
8270 }
8271 }
8272
8273 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)8274 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
8275 {
8276 unsigned char cmd[6] = {REQUEST_SENSE,
8277 0,
8278 0,
8279 0,
8280 UFS_SENSE_SIZE,
8281 0};
8282 char *buffer;
8283 int ret;
8284
8285 buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
8286 if (!buffer) {
8287 ret = -ENOMEM;
8288 goto out;
8289 }
8290
8291 ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
8292 UFS_SENSE_SIZE, NULL, NULL,
8293 msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
8294 if (ret)
8295 pr_err("%s: failed with err %d\n", __func__, ret);
8296
8297 kfree(buffer);
8298 out:
8299 return ret;
8300 }
8301
8302 /**
8303 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8304 * power mode
8305 * @hba: per adapter instance
8306 * @pwr_mode: device power mode to set
8307 *
8308 * Returns 0 if requested power mode is set successfully
8309 * Returns non-zero if failed to set the requested power mode
8310 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8311 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8312 enum ufs_dev_pwr_mode pwr_mode)
8313 {
8314 unsigned char cmd[6] = { START_STOP };
8315 struct scsi_sense_hdr sshdr;
8316 struct scsi_device *sdp;
8317 unsigned long flags;
8318 int ret;
8319
8320 spin_lock_irqsave(hba->host->host_lock, flags);
8321 sdp = hba->sdev_ufs_device;
8322 if (sdp) {
8323 ret = scsi_device_get(sdp);
8324 if (!ret && !scsi_device_online(sdp)) {
8325 ret = -ENODEV;
8326 scsi_device_put(sdp);
8327 }
8328 } else {
8329 ret = -ENODEV;
8330 }
8331 spin_unlock_irqrestore(hba->host->host_lock, flags);
8332
8333 if (ret)
8334 return ret;
8335
8336 /*
8337 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8338 * handling, which would wait for host to be resumed. Since we know
8339 * we are functional while we are here, skip host resume in error
8340 * handling context.
8341 */
8342 hba->host->eh_noresume = 1;
8343 if (hba->wlun_dev_clr_ua) {
8344 ret = ufshcd_send_request_sense(hba, sdp);
8345 if (ret)
8346 goto out;
8347 /* Unit attention condition is cleared now */
8348 hba->wlun_dev_clr_ua = false;
8349 }
8350
8351 cmd[4] = pwr_mode << 4;
8352
8353 /*
8354 * Current function would be generally called from the power management
8355 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8356 * already suspended childs.
8357 */
8358 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8359 START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8360 if (ret) {
8361 sdev_printk(KERN_WARNING, sdp,
8362 "START_STOP failed for power mode: %d, result %x\n",
8363 pwr_mode, ret);
8364 if (driver_byte(ret) == DRIVER_SENSE)
8365 scsi_print_sense_hdr(sdp, NULL, &sshdr);
8366 }
8367
8368 if (!ret)
8369 hba->curr_dev_pwr_mode = pwr_mode;
8370 out:
8371 scsi_device_put(sdp);
8372 hba->host->eh_noresume = 0;
8373 return ret;
8374 }
8375
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8376 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8377 enum uic_link_state req_link_state,
8378 int check_for_bkops)
8379 {
8380 int ret = 0;
8381
8382 if (req_link_state == hba->uic_link_state)
8383 return 0;
8384
8385 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8386 ret = ufshcd_uic_hibern8_enter(hba);
8387 if (!ret) {
8388 ufshcd_set_link_hibern8(hba);
8389 } else {
8390 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8391 __func__, ret);
8392 goto out;
8393 }
8394 }
8395 /*
8396 * If autobkops is enabled, link can't be turned off because
8397 * turning off the link would also turn off the device.
8398 */
8399 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8400 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8401 /*
8402 * Let's make sure that link is in low power mode, we are doing
8403 * this currently by putting the link in Hibern8. Otherway to
8404 * put the link in low power mode is to send the DME end point
8405 * to device and then send the DME reset command to local
8406 * unipro. But putting the link in hibern8 is much faster.
8407 */
8408 ret = ufshcd_uic_hibern8_enter(hba);
8409 if (ret) {
8410 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8411 __func__, ret);
8412 goto out;
8413 }
8414 /*
8415 * Change controller state to "reset state" which
8416 * should also put the link in off/reset state
8417 */
8418 ufshcd_hba_stop(hba);
8419 /*
8420 * TODO: Check if we need any delay to make sure that
8421 * controller is reset
8422 */
8423 ufshcd_set_link_off(hba);
8424 }
8425
8426 out:
8427 return ret;
8428 }
8429
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8430 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8431 {
8432 bool vcc_off = false;
8433
8434 /*
8435 * It seems some UFS devices may keep drawing more than sleep current
8436 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8437 * To avoid this situation, add 2ms delay before putting these UFS
8438 * rails in LPM mode.
8439 */
8440 if (!ufshcd_is_link_active(hba) &&
8441 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8442 usleep_range(2000, 2100);
8443
8444 /*
8445 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8446 * power.
8447 *
8448 * If UFS device and link is in OFF state, all power supplies (VCC,
8449 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8450 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8451 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8452 *
8453 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8454 * in low power state which would save some power.
8455 *
8456 * If Write Booster is enabled and the device needs to flush the WB
8457 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8458 */
8459 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8460 !hba->dev_info.is_lu_power_on_wp) {
8461 ufshcd_setup_vreg(hba, false);
8462 vcc_off = true;
8463 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8464 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8465 vcc_off = true;
8466 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8467 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8468 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8469 }
8470 }
8471
8472 /*
8473 * Some UFS devices require delay after VCC power rail is turned-off.
8474 */
8475 if (vcc_off && hba->vreg_info.vcc &&
8476 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8477 usleep_range(5000, 5100);
8478 }
8479
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8480 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8481 {
8482 int ret = 0;
8483
8484 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8485 !hba->dev_info.is_lu_power_on_wp) {
8486 ret = ufshcd_setup_vreg(hba, true);
8487 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8488 if (!ufshcd_is_link_active(hba)) {
8489 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8490 if (ret)
8491 goto vcc_disable;
8492 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8493 if (ret)
8494 goto vccq_lpm;
8495 }
8496 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8497 }
8498 goto out;
8499
8500 vccq_lpm:
8501 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8502 vcc_disable:
8503 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8504 out:
8505 return ret;
8506 }
8507
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8508 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8509 {
8510 if (ufshcd_is_link_off(hba))
8511 ufshcd_setup_hba_vreg(hba, false);
8512 }
8513
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8514 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8515 {
8516 if (ufshcd_is_link_off(hba))
8517 ufshcd_setup_hba_vreg(hba, true);
8518 }
8519
8520 /**
8521 * ufshcd_suspend - helper function for suspend operations
8522 * @hba: per adapter instance
8523 * @pm_op: desired low power operation type
8524 *
8525 * This function will try to put the UFS device and link into low power
8526 * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8527 * (System PM level).
8528 *
8529 * If this function is called during shutdown, it will make sure that
8530 * both UFS device and UFS link is powered off.
8531 *
8532 * NOTE: UFS device & link must be active before we enter in this function.
8533 *
8534 * Returns 0 for success and non-zero for failure
8535 */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8536 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8537 {
8538 int ret = 0;
8539 enum ufs_pm_level pm_lvl;
8540 enum ufs_dev_pwr_mode req_dev_pwr_mode;
8541 enum uic_link_state req_link_state;
8542
8543 hba->pm_op_in_progress = 1;
8544 if (!ufshcd_is_shutdown_pm(pm_op)) {
8545 pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8546 hba->rpm_lvl : hba->spm_lvl;
8547 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8548 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8549 } else {
8550 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8551 req_link_state = UIC_LINK_OFF_STATE;
8552 }
8553
8554 /*
8555 * If we can't transition into any of the low power modes
8556 * just gate the clocks.
8557 */
8558 ufshcd_hold(hba, false);
8559 hba->clk_gating.is_suspended = true;
8560
8561 if (hba->clk_scaling.is_allowed) {
8562 cancel_work_sync(&hba->clk_scaling.suspend_work);
8563 cancel_work_sync(&hba->clk_scaling.resume_work);
8564 ufshcd_suspend_clkscaling(hba);
8565 }
8566
8567 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8568 req_link_state == UIC_LINK_ACTIVE_STATE) {
8569 goto disable_clks;
8570 }
8571
8572 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8573 (req_link_state == hba->uic_link_state))
8574 goto enable_gating;
8575
8576 /* UFS device & link must be active before we enter in this function */
8577 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8578 ret = -EINVAL;
8579 goto enable_gating;
8580 }
8581
8582 if (ufshcd_is_runtime_pm(pm_op)) {
8583 if (ufshcd_can_autobkops_during_suspend(hba)) {
8584 /*
8585 * The device is idle with no requests in the queue,
8586 * allow background operations if bkops status shows
8587 * that performance might be impacted.
8588 */
8589 ret = ufshcd_urgent_bkops(hba);
8590 if (ret)
8591 goto enable_gating;
8592 } else {
8593 /* make sure that auto bkops is disabled */
8594 ufshcd_disable_auto_bkops(hba);
8595 }
8596 /*
8597 * If device needs to do BKOP or WB buffer flush during
8598 * Hibern8, keep device power mode as "active power mode"
8599 * and VCC supply.
8600 */
8601 hba->dev_info.b_rpm_dev_flush_capable =
8602 hba->auto_bkops_enabled ||
8603 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8604 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8605 ufshcd_is_auto_hibern8_enabled(hba))) &&
8606 ufshcd_wb_need_flush(hba));
8607 }
8608
8609 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8610 if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8611 !ufshcd_is_runtime_pm(pm_op)) {
8612 /* ensure that bkops is disabled */
8613 ufshcd_disable_auto_bkops(hba);
8614 }
8615
8616 if (!hba->dev_info.b_rpm_dev_flush_capable) {
8617 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8618 if (ret)
8619 goto enable_gating;
8620 }
8621 }
8622
8623 flush_work(&hba->eeh_work);
8624 ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8625 if (ret)
8626 goto set_dev_active;
8627
8628 ufshcd_vreg_set_lpm(hba);
8629
8630 disable_clks:
8631 /*
8632 * Call vendor specific suspend callback. As these callbacks may access
8633 * vendor specific host controller register space call them before the
8634 * host clocks are ON.
8635 */
8636 ret = ufshcd_vops_suspend(hba, pm_op);
8637 if (ret)
8638 goto set_link_active;
8639 /*
8640 * Disable the host irq as host controller as there won't be any
8641 * host controller transaction expected till resume.
8642 */
8643 ufshcd_disable_irq(hba);
8644
8645 if (!ufshcd_is_link_active(hba))
8646 ufshcd_setup_clocks(hba, false);
8647 else
8648 /* If link is active, device ref_clk can't be switched off */
8649 __ufshcd_setup_clocks(hba, false, true);
8650
8651 if (ufshcd_is_clkgating_allowed(hba)) {
8652 hba->clk_gating.state = CLKS_OFF;
8653 trace_ufshcd_clk_gating(dev_name(hba->dev),
8654 hba->clk_gating.state);
8655 }
8656
8657 /* Put the host controller in low power mode if possible */
8658 ufshcd_hba_vreg_set_lpm(hba);
8659 goto out;
8660
8661 set_link_active:
8662 if (hba->clk_scaling.is_allowed)
8663 ufshcd_resume_clkscaling(hba);
8664 ufshcd_vreg_set_hpm(hba);
8665 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8666 ufshcd_set_link_active(hba);
8667 else if (ufshcd_is_link_off(hba))
8668 ufshcd_host_reset_and_restore(hba);
8669 set_dev_active:
8670 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8671 ufshcd_disable_auto_bkops(hba);
8672 enable_gating:
8673 if (hba->clk_scaling.is_allowed)
8674 ufshcd_resume_clkscaling(hba);
8675 hba->clk_gating.is_suspended = false;
8676 hba->dev_info.b_rpm_dev_flush_capable = false;
8677 ufshcd_release(hba);
8678 out:
8679 if (hba->dev_info.b_rpm_dev_flush_capable) {
8680 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8681 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8682 }
8683
8684 hba->pm_op_in_progress = 0;
8685
8686 if (ret)
8687 ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8688 return ret;
8689 }
8690
8691 /**
8692 * ufshcd_resume - helper function for resume operations
8693 * @hba: per adapter instance
8694 * @pm_op: runtime PM or system PM
8695 *
8696 * This function basically brings the UFS device, UniPro link and controller
8697 * to active state.
8698 *
8699 * Returns 0 for success and non-zero for failure
8700 */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8701 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8702 {
8703 int ret;
8704 enum uic_link_state old_link_state;
8705
8706 hba->pm_op_in_progress = 1;
8707 old_link_state = hba->uic_link_state;
8708
8709 ufshcd_hba_vreg_set_hpm(hba);
8710 /* Make sure clocks are enabled before accessing controller */
8711 ret = ufshcd_setup_clocks(hba, true);
8712 if (ret)
8713 goto out;
8714
8715 /* enable the host irq as host controller would be active soon */
8716 ufshcd_enable_irq(hba);
8717
8718 ret = ufshcd_vreg_set_hpm(hba);
8719 if (ret)
8720 goto disable_irq_and_vops_clks;
8721
8722 /*
8723 * Call vendor specific resume callback. As these callbacks may access
8724 * vendor specific host controller register space call them when the
8725 * host clocks are ON.
8726 */
8727 ret = ufshcd_vops_resume(hba, pm_op);
8728 if (ret)
8729 goto disable_vreg;
8730
8731 if (ufshcd_is_link_hibern8(hba)) {
8732 ret = ufshcd_uic_hibern8_exit(hba);
8733 if (!ret) {
8734 ufshcd_set_link_active(hba);
8735 } else {
8736 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8737 __func__, ret);
8738 goto vendor_suspend;
8739 }
8740 } else if (ufshcd_is_link_off(hba)) {
8741 /*
8742 * A full initialization of the host and the device is
8743 * required since the link was put to off during suspend.
8744 */
8745 ret = ufshcd_reset_and_restore(hba);
8746 /*
8747 * ufshcd_reset_and_restore() should have already
8748 * set the link state as active
8749 */
8750 if (ret || !ufshcd_is_link_active(hba))
8751 goto vendor_suspend;
8752 }
8753
8754 if (!ufshcd_is_ufs_dev_active(hba)) {
8755 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8756 if (ret)
8757 goto set_old_link_state;
8758 }
8759
8760 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8761 ufshcd_enable_auto_bkops(hba);
8762 else
8763 /*
8764 * If BKOPs operations are urgently needed at this moment then
8765 * keep auto-bkops enabled or else disable it.
8766 */
8767 ufshcd_urgent_bkops(hba);
8768
8769 hba->clk_gating.is_suspended = false;
8770
8771 if (hba->clk_scaling.is_allowed)
8772 ufshcd_resume_clkscaling(hba);
8773
8774 /* Enable Auto-Hibernate if configured */
8775 ufshcd_auto_hibern8_enable(hba);
8776
8777 if (hba->dev_info.b_rpm_dev_flush_capable) {
8778 hba->dev_info.b_rpm_dev_flush_capable = false;
8779 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8780 }
8781
8782 /* Schedule clock gating in case of no access to UFS device yet */
8783 ufshcd_release(hba);
8784
8785 goto out;
8786
8787 set_old_link_state:
8788 ufshcd_link_state_transition(hba, old_link_state, 0);
8789 vendor_suspend:
8790 ufshcd_vops_suspend(hba, pm_op);
8791 disable_vreg:
8792 ufshcd_vreg_set_lpm(hba);
8793 disable_irq_and_vops_clks:
8794 ufshcd_disable_irq(hba);
8795 if (hba->clk_scaling.is_allowed)
8796 ufshcd_suspend_clkscaling(hba);
8797 ufshcd_setup_clocks(hba, false);
8798 if (ufshcd_is_clkgating_allowed(hba)) {
8799 hba->clk_gating.state = CLKS_OFF;
8800 trace_ufshcd_clk_gating(dev_name(hba->dev),
8801 hba->clk_gating.state);
8802 }
8803 out:
8804 hba->pm_op_in_progress = 0;
8805 if (ret)
8806 ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8807 return ret;
8808 }
8809
8810 /**
8811 * ufshcd_system_suspend - system suspend routine
8812 * @hba: per adapter instance
8813 *
8814 * Check the description of ufshcd_suspend() function for more details.
8815 *
8816 * Returns 0 for success and non-zero for failure
8817 */
ufshcd_system_suspend(struct ufs_hba * hba)8818 int ufshcd_system_suspend(struct ufs_hba *hba)
8819 {
8820 int ret = 0;
8821 ktime_t start = ktime_get();
8822
8823 if (!hba || !hba->is_powered)
8824 return 0;
8825
8826 cancel_delayed_work_sync(&hba->rpm_dev_flush_recheck_work);
8827
8828 if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8829 hba->curr_dev_pwr_mode) &&
8830 (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8831 hba->uic_link_state) &&
8832 pm_runtime_suspended(hba->dev) &&
8833 !hba->dev_info.b_rpm_dev_flush_capable)
8834 goto out;
8835
8836 if (pm_runtime_suspended(hba->dev)) {
8837 /*
8838 * UFS device and/or UFS link low power states during runtime
8839 * suspend seems to be different than what is expected during
8840 * system suspend. Hence runtime resume the devic & link and
8841 * let the system suspend low power states to take effect.
8842 * TODO: If resume takes longer time, we might have optimize
8843 * it in future by not resuming everything if possible.
8844 */
8845 ret = ufshcd_runtime_resume(hba);
8846 if (ret)
8847 goto out;
8848 }
8849
8850 ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8851 out:
8852 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8853 ktime_to_us(ktime_sub(ktime_get(), start)),
8854 hba->curr_dev_pwr_mode, hba->uic_link_state);
8855 if (!ret)
8856 hba->is_sys_suspended = true;
8857 return ret;
8858 }
8859 EXPORT_SYMBOL(ufshcd_system_suspend);
8860
8861 /**
8862 * ufshcd_system_resume - system resume routine
8863 * @hba: per adapter instance
8864 *
8865 * Returns 0 for success and non-zero for failure
8866 */
8867
ufshcd_system_resume(struct ufs_hba * hba)8868 int ufshcd_system_resume(struct ufs_hba *hba)
8869 {
8870 int ret = 0;
8871 ktime_t start = ktime_get();
8872
8873 if (!hba)
8874 return -EINVAL;
8875
8876 if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8877 /*
8878 * Let the runtime resume take care of resuming
8879 * if runtime suspended.
8880 */
8881 goto out;
8882 else
8883 ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8884 out:
8885 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8886 ktime_to_us(ktime_sub(ktime_get(), start)),
8887 hba->curr_dev_pwr_mode, hba->uic_link_state);
8888 if (!ret)
8889 hba->is_sys_suspended = false;
8890 return ret;
8891 }
8892 EXPORT_SYMBOL(ufshcd_system_resume);
8893
8894 /**
8895 * ufshcd_runtime_suspend - runtime suspend routine
8896 * @hba: per adapter instance
8897 *
8898 * Check the description of ufshcd_suspend() function for more details.
8899 *
8900 * Returns 0 for success and non-zero for failure
8901 */
ufshcd_runtime_suspend(struct ufs_hba * hba)8902 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8903 {
8904 int ret = 0;
8905 ktime_t start = ktime_get();
8906
8907 if (!hba)
8908 return -EINVAL;
8909
8910 if (!hba->is_powered)
8911 goto out;
8912 else
8913 ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8914 out:
8915 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8916 ktime_to_us(ktime_sub(ktime_get(), start)),
8917 hba->curr_dev_pwr_mode, hba->uic_link_state);
8918 return ret;
8919 }
8920 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8921
8922 /**
8923 * ufshcd_runtime_resume - runtime resume routine
8924 * @hba: per adapter instance
8925 *
8926 * This function basically brings the UFS device, UniPro link and controller
8927 * to active state. Following operations are done in this function:
8928 *
8929 * 1. Turn on all the controller related clocks
8930 * 2. Bring the UniPro link out of Hibernate state
8931 * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8932 * to active state.
8933 * 4. If auto-bkops is enabled on the device, disable it.
8934 *
8935 * So following would be the possible power state after this function return
8936 * successfully:
8937 * S1: UFS device in Active state with VCC rail ON
8938 * UniPro link in Active state
8939 * All the UFS/UniPro controller clocks are ON
8940 *
8941 * Returns 0 for success and non-zero for failure
8942 */
ufshcd_runtime_resume(struct ufs_hba * hba)8943 int ufshcd_runtime_resume(struct ufs_hba *hba)
8944 {
8945 int ret = 0;
8946 ktime_t start = ktime_get();
8947
8948 if (!hba)
8949 return -EINVAL;
8950
8951 if (!hba->is_powered)
8952 goto out;
8953 else
8954 ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8955 out:
8956 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8957 ktime_to_us(ktime_sub(ktime_get(), start)),
8958 hba->curr_dev_pwr_mode, hba->uic_link_state);
8959 return ret;
8960 }
8961 EXPORT_SYMBOL(ufshcd_runtime_resume);
8962
ufshcd_runtime_idle(struct ufs_hba * hba)8963 int ufshcd_runtime_idle(struct ufs_hba *hba)
8964 {
8965 return 0;
8966 }
8967 EXPORT_SYMBOL(ufshcd_runtime_idle);
8968
8969 /**
8970 * ufshcd_shutdown - shutdown routine
8971 * @hba: per adapter instance
8972 *
8973 * This function would power off both UFS device and UFS link.
8974 *
8975 * Returns 0 always to allow force shutdown even in case of errors.
8976 */
ufshcd_shutdown(struct ufs_hba * hba)8977 int ufshcd_shutdown(struct ufs_hba *hba)
8978 {
8979 int ret = 0;
8980
8981 if (!hba->is_powered)
8982 goto out;
8983
8984 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8985 goto out;
8986
8987 pm_runtime_get_sync(hba->dev);
8988
8989 ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8990 out:
8991 if (ret)
8992 dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8993 /* allow force shutdown even in case of errors */
8994 return 0;
8995 }
8996 EXPORT_SYMBOL(ufshcd_shutdown);
8997
8998 /**
8999 * ufshcd_remove - de-allocate SCSI host and host memory space
9000 * data structure memory
9001 * @hba: per adapter instance
9002 */
ufshcd_remove(struct ufs_hba * hba)9003 void ufshcd_remove(struct ufs_hba *hba)
9004 {
9005 ufs_bsg_remove(hba);
9006 ufs_sysfs_remove_nodes(hba->dev);
9007 blk_cleanup_queue(hba->tmf_queue);
9008 blk_mq_free_tag_set(&hba->tmf_tag_set);
9009 blk_cleanup_queue(hba->cmd_queue);
9010 scsi_remove_host(hba->host);
9011 destroy_workqueue(hba->eh_wq);
9012 /* disable interrupts */
9013 ufshcd_disable_intr(hba, hba->intr_mask);
9014 ufshcd_hba_stop(hba);
9015
9016 ufshcd_exit_clk_scaling(hba);
9017 ufshcd_exit_clk_gating(hba);
9018 if (ufshcd_is_clkscaling_supported(hba))
9019 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
9020 ufshcd_hba_exit(hba);
9021 }
9022 EXPORT_SYMBOL_GPL(ufshcd_remove);
9023
9024 /**
9025 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9026 * @hba: pointer to Host Bus Adapter (HBA)
9027 */
ufshcd_dealloc_host(struct ufs_hba * hba)9028 void ufshcd_dealloc_host(struct ufs_hba *hba)
9029 {
9030 ufshcd_crypto_destroy_keyslot_manager(hba);
9031 scsi_host_put(hba->host);
9032 }
9033 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9034
9035 /**
9036 * ufshcd_set_dma_mask - Set dma mask based on the controller
9037 * addressing capability
9038 * @hba: per adapter instance
9039 *
9040 * Returns 0 for success, non-zero for failure
9041 */
ufshcd_set_dma_mask(struct ufs_hba * hba)9042 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9043 {
9044 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9045 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9046 return 0;
9047 }
9048 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9049 }
9050
9051 /**
9052 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9053 * @dev: pointer to device handle
9054 * @hba_handle: driver private handle
9055 * Returns 0 on success, non-zero value on failure
9056 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9057 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9058 {
9059 struct Scsi_Host *host;
9060 struct ufs_hba *hba;
9061 int err = 0;
9062
9063 if (!dev) {
9064 dev_err(dev,
9065 "Invalid memory reference for dev is NULL\n");
9066 err = -ENODEV;
9067 goto out_error;
9068 }
9069
9070 host = scsi_host_alloc(&ufshcd_driver_template,
9071 sizeof(struct ufs_hba));
9072 if (!host) {
9073 dev_err(dev, "scsi_host_alloc failed\n");
9074 err = -ENOMEM;
9075 goto out_error;
9076 }
9077 hba = shost_priv(host);
9078 hba->host = host;
9079 hba->dev = dev;
9080 *hba_handle = hba;
9081 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9082
9083 INIT_LIST_HEAD(&hba->clk_list_head);
9084
9085 out_error:
9086 return err;
9087 }
9088 EXPORT_SYMBOL(ufshcd_alloc_host);
9089
9090 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9091 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9092 const struct blk_mq_queue_data *qd)
9093 {
9094 WARN_ON_ONCE(true);
9095 return BLK_STS_NOTSUPP;
9096 }
9097
9098 static const struct blk_mq_ops ufshcd_tmf_ops = {
9099 .queue_rq = ufshcd_queue_tmf,
9100 };
9101
9102 /**
9103 * ufshcd_init - Driver initialization routine
9104 * @hba: per-adapter instance
9105 * @mmio_base: base register address
9106 * @irq: Interrupt line of device
9107 * Returns 0 on success, non-zero value on failure
9108 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9109 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9110 {
9111 int err;
9112 struct Scsi_Host *host = hba->host;
9113 struct device *dev = hba->dev;
9114 char eh_wq_name[sizeof("ufs_eh_wq_00")];
9115
9116 if (!mmio_base) {
9117 dev_err(hba->dev,
9118 "Invalid memory reference for mmio_base is NULL\n");
9119 err = -ENODEV;
9120 goto out_error;
9121 }
9122
9123 hba->mmio_base = mmio_base;
9124 hba->irq = irq;
9125 hba->vps = &ufs_hba_vps;
9126
9127 err = ufshcd_hba_init(hba);
9128 if (err)
9129 goto out_error;
9130
9131 /* Read capabilities registers */
9132 err = ufshcd_hba_capabilities(hba);
9133 if (err)
9134 goto out_disable;
9135
9136 /* Get UFS version supported by the controller */
9137 hba->ufs_version = ufshcd_get_ufs_version(hba);
9138
9139 if ((hba->ufs_version != UFSHCI_VERSION_10) &&
9140 (hba->ufs_version != UFSHCI_VERSION_11) &&
9141 (hba->ufs_version != UFSHCI_VERSION_20) &&
9142 (hba->ufs_version != UFSHCI_VERSION_21))
9143 dev_err(hba->dev, "invalid UFS version 0x%x\n",
9144 hba->ufs_version);
9145
9146 /* Get Interrupt bit mask per version */
9147 hba->intr_mask = ufshcd_get_intr_mask(hba);
9148
9149 err = ufshcd_set_dma_mask(hba);
9150 if (err) {
9151 dev_err(hba->dev, "set dma mask failed\n");
9152 goto out_disable;
9153 }
9154
9155 /* Allocate memory for host memory space */
9156 err = ufshcd_memory_alloc(hba);
9157 if (err) {
9158 dev_err(hba->dev, "Memory allocation failed\n");
9159 goto out_disable;
9160 }
9161
9162 /* Configure LRB */
9163 ufshcd_host_memory_configure(hba);
9164
9165 host->can_queue = hba->nutrs;
9166 host->cmd_per_lun = hba->nutrs;
9167 host->max_id = UFSHCD_MAX_ID;
9168 host->max_lun = UFS_MAX_LUNS;
9169 host->max_channel = UFSHCD_MAX_CHANNEL;
9170 host->unique_id = host->host_no;
9171 host->max_cmd_len = UFS_CDB_SIZE;
9172
9173 hba->max_pwr_info.is_valid = false;
9174
9175 /* Initialize work queues */
9176 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9177 hba->host->host_no);
9178 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9179 if (!hba->eh_wq) {
9180 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9181 __func__);
9182 err = -ENOMEM;
9183 goto out_disable;
9184 }
9185 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9186 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9187
9188 /* Initialize UIC command mutex */
9189 mutex_init(&hba->uic_cmd_mutex);
9190
9191 /* Initialize mutex for device management commands */
9192 mutex_init(&hba->dev_cmd.lock);
9193
9194 init_rwsem(&hba->clk_scaling_lock);
9195
9196 ufshcd_init_clk_gating(hba);
9197
9198 ufshcd_init_clk_scaling(hba);
9199
9200 /*
9201 * In order to avoid any spurious interrupt immediately after
9202 * registering UFS controller interrupt handler, clear any pending UFS
9203 * interrupt status and disable all the UFS interrupts.
9204 */
9205 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9206 REG_INTERRUPT_STATUS);
9207 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9208 /*
9209 * Make sure that UFS interrupts are disabled and any pending interrupt
9210 * status is cleared before registering UFS interrupt handler.
9211 */
9212 mb();
9213
9214 /* IRQ registration */
9215 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9216 if (err) {
9217 dev_err(hba->dev, "request irq failed\n");
9218 goto exit_gating;
9219 } else {
9220 hba->is_irq_enabled = true;
9221 }
9222
9223 err = scsi_add_host(host, hba->dev);
9224 if (err) {
9225 dev_err(hba->dev, "scsi_add_host failed\n");
9226 goto exit_gating;
9227 }
9228
9229 hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9230 if (IS_ERR(hba->cmd_queue)) {
9231 err = PTR_ERR(hba->cmd_queue);
9232 goto out_remove_scsi_host;
9233 }
9234
9235 hba->tmf_tag_set = (struct blk_mq_tag_set) {
9236 .nr_hw_queues = 1,
9237 .queue_depth = hba->nutmrs,
9238 .ops = &ufshcd_tmf_ops,
9239 .flags = BLK_MQ_F_NO_SCHED,
9240 };
9241 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9242 if (err < 0)
9243 goto free_cmd_queue;
9244 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9245 if (IS_ERR(hba->tmf_queue)) {
9246 err = PTR_ERR(hba->tmf_queue);
9247 goto free_tmf_tag_set;
9248 }
9249
9250 /* Reset the attached device */
9251 ufshcd_vops_device_reset(hba);
9252
9253 ufshcd_init_crypto(hba);
9254
9255 /* Host controller enable */
9256 err = ufshcd_hba_enable(hba);
9257 if (err) {
9258 dev_err(hba->dev, "Host controller enable failed\n");
9259 ufshcd_print_host_regs(hba);
9260 ufshcd_print_host_state(hba);
9261 goto free_tmf_queue;
9262 }
9263
9264 /*
9265 * Set the default power management level for runtime and system PM.
9266 * Default power saving mode is to keep UFS link in Hibern8 state
9267 * and UFS device in sleep state.
9268 */
9269 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9270 UFS_SLEEP_PWR_MODE,
9271 UIC_LINK_HIBERN8_STATE);
9272 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9273 UFS_SLEEP_PWR_MODE,
9274 UIC_LINK_HIBERN8_STATE);
9275
9276 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9277 ufshcd_rpm_dev_flush_recheck_work);
9278
9279 /* Set the default auto-hiberate idle timer value to 150 ms */
9280 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9281 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9282 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9283 }
9284
9285 /* Hold auto suspend until async scan completes */
9286 pm_runtime_get_sync(dev);
9287 atomic_set(&hba->scsi_block_reqs_cnt, 0);
9288 /*
9289 * We are assuming that device wasn't put in sleep/power-down
9290 * state exclusively during the boot stage before kernel.
9291 * This assumption helps avoid doing link startup twice during
9292 * ufshcd_probe_hba().
9293 */
9294 ufshcd_set_ufs_dev_active(hba);
9295
9296 async_schedule(ufshcd_async_scan, hba);
9297 ufs_sysfs_add_nodes(hba->dev);
9298
9299 return 0;
9300
9301 free_tmf_queue:
9302 blk_cleanup_queue(hba->tmf_queue);
9303 free_tmf_tag_set:
9304 blk_mq_free_tag_set(&hba->tmf_tag_set);
9305 free_cmd_queue:
9306 blk_cleanup_queue(hba->cmd_queue);
9307 out_remove_scsi_host:
9308 scsi_remove_host(hba->host);
9309 exit_gating:
9310 ufshcd_exit_clk_scaling(hba);
9311 ufshcd_exit_clk_gating(hba);
9312 destroy_workqueue(hba->eh_wq);
9313 out_disable:
9314 hba->is_irq_enabled = false;
9315 ufshcd_hba_exit(hba);
9316 out_error:
9317 return err;
9318 }
9319 EXPORT_SYMBOL_GPL(ufshcd_init);
9320
9321 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9322 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9323 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9324 MODULE_LICENSE("GPL");
9325 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9326