• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <asm/hypervisor.h>
37 
38 #include <linux/io-mapping.h>
39 #include <linux/i2c.h>
40 #include <linux/i2c-algo-bit.h>
41 #include <linux/backlight.h>
42 #include <linux/hash.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/kref.h>
45 #include <linux/mm_types.h>
46 #include <linux/perf_event.h>
47 #include <linux/pm_qos.h>
48 #include <linux/reservation.h>
49 #include <linux/shmem_fs.h>
50 
51 #include <drm/drmP.h>
52 #include <drm/intel-gtt.h>
53 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
54 #include <drm/drm_gem.h>
55 #include <drm/drm_auth.h>
56 #include <drm/drm_cache.h>
57 
58 #include "i915_params.h"
59 #include "i915_reg.h"
60 #include "i915_utils.h"
61 
62 #include "intel_bios.h"
63 #include "intel_device_info.h"
64 #include "intel_display.h"
65 #include "intel_dpll_mgr.h"
66 #include "intel_lrc.h"
67 #include "intel_opregion.h"
68 #include "intel_ringbuffer.h"
69 #include "intel_uncore.h"
70 #include "intel_wopcm.h"
71 #include "intel_uc.h"
72 
73 #include "i915_gem.h"
74 #include "i915_gem_context.h"
75 #include "i915_gem_fence_reg.h"
76 #include "i915_gem_object.h"
77 #include "i915_gem_gtt.h"
78 #include "i915_gpu_error.h"
79 #include "i915_request.h"
80 #include "i915_scheduler.h"
81 #include "i915_timeline.h"
82 #include "i915_vma.h"
83 
84 #include "intel_gvt.h"
85 
86 /* General customization:
87  */
88 
89 #define DRIVER_NAME		"i915"
90 #define DRIVER_DESC		"Intel Graphics"
91 #define DRIVER_DATE		"20180719"
92 #define DRIVER_TIMESTAMP	1532015279
93 
94 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
95  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
96  * which may not necessarily be a user visible problem.  This will either
97  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
98  * enable distros and users to tailor their preferred amount of i915 abrt
99  * spam.
100  */
101 #define I915_STATE_WARN(condition, format...) ({			\
102 	int __ret_warn_on = !!(condition);				\
103 	if (unlikely(__ret_warn_on))					\
104 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
105 			DRM_ERROR(format);				\
106 	unlikely(__ret_warn_on);					\
107 })
108 
109 #define I915_STATE_WARN_ON(x)						\
110 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
111 
112 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
113 
114 bool __i915_inject_load_failure(const char *func, int line);
115 #define i915_inject_load_failure() \
116 	__i915_inject_load_failure(__func__, __LINE__)
117 
118 bool i915_error_injected(void);
119 
120 #else
121 
122 #define i915_inject_load_failure() false
123 #define i915_error_injected() false
124 
125 #endif
126 
127 #define i915_load_error(i915, fmt, ...)					 \
128 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
129 		      fmt, ##__VA_ARGS__)
130 
131 typedef struct {
132 	uint32_t val;
133 } uint_fixed_16_16_t;
134 
135 #define FP_16_16_MAX ({ \
136 	uint_fixed_16_16_t fp; \
137 	fp.val = UINT_MAX; \
138 	fp; \
139 })
140 
is_fixed16_zero(uint_fixed_16_16_t val)141 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
142 {
143 	if (val.val == 0)
144 		return true;
145 	return false;
146 }
147 
u32_to_fixed16(uint32_t val)148 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
149 {
150 	uint_fixed_16_16_t fp;
151 
152 	WARN_ON(val > U16_MAX);
153 
154 	fp.val = val << 16;
155 	return fp;
156 }
157 
fixed16_to_u32_round_up(uint_fixed_16_16_t fp)158 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
159 {
160 	return DIV_ROUND_UP(fp.val, 1 << 16);
161 }
162 
fixed16_to_u32(uint_fixed_16_16_t fp)163 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
164 {
165 	return fp.val >> 16;
166 }
167 
min_fixed16(uint_fixed_16_16_t min1,uint_fixed_16_16_t min2)168 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
169 						 uint_fixed_16_16_t min2)
170 {
171 	uint_fixed_16_16_t min;
172 
173 	min.val = min(min1.val, min2.val);
174 	return min;
175 }
176 
max_fixed16(uint_fixed_16_16_t max1,uint_fixed_16_16_t max2)177 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
178 						 uint_fixed_16_16_t max2)
179 {
180 	uint_fixed_16_16_t max;
181 
182 	max.val = max(max1.val, max2.val);
183 	return max;
184 }
185 
clamp_u64_to_fixed16(uint64_t val)186 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
187 {
188 	uint_fixed_16_16_t fp;
189 	WARN_ON(val > U32_MAX);
190 	fp.val = (uint32_t) val;
191 	return fp;
192 }
193 
div_round_up_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t d)194 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
195 					    uint_fixed_16_16_t d)
196 {
197 	return DIV_ROUND_UP(val.val, d.val);
198 }
199 
mul_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)200 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
201 						uint_fixed_16_16_t mul)
202 {
203 	uint64_t intermediate_val;
204 
205 	intermediate_val = (uint64_t) val * mul.val;
206 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
207 	WARN_ON(intermediate_val > U32_MAX);
208 	return (uint32_t) intermediate_val;
209 }
210 
mul_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t mul)211 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
212 					     uint_fixed_16_16_t mul)
213 {
214 	uint64_t intermediate_val;
215 
216 	intermediate_val = (uint64_t) val.val * mul.val;
217 	intermediate_val = intermediate_val >> 16;
218 	return clamp_u64_to_fixed16(intermediate_val);
219 }
220 
div_fixed16(uint32_t val,uint32_t d)221 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
222 {
223 	uint64_t interm_val;
224 
225 	interm_val = (uint64_t)val << 16;
226 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
227 	return clamp_u64_to_fixed16(interm_val);
228 }
229 
div_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t d)230 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
231 						uint_fixed_16_16_t d)
232 {
233 	uint64_t interm_val;
234 
235 	interm_val = (uint64_t)val << 16;
236 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
237 	WARN_ON(interm_val > U32_MAX);
238 	return (uint32_t) interm_val;
239 }
240 
mul_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)241 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
242 						     uint_fixed_16_16_t mul)
243 {
244 	uint64_t intermediate_val;
245 
246 	intermediate_val = (uint64_t) val * mul.val;
247 	return clamp_u64_to_fixed16(intermediate_val);
248 }
249 
add_fixed16(uint_fixed_16_16_t add1,uint_fixed_16_16_t add2)250 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
251 					     uint_fixed_16_16_t add2)
252 {
253 	uint64_t interm_sum;
254 
255 	interm_sum = (uint64_t) add1.val + add2.val;
256 	return clamp_u64_to_fixed16(interm_sum);
257 }
258 
add_fixed16_u32(uint_fixed_16_16_t add1,uint32_t add2)259 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
260 						 uint32_t add2)
261 {
262 	uint64_t interm_sum;
263 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
264 
265 	interm_sum = (uint64_t) add1.val + interm_add2.val;
266 	return clamp_u64_to_fixed16(interm_sum);
267 }
268 
269 enum hpd_pin {
270 	HPD_NONE = 0,
271 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
272 	HPD_CRT,
273 	HPD_SDVO_B,
274 	HPD_SDVO_C,
275 	HPD_PORT_A,
276 	HPD_PORT_B,
277 	HPD_PORT_C,
278 	HPD_PORT_D,
279 	HPD_PORT_E,
280 	HPD_PORT_F,
281 	HPD_NUM_PINS
282 };
283 
284 #define for_each_hpd_pin(__pin) \
285 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
286 
287 #define HPD_STORM_DEFAULT_THRESHOLD 5
288 
289 struct i915_hotplug {
290 	struct work_struct hotplug_work;
291 
292 	struct {
293 		unsigned long last_jiffies;
294 		int count;
295 		enum {
296 			HPD_ENABLED = 0,
297 			HPD_DISABLED = 1,
298 			HPD_MARK_DISABLED = 2
299 		} state;
300 	} stats[HPD_NUM_PINS];
301 	u32 event_bits;
302 	struct delayed_work reenable_work;
303 
304 	u32 long_port_mask;
305 	u32 short_port_mask;
306 	struct work_struct dig_port_work;
307 
308 	struct work_struct poll_init_work;
309 	bool poll_enabled;
310 
311 	unsigned int hpd_storm_threshold;
312 
313 	/*
314 	 * if we get a HPD irq from DP and a HPD irq from non-DP
315 	 * the non-DP HPD could block the workqueue on a mode config
316 	 * mutex getting, that userspace may have taken. However
317 	 * userspace is waiting on the DP workqueue to run which is
318 	 * blocked behind the non-DP one.
319 	 */
320 	struct workqueue_struct *dp_wq;
321 };
322 
323 #define I915_GEM_GPU_DOMAINS \
324 	(I915_GEM_DOMAIN_RENDER | \
325 	 I915_GEM_DOMAIN_SAMPLER | \
326 	 I915_GEM_DOMAIN_COMMAND | \
327 	 I915_GEM_DOMAIN_INSTRUCTION | \
328 	 I915_GEM_DOMAIN_VERTEX)
329 
330 struct drm_i915_private;
331 struct i915_mm_struct;
332 struct i915_mmu_object;
333 
334 struct drm_i915_file_private {
335 	struct drm_i915_private *dev_priv;
336 	struct drm_file *file;
337 
338 	struct {
339 		spinlock_t lock;
340 		struct list_head request_list;
341 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
342  * chosen to prevent the CPU getting more than a frame ahead of the GPU
343  * (when using lax throttling for the frontbuffer). We also use it to
344  * offer free GPU waitboosts for severely congested workloads.
345  */
346 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
347 	} mm;
348 	struct idr context_idr;
349 
350 	struct intel_rps_client {
351 		atomic_t boosts;
352 	} rps_client;
353 
354 	unsigned int bsd_engine;
355 
356 /*
357  * Every context ban increments per client ban score. Also
358  * hangs in short succession increments ban score. If ban threshold
359  * is reached, client is considered banned and submitting more work
360  * will fail. This is a stop gap measure to limit the badly behaving
361  * clients access to gpu. Note that unbannable contexts never increment
362  * the client ban score.
363  */
364 #define I915_CLIENT_SCORE_HANG_FAST	1
365 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
366 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
367 #define I915_CLIENT_SCORE_BANNED	9
368 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
369 	atomic_t ban_score;
370 	unsigned long hang_timestamp;
371 };
372 
373 /* Interface history:
374  *
375  * 1.1: Original.
376  * 1.2: Add Power Management
377  * 1.3: Add vblank support
378  * 1.4: Fix cmdbuffer path, add heap destroy
379  * 1.5: Add vblank pipe configuration
380  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
381  *      - Support vertical blank on secondary display pipe
382  */
383 #define DRIVER_MAJOR		1
384 #define DRIVER_MINOR		6
385 #define DRIVER_PATCHLEVEL	0
386 
387 struct intel_overlay;
388 struct intel_overlay_error_state;
389 
390 struct sdvo_device_mapping {
391 	u8 initialized;
392 	u8 dvo_port;
393 	u8 slave_addr;
394 	u8 dvo_wiring;
395 	u8 i2c_pin;
396 	u8 ddc_pin;
397 };
398 
399 struct intel_connector;
400 struct intel_encoder;
401 struct intel_atomic_state;
402 struct intel_crtc_state;
403 struct intel_initial_plane_config;
404 struct intel_crtc;
405 struct intel_limit;
406 struct dpll;
407 struct intel_cdclk_state;
408 
409 struct drm_i915_display_funcs {
410 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
411 			  struct intel_cdclk_state *cdclk_state);
412 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
413 			  const struct intel_cdclk_state *cdclk_state);
414 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
415 			     enum i9xx_plane_id i9xx_plane);
416 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
417 	int (*compute_intermediate_wm)(struct drm_device *dev,
418 				       struct intel_crtc *intel_crtc,
419 				       struct intel_crtc_state *newstate);
420 	void (*initial_watermarks)(struct intel_atomic_state *state,
421 				   struct intel_crtc_state *cstate);
422 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
423 					 struct intel_crtc_state *cstate);
424 	void (*optimize_watermarks)(struct intel_atomic_state *state,
425 				    struct intel_crtc_state *cstate);
426 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
427 	void (*update_wm)(struct intel_crtc *crtc);
428 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
429 	/* Returns the active state of the crtc, and if the crtc is active,
430 	 * fills out the pipe-config with the hw state. */
431 	bool (*get_pipe_config)(struct intel_crtc *,
432 				struct intel_crtc_state *);
433 	void (*get_initial_plane_config)(struct intel_crtc *,
434 					 struct intel_initial_plane_config *);
435 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
436 				  struct intel_crtc_state *crtc_state);
437 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
438 			    struct drm_atomic_state *old_state);
439 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
440 			     struct drm_atomic_state *old_state);
441 	void (*update_crtcs)(struct drm_atomic_state *state);
442 	void (*audio_codec_enable)(struct intel_encoder *encoder,
443 				   const struct intel_crtc_state *crtc_state,
444 				   const struct drm_connector_state *conn_state);
445 	void (*audio_codec_disable)(struct intel_encoder *encoder,
446 				    const struct intel_crtc_state *old_crtc_state,
447 				    const struct drm_connector_state *old_conn_state);
448 	void (*fdi_link_train)(struct intel_crtc *crtc,
449 			       const struct intel_crtc_state *crtc_state);
450 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
451 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
452 	/* clock updates for mode set */
453 	/* cursor updates */
454 	/* render clock increase/decrease */
455 	/* display clock increase/decrease */
456 	/* pll clock increase/decrease */
457 
458 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
459 	void (*load_luts)(struct drm_crtc_state *crtc_state);
460 };
461 
462 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
463 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
464 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
465 
466 struct intel_csr {
467 	struct work_struct work;
468 	const char *fw_path;
469 	uint32_t *dmc_payload;
470 	uint32_t dmc_fw_size;
471 	uint32_t version;
472 	uint32_t mmio_count;
473 	i915_reg_t mmioaddr[8];
474 	uint32_t mmiodata[8];
475 	uint32_t dc_state;
476 	uint32_t allowed_dc_mask;
477 };
478 
479 enum i915_cache_level {
480 	I915_CACHE_NONE = 0,
481 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
482 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
483 			      caches, eg sampler/render caches, and the
484 			      large Last-Level-Cache. LLC is coherent with
485 			      the CPU, but L3 is only visible to the GPU. */
486 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
487 };
488 
489 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
490 
491 enum fb_op_origin {
492 	ORIGIN_GTT,
493 	ORIGIN_CPU,
494 	ORIGIN_CS,
495 	ORIGIN_FLIP,
496 	ORIGIN_DIRTYFB,
497 };
498 
499 struct intel_fbc {
500 	/* This is always the inner lock when overlapping with struct_mutex and
501 	 * it's the outer lock when overlapping with stolen_lock. */
502 	struct mutex lock;
503 	unsigned threshold;
504 	unsigned int possible_framebuffer_bits;
505 	unsigned int busy_bits;
506 	unsigned int visible_pipes_mask;
507 	struct intel_crtc *crtc;
508 
509 	struct drm_mm_node compressed_fb;
510 	struct drm_mm_node *compressed_llb;
511 
512 	bool false_color;
513 
514 	bool enabled;
515 	bool active;
516 	bool flip_pending;
517 
518 	bool underrun_detected;
519 	struct work_struct underrun_work;
520 
521 	/*
522 	 * Due to the atomic rules we can't access some structures without the
523 	 * appropriate locking, so we cache information here in order to avoid
524 	 * these problems.
525 	 */
526 	struct intel_fbc_state_cache {
527 		struct i915_vma *vma;
528 		unsigned long flags;
529 
530 		struct {
531 			unsigned int mode_flags;
532 			uint32_t hsw_bdw_pixel_rate;
533 		} crtc;
534 
535 		struct {
536 			unsigned int rotation;
537 			int src_w;
538 			int src_h;
539 			bool visible;
540 			/*
541 			 * Display surface base address adjustement for
542 			 * pageflips. Note that on gen4+ this only adjusts up
543 			 * to a tile, offsets within a tile are handled in
544 			 * the hw itself (with the TILEOFF register).
545 			 */
546 			int adjusted_x;
547 			int adjusted_y;
548 
549 			int y;
550 		} plane;
551 
552 		struct {
553 			const struct drm_format_info *format;
554 			unsigned int stride;
555 		} fb;
556 	} state_cache;
557 
558 	/*
559 	 * This structure contains everything that's relevant to program the
560 	 * hardware registers. When we want to figure out if we need to disable
561 	 * and re-enable FBC for a new configuration we just check if there's
562 	 * something different in the struct. The genx_fbc_activate functions
563 	 * are supposed to read from it in order to program the registers.
564 	 */
565 	struct intel_fbc_reg_params {
566 		struct i915_vma *vma;
567 		unsigned long flags;
568 
569 		struct {
570 			enum pipe pipe;
571 			enum i9xx_plane_id i9xx_plane;
572 			unsigned int fence_y_offset;
573 		} crtc;
574 
575 		struct {
576 			const struct drm_format_info *format;
577 			unsigned int stride;
578 		} fb;
579 
580 		int cfb_size;
581 		unsigned int gen9_wa_cfb_stride;
582 	} params;
583 
584 	const char *no_fbc_reason;
585 };
586 
587 /*
588  * HIGH_RR is the highest eDP panel refresh rate read from EDID
589  * LOW_RR is the lowest eDP panel refresh rate found from EDID
590  * parsing for same resolution.
591  */
592 enum drrs_refresh_rate_type {
593 	DRRS_HIGH_RR,
594 	DRRS_LOW_RR,
595 	DRRS_MAX_RR, /* RR count */
596 };
597 
598 enum drrs_support_type {
599 	DRRS_NOT_SUPPORTED = 0,
600 	STATIC_DRRS_SUPPORT = 1,
601 	SEAMLESS_DRRS_SUPPORT = 2
602 };
603 
604 struct intel_dp;
605 struct i915_drrs {
606 	struct mutex mutex;
607 	struct delayed_work work;
608 	struct intel_dp *dp;
609 	unsigned busy_frontbuffer_bits;
610 	enum drrs_refresh_rate_type refresh_rate_type;
611 	enum drrs_support_type type;
612 };
613 
614 struct i915_psr {
615 	struct mutex lock;
616 	bool sink_support;
617 	struct intel_dp *enabled;
618 	bool active;
619 	struct work_struct work;
620 	unsigned busy_frontbuffer_bits;
621 	bool sink_psr2_support;
622 	bool link_standby;
623 	bool colorimetry_support;
624 	bool alpm;
625 	bool psr2_enabled;
626 	u8 sink_sync_latency;
627 	bool debug;
628 	ktime_t last_entry_attempt;
629 	ktime_t last_exit;
630 };
631 
632 enum intel_pch {
633 	PCH_NONE = 0,	/* No PCH present */
634 	PCH_IBX,	/* Ibexpeak PCH */
635 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
636 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
637 	PCH_SPT,        /* Sunrisepoint PCH */
638 	PCH_KBP,        /* Kaby Lake PCH */
639 	PCH_CNP,        /* Cannon Lake PCH */
640 	PCH_ICP,	/* Ice Lake PCH */
641 	PCH_NOP,	/* PCH without south display */
642 };
643 
644 enum intel_sbi_destination {
645 	SBI_ICLK,
646 	SBI_MPHY,
647 };
648 
649 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
650 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
651 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
652 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
653 #define QUIRK_INCREASE_T12_DELAY (1<<6)
654 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
655 
656 struct intel_fbdev;
657 struct intel_fbc_work;
658 
659 struct intel_gmbus {
660 	struct i2c_adapter adapter;
661 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
662 	u32 force_bit;
663 	u32 reg0;
664 	i915_reg_t gpio_reg;
665 	struct i2c_algo_bit_data bit_algo;
666 	struct drm_i915_private *dev_priv;
667 };
668 
669 struct i915_suspend_saved_registers {
670 	u32 saveDSPARB;
671 	u32 saveFBC_CONTROL;
672 	u32 saveCACHE_MODE_0;
673 	u32 saveMI_ARB_STATE;
674 	u32 saveSWF0[16];
675 	u32 saveSWF1[16];
676 	u32 saveSWF3[3];
677 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
678 	u32 savePCH_PORT_HOTPLUG;
679 	u16 saveGCDGMBUS;
680 };
681 
682 struct vlv_s0ix_state {
683 	/* GAM */
684 	u32 wr_watermark;
685 	u32 gfx_prio_ctrl;
686 	u32 arb_mode;
687 	u32 gfx_pend_tlb0;
688 	u32 gfx_pend_tlb1;
689 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
690 	u32 media_max_req_count;
691 	u32 gfx_max_req_count;
692 	u32 render_hwsp;
693 	u32 ecochk;
694 	u32 bsd_hwsp;
695 	u32 blt_hwsp;
696 	u32 tlb_rd_addr;
697 
698 	/* MBC */
699 	u32 g3dctl;
700 	u32 gsckgctl;
701 	u32 mbctl;
702 
703 	/* GCP */
704 	u32 ucgctl1;
705 	u32 ucgctl3;
706 	u32 rcgctl1;
707 	u32 rcgctl2;
708 	u32 rstctl;
709 	u32 misccpctl;
710 
711 	/* GPM */
712 	u32 gfxpause;
713 	u32 rpdeuhwtc;
714 	u32 rpdeuc;
715 	u32 ecobus;
716 	u32 pwrdwnupctl;
717 	u32 rp_down_timeout;
718 	u32 rp_deucsw;
719 	u32 rcubmabdtmr;
720 	u32 rcedata;
721 	u32 spare2gh;
722 
723 	/* Display 1 CZ domain */
724 	u32 gt_imr;
725 	u32 gt_ier;
726 	u32 pm_imr;
727 	u32 pm_ier;
728 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
729 
730 	/* GT SA CZ domain */
731 	u32 tilectl;
732 	u32 gt_fifoctl;
733 	u32 gtlc_wake_ctrl;
734 	u32 gtlc_survive;
735 	u32 pmwgicz;
736 
737 	/* Display 2 CZ domain */
738 	u32 gu_ctl0;
739 	u32 gu_ctl1;
740 	u32 pcbr;
741 	u32 clock_gate_dis2;
742 };
743 
744 struct intel_rps_ei {
745 	ktime_t ktime;
746 	u32 render_c0;
747 	u32 media_c0;
748 };
749 
750 struct intel_rps {
751 	/*
752 	 * work, interrupts_enabled and pm_iir are protected by
753 	 * dev_priv->irq_lock
754 	 */
755 	struct work_struct work;
756 	bool interrupts_enabled;
757 	u32 pm_iir;
758 
759 	/* PM interrupt bits that should never be masked */
760 	u32 pm_intrmsk_mbz;
761 
762 	/* Frequencies are stored in potentially platform dependent multiples.
763 	 * In other words, *_freq needs to be multiplied by X to be interesting.
764 	 * Soft limits are those which are used for the dynamic reclocking done
765 	 * by the driver (raise frequencies under heavy loads, and lower for
766 	 * lighter loads). Hard limits are those imposed by the hardware.
767 	 *
768 	 * A distinction is made for overclocking, which is never enabled by
769 	 * default, and is considered to be above the hard limit if it's
770 	 * possible at all.
771 	 */
772 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
773 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
774 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
775 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
776 	u8 min_freq;		/* AKA RPn. Minimum frequency */
777 	u8 boost_freq;		/* Frequency to request when wait boosting */
778 	u8 idle_freq;		/* Frequency to request when we are idle */
779 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
780 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
781 	u8 rp0_freq;		/* Non-overclocked max frequency. */
782 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
783 
784 	int last_adj;
785 
786 	struct {
787 		struct mutex mutex;
788 
789 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
790 		unsigned int interactive;
791 
792 		u8 up_threshold; /* Current %busy required to uplock */
793 		u8 down_threshold; /* Current %busy required to downclock */
794 	} power;
795 
796 	bool enabled;
797 	atomic_t num_waiters;
798 	atomic_t boosts;
799 
800 	/* manual wa residency calculations */
801 	struct intel_rps_ei ei;
802 };
803 
804 struct intel_rc6 {
805 	bool enabled;
806 	bool ctx_corrupted;
807 	u64 prev_hw_residency[4];
808 	u64 cur_residency[4];
809 };
810 
811 struct intel_llc_pstate {
812 	bool enabled;
813 };
814 
815 struct intel_gen6_power_mgmt {
816 	struct intel_rps rps;
817 	struct intel_rc6 rc6;
818 	struct intel_llc_pstate llc_pstate;
819 };
820 
821 /* defined intel_pm.c */
822 extern spinlock_t mchdev_lock;
823 
824 struct intel_ilk_power_mgmt {
825 	u8 cur_delay;
826 	u8 min_delay;
827 	u8 max_delay;
828 	u8 fmax;
829 	u8 fstart;
830 
831 	u64 last_count1;
832 	unsigned long last_time1;
833 	unsigned long chipset_power;
834 	u64 last_count2;
835 	u64 last_time2;
836 	unsigned long gfx_power;
837 	u8 corr;
838 
839 	int c_m;
840 	int r_t;
841 };
842 
843 struct drm_i915_private;
844 struct i915_power_well;
845 
846 struct i915_power_well_ops {
847 	/*
848 	 * Synchronize the well's hw state to match the current sw state, for
849 	 * example enable/disable it based on the current refcount. Called
850 	 * during driver init and resume time, possibly after first calling
851 	 * the enable/disable handlers.
852 	 */
853 	void (*sync_hw)(struct drm_i915_private *dev_priv,
854 			struct i915_power_well *power_well);
855 	/*
856 	 * Enable the well and resources that depend on it (for example
857 	 * interrupts located on the well). Called after the 0->1 refcount
858 	 * transition.
859 	 */
860 	void (*enable)(struct drm_i915_private *dev_priv,
861 		       struct i915_power_well *power_well);
862 	/*
863 	 * Disable the well and resources that depend on it. Called after
864 	 * the 1->0 refcount transition.
865 	 */
866 	void (*disable)(struct drm_i915_private *dev_priv,
867 			struct i915_power_well *power_well);
868 	/* Returns the hw enabled state. */
869 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
870 			   struct i915_power_well *power_well);
871 };
872 
873 /* Power well structure for haswell */
874 struct i915_power_well {
875 	const char *name;
876 	bool always_on;
877 	/* power well enable/disable usage count */
878 	int count;
879 	/* cached hw enabled state */
880 	bool hw_enabled;
881 	u64 domains;
882 	/* unique identifier for this power well */
883 	enum i915_power_well_id id;
884 	/*
885 	 * Arbitraty data associated with this power well. Platform and power
886 	 * well specific.
887 	 */
888 	union {
889 		struct {
890 			enum dpio_phy phy;
891 		} bxt;
892 		struct {
893 			/* Mask of pipes whose IRQ logic is backed by the pw */
894 			u8 irq_pipe_mask;
895 			/* The pw is backing the VGA functionality */
896 			bool has_vga:1;
897 			bool has_fuses:1;
898 		} hsw;
899 	};
900 	const struct i915_power_well_ops *ops;
901 };
902 
903 struct i915_power_domains {
904 	/*
905 	 * Power wells needed for initialization at driver init and suspend
906 	 * time are on. They are kept on until after the first modeset.
907 	 */
908 	bool init_power_on;
909 	bool initializing;
910 	int power_well_count;
911 
912 	struct mutex lock;
913 	int domain_use_count[POWER_DOMAIN_NUM];
914 	struct i915_power_well *power_wells;
915 };
916 
917 #define MAX_L3_SLICES 2
918 struct intel_l3_parity {
919 	u32 *remap_info[MAX_L3_SLICES];
920 	struct work_struct error_work;
921 	int which_slice;
922 };
923 
924 struct i915_gem_mm {
925 	/** Memory allocator for GTT stolen memory */
926 	struct drm_mm stolen;
927 	/** Protects the usage of the GTT stolen memory allocator. This is
928 	 * always the inner lock when overlapping with struct_mutex. */
929 	struct mutex stolen_lock;
930 
931 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
932 	spinlock_t obj_lock;
933 
934 	/** List of all objects in gtt_space. Used to restore gtt
935 	 * mappings on resume */
936 	struct list_head bound_list;
937 	/**
938 	 * List of objects which are not bound to the GTT (thus
939 	 * are idle and not used by the GPU). These objects may or may
940 	 * not actually have any pages attached.
941 	 */
942 	struct list_head unbound_list;
943 
944 	/** List of all objects in gtt_space, currently mmaped by userspace.
945 	 * All objects within this list must also be on bound_list.
946 	 */
947 	struct list_head userfault_list;
948 
949 	/**
950 	 * List of objects which are pending destruction.
951 	 */
952 	struct llist_head free_list;
953 	struct work_struct free_work;
954 	spinlock_t free_lock;
955 	/**
956 	 * Count of objects pending destructions. Used to skip needlessly
957 	 * waiting on an RCU barrier if no objects are waiting to be freed.
958 	 */
959 	atomic_t free_count;
960 
961 	/**
962 	 * Small stash of WC pages
963 	 */
964 	struct pagestash wc_stash;
965 
966 	/**
967 	 * tmpfs instance used for shmem backed objects
968 	 */
969 	struct vfsmount *gemfs;
970 
971 	/** PPGTT used for aliasing the PPGTT with the GTT */
972 	struct i915_hw_ppgtt *aliasing_ppgtt;
973 
974 	struct notifier_block oom_notifier;
975 	struct notifier_block vmap_notifier;
976 	struct shrinker shrinker;
977 
978 	/** LRU list of objects with fence regs on them. */
979 	struct list_head fence_list;
980 
981 	/**
982 	 * Workqueue to fault in userptr pages, flushed by the execbuf
983 	 * when required but otherwise left to userspace to try again
984 	 * on EAGAIN.
985 	 */
986 	struct workqueue_struct *userptr_wq;
987 
988 	u64 unordered_timeline;
989 
990 	/* the indicator for dispatch video commands on two BSD rings */
991 	atomic_t bsd_engine_dispatch_index;
992 
993 	/** Bit 6 swizzling required for X tiling */
994 	uint32_t bit_6_swizzle_x;
995 	/** Bit 6 swizzling required for Y tiling */
996 	uint32_t bit_6_swizzle_y;
997 
998 	/* accounting, useful for userland debugging */
999 	spinlock_t object_stat_lock;
1000 	u64 object_memory;
1001 	u32 object_count;
1002 };
1003 
1004 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1005 
1006 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1007 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1008 
1009 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1010 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1011 
1012 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1013 
1014 #define DP_AUX_A 0x40
1015 #define DP_AUX_B 0x10
1016 #define DP_AUX_C 0x20
1017 #define DP_AUX_D 0x30
1018 #define DP_AUX_E 0x50
1019 #define DP_AUX_F 0x60
1020 
1021 #define DDC_PIN_B  0x05
1022 #define DDC_PIN_C  0x04
1023 #define DDC_PIN_D  0x06
1024 
1025 struct ddi_vbt_port_info {
1026 	int max_tmds_clock;
1027 
1028 	/*
1029 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1030 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1031 	 * populate this field.
1032 	 */
1033 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1034 	uint8_t hdmi_level_shift;
1035 
1036 	uint8_t supports_dvi:1;
1037 	uint8_t supports_hdmi:1;
1038 	uint8_t supports_dp:1;
1039 	uint8_t supports_edp:1;
1040 
1041 	uint8_t alternate_aux_channel;
1042 	uint8_t alternate_ddc_pin;
1043 
1044 	uint8_t dp_boost_level;
1045 	uint8_t hdmi_boost_level;
1046 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1047 };
1048 
1049 enum psr_lines_to_wait {
1050 	PSR_0_LINES_TO_WAIT = 0,
1051 	PSR_1_LINE_TO_WAIT,
1052 	PSR_4_LINES_TO_WAIT,
1053 	PSR_8_LINES_TO_WAIT
1054 };
1055 
1056 struct intel_vbt_data {
1057 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1058 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1059 
1060 	/* Feature bits */
1061 	unsigned int int_tv_support:1;
1062 	unsigned int lvds_dither:1;
1063 	unsigned int int_crt_support:1;
1064 	unsigned int lvds_use_ssc:1;
1065 	unsigned int int_lvds_support:1;
1066 	unsigned int display_clock_mode:1;
1067 	unsigned int fdi_rx_polarity_inverted:1;
1068 	unsigned int panel_type:4;
1069 	int lvds_ssc_freq;
1070 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1071 
1072 	enum drrs_support_type drrs_type;
1073 
1074 	struct {
1075 		int rate;
1076 		int lanes;
1077 		int preemphasis;
1078 		int vswing;
1079 		bool low_vswing;
1080 		bool initialized;
1081 		int bpp;
1082 		struct edp_power_seq pps;
1083 	} edp;
1084 
1085 	struct {
1086 		bool enable;
1087 		bool full_link;
1088 		bool require_aux_wakeup;
1089 		int idle_frames;
1090 		enum psr_lines_to_wait lines_to_wait;
1091 		int tp1_wakeup_time_us;
1092 		int tp2_tp3_wakeup_time_us;
1093 	} psr;
1094 
1095 	struct {
1096 		u16 pwm_freq_hz;
1097 		bool present;
1098 		bool active_low_pwm;
1099 		u8 min_brightness;	/* min_brightness/255 of max */
1100 		u8 controller;		/* brightness controller number */
1101 		enum intel_backlight_type type;
1102 	} backlight;
1103 
1104 	/* MIPI DSI */
1105 	struct {
1106 		u16 panel_id;
1107 		struct mipi_config *config;
1108 		struct mipi_pps_data *pps;
1109 		u16 bl_ports;
1110 		u16 cabc_ports;
1111 		u8 seq_version;
1112 		u32 size;
1113 		u8 *data;
1114 		const u8 *sequence[MIPI_SEQ_MAX];
1115 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1116 	} dsi;
1117 
1118 	int crt_ddc_pin;
1119 
1120 	int child_dev_num;
1121 	struct child_device_config *child_dev;
1122 
1123 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1124 	struct sdvo_device_mapping sdvo_mappings[2];
1125 };
1126 
1127 enum intel_ddb_partitioning {
1128 	INTEL_DDB_PART_1_2,
1129 	INTEL_DDB_PART_5_6, /* IVB+ */
1130 };
1131 
1132 struct intel_wm_level {
1133 	bool enable;
1134 	uint32_t pri_val;
1135 	uint32_t spr_val;
1136 	uint32_t cur_val;
1137 	uint32_t fbc_val;
1138 };
1139 
1140 struct ilk_wm_values {
1141 	uint32_t wm_pipe[3];
1142 	uint32_t wm_lp[3];
1143 	uint32_t wm_lp_spr[3];
1144 	uint32_t wm_linetime[3];
1145 	bool enable_fbc_wm;
1146 	enum intel_ddb_partitioning partitioning;
1147 };
1148 
1149 struct g4x_pipe_wm {
1150 	uint16_t plane[I915_MAX_PLANES];
1151 	uint16_t fbc;
1152 };
1153 
1154 struct g4x_sr_wm {
1155 	uint16_t plane;
1156 	uint16_t cursor;
1157 	uint16_t fbc;
1158 };
1159 
1160 struct vlv_wm_ddl_values {
1161 	uint8_t plane[I915_MAX_PLANES];
1162 };
1163 
1164 struct vlv_wm_values {
1165 	struct g4x_pipe_wm pipe[3];
1166 	struct g4x_sr_wm sr;
1167 	struct vlv_wm_ddl_values ddl[3];
1168 	uint8_t level;
1169 	bool cxsr;
1170 };
1171 
1172 struct g4x_wm_values {
1173 	struct g4x_pipe_wm pipe[2];
1174 	struct g4x_sr_wm sr;
1175 	struct g4x_sr_wm hpll;
1176 	bool cxsr;
1177 	bool hpll_en;
1178 	bool fbc_en;
1179 };
1180 
1181 struct skl_ddb_entry {
1182 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1183 };
1184 
skl_ddb_entry_size(const struct skl_ddb_entry * entry)1185 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1186 {
1187 	return entry->end - entry->start;
1188 }
1189 
skl_ddb_entry_equal(const struct skl_ddb_entry * e1,const struct skl_ddb_entry * e2)1190 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1191 				       const struct skl_ddb_entry *e2)
1192 {
1193 	if (e1->start == e2->start && e1->end == e2->end)
1194 		return true;
1195 
1196 	return false;
1197 }
1198 
1199 struct skl_ddb_allocation {
1200 	/* packed/y */
1201 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1202 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1203 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1204 };
1205 
1206 struct skl_ddb_values {
1207 	unsigned dirty_pipes;
1208 	struct skl_ddb_allocation ddb;
1209 };
1210 
1211 struct skl_wm_level {
1212 	bool plane_en;
1213 	uint16_t plane_res_b;
1214 	uint8_t plane_res_l;
1215 };
1216 
1217 /* Stores plane specific WM parameters */
1218 struct skl_wm_params {
1219 	bool x_tiled, y_tiled;
1220 	bool rc_surface;
1221 	bool is_planar;
1222 	uint32_t width;
1223 	uint8_t cpp;
1224 	uint32_t plane_pixel_rate;
1225 	uint32_t y_min_scanlines;
1226 	uint32_t plane_bytes_per_line;
1227 	uint_fixed_16_16_t plane_blocks_per_line;
1228 	uint_fixed_16_16_t y_tile_minimum;
1229 	uint32_t linetime_us;
1230 	uint32_t dbuf_block_size;
1231 };
1232 
1233 /*
1234  * This struct helps tracking the state needed for runtime PM, which puts the
1235  * device in PCI D3 state. Notice that when this happens, nothing on the
1236  * graphics device works, even register access, so we don't get interrupts nor
1237  * anything else.
1238  *
1239  * Every piece of our code that needs to actually touch the hardware needs to
1240  * either call intel_runtime_pm_get or call intel_display_power_get with the
1241  * appropriate power domain.
1242  *
1243  * Our driver uses the autosuspend delay feature, which means we'll only really
1244  * suspend if we stay with zero refcount for a certain amount of time. The
1245  * default value is currently very conservative (see intel_runtime_pm_enable), but
1246  * it can be changed with the standard runtime PM files from sysfs.
1247  *
1248  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1249  * goes back to false exactly before we reenable the IRQs. We use this variable
1250  * to check if someone is trying to enable/disable IRQs while they're supposed
1251  * to be disabled. This shouldn't happen and we'll print some error messages in
1252  * case it happens.
1253  *
1254  * For more, read the Documentation/power/runtime_pm.txt.
1255  */
1256 struct i915_runtime_pm {
1257 	atomic_t wakeref_count;
1258 	bool suspended;
1259 	bool irqs_enabled;
1260 };
1261 
1262 enum intel_pipe_crc_source {
1263 	INTEL_PIPE_CRC_SOURCE_NONE,
1264 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1265 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1266 	INTEL_PIPE_CRC_SOURCE_PF,
1267 	INTEL_PIPE_CRC_SOURCE_PIPE,
1268 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1269 	INTEL_PIPE_CRC_SOURCE_TV,
1270 	INTEL_PIPE_CRC_SOURCE_DP_B,
1271 	INTEL_PIPE_CRC_SOURCE_DP_C,
1272 	INTEL_PIPE_CRC_SOURCE_DP_D,
1273 	INTEL_PIPE_CRC_SOURCE_AUTO,
1274 	INTEL_PIPE_CRC_SOURCE_MAX,
1275 };
1276 
1277 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1278 struct intel_pipe_crc {
1279 	spinlock_t lock;
1280 	int skipped;
1281 	enum intel_pipe_crc_source source;
1282 };
1283 
1284 struct i915_frontbuffer_tracking {
1285 	spinlock_t lock;
1286 
1287 	/*
1288 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1289 	 * scheduled flips.
1290 	 */
1291 	unsigned busy_bits;
1292 	unsigned flip_bits;
1293 };
1294 
1295 struct i915_wa_reg {
1296 	u32 addr;
1297 	u32 value;
1298 	/* bitmask representing WA bits */
1299 	u32 mask;
1300 };
1301 
1302 #define I915_MAX_WA_REGS 16
1303 
1304 struct i915_workarounds {
1305 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1306 	u32 count;
1307 };
1308 
1309 struct i915_virtual_gpu {
1310 	bool active;
1311 	u32 caps;
1312 };
1313 
1314 /* used in computing the new watermarks state */
1315 struct intel_wm_config {
1316 	unsigned int num_pipes_active;
1317 	bool sprites_enabled;
1318 	bool sprites_scaled;
1319 };
1320 
1321 struct i915_oa_format {
1322 	u32 format;
1323 	int size;
1324 };
1325 
1326 struct i915_oa_reg {
1327 	i915_reg_t addr;
1328 	u32 value;
1329 };
1330 
1331 struct i915_oa_config {
1332 	char uuid[UUID_STRING_LEN + 1];
1333 	int id;
1334 
1335 	const struct i915_oa_reg *mux_regs;
1336 	u32 mux_regs_len;
1337 	const struct i915_oa_reg *b_counter_regs;
1338 	u32 b_counter_regs_len;
1339 	const struct i915_oa_reg *flex_regs;
1340 	u32 flex_regs_len;
1341 
1342 	struct attribute_group sysfs_metric;
1343 	struct attribute *attrs[2];
1344 	struct device_attribute sysfs_metric_id;
1345 
1346 	atomic_t ref_count;
1347 };
1348 
1349 struct i915_perf_stream;
1350 
1351 /**
1352  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1353  */
1354 struct i915_perf_stream_ops {
1355 	/**
1356 	 * @enable: Enables the collection of HW samples, either in response to
1357 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1358 	 * without `I915_PERF_FLAG_DISABLED`.
1359 	 */
1360 	void (*enable)(struct i915_perf_stream *stream);
1361 
1362 	/**
1363 	 * @disable: Disables the collection of HW samples, either in response
1364 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1365 	 * the stream.
1366 	 */
1367 	void (*disable)(struct i915_perf_stream *stream);
1368 
1369 	/**
1370 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1371 	 * once there is something ready to read() for the stream
1372 	 */
1373 	void (*poll_wait)(struct i915_perf_stream *stream,
1374 			  struct file *file,
1375 			  poll_table *wait);
1376 
1377 	/**
1378 	 * @wait_unlocked: For handling a blocking read, wait until there is
1379 	 * something to ready to read() for the stream. E.g. wait on the same
1380 	 * wait queue that would be passed to poll_wait().
1381 	 */
1382 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1383 
1384 	/**
1385 	 * @read: Copy buffered metrics as records to userspace
1386 	 * **buf**: the userspace, destination buffer
1387 	 * **count**: the number of bytes to copy, requested by userspace
1388 	 * **offset**: zero at the start of the read, updated as the read
1389 	 * proceeds, it represents how many bytes have been copied so far and
1390 	 * the buffer offset for copying the next record.
1391 	 *
1392 	 * Copy as many buffered i915 perf samples and records for this stream
1393 	 * to userspace as will fit in the given buffer.
1394 	 *
1395 	 * Only write complete records; returning -%ENOSPC if there isn't room
1396 	 * for a complete record.
1397 	 *
1398 	 * Return any error condition that results in a short read such as
1399 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1400 	 * returning to userspace.
1401 	 */
1402 	int (*read)(struct i915_perf_stream *stream,
1403 		    char __user *buf,
1404 		    size_t count,
1405 		    size_t *offset);
1406 
1407 	/**
1408 	 * @destroy: Cleanup any stream specific resources.
1409 	 *
1410 	 * The stream will always be disabled before this is called.
1411 	 */
1412 	void (*destroy)(struct i915_perf_stream *stream);
1413 };
1414 
1415 /**
1416  * struct i915_perf_stream - state for a single open stream FD
1417  */
1418 struct i915_perf_stream {
1419 	/**
1420 	 * @dev_priv: i915 drm device
1421 	 */
1422 	struct drm_i915_private *dev_priv;
1423 
1424 	/**
1425 	 * @link: Links the stream into ``&drm_i915_private->streams``
1426 	 */
1427 	struct list_head link;
1428 
1429 	/**
1430 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1431 	 * properties given when opening a stream, representing the contents
1432 	 * of a single sample as read() by userspace.
1433 	 */
1434 	u32 sample_flags;
1435 
1436 	/**
1437 	 * @sample_size: Considering the configured contents of a sample
1438 	 * combined with the required header size, this is the total size
1439 	 * of a single sample record.
1440 	 */
1441 	int sample_size;
1442 
1443 	/**
1444 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1445 	 * specific context that is being monitored.
1446 	 */
1447 	struct i915_gem_context *ctx;
1448 
1449 	/**
1450 	 * @enabled: Whether the stream is currently enabled, considering
1451 	 * whether the stream was opened in a disabled state and based
1452 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1453 	 */
1454 	bool enabled;
1455 
1456 	/**
1457 	 * @ops: The callbacks providing the implementation of this specific
1458 	 * type of configured stream.
1459 	 */
1460 	const struct i915_perf_stream_ops *ops;
1461 
1462 	/**
1463 	 * @oa_config: The OA configuration used by the stream.
1464 	 */
1465 	struct i915_oa_config *oa_config;
1466 };
1467 
1468 /**
1469  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1470  */
1471 struct i915_oa_ops {
1472 	/**
1473 	 * @is_valid_b_counter_reg: Validates register's address for
1474 	 * programming boolean counters for a particular platform.
1475 	 */
1476 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1477 				       u32 addr);
1478 
1479 	/**
1480 	 * @is_valid_mux_reg: Validates register's address for programming mux
1481 	 * for a particular platform.
1482 	 */
1483 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1484 
1485 	/**
1486 	 * @is_valid_flex_reg: Validates register's address for programming
1487 	 * flex EU filtering for a particular platform.
1488 	 */
1489 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1490 
1491 	/**
1492 	 * @init_oa_buffer: Resets the head and tail pointers of the
1493 	 * circular buffer for periodic OA reports.
1494 	 *
1495 	 * Called when first opening a stream for OA metrics, but also may be
1496 	 * called in response to an OA buffer overflow or other error
1497 	 * condition.
1498 	 *
1499 	 * Note it may be necessary to clear the full OA buffer here as part of
1500 	 * maintaining the invariable that new reports must be written to
1501 	 * zeroed memory for us to be able to reliable detect if an expected
1502 	 * report has not yet landed in memory.  (At least on Haswell the OA
1503 	 * buffer tail pointer is not synchronized with reports being visible
1504 	 * to the CPU)
1505 	 */
1506 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1507 
1508 	/**
1509 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1510 	 * up the Boolean and Custom (B/C) counters that are part of the
1511 	 * counter reports being sampled. May apply system constraints such as
1512 	 * disabling EU clock gating as required.
1513 	 */
1514 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1515 				 const struct i915_oa_config *oa_config);
1516 
1517 	/**
1518 	 * @disable_metric_set: Remove system constraints associated with using
1519 	 * the OA unit.
1520 	 */
1521 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1522 
1523 	/**
1524 	 * @oa_enable: Enable periodic sampling
1525 	 */
1526 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1527 
1528 	/**
1529 	 * @oa_disable: Disable periodic sampling
1530 	 */
1531 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1532 
1533 	/**
1534 	 * @read: Copy data from the circular OA buffer into a given userspace
1535 	 * buffer.
1536 	 */
1537 	int (*read)(struct i915_perf_stream *stream,
1538 		    char __user *buf,
1539 		    size_t count,
1540 		    size_t *offset);
1541 
1542 	/**
1543 	 * @oa_hw_tail_read: read the OA tail pointer register
1544 	 *
1545 	 * In particular this enables us to share all the fiddly code for
1546 	 * handling the OA unit tail pointer race that affects multiple
1547 	 * generations.
1548 	 */
1549 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1550 };
1551 
1552 struct intel_cdclk_state {
1553 	unsigned int cdclk, vco, ref, bypass;
1554 	u8 voltage_level;
1555 };
1556 
1557 struct drm_i915_private {
1558 	struct drm_device drm;
1559 
1560 	struct kmem_cache *objects;
1561 	struct kmem_cache *vmas;
1562 	struct kmem_cache *luts;
1563 	struct kmem_cache *requests;
1564 	struct kmem_cache *dependencies;
1565 	struct kmem_cache *priorities;
1566 
1567 	const struct intel_device_info info;
1568 	struct intel_driver_caps caps;
1569 
1570 	/**
1571 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1572 	 * end of stolen which we can optionally use to create GEM objects
1573 	 * backed by stolen memory. Note that stolen_usable_size tells us
1574 	 * exactly how much of this we are actually allowed to use, given that
1575 	 * some portion of it is in fact reserved for use by hardware functions.
1576 	 */
1577 	struct resource dsm;
1578 	/**
1579 	 * Reseved portion of Data Stolen Memory
1580 	 */
1581 	struct resource dsm_reserved;
1582 
1583 	/*
1584 	 * Stolen memory is segmented in hardware with different portions
1585 	 * offlimits to certain functions.
1586 	 *
1587 	 * The drm_mm is initialised to the total accessible range, as found
1588 	 * from the PCI config. On Broadwell+, this is further restricted to
1589 	 * avoid the first page! The upper end of stolen memory is reserved for
1590 	 * hardware functions and similarly removed from the accessible range.
1591 	 */
1592 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1593 
1594 	void __iomem *regs;
1595 
1596 	struct intel_uncore uncore;
1597 
1598 	struct i915_virtual_gpu vgpu;
1599 
1600 	struct intel_gvt *gvt;
1601 
1602 	struct intel_wopcm wopcm;
1603 
1604 	struct intel_huc huc;
1605 	struct intel_guc guc;
1606 
1607 	struct intel_csr csr;
1608 
1609 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1610 
1611 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1612 	 * controller on different i2c buses. */
1613 	struct mutex gmbus_mutex;
1614 
1615 	/**
1616 	 * Base address of the gmbus and gpio block.
1617 	 */
1618 	uint32_t gpio_mmio_base;
1619 
1620 	/* MMIO base address for MIPI regs */
1621 	uint32_t mipi_mmio_base;
1622 
1623 	uint32_t psr_mmio_base;
1624 
1625 	uint32_t pps_mmio_base;
1626 
1627 	wait_queue_head_t gmbus_wait_queue;
1628 
1629 	struct pci_dev *bridge_dev;
1630 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1631 	/* Context used internally to idle the GPU and setup initial state */
1632 	struct i915_gem_context *kernel_context;
1633 	/* Context only to be used for injecting preemption commands */
1634 	struct i915_gem_context *preempt_context;
1635 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1636 					    [MAX_ENGINE_INSTANCE + 1];
1637 
1638 	struct drm_dma_handle *status_page_dmah;
1639 	struct resource mch_res;
1640 
1641 	/* protects the irq masks */
1642 	spinlock_t irq_lock;
1643 
1644 	bool display_irqs_enabled;
1645 
1646 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1647 	struct pm_qos_request pm_qos;
1648 
1649 	/* Sideband mailbox protection */
1650 	struct mutex sb_lock;
1651 
1652 	/** Cached value of IMR to avoid reads in updating the bitfield */
1653 	union {
1654 		u32 irq_mask;
1655 		u32 de_irq_mask[I915_MAX_PIPES];
1656 	};
1657 	u32 gt_irq_mask;
1658 	u32 pm_imr;
1659 	u32 pm_ier;
1660 	u32 pm_rps_events;
1661 	u32 pm_guc_events;
1662 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1663 
1664 	struct i915_hotplug hotplug;
1665 	struct intel_fbc fbc;
1666 	struct i915_drrs drrs;
1667 	struct intel_opregion opregion;
1668 	struct intel_vbt_data vbt;
1669 
1670 	bool preserve_bios_swizzle;
1671 
1672 	/* overlay */
1673 	struct intel_overlay *overlay;
1674 
1675 	/* backlight registers and fields in struct intel_panel */
1676 	struct mutex backlight_lock;
1677 
1678 	/* LVDS info */
1679 	bool no_aux_handshake;
1680 
1681 	/* protects panel power sequencer state */
1682 	struct mutex pps_mutex;
1683 
1684 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1685 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1686 
1687 	unsigned int fsb_freq, mem_freq, is_ddr3;
1688 	unsigned int skl_preferred_vco_freq;
1689 	unsigned int max_cdclk_freq;
1690 
1691 	unsigned int max_dotclk_freq;
1692 	unsigned int rawclk_freq;
1693 	unsigned int hpll_freq;
1694 	unsigned int fdi_pll_freq;
1695 	unsigned int czclk_freq;
1696 
1697 	struct {
1698 		/*
1699 		 * The current logical cdclk state.
1700 		 * See intel_atomic_state.cdclk.logical
1701 		 *
1702 		 * For reading holding any crtc lock is sufficient,
1703 		 * for writing must hold all of them.
1704 		 */
1705 		struct intel_cdclk_state logical;
1706 		/*
1707 		 * The current actual cdclk state.
1708 		 * See intel_atomic_state.cdclk.actual
1709 		 */
1710 		struct intel_cdclk_state actual;
1711 		/* The current hardware cdclk state */
1712 		struct intel_cdclk_state hw;
1713 	} cdclk;
1714 
1715 	/**
1716 	 * wq - Driver workqueue for GEM.
1717 	 *
1718 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1719 	 * locks, for otherwise the flushing done in the pageflip code will
1720 	 * result in deadlocks.
1721 	 */
1722 	struct workqueue_struct *wq;
1723 
1724 	/* ordered wq for modesets */
1725 	struct workqueue_struct *modeset_wq;
1726 
1727 	/* Display functions */
1728 	struct drm_i915_display_funcs display;
1729 
1730 	/* PCH chipset type */
1731 	enum intel_pch pch_type;
1732 	unsigned short pch_id;
1733 
1734 	unsigned long quirks;
1735 
1736 	struct drm_atomic_state *modeset_restore_state;
1737 	struct drm_modeset_acquire_ctx reset_ctx;
1738 
1739 	struct i915_ggtt ggtt; /* VM representing the global address space */
1740 
1741 	struct i915_gem_mm mm;
1742 	DECLARE_HASHTABLE(mm_structs, 7);
1743 	struct mutex mm_lock;
1744 
1745 	struct intel_ppat ppat;
1746 
1747 	/* Kernel Modesetting */
1748 
1749 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1750 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1751 
1752 #ifdef CONFIG_DEBUG_FS
1753 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1754 #endif
1755 
1756 	/* dpll and cdclk state is protected by connection_mutex */
1757 	int num_shared_dpll;
1758 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1759 	const struct intel_dpll_mgr *dpll_mgr;
1760 
1761 	/*
1762 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1763 	 * Must be global rather than per dpll, because on some platforms
1764 	 * plls share registers.
1765 	 */
1766 	struct mutex dpll_lock;
1767 
1768 	unsigned int active_crtcs;
1769 	/* minimum acceptable cdclk for each pipe */
1770 	int min_cdclk[I915_MAX_PIPES];
1771 	/* minimum acceptable voltage level for each pipe */
1772 	u8 min_voltage_level[I915_MAX_PIPES];
1773 
1774 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1775 
1776 	struct i915_workarounds workarounds;
1777 
1778 	struct i915_frontbuffer_tracking fb_tracking;
1779 
1780 	struct intel_atomic_helper {
1781 		struct llist_head free_list;
1782 		struct work_struct free_work;
1783 	} atomic_helper;
1784 
1785 	u16 orig_clock;
1786 
1787 	bool mchbar_need_disable;
1788 
1789 	struct intel_l3_parity l3_parity;
1790 
1791 	/* Cannot be determined by PCIID. You must always read a register. */
1792 	u32 edram_cap;
1793 
1794 	/*
1795 	 * Protects RPS/RC6 register access and PCU communication.
1796 	 * Must be taken after struct_mutex if nested. Note that
1797 	 * this lock may be held for long periods of time when
1798 	 * talking to hw - so only take it when talking to hw!
1799 	 */
1800 	struct mutex pcu_lock;
1801 
1802 	/* gen6+ GT PM state */
1803 	struct intel_gen6_power_mgmt gt_pm;
1804 
1805 	/* ilk-only ips/rps state. Everything in here is protected by the global
1806 	 * mchdev_lock in intel_pm.c */
1807 	struct intel_ilk_power_mgmt ips;
1808 
1809 	struct i915_power_domains power_domains;
1810 
1811 	struct i915_psr psr;
1812 
1813 	struct i915_gpu_error gpu_error;
1814 
1815 	struct drm_i915_gem_object *vlv_pctx;
1816 
1817 	/* list of fbdev register on this device */
1818 	struct intel_fbdev *fbdev;
1819 	struct work_struct fbdev_suspend_work;
1820 
1821 	struct drm_property *broadcast_rgb_property;
1822 	struct drm_property *force_audio_property;
1823 
1824 	/* hda/i915 audio component */
1825 	struct i915_audio_component *audio_component;
1826 	bool audio_component_registered;
1827 	/**
1828 	 * av_mutex - mutex for audio/video sync
1829 	 *
1830 	 */
1831 	struct mutex av_mutex;
1832 
1833 	struct {
1834 		struct list_head list;
1835 		struct llist_head free_list;
1836 		struct work_struct free_work;
1837 
1838 		/* The hw wants to have a stable context identifier for the
1839 		 * lifetime of the context (for OA, PASID, faults, etc).
1840 		 * This is limited in execlists to 21 bits.
1841 		 */
1842 		struct ida hw_ida;
1843 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1844 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1845 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1846 	} contexts;
1847 
1848 	u32 fdi_rx_config;
1849 
1850 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1851 	u32 chv_phy_control;
1852 	/*
1853 	 * Shadows for CHV DPLL_MD regs to keep the state
1854 	 * checker somewhat working in the presence hardware
1855 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1856 	 */
1857 	u32 chv_dpll_md[I915_MAX_PIPES];
1858 	u32 bxt_phy_grc;
1859 
1860 	u32 suspend_count;
1861 	bool power_domains_suspended;
1862 	struct i915_suspend_saved_registers regfile;
1863 	struct vlv_s0ix_state vlv_s0ix_state;
1864 
1865 	enum {
1866 		I915_SAGV_UNKNOWN = 0,
1867 		I915_SAGV_DISABLED,
1868 		I915_SAGV_ENABLED,
1869 		I915_SAGV_NOT_CONTROLLED
1870 	} sagv_status;
1871 
1872 	struct {
1873 		/*
1874 		 * Raw watermark latency values:
1875 		 * in 0.1us units for WM0,
1876 		 * in 0.5us units for WM1+.
1877 		 */
1878 		/* primary */
1879 		uint16_t pri_latency[5];
1880 		/* sprite */
1881 		uint16_t spr_latency[5];
1882 		/* cursor */
1883 		uint16_t cur_latency[5];
1884 		/*
1885 		 * Raw watermark memory latency values
1886 		 * for SKL for all 8 levels
1887 		 * in 1us units.
1888 		 */
1889 		uint16_t skl_latency[8];
1890 
1891 		/* current hardware state */
1892 		union {
1893 			struct ilk_wm_values hw;
1894 			struct skl_ddb_values skl_hw;
1895 			struct vlv_wm_values vlv;
1896 			struct g4x_wm_values g4x;
1897 		};
1898 
1899 		uint8_t max_level;
1900 
1901 		/*
1902 		 * Should be held around atomic WM register writing; also
1903 		 * protects * intel_crtc->wm.active and
1904 		 * cstate->wm.need_postvbl_update.
1905 		 */
1906 		struct mutex wm_mutex;
1907 
1908 		/*
1909 		 * Set during HW readout of watermarks/DDB.  Some platforms
1910 		 * need to know when we're still using BIOS-provided values
1911 		 * (which we don't fully trust).
1912 		 */
1913 		bool distrust_bios_wm;
1914 	} wm;
1915 
1916 	struct i915_runtime_pm runtime_pm;
1917 
1918 	struct {
1919 		bool initialized;
1920 
1921 		struct kobject *metrics_kobj;
1922 		struct ctl_table_header *sysctl_header;
1923 
1924 		/*
1925 		 * Lock associated with adding/modifying/removing OA configs
1926 		 * in dev_priv->perf.metrics_idr.
1927 		 */
1928 		struct mutex metrics_lock;
1929 
1930 		/*
1931 		 * List of dynamic configurations, you need to hold
1932 		 * dev_priv->perf.metrics_lock to access it.
1933 		 */
1934 		struct idr metrics_idr;
1935 
1936 		/*
1937 		 * Lock associated with anything below within this structure
1938 		 * except exclusive_stream.
1939 		 */
1940 		struct mutex lock;
1941 		struct list_head streams;
1942 
1943 		struct {
1944 			/*
1945 			 * The stream currently using the OA unit. If accessed
1946 			 * outside a syscall associated to its file
1947 			 * descriptor, you need to hold
1948 			 * dev_priv->drm.struct_mutex.
1949 			 */
1950 			struct i915_perf_stream *exclusive_stream;
1951 
1952 			struct intel_context *pinned_ctx;
1953 			u32 specific_ctx_id;
1954 			u32 specific_ctx_id_mask;
1955 
1956 			struct hrtimer poll_check_timer;
1957 			wait_queue_head_t poll_wq;
1958 			bool pollin;
1959 
1960 			/**
1961 			 * For rate limiting any notifications of spurious
1962 			 * invalid OA reports
1963 			 */
1964 			struct ratelimit_state spurious_report_rs;
1965 
1966 			bool periodic;
1967 			int period_exponent;
1968 
1969 			struct i915_oa_config test_config;
1970 
1971 			struct {
1972 				struct i915_vma *vma;
1973 				u8 *vaddr;
1974 				u32 last_ctx_id;
1975 				int format;
1976 				int format_size;
1977 
1978 				/**
1979 				 * Locks reads and writes to all head/tail state
1980 				 *
1981 				 * Consider: the head and tail pointer state
1982 				 * needs to be read consistently from a hrtimer
1983 				 * callback (atomic context) and read() fop
1984 				 * (user context) with tail pointer updates
1985 				 * happening in atomic context and head updates
1986 				 * in user context and the (unlikely)
1987 				 * possibility of read() errors needing to
1988 				 * reset all head/tail state.
1989 				 *
1990 				 * Note: Contention or performance aren't
1991 				 * currently a significant concern here
1992 				 * considering the relatively low frequency of
1993 				 * hrtimer callbacks (5ms period) and that
1994 				 * reads typically only happen in response to a
1995 				 * hrtimer event and likely complete before the
1996 				 * next callback.
1997 				 *
1998 				 * Note: This lock is not held *while* reading
1999 				 * and copying data to userspace so the value
2000 				 * of head observed in htrimer callbacks won't
2001 				 * represent any partial consumption of data.
2002 				 */
2003 				spinlock_t ptr_lock;
2004 
2005 				/**
2006 				 * One 'aging' tail pointer and one 'aged'
2007 				 * tail pointer ready to used for reading.
2008 				 *
2009 				 * Initial values of 0xffffffff are invalid
2010 				 * and imply that an update is required
2011 				 * (and should be ignored by an attempted
2012 				 * read)
2013 				 */
2014 				struct {
2015 					u32 offset;
2016 				} tails[2];
2017 
2018 				/**
2019 				 * Index for the aged tail ready to read()
2020 				 * data up to.
2021 				 */
2022 				unsigned int aged_tail_idx;
2023 
2024 				/**
2025 				 * A monotonic timestamp for when the current
2026 				 * aging tail pointer was read; used to
2027 				 * determine when it is old enough to trust.
2028 				 */
2029 				u64 aging_timestamp;
2030 
2031 				/**
2032 				 * Although we can always read back the head
2033 				 * pointer register, we prefer to avoid
2034 				 * trusting the HW state, just to avoid any
2035 				 * risk that some hardware condition could
2036 				 * somehow bump the head pointer unpredictably
2037 				 * and cause us to forward the wrong OA buffer
2038 				 * data to userspace.
2039 				 */
2040 				u32 head;
2041 			} oa_buffer;
2042 
2043 			u32 gen7_latched_oastatus1;
2044 			u32 ctx_oactxctrl_offset;
2045 			u32 ctx_flexeu0_offset;
2046 
2047 			/**
2048 			 * The RPT_ID/reason field for Gen8+ includes a bit
2049 			 * to determine if the CTX ID in the report is valid
2050 			 * but the specific bit differs between Gen 8 and 9
2051 			 */
2052 			u32 gen8_valid_ctx_bit;
2053 
2054 			struct i915_oa_ops ops;
2055 			const struct i915_oa_format *oa_formats;
2056 		} oa;
2057 	} perf;
2058 
2059 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2060 	struct {
2061 		void (*resume)(struct drm_i915_private *);
2062 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2063 
2064 		struct list_head timelines;
2065 
2066 		struct list_head active_rings;
2067 		struct list_head closed_vma;
2068 		u32 active_requests;
2069 		u32 request_serial;
2070 
2071 		/**
2072 		 * Is the GPU currently considered idle, or busy executing
2073 		 * userspace requests? Whilst idle, we allow runtime power
2074 		 * management to power down the hardware and display clocks.
2075 		 * In order to reduce the effect on performance, there
2076 		 * is a slight delay before we do so.
2077 		 */
2078 		bool awake;
2079 
2080 		/**
2081 		 * The number of times we have woken up.
2082 		 */
2083 		unsigned int epoch;
2084 #define I915_EPOCH_INVALID 0
2085 
2086 		/**
2087 		 * We leave the user IRQ off as much as possible,
2088 		 * but this means that requests will finish and never
2089 		 * be retired once the system goes idle. Set a timer to
2090 		 * fire periodically while the ring is running. When it
2091 		 * fires, go retire requests.
2092 		 */
2093 		struct delayed_work retire_work;
2094 
2095 		/**
2096 		 * When we detect an idle GPU, we want to turn on
2097 		 * powersaving features. So once we see that there
2098 		 * are no more requests outstanding and no more
2099 		 * arrive within a small period of time, we fire
2100 		 * off the idle_work.
2101 		 */
2102 		struct delayed_work idle_work;
2103 
2104 		ktime_t last_init_time;
2105 	} gt;
2106 
2107 	/* perform PHY state sanity checks? */
2108 	bool chv_phy_assert[2];
2109 
2110 	bool ipc_enabled;
2111 
2112 	/* Used to save the pipe-to-encoder mapping for audio */
2113 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2114 
2115 	/* necessary resource sharing with HDMI LPE audio driver. */
2116 	struct {
2117 		struct platform_device *platdev;
2118 		int	irq;
2119 	} lpe_audio;
2120 
2121 	struct i915_pmu pmu;
2122 
2123 	/*
2124 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2125 	 * will be rejected. Instead look for a better place.
2126 	 */
2127 };
2128 
to_i915(const struct drm_device * dev)2129 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2130 {
2131 	return container_of(dev, struct drm_i915_private, drm);
2132 }
2133 
kdev_to_i915(struct device * kdev)2134 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2135 {
2136 	return to_i915(dev_get_drvdata(kdev));
2137 }
2138 
wopcm_to_i915(struct intel_wopcm * wopcm)2139 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2140 {
2141 	return container_of(wopcm, struct drm_i915_private, wopcm);
2142 }
2143 
guc_to_i915(struct intel_guc * guc)2144 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2145 {
2146 	return container_of(guc, struct drm_i915_private, guc);
2147 }
2148 
huc_to_i915(struct intel_huc * huc)2149 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2150 {
2151 	return container_of(huc, struct drm_i915_private, huc);
2152 }
2153 
2154 /* Simple iterator over all initialised engines */
2155 #define for_each_engine(engine__, dev_priv__, id__) \
2156 	for ((id__) = 0; \
2157 	     (id__) < I915_NUM_ENGINES; \
2158 	     (id__)++) \
2159 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2160 
2161 /* Iterator over subset of engines selected by mask */
2162 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2163 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2164 	     (tmp__) ? \
2165 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2166 	     0;)
2167 
2168 enum hdmi_force_audio {
2169 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2170 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2171 	HDMI_AUDIO_AUTO,		/* trust EDID */
2172 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2173 };
2174 
2175 #define I915_GTT_OFFSET_NONE ((u32)-1)
2176 
2177 /*
2178  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2179  * considered to be the frontbuffer for the given plane interface-wise. This
2180  * doesn't mean that the hw necessarily already scans it out, but that any
2181  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2182  *
2183  * We have one bit per pipe and per scanout plane type.
2184  */
2185 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2186 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2187 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2188 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2189 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2190 })
2191 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2192 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2193 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2194 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2195 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2196 
2197 /*
2198  * Optimised SGL iterator for GEM objects
2199  */
2200 static __always_inline struct sgt_iter {
2201 	struct scatterlist *sgp;
2202 	union {
2203 		unsigned long pfn;
2204 		dma_addr_t dma;
2205 	};
2206 	unsigned int curr;
2207 	unsigned int max;
__sgt_iter(struct scatterlist * sgl,bool dma)2208 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2209 	struct sgt_iter s = { .sgp = sgl };
2210 
2211 	if (s.sgp) {
2212 		s.max = s.curr = s.sgp->offset;
2213 		s.max += s.sgp->length;
2214 		if (dma)
2215 			s.dma = sg_dma_address(s.sgp);
2216 		else
2217 			s.pfn = page_to_pfn(sg_page(s.sgp));
2218 	}
2219 
2220 	return s;
2221 }
2222 
____sg_next(struct scatterlist * sg)2223 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2224 {
2225 	++sg;
2226 	if (unlikely(sg_is_chain(sg)))
2227 		sg = sg_chain_ptr(sg);
2228 	return sg;
2229 }
2230 
2231 /**
2232  * __sg_next - return the next scatterlist entry in a list
2233  * @sg:		The current sg entry
2234  *
2235  * Description:
2236  *   If the entry is the last, return NULL; otherwise, step to the next
2237  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2238  *   otherwise just return the pointer to the current element.
2239  **/
__sg_next(struct scatterlist * sg)2240 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2241 {
2242 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2243 }
2244 
2245 /**
2246  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2247  * @__dmap:	DMA address (output)
2248  * @__iter:	'struct sgt_iter' (iterator state, internal)
2249  * @__sgt:	sg_table to iterate over (input)
2250  */
2251 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2252 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2253 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2254 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2255 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2256 
2257 /**
2258  * for_each_sgt_page - iterate over the pages of the given sg_table
2259  * @__pp:	page pointer (output)
2260  * @__iter:	'struct sgt_iter' (iterator state, internal)
2261  * @__sgt:	sg_table to iterate over (input)
2262  */
2263 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2264 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2265 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2266 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2267 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2268 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2269 
i915_sg_page_sizes(struct scatterlist * sg)2270 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2271 {
2272 	unsigned int page_sizes;
2273 
2274 	page_sizes = 0;
2275 	while (sg) {
2276 		GEM_BUG_ON(sg->offset);
2277 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2278 		page_sizes |= sg->length;
2279 		sg = __sg_next(sg);
2280 	}
2281 
2282 	return page_sizes;
2283 }
2284 
i915_sg_segment_size(void)2285 static inline unsigned int i915_sg_segment_size(void)
2286 {
2287 	unsigned int size = swiotlb_max_segment();
2288 
2289 	if (size == 0)
2290 		return SCATTERLIST_MAX_SEGMENT;
2291 
2292 	size = rounddown(size, PAGE_SIZE);
2293 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2294 	if (size < PAGE_SIZE)
2295 		size = PAGE_SIZE;
2296 
2297 	return size;
2298 }
2299 
2300 static inline const struct intel_device_info *
intel_info(const struct drm_i915_private * dev_priv)2301 intel_info(const struct drm_i915_private *dev_priv)
2302 {
2303 	return &dev_priv->info;
2304 }
2305 
2306 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2307 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2308 
2309 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2310 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2311 
2312 #define REVID_FOREVER		0xff
2313 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2314 
2315 #define GEN_FOREVER (0)
2316 
2317 #define INTEL_GEN_MASK(s, e) ( \
2318 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2319 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2320 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2321 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2322 )
2323 
2324 /*
2325  * Returns true if Gen is in inclusive range [Start, End].
2326  *
2327  * Use GEN_FOREVER for unbound start and or end.
2328  */
2329 #define IS_GEN(dev_priv, s, e) \
2330 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2331 
2332 /*
2333  * Return true if revision is in range [since,until] inclusive.
2334  *
2335  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2336  */
2337 #define IS_REVID(p, since, until) \
2338 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2339 
2340 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2341 
2342 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2343 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2344 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2345 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2346 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2347 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2348 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2349 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2350 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2351 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2352 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2353 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2354 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2355 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2356 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2357 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2358 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2359 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2360 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2361 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2362 				 (dev_priv)->info.gt == 1)
2363 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2364 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2365 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2366 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2367 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2368 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2369 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2370 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2371 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2372 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2373 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2374 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2375 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2376 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2377 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2378 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2379 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2380 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2381 /* ULX machines are also considered ULT. */
2382 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2383 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2384 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2385 				 (dev_priv)->info.gt == 3)
2386 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2387 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2388 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2389 				 (dev_priv)->info.gt == 3)
2390 /* ULX machines are also considered ULT. */
2391 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2392 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2393 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2394 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2395 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2396 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2397 				 INTEL_DEVID(dev_priv) == 0x1926)
2398 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2399 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2400 				 INTEL_DEVID(dev_priv) == 0x191E)
2401 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2402 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2403 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2404 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2405 				 INTEL_DEVID(dev_priv) == 0x5926)
2406 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2407 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2408 				 INTEL_DEVID(dev_priv) == 0x591E)
2409 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2410 				 (dev_priv)->info.gt == 2)
2411 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2412 				 (dev_priv)->info.gt == 3)
2413 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2414 				 (dev_priv)->info.gt == 4)
2415 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2416 				 (dev_priv)->info.gt == 2)
2417 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2418 				 (dev_priv)->info.gt == 3)
2419 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2420 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2421 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2422 				 (dev_priv)->info.gt == 2)
2423 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2424 				 (dev_priv)->info.gt == 3)
2425 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2426 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2427 
2428 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2429 
2430 #define SKL_REVID_A0		0x0
2431 #define SKL_REVID_B0		0x1
2432 #define SKL_REVID_C0		0x2
2433 #define SKL_REVID_D0		0x3
2434 #define SKL_REVID_E0		0x4
2435 #define SKL_REVID_F0		0x5
2436 #define SKL_REVID_G0		0x6
2437 #define SKL_REVID_H0		0x7
2438 
2439 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2440 
2441 #define BXT_REVID_A0		0x0
2442 #define BXT_REVID_A1		0x1
2443 #define BXT_REVID_B0		0x3
2444 #define BXT_REVID_B_LAST	0x8
2445 #define BXT_REVID_C0		0x9
2446 
2447 #define IS_BXT_REVID(dev_priv, since, until) \
2448 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2449 
2450 #define KBL_REVID_A0		0x0
2451 #define KBL_REVID_B0		0x1
2452 #define KBL_REVID_C0		0x2
2453 #define KBL_REVID_D0		0x3
2454 #define KBL_REVID_E0		0x4
2455 
2456 #define IS_KBL_REVID(dev_priv, since, until) \
2457 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2458 
2459 #define GLK_REVID_A0		0x0
2460 #define GLK_REVID_A1		0x1
2461 
2462 #define IS_GLK_REVID(dev_priv, since, until) \
2463 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2464 
2465 #define CNL_REVID_A0		0x0
2466 #define CNL_REVID_B0		0x1
2467 #define CNL_REVID_C0		0x2
2468 
2469 #define IS_CNL_REVID(p, since, until) \
2470 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2471 
2472 #define ICL_REVID_A0		0x0
2473 #define ICL_REVID_A2		0x1
2474 #define ICL_REVID_B0		0x3
2475 #define ICL_REVID_B2		0x4
2476 #define ICL_REVID_C0		0x5
2477 
2478 #define IS_ICL_REVID(p, since, until) \
2479 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2480 
2481 /*
2482  * The genX designation typically refers to the render engine, so render
2483  * capability related checks should use IS_GEN, while display and other checks
2484  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2485  * chips, etc.).
2486  */
2487 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2488 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2489 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2490 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2491 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2492 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2493 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2494 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2495 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2496 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2497 
2498 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2499 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2500 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2501 
2502 /*
2503  * The Gen7 cmdparser copies the scanned buffer to the ggtt for execution
2504  * All later gens can run the final buffer from the ppgtt
2505  */
2506 #define CMDPARSER_USES_GGTT(dev_priv) IS_GEN7(dev_priv)
2507 
2508 #define ENGINE_MASK(id)	BIT(id)
2509 #define RENDER_RING	ENGINE_MASK(RCS)
2510 #define BSD_RING	ENGINE_MASK(VCS)
2511 #define BLT_RING	ENGINE_MASK(BCS)
2512 #define VEBOX_RING	ENGINE_MASK(VECS)
2513 #define BSD2_RING	ENGINE_MASK(VCS2)
2514 #define BSD3_RING	ENGINE_MASK(VCS3)
2515 #define BSD4_RING	ENGINE_MASK(VCS4)
2516 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2517 #define ALL_ENGINES	(~0)
2518 
2519 #define HAS_ENGINE(dev_priv, id) \
2520 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2521 
2522 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2523 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2524 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2525 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2526 
2527 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2528 
2529 #define HAS_SECURE_BATCHES(dev_priv) (INTEL_GEN(dev_priv) < 6)
2530 
2531 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2532 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2533 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2534 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2535 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2536 
2537 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2538 
2539 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2540 		((dev_priv)->info.has_logical_ring_contexts)
2541 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2542 		((dev_priv)->info.has_logical_ring_elsq)
2543 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2544 		((dev_priv)->info.has_logical_ring_preemption)
2545 
2546 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2547 
2548 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2549 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2550 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2551 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2552 	GEM_BUG_ON((sizes) == 0); \
2553 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2554 })
2555 
2556 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2557 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2558 		((dev_priv)->info.overlay_needs_physical)
2559 
2560 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2561 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2562 
2563 #define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)	\
2564 	(IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) == 9)
2565 
2566 /* WaRsDisableCoarsePowerGating:skl,cnl */
2567 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2568 	(IS_CANNONLAKE(dev_priv) || INTEL_GEN(dev_priv) == 9)
2569 
2570 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2571 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2572 					IS_GEMINILAKE(dev_priv) || \
2573 					IS_KABYLAKE(dev_priv))
2574 
2575 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2576  * rows, which changed the alignment requirements and fence programming.
2577  */
2578 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2579 					 !(IS_I915G(dev_priv) || \
2580 					 IS_I915GM(dev_priv)))
2581 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2582 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2583 
2584 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2585 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2586 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2587 
2588 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2589 
2590 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2591 
2592 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2593 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2594 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2595 
2596 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2597 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2598 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2599 
2600 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2601 
2602 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2603 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2604 
2605 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2606 
2607 /*
2608  * For now, anything with a GuC requires uCode loading, and then supports
2609  * command submission once loaded. But these are logically independent
2610  * properties, so we have separate macros to test them.
2611  */
2612 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2613 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2614 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2615 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2616 
2617 /* For now, anything with a GuC has also HuC */
2618 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2619 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2620 
2621 /* Having a GuC is not the same as using a GuC */
2622 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2623 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2624 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2625 
2626 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2627 
2628 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2629 
2630 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2631 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2632 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2633 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2634 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2635 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2636 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2637 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2638 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2639 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2640 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2641 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2642 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2643 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2644 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2645 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2646 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2647 
2648 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2649 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2650 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2651 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2652 #define HAS_PCH_CNP_LP(dev_priv) \
2653 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2654 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2655 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2656 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2657 #define HAS_PCH_LPT_LP(dev_priv) \
2658 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2659 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2660 #define HAS_PCH_LPT_H(dev_priv) \
2661 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2662 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2663 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2664 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2665 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2666 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2667 
2668 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2669 
2670 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2671 
2672 /* DPF == dynamic parity feature */
2673 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2674 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2675 				 2 : HAS_L3_DPF(dev_priv))
2676 
2677 #define GT_FREQUENCY_MULTIPLIER 50
2678 #define GEN9_FREQ_SCALER 3
2679 
2680 #include "i915_trace.h"
2681 
intel_vtd_active(void)2682 static inline bool intel_vtd_active(void)
2683 {
2684 #ifdef CONFIG_INTEL_IOMMU
2685 	if (intel_iommu_gfx_mapped)
2686 		return true;
2687 #endif
2688 
2689 	/* Running as a guest, we assume the host is enforcing VT'd */
2690 	return !hypervisor_is_type(X86_HYPER_NATIVE);
2691 }
2692 
intel_scanout_needs_vtd_wa(struct drm_i915_private * dev_priv)2693 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2694 {
2695 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2696 }
2697 
2698 static inline bool
intel_ggtt_update_needs_vtd_wa(struct drm_i915_private * dev_priv)2699 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2700 {
2701 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2702 }
2703 
2704 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2705 				int enable_ppgtt);
2706 
2707 /* i915_drv.c */
2708 void __printf(3, 4)
2709 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2710 	      const char *fmt, ...);
2711 
2712 #define i915_report_error(dev_priv, fmt, ...)				   \
2713 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2714 
2715 #ifdef CONFIG_COMPAT
2716 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2717 			      unsigned long arg);
2718 #else
2719 #define i915_compat_ioctl NULL
2720 #endif
2721 extern const struct dev_pm_ops i915_pm_ops;
2722 
2723 extern int i915_driver_load(struct pci_dev *pdev,
2724 			    const struct pci_device_id *ent);
2725 extern void i915_driver_unload(struct drm_device *dev);
2726 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2727 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2728 
2729 extern void i915_reset(struct drm_i915_private *i915,
2730 		       unsigned int stalled_mask,
2731 		       const char *reason);
2732 extern int i915_reset_engine(struct intel_engine_cs *engine,
2733 			     const char *reason);
2734 
2735 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2736 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2737 extern int intel_guc_reset_engine(struct intel_guc *guc,
2738 				  struct intel_engine_cs *engine);
2739 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2740 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2741 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2742 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2743 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2744 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2745 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2746 
2747 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2748 int intel_engines_init(struct drm_i915_private *dev_priv);
2749 
2750 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2751 
2752 /* intel_hotplug.c */
2753 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2754 			   u32 pin_mask, u32 long_mask);
2755 void intel_hpd_init(struct drm_i915_private *dev_priv);
2756 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2757 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2758 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2759 				   enum port port);
2760 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2761 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2762 
2763 /* i915_irq.c */
i915_queue_hangcheck(struct drm_i915_private * dev_priv)2764 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2765 {
2766 	unsigned long delay;
2767 
2768 	if (unlikely(!i915_modparams.enable_hangcheck))
2769 		return;
2770 
2771 	/* Don't continually defer the hangcheck so that it is always run at
2772 	 * least once after work has been scheduled on any ring. Otherwise,
2773 	 * we will ignore a hung ring if a second ring is kept busy.
2774 	 */
2775 
2776 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2777 	queue_delayed_work(system_long_wq,
2778 			   &dev_priv->gpu_error.hangcheck_work, delay);
2779 }
2780 
2781 __printf(4, 5)
2782 void i915_handle_error(struct drm_i915_private *dev_priv,
2783 		       u32 engine_mask,
2784 		       unsigned long flags,
2785 		       const char *fmt, ...);
2786 #define I915_ERROR_CAPTURE BIT(0)
2787 
2788 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2789 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2790 int intel_irq_install(struct drm_i915_private *dev_priv);
2791 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2792 
intel_gvt_active(struct drm_i915_private * dev_priv)2793 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2794 {
2795 	return dev_priv->gvt;
2796 }
2797 
intel_vgpu_active(struct drm_i915_private * dev_priv)2798 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2799 {
2800 	return dev_priv->vgpu.active;
2801 }
2802 
2803 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2804 			      enum pipe pipe);
2805 void
2806 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2807 		     u32 status_mask);
2808 
2809 void
2810 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2811 		      u32 status_mask);
2812 
2813 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2814 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2815 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2816 				   uint32_t mask,
2817 				   uint32_t bits);
2818 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2819 			    uint32_t interrupt_mask,
2820 			    uint32_t enabled_irq_mask);
2821 static inline void
ilk_enable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)2822 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2823 {
2824 	ilk_update_display_irq(dev_priv, bits, bits);
2825 }
2826 static inline void
ilk_disable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)2827 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2828 {
2829 	ilk_update_display_irq(dev_priv, bits, 0);
2830 }
2831 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2832 			 enum pipe pipe,
2833 			 uint32_t interrupt_mask,
2834 			 uint32_t enabled_irq_mask);
bdw_enable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)2835 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2836 				       enum pipe pipe, uint32_t bits)
2837 {
2838 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2839 }
bdw_disable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)2840 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2841 					enum pipe pipe, uint32_t bits)
2842 {
2843 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2844 }
2845 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2846 				  uint32_t interrupt_mask,
2847 				  uint32_t enabled_irq_mask);
2848 static inline void
ibx_enable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)2849 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2850 {
2851 	ibx_display_interrupt_update(dev_priv, bits, bits);
2852 }
2853 static inline void
ibx_disable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)2854 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2855 {
2856 	ibx_display_interrupt_update(dev_priv, bits, 0);
2857 }
2858 
2859 /* i915_gem.c */
2860 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2861 			  struct drm_file *file_priv);
2862 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2863 			 struct drm_file *file_priv);
2864 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2865 			  struct drm_file *file_priv);
2866 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2867 			struct drm_file *file_priv);
2868 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2869 			struct drm_file *file_priv);
2870 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2871 			      struct drm_file *file_priv);
2872 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2873 			     struct drm_file *file_priv);
2874 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2875 			      struct drm_file *file_priv);
2876 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2877 			       struct drm_file *file_priv);
2878 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2879 			struct drm_file *file_priv);
2880 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2881 			       struct drm_file *file);
2882 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2883 			       struct drm_file *file);
2884 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2885 			    struct drm_file *file_priv);
2886 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2887 			   struct drm_file *file_priv);
2888 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2889 			      struct drm_file *file_priv);
2890 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2891 			      struct drm_file *file_priv);
2892 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2893 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2894 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2895 			   struct drm_file *file);
2896 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2897 				struct drm_file *file_priv);
2898 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2899 			struct drm_file *file_priv);
2900 void i915_gem_sanitize(struct drm_i915_private *i915);
2901 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2902 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2903 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2904 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2905 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2906 
2907 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2908 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2909 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2910 			 const struct drm_i915_gem_object_ops *ops);
2911 struct drm_i915_gem_object *
2912 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2913 struct drm_i915_gem_object *
2914 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2915 				 const void *data, size_t size);
2916 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2917 void i915_gem_free_object(struct drm_gem_object *obj);
2918 
i915_gem_drain_freed_objects(struct drm_i915_private * i915)2919 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2920 {
2921 	if (!atomic_read(&i915->mm.free_count))
2922 		return;
2923 
2924 	/* A single pass should suffice to release all the freed objects (along
2925 	 * most call paths) , but be a little more paranoid in that freeing
2926 	 * the objects does take a little amount of time, during which the rcu
2927 	 * callbacks could have added new objects into the freed list, and
2928 	 * armed the work again.
2929 	 */
2930 	do {
2931 		rcu_barrier();
2932 	} while (flush_work(&i915->mm.free_work));
2933 }
2934 
i915_gem_drain_workqueue(struct drm_i915_private * i915)2935 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2936 {
2937 	/*
2938 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2939 	 * general we have workers that are armed by RCU and then rearm
2940 	 * themselves in their callbacks. To be paranoid, we need to
2941 	 * drain the workqueue a second time after waiting for the RCU
2942 	 * grace period so that we catch work queued via RCU from the first
2943 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2944 	 * a result, we make an assumption that we only don't require more
2945 	 * than 2 passes to catch all recursive RCU delayed work.
2946 	 *
2947 	 */
2948 	int pass = 2;
2949 	do {
2950 		rcu_barrier();
2951 		drain_workqueue(i915->wq);
2952 	} while (--pass);
2953 }
2954 
2955 struct i915_vma * __must_check
2956 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2957 			 const struct i915_ggtt_view *view,
2958 			 u64 size,
2959 			 u64 alignment,
2960 			 u64 flags);
2961 
2962 struct i915_vma * __must_check
2963 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2964 		    struct i915_address_space *vm,
2965 		    const struct i915_ggtt_view *view,
2966 		    u64 size,
2967 		    u64 alignment,
2968 		    u64 flags);
2969 
2970 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2971 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2972 
2973 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2974 
__sg_page_count(const struct scatterlist * sg)2975 static inline int __sg_page_count(const struct scatterlist *sg)
2976 {
2977 	return sg->length >> PAGE_SHIFT;
2978 }
2979 
2980 struct scatterlist *
2981 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2982 		       unsigned int n, unsigned int *offset);
2983 
2984 struct page *
2985 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2986 			 unsigned int n);
2987 
2988 struct page *
2989 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2990 			       unsigned int n);
2991 
2992 dma_addr_t
2993 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2994 				unsigned long n);
2995 
2996 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2997 				 struct sg_table *pages,
2998 				 unsigned int sg_page_sizes);
2999 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3000 
3001 static inline int __must_check
i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3002 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3003 {
3004 	might_lock(&obj->mm.lock);
3005 
3006 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3007 		return 0;
3008 
3009 	return __i915_gem_object_get_pages(obj);
3010 }
3011 
3012 static inline bool
i915_gem_object_has_pages(struct drm_i915_gem_object * obj)3013 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3014 {
3015 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3016 }
3017 
3018 static inline void
__i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3019 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3020 {
3021 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3022 
3023 	atomic_inc(&obj->mm.pages_pin_count);
3024 }
3025 
3026 static inline bool
i915_gem_object_has_pinned_pages(struct drm_i915_gem_object * obj)3027 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3028 {
3029 	return atomic_read(&obj->mm.pages_pin_count);
3030 }
3031 
3032 static inline void
__i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3033 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3034 {
3035 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3036 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3037 
3038 	atomic_dec(&obj->mm.pages_pin_count);
3039 }
3040 
3041 static inline void
i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3042 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3043 {
3044 	__i915_gem_object_unpin_pages(obj);
3045 }
3046 
3047 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3048 	I915_MM_NORMAL = 0,
3049 	I915_MM_SHRINKER
3050 };
3051 
3052 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3053 				 enum i915_mm_subclass subclass);
3054 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3055 
3056 enum i915_map_type {
3057 	I915_MAP_WB = 0,
3058 	I915_MAP_WC,
3059 #define I915_MAP_OVERRIDE BIT(31)
3060 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3061 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3062 };
3063 
3064 /**
3065  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3066  * @obj: the object to map into kernel address space
3067  * @type: the type of mapping, used to select pgprot_t
3068  *
3069  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3070  * pages and then returns a contiguous mapping of the backing storage into
3071  * the kernel address space. Based on the @type of mapping, the PTE will be
3072  * set to either WriteBack or WriteCombine (via pgprot_t).
3073  *
3074  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3075  * mapping is no longer required.
3076  *
3077  * Returns the pointer through which to access the mapped object, or an
3078  * ERR_PTR() on error.
3079  */
3080 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3081 					   enum i915_map_type type);
3082 
3083 /**
3084  * i915_gem_object_unpin_map - releases an earlier mapping
3085  * @obj: the object to unmap
3086  *
3087  * After pinning the object and mapping its pages, once you are finished
3088  * with your access, call i915_gem_object_unpin_map() to release the pin
3089  * upon the mapping. Once the pin count reaches zero, that mapping may be
3090  * removed.
3091  */
i915_gem_object_unpin_map(struct drm_i915_gem_object * obj)3092 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3093 {
3094 	i915_gem_object_unpin_pages(obj);
3095 }
3096 
3097 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3098 				    unsigned int *needs_clflush);
3099 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3100 				     unsigned int *needs_clflush);
3101 #define CLFLUSH_BEFORE	BIT(0)
3102 #define CLFLUSH_AFTER	BIT(1)
3103 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3104 
3105 static inline void
i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object * obj)3106 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3107 {
3108 	i915_gem_object_unpin_pages(obj);
3109 }
3110 
3111 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3112 int i915_gem_dumb_create(struct drm_file *file_priv,
3113 			 struct drm_device *dev,
3114 			 struct drm_mode_create_dumb *args);
3115 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3116 		      uint32_t handle, uint64_t *offset);
3117 int i915_gem_mmap_gtt_version(void);
3118 
3119 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3120 		       struct drm_i915_gem_object *new,
3121 		       unsigned frontbuffer_bits);
3122 
3123 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3124 
3125 struct i915_request *
3126 i915_gem_find_active_request(struct intel_engine_cs *engine);
3127 
i915_reset_backoff(struct i915_gpu_error * error)3128 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3129 {
3130 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3131 }
3132 
i915_reset_handoff(struct i915_gpu_error * error)3133 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3134 {
3135 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3136 }
3137 
i915_terminally_wedged(struct i915_gpu_error * error)3138 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3139 {
3140 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3141 }
3142 
i915_reset_backoff_or_wedged(struct i915_gpu_error * error)3143 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3144 {
3145 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3146 }
3147 
i915_reset_count(struct i915_gpu_error * error)3148 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3149 {
3150 	return READ_ONCE(error->reset_count);
3151 }
3152 
i915_reset_engine_count(struct i915_gpu_error * error,struct intel_engine_cs * engine)3153 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3154 					  struct intel_engine_cs *engine)
3155 {
3156 	return READ_ONCE(error->reset_engine_count[engine->id]);
3157 }
3158 
3159 struct i915_request *
3160 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3161 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3162 void i915_gem_reset(struct drm_i915_private *dev_priv,
3163 		    unsigned int stalled_mask);
3164 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3165 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3166 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3167 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3168 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3169 			   struct i915_request *request,
3170 			   bool stalled);
3171 
3172 void i915_gem_init_mmio(struct drm_i915_private *i915);
3173 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3174 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3175 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3176 void i915_gem_fini(struct drm_i915_private *dev_priv);
3177 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3178 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3179 			   unsigned int flags, long timeout);
3180 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3181 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3182 void i915_gem_resume(struct drm_i915_private *dev_priv);
3183 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3184 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3185 			 unsigned int flags,
3186 			 long timeout,
3187 			 struct intel_rps_client *rps);
3188 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3189 				  unsigned int flags,
3190 				  const struct i915_sched_attr *attr);
3191 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3192 
3193 int __must_check
3194 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3195 int __must_check
3196 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3197 int __must_check
3198 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3199 struct i915_vma * __must_check
3200 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3201 				     u32 alignment,
3202 				     const struct i915_ggtt_view *view,
3203 				     unsigned int flags);
3204 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3205 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3206 				int align);
3207 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3208 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3209 
3210 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3211 				    enum i915_cache_level cache_level);
3212 
3213 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3214 				struct dma_buf *dma_buf);
3215 
3216 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3217 				struct drm_gem_object *gem_obj, int flags);
3218 
3219 static inline struct i915_hw_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space * vm)3220 i915_vm_to_ppgtt(struct i915_address_space *vm)
3221 {
3222 	return container_of(vm, struct i915_hw_ppgtt, vm);
3223 }
3224 
3225 /* i915_gem_fence_reg.c */
3226 struct drm_i915_fence_reg *
3227 i915_reserve_fence(struct drm_i915_private *dev_priv);
3228 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3229 
3230 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3231 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3232 
3233 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3234 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3235 				       struct sg_table *pages);
3236 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3237 					 struct sg_table *pages);
3238 
3239 static inline struct i915_gem_context *
__i915_gem_context_lookup_rcu(struct drm_i915_file_private * file_priv,u32 id)3240 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3241 {
3242 	return idr_find(&file_priv->context_idr, id);
3243 }
3244 
3245 static inline struct i915_gem_context *
i915_gem_context_lookup(struct drm_i915_file_private * file_priv,u32 id)3246 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3247 {
3248 	struct i915_gem_context *ctx;
3249 
3250 	rcu_read_lock();
3251 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3252 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3253 		ctx = NULL;
3254 	rcu_read_unlock();
3255 
3256 	return ctx;
3257 }
3258 
3259 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3260 			 struct drm_file *file);
3261 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3262 			       struct drm_file *file);
3263 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3264 				  struct drm_file *file);
3265 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3266 			    struct i915_gem_context *ctx,
3267 			    uint32_t *reg_state);
3268 
3269 /* i915_gem_evict.c */
3270 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3271 					  u64 min_size, u64 alignment,
3272 					  unsigned cache_level,
3273 					  u64 start, u64 end,
3274 					  unsigned flags);
3275 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3276 					 struct drm_mm_node *node,
3277 					 unsigned int flags);
3278 int i915_gem_evict_vm(struct i915_address_space *vm);
3279 
3280 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3281 
3282 /* belongs in i915_gem_gtt.h */
i915_gem_chipset_flush(struct drm_i915_private * dev_priv)3283 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3284 {
3285 	wmb();
3286 	if (INTEL_GEN(dev_priv) < 6)
3287 		intel_gtt_chipset_flush();
3288 }
3289 
3290 /* i915_gem_stolen.c */
3291 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3292 				struct drm_mm_node *node, u64 size,
3293 				unsigned alignment);
3294 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3295 					 struct drm_mm_node *node, u64 size,
3296 					 unsigned alignment, u64 start,
3297 					 u64 end);
3298 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3299 				 struct drm_mm_node *node);
3300 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3301 void i915_gem_cleanup_stolen(struct drm_device *dev);
3302 struct drm_i915_gem_object *
3303 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3304 			      resource_size_t size);
3305 struct drm_i915_gem_object *
3306 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3307 					       resource_size_t stolen_offset,
3308 					       resource_size_t gtt_offset,
3309 					       resource_size_t size);
3310 
3311 /* i915_gem_internal.c */
3312 struct drm_i915_gem_object *
3313 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3314 				phys_addr_t size);
3315 
3316 /* i915_gem_shrinker.c */
3317 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3318 			      unsigned long target,
3319 			      unsigned long *nr_scanned,
3320 			      unsigned flags);
3321 #define I915_SHRINK_PURGEABLE 0x1
3322 #define I915_SHRINK_UNBOUND 0x2
3323 #define I915_SHRINK_BOUND 0x4
3324 #define I915_SHRINK_ACTIVE 0x8
3325 #define I915_SHRINK_VMAPS 0x10
3326 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3327 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3328 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3329 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3330 
3331 /* i915_gem_tiling.c */
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object * obj)3332 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3333 {
3334 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3335 
3336 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3337 		i915_gem_object_is_tiled(obj);
3338 }
3339 
3340 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3341 			unsigned int tiling, unsigned int stride);
3342 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3343 			     unsigned int tiling, unsigned int stride);
3344 
3345 /* i915_debugfs.c */
3346 #ifdef CONFIG_DEBUG_FS
3347 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3348 int i915_debugfs_connector_add(struct drm_connector *connector);
3349 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3350 #else
i915_debugfs_register(struct drm_i915_private * dev_priv)3351 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
i915_debugfs_connector_add(struct drm_connector * connector)3352 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3353 { return 0; }
intel_display_crc_init(struct drm_i915_private * dev_priv)3354 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3355 #endif
3356 
3357 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3358 
3359 /* i915_cmd_parser.c */
3360 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3361 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3362 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3363 int intel_engine_cmd_parser(struct i915_gem_context *cxt,
3364 			    struct intel_engine_cs *engine,
3365 			    struct drm_i915_gem_object *batch_obj,
3366 			    u64 user_batch_start,
3367 			    u32 batch_start_offset,
3368 			    u32 batch_len,
3369 			    struct drm_i915_gem_object *shadow_batch_obj,
3370 			    u64 shadow_batch_start);
3371 
3372 /* i915_perf.c */
3373 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3374 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3375 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3376 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3377 
3378 /* i915_suspend.c */
3379 extern int i915_save_state(struct drm_i915_private *dev_priv);
3380 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3381 
3382 /* i915_sysfs.c */
3383 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3384 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3385 
3386 /* intel_lpe_audio.c */
3387 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3388 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3389 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3390 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3391 			    enum pipe pipe, enum port port,
3392 			    const void *eld, int ls_clock, bool dp_output);
3393 
3394 /* intel_i2c.c */
3395 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3396 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3397 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3398 				     unsigned int pin);
3399 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3400 
3401 extern struct i2c_adapter *
3402 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3403 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3404 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
intel_gmbus_is_forced_bit(struct i2c_adapter * adapter)3405 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3406 {
3407 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3408 }
3409 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3410 
3411 /* intel_bios.c */
3412 void intel_bios_init(struct drm_i915_private *dev_priv);
3413 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3414 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3415 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3416 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3417 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3418 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3419 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3420 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3421 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3422 				     enum port port);
3423 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3424 				enum port port);
3425 
3426 /* intel_acpi.c */
3427 #ifdef CONFIG_ACPI
3428 extern void intel_register_dsm_handler(void);
3429 extern void intel_unregister_dsm_handler(void);
3430 #else
intel_register_dsm_handler(void)3431 static inline void intel_register_dsm_handler(void) { return; }
intel_unregister_dsm_handler(void)3432 static inline void intel_unregister_dsm_handler(void) { return; }
3433 #endif /* CONFIG_ACPI */
3434 
3435 /* intel_device_info.c */
3436 static inline struct intel_device_info *
mkwrite_device_info(struct drm_i915_private * dev_priv)3437 mkwrite_device_info(struct drm_i915_private *dev_priv)
3438 {
3439 	return (struct intel_device_info *)&dev_priv->info;
3440 }
3441 
3442 /* modesetting */
3443 extern void intel_modeset_init_hw(struct drm_device *dev);
3444 extern int intel_modeset_init(struct drm_device *dev);
3445 extern void intel_modeset_cleanup(struct drm_device *dev);
3446 extern int intel_connector_register(struct drm_connector *);
3447 extern void intel_connector_unregister(struct drm_connector *);
3448 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3449 				       bool state);
3450 extern void intel_display_resume(struct drm_device *dev);
3451 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3452 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3453 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3454 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3455 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3456 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3457 				       bool interactive);
3458 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3459 				  bool enable);
3460 
3461 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3462 			struct drm_file *file);
3463 
3464 /* overlay */
3465 extern struct intel_overlay_error_state *
3466 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3467 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3468 					    struct intel_overlay_error_state *error);
3469 
3470 extern struct intel_display_error_state *
3471 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3472 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3473 					    struct intel_display_error_state *error);
3474 
3475 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3476 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3477 				    u32 val, int fast_timeout_us,
3478 				    int slow_timeout_ms);
3479 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3480 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3481 
3482 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3483 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3484 
3485 /* intel_sideband.c */
3486 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3487 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3488 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3489 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3490 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3491 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3492 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3493 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3494 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3495 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3496 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3497 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3498 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3499 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3500 		   enum intel_sbi_destination destination);
3501 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3502 		     enum intel_sbi_destination destination);
3503 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3504 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3505 
3506 /* intel_dpio_phy.c */
3507 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3508 			     enum dpio_phy *phy, enum dpio_channel *ch);
3509 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3510 				  enum port port, u32 margin, u32 scale,
3511 				  u32 enable, u32 deemphasis);
3512 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3513 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3514 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3515 			    enum dpio_phy phy);
3516 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3517 			      enum dpio_phy phy);
3518 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3519 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3520 				     uint8_t lane_lat_optim_mask);
3521 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3522 
3523 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3524 			      u32 deemph_reg_value, u32 margin_reg_value,
3525 			      bool uniq_trans_scale);
3526 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3527 			      const struct intel_crtc_state *crtc_state,
3528 			      bool reset);
3529 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3530 			    const struct intel_crtc_state *crtc_state);
3531 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3532 				const struct intel_crtc_state *crtc_state);
3533 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3534 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3535 			      const struct intel_crtc_state *old_crtc_state);
3536 
3537 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3538 			      u32 demph_reg_value, u32 preemph_reg_value,
3539 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3540 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3541 			    const struct intel_crtc_state *crtc_state);
3542 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3543 				const struct intel_crtc_state *crtc_state);
3544 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3545 			 const struct intel_crtc_state *old_crtc_state);
3546 
3547 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3548 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3549 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3550 			   const i915_reg_t reg);
3551 
3552 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3553 
intel_rc6_residency_us(struct drm_i915_private * dev_priv,const i915_reg_t reg)3554 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3555 					 const i915_reg_t reg)
3556 {
3557 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3558 }
3559 
3560 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3561 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3562 
3563 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3564 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3565 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3566 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3567 
3568 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3569 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3570 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3571 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3572 
3573 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3574  * will be implemented using 2 32-bit writes in an arbitrary order with
3575  * an arbitrary delay between them. This can cause the hardware to
3576  * act upon the intermediate value, possibly leading to corruption and
3577  * machine death. For this reason we do not support I915_WRITE64, or
3578  * dev_priv->uncore.funcs.mmio_writeq.
3579  *
3580  * When reading a 64-bit value as two 32-bit values, the delay may cause
3581  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3582  * occasionally a 64-bit register does not actualy support a full readq
3583  * and must be read using two 32-bit reads.
3584  *
3585  * You have been warned.
3586  */
3587 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3588 
3589 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3590 	u32 upper, lower, old_upper, loop = 0;				\
3591 	upper = I915_READ(upper_reg);					\
3592 	do {								\
3593 		old_upper = upper;					\
3594 		lower = I915_READ(lower_reg);				\
3595 		upper = I915_READ(upper_reg);				\
3596 	} while (upper != old_upper && loop++ < 2);			\
3597 	(u64)upper << 32 | lower; })
3598 
3599 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3600 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3601 
3602 #define __raw_read(x, s) \
3603 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3604 					     i915_reg_t reg) \
3605 { \
3606 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3607 }
3608 
3609 #define __raw_write(x, s) \
3610 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3611 				       i915_reg_t reg, uint##x##_t val) \
3612 { \
3613 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3614 }
3615 __raw_read(8, b)
3616 __raw_read(16, w)
3617 __raw_read(32, l)
3618 __raw_read(64, q)
3619 
3620 __raw_write(8, b)
3621 __raw_write(16, w)
3622 __raw_write(32, l)
3623 __raw_write(64, q)
3624 
3625 #undef __raw_read
3626 #undef __raw_write
3627 
3628 /* These are untraced mmio-accessors that are only valid to be used inside
3629  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3630  * controlled.
3631  *
3632  * Think twice, and think again, before using these.
3633  *
3634  * As an example, these accessors can possibly be used between:
3635  *
3636  * spin_lock_irq(&dev_priv->uncore.lock);
3637  * intel_uncore_forcewake_get__locked();
3638  *
3639  * and
3640  *
3641  * intel_uncore_forcewake_put__locked();
3642  * spin_unlock_irq(&dev_priv->uncore.lock);
3643  *
3644  *
3645  * Note: some registers may not need forcewake held, so
3646  * intel_uncore_forcewake_{get,put} can be omitted, see
3647  * intel_uncore_forcewake_for_reg().
3648  *
3649  * Certain architectures will die if the same cacheline is concurrently accessed
3650  * by different clients (e.g. on Ivybridge). Access to registers should
3651  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3652  * a more localised lock guarding all access to that bank of registers.
3653  */
3654 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3655 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3656 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3657 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3658 
3659 /* "Broadcast RGB" property */
3660 #define INTEL_BROADCAST_RGB_AUTO 0
3661 #define INTEL_BROADCAST_RGB_FULL 1
3662 #define INTEL_BROADCAST_RGB_LIMITED 2
3663 
i915_vgacntrl_reg(struct drm_i915_private * dev_priv)3664 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3665 {
3666 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3667 		return VLV_VGACNTRL;
3668 	else if (INTEL_GEN(dev_priv) >= 5)
3669 		return CPU_VGACNTRL;
3670 	else
3671 		return VGACNTRL;
3672 }
3673 
msecs_to_jiffies_timeout(const unsigned int m)3674 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3675 {
3676 	unsigned long j = msecs_to_jiffies(m);
3677 
3678 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3679 }
3680 
nsecs_to_jiffies_timeout(const u64 n)3681 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3682 {
3683 	/* nsecs_to_jiffies64() does not guard against overflow */
3684 	if (NSEC_PER_SEC % HZ &&
3685 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3686 		return MAX_JIFFY_OFFSET;
3687 
3688         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3689 }
3690 
3691 /*
3692  * If you need to wait X milliseconds between events A and B, but event B
3693  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3694  * when event A happened, then just before event B you call this function and
3695  * pass the timestamp as the first argument, and X as the second argument.
3696  */
3697 static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies,int to_wait_ms)3698 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3699 {
3700 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3701 
3702 	/*
3703 	 * Don't re-read the value of "jiffies" every time since it may change
3704 	 * behind our back and break the math.
3705 	 */
3706 	tmp_jiffies = jiffies;
3707 	target_jiffies = timestamp_jiffies +
3708 			 msecs_to_jiffies_timeout(to_wait_ms);
3709 
3710 	if (time_after(target_jiffies, tmp_jiffies)) {
3711 		remaining_jiffies = target_jiffies - tmp_jiffies;
3712 		while (remaining_jiffies)
3713 			remaining_jiffies =
3714 			    schedule_timeout_uninterruptible(remaining_jiffies);
3715 	}
3716 }
3717 
3718 static inline bool
__i915_request_irq_complete(const struct i915_request * rq)3719 __i915_request_irq_complete(const struct i915_request *rq)
3720 {
3721 	struct intel_engine_cs *engine = rq->engine;
3722 	u32 seqno;
3723 
3724 	/* Note that the engine may have wrapped around the seqno, and
3725 	 * so our request->global_seqno will be ahead of the hardware,
3726 	 * even though it completed the request before wrapping. We catch
3727 	 * this by kicking all the waiters before resetting the seqno
3728 	 * in hardware, and also signal the fence.
3729 	 */
3730 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3731 		return true;
3732 
3733 	/* The request was dequeued before we were awoken. We check after
3734 	 * inspecting the hw to confirm that this was the same request
3735 	 * that generated the HWS update. The memory barriers within
3736 	 * the request execution are sufficient to ensure that a check
3737 	 * after reading the value from hw matches this request.
3738 	 */
3739 	seqno = i915_request_global_seqno(rq);
3740 	if (!seqno)
3741 		return false;
3742 
3743 	/* Before we do the heavier coherent read of the seqno,
3744 	 * check the value (hopefully) in the CPU cacheline.
3745 	 */
3746 	if (__i915_request_completed(rq, seqno))
3747 		return true;
3748 
3749 	/* Ensure our read of the seqno is coherent so that we
3750 	 * do not "miss an interrupt" (i.e. if this is the last
3751 	 * request and the seqno write from the GPU is not visible
3752 	 * by the time the interrupt fires, we will see that the
3753 	 * request is incomplete and go back to sleep awaiting
3754 	 * another interrupt that will never come.)
3755 	 *
3756 	 * Strictly, we only need to do this once after an interrupt,
3757 	 * but it is easier and safer to do it every time the waiter
3758 	 * is woken.
3759 	 */
3760 	if (engine->irq_seqno_barrier &&
3761 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3762 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3763 
3764 		/* The ordering of irq_posted versus applying the barrier
3765 		 * is crucial. The clearing of the current irq_posted must
3766 		 * be visible before we perform the barrier operation,
3767 		 * such that if a subsequent interrupt arrives, irq_posted
3768 		 * is reasserted and our task rewoken (which causes us to
3769 		 * do another __i915_request_irq_complete() immediately
3770 		 * and reapply the barrier). Conversely, if the clear
3771 		 * occurs after the barrier, then an interrupt that arrived
3772 		 * whilst we waited on the barrier would not trigger a
3773 		 * barrier on the next pass, and the read may not see the
3774 		 * seqno update.
3775 		 */
3776 		engine->irq_seqno_barrier(engine);
3777 
3778 		/* If we consume the irq, but we are no longer the bottom-half,
3779 		 * the real bottom-half may not have serialised their own
3780 		 * seqno check with the irq-barrier (i.e. may have inspected
3781 		 * the seqno before we believe it coherent since they see
3782 		 * irq_posted == false but we are still running).
3783 		 */
3784 		spin_lock_irq(&b->irq_lock);
3785 		if (b->irq_wait && b->irq_wait->tsk != current)
3786 			/* Note that if the bottom-half is changed as we
3787 			 * are sending the wake-up, the new bottom-half will
3788 			 * be woken by whomever made the change. We only have
3789 			 * to worry about when we steal the irq-posted for
3790 			 * ourself.
3791 			 */
3792 			wake_up_process(b->irq_wait->tsk);
3793 		spin_unlock_irq(&b->irq_lock);
3794 
3795 		if (__i915_request_completed(rq, seqno))
3796 			return true;
3797 	}
3798 
3799 	return false;
3800 }
3801 
3802 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3803 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3804 
3805 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3806  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3807  * perform the operation. To check beforehand, pass in the parameters to
3808  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3809  * you only need to pass in the minor offsets, page-aligned pointers are
3810  * always valid.
3811  *
3812  * For just checking for SSE4.1, in the foreknowledge that the future use
3813  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3814  */
3815 #define i915_can_memcpy_from_wc(dst, src, len) \
3816 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3817 
3818 #define i915_has_memcpy_from_wc() \
3819 	i915_memcpy_from_wc(NULL, NULL, 0)
3820 
3821 /* i915_mm.c */
3822 int remap_io_mapping(struct vm_area_struct *vma,
3823 		     unsigned long addr, unsigned long pfn, unsigned long size,
3824 		     struct io_mapping *iomap);
3825 
intel_hws_csb_write_index(struct drm_i915_private * i915)3826 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3827 {
3828 	if (INTEL_GEN(i915) >= 10)
3829 		return CNL_HWS_CSB_WRITE_INDEX;
3830 	else
3831 		return I915_HWS_CSB_WRITE_INDEX;
3832 }
3833 
3834 #endif
3835