• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* vaguely specified driver internal error.  Ignored by the block layer */
83 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
84 /* don't warn about errors */
85 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
86 /* elevator private data attached */
87 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
88 /* account into disk and partition IO statistics */
89 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
90 /* request came from our alloc pool */
91 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
92 /* runtime pm request */
93 #define RQF_PM			((__force req_flags_t)(1 << 15))
94 /* on IO scheduler merge hash */
95 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
96 /* track IO completion time */
97 #define RQF_STATS		((__force req_flags_t)(1 << 17))
98 /* Look at ->special_vec for the actual data payload instead of the
99    bio chain. */
100 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
101 /* The per-zone write lock is held for this request */
102 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
103 /* already slept for hybrid poll */
104 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
105 /* ->timeout has been called, don't expire again */
106 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
107 
108 /* flags that prevent us from merging requests: */
109 #define RQF_NOMERGE_FLAGS \
110 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
111 
112 /*
113  * Request state for blk-mq.
114  */
115 enum mq_rq_state {
116 	MQ_RQ_IDLE		= 0,
117 	MQ_RQ_IN_FLIGHT		= 1,
118 	MQ_RQ_COMPLETE		= 2,
119 };
120 
121 /*
122  * Try to put the fields that are referenced together in the same cacheline.
123  *
124  * If you modify this structure, make sure to update blk_rq_init() and
125  * especially blk_mq_rq_ctx_init() to take care of the added fields.
126  */
127 struct request {
128 	struct request_queue *q;
129 	struct blk_mq_ctx *mq_ctx;
130 	struct blk_mq_hw_ctx *mq_hctx;
131 
132 	unsigned int cmd_flags;		/* op and common flags */
133 	req_flags_t rq_flags;
134 
135 	int tag;
136 	int internal_tag;
137 
138 	/* the following two fields are internal, NEVER access directly */
139 	unsigned int __data_len;	/* total data len */
140 	sector_t __sector;		/* sector cursor */
141 
142 	struct bio *bio;
143 	struct bio *biotail;
144 
145 	struct list_head queuelist;
146 
147 	/*
148 	 * The hash is used inside the scheduler, and killed once the
149 	 * request reaches the dispatch list. The ipi_list is only used
150 	 * to queue the request for softirq completion, which is long
151 	 * after the request has been unhashed (and even removed from
152 	 * the dispatch list).
153 	 */
154 	union {
155 		struct hlist_node hash;	/* merge hash */
156 		struct list_head ipi_list;
157 	};
158 
159 	/*
160 	 * The rb_node is only used inside the io scheduler, requests
161 	 * are pruned when moved to the dispatch queue. So let the
162 	 * completion_data share space with the rb_node.
163 	 */
164 	union {
165 		struct rb_node rb_node;	/* sort/lookup */
166 		struct bio_vec special_vec;
167 		void *completion_data;
168 		int error_count; /* for legacy drivers, don't use */
169 	};
170 
171 	/*
172 	 * Three pointers are available for the IO schedulers, if they need
173 	 * more they have to dynamically allocate it.  Flush requests are
174 	 * never put on the IO scheduler. So let the flush fields share
175 	 * space with the elevator data.
176 	 */
177 	union {
178 		struct {
179 			struct io_cq		*icq;
180 			void			*priv[2];
181 		} elv;
182 
183 		struct {
184 			unsigned int		seq;
185 			struct list_head	list;
186 			rq_end_io_fn		*saved_end_io;
187 		} flush;
188 	};
189 
190 	struct gendisk *rq_disk;
191 	struct hd_struct *part;
192 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
193 	/* Time that the first bio started allocating this request. */
194 	u64 alloc_time_ns;
195 #endif
196 	/* Time that this request was allocated for this IO. */
197 	u64 start_time_ns;
198 	/* Time that I/O was submitted to the device. */
199 	u64 io_start_time_ns;
200 
201 #ifdef CONFIG_BLK_WBT
202 	unsigned short wbt_flags;
203 #endif
204 	/*
205 	 * rq sectors used for blk stats. It has the same value
206 	 * with blk_rq_sectors(rq), except that it never be zeroed
207 	 * by completion.
208 	 */
209 	unsigned short stats_sectors;
210 
211 	/*
212 	 * Number of scatter-gather DMA addr+len pairs after
213 	 * physical address coalescing is performed.
214 	 */
215 	unsigned short nr_phys_segments;
216 
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 	unsigned short nr_integrity_segments;
219 #endif
220 
221 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
222 	struct bio_crypt_ctx *crypt_ctx;
223 	struct blk_ksm_keyslot *crypt_keyslot;
224 #endif
225 
226 	unsigned short write_hint;
227 	unsigned short ioprio;
228 
229 	enum mq_rq_state state;
230 	refcount_t ref;
231 
232 	unsigned int timeout;
233 	unsigned long deadline;
234 
235 	union {
236 		struct __call_single_data csd;
237 		u64 fifo_time;
238 	};
239 
240 	/*
241 	 * completion callback.
242 	 */
243 	rq_end_io_fn *end_io;
244 	void *end_io_data;
245 };
246 
blk_op_is_scsi(unsigned int op)247 static inline bool blk_op_is_scsi(unsigned int op)
248 {
249 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
250 }
251 
blk_op_is_private(unsigned int op)252 static inline bool blk_op_is_private(unsigned int op)
253 {
254 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
255 }
256 
blk_rq_is_scsi(struct request * rq)257 static inline bool blk_rq_is_scsi(struct request *rq)
258 {
259 	return blk_op_is_scsi(req_op(rq));
260 }
261 
blk_rq_is_private(struct request * rq)262 static inline bool blk_rq_is_private(struct request *rq)
263 {
264 	return blk_op_is_private(req_op(rq));
265 }
266 
blk_rq_is_passthrough(struct request * rq)267 static inline bool blk_rq_is_passthrough(struct request *rq)
268 {
269 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
270 }
271 
bio_is_passthrough(struct bio * bio)272 static inline bool bio_is_passthrough(struct bio *bio)
273 {
274 	unsigned op = bio_op(bio);
275 
276 	return blk_op_is_scsi(op) || blk_op_is_private(op);
277 }
278 
req_get_ioprio(struct request * req)279 static inline unsigned short req_get_ioprio(struct request *req)
280 {
281 	return req->ioprio;
282 }
283 
284 #include <linux/elevator.h>
285 
286 struct blk_queue_ctx;
287 
288 struct bio_vec;
289 
290 enum blk_eh_timer_return {
291 	BLK_EH_DONE,		/* drivers has completed the command */
292 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
293 };
294 
295 enum blk_queue_state {
296 	Queue_down,
297 	Queue_up,
298 };
299 
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302 
303 #define BLK_SCSI_MAX_CMDS	(256)
304 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305 
306 /*
307  * Zoned block device models (zoned limit).
308  *
309  * Note: This needs to be ordered from the least to the most severe
310  * restrictions for the inheritance in blk_stack_limits() to work.
311  */
312 enum blk_zoned_model {
313 	BLK_ZONED_NONE = 0,	/* Regular block device */
314 	BLK_ZONED_HA,		/* Host-aware zoned block device */
315 	BLK_ZONED_HM,		/* Host-managed zoned block device */
316 };
317 
318 struct queue_limits {
319 	unsigned long		bounce_pfn;
320 	unsigned long		seg_boundary_mask;
321 	unsigned long		virt_boundary_mask;
322 
323 	unsigned int		max_hw_sectors;
324 	unsigned int		max_dev_sectors;
325 	unsigned int		chunk_sectors;
326 	unsigned int		max_sectors;
327 	unsigned int		max_segment_size;
328 	unsigned int		physical_block_size;
329 	unsigned int		logical_block_size;
330 	unsigned int		alignment_offset;
331 	unsigned int		io_min;
332 	unsigned int		io_opt;
333 	unsigned int		max_discard_sectors;
334 	unsigned int		max_hw_discard_sectors;
335 	unsigned int		max_write_same_sectors;
336 	unsigned int		max_write_zeroes_sectors;
337 	unsigned int		max_zone_append_sectors;
338 	unsigned int		discard_granularity;
339 	unsigned int		discard_alignment;
340 
341 	unsigned short		max_segments;
342 	unsigned short		max_integrity_segments;
343 	unsigned short		max_discard_segments;
344 
345 	unsigned char		misaligned;
346 	unsigned char		discard_misaligned;
347 	unsigned char		raid_partial_stripes_expensive;
348 	enum blk_zoned_model	zoned;
349 };
350 
351 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
352 			       void *data);
353 
354 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
355 
356 #ifdef CONFIG_BLK_DEV_ZONED
357 
358 #define BLK_ALL_ZONES  ((unsigned int)-1)
359 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
360 			unsigned int nr_zones, report_zones_cb cb, void *data);
361 unsigned int blkdev_nr_zones(struct gendisk *disk);
362 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
363 			    sector_t sectors, sector_t nr_sectors,
364 			    gfp_t gfp_mask);
365 int blk_revalidate_disk_zones(struct gendisk *disk,
366 			      void (*update_driver_data)(struct gendisk *disk));
367 
368 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
369 				     unsigned int cmd, unsigned long arg);
370 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
371 				  unsigned int cmd, unsigned long arg);
372 
373 #else /* CONFIG_BLK_DEV_ZONED */
374 
blkdev_nr_zones(struct gendisk * disk)375 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
376 {
377 	return 0;
378 }
379 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)380 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
381 					    fmode_t mode, unsigned int cmd,
382 					    unsigned long arg)
383 {
384 	return -ENOTTY;
385 }
386 
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)387 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
388 					 fmode_t mode, unsigned int cmd,
389 					 unsigned long arg)
390 {
391 	return -ENOTTY;
392 }
393 
394 #endif /* CONFIG_BLK_DEV_ZONED */
395 
396 struct request_queue {
397 	struct request		*last_merge;
398 	struct elevator_queue	*elevator;
399 
400 	struct percpu_ref	q_usage_counter;
401 
402 	struct blk_queue_stats	*stats;
403 	struct rq_qos		*rq_qos;
404 
405 	const struct blk_mq_ops	*mq_ops;
406 
407 	/* sw queues */
408 	struct blk_mq_ctx __percpu	*queue_ctx;
409 
410 	unsigned int		queue_depth;
411 
412 	/* hw dispatch queues */
413 	struct blk_mq_hw_ctx	**queue_hw_ctx;
414 	unsigned int		nr_hw_queues;
415 
416 	struct backing_dev_info	*backing_dev_info;
417 
418 	/*
419 	 * The queue owner gets to use this for whatever they like.
420 	 * ll_rw_blk doesn't touch it.
421 	 */
422 	void			*queuedata;
423 
424 	/*
425 	 * various queue flags, see QUEUE_* below
426 	 */
427 	unsigned long		queue_flags;
428 	/*
429 	 * Number of contexts that have called blk_set_pm_only(). If this
430 	 * counter is above zero then only RQF_PM requests are processed.
431 	 */
432 	atomic_t		pm_only;
433 
434 	/*
435 	 * ida allocated id for this queue.  Used to index queues from
436 	 * ioctx.
437 	 */
438 	int			id;
439 
440 	/*
441 	 * queue needs bounce pages for pages above this limit
442 	 */
443 	gfp_t			bounce_gfp;
444 
445 	spinlock_t		queue_lock;
446 
447 	/*
448 	 * queue kobject
449 	 */
450 	struct kobject kobj;
451 
452 	/*
453 	 * mq queue kobject
454 	 */
455 	struct kobject *mq_kobj;
456 
457 #ifdef  CONFIG_BLK_DEV_INTEGRITY
458 	struct blk_integrity integrity;
459 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
460 
461 #ifdef CONFIG_PM
462 	struct device		*dev;
463 	enum rpm_status		rpm_status;
464 	unsigned int		nr_pending;
465 #endif
466 
467 	/*
468 	 * queue settings
469 	 */
470 	unsigned long		nr_requests;	/* Max # of requests */
471 
472 	unsigned int		dma_pad_mask;
473 	unsigned int		dma_alignment;
474 
475 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
476 	/* Inline crypto capabilities */
477 	struct blk_keyslot_manager *ksm;
478 #endif
479 
480 	unsigned int		rq_timeout;
481 	int			poll_nsec;
482 
483 	struct blk_stat_callback	*poll_cb;
484 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
485 
486 	struct timer_list	timeout;
487 	struct work_struct	timeout_work;
488 
489 	atomic_t		nr_active_requests_shared_sbitmap;
490 
491 	struct list_head	icq_list;
492 #ifdef CONFIG_BLK_CGROUP
493 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
494 	struct blkcg_gq		*root_blkg;
495 	struct list_head	blkg_list;
496 #endif
497 
498 	struct queue_limits	limits;
499 
500 	unsigned int		required_elevator_features;
501 
502 #ifdef CONFIG_BLK_DEV_ZONED
503 	/*
504 	 * Zoned block device information for request dispatch control.
505 	 * nr_zones is the total number of zones of the device. This is always
506 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
507 	 * bits which indicates if a zone is conventional (bit set) or
508 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
509 	 * bits which indicates if a zone is write locked, that is, if a write
510 	 * request targeting the zone was dispatched. All three fields are
511 	 * initialized by the low level device driver (e.g. scsi/sd.c).
512 	 * Stacking drivers (device mappers) may or may not initialize
513 	 * these fields.
514 	 *
515 	 * Reads of this information must be protected with blk_queue_enter() /
516 	 * blk_queue_exit(). Modifying this information is only allowed while
517 	 * no requests are being processed. See also blk_mq_freeze_queue() and
518 	 * blk_mq_unfreeze_queue().
519 	 */
520 	unsigned int		nr_zones;
521 	unsigned long		*conv_zones_bitmap;
522 	unsigned long		*seq_zones_wlock;
523 	unsigned int		max_open_zones;
524 	unsigned int		max_active_zones;
525 #endif /* CONFIG_BLK_DEV_ZONED */
526 
527 	/*
528 	 * sg stuff
529 	 */
530 	unsigned int		sg_timeout;
531 	unsigned int		sg_reserved_size;
532 	int			node;
533 	struct mutex		debugfs_mutex;
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 	struct blk_trace __rcu	*blk_trace;
536 #endif
537 	/*
538 	 * for flush operations
539 	 */
540 	struct blk_flush_queue	*fq;
541 
542 	struct list_head	requeue_list;
543 	spinlock_t		requeue_lock;
544 	struct delayed_work	requeue_work;
545 
546 	struct mutex		sysfs_lock;
547 	struct mutex		sysfs_dir_lock;
548 
549 	/*
550 	 * for reusing dead hctx instance in case of updating
551 	 * nr_hw_queues
552 	 */
553 	struct list_head	unused_hctx_list;
554 	spinlock_t		unused_hctx_lock;
555 
556 	int			mq_freeze_depth;
557 
558 #if defined(CONFIG_BLK_DEV_BSG)
559 	struct bsg_class_device bsg_dev;
560 #endif
561 
562 #ifdef CONFIG_BLK_DEV_THROTTLING
563 	/* Throttle data */
564 	struct throtl_data *td;
565 #endif
566 	struct rcu_head		rcu_head;
567 	wait_queue_head_t	mq_freeze_wq;
568 	/*
569 	 * Protect concurrent access to q_usage_counter by
570 	 * percpu_ref_kill() and percpu_ref_reinit().
571 	 */
572 	struct mutex		mq_freeze_lock;
573 
574 	int			quiesce_depth;
575 
576 	struct blk_mq_tag_set	*tag_set;
577 	struct list_head	tag_set_list;
578 	struct bio_set		bio_split;
579 
580 	struct dentry		*debugfs_dir;
581 
582 #ifdef CONFIG_BLK_DEBUG_FS
583 	struct dentry		*sched_debugfs_dir;
584 	struct dentry		*rqos_debugfs_dir;
585 #endif
586 
587 	bool			mq_sysfs_init_done;
588 
589 	size_t			cmd_size;
590 
591 #define BLK_MAX_WRITE_HINTS	5
592 	u64			write_hints[BLK_MAX_WRITE_HINTS];
593 };
594 
595 /* Keep blk_queue_flag_name[] in sync with the definitions below */
596 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
597 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
598 #define QUEUE_FLAG_THROTL_INIT_DONE 2	/* io throttle can be online */
599 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
600 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
601 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
602 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
603 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
604 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
605 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
606 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
607 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
608 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
609 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
610 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
611 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
612 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
613 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
614 #define QUEUE_FLAG_WC		17	/* Write back caching */
615 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
616 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
617 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
618 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
619 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
620 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
621 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
622 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
623 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
624 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
625 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
626 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
627 
628 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
629 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
630 				 (1 << QUEUE_FLAG_NOWAIT))
631 
632 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
633 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
634 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
635 
636 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
637 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
638 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
639 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
640 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
641 #define blk_queue_noxmerges(q)	\
642 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
643 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
644 #define blk_queue_stable_writes(q) \
645 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
646 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
647 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
648 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
649 #define blk_queue_zone_resetall(q)	\
650 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
651 #define blk_queue_secure_erase(q) \
652 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
653 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
654 #define blk_queue_scsi_passthrough(q)	\
655 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
656 #define blk_queue_pci_p2pdma(q)	\
657 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
658 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
659 #define blk_queue_rq_alloc_time(q)	\
660 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
661 #else
662 #define blk_queue_rq_alloc_time(q)	false
663 #endif
664 
665 #define blk_noretry_request(rq) \
666 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
667 			     REQ_FAILFAST_DRIVER))
668 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
669 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
670 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
671 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
672 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
673 
674 extern void blk_set_pm_only(struct request_queue *q);
675 extern void blk_clear_pm_only(struct request_queue *q);
676 
blk_account_rq(struct request * rq)677 static inline bool blk_account_rq(struct request *rq)
678 {
679 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
680 }
681 
682 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
683 
684 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
685 
686 #define rq_dma_dir(rq) \
687 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
688 
689 #define dma_map_bvec(dev, bv, dir, attrs) \
690 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
691 	(dir), (attrs))
692 
queue_is_mq(struct request_queue * q)693 static inline bool queue_is_mq(struct request_queue *q)
694 {
695 	return q->mq_ops;
696 }
697 
698 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)699 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
700 {
701 	return q->rpm_status;
702 }
703 #else
queue_rpm_status(struct request_queue * q)704 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
705 {
706 	return RPM_ACTIVE;
707 }
708 #endif
709 
710 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)711 blk_queue_zoned_model(struct request_queue *q)
712 {
713 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
714 		return q->limits.zoned;
715 	return BLK_ZONED_NONE;
716 }
717 
blk_queue_is_zoned(struct request_queue * q)718 static inline bool blk_queue_is_zoned(struct request_queue *q)
719 {
720 	switch (blk_queue_zoned_model(q)) {
721 	case BLK_ZONED_HA:
722 	case BLK_ZONED_HM:
723 		return true;
724 	default:
725 		return false;
726 	}
727 }
728 
blk_queue_zone_sectors(struct request_queue * q)729 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
730 {
731 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
732 }
733 
734 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)735 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
736 {
737 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
738 }
739 
blk_queue_zone_no(struct request_queue * q,sector_t sector)740 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
741 					     sector_t sector)
742 {
743 	if (!blk_queue_is_zoned(q))
744 		return 0;
745 	return sector >> ilog2(q->limits.chunk_sectors);
746 }
747 
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)748 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
749 					 sector_t sector)
750 {
751 	if (!blk_queue_is_zoned(q))
752 		return false;
753 	if (!q->conv_zones_bitmap)
754 		return true;
755 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
756 }
757 
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)758 static inline void blk_queue_max_open_zones(struct request_queue *q,
759 		unsigned int max_open_zones)
760 {
761 	q->max_open_zones = max_open_zones;
762 }
763 
queue_max_open_zones(const struct request_queue * q)764 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
765 {
766 	return q->max_open_zones;
767 }
768 
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)769 static inline void blk_queue_max_active_zones(struct request_queue *q,
770 		unsigned int max_active_zones)
771 {
772 	q->max_active_zones = max_active_zones;
773 }
774 
queue_max_active_zones(const struct request_queue * q)775 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
776 {
777 	return q->max_active_zones;
778 }
779 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)780 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
781 {
782 	return 0;
783 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)784 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
785 					 sector_t sector)
786 {
787 	return false;
788 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)789 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
790 					     sector_t sector)
791 {
792 	return 0;
793 }
queue_max_open_zones(const struct request_queue * q)794 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
795 {
796 	return 0;
797 }
queue_max_active_zones(const struct request_queue * q)798 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
799 {
800 	return 0;
801 }
802 #endif /* CONFIG_BLK_DEV_ZONED */
803 
rq_is_sync(struct request * rq)804 static inline bool rq_is_sync(struct request *rq)
805 {
806 	return op_is_sync(rq->cmd_flags);
807 }
808 
rq_mergeable(struct request * rq)809 static inline bool rq_mergeable(struct request *rq)
810 {
811 	if (blk_rq_is_passthrough(rq))
812 		return false;
813 
814 	if (req_op(rq) == REQ_OP_FLUSH)
815 		return false;
816 
817 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
818 		return false;
819 
820 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
821 		return false;
822 
823 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
824 		return false;
825 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
826 		return false;
827 
828 	return true;
829 }
830 
blk_write_same_mergeable(struct bio * a,struct bio * b)831 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
832 {
833 	if (bio_page(a) == bio_page(b) &&
834 	    bio_offset(a) == bio_offset(b))
835 		return true;
836 
837 	return false;
838 }
839 
blk_queue_depth(struct request_queue * q)840 static inline unsigned int blk_queue_depth(struct request_queue *q)
841 {
842 	if (q->queue_depth)
843 		return q->queue_depth;
844 
845 	return q->nr_requests;
846 }
847 
848 extern unsigned long blk_max_low_pfn, blk_max_pfn;
849 
850 /*
851  * standard bounce addresses:
852  *
853  * BLK_BOUNCE_HIGH	: bounce all highmem pages
854  * BLK_BOUNCE_ANY	: don't bounce anything
855  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
856  */
857 
858 #if BITS_PER_LONG == 32
859 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
860 #else
861 #define BLK_BOUNCE_HIGH		-1ULL
862 #endif
863 #define BLK_BOUNCE_ANY		(-1ULL)
864 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
865 
866 /*
867  * default timeout for SG_IO if none specified
868  */
869 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
870 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
871 
872 struct rq_map_data {
873 	struct page **pages;
874 	int page_order;
875 	int nr_entries;
876 	unsigned long offset;
877 	int null_mapped;
878 	int from_user;
879 };
880 
881 struct req_iterator {
882 	struct bvec_iter iter;
883 	struct bio *bio;
884 };
885 
886 /* This should not be used directly - use rq_for_each_segment */
887 #define for_each_bio(_bio)		\
888 	for (; _bio; _bio = _bio->bi_next)
889 #define __rq_for_each_bio(_bio, rq)	\
890 	if ((rq->bio))			\
891 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
892 
893 #define rq_for_each_segment(bvl, _rq, _iter)			\
894 	__rq_for_each_bio(_iter.bio, _rq)			\
895 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
896 
897 #define rq_for_each_bvec(bvl, _rq, _iter)			\
898 	__rq_for_each_bio(_iter.bio, _rq)			\
899 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
900 
901 #define rq_iter_last(bvec, _iter)				\
902 		(_iter.bio->bi_next == NULL &&			\
903 		 bio_iter_last(bvec, _iter.iter))
904 
905 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
906 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
907 #endif
908 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
909 extern void rq_flush_dcache_pages(struct request *rq);
910 #else
rq_flush_dcache_pages(struct request * rq)911 static inline void rq_flush_dcache_pages(struct request *rq)
912 {
913 }
914 #endif
915 
916 extern int blk_register_queue(struct gendisk *disk);
917 extern void blk_unregister_queue(struct gendisk *disk);
918 blk_qc_t submit_bio_noacct(struct bio *bio);
919 extern void blk_rq_init(struct request_queue *q, struct request *rq);
920 extern void blk_put_request(struct request *);
921 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
922 				       blk_mq_req_flags_t flags);
923 extern int blk_lld_busy(struct request_queue *q);
924 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
925 			     struct bio_set *bs, gfp_t gfp_mask,
926 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
927 			     void *data);
928 extern void blk_rq_unprep_clone(struct request *rq);
929 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
930 				     struct request *rq);
931 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
932 extern void blk_queue_split(struct bio **);
933 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
934 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
935 			      unsigned int, void __user *);
936 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
937 			  unsigned int, void __user *);
938 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
939 			 struct scsi_ioctl_command __user *);
940 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
941 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
942 
943 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
944 extern void blk_queue_exit(struct request_queue *q);
945 extern void blk_sync_queue(struct request_queue *q);
946 extern int blk_rq_map_user(struct request_queue *, struct request *,
947 			   struct rq_map_data *, void __user *, unsigned long,
948 			   gfp_t);
949 extern int blk_rq_unmap_user(struct bio *);
950 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
951 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
952 			       struct rq_map_data *, const struct iov_iter *,
953 			       gfp_t);
954 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
955 				  struct request *, int, rq_end_io_fn *);
956 blk_status_t blk_execute_rq(struct request_queue *, struct gendisk *,
957 			    struct request *, int);
958 
959 /* Helper to convert REQ_OP_XXX to its string format XXX */
960 extern const char *blk_op_str(unsigned int op);
961 
962 int blk_status_to_errno(blk_status_t status);
963 blk_status_t errno_to_blk_status(int errno);
964 
965 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
966 
bdev_get_queue(struct block_device * bdev)967 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
968 {
969 	return bdev->bd_disk->queue;	/* this is never NULL */
970 }
971 
972 /*
973  * The basic unit of block I/O is a sector. It is used in a number of contexts
974  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
975  * bytes. Variables of type sector_t represent an offset or size that is a
976  * multiple of 512 bytes. Hence these two constants.
977  */
978 #ifndef SECTOR_SHIFT
979 #define SECTOR_SHIFT 9
980 #endif
981 #ifndef SECTOR_SIZE
982 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
983 #endif
984 
985 /*
986  * blk_rq_pos()			: the current sector
987  * blk_rq_bytes()		: bytes left in the entire request
988  * blk_rq_cur_bytes()		: bytes left in the current segment
989  * blk_rq_err_bytes()		: bytes left till the next error boundary
990  * blk_rq_sectors()		: sectors left in the entire request
991  * blk_rq_cur_sectors()		: sectors left in the current segment
992  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
993  */
blk_rq_pos(const struct request * rq)994 static inline sector_t blk_rq_pos(const struct request *rq)
995 {
996 	return rq->__sector;
997 }
998 
blk_rq_bytes(const struct request * rq)999 static inline unsigned int blk_rq_bytes(const struct request *rq)
1000 {
1001 	return rq->__data_len;
1002 }
1003 
blk_rq_cur_bytes(const struct request * rq)1004 static inline int blk_rq_cur_bytes(const struct request *rq)
1005 {
1006 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1007 }
1008 
1009 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1010 
blk_rq_sectors(const struct request * rq)1011 static inline unsigned int blk_rq_sectors(const struct request *rq)
1012 {
1013 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1014 }
1015 
blk_rq_cur_sectors(const struct request * rq)1016 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1017 {
1018 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1019 }
1020 
blk_rq_stats_sectors(const struct request * rq)1021 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1022 {
1023 	return rq->stats_sectors;
1024 }
1025 
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027 
1028 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1029 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1030 
blk_rq_zone_no(struct request * rq)1031 static inline unsigned int blk_rq_zone_no(struct request *rq)
1032 {
1033 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1034 }
1035 
blk_rq_zone_is_seq(struct request * rq)1036 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1037 {
1038 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1039 }
1040 #endif /* CONFIG_BLK_DEV_ZONED */
1041 
1042 /*
1043  * Some commands like WRITE SAME have a payload or data transfer size which
1044  * is different from the size of the request.  Any driver that supports such
1045  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1046  * calculate the data transfer size.
1047  */
blk_rq_payload_bytes(struct request * rq)1048 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1049 {
1050 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1051 		return rq->special_vec.bv_len;
1052 	return blk_rq_bytes(rq);
1053 }
1054 
1055 /*
1056  * Return the first full biovec in the request.  The caller needs to check that
1057  * there are any bvecs before calling this helper.
1058  */
req_bvec(struct request * rq)1059 static inline struct bio_vec req_bvec(struct request *rq)
1060 {
1061 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1062 		return rq->special_vec;
1063 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1064 }
1065 
blk_queue_get_max_sectors(struct request_queue * q,int op)1066 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1067 						     int op)
1068 {
1069 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1070 		return min(q->limits.max_discard_sectors,
1071 			   UINT_MAX >> SECTOR_SHIFT);
1072 
1073 	if (unlikely(op == REQ_OP_WRITE_SAME))
1074 		return q->limits.max_write_same_sectors;
1075 
1076 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1077 		return q->limits.max_write_zeroes_sectors;
1078 
1079 	return q->limits.max_sectors;
1080 }
1081 
1082 /*
1083  * Return maximum size of a request at given offset. Only valid for
1084  * file system requests.
1085  */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1086 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1087 					       sector_t offset,
1088 					       unsigned int chunk_sectors)
1089 {
1090 	if (!chunk_sectors) {
1091 		if (q->limits.chunk_sectors)
1092 			chunk_sectors = q->limits.chunk_sectors;
1093 		else
1094 			return q->limits.max_sectors;
1095 	}
1096 
1097 	if (likely(is_power_of_2(chunk_sectors)))
1098 		chunk_sectors -= offset & (chunk_sectors - 1);
1099 	else
1100 		chunk_sectors -= sector_div(offset, chunk_sectors);
1101 
1102 	return min(q->limits.max_sectors, chunk_sectors);
1103 }
1104 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1105 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1106 						  sector_t offset)
1107 {
1108 	struct request_queue *q = rq->q;
1109 
1110 	if (blk_rq_is_passthrough(rq))
1111 		return q->limits.max_hw_sectors;
1112 
1113 	if (!q->limits.chunk_sectors ||
1114 	    req_op(rq) == REQ_OP_DISCARD ||
1115 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1116 		return blk_queue_get_max_sectors(q, req_op(rq));
1117 
1118 	return min(blk_max_size_offset(q, offset, 0),
1119 			blk_queue_get_max_sectors(q, req_op(rq)));
1120 }
1121 
blk_rq_count_bios(struct request * rq)1122 static inline unsigned int blk_rq_count_bios(struct request *rq)
1123 {
1124 	unsigned int nr_bios = 0;
1125 	struct bio *bio;
1126 
1127 	__rq_for_each_bio(bio, rq)
1128 		nr_bios++;
1129 
1130 	return nr_bios;
1131 }
1132 
1133 void blk_steal_bios(struct bio_list *list, struct request *rq);
1134 
1135 /*
1136  * Request completion related functions.
1137  *
1138  * blk_update_request() completes given number of bytes and updates
1139  * the request without completing it.
1140  */
1141 extern bool blk_update_request(struct request *rq, blk_status_t error,
1142 			       unsigned int nr_bytes);
1143 
1144 extern void blk_abort_request(struct request *);
1145 
1146 /*
1147  * Access functions for manipulating queue properties
1148  */
1149 extern void blk_cleanup_queue(struct request_queue *);
1150 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1151 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1152 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1154 extern void blk_queue_max_discard_segments(struct request_queue *,
1155 		unsigned short);
1156 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1157 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1158 		unsigned int max_discard_sectors);
1159 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1160 		unsigned int max_write_same_sectors);
1161 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1162 		unsigned int max_write_same_sectors);
1163 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1164 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1165 		unsigned int max_zone_append_sectors);
1166 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1167 extern void blk_queue_alignment_offset(struct request_queue *q,
1168 				       unsigned int alignment);
1169 void blk_queue_update_readahead(struct request_queue *q);
1170 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1171 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1172 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1173 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1174 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1175 extern void blk_set_default_limits(struct queue_limits *lim);
1176 extern void blk_set_stacking_limits(struct queue_limits *lim);
1177 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1178 			    sector_t offset);
1179 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1180 			      sector_t offset);
1181 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1182 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1183 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1184 extern void blk_queue_dma_alignment(struct request_queue *, int);
1185 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1186 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1187 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1188 extern void blk_queue_required_elevator_features(struct request_queue *q,
1189 						 unsigned int features);
1190 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1191 					      struct device *dev);
1192 
1193 /*
1194  * Number of physical segments as sent to the device.
1195  *
1196  * Normally this is the number of discontiguous data segments sent by the
1197  * submitter.  But for data-less command like discard we might have no
1198  * actual data segments submitted, but the driver might have to add it's
1199  * own special payload.  In that case we still return 1 here so that this
1200  * special payload will be mapped.
1201  */
blk_rq_nr_phys_segments(struct request * rq)1202 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1203 {
1204 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1205 		return 1;
1206 	return rq->nr_phys_segments;
1207 }
1208 
1209 /*
1210  * Number of discard segments (or ranges) the driver needs to fill in.
1211  * Each discard bio merged into a request is counted as one segment.
1212  */
blk_rq_nr_discard_segments(struct request * rq)1213 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1214 {
1215 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1216 }
1217 
1218 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1219 		struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1220 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1221 		struct scatterlist *sglist)
1222 {
1223 	struct scatterlist *last_sg = NULL;
1224 
1225 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1226 }
1227 extern void blk_dump_rq_flags(struct request *, char *);
1228 
1229 bool __must_check blk_get_queue(struct request_queue *);
1230 struct request_queue *blk_alloc_queue(int node_id);
1231 extern void blk_put_queue(struct request_queue *);
1232 extern void blk_set_queue_dying(struct request_queue *);
1233 
1234 #ifdef CONFIG_BLOCK
1235 /*
1236  * blk_plug permits building a queue of related requests by holding the I/O
1237  * fragments for a short period. This allows merging of sequential requests
1238  * into single larger request. As the requests are moved from a per-task list to
1239  * the device's request_queue in a batch, this results in improved scalability
1240  * as the lock contention for request_queue lock is reduced.
1241  *
1242  * It is ok not to disable preemption when adding the request to the plug list
1243  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1244  * the plug list when the task sleeps by itself. For details, please see
1245  * schedule() where blk_schedule_flush_plug() is called.
1246  */
1247 struct blk_plug {
1248 	struct list_head mq_list; /* blk-mq requests */
1249 	struct list_head cb_list; /* md requires an unplug callback */
1250 	unsigned short rq_count;
1251 	bool multiple_queues;
1252 	bool nowait;
1253 };
1254 #define BLK_MAX_REQUEST_COUNT 16
1255 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1256 
1257 struct blk_plug_cb;
1258 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1259 struct blk_plug_cb {
1260 	struct list_head list;
1261 	blk_plug_cb_fn callback;
1262 	void *data;
1263 };
1264 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1265 					     void *data, int size);
1266 extern void blk_start_plug(struct blk_plug *);
1267 extern void blk_finish_plug(struct blk_plug *);
1268 extern void blk_flush_plug_list(struct blk_plug *, bool);
1269 
blk_flush_plug(struct task_struct * tsk)1270 static inline void blk_flush_plug(struct task_struct *tsk)
1271 {
1272 	struct blk_plug *plug = tsk->plug;
1273 
1274 	if (plug)
1275 		blk_flush_plug_list(plug, false);
1276 }
1277 
blk_schedule_flush_plug(struct task_struct * tsk)1278 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1279 {
1280 	struct blk_plug *plug = tsk->plug;
1281 
1282 	if (plug)
1283 		blk_flush_plug_list(plug, true);
1284 }
1285 
blk_needs_flush_plug(struct task_struct * tsk)1286 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1287 {
1288 	struct blk_plug *plug = tsk->plug;
1289 
1290 	return plug &&
1291 		 (!list_empty(&plug->mq_list) ||
1292 		 !list_empty(&plug->cb_list));
1293 }
1294 
1295 int blkdev_issue_flush(struct block_device *, gfp_t);
1296 long nr_blockdev_pages(void);
1297 #else /* CONFIG_BLOCK */
1298 struct blk_plug {
1299 };
1300 
blk_start_plug(struct blk_plug * plug)1301 static inline void blk_start_plug(struct blk_plug *plug)
1302 {
1303 }
1304 
blk_finish_plug(struct blk_plug * plug)1305 static inline void blk_finish_plug(struct blk_plug *plug)
1306 {
1307 }
1308 
blk_flush_plug(struct task_struct * task)1309 static inline void blk_flush_plug(struct task_struct *task)
1310 {
1311 }
1312 
blk_schedule_flush_plug(struct task_struct * task)1313 static inline void blk_schedule_flush_plug(struct task_struct *task)
1314 {
1315 }
1316 
1317 
blk_needs_flush_plug(struct task_struct * tsk)1318 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1319 {
1320 	return false;
1321 }
1322 
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask)1323 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1324 {
1325 	return 0;
1326 }
1327 
nr_blockdev_pages(void)1328 static inline long nr_blockdev_pages(void)
1329 {
1330 	return 0;
1331 }
1332 #endif /* CONFIG_BLOCK */
1333 
1334 extern void blk_io_schedule(void);
1335 
1336 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1337 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1338 
1339 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1340 
1341 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1342 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1343 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1344 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1345 		struct bio **biop);
1346 
1347 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1348 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1349 
1350 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1351 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1352 		unsigned flags);
1353 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1354 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1355 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1356 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1357 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1358 {
1359 	return blkdev_issue_discard(sb->s_bdev,
1360 				    block << (sb->s_blocksize_bits -
1361 					      SECTOR_SHIFT),
1362 				    nr_blocks << (sb->s_blocksize_bits -
1363 						  SECTOR_SHIFT),
1364 				    gfp_mask, flags);
1365 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1366 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1367 		sector_t nr_blocks, gfp_t gfp_mask)
1368 {
1369 	return blkdev_issue_zeroout(sb->s_bdev,
1370 				    block << (sb->s_blocksize_bits -
1371 					      SECTOR_SHIFT),
1372 				    nr_blocks << (sb->s_blocksize_bits -
1373 						  SECTOR_SHIFT),
1374 				    gfp_mask, 0);
1375 }
1376 
1377 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1378 
bdev_is_partition(struct block_device * bdev)1379 static inline bool bdev_is_partition(struct block_device *bdev)
1380 {
1381 	return bdev->bd_partno;
1382 }
1383 
1384 enum blk_default_limits {
1385 	BLK_MAX_SEGMENTS	= 128,
1386 	BLK_SAFE_MAX_SECTORS	= 255,
1387 	BLK_DEF_MAX_SECTORS	= 2560,
1388 	BLK_MAX_SEGMENT_SIZE	= 65536,
1389 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1390 };
1391 
queue_segment_boundary(const struct request_queue * q)1392 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1393 {
1394 	return q->limits.seg_boundary_mask;
1395 }
1396 
queue_virt_boundary(const struct request_queue * q)1397 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1398 {
1399 	return q->limits.virt_boundary_mask;
1400 }
1401 
queue_max_sectors(const struct request_queue * q)1402 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1403 {
1404 	return q->limits.max_sectors;
1405 }
1406 
queue_max_hw_sectors(const struct request_queue * q)1407 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1408 {
1409 	return q->limits.max_hw_sectors;
1410 }
1411 
queue_max_segments(const struct request_queue * q)1412 static inline unsigned short queue_max_segments(const struct request_queue *q)
1413 {
1414 	return q->limits.max_segments;
1415 }
1416 
queue_max_discard_segments(const struct request_queue * q)1417 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1418 {
1419 	return q->limits.max_discard_segments;
1420 }
1421 
queue_max_segment_size(const struct request_queue * q)1422 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1423 {
1424 	return q->limits.max_segment_size;
1425 }
1426 
queue_max_zone_append_sectors(const struct request_queue * q)1427 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1428 {
1429 
1430 	const struct queue_limits *l = &q->limits;
1431 
1432 	return min(l->max_zone_append_sectors, l->max_sectors);
1433 }
1434 
queue_logical_block_size(const struct request_queue * q)1435 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1436 {
1437 	int retval = 512;
1438 
1439 	if (q && q->limits.logical_block_size)
1440 		retval = q->limits.logical_block_size;
1441 
1442 	return retval;
1443 }
1444 
bdev_logical_block_size(struct block_device * bdev)1445 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1446 {
1447 	return queue_logical_block_size(bdev_get_queue(bdev));
1448 }
1449 
queue_physical_block_size(const struct request_queue * q)1450 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1451 {
1452 	return q->limits.physical_block_size;
1453 }
1454 
bdev_physical_block_size(struct block_device * bdev)1455 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1456 {
1457 	return queue_physical_block_size(bdev_get_queue(bdev));
1458 }
1459 
queue_io_min(const struct request_queue * q)1460 static inline unsigned int queue_io_min(const struct request_queue *q)
1461 {
1462 	return q->limits.io_min;
1463 }
1464 
bdev_io_min(struct block_device * bdev)1465 static inline int bdev_io_min(struct block_device *bdev)
1466 {
1467 	return queue_io_min(bdev_get_queue(bdev));
1468 }
1469 
queue_io_opt(const struct request_queue * q)1470 static inline unsigned int queue_io_opt(const struct request_queue *q)
1471 {
1472 	return q->limits.io_opt;
1473 }
1474 
bdev_io_opt(struct block_device * bdev)1475 static inline int bdev_io_opt(struct block_device *bdev)
1476 {
1477 	return queue_io_opt(bdev_get_queue(bdev));
1478 }
1479 
queue_alignment_offset(const struct request_queue * q)1480 static inline int queue_alignment_offset(const struct request_queue *q)
1481 {
1482 	if (q->limits.misaligned)
1483 		return -1;
1484 
1485 	return q->limits.alignment_offset;
1486 }
1487 
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1488 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1489 {
1490 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1491 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1492 		<< SECTOR_SHIFT;
1493 
1494 	return (granularity + lim->alignment_offset - alignment) % granularity;
1495 }
1496 
bdev_alignment_offset(struct block_device * bdev)1497 static inline int bdev_alignment_offset(struct block_device *bdev)
1498 {
1499 	struct request_queue *q = bdev_get_queue(bdev);
1500 
1501 	if (q->limits.misaligned)
1502 		return -1;
1503 	if (bdev_is_partition(bdev))
1504 		return queue_limit_alignment_offset(&q->limits,
1505 				bdev->bd_part->start_sect);
1506 	return q->limits.alignment_offset;
1507 }
1508 
queue_discard_alignment(const struct request_queue * q)1509 static inline int queue_discard_alignment(const struct request_queue *q)
1510 {
1511 	if (q->limits.discard_misaligned)
1512 		return -1;
1513 
1514 	return q->limits.discard_alignment;
1515 }
1516 
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1517 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1518 {
1519 	unsigned int alignment, granularity, offset;
1520 
1521 	if (!lim->max_discard_sectors)
1522 		return 0;
1523 
1524 	/* Why are these in bytes, not sectors? */
1525 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1526 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1527 	if (!granularity)
1528 		return 0;
1529 
1530 	/* Offset of the partition start in 'granularity' sectors */
1531 	offset = sector_div(sector, granularity);
1532 
1533 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1534 	offset = (granularity + alignment - offset) % granularity;
1535 
1536 	/* Turn it back into bytes, gaah */
1537 	return offset << SECTOR_SHIFT;
1538 }
1539 
1540 /*
1541  * Two cases of handling DISCARD merge:
1542  * If max_discard_segments > 1, the driver takes every bio
1543  * as a range and send them to controller together. The ranges
1544  * needn't to be contiguous.
1545  * Otherwise, the bios/requests will be handled as same as
1546  * others which should be contiguous.
1547  */
blk_discard_mergable(struct request * req)1548 static inline bool blk_discard_mergable(struct request *req)
1549 {
1550 	if (req_op(req) == REQ_OP_DISCARD &&
1551 	    queue_max_discard_segments(req->q) > 1)
1552 		return true;
1553 	return false;
1554 }
1555 
bdev_discard_alignment(struct block_device * bdev)1556 static inline int bdev_discard_alignment(struct block_device *bdev)
1557 {
1558 	struct request_queue *q = bdev_get_queue(bdev);
1559 
1560 	if (bdev_is_partition(bdev))
1561 		return queue_limit_discard_alignment(&q->limits,
1562 				bdev->bd_part->start_sect);
1563 	return q->limits.discard_alignment;
1564 }
1565 
bdev_write_same(struct block_device * bdev)1566 static inline unsigned int bdev_write_same(struct block_device *bdev)
1567 {
1568 	struct request_queue *q = bdev_get_queue(bdev);
1569 
1570 	if (q)
1571 		return q->limits.max_write_same_sectors;
1572 
1573 	return 0;
1574 }
1575 
bdev_write_zeroes_sectors(struct block_device * bdev)1576 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1577 {
1578 	struct request_queue *q = bdev_get_queue(bdev);
1579 
1580 	if (q)
1581 		return q->limits.max_write_zeroes_sectors;
1582 
1583 	return 0;
1584 }
1585 
bdev_zoned_model(struct block_device * bdev)1586 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1587 {
1588 	struct request_queue *q = bdev_get_queue(bdev);
1589 
1590 	if (q)
1591 		return blk_queue_zoned_model(q);
1592 
1593 	return BLK_ZONED_NONE;
1594 }
1595 
bdev_is_zoned(struct block_device * bdev)1596 static inline bool bdev_is_zoned(struct block_device *bdev)
1597 {
1598 	struct request_queue *q = bdev_get_queue(bdev);
1599 
1600 	if (q)
1601 		return blk_queue_is_zoned(q);
1602 
1603 	return false;
1604 }
1605 
bdev_zone_sectors(struct block_device * bdev)1606 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1607 {
1608 	struct request_queue *q = bdev_get_queue(bdev);
1609 
1610 	if (q)
1611 		return blk_queue_zone_sectors(q);
1612 	return 0;
1613 }
1614 
bdev_max_open_zones(struct block_device * bdev)1615 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1616 {
1617 	struct request_queue *q = bdev_get_queue(bdev);
1618 
1619 	if (q)
1620 		return queue_max_open_zones(q);
1621 	return 0;
1622 }
1623 
bdev_max_active_zones(struct block_device * bdev)1624 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1625 {
1626 	struct request_queue *q = bdev_get_queue(bdev);
1627 
1628 	if (q)
1629 		return queue_max_active_zones(q);
1630 	return 0;
1631 }
1632 
queue_dma_alignment(const struct request_queue * q)1633 static inline int queue_dma_alignment(const struct request_queue *q)
1634 {
1635 	return q ? q->dma_alignment : 511;
1636 }
1637 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1638 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1639 				 unsigned int len)
1640 {
1641 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1642 	return !(addr & alignment) && !(len & alignment);
1643 }
1644 
1645 /* assumes size > 256 */
blksize_bits(unsigned int size)1646 static inline unsigned int blksize_bits(unsigned int size)
1647 {
1648 	unsigned int bits = 8;
1649 	do {
1650 		bits++;
1651 		size >>= 1;
1652 	} while (size > 256);
1653 	return bits;
1654 }
1655 
block_size(struct block_device * bdev)1656 static inline unsigned int block_size(struct block_device *bdev)
1657 {
1658 	return 1 << bdev->bd_inode->i_blkbits;
1659 }
1660 
1661 int kblockd_schedule_work(struct work_struct *work);
1662 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1663 
1664 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1665 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1666 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1667 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1668 
1669 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1670 
1671 enum blk_integrity_flags {
1672 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1673 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1674 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1675 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1676 };
1677 
1678 struct blk_integrity_iter {
1679 	void			*prot_buf;
1680 	void			*data_buf;
1681 	sector_t		seed;
1682 	unsigned int		data_size;
1683 	unsigned short		interval;
1684 	const char		*disk_name;
1685 };
1686 
1687 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1688 typedef void (integrity_prepare_fn) (struct request *);
1689 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1690 
1691 struct blk_integrity_profile {
1692 	integrity_processing_fn		*generate_fn;
1693 	integrity_processing_fn		*verify_fn;
1694 	integrity_prepare_fn		*prepare_fn;
1695 	integrity_complete_fn		*complete_fn;
1696 	const char			*name;
1697 };
1698 
1699 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1700 extern void blk_integrity_unregister(struct gendisk *);
1701 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1702 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1703 				   struct scatterlist *);
1704 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1705 
blk_get_integrity(struct gendisk * disk)1706 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1707 {
1708 	struct blk_integrity *bi = &disk->queue->integrity;
1709 
1710 	if (!bi->profile)
1711 		return NULL;
1712 
1713 	return bi;
1714 }
1715 
1716 static inline
bdev_get_integrity(struct block_device * bdev)1717 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1718 {
1719 	return blk_get_integrity(bdev->bd_disk);
1720 }
1721 
1722 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1723 blk_integrity_queue_supports_integrity(struct request_queue *q)
1724 {
1725 	return q->integrity.profile;
1726 }
1727 
blk_integrity_rq(struct request * rq)1728 static inline bool blk_integrity_rq(struct request *rq)
1729 {
1730 	return rq->cmd_flags & REQ_INTEGRITY;
1731 }
1732 
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1733 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1734 						    unsigned int segs)
1735 {
1736 	q->limits.max_integrity_segments = segs;
1737 }
1738 
1739 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1740 queue_max_integrity_segments(const struct request_queue *q)
1741 {
1742 	return q->limits.max_integrity_segments;
1743 }
1744 
1745 /**
1746  * bio_integrity_intervals - Return number of integrity intervals for a bio
1747  * @bi:		blk_integrity profile for device
1748  * @sectors:	Size of the bio in 512-byte sectors
1749  *
1750  * Description: The block layer calculates everything in 512 byte
1751  * sectors but integrity metadata is done in terms of the data integrity
1752  * interval size of the storage device.  Convert the block layer sectors
1753  * to the appropriate number of integrity intervals.
1754  */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1755 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1756 						   unsigned int sectors)
1757 {
1758 	return sectors >> (bi->interval_exp - 9);
1759 }
1760 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1761 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1762 					       unsigned int sectors)
1763 {
1764 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1765 }
1766 
1767 /*
1768  * Return the first bvec that contains integrity data.  Only drivers that are
1769  * limited to a single integrity segment should use this helper.
1770  */
rq_integrity_vec(struct request * rq)1771 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1772 {
1773 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1774 		return NULL;
1775 	return rq->bio->bi_integrity->bip_vec;
1776 }
1777 
1778 #else /* CONFIG_BLK_DEV_INTEGRITY */
1779 
1780 struct bio;
1781 struct block_device;
1782 struct gendisk;
1783 struct blk_integrity;
1784 
blk_integrity_rq(struct request * rq)1785 static inline int blk_integrity_rq(struct request *rq)
1786 {
1787 	return 0;
1788 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1789 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1790 					    struct bio *b)
1791 {
1792 	return 0;
1793 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1794 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1795 					  struct bio *b,
1796 					  struct scatterlist *s)
1797 {
1798 	return 0;
1799 }
bdev_get_integrity(struct block_device * b)1800 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1801 {
1802 	return NULL;
1803 }
blk_get_integrity(struct gendisk * disk)1804 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1805 {
1806 	return NULL;
1807 }
1808 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1809 blk_integrity_queue_supports_integrity(struct request_queue *q)
1810 {
1811 	return false;
1812 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1813 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1814 {
1815 	return 0;
1816 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1817 static inline void blk_integrity_register(struct gendisk *d,
1818 					 struct blk_integrity *b)
1819 {
1820 }
blk_integrity_unregister(struct gendisk * d)1821 static inline void blk_integrity_unregister(struct gendisk *d)
1822 {
1823 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1824 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1825 						    unsigned int segs)
1826 {
1827 }
queue_max_integrity_segments(const struct request_queue * q)1828 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1829 {
1830 	return 0;
1831 }
1832 
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1833 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1834 						   unsigned int sectors)
1835 {
1836 	return 0;
1837 }
1838 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1839 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1840 					       unsigned int sectors)
1841 {
1842 	return 0;
1843 }
1844 
rq_integrity_vec(struct request * rq)1845 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1846 {
1847 	return NULL;
1848 }
1849 
1850 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1851 
1852 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1853 
1854 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1855 
1856 void blk_ksm_unregister(struct request_queue *q);
1857 
1858 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1859 
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1860 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1861 				    struct request_queue *q)
1862 {
1863 	return true;
1864 }
1865 
blk_ksm_unregister(struct request_queue * q)1866 static inline void blk_ksm_unregister(struct request_queue *q) { }
1867 
1868 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1869 
1870 
1871 struct block_device_operations {
1872 	blk_qc_t (*submit_bio) (struct bio *bio);
1873 	int (*open) (struct block_device *, fmode_t);
1874 	void (*release) (struct gendisk *, fmode_t);
1875 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1876 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1877 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1878 	unsigned int (*check_events) (struct gendisk *disk,
1879 				      unsigned int clearing);
1880 	void (*unlock_native_capacity) (struct gendisk *);
1881 	int (*revalidate_disk) (struct gendisk *);
1882 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1883 	/* this callback is with swap_lock and sometimes page table lock held */
1884 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1885 	int (*report_zones)(struct gendisk *, sector_t sector,
1886 			unsigned int nr_zones, report_zones_cb cb, void *data);
1887 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1888 	struct module *owner;
1889 	const struct pr_ops *pr_ops;
1890 };
1891 
1892 #ifdef CONFIG_COMPAT
1893 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1894 				      unsigned int, unsigned long);
1895 #else
1896 #define blkdev_compat_ptr_ioctl NULL
1897 #endif
1898 
1899 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1900 				 unsigned long);
1901 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1902 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1903 						struct writeback_control *);
1904 
1905 #ifdef CONFIG_BLK_DEV_ZONED
1906 bool blk_req_needs_zone_write_lock(struct request *rq);
1907 bool blk_req_zone_write_trylock(struct request *rq);
1908 void __blk_req_zone_write_lock(struct request *rq);
1909 void __blk_req_zone_write_unlock(struct request *rq);
1910 
blk_req_zone_write_lock(struct request * rq)1911 static inline void blk_req_zone_write_lock(struct request *rq)
1912 {
1913 	if (blk_req_needs_zone_write_lock(rq))
1914 		__blk_req_zone_write_lock(rq);
1915 }
1916 
blk_req_zone_write_unlock(struct request * rq)1917 static inline void blk_req_zone_write_unlock(struct request *rq)
1918 {
1919 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1920 		__blk_req_zone_write_unlock(rq);
1921 }
1922 
blk_req_zone_is_write_locked(struct request * rq)1923 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1924 {
1925 	return rq->q->seq_zones_wlock &&
1926 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1927 }
1928 
blk_req_can_dispatch_to_zone(struct request * rq)1929 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1930 {
1931 	if (!blk_req_needs_zone_write_lock(rq))
1932 		return true;
1933 	return !blk_req_zone_is_write_locked(rq);
1934 }
1935 #else
blk_req_needs_zone_write_lock(struct request * rq)1936 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1937 {
1938 	return false;
1939 }
1940 
blk_req_zone_write_lock(struct request * rq)1941 static inline void blk_req_zone_write_lock(struct request *rq)
1942 {
1943 }
1944 
blk_req_zone_write_unlock(struct request * rq)1945 static inline void blk_req_zone_write_unlock(struct request *rq)
1946 {
1947 }
blk_req_zone_is_write_locked(struct request * rq)1948 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1949 {
1950 	return false;
1951 }
1952 
blk_req_can_dispatch_to_zone(struct request * rq)1953 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1954 {
1955 	return true;
1956 }
1957 #endif /* CONFIG_BLK_DEV_ZONED */
1958 
blk_wake_io_task(struct task_struct * waiter)1959 static inline void blk_wake_io_task(struct task_struct *waiter)
1960 {
1961 	/*
1962 	 * If we're polling, the task itself is doing the completions. For
1963 	 * that case, we don't need to signal a wakeup, it's enough to just
1964 	 * mark us as RUNNING.
1965 	 */
1966 	if (waiter == current)
1967 		__set_current_state(TASK_RUNNING);
1968 	else
1969 		wake_up_process(waiter);
1970 }
1971 
1972 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1973 		unsigned int op);
1974 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1975 		unsigned long start_time);
1976 
1977 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1978 				 struct bio *bio);
1979 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1980 		      unsigned long start_time);
1981 
1982 /**
1983  * bio_start_io_acct - start I/O accounting for bio based drivers
1984  * @bio:	bio to start account for
1985  *
1986  * Returns the start time that should be passed back to bio_end_io_acct().
1987  */
bio_start_io_acct(struct bio * bio)1988 static inline unsigned long bio_start_io_acct(struct bio *bio)
1989 {
1990 	return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1991 }
1992 
1993 /**
1994  * bio_end_io_acct - end I/O accounting for bio based drivers
1995  * @bio:	bio to end account for
1996  * @start:	start time returned by bio_start_io_acct()
1997  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1998 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1999 {
2000 	return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
2001 }
2002 
2003 int bdev_read_only(struct block_device *bdev);
2004 int set_blocksize(struct block_device *bdev, int size);
2005 
2006 const char *bdevname(struct block_device *bdev, char *buffer);
2007 struct block_device *lookup_bdev(const char *);
2008 
2009 void blkdev_show(struct seq_file *seqf, off_t offset);
2010 
2011 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
2012 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
2013 #ifdef CONFIG_BLOCK
2014 #define BLKDEV_MAJOR_MAX	512
2015 #else
2016 #define BLKDEV_MAJOR_MAX	0
2017 #endif
2018 
2019 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2020 		void *holder);
2021 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2022 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
2023 		void *holder);
2024 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
2025 		void *holder);
2026 void blkdev_put(struct block_device *bdev, fmode_t mode);
2027 
2028 struct block_device *I_BDEV(struct inode *inode);
2029 struct block_device *bdget_part(struct hd_struct *part);
2030 struct block_device *bdgrab(struct block_device *bdev);
2031 void bdput(struct block_device *);
2032 
2033 #ifdef CONFIG_BLOCK
2034 void invalidate_bdev(struct block_device *bdev);
2035 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2036 			loff_t lend);
2037 int sync_blockdev(struct block_device *bdev);
2038 #else
invalidate_bdev(struct block_device * bdev)2039 static inline void invalidate_bdev(struct block_device *bdev)
2040 {
2041 }
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)2042 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2043 				      loff_t lstart, loff_t lend)
2044 {
2045 	return 0;
2046 }
sync_blockdev(struct block_device * bdev)2047 static inline int sync_blockdev(struct block_device *bdev)
2048 {
2049 	return 0;
2050 }
2051 #endif
2052 int fsync_bdev(struct block_device *bdev);
2053 
2054 struct super_block *freeze_bdev(struct block_device *bdev);
2055 int thaw_bdev(struct block_device *bdev, struct super_block *sb);
2056 
2057 #endif /* _LINUX_BLKDEV_H */
2058