1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* vaguely specified driver internal error. Ignored by the block layer */
83 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
84 /* don't warn about errors */
85 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
86 /* elevator private data attached */
87 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
88 /* account into disk and partition IO statistics */
89 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
90 /* request came from our alloc pool */
91 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
92 /* runtime pm request */
93 #define RQF_PM ((__force req_flags_t)(1 << 15))
94 /* on IO scheduler merge hash */
95 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
96 /* track IO completion time */
97 #define RQF_STATS ((__force req_flags_t)(1 << 17))
98 /* Look at ->special_vec for the actual data payload instead of the
99 bio chain. */
100 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
101 /* The per-zone write lock is held for this request */
102 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
103 /* already slept for hybrid poll */
104 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
105 /* ->timeout has been called, don't expire again */
106 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
107
108 /* flags that prevent us from merging requests: */
109 #define RQF_NOMERGE_FLAGS \
110 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
111
112 /*
113 * Request state for blk-mq.
114 */
115 enum mq_rq_state {
116 MQ_RQ_IDLE = 0,
117 MQ_RQ_IN_FLIGHT = 1,
118 MQ_RQ_COMPLETE = 2,
119 };
120
121 /*
122 * Try to put the fields that are referenced together in the same cacheline.
123 *
124 * If you modify this structure, make sure to update blk_rq_init() and
125 * especially blk_mq_rq_ctx_init() to take care of the added fields.
126 */
127 struct request {
128 struct request_queue *q;
129 struct blk_mq_ctx *mq_ctx;
130 struct blk_mq_hw_ctx *mq_hctx;
131
132 unsigned int cmd_flags; /* op and common flags */
133 req_flags_t rq_flags;
134
135 int tag;
136 int internal_tag;
137
138 /* the following two fields are internal, NEVER access directly */
139 unsigned int __data_len; /* total data len */
140 sector_t __sector; /* sector cursor */
141
142 struct bio *bio;
143 struct bio *biotail;
144
145 struct list_head queuelist;
146
147 /*
148 * The hash is used inside the scheduler, and killed once the
149 * request reaches the dispatch list. The ipi_list is only used
150 * to queue the request for softirq completion, which is long
151 * after the request has been unhashed (and even removed from
152 * the dispatch list).
153 */
154 union {
155 struct hlist_node hash; /* merge hash */
156 struct list_head ipi_list;
157 };
158
159 /*
160 * The rb_node is only used inside the io scheduler, requests
161 * are pruned when moved to the dispatch queue. So let the
162 * completion_data share space with the rb_node.
163 */
164 union {
165 struct rb_node rb_node; /* sort/lookup */
166 struct bio_vec special_vec;
167 void *completion_data;
168 int error_count; /* for legacy drivers, don't use */
169 };
170
171 /*
172 * Three pointers are available for the IO schedulers, if they need
173 * more they have to dynamically allocate it. Flush requests are
174 * never put on the IO scheduler. So let the flush fields share
175 * space with the elevator data.
176 */
177 union {
178 struct {
179 struct io_cq *icq;
180 void *priv[2];
181 } elv;
182
183 struct {
184 unsigned int seq;
185 struct list_head list;
186 rq_end_io_fn *saved_end_io;
187 } flush;
188 };
189
190 struct gendisk *rq_disk;
191 struct hd_struct *part;
192 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
193 /* Time that the first bio started allocating this request. */
194 u64 alloc_time_ns;
195 #endif
196 /* Time that this request was allocated for this IO. */
197 u64 start_time_ns;
198 /* Time that I/O was submitted to the device. */
199 u64 io_start_time_ns;
200
201 #ifdef CONFIG_BLK_WBT
202 unsigned short wbt_flags;
203 #endif
204 /*
205 * rq sectors used for blk stats. It has the same value
206 * with blk_rq_sectors(rq), except that it never be zeroed
207 * by completion.
208 */
209 unsigned short stats_sectors;
210
211 /*
212 * Number of scatter-gather DMA addr+len pairs after
213 * physical address coalescing is performed.
214 */
215 unsigned short nr_phys_segments;
216
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 unsigned short nr_integrity_segments;
219 #endif
220
221 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
222 struct bio_crypt_ctx *crypt_ctx;
223 struct blk_ksm_keyslot *crypt_keyslot;
224 #endif
225
226 unsigned short write_hint;
227 unsigned short ioprio;
228
229 enum mq_rq_state state;
230 refcount_t ref;
231
232 unsigned int timeout;
233 unsigned long deadline;
234
235 union {
236 struct __call_single_data csd;
237 u64 fifo_time;
238 };
239
240 /*
241 * completion callback.
242 */
243 rq_end_io_fn *end_io;
244 void *end_io_data;
245 };
246
blk_op_is_scsi(unsigned int op)247 static inline bool blk_op_is_scsi(unsigned int op)
248 {
249 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
250 }
251
blk_op_is_private(unsigned int op)252 static inline bool blk_op_is_private(unsigned int op)
253 {
254 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
255 }
256
blk_rq_is_scsi(struct request * rq)257 static inline bool blk_rq_is_scsi(struct request *rq)
258 {
259 return blk_op_is_scsi(req_op(rq));
260 }
261
blk_rq_is_private(struct request * rq)262 static inline bool blk_rq_is_private(struct request *rq)
263 {
264 return blk_op_is_private(req_op(rq));
265 }
266
blk_rq_is_passthrough(struct request * rq)267 static inline bool blk_rq_is_passthrough(struct request *rq)
268 {
269 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
270 }
271
bio_is_passthrough(struct bio * bio)272 static inline bool bio_is_passthrough(struct bio *bio)
273 {
274 unsigned op = bio_op(bio);
275
276 return blk_op_is_scsi(op) || blk_op_is_private(op);
277 }
278
req_get_ioprio(struct request * req)279 static inline unsigned short req_get_ioprio(struct request *req)
280 {
281 return req->ioprio;
282 }
283
284 #include <linux/elevator.h>
285
286 struct blk_queue_ctx;
287
288 struct bio_vec;
289
290 enum blk_eh_timer_return {
291 BLK_EH_DONE, /* drivers has completed the command */
292 BLK_EH_RESET_TIMER, /* reset timer and try again */
293 };
294
295 enum blk_queue_state {
296 Queue_down,
297 Queue_up,
298 };
299
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302
303 #define BLK_SCSI_MAX_CMDS (256)
304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305
306 /*
307 * Zoned block device models (zoned limit).
308 *
309 * Note: This needs to be ordered from the least to the most severe
310 * restrictions for the inheritance in blk_stack_limits() to work.
311 */
312 enum blk_zoned_model {
313 BLK_ZONED_NONE = 0, /* Regular block device */
314 BLK_ZONED_HA, /* Host-aware zoned block device */
315 BLK_ZONED_HM, /* Host-managed zoned block device */
316 };
317
318 struct queue_limits {
319 unsigned long bounce_pfn;
320 unsigned long seg_boundary_mask;
321 unsigned long virt_boundary_mask;
322
323 unsigned int max_hw_sectors;
324 unsigned int max_dev_sectors;
325 unsigned int chunk_sectors;
326 unsigned int max_sectors;
327 unsigned int max_segment_size;
328 unsigned int physical_block_size;
329 unsigned int logical_block_size;
330 unsigned int alignment_offset;
331 unsigned int io_min;
332 unsigned int io_opt;
333 unsigned int max_discard_sectors;
334 unsigned int max_hw_discard_sectors;
335 unsigned int max_write_same_sectors;
336 unsigned int max_write_zeroes_sectors;
337 unsigned int max_zone_append_sectors;
338 unsigned int discard_granularity;
339 unsigned int discard_alignment;
340
341 unsigned short max_segments;
342 unsigned short max_integrity_segments;
343 unsigned short max_discard_segments;
344
345 unsigned char misaligned;
346 unsigned char discard_misaligned;
347 unsigned char raid_partial_stripes_expensive;
348 enum blk_zoned_model zoned;
349 };
350
351 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
352 void *data);
353
354 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
355
356 #ifdef CONFIG_BLK_DEV_ZONED
357
358 #define BLK_ALL_ZONES ((unsigned int)-1)
359 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
360 unsigned int nr_zones, report_zones_cb cb, void *data);
361 unsigned int blkdev_nr_zones(struct gendisk *disk);
362 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
363 sector_t sectors, sector_t nr_sectors,
364 gfp_t gfp_mask);
365 int blk_revalidate_disk_zones(struct gendisk *disk,
366 void (*update_driver_data)(struct gendisk *disk));
367
368 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
369 unsigned int cmd, unsigned long arg);
370 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
371 unsigned int cmd, unsigned long arg);
372
373 #else /* CONFIG_BLK_DEV_ZONED */
374
blkdev_nr_zones(struct gendisk * disk)375 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
376 {
377 return 0;
378 }
379
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)380 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
381 fmode_t mode, unsigned int cmd,
382 unsigned long arg)
383 {
384 return -ENOTTY;
385 }
386
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)387 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
388 fmode_t mode, unsigned int cmd,
389 unsigned long arg)
390 {
391 return -ENOTTY;
392 }
393
394 #endif /* CONFIG_BLK_DEV_ZONED */
395
396 struct request_queue {
397 struct request *last_merge;
398 struct elevator_queue *elevator;
399
400 struct percpu_ref q_usage_counter;
401
402 struct blk_queue_stats *stats;
403 struct rq_qos *rq_qos;
404
405 const struct blk_mq_ops *mq_ops;
406
407 /* sw queues */
408 struct blk_mq_ctx __percpu *queue_ctx;
409
410 unsigned int queue_depth;
411
412 /* hw dispatch queues */
413 struct blk_mq_hw_ctx **queue_hw_ctx;
414 unsigned int nr_hw_queues;
415
416 struct backing_dev_info *backing_dev_info;
417
418 /*
419 * The queue owner gets to use this for whatever they like.
420 * ll_rw_blk doesn't touch it.
421 */
422 void *queuedata;
423
424 /*
425 * various queue flags, see QUEUE_* below
426 */
427 unsigned long queue_flags;
428 /*
429 * Number of contexts that have called blk_set_pm_only(). If this
430 * counter is above zero then only RQF_PM requests are processed.
431 */
432 atomic_t pm_only;
433
434 /*
435 * ida allocated id for this queue. Used to index queues from
436 * ioctx.
437 */
438 int id;
439
440 /*
441 * queue needs bounce pages for pages above this limit
442 */
443 gfp_t bounce_gfp;
444
445 spinlock_t queue_lock;
446
447 /*
448 * queue kobject
449 */
450 struct kobject kobj;
451
452 /*
453 * mq queue kobject
454 */
455 struct kobject *mq_kobj;
456
457 #ifdef CONFIG_BLK_DEV_INTEGRITY
458 struct blk_integrity integrity;
459 #endif /* CONFIG_BLK_DEV_INTEGRITY */
460
461 #ifdef CONFIG_PM
462 struct device *dev;
463 enum rpm_status rpm_status;
464 unsigned int nr_pending;
465 #endif
466
467 /*
468 * queue settings
469 */
470 unsigned long nr_requests; /* Max # of requests */
471
472 unsigned int dma_pad_mask;
473 unsigned int dma_alignment;
474
475 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
476 /* Inline crypto capabilities */
477 struct blk_keyslot_manager *ksm;
478 #endif
479
480 unsigned int rq_timeout;
481 int poll_nsec;
482
483 struct blk_stat_callback *poll_cb;
484 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
485
486 struct timer_list timeout;
487 struct work_struct timeout_work;
488
489 atomic_t nr_active_requests_shared_sbitmap;
490
491 struct list_head icq_list;
492 #ifdef CONFIG_BLK_CGROUP
493 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
494 struct blkcg_gq *root_blkg;
495 struct list_head blkg_list;
496 #endif
497
498 struct queue_limits limits;
499
500 unsigned int required_elevator_features;
501
502 #ifdef CONFIG_BLK_DEV_ZONED
503 /*
504 * Zoned block device information for request dispatch control.
505 * nr_zones is the total number of zones of the device. This is always
506 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
507 * bits which indicates if a zone is conventional (bit set) or
508 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
509 * bits which indicates if a zone is write locked, that is, if a write
510 * request targeting the zone was dispatched. All three fields are
511 * initialized by the low level device driver (e.g. scsi/sd.c).
512 * Stacking drivers (device mappers) may or may not initialize
513 * these fields.
514 *
515 * Reads of this information must be protected with blk_queue_enter() /
516 * blk_queue_exit(). Modifying this information is only allowed while
517 * no requests are being processed. See also blk_mq_freeze_queue() and
518 * blk_mq_unfreeze_queue().
519 */
520 unsigned int nr_zones;
521 unsigned long *conv_zones_bitmap;
522 unsigned long *seq_zones_wlock;
523 unsigned int max_open_zones;
524 unsigned int max_active_zones;
525 #endif /* CONFIG_BLK_DEV_ZONED */
526
527 /*
528 * sg stuff
529 */
530 unsigned int sg_timeout;
531 unsigned int sg_reserved_size;
532 int node;
533 struct mutex debugfs_mutex;
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 struct blk_trace __rcu *blk_trace;
536 #endif
537 /*
538 * for flush operations
539 */
540 struct blk_flush_queue *fq;
541
542 struct list_head requeue_list;
543 spinlock_t requeue_lock;
544 struct delayed_work requeue_work;
545
546 struct mutex sysfs_lock;
547 struct mutex sysfs_dir_lock;
548
549 /*
550 * for reusing dead hctx instance in case of updating
551 * nr_hw_queues
552 */
553 struct list_head unused_hctx_list;
554 spinlock_t unused_hctx_lock;
555
556 int mq_freeze_depth;
557
558 #if defined(CONFIG_BLK_DEV_BSG)
559 struct bsg_class_device bsg_dev;
560 #endif
561
562 #ifdef CONFIG_BLK_DEV_THROTTLING
563 /* Throttle data */
564 struct throtl_data *td;
565 #endif
566 struct rcu_head rcu_head;
567 wait_queue_head_t mq_freeze_wq;
568 /*
569 * Protect concurrent access to q_usage_counter by
570 * percpu_ref_kill() and percpu_ref_reinit().
571 */
572 struct mutex mq_freeze_lock;
573
574 int quiesce_depth;
575
576 struct blk_mq_tag_set *tag_set;
577 struct list_head tag_set_list;
578 struct bio_set bio_split;
579
580 struct dentry *debugfs_dir;
581
582 #ifdef CONFIG_BLK_DEBUG_FS
583 struct dentry *sched_debugfs_dir;
584 struct dentry *rqos_debugfs_dir;
585 #endif
586
587 bool mq_sysfs_init_done;
588
589 size_t cmd_size;
590
591 #define BLK_MAX_WRITE_HINTS 5
592 u64 write_hints[BLK_MAX_WRITE_HINTS];
593 };
594
595 /* Keep blk_queue_flag_name[] in sync with the definitions below */
596 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
597 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
598 #define QUEUE_FLAG_THROTL_INIT_DONE 2 /* io throttle can be online */
599 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
600 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
601 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
602 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
603 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
604 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
605 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
606 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
607 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
608 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
609 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
610 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
611 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
612 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
613 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
614 #define QUEUE_FLAG_WC 17 /* Write back caching */
615 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
616 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
617 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
618 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
619 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
620 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
621 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
622 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
623 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
624 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
625 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
626 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
627
628 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
629 (1 << QUEUE_FLAG_SAME_COMP) | \
630 (1 << QUEUE_FLAG_NOWAIT))
631
632 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
633 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
634 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
635
636 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
637 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
638 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
639 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
640 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
641 #define blk_queue_noxmerges(q) \
642 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
643 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
644 #define blk_queue_stable_writes(q) \
645 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
646 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
647 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
648 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
649 #define blk_queue_zone_resetall(q) \
650 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
651 #define blk_queue_secure_erase(q) \
652 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
653 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
654 #define blk_queue_scsi_passthrough(q) \
655 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
656 #define blk_queue_pci_p2pdma(q) \
657 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
658 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
659 #define blk_queue_rq_alloc_time(q) \
660 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
661 #else
662 #define blk_queue_rq_alloc_time(q) false
663 #endif
664
665 #define blk_noretry_request(rq) \
666 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
667 REQ_FAILFAST_DRIVER))
668 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
669 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
670 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
671 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
672 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
673
674 extern void blk_set_pm_only(struct request_queue *q);
675 extern void blk_clear_pm_only(struct request_queue *q);
676
blk_account_rq(struct request * rq)677 static inline bool blk_account_rq(struct request *rq)
678 {
679 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
680 }
681
682 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
683
684 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
685
686 #define rq_dma_dir(rq) \
687 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
688
689 #define dma_map_bvec(dev, bv, dir, attrs) \
690 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
691 (dir), (attrs))
692
queue_is_mq(struct request_queue * q)693 static inline bool queue_is_mq(struct request_queue *q)
694 {
695 return q->mq_ops;
696 }
697
698 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)699 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
700 {
701 return q->rpm_status;
702 }
703 #else
queue_rpm_status(struct request_queue * q)704 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
705 {
706 return RPM_ACTIVE;
707 }
708 #endif
709
710 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)711 blk_queue_zoned_model(struct request_queue *q)
712 {
713 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
714 return q->limits.zoned;
715 return BLK_ZONED_NONE;
716 }
717
blk_queue_is_zoned(struct request_queue * q)718 static inline bool blk_queue_is_zoned(struct request_queue *q)
719 {
720 switch (blk_queue_zoned_model(q)) {
721 case BLK_ZONED_HA:
722 case BLK_ZONED_HM:
723 return true;
724 default:
725 return false;
726 }
727 }
728
blk_queue_zone_sectors(struct request_queue * q)729 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
730 {
731 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
732 }
733
734 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)735 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
736 {
737 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
738 }
739
blk_queue_zone_no(struct request_queue * q,sector_t sector)740 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
741 sector_t sector)
742 {
743 if (!blk_queue_is_zoned(q))
744 return 0;
745 return sector >> ilog2(q->limits.chunk_sectors);
746 }
747
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)748 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
749 sector_t sector)
750 {
751 if (!blk_queue_is_zoned(q))
752 return false;
753 if (!q->conv_zones_bitmap)
754 return true;
755 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
756 }
757
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)758 static inline void blk_queue_max_open_zones(struct request_queue *q,
759 unsigned int max_open_zones)
760 {
761 q->max_open_zones = max_open_zones;
762 }
763
queue_max_open_zones(const struct request_queue * q)764 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
765 {
766 return q->max_open_zones;
767 }
768
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)769 static inline void blk_queue_max_active_zones(struct request_queue *q,
770 unsigned int max_active_zones)
771 {
772 q->max_active_zones = max_active_zones;
773 }
774
queue_max_active_zones(const struct request_queue * q)775 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
776 {
777 return q->max_active_zones;
778 }
779 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)780 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
781 {
782 return 0;
783 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)784 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
785 sector_t sector)
786 {
787 return false;
788 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)789 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
790 sector_t sector)
791 {
792 return 0;
793 }
queue_max_open_zones(const struct request_queue * q)794 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
795 {
796 return 0;
797 }
queue_max_active_zones(const struct request_queue * q)798 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
799 {
800 return 0;
801 }
802 #endif /* CONFIG_BLK_DEV_ZONED */
803
rq_is_sync(struct request * rq)804 static inline bool rq_is_sync(struct request *rq)
805 {
806 return op_is_sync(rq->cmd_flags);
807 }
808
rq_mergeable(struct request * rq)809 static inline bool rq_mergeable(struct request *rq)
810 {
811 if (blk_rq_is_passthrough(rq))
812 return false;
813
814 if (req_op(rq) == REQ_OP_FLUSH)
815 return false;
816
817 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
818 return false;
819
820 if (req_op(rq) == REQ_OP_ZONE_APPEND)
821 return false;
822
823 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
824 return false;
825 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
826 return false;
827
828 return true;
829 }
830
blk_write_same_mergeable(struct bio * a,struct bio * b)831 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
832 {
833 if (bio_page(a) == bio_page(b) &&
834 bio_offset(a) == bio_offset(b))
835 return true;
836
837 return false;
838 }
839
blk_queue_depth(struct request_queue * q)840 static inline unsigned int blk_queue_depth(struct request_queue *q)
841 {
842 if (q->queue_depth)
843 return q->queue_depth;
844
845 return q->nr_requests;
846 }
847
848 extern unsigned long blk_max_low_pfn, blk_max_pfn;
849
850 /*
851 * standard bounce addresses:
852 *
853 * BLK_BOUNCE_HIGH : bounce all highmem pages
854 * BLK_BOUNCE_ANY : don't bounce anything
855 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
856 */
857
858 #if BITS_PER_LONG == 32
859 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
860 #else
861 #define BLK_BOUNCE_HIGH -1ULL
862 #endif
863 #define BLK_BOUNCE_ANY (-1ULL)
864 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
865
866 /*
867 * default timeout for SG_IO if none specified
868 */
869 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
870 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
871
872 struct rq_map_data {
873 struct page **pages;
874 int page_order;
875 int nr_entries;
876 unsigned long offset;
877 int null_mapped;
878 int from_user;
879 };
880
881 struct req_iterator {
882 struct bvec_iter iter;
883 struct bio *bio;
884 };
885
886 /* This should not be used directly - use rq_for_each_segment */
887 #define for_each_bio(_bio) \
888 for (; _bio; _bio = _bio->bi_next)
889 #define __rq_for_each_bio(_bio, rq) \
890 if ((rq->bio)) \
891 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
892
893 #define rq_for_each_segment(bvl, _rq, _iter) \
894 __rq_for_each_bio(_iter.bio, _rq) \
895 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
896
897 #define rq_for_each_bvec(bvl, _rq, _iter) \
898 __rq_for_each_bio(_iter.bio, _rq) \
899 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
900
901 #define rq_iter_last(bvec, _iter) \
902 (_iter.bio->bi_next == NULL && \
903 bio_iter_last(bvec, _iter.iter))
904
905 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
906 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
907 #endif
908 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
909 extern void rq_flush_dcache_pages(struct request *rq);
910 #else
rq_flush_dcache_pages(struct request * rq)911 static inline void rq_flush_dcache_pages(struct request *rq)
912 {
913 }
914 #endif
915
916 extern int blk_register_queue(struct gendisk *disk);
917 extern void blk_unregister_queue(struct gendisk *disk);
918 blk_qc_t submit_bio_noacct(struct bio *bio);
919 extern void blk_rq_init(struct request_queue *q, struct request *rq);
920 extern void blk_put_request(struct request *);
921 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
922 blk_mq_req_flags_t flags);
923 extern int blk_lld_busy(struct request_queue *q);
924 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
925 struct bio_set *bs, gfp_t gfp_mask,
926 int (*bio_ctr)(struct bio *, struct bio *, void *),
927 void *data);
928 extern void blk_rq_unprep_clone(struct request *rq);
929 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
930 struct request *rq);
931 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
932 extern void blk_queue_split(struct bio **);
933 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
934 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
935 unsigned int, void __user *);
936 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
937 unsigned int, void __user *);
938 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
939 struct scsi_ioctl_command __user *);
940 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
941 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
942
943 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
944 extern void blk_queue_exit(struct request_queue *q);
945 extern void blk_sync_queue(struct request_queue *q);
946 extern int blk_rq_map_user(struct request_queue *, struct request *,
947 struct rq_map_data *, void __user *, unsigned long,
948 gfp_t);
949 extern int blk_rq_unmap_user(struct bio *);
950 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
951 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
952 struct rq_map_data *, const struct iov_iter *,
953 gfp_t);
954 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
955 struct request *, int, rq_end_io_fn *);
956 blk_status_t blk_execute_rq(struct request_queue *, struct gendisk *,
957 struct request *, int);
958
959 /* Helper to convert REQ_OP_XXX to its string format XXX */
960 extern const char *blk_op_str(unsigned int op);
961
962 int blk_status_to_errno(blk_status_t status);
963 blk_status_t errno_to_blk_status(int errno);
964
965 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
966
bdev_get_queue(struct block_device * bdev)967 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
968 {
969 return bdev->bd_disk->queue; /* this is never NULL */
970 }
971
972 /*
973 * The basic unit of block I/O is a sector. It is used in a number of contexts
974 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
975 * bytes. Variables of type sector_t represent an offset or size that is a
976 * multiple of 512 bytes. Hence these two constants.
977 */
978 #ifndef SECTOR_SHIFT
979 #define SECTOR_SHIFT 9
980 #endif
981 #ifndef SECTOR_SIZE
982 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
983 #endif
984
985 /*
986 * blk_rq_pos() : the current sector
987 * blk_rq_bytes() : bytes left in the entire request
988 * blk_rq_cur_bytes() : bytes left in the current segment
989 * blk_rq_err_bytes() : bytes left till the next error boundary
990 * blk_rq_sectors() : sectors left in the entire request
991 * blk_rq_cur_sectors() : sectors left in the current segment
992 * blk_rq_stats_sectors() : sectors of the entire request used for stats
993 */
blk_rq_pos(const struct request * rq)994 static inline sector_t blk_rq_pos(const struct request *rq)
995 {
996 return rq->__sector;
997 }
998
blk_rq_bytes(const struct request * rq)999 static inline unsigned int blk_rq_bytes(const struct request *rq)
1000 {
1001 return rq->__data_len;
1002 }
1003
blk_rq_cur_bytes(const struct request * rq)1004 static inline int blk_rq_cur_bytes(const struct request *rq)
1005 {
1006 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1007 }
1008
1009 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1010
blk_rq_sectors(const struct request * rq)1011 static inline unsigned int blk_rq_sectors(const struct request *rq)
1012 {
1013 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1014 }
1015
blk_rq_cur_sectors(const struct request * rq)1016 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1017 {
1018 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1019 }
1020
blk_rq_stats_sectors(const struct request * rq)1021 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1022 {
1023 return rq->stats_sectors;
1024 }
1025
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027
1028 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1029 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1030
blk_rq_zone_no(struct request * rq)1031 static inline unsigned int blk_rq_zone_no(struct request *rq)
1032 {
1033 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1034 }
1035
blk_rq_zone_is_seq(struct request * rq)1036 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1037 {
1038 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1039 }
1040 #endif /* CONFIG_BLK_DEV_ZONED */
1041
1042 /*
1043 * Some commands like WRITE SAME have a payload or data transfer size which
1044 * is different from the size of the request. Any driver that supports such
1045 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1046 * calculate the data transfer size.
1047 */
blk_rq_payload_bytes(struct request * rq)1048 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1049 {
1050 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1051 return rq->special_vec.bv_len;
1052 return blk_rq_bytes(rq);
1053 }
1054
1055 /*
1056 * Return the first full biovec in the request. The caller needs to check that
1057 * there are any bvecs before calling this helper.
1058 */
req_bvec(struct request * rq)1059 static inline struct bio_vec req_bvec(struct request *rq)
1060 {
1061 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1062 return rq->special_vec;
1063 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1064 }
1065
blk_queue_get_max_sectors(struct request_queue * q,int op)1066 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1067 int op)
1068 {
1069 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1070 return min(q->limits.max_discard_sectors,
1071 UINT_MAX >> SECTOR_SHIFT);
1072
1073 if (unlikely(op == REQ_OP_WRITE_SAME))
1074 return q->limits.max_write_same_sectors;
1075
1076 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1077 return q->limits.max_write_zeroes_sectors;
1078
1079 return q->limits.max_sectors;
1080 }
1081
1082 /*
1083 * Return maximum size of a request at given offset. Only valid for
1084 * file system requests.
1085 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1086 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1087 sector_t offset,
1088 unsigned int chunk_sectors)
1089 {
1090 if (!chunk_sectors) {
1091 if (q->limits.chunk_sectors)
1092 chunk_sectors = q->limits.chunk_sectors;
1093 else
1094 return q->limits.max_sectors;
1095 }
1096
1097 if (likely(is_power_of_2(chunk_sectors)))
1098 chunk_sectors -= offset & (chunk_sectors - 1);
1099 else
1100 chunk_sectors -= sector_div(offset, chunk_sectors);
1101
1102 return min(q->limits.max_sectors, chunk_sectors);
1103 }
1104
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1105 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1106 sector_t offset)
1107 {
1108 struct request_queue *q = rq->q;
1109
1110 if (blk_rq_is_passthrough(rq))
1111 return q->limits.max_hw_sectors;
1112
1113 if (!q->limits.chunk_sectors ||
1114 req_op(rq) == REQ_OP_DISCARD ||
1115 req_op(rq) == REQ_OP_SECURE_ERASE)
1116 return blk_queue_get_max_sectors(q, req_op(rq));
1117
1118 return min(blk_max_size_offset(q, offset, 0),
1119 blk_queue_get_max_sectors(q, req_op(rq)));
1120 }
1121
blk_rq_count_bios(struct request * rq)1122 static inline unsigned int blk_rq_count_bios(struct request *rq)
1123 {
1124 unsigned int nr_bios = 0;
1125 struct bio *bio;
1126
1127 __rq_for_each_bio(bio, rq)
1128 nr_bios++;
1129
1130 return nr_bios;
1131 }
1132
1133 void blk_steal_bios(struct bio_list *list, struct request *rq);
1134
1135 /*
1136 * Request completion related functions.
1137 *
1138 * blk_update_request() completes given number of bytes and updates
1139 * the request without completing it.
1140 */
1141 extern bool blk_update_request(struct request *rq, blk_status_t error,
1142 unsigned int nr_bytes);
1143
1144 extern void blk_abort_request(struct request *);
1145
1146 /*
1147 * Access functions for manipulating queue properties
1148 */
1149 extern void blk_cleanup_queue(struct request_queue *);
1150 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1151 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1152 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1154 extern void blk_queue_max_discard_segments(struct request_queue *,
1155 unsigned short);
1156 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1157 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1158 unsigned int max_discard_sectors);
1159 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1160 unsigned int max_write_same_sectors);
1161 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1162 unsigned int max_write_same_sectors);
1163 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1164 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1165 unsigned int max_zone_append_sectors);
1166 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1167 extern void blk_queue_alignment_offset(struct request_queue *q,
1168 unsigned int alignment);
1169 void blk_queue_update_readahead(struct request_queue *q);
1170 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1171 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1172 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1173 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1174 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1175 extern void blk_set_default_limits(struct queue_limits *lim);
1176 extern void blk_set_stacking_limits(struct queue_limits *lim);
1177 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1178 sector_t offset);
1179 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1180 sector_t offset);
1181 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1182 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1183 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1184 extern void blk_queue_dma_alignment(struct request_queue *, int);
1185 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1186 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1187 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1188 extern void blk_queue_required_elevator_features(struct request_queue *q,
1189 unsigned int features);
1190 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1191 struct device *dev);
1192
1193 /*
1194 * Number of physical segments as sent to the device.
1195 *
1196 * Normally this is the number of discontiguous data segments sent by the
1197 * submitter. But for data-less command like discard we might have no
1198 * actual data segments submitted, but the driver might have to add it's
1199 * own special payload. In that case we still return 1 here so that this
1200 * special payload will be mapped.
1201 */
blk_rq_nr_phys_segments(struct request * rq)1202 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1203 {
1204 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1205 return 1;
1206 return rq->nr_phys_segments;
1207 }
1208
1209 /*
1210 * Number of discard segments (or ranges) the driver needs to fill in.
1211 * Each discard bio merged into a request is counted as one segment.
1212 */
blk_rq_nr_discard_segments(struct request * rq)1213 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1214 {
1215 return max_t(unsigned short, rq->nr_phys_segments, 1);
1216 }
1217
1218 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1219 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1220 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1221 struct scatterlist *sglist)
1222 {
1223 struct scatterlist *last_sg = NULL;
1224
1225 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1226 }
1227 extern void blk_dump_rq_flags(struct request *, char *);
1228
1229 bool __must_check blk_get_queue(struct request_queue *);
1230 struct request_queue *blk_alloc_queue(int node_id);
1231 extern void blk_put_queue(struct request_queue *);
1232 extern void blk_set_queue_dying(struct request_queue *);
1233
1234 #ifdef CONFIG_BLOCK
1235 /*
1236 * blk_plug permits building a queue of related requests by holding the I/O
1237 * fragments for a short period. This allows merging of sequential requests
1238 * into single larger request. As the requests are moved from a per-task list to
1239 * the device's request_queue in a batch, this results in improved scalability
1240 * as the lock contention for request_queue lock is reduced.
1241 *
1242 * It is ok not to disable preemption when adding the request to the plug list
1243 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1244 * the plug list when the task sleeps by itself. For details, please see
1245 * schedule() where blk_schedule_flush_plug() is called.
1246 */
1247 struct blk_plug {
1248 struct list_head mq_list; /* blk-mq requests */
1249 struct list_head cb_list; /* md requires an unplug callback */
1250 unsigned short rq_count;
1251 bool multiple_queues;
1252 bool nowait;
1253 };
1254 #define BLK_MAX_REQUEST_COUNT 16
1255 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1256
1257 struct blk_plug_cb;
1258 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1259 struct blk_plug_cb {
1260 struct list_head list;
1261 blk_plug_cb_fn callback;
1262 void *data;
1263 };
1264 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1265 void *data, int size);
1266 extern void blk_start_plug(struct blk_plug *);
1267 extern void blk_finish_plug(struct blk_plug *);
1268 extern void blk_flush_plug_list(struct blk_plug *, bool);
1269
blk_flush_plug(struct task_struct * tsk)1270 static inline void blk_flush_plug(struct task_struct *tsk)
1271 {
1272 struct blk_plug *plug = tsk->plug;
1273
1274 if (plug)
1275 blk_flush_plug_list(plug, false);
1276 }
1277
blk_schedule_flush_plug(struct task_struct * tsk)1278 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1279 {
1280 struct blk_plug *plug = tsk->plug;
1281
1282 if (plug)
1283 blk_flush_plug_list(plug, true);
1284 }
1285
blk_needs_flush_plug(struct task_struct * tsk)1286 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1287 {
1288 struct blk_plug *plug = tsk->plug;
1289
1290 return plug &&
1291 (!list_empty(&plug->mq_list) ||
1292 !list_empty(&plug->cb_list));
1293 }
1294
1295 int blkdev_issue_flush(struct block_device *, gfp_t);
1296 long nr_blockdev_pages(void);
1297 #else /* CONFIG_BLOCK */
1298 struct blk_plug {
1299 };
1300
blk_start_plug(struct blk_plug * plug)1301 static inline void blk_start_plug(struct blk_plug *plug)
1302 {
1303 }
1304
blk_finish_plug(struct blk_plug * plug)1305 static inline void blk_finish_plug(struct blk_plug *plug)
1306 {
1307 }
1308
blk_flush_plug(struct task_struct * task)1309 static inline void blk_flush_plug(struct task_struct *task)
1310 {
1311 }
1312
blk_schedule_flush_plug(struct task_struct * task)1313 static inline void blk_schedule_flush_plug(struct task_struct *task)
1314 {
1315 }
1316
1317
blk_needs_flush_plug(struct task_struct * tsk)1318 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1319 {
1320 return false;
1321 }
1322
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask)1323 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1324 {
1325 return 0;
1326 }
1327
nr_blockdev_pages(void)1328 static inline long nr_blockdev_pages(void)
1329 {
1330 return 0;
1331 }
1332 #endif /* CONFIG_BLOCK */
1333
1334 extern void blk_io_schedule(void);
1335
1336 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1337 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1338
1339 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1340
1341 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1342 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1343 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1344 sector_t nr_sects, gfp_t gfp_mask, int flags,
1345 struct bio **biop);
1346
1347 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1348 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1349
1350 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1351 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1352 unsigned flags);
1353 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1354 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1355
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1356 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1357 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1358 {
1359 return blkdev_issue_discard(sb->s_bdev,
1360 block << (sb->s_blocksize_bits -
1361 SECTOR_SHIFT),
1362 nr_blocks << (sb->s_blocksize_bits -
1363 SECTOR_SHIFT),
1364 gfp_mask, flags);
1365 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1366 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1367 sector_t nr_blocks, gfp_t gfp_mask)
1368 {
1369 return blkdev_issue_zeroout(sb->s_bdev,
1370 block << (sb->s_blocksize_bits -
1371 SECTOR_SHIFT),
1372 nr_blocks << (sb->s_blocksize_bits -
1373 SECTOR_SHIFT),
1374 gfp_mask, 0);
1375 }
1376
1377 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1378
bdev_is_partition(struct block_device * bdev)1379 static inline bool bdev_is_partition(struct block_device *bdev)
1380 {
1381 return bdev->bd_partno;
1382 }
1383
1384 enum blk_default_limits {
1385 BLK_MAX_SEGMENTS = 128,
1386 BLK_SAFE_MAX_SECTORS = 255,
1387 BLK_DEF_MAX_SECTORS = 2560,
1388 BLK_MAX_SEGMENT_SIZE = 65536,
1389 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1390 };
1391
queue_segment_boundary(const struct request_queue * q)1392 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1393 {
1394 return q->limits.seg_boundary_mask;
1395 }
1396
queue_virt_boundary(const struct request_queue * q)1397 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1398 {
1399 return q->limits.virt_boundary_mask;
1400 }
1401
queue_max_sectors(const struct request_queue * q)1402 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1403 {
1404 return q->limits.max_sectors;
1405 }
1406
queue_max_hw_sectors(const struct request_queue * q)1407 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1408 {
1409 return q->limits.max_hw_sectors;
1410 }
1411
queue_max_segments(const struct request_queue * q)1412 static inline unsigned short queue_max_segments(const struct request_queue *q)
1413 {
1414 return q->limits.max_segments;
1415 }
1416
queue_max_discard_segments(const struct request_queue * q)1417 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1418 {
1419 return q->limits.max_discard_segments;
1420 }
1421
queue_max_segment_size(const struct request_queue * q)1422 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1423 {
1424 return q->limits.max_segment_size;
1425 }
1426
queue_max_zone_append_sectors(const struct request_queue * q)1427 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1428 {
1429
1430 const struct queue_limits *l = &q->limits;
1431
1432 return min(l->max_zone_append_sectors, l->max_sectors);
1433 }
1434
queue_logical_block_size(const struct request_queue * q)1435 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1436 {
1437 int retval = 512;
1438
1439 if (q && q->limits.logical_block_size)
1440 retval = q->limits.logical_block_size;
1441
1442 return retval;
1443 }
1444
bdev_logical_block_size(struct block_device * bdev)1445 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1446 {
1447 return queue_logical_block_size(bdev_get_queue(bdev));
1448 }
1449
queue_physical_block_size(const struct request_queue * q)1450 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1451 {
1452 return q->limits.physical_block_size;
1453 }
1454
bdev_physical_block_size(struct block_device * bdev)1455 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1456 {
1457 return queue_physical_block_size(bdev_get_queue(bdev));
1458 }
1459
queue_io_min(const struct request_queue * q)1460 static inline unsigned int queue_io_min(const struct request_queue *q)
1461 {
1462 return q->limits.io_min;
1463 }
1464
bdev_io_min(struct block_device * bdev)1465 static inline int bdev_io_min(struct block_device *bdev)
1466 {
1467 return queue_io_min(bdev_get_queue(bdev));
1468 }
1469
queue_io_opt(const struct request_queue * q)1470 static inline unsigned int queue_io_opt(const struct request_queue *q)
1471 {
1472 return q->limits.io_opt;
1473 }
1474
bdev_io_opt(struct block_device * bdev)1475 static inline int bdev_io_opt(struct block_device *bdev)
1476 {
1477 return queue_io_opt(bdev_get_queue(bdev));
1478 }
1479
queue_alignment_offset(const struct request_queue * q)1480 static inline int queue_alignment_offset(const struct request_queue *q)
1481 {
1482 if (q->limits.misaligned)
1483 return -1;
1484
1485 return q->limits.alignment_offset;
1486 }
1487
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1488 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1489 {
1490 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1491 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1492 << SECTOR_SHIFT;
1493
1494 return (granularity + lim->alignment_offset - alignment) % granularity;
1495 }
1496
bdev_alignment_offset(struct block_device * bdev)1497 static inline int bdev_alignment_offset(struct block_device *bdev)
1498 {
1499 struct request_queue *q = bdev_get_queue(bdev);
1500
1501 if (q->limits.misaligned)
1502 return -1;
1503 if (bdev_is_partition(bdev))
1504 return queue_limit_alignment_offset(&q->limits,
1505 bdev->bd_part->start_sect);
1506 return q->limits.alignment_offset;
1507 }
1508
queue_discard_alignment(const struct request_queue * q)1509 static inline int queue_discard_alignment(const struct request_queue *q)
1510 {
1511 if (q->limits.discard_misaligned)
1512 return -1;
1513
1514 return q->limits.discard_alignment;
1515 }
1516
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1517 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1518 {
1519 unsigned int alignment, granularity, offset;
1520
1521 if (!lim->max_discard_sectors)
1522 return 0;
1523
1524 /* Why are these in bytes, not sectors? */
1525 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1526 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1527 if (!granularity)
1528 return 0;
1529
1530 /* Offset of the partition start in 'granularity' sectors */
1531 offset = sector_div(sector, granularity);
1532
1533 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1534 offset = (granularity + alignment - offset) % granularity;
1535
1536 /* Turn it back into bytes, gaah */
1537 return offset << SECTOR_SHIFT;
1538 }
1539
1540 /*
1541 * Two cases of handling DISCARD merge:
1542 * If max_discard_segments > 1, the driver takes every bio
1543 * as a range and send them to controller together. The ranges
1544 * needn't to be contiguous.
1545 * Otherwise, the bios/requests will be handled as same as
1546 * others which should be contiguous.
1547 */
blk_discard_mergable(struct request * req)1548 static inline bool blk_discard_mergable(struct request *req)
1549 {
1550 if (req_op(req) == REQ_OP_DISCARD &&
1551 queue_max_discard_segments(req->q) > 1)
1552 return true;
1553 return false;
1554 }
1555
bdev_discard_alignment(struct block_device * bdev)1556 static inline int bdev_discard_alignment(struct block_device *bdev)
1557 {
1558 struct request_queue *q = bdev_get_queue(bdev);
1559
1560 if (bdev_is_partition(bdev))
1561 return queue_limit_discard_alignment(&q->limits,
1562 bdev->bd_part->start_sect);
1563 return q->limits.discard_alignment;
1564 }
1565
bdev_write_same(struct block_device * bdev)1566 static inline unsigned int bdev_write_same(struct block_device *bdev)
1567 {
1568 struct request_queue *q = bdev_get_queue(bdev);
1569
1570 if (q)
1571 return q->limits.max_write_same_sectors;
1572
1573 return 0;
1574 }
1575
bdev_write_zeroes_sectors(struct block_device * bdev)1576 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1577 {
1578 struct request_queue *q = bdev_get_queue(bdev);
1579
1580 if (q)
1581 return q->limits.max_write_zeroes_sectors;
1582
1583 return 0;
1584 }
1585
bdev_zoned_model(struct block_device * bdev)1586 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1587 {
1588 struct request_queue *q = bdev_get_queue(bdev);
1589
1590 if (q)
1591 return blk_queue_zoned_model(q);
1592
1593 return BLK_ZONED_NONE;
1594 }
1595
bdev_is_zoned(struct block_device * bdev)1596 static inline bool bdev_is_zoned(struct block_device *bdev)
1597 {
1598 struct request_queue *q = bdev_get_queue(bdev);
1599
1600 if (q)
1601 return blk_queue_is_zoned(q);
1602
1603 return false;
1604 }
1605
bdev_zone_sectors(struct block_device * bdev)1606 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1607 {
1608 struct request_queue *q = bdev_get_queue(bdev);
1609
1610 if (q)
1611 return blk_queue_zone_sectors(q);
1612 return 0;
1613 }
1614
bdev_max_open_zones(struct block_device * bdev)1615 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1616 {
1617 struct request_queue *q = bdev_get_queue(bdev);
1618
1619 if (q)
1620 return queue_max_open_zones(q);
1621 return 0;
1622 }
1623
bdev_max_active_zones(struct block_device * bdev)1624 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1625 {
1626 struct request_queue *q = bdev_get_queue(bdev);
1627
1628 if (q)
1629 return queue_max_active_zones(q);
1630 return 0;
1631 }
1632
queue_dma_alignment(const struct request_queue * q)1633 static inline int queue_dma_alignment(const struct request_queue *q)
1634 {
1635 return q ? q->dma_alignment : 511;
1636 }
1637
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1638 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1639 unsigned int len)
1640 {
1641 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1642 return !(addr & alignment) && !(len & alignment);
1643 }
1644
1645 /* assumes size > 256 */
blksize_bits(unsigned int size)1646 static inline unsigned int blksize_bits(unsigned int size)
1647 {
1648 unsigned int bits = 8;
1649 do {
1650 bits++;
1651 size >>= 1;
1652 } while (size > 256);
1653 return bits;
1654 }
1655
block_size(struct block_device * bdev)1656 static inline unsigned int block_size(struct block_device *bdev)
1657 {
1658 return 1 << bdev->bd_inode->i_blkbits;
1659 }
1660
1661 int kblockd_schedule_work(struct work_struct *work);
1662 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1663
1664 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1665 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1666 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1667 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1668
1669 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1670
1671 enum blk_integrity_flags {
1672 BLK_INTEGRITY_VERIFY = 1 << 0,
1673 BLK_INTEGRITY_GENERATE = 1 << 1,
1674 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1675 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1676 };
1677
1678 struct blk_integrity_iter {
1679 void *prot_buf;
1680 void *data_buf;
1681 sector_t seed;
1682 unsigned int data_size;
1683 unsigned short interval;
1684 const char *disk_name;
1685 };
1686
1687 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1688 typedef void (integrity_prepare_fn) (struct request *);
1689 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1690
1691 struct blk_integrity_profile {
1692 integrity_processing_fn *generate_fn;
1693 integrity_processing_fn *verify_fn;
1694 integrity_prepare_fn *prepare_fn;
1695 integrity_complete_fn *complete_fn;
1696 const char *name;
1697 };
1698
1699 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1700 extern void blk_integrity_unregister(struct gendisk *);
1701 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1702 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1703 struct scatterlist *);
1704 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1705
blk_get_integrity(struct gendisk * disk)1706 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1707 {
1708 struct blk_integrity *bi = &disk->queue->integrity;
1709
1710 if (!bi->profile)
1711 return NULL;
1712
1713 return bi;
1714 }
1715
1716 static inline
bdev_get_integrity(struct block_device * bdev)1717 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1718 {
1719 return blk_get_integrity(bdev->bd_disk);
1720 }
1721
1722 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1723 blk_integrity_queue_supports_integrity(struct request_queue *q)
1724 {
1725 return q->integrity.profile;
1726 }
1727
blk_integrity_rq(struct request * rq)1728 static inline bool blk_integrity_rq(struct request *rq)
1729 {
1730 return rq->cmd_flags & REQ_INTEGRITY;
1731 }
1732
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1733 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1734 unsigned int segs)
1735 {
1736 q->limits.max_integrity_segments = segs;
1737 }
1738
1739 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1740 queue_max_integrity_segments(const struct request_queue *q)
1741 {
1742 return q->limits.max_integrity_segments;
1743 }
1744
1745 /**
1746 * bio_integrity_intervals - Return number of integrity intervals for a bio
1747 * @bi: blk_integrity profile for device
1748 * @sectors: Size of the bio in 512-byte sectors
1749 *
1750 * Description: The block layer calculates everything in 512 byte
1751 * sectors but integrity metadata is done in terms of the data integrity
1752 * interval size of the storage device. Convert the block layer sectors
1753 * to the appropriate number of integrity intervals.
1754 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1755 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1756 unsigned int sectors)
1757 {
1758 return sectors >> (bi->interval_exp - 9);
1759 }
1760
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1761 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1762 unsigned int sectors)
1763 {
1764 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1765 }
1766
1767 /*
1768 * Return the first bvec that contains integrity data. Only drivers that are
1769 * limited to a single integrity segment should use this helper.
1770 */
rq_integrity_vec(struct request * rq)1771 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1772 {
1773 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1774 return NULL;
1775 return rq->bio->bi_integrity->bip_vec;
1776 }
1777
1778 #else /* CONFIG_BLK_DEV_INTEGRITY */
1779
1780 struct bio;
1781 struct block_device;
1782 struct gendisk;
1783 struct blk_integrity;
1784
blk_integrity_rq(struct request * rq)1785 static inline int blk_integrity_rq(struct request *rq)
1786 {
1787 return 0;
1788 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1789 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1790 struct bio *b)
1791 {
1792 return 0;
1793 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1794 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1795 struct bio *b,
1796 struct scatterlist *s)
1797 {
1798 return 0;
1799 }
bdev_get_integrity(struct block_device * b)1800 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1801 {
1802 return NULL;
1803 }
blk_get_integrity(struct gendisk * disk)1804 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1805 {
1806 return NULL;
1807 }
1808 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1809 blk_integrity_queue_supports_integrity(struct request_queue *q)
1810 {
1811 return false;
1812 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1813 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1814 {
1815 return 0;
1816 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1817 static inline void blk_integrity_register(struct gendisk *d,
1818 struct blk_integrity *b)
1819 {
1820 }
blk_integrity_unregister(struct gendisk * d)1821 static inline void blk_integrity_unregister(struct gendisk *d)
1822 {
1823 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1824 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1825 unsigned int segs)
1826 {
1827 }
queue_max_integrity_segments(const struct request_queue * q)1828 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1829 {
1830 return 0;
1831 }
1832
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1833 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1834 unsigned int sectors)
1835 {
1836 return 0;
1837 }
1838
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1839 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1840 unsigned int sectors)
1841 {
1842 return 0;
1843 }
1844
rq_integrity_vec(struct request * rq)1845 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1846 {
1847 return NULL;
1848 }
1849
1850 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1851
1852 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1853
1854 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1855
1856 void blk_ksm_unregister(struct request_queue *q);
1857
1858 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1859
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1860 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1861 struct request_queue *q)
1862 {
1863 return true;
1864 }
1865
blk_ksm_unregister(struct request_queue * q)1866 static inline void blk_ksm_unregister(struct request_queue *q) { }
1867
1868 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1869
1870
1871 struct block_device_operations {
1872 blk_qc_t (*submit_bio) (struct bio *bio);
1873 int (*open) (struct block_device *, fmode_t);
1874 void (*release) (struct gendisk *, fmode_t);
1875 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1876 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1877 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1878 unsigned int (*check_events) (struct gendisk *disk,
1879 unsigned int clearing);
1880 void (*unlock_native_capacity) (struct gendisk *);
1881 int (*revalidate_disk) (struct gendisk *);
1882 int (*getgeo)(struct block_device *, struct hd_geometry *);
1883 /* this callback is with swap_lock and sometimes page table lock held */
1884 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1885 int (*report_zones)(struct gendisk *, sector_t sector,
1886 unsigned int nr_zones, report_zones_cb cb, void *data);
1887 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1888 struct module *owner;
1889 const struct pr_ops *pr_ops;
1890 };
1891
1892 #ifdef CONFIG_COMPAT
1893 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1894 unsigned int, unsigned long);
1895 #else
1896 #define blkdev_compat_ptr_ioctl NULL
1897 #endif
1898
1899 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1900 unsigned long);
1901 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1902 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1903 struct writeback_control *);
1904
1905 #ifdef CONFIG_BLK_DEV_ZONED
1906 bool blk_req_needs_zone_write_lock(struct request *rq);
1907 bool blk_req_zone_write_trylock(struct request *rq);
1908 void __blk_req_zone_write_lock(struct request *rq);
1909 void __blk_req_zone_write_unlock(struct request *rq);
1910
blk_req_zone_write_lock(struct request * rq)1911 static inline void blk_req_zone_write_lock(struct request *rq)
1912 {
1913 if (blk_req_needs_zone_write_lock(rq))
1914 __blk_req_zone_write_lock(rq);
1915 }
1916
blk_req_zone_write_unlock(struct request * rq)1917 static inline void blk_req_zone_write_unlock(struct request *rq)
1918 {
1919 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1920 __blk_req_zone_write_unlock(rq);
1921 }
1922
blk_req_zone_is_write_locked(struct request * rq)1923 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1924 {
1925 return rq->q->seq_zones_wlock &&
1926 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1927 }
1928
blk_req_can_dispatch_to_zone(struct request * rq)1929 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1930 {
1931 if (!blk_req_needs_zone_write_lock(rq))
1932 return true;
1933 return !blk_req_zone_is_write_locked(rq);
1934 }
1935 #else
blk_req_needs_zone_write_lock(struct request * rq)1936 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1937 {
1938 return false;
1939 }
1940
blk_req_zone_write_lock(struct request * rq)1941 static inline void blk_req_zone_write_lock(struct request *rq)
1942 {
1943 }
1944
blk_req_zone_write_unlock(struct request * rq)1945 static inline void blk_req_zone_write_unlock(struct request *rq)
1946 {
1947 }
blk_req_zone_is_write_locked(struct request * rq)1948 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1949 {
1950 return false;
1951 }
1952
blk_req_can_dispatch_to_zone(struct request * rq)1953 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1954 {
1955 return true;
1956 }
1957 #endif /* CONFIG_BLK_DEV_ZONED */
1958
blk_wake_io_task(struct task_struct * waiter)1959 static inline void blk_wake_io_task(struct task_struct *waiter)
1960 {
1961 /*
1962 * If we're polling, the task itself is doing the completions. For
1963 * that case, we don't need to signal a wakeup, it's enough to just
1964 * mark us as RUNNING.
1965 */
1966 if (waiter == current)
1967 __set_current_state(TASK_RUNNING);
1968 else
1969 wake_up_process(waiter);
1970 }
1971
1972 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1973 unsigned int op);
1974 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1975 unsigned long start_time);
1976
1977 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1978 struct bio *bio);
1979 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1980 unsigned long start_time);
1981
1982 /**
1983 * bio_start_io_acct - start I/O accounting for bio based drivers
1984 * @bio: bio to start account for
1985 *
1986 * Returns the start time that should be passed back to bio_end_io_acct().
1987 */
bio_start_io_acct(struct bio * bio)1988 static inline unsigned long bio_start_io_acct(struct bio *bio)
1989 {
1990 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1991 }
1992
1993 /**
1994 * bio_end_io_acct - end I/O accounting for bio based drivers
1995 * @bio: bio to end account for
1996 * @start: start time returned by bio_start_io_acct()
1997 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1998 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1999 {
2000 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
2001 }
2002
2003 int bdev_read_only(struct block_device *bdev);
2004 int set_blocksize(struct block_device *bdev, int size);
2005
2006 const char *bdevname(struct block_device *bdev, char *buffer);
2007 struct block_device *lookup_bdev(const char *);
2008
2009 void blkdev_show(struct seq_file *seqf, off_t offset);
2010
2011 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
2012 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
2013 #ifdef CONFIG_BLOCK
2014 #define BLKDEV_MAJOR_MAX 512
2015 #else
2016 #define BLKDEV_MAJOR_MAX 0
2017 #endif
2018
2019 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2020 void *holder);
2021 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2022 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
2023 void *holder);
2024 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
2025 void *holder);
2026 void blkdev_put(struct block_device *bdev, fmode_t mode);
2027
2028 struct block_device *I_BDEV(struct inode *inode);
2029 struct block_device *bdget_part(struct hd_struct *part);
2030 struct block_device *bdgrab(struct block_device *bdev);
2031 void bdput(struct block_device *);
2032
2033 #ifdef CONFIG_BLOCK
2034 void invalidate_bdev(struct block_device *bdev);
2035 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2036 loff_t lend);
2037 int sync_blockdev(struct block_device *bdev);
2038 #else
invalidate_bdev(struct block_device * bdev)2039 static inline void invalidate_bdev(struct block_device *bdev)
2040 {
2041 }
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)2042 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2043 loff_t lstart, loff_t lend)
2044 {
2045 return 0;
2046 }
sync_blockdev(struct block_device * bdev)2047 static inline int sync_blockdev(struct block_device *bdev)
2048 {
2049 return 0;
2050 }
2051 #endif
2052 int fsync_bdev(struct block_device *bdev);
2053
2054 struct super_block *freeze_bdev(struct block_device *bdev);
2055 int thaw_bdev(struct block_device *bdev, struct super_block *sb);
2056
2057 #endif /* _LINUX_BLKDEV_H */
2058