1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 struct urb *urb;
756 int length;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 urb->actual_length = length;
775 memcpy(urb->transfer_buffer, buffer, length);
776
777 usb_hcd_unlink_urb_from_ep(hcd, urb);
778 usb_hcd_giveback_urb(hcd, urb, 0);
779 } else {
780 length = 0;
781 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
782 }
783 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
784 }
785
786 /* The USB 2.0 spec says 256 ms. This is close enough and won't
787 * exceed that limit if HZ is 100. The math is more clunky than
788 * maybe expected, this is to make sure that all timers for USB devices
789 * fire at the same time to give the CPU a break in between */
790 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
791 (length == 0 && hcd->status_urb != NULL))
792 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
793 }
794 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
795
796 /* timer callback */
rh_timer_func(struct timer_list * t)797 static void rh_timer_func (struct timer_list *t)
798 {
799 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
800
801 usb_hcd_poll_rh_status(_hcd);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807 {
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
811
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
817 }
818
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
822
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
835 }
836
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838 {
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
844 }
845
846 /*-------------------------------------------------------------------------*/
847
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
850 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852 {
853 unsigned long flags;
854 int rc;
855
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
860
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
863
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
871 }
872 }
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
876 }
877
878
879 /*-------------------------------------------------------------------------*/
880
881 /**
882 * usb_bus_init - shared initialization code
883 * @bus: the bus structure being initialized
884 *
885 * This code is used to initialize a usb_bus structure, memory for which is
886 * separately managed.
887 */
usb_bus_init(struct usb_bus * bus)888 static void usb_bus_init (struct usb_bus *bus)
889 {
890 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
891
892 bus->devnum_next = 1;
893
894 bus->root_hub = NULL;
895 bus->busnum = -1;
896 bus->bandwidth_allocated = 0;
897 bus->bandwidth_int_reqs = 0;
898 bus->bandwidth_isoc_reqs = 0;
899 mutex_init(&bus->devnum_next_mutex);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 *
912 * Return: 0 if successful. A negative error code otherwise.
913 */
usb_register_bus(struct usb_bus * bus)914 static int usb_register_bus(struct usb_bus *bus)
915 {
916 int result = -E2BIG;
917 int busnum;
918
919 mutex_lock(&usb_bus_idr_lock);
920 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
921 if (busnum < 0) {
922 pr_err("%s: failed to get bus number\n", usbcore_name);
923 goto error_find_busnum;
924 }
925 bus->busnum = busnum;
926 mutex_unlock(&usb_bus_idr_lock);
927
928 usb_notify_add_bus(bus);
929
930 dev_info (bus->controller, "new USB bus registered, assigned bus "
931 "number %d\n", bus->busnum);
932 return 0;
933
934 error_find_busnum:
935 mutex_unlock(&usb_bus_idr_lock);
936 return result;
937 }
938
939 /**
940 * usb_deregister_bus - deregisters the USB host controller
941 * @bus: pointer to the bus to deregister
942 * Context: !in_interrupt()
943 *
944 * Recycles the bus number, and unlinks the controller from usbcore data
945 * structures so that it won't be seen by scanning the bus list.
946 */
usb_deregister_bus(struct usb_bus * bus)947 static void usb_deregister_bus (struct usb_bus *bus)
948 {
949 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
950
951 /*
952 * NOTE: make sure that all the devices are removed by the
953 * controller code, as well as having it call this when cleaning
954 * itself up
955 */
956 mutex_lock(&usb_bus_idr_lock);
957 idr_remove(&usb_bus_idr, bus->busnum);
958 mutex_unlock(&usb_bus_idr_lock);
959
960 usb_notify_remove_bus(bus);
961 }
962
963 /**
964 * register_root_hub - called by usb_add_hcd() to register a root hub
965 * @hcd: host controller for this root hub
966 *
967 * This function registers the root hub with the USB subsystem. It sets up
968 * the device properly in the device tree and then calls usb_new_device()
969 * to register the usb device. It also assigns the root hub's USB address
970 * (always 1).
971 *
972 * Return: 0 if successful. A negative error code otherwise.
973 */
register_root_hub(struct usb_hcd * hcd)974 static int register_root_hub(struct usb_hcd *hcd)
975 {
976 struct device *parent_dev = hcd->self.controller;
977 struct usb_device *usb_dev = hcd->self.root_hub;
978 const int devnum = 1;
979 int retval;
980
981 usb_dev->devnum = devnum;
982 usb_dev->bus->devnum_next = devnum + 1;
983 set_bit (devnum, usb_dev->bus->devmap.devicemap);
984 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
985
986 mutex_lock(&usb_bus_idr_lock);
987
988 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
989 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
990 if (retval != sizeof usb_dev->descriptor) {
991 mutex_unlock(&usb_bus_idr_lock);
992 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
993 dev_name(&usb_dev->dev), retval);
994 return (retval < 0) ? retval : -EMSGSIZE;
995 }
996
997 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
998 retval = usb_get_bos_descriptor(usb_dev);
999 if (!retval) {
1000 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1001 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1002 mutex_unlock(&usb_bus_idr_lock);
1003 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1004 dev_name(&usb_dev->dev), retval);
1005 return retval;
1006 }
1007 }
1008
1009 retval = usb_new_device (usb_dev);
1010 if (retval) {
1011 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1012 dev_name(&usb_dev->dev), retval);
1013 } else {
1014 spin_lock_irq (&hcd_root_hub_lock);
1015 hcd->rh_registered = 1;
1016 spin_unlock_irq (&hcd_root_hub_lock);
1017
1018 /* Did the HC die before the root hub was registered? */
1019 if (HCD_DEAD(hcd))
1020 usb_hc_died (hcd); /* This time clean up */
1021 }
1022 mutex_unlock(&usb_bus_idr_lock);
1023
1024 return retval;
1025 }
1026
1027 /*
1028 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1029 * @bus: the bus which the root hub belongs to
1030 * @portnum: the port which is being resumed
1031 *
1032 * HCDs should call this function when they know that a resume signal is
1033 * being sent to a root-hub port. The root hub will be prevented from
1034 * going into autosuspend until usb_hcd_end_port_resume() is called.
1035 *
1036 * The bus's private lock must be held by the caller.
1037 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1038 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1039 {
1040 unsigned bit = 1 << portnum;
1041
1042 if (!(bus->resuming_ports & bit)) {
1043 bus->resuming_ports |= bit;
1044 pm_runtime_get_noresume(&bus->root_hub->dev);
1045 }
1046 }
1047 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1048
1049 /*
1050 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1051 * @bus: the bus which the root hub belongs to
1052 * @portnum: the port which is being resumed
1053 *
1054 * HCDs should call this function when they know that a resume signal has
1055 * stopped being sent to a root-hub port. The root hub will be allowed to
1056 * autosuspend again.
1057 *
1058 * The bus's private lock must be held by the caller.
1059 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1060 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1061 {
1062 unsigned bit = 1 << portnum;
1063
1064 if (bus->resuming_ports & bit) {
1065 bus->resuming_ports &= ~bit;
1066 pm_runtime_put_noidle(&bus->root_hub->dev);
1067 }
1068 }
1069 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1070
1071 /*-------------------------------------------------------------------------*/
1072
1073 /**
1074 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1075 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1076 * @is_input: true iff the transaction sends data to the host
1077 * @isoc: true for isochronous transactions, false for interrupt ones
1078 * @bytecount: how many bytes in the transaction.
1079 *
1080 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1081 *
1082 * Note:
1083 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1084 * scheduled in software, this function is only used for such scheduling.
1085 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1086 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1087 {
1088 unsigned long tmp;
1089
1090 switch (speed) {
1091 case USB_SPEED_LOW: /* INTR only */
1092 if (is_input) {
1093 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1094 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1095 } else {
1096 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1097 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1098 }
1099 case USB_SPEED_FULL: /* ISOC or INTR */
1100 if (isoc) {
1101 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1103 } else {
1104 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 return 9107L + BW_HOST_DELAY + tmp;
1106 }
1107 case USB_SPEED_HIGH: /* ISOC or INTR */
1108 /* FIXME adjust for input vs output */
1109 if (isoc)
1110 tmp = HS_NSECS_ISO (bytecount);
1111 else
1112 tmp = HS_NSECS (bytecount);
1113 return tmp;
1114 default:
1115 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1116 return -1;
1117 }
1118 }
1119 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1120
1121
1122 /*-------------------------------------------------------------------------*/
1123
1124 /*
1125 * Generic HC operations.
1126 */
1127
1128 /*-------------------------------------------------------------------------*/
1129
1130 /**
1131 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1132 * @hcd: host controller to which @urb was submitted
1133 * @urb: URB being submitted
1134 *
1135 * Host controller drivers should call this routine in their enqueue()
1136 * method. The HCD's private spinlock must be held and interrupts must
1137 * be disabled. The actions carried out here are required for URB
1138 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1139 *
1140 * Return: 0 for no error, otherwise a negative error code (in which case
1141 * the enqueue() method must fail). If no error occurs but enqueue() fails
1142 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1143 * the private spinlock and returning.
1144 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1145 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1146 {
1147 int rc = 0;
1148
1149 spin_lock(&hcd_urb_list_lock);
1150
1151 /* Check that the URB isn't being killed */
1152 if (unlikely(atomic_read(&urb->reject))) {
1153 rc = -EPERM;
1154 goto done;
1155 }
1156
1157 if (unlikely(!urb->ep->enabled)) {
1158 rc = -ENOENT;
1159 goto done;
1160 }
1161
1162 if (unlikely(!urb->dev->can_submit)) {
1163 rc = -EHOSTUNREACH;
1164 goto done;
1165 }
1166
1167 /*
1168 * Check the host controller's state and add the URB to the
1169 * endpoint's queue.
1170 */
1171 if (HCD_RH_RUNNING(hcd)) {
1172 urb->unlinked = 0;
1173 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1174 } else {
1175 rc = -ESHUTDOWN;
1176 goto done;
1177 }
1178 done:
1179 spin_unlock(&hcd_urb_list_lock);
1180 return rc;
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1183
1184 /**
1185 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1186 * @hcd: host controller to which @urb was submitted
1187 * @urb: URB being checked for unlinkability
1188 * @status: error code to store in @urb if the unlink succeeds
1189 *
1190 * Host controller drivers should call this routine in their dequeue()
1191 * method. The HCD's private spinlock must be held and interrupts must
1192 * be disabled. The actions carried out here are required for making
1193 * sure than an unlink is valid.
1194 *
1195 * Return: 0 for no error, otherwise a negative error code (in which case
1196 * the dequeue() method must fail). The possible error codes are:
1197 *
1198 * -EIDRM: @urb was not submitted or has already completed.
1199 * The completion function may not have been called yet.
1200 *
1201 * -EBUSY: @urb has already been unlinked.
1202 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1203 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1204 int status)
1205 {
1206 struct list_head *tmp;
1207
1208 /* insist the urb is still queued */
1209 list_for_each(tmp, &urb->ep->urb_list) {
1210 if (tmp == &urb->urb_list)
1211 break;
1212 }
1213 if (tmp != &urb->urb_list)
1214 return -EIDRM;
1215
1216 /* Any status except -EINPROGRESS means something already started to
1217 * unlink this URB from the hardware. So there's no more work to do.
1218 */
1219 if (urb->unlinked)
1220 return -EBUSY;
1221 urb->unlinked = status;
1222 return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1225
1226 /**
1227 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1228 * @hcd: host controller to which @urb was submitted
1229 * @urb: URB being unlinked
1230 *
1231 * Host controller drivers should call this routine before calling
1232 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1233 * interrupts must be disabled. The actions carried out here are required
1234 * for URB completion.
1235 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1236 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1237 {
1238 /* clear all state linking urb to this dev (and hcd) */
1239 spin_lock(&hcd_urb_list_lock);
1240 list_del_init(&urb->urb_list);
1241 spin_unlock(&hcd_urb_list_lock);
1242 }
1243 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1244
1245 /*
1246 * Some usb host controllers can only perform dma using a small SRAM area.
1247 * The usb core itself is however optimized for host controllers that can dma
1248 * using regular system memory - like pci devices doing bus mastering.
1249 *
1250 * To support host controllers with limited dma capabilities we provide dma
1251 * bounce buffers. This feature can be enabled by initializing
1252 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1253 *
1254 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1255 * data for dma using the genalloc API.
1256 *
1257 * So, to summarize...
1258 *
1259 * - We need "local" memory, canonical example being
1260 * a small SRAM on a discrete controller being the
1261 * only memory that the controller can read ...
1262 * (a) "normal" kernel memory is no good, and
1263 * (b) there's not enough to share
1264 *
1265 * - So we use that, even though the primary requirement
1266 * is that the memory be "local" (hence addressable
1267 * by that device), not "coherent".
1268 *
1269 */
1270
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1271 static int hcd_alloc_coherent(struct usb_bus *bus,
1272 gfp_t mem_flags, dma_addr_t *dma_handle,
1273 void **vaddr_handle, size_t size,
1274 enum dma_data_direction dir)
1275 {
1276 unsigned char *vaddr;
1277
1278 if (*vaddr_handle == NULL) {
1279 WARN_ON_ONCE(1);
1280 return -EFAULT;
1281 }
1282
1283 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1284 mem_flags, dma_handle);
1285 if (!vaddr)
1286 return -ENOMEM;
1287
1288 /*
1289 * Store the virtual address of the buffer at the end
1290 * of the allocated dma buffer. The size of the buffer
1291 * may be uneven so use unaligned functions instead
1292 * of just rounding up. It makes sense to optimize for
1293 * memory footprint over access speed since the amount
1294 * of memory available for dma may be limited.
1295 */
1296 put_unaligned((unsigned long)*vaddr_handle,
1297 (unsigned long *)(vaddr + size));
1298
1299 if (dir == DMA_TO_DEVICE)
1300 memcpy(vaddr, *vaddr_handle, size);
1301
1302 *vaddr_handle = vaddr;
1303 return 0;
1304 }
1305
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1306 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1307 void **vaddr_handle, size_t size,
1308 enum dma_data_direction dir)
1309 {
1310 unsigned char *vaddr = *vaddr_handle;
1311
1312 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1313
1314 if (dir == DMA_FROM_DEVICE)
1315 memcpy(vaddr, *vaddr_handle, size);
1316
1317 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1318
1319 *vaddr_handle = vaddr;
1320 *dma_handle = 0;
1321 }
1322
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1323 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1324 {
1325 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1326 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1327 dma_unmap_single(hcd->self.sysdev,
1328 urb->setup_dma,
1329 sizeof(struct usb_ctrlrequest),
1330 DMA_TO_DEVICE);
1331 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1332 hcd_free_coherent(urb->dev->bus,
1333 &urb->setup_dma,
1334 (void **) &urb->setup_packet,
1335 sizeof(struct usb_ctrlrequest),
1336 DMA_TO_DEVICE);
1337
1338 /* Make it safe to call this routine more than once */
1339 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1340 }
1341 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1342
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1343 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344 {
1345 if (hcd->driver->unmap_urb_for_dma)
1346 hcd->driver->unmap_urb_for_dma(hcd, urb);
1347 else
1348 usb_hcd_unmap_urb_for_dma(hcd, urb);
1349 }
1350
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1351 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1352 {
1353 enum dma_data_direction dir;
1354
1355 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1356
1357 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1358 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SG))
1360 dma_unmap_sg(hcd->self.sysdev,
1361 urb->sg,
1362 urb->num_sgs,
1363 dir);
1364 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1365 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1366 dma_unmap_page(hcd->self.sysdev,
1367 urb->transfer_dma,
1368 urb->transfer_buffer_length,
1369 dir);
1370 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1372 dma_unmap_single(hcd->self.sysdev,
1373 urb->transfer_dma,
1374 urb->transfer_buffer_length,
1375 dir);
1376 else if (urb->transfer_flags & URB_MAP_LOCAL)
1377 hcd_free_coherent(urb->dev->bus,
1378 &urb->transfer_dma,
1379 &urb->transfer_buffer,
1380 urb->transfer_buffer_length,
1381 dir);
1382
1383 /* Make it safe to call this routine more than once */
1384 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1385 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1386 }
1387 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1388
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1389 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390 gfp_t mem_flags)
1391 {
1392 if (hcd->driver->map_urb_for_dma)
1393 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1394 else
1395 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1396 }
1397
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1398 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399 gfp_t mem_flags)
1400 {
1401 enum dma_data_direction dir;
1402 int ret = 0;
1403
1404 /* Map the URB's buffers for DMA access.
1405 * Lower level HCD code should use *_dma exclusively,
1406 * unless it uses pio or talks to another transport,
1407 * or uses the provided scatter gather list for bulk.
1408 */
1409
1410 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1411 if (hcd->self.uses_pio_for_control)
1412 return ret;
1413 if (hcd->localmem_pool) {
1414 ret = hcd_alloc_coherent(
1415 urb->dev->bus, mem_flags,
1416 &urb->setup_dma,
1417 (void **)&urb->setup_packet,
1418 sizeof(struct usb_ctrlrequest),
1419 DMA_TO_DEVICE);
1420 if (ret)
1421 return ret;
1422 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1423 } else if (hcd_uses_dma(hcd)) {
1424 if (object_is_on_stack(urb->setup_packet)) {
1425 WARN_ONCE(1, "setup packet is on stack\n");
1426 return -EAGAIN;
1427 }
1428
1429 urb->setup_dma = dma_map_single(
1430 hcd->self.sysdev,
1431 urb->setup_packet,
1432 sizeof(struct usb_ctrlrequest),
1433 DMA_TO_DEVICE);
1434 if (dma_mapping_error(hcd->self.sysdev,
1435 urb->setup_dma))
1436 return -EAGAIN;
1437 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1438 }
1439 }
1440
1441 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1442 if (urb->transfer_buffer_length != 0
1443 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1444 if (hcd->localmem_pool) {
1445 ret = hcd_alloc_coherent(
1446 urb->dev->bus, mem_flags,
1447 &urb->transfer_dma,
1448 &urb->transfer_buffer,
1449 urb->transfer_buffer_length,
1450 dir);
1451 if (ret == 0)
1452 urb->transfer_flags |= URB_MAP_LOCAL;
1453 } else if (hcd_uses_dma(hcd)) {
1454 if (urb->num_sgs) {
1455 int n;
1456
1457 /* We don't support sg for isoc transfers ! */
1458 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1459 WARN_ON(1);
1460 return -EINVAL;
1461 }
1462
1463 n = dma_map_sg(
1464 hcd->self.sysdev,
1465 urb->sg,
1466 urb->num_sgs,
1467 dir);
1468 if (n <= 0)
1469 ret = -EAGAIN;
1470 else
1471 urb->transfer_flags |= URB_DMA_MAP_SG;
1472 urb->num_mapped_sgs = n;
1473 if (n != urb->num_sgs)
1474 urb->transfer_flags |=
1475 URB_DMA_SG_COMBINED;
1476 } else if (urb->sg) {
1477 struct scatterlist *sg = urb->sg;
1478 urb->transfer_dma = dma_map_page(
1479 hcd->self.sysdev,
1480 sg_page(sg),
1481 sg->offset,
1482 urb->transfer_buffer_length,
1483 dir);
1484 if (dma_mapping_error(hcd->self.sysdev,
1485 urb->transfer_dma))
1486 ret = -EAGAIN;
1487 else
1488 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1489 } else if (object_is_on_stack(urb->transfer_buffer)) {
1490 WARN_ONCE(1, "transfer buffer is on stack\n");
1491 ret = -EAGAIN;
1492 } else {
1493 urb->transfer_dma = dma_map_single(
1494 hcd->self.sysdev,
1495 urb->transfer_buffer,
1496 urb->transfer_buffer_length,
1497 dir);
1498 if (dma_mapping_error(hcd->self.sysdev,
1499 urb->transfer_dma))
1500 ret = -EAGAIN;
1501 else
1502 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1503 }
1504 }
1505 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1506 URB_SETUP_MAP_LOCAL)))
1507 usb_hcd_unmap_urb_for_dma(hcd, urb);
1508 }
1509 return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1512
1513 /*-------------------------------------------------------------------------*/
1514
1515 /* may be called in any context with a valid urb->dev usecount
1516 * caller surrenders "ownership" of urb
1517 * expects usb_submit_urb() to have sanity checked and conditioned all
1518 * inputs in the urb
1519 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1520 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1521 {
1522 int status;
1523 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1524
1525 /* increment urb's reference count as part of giving it to the HCD
1526 * (which will control it). HCD guarantees that it either returns
1527 * an error or calls giveback(), but not both.
1528 */
1529 usb_get_urb(urb);
1530 atomic_inc(&urb->use_count);
1531 atomic_inc(&urb->dev->urbnum);
1532 usbmon_urb_submit(&hcd->self, urb);
1533
1534 /* NOTE requirements on root-hub callers (usbfs and the hub
1535 * driver, for now): URBs' urb->transfer_buffer must be
1536 * valid and usb_buffer_{sync,unmap}() not be needed, since
1537 * they could clobber root hub response data. Also, control
1538 * URBs must be submitted in process context with interrupts
1539 * enabled.
1540 */
1541
1542 if (is_root_hub(urb->dev)) {
1543 status = rh_urb_enqueue(hcd, urb);
1544 } else {
1545 status = map_urb_for_dma(hcd, urb, mem_flags);
1546 if (likely(status == 0)) {
1547 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1548 if (unlikely(status))
1549 unmap_urb_for_dma(hcd, urb);
1550 }
1551 }
1552
1553 if (unlikely(status)) {
1554 usbmon_urb_submit_error(&hcd->self, urb, status);
1555 urb->hcpriv = NULL;
1556 INIT_LIST_HEAD(&urb->urb_list);
1557 atomic_dec(&urb->use_count);
1558 atomic_dec(&urb->dev->urbnum);
1559 if (atomic_read(&urb->reject))
1560 wake_up(&usb_kill_urb_queue);
1561 usb_put_urb(urb);
1562 }
1563 return status;
1564 }
1565
1566 /*-------------------------------------------------------------------------*/
1567
1568 /* this makes the hcd giveback() the urb more quickly, by kicking it
1569 * off hardware queues (which may take a while) and returning it as
1570 * soon as practical. we've already set up the urb's return status,
1571 * but we can't know if the callback completed already.
1572 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1573 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1574 {
1575 int value;
1576
1577 if (is_root_hub(urb->dev))
1578 value = usb_rh_urb_dequeue(hcd, urb, status);
1579 else {
1580
1581 /* The only reason an HCD might fail this call is if
1582 * it has not yet fully queued the urb to begin with.
1583 * Such failures should be harmless. */
1584 value = hcd->driver->urb_dequeue(hcd, urb, status);
1585 }
1586 return value;
1587 }
1588
1589 /*
1590 * called in any context
1591 *
1592 * caller guarantees urb won't be recycled till both unlink()
1593 * and the urb's completion function return
1594 */
usb_hcd_unlink_urb(struct urb * urb,int status)1595 int usb_hcd_unlink_urb (struct urb *urb, int status)
1596 {
1597 struct usb_hcd *hcd;
1598 struct usb_device *udev = urb->dev;
1599 int retval = -EIDRM;
1600 unsigned long flags;
1601
1602 /* Prevent the device and bus from going away while
1603 * the unlink is carried out. If they are already gone
1604 * then urb->use_count must be 0, since disconnected
1605 * devices can't have any active URBs.
1606 */
1607 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1608 if (atomic_read(&urb->use_count) > 0) {
1609 retval = 0;
1610 usb_get_dev(udev);
1611 }
1612 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1613 if (retval == 0) {
1614 hcd = bus_to_hcd(urb->dev->bus);
1615 retval = unlink1(hcd, urb, status);
1616 if (retval == 0)
1617 retval = -EINPROGRESS;
1618 else if (retval != -EIDRM && retval != -EBUSY)
1619 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1620 urb, retval);
1621 usb_put_dev(udev);
1622 }
1623 return retval;
1624 }
1625
1626 /*-------------------------------------------------------------------------*/
1627
__usb_hcd_giveback_urb(struct urb * urb)1628 static void __usb_hcd_giveback_urb(struct urb *urb)
1629 {
1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631 struct usb_anchor *anchor = urb->anchor;
1632 int status = urb->unlinked;
1633
1634 urb->hcpriv = NULL;
1635 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1636 urb->actual_length < urb->transfer_buffer_length &&
1637 !status))
1638 status = -EREMOTEIO;
1639
1640 unmap_urb_for_dma(hcd, urb);
1641 usbmon_urb_complete(&hcd->self, urb, status);
1642 usb_anchor_suspend_wakeups(anchor);
1643 usb_unanchor_urb(urb);
1644 if (likely(status == 0))
1645 usb_led_activity(USB_LED_EVENT_HOST);
1646
1647 /* pass ownership to the completion handler */
1648 urb->status = status;
1649 /*
1650 * This function can be called in task context inside another remote
1651 * coverage collection section, but KCOV doesn't support that kind of
1652 * recursion yet. Only collect coverage in softirq context for now.
1653 */
1654 if (in_serving_softirq())
1655 kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1656 urb->complete(urb);
1657 if (in_serving_softirq())
1658 kcov_remote_stop();
1659
1660 usb_anchor_resume_wakeups(anchor);
1661 atomic_dec(&urb->use_count);
1662 if (unlikely(atomic_read(&urb->reject)))
1663 wake_up(&usb_kill_urb_queue);
1664 usb_put_urb(urb);
1665 }
1666
usb_giveback_urb_bh(struct tasklet_struct * t)1667 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1668 {
1669 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1670 struct list_head local_list;
1671
1672 spin_lock_irq(&bh->lock);
1673 bh->running = true;
1674 restart:
1675 list_replace_init(&bh->head, &local_list);
1676 spin_unlock_irq(&bh->lock);
1677
1678 while (!list_empty(&local_list)) {
1679 struct urb *urb;
1680
1681 urb = list_entry(local_list.next, struct urb, urb_list);
1682 list_del_init(&urb->urb_list);
1683 bh->completing_ep = urb->ep;
1684 __usb_hcd_giveback_urb(urb);
1685 bh->completing_ep = NULL;
1686 }
1687
1688 /* check if there are new URBs to giveback */
1689 spin_lock_irq(&bh->lock);
1690 if (!list_empty(&bh->head))
1691 goto restart;
1692 bh->running = false;
1693 spin_unlock_irq(&bh->lock);
1694 }
1695
1696 /**
1697 * usb_hcd_giveback_urb - return URB from HCD to device driver
1698 * @hcd: host controller returning the URB
1699 * @urb: urb being returned to the USB device driver.
1700 * @status: completion status code for the URB.
1701 * Context: in_interrupt()
1702 *
1703 * This hands the URB from HCD to its USB device driver, using its
1704 * completion function. The HCD has freed all per-urb resources
1705 * (and is done using urb->hcpriv). It also released all HCD locks;
1706 * the device driver won't cause problems if it frees, modifies,
1707 * or resubmits this URB.
1708 *
1709 * If @urb was unlinked, the value of @status will be overridden by
1710 * @urb->unlinked. Erroneous short transfers are detected in case
1711 * the HCD hasn't checked for them.
1712 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1713 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1714 {
1715 struct giveback_urb_bh *bh;
1716 bool running, high_prio_bh;
1717
1718 /* pass status to tasklet via unlinked */
1719 if (likely(!urb->unlinked))
1720 urb->unlinked = status;
1721
1722 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1723 __usb_hcd_giveback_urb(urb);
1724 return;
1725 }
1726
1727 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1728 bh = &hcd->high_prio_bh;
1729 high_prio_bh = true;
1730 } else {
1731 bh = &hcd->low_prio_bh;
1732 high_prio_bh = false;
1733 }
1734
1735 spin_lock(&bh->lock);
1736 list_add_tail(&urb->urb_list, &bh->head);
1737 running = bh->running;
1738 spin_unlock(&bh->lock);
1739
1740 if (running)
1741 ;
1742 else if (high_prio_bh)
1743 tasklet_hi_schedule(&bh->bh);
1744 else
1745 tasklet_schedule(&bh->bh);
1746 }
1747 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1748
1749 /*-------------------------------------------------------------------------*/
1750
1751 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1752 * queue to drain completely. The caller must first insure that no more
1753 * URBs can be submitted for this endpoint.
1754 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1755 void usb_hcd_flush_endpoint(struct usb_device *udev,
1756 struct usb_host_endpoint *ep)
1757 {
1758 struct usb_hcd *hcd;
1759 struct urb *urb;
1760
1761 if (!ep)
1762 return;
1763 might_sleep();
1764 hcd = bus_to_hcd(udev->bus);
1765
1766 /* No more submits can occur */
1767 spin_lock_irq(&hcd_urb_list_lock);
1768 rescan:
1769 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1770 int is_in;
1771
1772 if (urb->unlinked)
1773 continue;
1774 usb_get_urb (urb);
1775 is_in = usb_urb_dir_in(urb);
1776 spin_unlock(&hcd_urb_list_lock);
1777
1778 /* kick hcd */
1779 unlink1(hcd, urb, -ESHUTDOWN);
1780 dev_dbg (hcd->self.controller,
1781 "shutdown urb %pK ep%d%s-%s\n",
1782 urb, usb_endpoint_num(&ep->desc),
1783 is_in ? "in" : "out",
1784 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1785 usb_put_urb (urb);
1786
1787 /* list contents may have changed */
1788 spin_lock(&hcd_urb_list_lock);
1789 goto rescan;
1790 }
1791 spin_unlock_irq(&hcd_urb_list_lock);
1792
1793 /* Wait until the endpoint queue is completely empty */
1794 while (!list_empty (&ep->urb_list)) {
1795 spin_lock_irq(&hcd_urb_list_lock);
1796
1797 /* The list may have changed while we acquired the spinlock */
1798 urb = NULL;
1799 if (!list_empty (&ep->urb_list)) {
1800 urb = list_entry (ep->urb_list.prev, struct urb,
1801 urb_list);
1802 usb_get_urb (urb);
1803 }
1804 spin_unlock_irq(&hcd_urb_list_lock);
1805
1806 if (urb) {
1807 usb_kill_urb (urb);
1808 usb_put_urb (urb);
1809 }
1810 }
1811 }
1812
1813 /**
1814 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1815 * the bus bandwidth
1816 * @udev: target &usb_device
1817 * @new_config: new configuration to install
1818 * @cur_alt: the current alternate interface setting
1819 * @new_alt: alternate interface setting that is being installed
1820 *
1821 * To change configurations, pass in the new configuration in new_config,
1822 * and pass NULL for cur_alt and new_alt.
1823 *
1824 * To reset a device's configuration (put the device in the ADDRESSED state),
1825 * pass in NULL for new_config, cur_alt, and new_alt.
1826 *
1827 * To change alternate interface settings, pass in NULL for new_config,
1828 * pass in the current alternate interface setting in cur_alt,
1829 * and pass in the new alternate interface setting in new_alt.
1830 *
1831 * Return: An error if the requested bandwidth change exceeds the
1832 * bus bandwidth or host controller internal resources.
1833 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1834 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1835 struct usb_host_config *new_config,
1836 struct usb_host_interface *cur_alt,
1837 struct usb_host_interface *new_alt)
1838 {
1839 int num_intfs, i, j;
1840 struct usb_host_interface *alt = NULL;
1841 int ret = 0;
1842 struct usb_hcd *hcd;
1843 struct usb_host_endpoint *ep;
1844
1845 hcd = bus_to_hcd(udev->bus);
1846 if (!hcd->driver->check_bandwidth)
1847 return 0;
1848
1849 /* Configuration is being removed - set configuration 0 */
1850 if (!new_config && !cur_alt) {
1851 for (i = 1; i < 16; ++i) {
1852 ep = udev->ep_out[i];
1853 if (ep)
1854 hcd->driver->drop_endpoint(hcd, udev, ep);
1855 ep = udev->ep_in[i];
1856 if (ep)
1857 hcd->driver->drop_endpoint(hcd, udev, ep);
1858 }
1859 hcd->driver->check_bandwidth(hcd, udev);
1860 return 0;
1861 }
1862 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1863 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1864 * of the bus. There will always be bandwidth for endpoint 0, so it's
1865 * ok to exclude it.
1866 */
1867 if (new_config) {
1868 num_intfs = new_config->desc.bNumInterfaces;
1869 /* Remove endpoints (except endpoint 0, which is always on the
1870 * schedule) from the old config from the schedule
1871 */
1872 for (i = 1; i < 16; ++i) {
1873 ep = udev->ep_out[i];
1874 if (ep) {
1875 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1876 if (ret < 0)
1877 goto reset;
1878 }
1879 ep = udev->ep_in[i];
1880 if (ep) {
1881 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1882 if (ret < 0)
1883 goto reset;
1884 }
1885 }
1886 for (i = 0; i < num_intfs; ++i) {
1887 struct usb_host_interface *first_alt;
1888 int iface_num;
1889
1890 first_alt = &new_config->intf_cache[i]->altsetting[0];
1891 iface_num = first_alt->desc.bInterfaceNumber;
1892 /* Set up endpoints for alternate interface setting 0 */
1893 alt = usb_find_alt_setting(new_config, iface_num, 0);
1894 if (!alt)
1895 /* No alt setting 0? Pick the first setting. */
1896 alt = first_alt;
1897
1898 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1899 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1900 if (ret < 0)
1901 goto reset;
1902 }
1903 }
1904 }
1905 if (cur_alt && new_alt) {
1906 struct usb_interface *iface = usb_ifnum_to_if(udev,
1907 cur_alt->desc.bInterfaceNumber);
1908
1909 if (!iface)
1910 return -EINVAL;
1911 if (iface->resetting_device) {
1912 /*
1913 * The USB core just reset the device, so the xHCI host
1914 * and the device will think alt setting 0 is installed.
1915 * However, the USB core will pass in the alternate
1916 * setting installed before the reset as cur_alt. Dig
1917 * out the alternate setting 0 structure, or the first
1918 * alternate setting if a broken device doesn't have alt
1919 * setting 0.
1920 */
1921 cur_alt = usb_altnum_to_altsetting(iface, 0);
1922 if (!cur_alt)
1923 cur_alt = &iface->altsetting[0];
1924 }
1925
1926 /* Drop all the endpoints in the current alt setting */
1927 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1928 ret = hcd->driver->drop_endpoint(hcd, udev,
1929 &cur_alt->endpoint[i]);
1930 if (ret < 0)
1931 goto reset;
1932 }
1933 /* Add all the endpoints in the new alt setting */
1934 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1935 ret = hcd->driver->add_endpoint(hcd, udev,
1936 &new_alt->endpoint[i]);
1937 if (ret < 0)
1938 goto reset;
1939 }
1940 }
1941 ret = hcd->driver->check_bandwidth(hcd, udev);
1942 reset:
1943 if (ret < 0)
1944 hcd->driver->reset_bandwidth(hcd, udev);
1945 return ret;
1946 }
1947
1948 /* Disables the endpoint: synchronizes with the hcd to make sure all
1949 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1950 * have been called previously. Use for set_configuration, set_interface,
1951 * driver removal, physical disconnect.
1952 *
1953 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1954 * type, maxpacket size, toggle, halt status, and scheduling.
1955 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1956 void usb_hcd_disable_endpoint(struct usb_device *udev,
1957 struct usb_host_endpoint *ep)
1958 {
1959 struct usb_hcd *hcd;
1960
1961 might_sleep();
1962 hcd = bus_to_hcd(udev->bus);
1963 if (hcd->driver->endpoint_disable)
1964 hcd->driver->endpoint_disable(hcd, ep);
1965 }
1966
1967 /**
1968 * usb_hcd_reset_endpoint - reset host endpoint state
1969 * @udev: USB device.
1970 * @ep: the endpoint to reset.
1971 *
1972 * Resets any host endpoint state such as the toggle bit, sequence
1973 * number and current window.
1974 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1975 void usb_hcd_reset_endpoint(struct usb_device *udev,
1976 struct usb_host_endpoint *ep)
1977 {
1978 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1979
1980 if (hcd->driver->endpoint_reset)
1981 hcd->driver->endpoint_reset(hcd, ep);
1982 else {
1983 int epnum = usb_endpoint_num(&ep->desc);
1984 int is_out = usb_endpoint_dir_out(&ep->desc);
1985 int is_control = usb_endpoint_xfer_control(&ep->desc);
1986
1987 usb_settoggle(udev, epnum, is_out, 0);
1988 if (is_control)
1989 usb_settoggle(udev, epnum, !is_out, 0);
1990 }
1991 }
1992
1993 /**
1994 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1995 * @interface: alternate setting that includes all endpoints.
1996 * @eps: array of endpoints that need streams.
1997 * @num_eps: number of endpoints in the array.
1998 * @num_streams: number of streams to allocate.
1999 * @mem_flags: flags hcd should use to allocate memory.
2000 *
2001 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2002 * Drivers may queue multiple transfers to different stream IDs, which may
2003 * complete in a different order than they were queued.
2004 *
2005 * Return: On success, the number of allocated streams. On failure, a negative
2006 * error code.
2007 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2008 int usb_alloc_streams(struct usb_interface *interface,
2009 struct usb_host_endpoint **eps, unsigned int num_eps,
2010 unsigned int num_streams, gfp_t mem_flags)
2011 {
2012 struct usb_hcd *hcd;
2013 struct usb_device *dev;
2014 int i, ret;
2015
2016 dev = interface_to_usbdev(interface);
2017 hcd = bus_to_hcd(dev->bus);
2018 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2019 return -EINVAL;
2020 if (dev->speed < USB_SPEED_SUPER)
2021 return -EINVAL;
2022 if (dev->state < USB_STATE_CONFIGURED)
2023 return -ENODEV;
2024
2025 for (i = 0; i < num_eps; i++) {
2026 /* Streams only apply to bulk endpoints. */
2027 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2028 return -EINVAL;
2029 /* Re-alloc is not allowed */
2030 if (eps[i]->streams)
2031 return -EINVAL;
2032 }
2033
2034 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2035 num_streams, mem_flags);
2036 if (ret < 0)
2037 return ret;
2038
2039 for (i = 0; i < num_eps; i++)
2040 eps[i]->streams = ret;
2041
2042 return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2045
2046 /**
2047 * usb_free_streams - free bulk endpoint stream IDs.
2048 * @interface: alternate setting that includes all endpoints.
2049 * @eps: array of endpoints to remove streams from.
2050 * @num_eps: number of endpoints in the array.
2051 * @mem_flags: flags hcd should use to allocate memory.
2052 *
2053 * Reverts a group of bulk endpoints back to not using stream IDs.
2054 * Can fail if we are given bad arguments, or HCD is broken.
2055 *
2056 * Return: 0 on success. On failure, a negative error code.
2057 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2058 int usb_free_streams(struct usb_interface *interface,
2059 struct usb_host_endpoint **eps, unsigned int num_eps,
2060 gfp_t mem_flags)
2061 {
2062 struct usb_hcd *hcd;
2063 struct usb_device *dev;
2064 int i, ret;
2065
2066 dev = interface_to_usbdev(interface);
2067 hcd = bus_to_hcd(dev->bus);
2068 if (dev->speed < USB_SPEED_SUPER)
2069 return -EINVAL;
2070
2071 /* Double-free is not allowed */
2072 for (i = 0; i < num_eps; i++)
2073 if (!eps[i] || !eps[i]->streams)
2074 return -EINVAL;
2075
2076 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2077 if (ret < 0)
2078 return ret;
2079
2080 for (i = 0; i < num_eps; i++)
2081 eps[i]->streams = 0;
2082
2083 return ret;
2084 }
2085 EXPORT_SYMBOL_GPL(usb_free_streams);
2086
2087 /* Protect against drivers that try to unlink URBs after the device
2088 * is gone, by waiting until all unlinks for @udev are finished.
2089 * Since we don't currently track URBs by device, simply wait until
2090 * nothing is running in the locked region of usb_hcd_unlink_urb().
2091 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2092 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2093 {
2094 spin_lock_irq(&hcd_urb_unlink_lock);
2095 spin_unlock_irq(&hcd_urb_unlink_lock);
2096 }
2097
2098 /*-------------------------------------------------------------------------*/
2099
2100 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2101 int usb_hcd_get_frame_number (struct usb_device *udev)
2102 {
2103 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105 if (!HCD_RH_RUNNING(hcd))
2106 return -ESHUTDOWN;
2107 return hcd->driver->get_frame_number (hcd);
2108 }
2109
2110 /*-------------------------------------------------------------------------*/
2111
2112 #ifdef CONFIG_PM
2113
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2114 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2115 {
2116 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2117 int status;
2118 int old_state = hcd->state;
2119
2120 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2121 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2122 rhdev->do_remote_wakeup);
2123 if (HCD_DEAD(hcd)) {
2124 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2125 return 0;
2126 }
2127
2128 if (!hcd->driver->bus_suspend) {
2129 status = -ENOENT;
2130 } else {
2131 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2132 hcd->state = HC_STATE_QUIESCING;
2133 status = hcd->driver->bus_suspend(hcd);
2134 }
2135 if (status == 0) {
2136 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2137 hcd->state = HC_STATE_SUSPENDED;
2138
2139 if (!PMSG_IS_AUTO(msg))
2140 usb_phy_roothub_suspend(hcd->self.sysdev,
2141 hcd->phy_roothub);
2142
2143 /* Did we race with a root-hub wakeup event? */
2144 if (rhdev->do_remote_wakeup) {
2145 char buffer[6];
2146
2147 status = hcd->driver->hub_status_data(hcd, buffer);
2148 if (status != 0) {
2149 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2150 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2151 status = -EBUSY;
2152 }
2153 }
2154 } else {
2155 spin_lock_irq(&hcd_root_hub_lock);
2156 if (!HCD_DEAD(hcd)) {
2157 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2158 hcd->state = old_state;
2159 }
2160 spin_unlock_irq(&hcd_root_hub_lock);
2161 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2162 "suspend", status);
2163 }
2164 return status;
2165 }
2166
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2167 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2168 {
2169 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2170 int status;
2171 int old_state = hcd->state;
2172
2173 dev_dbg(&rhdev->dev, "usb %sresume\n",
2174 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2175 if (HCD_DEAD(hcd)) {
2176 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2177 return 0;
2178 }
2179
2180 if (!PMSG_IS_AUTO(msg)) {
2181 status = usb_phy_roothub_resume(hcd->self.sysdev,
2182 hcd->phy_roothub);
2183 if (status)
2184 return status;
2185 }
2186
2187 if (!hcd->driver->bus_resume)
2188 return -ENOENT;
2189 if (HCD_RH_RUNNING(hcd))
2190 return 0;
2191
2192 hcd->state = HC_STATE_RESUMING;
2193 status = hcd->driver->bus_resume(hcd);
2194 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2195 if (status == 0)
2196 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2197
2198 if (status == 0) {
2199 struct usb_device *udev;
2200 int port1;
2201
2202 spin_lock_irq(&hcd_root_hub_lock);
2203 if (!HCD_DEAD(hcd)) {
2204 usb_set_device_state(rhdev, rhdev->actconfig
2205 ? USB_STATE_CONFIGURED
2206 : USB_STATE_ADDRESS);
2207 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2208 hcd->state = HC_STATE_RUNNING;
2209 }
2210 spin_unlock_irq(&hcd_root_hub_lock);
2211
2212 /*
2213 * Check whether any of the enabled ports on the root hub are
2214 * unsuspended. If they are then a TRSMRCY delay is needed
2215 * (this is what the USB-2 spec calls a "global resume").
2216 * Otherwise we can skip the delay.
2217 */
2218 usb_hub_for_each_child(rhdev, port1, udev) {
2219 if (udev->state != USB_STATE_NOTATTACHED &&
2220 !udev->port_is_suspended) {
2221 usleep_range(10000, 11000); /* TRSMRCY */
2222 break;
2223 }
2224 }
2225 } else {
2226 hcd->state = old_state;
2227 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2228 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2229 "resume", status);
2230 if (status != -ESHUTDOWN)
2231 usb_hc_died(hcd);
2232 }
2233 return status;
2234 }
2235
2236 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2237 static void hcd_resume_work(struct work_struct *work)
2238 {
2239 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2240 struct usb_device *udev = hcd->self.root_hub;
2241
2242 usb_remote_wakeup(udev);
2243 }
2244
2245 /**
2246 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2247 * @hcd: host controller for this root hub
2248 *
2249 * The USB host controller calls this function when its root hub is
2250 * suspended (with the remote wakeup feature enabled) and a remote
2251 * wakeup request is received. The routine submits a workqueue request
2252 * to resume the root hub (that is, manage its downstream ports again).
2253 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2254 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2255 {
2256 unsigned long flags;
2257
2258 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2259 if (hcd->rh_registered) {
2260 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2261 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2262 queue_work(pm_wq, &hcd->wakeup_work);
2263 }
2264 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2265 }
2266 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2267
2268 #endif /* CONFIG_PM */
2269
2270 /*-------------------------------------------------------------------------*/
2271
2272 #ifdef CONFIG_USB_OTG
2273
2274 /**
2275 * usb_bus_start_enum - start immediate enumeration (for OTG)
2276 * @bus: the bus (must use hcd framework)
2277 * @port_num: 1-based number of port; usually bus->otg_port
2278 * Context: in_interrupt()
2279 *
2280 * Starts enumeration, with an immediate reset followed later by
2281 * hub_wq identifying and possibly configuring the device.
2282 * This is needed by OTG controller drivers, where it helps meet
2283 * HNP protocol timing requirements for starting a port reset.
2284 *
2285 * Return: 0 if successful.
2286 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2287 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2288 {
2289 struct usb_hcd *hcd;
2290 int status = -EOPNOTSUPP;
2291
2292 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2293 * boards with root hubs hooked up to internal devices (instead of
2294 * just the OTG port) may need more attention to resetting...
2295 */
2296 hcd = bus_to_hcd(bus);
2297 if (port_num && hcd->driver->start_port_reset)
2298 status = hcd->driver->start_port_reset(hcd, port_num);
2299
2300 /* allocate hub_wq shortly after (first) root port reset finishes;
2301 * it may issue others, until at least 50 msecs have passed.
2302 */
2303 if (status == 0)
2304 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2305 return status;
2306 }
2307 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2308
2309 #endif
2310
2311 /*-------------------------------------------------------------------------*/
2312
2313 /**
2314 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2315 * @irq: the IRQ being raised
2316 * @__hcd: pointer to the HCD whose IRQ is being signaled
2317 *
2318 * If the controller isn't HALTed, calls the driver's irq handler.
2319 * Checks whether the controller is now dead.
2320 *
2321 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2322 */
usb_hcd_irq(int irq,void * __hcd)2323 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2324 {
2325 struct usb_hcd *hcd = __hcd;
2326 irqreturn_t rc;
2327
2328 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2329 rc = IRQ_NONE;
2330 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2331 rc = IRQ_NONE;
2332 else
2333 rc = IRQ_HANDLED;
2334
2335 return rc;
2336 }
2337 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2338
2339 /*-------------------------------------------------------------------------*/
2340
2341 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2342 static void hcd_died_work(struct work_struct *work)
2343 {
2344 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2345 static char *env[] = {
2346 "ERROR=DEAD",
2347 NULL
2348 };
2349
2350 /* Notify user space that the host controller has died */
2351 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2352 }
2353
2354 /**
2355 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2356 * @hcd: pointer to the HCD representing the controller
2357 *
2358 * This is called by bus glue to report a USB host controller that died
2359 * while operations may still have been pending. It's called automatically
2360 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2361 *
2362 * Only call this function with the primary HCD.
2363 */
usb_hc_died(struct usb_hcd * hcd)2364 void usb_hc_died (struct usb_hcd *hcd)
2365 {
2366 unsigned long flags;
2367
2368 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2369
2370 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2371 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2372 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2373 if (hcd->rh_registered) {
2374 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2375
2376 /* make hub_wq clean up old urbs and devices */
2377 usb_set_device_state (hcd->self.root_hub,
2378 USB_STATE_NOTATTACHED);
2379 usb_kick_hub_wq(hcd->self.root_hub);
2380 }
2381 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2382 hcd = hcd->shared_hcd;
2383 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385 if (hcd->rh_registered) {
2386 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388 /* make hub_wq clean up old urbs and devices */
2389 usb_set_device_state(hcd->self.root_hub,
2390 USB_STATE_NOTATTACHED);
2391 usb_kick_hub_wq(hcd->self.root_hub);
2392 }
2393 }
2394
2395 /* Handle the case where this function gets called with a shared HCD */
2396 if (usb_hcd_is_primary_hcd(hcd))
2397 schedule_work(&hcd->died_work);
2398 else
2399 schedule_work(&hcd->primary_hcd->died_work);
2400
2401 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2402 /* Make sure that the other roothub is also deallocated. */
2403 }
2404 EXPORT_SYMBOL_GPL (usb_hc_died);
2405
2406 /*-------------------------------------------------------------------------*/
2407
init_giveback_urb_bh(struct giveback_urb_bh * bh)2408 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2409 {
2410
2411 spin_lock_init(&bh->lock);
2412 INIT_LIST_HEAD(&bh->head);
2413 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2414 }
2415
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2416 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2417 struct device *sysdev, struct device *dev, const char *bus_name,
2418 struct usb_hcd *primary_hcd)
2419 {
2420 struct usb_hcd *hcd;
2421
2422 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2423 if (!hcd)
2424 return NULL;
2425 if (primary_hcd == NULL) {
2426 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2427 GFP_KERNEL);
2428 if (!hcd->address0_mutex) {
2429 kfree(hcd);
2430 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2431 return NULL;
2432 }
2433 mutex_init(hcd->address0_mutex);
2434 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2435 GFP_KERNEL);
2436 if (!hcd->bandwidth_mutex) {
2437 kfree(hcd->address0_mutex);
2438 kfree(hcd);
2439 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2440 return NULL;
2441 }
2442 mutex_init(hcd->bandwidth_mutex);
2443 dev_set_drvdata(dev, hcd);
2444 } else {
2445 mutex_lock(&usb_port_peer_mutex);
2446 hcd->address0_mutex = primary_hcd->address0_mutex;
2447 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2448 hcd->primary_hcd = primary_hcd;
2449 primary_hcd->primary_hcd = primary_hcd;
2450 hcd->shared_hcd = primary_hcd;
2451 primary_hcd->shared_hcd = hcd;
2452 mutex_unlock(&usb_port_peer_mutex);
2453 }
2454
2455 kref_init(&hcd->kref);
2456
2457 usb_bus_init(&hcd->self);
2458 hcd->self.controller = dev;
2459 hcd->self.sysdev = sysdev;
2460 hcd->self.bus_name = bus_name;
2461
2462 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2463 #ifdef CONFIG_PM
2464 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2465 #endif
2466
2467 INIT_WORK(&hcd->died_work, hcd_died_work);
2468
2469 hcd->driver = driver;
2470 hcd->speed = driver->flags & HCD_MASK;
2471 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2472 "USB Host Controller";
2473 return hcd;
2474 }
2475 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2476
2477 /**
2478 * usb_create_shared_hcd - create and initialize an HCD structure
2479 * @driver: HC driver that will use this hcd
2480 * @dev: device for this HC, stored in hcd->self.controller
2481 * @bus_name: value to store in hcd->self.bus_name
2482 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2483 * PCI device. Only allocate certain resources for the primary HCD
2484 * Context: !in_interrupt()
2485 *
2486 * Allocate a struct usb_hcd, with extra space at the end for the
2487 * HC driver's private data. Initialize the generic members of the
2488 * hcd structure.
2489 *
2490 * Return: On success, a pointer to the created and initialized HCD structure.
2491 * On failure (e.g. if memory is unavailable), %NULL.
2492 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2493 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2494 struct device *dev, const char *bus_name,
2495 struct usb_hcd *primary_hcd)
2496 {
2497 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2498 }
2499 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2500
2501 /**
2502 * usb_create_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * Context: !in_interrupt()
2507 *
2508 * Allocate a struct usb_hcd, with extra space at the end for the
2509 * HC driver's private data. Initialize the generic members of the
2510 * hcd structure.
2511 *
2512 * Return: On success, a pointer to the created and initialized HCD
2513 * structure. On failure (e.g. if memory is unavailable), %NULL.
2514 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2515 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2516 struct device *dev, const char *bus_name)
2517 {
2518 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2519 }
2520 EXPORT_SYMBOL_GPL(usb_create_hcd);
2521
2522 /*
2523 * Roothubs that share one PCI device must also share the bandwidth mutex.
2524 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2525 * deallocated.
2526 *
2527 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2528 * freed. When hcd_release() is called for either hcd in a peer set,
2529 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2530 */
hcd_release(struct kref * kref)2531 static void hcd_release(struct kref *kref)
2532 {
2533 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2534
2535 mutex_lock(&usb_port_peer_mutex);
2536 if (hcd->shared_hcd) {
2537 struct usb_hcd *peer = hcd->shared_hcd;
2538
2539 peer->shared_hcd = NULL;
2540 peer->primary_hcd = NULL;
2541 } else {
2542 kfree(hcd->address0_mutex);
2543 kfree(hcd->bandwidth_mutex);
2544 }
2545 mutex_unlock(&usb_port_peer_mutex);
2546 kfree(hcd);
2547 }
2548
usb_get_hcd(struct usb_hcd * hcd)2549 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2550 {
2551 if (hcd)
2552 kref_get (&hcd->kref);
2553 return hcd;
2554 }
2555 EXPORT_SYMBOL_GPL(usb_get_hcd);
2556
usb_put_hcd(struct usb_hcd * hcd)2557 void usb_put_hcd (struct usb_hcd *hcd)
2558 {
2559 if (hcd)
2560 kref_put (&hcd->kref, hcd_release);
2561 }
2562 EXPORT_SYMBOL_GPL(usb_put_hcd);
2563
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2564 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2565 {
2566 if (!hcd->primary_hcd)
2567 return 1;
2568 return hcd == hcd->primary_hcd;
2569 }
2570 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2571
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2572 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2573 {
2574 if (!hcd->driver->find_raw_port_number)
2575 return port1;
2576
2577 return hcd->driver->find_raw_port_number(hcd, port1);
2578 }
2579
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2580 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2581 unsigned int irqnum, unsigned long irqflags)
2582 {
2583 int retval;
2584
2585 if (hcd->driver->irq) {
2586
2587 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2588 hcd->driver->description, hcd->self.busnum);
2589 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2590 hcd->irq_descr, hcd);
2591 if (retval != 0) {
2592 dev_err(hcd->self.controller,
2593 "request interrupt %d failed\n",
2594 irqnum);
2595 return retval;
2596 }
2597 hcd->irq = irqnum;
2598 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2599 (hcd->driver->flags & HCD_MEMORY) ?
2600 "io mem" : "io base",
2601 (unsigned long long)hcd->rsrc_start);
2602 } else {
2603 hcd->irq = 0;
2604 if (hcd->rsrc_start)
2605 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2606 (hcd->driver->flags & HCD_MEMORY) ?
2607 "io mem" : "io base",
2608 (unsigned long long)hcd->rsrc_start);
2609 }
2610 return 0;
2611 }
2612
2613 /*
2614 * Before we free this root hub, flush in-flight peering attempts
2615 * and disable peer lookups
2616 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2617 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2618 {
2619 struct usb_device *rhdev;
2620
2621 mutex_lock(&usb_port_peer_mutex);
2622 rhdev = hcd->self.root_hub;
2623 hcd->self.root_hub = NULL;
2624 mutex_unlock(&usb_port_peer_mutex);
2625 usb_put_dev(rhdev);
2626 }
2627
2628 /**
2629 * usb_add_hcd - finish generic HCD structure initialization and register
2630 * @hcd: the usb_hcd structure to initialize
2631 * @irqnum: Interrupt line to allocate
2632 * @irqflags: Interrupt type flags
2633 *
2634 * Finish the remaining parts of generic HCD initialization: allocate the
2635 * buffers of consistent memory, register the bus, request the IRQ line,
2636 * and call the driver's reset() and start() routines.
2637 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2638 int usb_add_hcd(struct usb_hcd *hcd,
2639 unsigned int irqnum, unsigned long irqflags)
2640 {
2641 int retval;
2642 struct usb_device *rhdev;
2643
2644 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2645 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2646 if (IS_ERR(hcd->phy_roothub))
2647 return PTR_ERR(hcd->phy_roothub);
2648
2649 retval = usb_phy_roothub_init(hcd->phy_roothub);
2650 if (retval)
2651 return retval;
2652
2653 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2654 PHY_MODE_USB_HOST_SS);
2655 if (retval)
2656 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2657 PHY_MODE_USB_HOST);
2658 if (retval)
2659 goto err_usb_phy_roothub_power_on;
2660
2661 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2662 if (retval)
2663 goto err_usb_phy_roothub_power_on;
2664 }
2665
2666 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2667
2668 switch (authorized_default) {
2669 case USB_AUTHORIZE_NONE:
2670 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2671 break;
2672
2673 case USB_AUTHORIZE_ALL:
2674 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2675 break;
2676
2677 case USB_AUTHORIZE_INTERNAL:
2678 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2679 break;
2680
2681 case USB_AUTHORIZE_WIRED:
2682 default:
2683 hcd->dev_policy = hcd->wireless ?
2684 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2685 break;
2686 }
2687
2688 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2689
2690 /* per default all interfaces are authorized */
2691 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2692
2693 /* HC is in reset state, but accessible. Now do the one-time init,
2694 * bottom up so that hcds can customize the root hubs before hub_wq
2695 * starts talking to them. (Note, bus id is assigned early too.)
2696 */
2697 retval = hcd_buffer_create(hcd);
2698 if (retval != 0) {
2699 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2700 goto err_create_buf;
2701 }
2702
2703 retval = usb_register_bus(&hcd->self);
2704 if (retval < 0)
2705 goto err_register_bus;
2706
2707 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2708 if (rhdev == NULL) {
2709 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2710 retval = -ENOMEM;
2711 goto err_allocate_root_hub;
2712 }
2713 mutex_lock(&usb_port_peer_mutex);
2714 hcd->self.root_hub = rhdev;
2715 mutex_unlock(&usb_port_peer_mutex);
2716
2717 rhdev->rx_lanes = 1;
2718 rhdev->tx_lanes = 1;
2719
2720 switch (hcd->speed) {
2721 case HCD_USB11:
2722 rhdev->speed = USB_SPEED_FULL;
2723 break;
2724 case HCD_USB2:
2725 rhdev->speed = USB_SPEED_HIGH;
2726 break;
2727 case HCD_USB25:
2728 rhdev->speed = USB_SPEED_WIRELESS;
2729 break;
2730 case HCD_USB3:
2731 rhdev->speed = USB_SPEED_SUPER;
2732 break;
2733 case HCD_USB32:
2734 rhdev->rx_lanes = 2;
2735 rhdev->tx_lanes = 2;
2736 fallthrough;
2737 case HCD_USB31:
2738 rhdev->speed = USB_SPEED_SUPER_PLUS;
2739 break;
2740 default:
2741 retval = -EINVAL;
2742 goto err_set_rh_speed;
2743 }
2744
2745 /* wakeup flag init defaults to "everything works" for root hubs,
2746 * but drivers can override it in reset() if needed, along with
2747 * recording the overall controller's system wakeup capability.
2748 */
2749 device_set_wakeup_capable(&rhdev->dev, 1);
2750
2751 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2752 * registered. But since the controller can die at any time,
2753 * let's initialize the flag before touching the hardware.
2754 */
2755 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2756
2757 /* "reset" is misnamed; its role is now one-time init. the controller
2758 * should already have been reset (and boot firmware kicked off etc).
2759 */
2760 if (hcd->driver->reset) {
2761 retval = hcd->driver->reset(hcd);
2762 if (retval < 0) {
2763 dev_err(hcd->self.controller, "can't setup: %d\n",
2764 retval);
2765 goto err_hcd_driver_setup;
2766 }
2767 }
2768 hcd->rh_pollable = 1;
2769
2770 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2771 if (retval)
2772 goto err_hcd_driver_setup;
2773
2774 /* NOTE: root hub and controller capabilities may not be the same */
2775 if (device_can_wakeup(hcd->self.controller)
2776 && device_can_wakeup(&hcd->self.root_hub->dev))
2777 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2778
2779 /* initialize tasklets */
2780 init_giveback_urb_bh(&hcd->high_prio_bh);
2781 init_giveback_urb_bh(&hcd->low_prio_bh);
2782
2783 /* enable irqs just before we start the controller,
2784 * if the BIOS provides legacy PCI irqs.
2785 */
2786 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2787 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2788 if (retval)
2789 goto err_request_irq;
2790 }
2791
2792 hcd->state = HC_STATE_RUNNING;
2793 retval = hcd->driver->start(hcd);
2794 if (retval < 0) {
2795 dev_err(hcd->self.controller, "startup error %d\n", retval);
2796 goto err_hcd_driver_start;
2797 }
2798
2799 /* starting here, usbcore will pay attention to this root hub */
2800 retval = register_root_hub(hcd);
2801 if (retval != 0)
2802 goto err_register_root_hub;
2803
2804 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2805 usb_hcd_poll_rh_status(hcd);
2806
2807 return retval;
2808
2809 err_register_root_hub:
2810 hcd->rh_pollable = 0;
2811 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812 del_timer_sync(&hcd->rh_timer);
2813 hcd->driver->stop(hcd);
2814 hcd->state = HC_STATE_HALT;
2815 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2816 del_timer_sync(&hcd->rh_timer);
2817 err_hcd_driver_start:
2818 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2819 free_irq(irqnum, hcd);
2820 err_request_irq:
2821 err_hcd_driver_setup:
2822 err_set_rh_speed:
2823 usb_put_invalidate_rhdev(hcd);
2824 err_allocate_root_hub:
2825 usb_deregister_bus(&hcd->self);
2826 err_register_bus:
2827 hcd_buffer_destroy(hcd);
2828 err_create_buf:
2829 usb_phy_roothub_power_off(hcd->phy_roothub);
2830 err_usb_phy_roothub_power_on:
2831 usb_phy_roothub_exit(hcd->phy_roothub);
2832
2833 return retval;
2834 }
2835 EXPORT_SYMBOL_GPL(usb_add_hcd);
2836
2837 /**
2838 * usb_remove_hcd - shutdown processing for generic HCDs
2839 * @hcd: the usb_hcd structure to remove
2840 * Context: !in_interrupt()
2841 *
2842 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2843 * invoking the HCD's stop() method.
2844 */
usb_remove_hcd(struct usb_hcd * hcd)2845 void usb_remove_hcd(struct usb_hcd *hcd)
2846 {
2847 struct usb_device *rhdev = hcd->self.root_hub;
2848
2849 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2850
2851 usb_get_dev(rhdev);
2852 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2853 if (HC_IS_RUNNING (hcd->state))
2854 hcd->state = HC_STATE_QUIESCING;
2855
2856 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2857 spin_lock_irq (&hcd_root_hub_lock);
2858 hcd->rh_registered = 0;
2859 spin_unlock_irq (&hcd_root_hub_lock);
2860
2861 #ifdef CONFIG_PM
2862 cancel_work_sync(&hcd->wakeup_work);
2863 #endif
2864 cancel_work_sync(&hcd->died_work);
2865
2866 mutex_lock(&usb_bus_idr_lock);
2867 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2868 mutex_unlock(&usb_bus_idr_lock);
2869
2870 /*
2871 * tasklet_kill() isn't needed here because:
2872 * - driver's disconnect() called from usb_disconnect() should
2873 * make sure its URBs are completed during the disconnect()
2874 * callback
2875 *
2876 * - it is too late to run complete() here since driver may have
2877 * been removed already now
2878 */
2879
2880 /* Prevent any more root-hub status calls from the timer.
2881 * The HCD might still restart the timer (if a port status change
2882 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2883 * the hub_status_data() callback.
2884 */
2885 hcd->rh_pollable = 0;
2886 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2887 del_timer_sync(&hcd->rh_timer);
2888
2889 hcd->driver->stop(hcd);
2890 hcd->state = HC_STATE_HALT;
2891
2892 /* In case the HCD restarted the timer, stop it again. */
2893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2894 del_timer_sync(&hcd->rh_timer);
2895
2896 if (usb_hcd_is_primary_hcd(hcd)) {
2897 if (hcd->irq > 0)
2898 free_irq(hcd->irq, hcd);
2899 }
2900
2901 usb_deregister_bus(&hcd->self);
2902 hcd_buffer_destroy(hcd);
2903
2904 usb_phy_roothub_power_off(hcd->phy_roothub);
2905 usb_phy_roothub_exit(hcd->phy_roothub);
2906
2907 usb_put_invalidate_rhdev(hcd);
2908 hcd->flags = 0;
2909 }
2910 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2911
2912 void
usb_hcd_platform_shutdown(struct platform_device * dev)2913 usb_hcd_platform_shutdown(struct platform_device *dev)
2914 {
2915 struct usb_hcd *hcd = platform_get_drvdata(dev);
2916
2917 /* No need for pm_runtime_put(), we're shutting down */
2918 pm_runtime_get_sync(&dev->dev);
2919
2920 if (hcd->driver->shutdown)
2921 hcd->driver->shutdown(hcd);
2922 }
2923 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2924
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2925 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2926 dma_addr_t dma, size_t size)
2927 {
2928 int err;
2929 void *local_mem;
2930
2931 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2932 dev_to_node(hcd->self.sysdev),
2933 dev_name(hcd->self.sysdev));
2934 if (IS_ERR(hcd->localmem_pool))
2935 return PTR_ERR(hcd->localmem_pool);
2936
2937 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2938 size, MEMREMAP_WC);
2939 if (IS_ERR(local_mem))
2940 return PTR_ERR(local_mem);
2941
2942 /*
2943 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2944 * It's not backed by system memory and thus there's no kernel mapping
2945 * for it.
2946 */
2947 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2948 dma, size, dev_to_node(hcd->self.sysdev));
2949 if (err < 0) {
2950 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2951 err);
2952 return err;
2953 }
2954
2955 return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2958
2959 /*-------------------------------------------------------------------------*/
2960
2961 #if IS_ENABLED(CONFIG_USB_MON)
2962
2963 const struct usb_mon_operations *mon_ops;
2964
2965 /*
2966 * The registration is unlocked.
2967 * We do it this way because we do not want to lock in hot paths.
2968 *
2969 * Notice that the code is minimally error-proof. Because usbmon needs
2970 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2971 */
2972
usb_mon_register(const struct usb_mon_operations * ops)2973 int usb_mon_register(const struct usb_mon_operations *ops)
2974 {
2975
2976 if (mon_ops)
2977 return -EBUSY;
2978
2979 mon_ops = ops;
2980 mb();
2981 return 0;
2982 }
2983 EXPORT_SYMBOL_GPL (usb_mon_register);
2984
usb_mon_deregister(void)2985 void usb_mon_deregister (void)
2986 {
2987
2988 if (mon_ops == NULL) {
2989 printk(KERN_ERR "USB: monitor was not registered\n");
2990 return;
2991 }
2992 mon_ops = NULL;
2993 mb();
2994 }
2995 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2996
2997 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2998