• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)120 static inline bool arch_faults_on_old_pte(void)
121 {
122 	/*
123 	 * Those arches which don't have hw access flag feature need to
124 	 * implement their own helper. By default, "true" means pagefault
125 	 * will be hit on old pte.
126 	 */
127 	return true;
128 }
129 #endif
130 
disable_randmaps(char * s)131 static int __init disable_randmaps(char *s)
132 {
133 	randomize_va_space = 0;
134 	return 1;
135 }
136 __setup("norandmaps", disable_randmaps);
137 
138 unsigned long zero_pfn __read_mostly;
139 EXPORT_SYMBOL(zero_pfn);
140 
141 unsigned long highest_memmap_pfn __read_mostly;
142 
143 /*
144  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
145  */
init_zero_pfn(void)146 static int __init init_zero_pfn(void)
147 {
148 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
149 	return 0;
150 }
151 core_initcall(init_zero_pfn);
152 
153 
154 #if defined(SPLIT_RSS_COUNTING)
155 
sync_mm_rss(struct mm_struct * mm)156 void sync_mm_rss(struct mm_struct *mm)
157 {
158 	int i;
159 
160 	for (i = 0; i < NR_MM_COUNTERS; i++) {
161 		if (current->rss_stat.count[i]) {
162 			add_mm_counter(mm, i, current->rss_stat.count[i]);
163 			current->rss_stat.count[i] = 0;
164 		}
165 	}
166 	current->rss_stat.events = 0;
167 }
168 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)169 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
170 {
171 	struct task_struct *task = current;
172 
173 	if (likely(task->mm == mm))
174 		task->rss_stat.count[member] += val;
175 	else
176 		add_mm_counter(mm, member, val);
177 }
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
180 
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 	if (unlikely(task != current))
186 		return;
187 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
188 		sync_mm_rss(task->mm);
189 }
190 #else /* SPLIT_RSS_COUNTING */
191 
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
194 
check_sync_rss_stat(struct task_struct * task)195 static void check_sync_rss_stat(struct task_struct *task)
196 {
197 }
198 
199 #endif /* SPLIT_RSS_COUNTING */
200 
201 #ifdef HAVE_GENERIC_MMU_GATHER
202 
tlb_next_batch(struct mmu_gather * tlb)203 static bool tlb_next_batch(struct mmu_gather *tlb)
204 {
205 	struct mmu_gather_batch *batch;
206 
207 	batch = tlb->active;
208 	if (batch->next) {
209 		tlb->active = batch->next;
210 		return true;
211 	}
212 
213 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
214 		return false;
215 
216 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
217 	if (!batch)
218 		return false;
219 
220 	tlb->batch_count++;
221 	batch->next = NULL;
222 	batch->nr   = 0;
223 	batch->max  = MAX_GATHER_BATCH;
224 
225 	tlb->active->next = batch;
226 	tlb->active = batch;
227 
228 	return true;
229 }
230 
arch_tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)231 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
232 				unsigned long start, unsigned long end)
233 {
234 	tlb->mm = mm;
235 
236 	/* Is it from 0 to ~0? */
237 	tlb->fullmm     = !(start | (end+1));
238 	tlb->need_flush_all = 0;
239 	tlb->local.next = NULL;
240 	tlb->local.nr   = 0;
241 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
242 	tlb->active     = &tlb->local;
243 	tlb->batch_count = 0;
244 
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb->batch = NULL;
247 #endif
248 	tlb->page_size = 0;
249 
250 	__tlb_reset_range(tlb);
251 }
252 
tlb_flush_mmu_free(struct mmu_gather * tlb)253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255 	struct mmu_gather_batch *batch;
256 
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 	tlb_table_flush(tlb);
259 #endif
260 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261 		free_pages_and_swap_cache(batch->pages, batch->nr);
262 		batch->nr = 0;
263 	}
264 	tlb->active = &tlb->local;
265 }
266 
tlb_flush_mmu(struct mmu_gather * tlb)267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269 	tlb_flush_mmu_tlbonly(tlb);
270 	tlb_flush_mmu_free(tlb);
271 }
272 
273 /* tlb_finish_mmu
274  *	Called at the end of the shootdown operation to free up any resources
275  *	that were required.
276  */
arch_tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end,bool force)277 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
278 		unsigned long start, unsigned long end, bool force)
279 {
280 	struct mmu_gather_batch *batch, *next;
281 
282 	if (force)
283 		__tlb_adjust_range(tlb, start, end - start);
284 
285 	tlb_flush_mmu(tlb);
286 
287 	/* keep the page table cache within bounds */
288 	check_pgt_cache();
289 
290 	for (batch = tlb->local.next; batch; batch = next) {
291 		next = batch->next;
292 		free_pages((unsigned long)batch, 0);
293 	}
294 	tlb->local.next = NULL;
295 }
296 
297 /* __tlb_remove_page
298  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299  *	handling the additional races in SMP caused by other CPUs caching valid
300  *	mappings in their TLBs. Returns the number of free page slots left.
301  *	When out of page slots we must call tlb_flush_mmu().
302  *returns true if the caller should flush.
303  */
__tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)304 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 {
306 	struct mmu_gather_batch *batch;
307 
308 	VM_BUG_ON(!tlb->end);
309 	VM_WARN_ON(tlb->page_size != page_size);
310 
311 	batch = tlb->active;
312 	/*
313 	 * Add the page and check if we are full. If so
314 	 * force a flush.
315 	 */
316 	batch->pages[batch->nr++] = page;
317 	if (batch->nr == batch->max) {
318 		if (!tlb_next_batch(tlb))
319 			return true;
320 		batch = tlb->active;
321 	}
322 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323 
324 	return false;
325 }
326 
327 #endif /* HAVE_GENERIC_MMU_GATHER */
328 
329 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
330 
331 /*
332  * See the comment near struct mmu_table_batch.
333  */
334 
335 /*
336  * If we want tlb_remove_table() to imply TLB invalidates.
337  */
tlb_table_invalidate(struct mmu_gather * tlb)338 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
339 {
340 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
341 	/*
342 	 * Invalidate page-table caches used by hardware walkers. Then we still
343 	 * need to RCU-sched wait while freeing the pages because software
344 	 * walkers can still be in-flight.
345 	 */
346 	tlb_flush_mmu_tlbonly(tlb);
347 #endif
348 }
349 
tlb_remove_table_smp_sync(void * arg)350 static void tlb_remove_table_smp_sync(void *arg)
351 {
352 	/* Simply deliver the interrupt */
353 }
354 
tlb_remove_table_one(void * table)355 static void tlb_remove_table_one(void *table)
356 {
357 	/*
358 	 * This isn't an RCU grace period and hence the page-tables cannot be
359 	 * assumed to be actually RCU-freed.
360 	 *
361 	 * It is however sufficient for software page-table walkers that rely on
362 	 * IRQ disabling. See the comment near struct mmu_table_batch.
363 	 */
364 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
365 	__tlb_remove_table(table);
366 }
367 
tlb_remove_table_rcu(struct rcu_head * head)368 static void tlb_remove_table_rcu(struct rcu_head *head)
369 {
370 	struct mmu_table_batch *batch;
371 	int i;
372 
373 	batch = container_of(head, struct mmu_table_batch, rcu);
374 
375 	for (i = 0; i < batch->nr; i++)
376 		__tlb_remove_table(batch->tables[i]);
377 
378 	free_page((unsigned long)batch);
379 }
380 
tlb_table_flush(struct mmu_gather * tlb)381 void tlb_table_flush(struct mmu_gather *tlb)
382 {
383 	struct mmu_table_batch **batch = &tlb->batch;
384 
385 	if (*batch) {
386 		tlb_table_invalidate(tlb);
387 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
388 		*batch = NULL;
389 	}
390 }
391 
tlb_remove_table(struct mmu_gather * tlb,void * table)392 void tlb_remove_table(struct mmu_gather *tlb, void *table)
393 {
394 	struct mmu_table_batch **batch = &tlb->batch;
395 
396 	if (*batch == NULL) {
397 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
398 		if (*batch == NULL) {
399 			tlb_table_invalidate(tlb);
400 			tlb_remove_table_one(table);
401 			return;
402 		}
403 		(*batch)->nr = 0;
404 	}
405 
406 	(*batch)->tables[(*batch)->nr++] = table;
407 	if ((*batch)->nr == MAX_TABLE_BATCH)
408 		tlb_table_flush(tlb);
409 }
410 
411 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
412 
413 /**
414  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
415  * @tlb: the mmu_gather structure to initialize
416  * @mm: the mm_struct of the target address space
417  * @start: start of the region that will be removed from the page-table
418  * @end: end of the region that will be removed from the page-table
419  *
420  * Called to initialize an (on-stack) mmu_gather structure for page-table
421  * tear-down from @mm. The @start and @end are set to 0 and -1
422  * respectively when @mm is without users and we're going to destroy
423  * the full address space (exit/execve).
424  */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)425 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
426 			unsigned long start, unsigned long end)
427 {
428 	arch_tlb_gather_mmu(tlb, mm, start, end);
429 	inc_tlb_flush_pending(tlb->mm);
430 }
431 
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)432 void tlb_finish_mmu(struct mmu_gather *tlb,
433 		unsigned long start, unsigned long end)
434 {
435 	/*
436 	 * If there are parallel threads are doing PTE changes on same range
437 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
438 	 * flush by batching, a thread has stable TLB entry can fail to flush
439 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
440 	 * forcefully if we detect parallel PTE batching threads.
441 	 */
442 	bool force = mm_tlb_flush_nested(tlb->mm);
443 
444 	arch_tlb_finish_mmu(tlb, start, end, force);
445 	dec_tlb_flush_pending(tlb->mm);
446 }
447 
448 /*
449  * Note: this doesn't free the actual pages themselves. That
450  * has been handled earlier when unmapping all the memory regions.
451  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)452 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
453 			   unsigned long addr)
454 {
455 	pgtable_t token = pmd_pgtable(*pmd);
456 	pmd_clear(pmd);
457 	pte_free_tlb(tlb, token, addr);
458 	mm_dec_nr_ptes(tlb->mm);
459 }
460 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)461 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
462 				unsigned long addr, unsigned long end,
463 				unsigned long floor, unsigned long ceiling)
464 {
465 	pmd_t *pmd;
466 	unsigned long next;
467 	unsigned long start;
468 
469 	start = addr;
470 	pmd = pmd_offset(pud, addr);
471 	do {
472 		next = pmd_addr_end(addr, end);
473 		if (pmd_none_or_clear_bad(pmd))
474 			continue;
475 		free_pte_range(tlb, pmd, addr);
476 	} while (pmd++, addr = next, addr != end);
477 
478 	start &= PUD_MASK;
479 	if (start < floor)
480 		return;
481 	if (ceiling) {
482 		ceiling &= PUD_MASK;
483 		if (!ceiling)
484 			return;
485 	}
486 	if (end - 1 > ceiling - 1)
487 		return;
488 
489 	pmd = pmd_offset(pud, start);
490 	pud_clear(pud);
491 	pmd_free_tlb(tlb, pmd, start);
492 	mm_dec_nr_pmds(tlb->mm);
493 }
494 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)495 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
496 				unsigned long addr, unsigned long end,
497 				unsigned long floor, unsigned long ceiling)
498 {
499 	pud_t *pud;
500 	unsigned long next;
501 	unsigned long start;
502 
503 	start = addr;
504 	pud = pud_offset(p4d, addr);
505 	do {
506 		next = pud_addr_end(addr, end);
507 		if (pud_none_or_clear_bad(pud))
508 			continue;
509 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
510 	} while (pud++, addr = next, addr != end);
511 
512 	start &= P4D_MASK;
513 	if (start < floor)
514 		return;
515 	if (ceiling) {
516 		ceiling &= P4D_MASK;
517 		if (!ceiling)
518 			return;
519 	}
520 	if (end - 1 > ceiling - 1)
521 		return;
522 
523 	pud = pud_offset(p4d, start);
524 	p4d_clear(p4d);
525 	pud_free_tlb(tlb, pud, start);
526 	mm_dec_nr_puds(tlb->mm);
527 }
528 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)529 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
530 				unsigned long addr, unsigned long end,
531 				unsigned long floor, unsigned long ceiling)
532 {
533 	p4d_t *p4d;
534 	unsigned long next;
535 	unsigned long start;
536 
537 	start = addr;
538 	p4d = p4d_offset(pgd, addr);
539 	do {
540 		next = p4d_addr_end(addr, end);
541 		if (p4d_none_or_clear_bad(p4d))
542 			continue;
543 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
544 	} while (p4d++, addr = next, addr != end);
545 
546 	start &= PGDIR_MASK;
547 	if (start < floor)
548 		return;
549 	if (ceiling) {
550 		ceiling &= PGDIR_MASK;
551 		if (!ceiling)
552 			return;
553 	}
554 	if (end - 1 > ceiling - 1)
555 		return;
556 
557 	p4d = p4d_offset(pgd, start);
558 	pgd_clear(pgd);
559 	p4d_free_tlb(tlb, p4d, start);
560 }
561 
562 /*
563  * This function frees user-level page tables of a process.
564  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)565 void free_pgd_range(struct mmu_gather *tlb,
566 			unsigned long addr, unsigned long end,
567 			unsigned long floor, unsigned long ceiling)
568 {
569 	pgd_t *pgd;
570 	unsigned long next;
571 
572 	/*
573 	 * The next few lines have given us lots of grief...
574 	 *
575 	 * Why are we testing PMD* at this top level?  Because often
576 	 * there will be no work to do at all, and we'd prefer not to
577 	 * go all the way down to the bottom just to discover that.
578 	 *
579 	 * Why all these "- 1"s?  Because 0 represents both the bottom
580 	 * of the address space and the top of it (using -1 for the
581 	 * top wouldn't help much: the masks would do the wrong thing).
582 	 * The rule is that addr 0 and floor 0 refer to the bottom of
583 	 * the address space, but end 0 and ceiling 0 refer to the top
584 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
585 	 * that end 0 case should be mythical).
586 	 *
587 	 * Wherever addr is brought up or ceiling brought down, we must
588 	 * be careful to reject "the opposite 0" before it confuses the
589 	 * subsequent tests.  But what about where end is brought down
590 	 * by PMD_SIZE below? no, end can't go down to 0 there.
591 	 *
592 	 * Whereas we round start (addr) and ceiling down, by different
593 	 * masks at different levels, in order to test whether a table
594 	 * now has no other vmas using it, so can be freed, we don't
595 	 * bother to round floor or end up - the tests don't need that.
596 	 */
597 
598 	addr &= PMD_MASK;
599 	if (addr < floor) {
600 		addr += PMD_SIZE;
601 		if (!addr)
602 			return;
603 	}
604 	if (ceiling) {
605 		ceiling &= PMD_MASK;
606 		if (!ceiling)
607 			return;
608 	}
609 	if (end - 1 > ceiling - 1)
610 		end -= PMD_SIZE;
611 	if (addr > end - 1)
612 		return;
613 	/*
614 	 * We add page table cache pages with PAGE_SIZE,
615 	 * (see pte_free_tlb()), flush the tlb if we need
616 	 */
617 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
618 	pgd = pgd_offset(tlb->mm, addr);
619 	do {
620 		next = pgd_addr_end(addr, end);
621 		if (pgd_none_or_clear_bad(pgd))
622 			continue;
623 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
624 	} while (pgd++, addr = next, addr != end);
625 }
626 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)627 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
628 		unsigned long floor, unsigned long ceiling)
629 {
630 	while (vma) {
631 		struct vm_area_struct *next = vma->vm_next;
632 		unsigned long addr = vma->vm_start;
633 
634 		/*
635 		 * Hide vma from rmap and truncate_pagecache before freeing
636 		 * pgtables
637 		 */
638 		unlink_anon_vmas(vma);
639 		unlink_file_vma(vma);
640 
641 		if (is_vm_hugetlb_page(vma)) {
642 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
643 				floor, next ? next->vm_start : ceiling);
644 		} else {
645 			/*
646 			 * Optimization: gather nearby vmas into one call down
647 			 */
648 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
649 			       && !is_vm_hugetlb_page(next)) {
650 				vma = next;
651 				next = vma->vm_next;
652 				unlink_anon_vmas(vma);
653 				unlink_file_vma(vma);
654 			}
655 			free_pgd_range(tlb, addr, vma->vm_end,
656 				floor, next ? next->vm_start : ceiling);
657 		}
658 		vma = next;
659 	}
660 }
661 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd,unsigned long address)662 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
663 {
664 	spinlock_t *ptl;
665 	pgtable_t new = pte_alloc_one(mm, address);
666 	if (!new)
667 		return -ENOMEM;
668 
669 	/*
670 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
671 	 * visible before the pte is made visible to other CPUs by being
672 	 * put into page tables.
673 	 *
674 	 * The other side of the story is the pointer chasing in the page
675 	 * table walking code (when walking the page table without locking;
676 	 * ie. most of the time). Fortunately, these data accesses consist
677 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
678 	 * being the notable exception) will already guarantee loads are
679 	 * seen in-order. See the alpha page table accessors for the
680 	 * smp_read_barrier_depends() barriers in page table walking code.
681 	 */
682 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
683 
684 	ptl = pmd_lock(mm, pmd);
685 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
686 		mm_inc_nr_ptes(mm);
687 		pmd_populate(mm, pmd, new);
688 		new = NULL;
689 	}
690 	spin_unlock(ptl);
691 	if (new)
692 		pte_free(mm, new);
693 	return 0;
694 }
695 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)696 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
697 {
698 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
699 	if (!new)
700 		return -ENOMEM;
701 
702 	smp_wmb(); /* See comment in __pte_alloc */
703 
704 	spin_lock(&init_mm.page_table_lock);
705 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
706 		pmd_populate_kernel(&init_mm, pmd, new);
707 		new = NULL;
708 	}
709 	spin_unlock(&init_mm.page_table_lock);
710 	if (new)
711 		pte_free_kernel(&init_mm, new);
712 	return 0;
713 }
714 
init_rss_vec(int * rss)715 static inline void init_rss_vec(int *rss)
716 {
717 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
718 }
719 
add_mm_rss_vec(struct mm_struct * mm,int * rss)720 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
721 {
722 	int i;
723 
724 	if (current->mm == mm)
725 		sync_mm_rss(mm);
726 	for (i = 0; i < NR_MM_COUNTERS; i++)
727 		if (rss[i])
728 			add_mm_counter(mm, i, rss[i]);
729 }
730 
731 /*
732  * This function is called to print an error when a bad pte
733  * is found. For example, we might have a PFN-mapped pte in
734  * a region that doesn't allow it.
735  *
736  * The calling function must still handle the error.
737  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)738 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
739 			  pte_t pte, struct page *page)
740 {
741 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
742 	p4d_t *p4d = p4d_offset(pgd, addr);
743 	pud_t *pud = pud_offset(p4d, addr);
744 	pmd_t *pmd = pmd_offset(pud, addr);
745 	struct address_space *mapping;
746 	pgoff_t index;
747 	static unsigned long resume;
748 	static unsigned long nr_shown;
749 	static unsigned long nr_unshown;
750 
751 	/*
752 	 * Allow a burst of 60 reports, then keep quiet for that minute;
753 	 * or allow a steady drip of one report per second.
754 	 */
755 	if (nr_shown == 60) {
756 		if (time_before(jiffies, resume)) {
757 			nr_unshown++;
758 			return;
759 		}
760 		if (nr_unshown) {
761 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
762 				 nr_unshown);
763 			nr_unshown = 0;
764 		}
765 		nr_shown = 0;
766 	}
767 	if (nr_shown++ == 0)
768 		resume = jiffies + 60 * HZ;
769 
770 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
771 	index = linear_page_index(vma, addr);
772 
773 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
774 		 current->comm,
775 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
776 	if (page)
777 		dump_page(page, "bad pte");
778 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
779 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
780 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
781 		 vma->vm_file,
782 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
783 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
784 		 mapping ? mapping->a_ops->readpage : NULL);
785 	dump_stack();
786 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
787 }
788 
789 /*
790  * vm_normal_page -- This function gets the "struct page" associated with a pte.
791  *
792  * "Special" mappings do not wish to be associated with a "struct page" (either
793  * it doesn't exist, or it exists but they don't want to touch it). In this
794  * case, NULL is returned here. "Normal" mappings do have a struct page.
795  *
796  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
797  * pte bit, in which case this function is trivial. Secondly, an architecture
798  * may not have a spare pte bit, which requires a more complicated scheme,
799  * described below.
800  *
801  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
802  * special mapping (even if there are underlying and valid "struct pages").
803  * COWed pages of a VM_PFNMAP are always normal.
804  *
805  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
806  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
807  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
808  * mapping will always honor the rule
809  *
810  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
811  *
812  * And for normal mappings this is false.
813  *
814  * This restricts such mappings to be a linear translation from virtual address
815  * to pfn. To get around this restriction, we allow arbitrary mappings so long
816  * as the vma is not a COW mapping; in that case, we know that all ptes are
817  * special (because none can have been COWed).
818  *
819  *
820  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
821  *
822  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
823  * page" backing, however the difference is that _all_ pages with a struct
824  * page (that is, those where pfn_valid is true) are refcounted and considered
825  * normal pages by the VM. The disadvantage is that pages are refcounted
826  * (which can be slower and simply not an option for some PFNMAP users). The
827  * advantage is that we don't have to follow the strict linearity rule of
828  * PFNMAP mappings in order to support COWable mappings.
829  *
830  */
_vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte,bool with_public_device)831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 			     pte_t pte, bool with_public_device)
833 {
834 	unsigned long pfn = pte_pfn(pte);
835 
836 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
837 		if (likely(!pte_special(pte)))
838 			goto check_pfn;
839 		if (vma->vm_ops && vma->vm_ops->find_special_page)
840 			return vma->vm_ops->find_special_page(vma, addr);
841 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 			return NULL;
843 		if (is_zero_pfn(pfn))
844 			return NULL;
845 
846 		/*
847 		 * Device public pages are special pages (they are ZONE_DEVICE
848 		 * pages but different from persistent memory). They behave
849 		 * allmost like normal pages. The difference is that they are
850 		 * not on the lru and thus should never be involve with any-
851 		 * thing that involve lru manipulation (mlock, numa balancing,
852 		 * ...).
853 		 *
854 		 * This is why we still want to return NULL for such page from
855 		 * vm_normal_page() so that we do not have to special case all
856 		 * call site of vm_normal_page().
857 		 */
858 		if (likely(pfn <= highest_memmap_pfn)) {
859 			struct page *page = pfn_to_page(pfn);
860 
861 			if (is_device_public_page(page)) {
862 				if (with_public_device)
863 					return page;
864 				return NULL;
865 			}
866 		}
867 
868 		if (pte_devmap(pte))
869 			return NULL;
870 
871 		print_bad_pte(vma, addr, pte, NULL);
872 		return NULL;
873 	}
874 
875 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
876 
877 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
878 		if (vma->vm_flags & VM_MIXEDMAP) {
879 			if (!pfn_valid(pfn))
880 				return NULL;
881 			goto out;
882 		} else {
883 			unsigned long off;
884 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
885 			if (pfn == vma->vm_pgoff + off)
886 				return NULL;
887 			if (!is_cow_mapping(vma->vm_flags))
888 				return NULL;
889 		}
890 	}
891 
892 	if (is_zero_pfn(pfn))
893 		return NULL;
894 
895 check_pfn:
896 	if (unlikely(pfn > highest_memmap_pfn)) {
897 		print_bad_pte(vma, addr, pte, NULL);
898 		return NULL;
899 	}
900 
901 	/*
902 	 * NOTE! We still have PageReserved() pages in the page tables.
903 	 * eg. VDSO mappings can cause them to exist.
904 	 */
905 out:
906 	return pfn_to_page(pfn);
907 }
908 
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)910 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
911 				pmd_t pmd)
912 {
913 	unsigned long pfn = pmd_pfn(pmd);
914 
915 	/*
916 	 * There is no pmd_special() but there may be special pmds, e.g.
917 	 * in a direct-access (dax) mapping, so let's just replicate the
918 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
919 	 */
920 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
921 		if (vma->vm_flags & VM_MIXEDMAP) {
922 			if (!pfn_valid(pfn))
923 				return NULL;
924 			goto out;
925 		} else {
926 			unsigned long off;
927 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
928 			if (pfn == vma->vm_pgoff + off)
929 				return NULL;
930 			if (!is_cow_mapping(vma->vm_flags))
931 				return NULL;
932 		}
933 	}
934 
935 	if (pmd_devmap(pmd))
936 		return NULL;
937 	if (is_zero_pfn(pfn))
938 		return NULL;
939 	if (unlikely(pfn > highest_memmap_pfn))
940 		return NULL;
941 
942 	/*
943 	 * NOTE! We still have PageReserved() pages in the page tables.
944 	 * eg. VDSO mappings can cause them to exist.
945 	 */
946 out:
947 	return pfn_to_page(pfn);
948 }
949 #endif
950 
951 /*
952  * copy one vm_area from one task to the other. Assumes the page tables
953  * already present in the new task to be cleared in the whole range
954  * covered by this vma.
955  */
956 
957 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)958 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
960 		unsigned long addr, int *rss)
961 {
962 	unsigned long vm_flags = vma->vm_flags;
963 	pte_t pte = *src_pte;
964 	struct page *page;
965 
966 	/* pte contains position in swap or file, so copy. */
967 	if (unlikely(!pte_present(pte))) {
968 		swp_entry_t entry = pte_to_swp_entry(pte);
969 
970 		if (likely(!non_swap_entry(entry))) {
971 			if (swap_duplicate(entry) < 0)
972 				return entry.val;
973 
974 			/* make sure dst_mm is on swapoff's mmlist. */
975 			if (unlikely(list_empty(&dst_mm->mmlist))) {
976 				spin_lock(&mmlist_lock);
977 				if (list_empty(&dst_mm->mmlist))
978 					list_add(&dst_mm->mmlist,
979 							&src_mm->mmlist);
980 				spin_unlock(&mmlist_lock);
981 			}
982 			rss[MM_SWAPENTS]++;
983 		} else if (is_migration_entry(entry)) {
984 			page = migration_entry_to_page(entry);
985 
986 			rss[mm_counter(page)]++;
987 
988 			if (is_write_migration_entry(entry) &&
989 					is_cow_mapping(vm_flags)) {
990 				/*
991 				 * COW mappings require pages in both
992 				 * parent and child to be set to read.
993 				 */
994 				make_migration_entry_read(&entry);
995 				pte = swp_entry_to_pte(entry);
996 				if (pte_swp_soft_dirty(*src_pte))
997 					pte = pte_swp_mksoft_dirty(pte);
998 				set_pte_at(src_mm, addr, src_pte, pte);
999 			}
1000 		} else if (is_device_private_entry(entry)) {
1001 			page = device_private_entry_to_page(entry);
1002 
1003 			/*
1004 			 * Update rss count even for unaddressable pages, as
1005 			 * they should treated just like normal pages in this
1006 			 * respect.
1007 			 *
1008 			 * We will likely want to have some new rss counters
1009 			 * for unaddressable pages, at some point. But for now
1010 			 * keep things as they are.
1011 			 */
1012 			get_page(page);
1013 			rss[mm_counter(page)]++;
1014 			page_dup_rmap(page, false);
1015 
1016 			/*
1017 			 * We do not preserve soft-dirty information, because so
1018 			 * far, checkpoint/restore is the only feature that
1019 			 * requires that. And checkpoint/restore does not work
1020 			 * when a device driver is involved (you cannot easily
1021 			 * save and restore device driver state).
1022 			 */
1023 			if (is_write_device_private_entry(entry) &&
1024 			    is_cow_mapping(vm_flags)) {
1025 				make_device_private_entry_read(&entry);
1026 				pte = swp_entry_to_pte(entry);
1027 				set_pte_at(src_mm, addr, src_pte, pte);
1028 			}
1029 		}
1030 		goto out_set_pte;
1031 	}
1032 
1033 	/*
1034 	 * If it's a COW mapping, write protect it both
1035 	 * in the parent and the child
1036 	 */
1037 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1038 		ptep_set_wrprotect(src_mm, addr, src_pte);
1039 		pte = pte_wrprotect(pte);
1040 	}
1041 
1042 	/*
1043 	 * If it's a shared mapping, mark it clean in
1044 	 * the child
1045 	 */
1046 	if (vm_flags & VM_SHARED)
1047 		pte = pte_mkclean(pte);
1048 	pte = pte_mkold(pte);
1049 
1050 	page = vm_normal_page(vma, addr, pte);
1051 	if (page) {
1052 		get_page(page);
1053 		page_dup_rmap(page, false);
1054 		rss[mm_counter(page)]++;
1055 	} else if (pte_devmap(pte)) {
1056 		page = pte_page(pte);
1057 
1058 		/*
1059 		 * Cache coherent device memory behave like regular page and
1060 		 * not like persistent memory page. For more informations see
1061 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1062 		 */
1063 		if (is_device_public_page(page)) {
1064 			get_page(page);
1065 			page_dup_rmap(page, false);
1066 			rss[mm_counter(page)]++;
1067 		}
1068 	}
1069 
1070 out_set_pte:
1071 	set_pte_at(dst_mm, addr, dst_pte, pte);
1072 	return 0;
1073 }
1074 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1075 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1077 		   unsigned long addr, unsigned long end)
1078 {
1079 	pte_t *orig_src_pte, *orig_dst_pte;
1080 	pte_t *src_pte, *dst_pte;
1081 	spinlock_t *src_ptl, *dst_ptl;
1082 	int progress = 0;
1083 	int rss[NR_MM_COUNTERS];
1084 	swp_entry_t entry = (swp_entry_t){0};
1085 
1086 again:
1087 	init_rss_vec(rss);
1088 
1089 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1090 	if (!dst_pte)
1091 		return -ENOMEM;
1092 	src_pte = pte_offset_map(src_pmd, addr);
1093 	src_ptl = pte_lockptr(src_mm, src_pmd);
1094 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095 	orig_src_pte = src_pte;
1096 	orig_dst_pte = dst_pte;
1097 	arch_enter_lazy_mmu_mode();
1098 
1099 	do {
1100 		/*
1101 		 * We are holding two locks at this point - either of them
1102 		 * could generate latencies in another task on another CPU.
1103 		 */
1104 		if (progress >= 32) {
1105 			progress = 0;
1106 			if (need_resched() ||
1107 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1108 				break;
1109 		}
1110 		if (pte_none(*src_pte)) {
1111 			progress++;
1112 			continue;
1113 		}
1114 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1115 							vma, addr, rss);
1116 		if (entry.val)
1117 			break;
1118 		progress += 8;
1119 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1120 
1121 	arch_leave_lazy_mmu_mode();
1122 	spin_unlock(src_ptl);
1123 	pte_unmap(orig_src_pte);
1124 	add_mm_rss_vec(dst_mm, rss);
1125 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1126 	cond_resched();
1127 
1128 	if (entry.val) {
1129 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1130 			return -ENOMEM;
1131 		progress = 0;
1132 	}
1133 	if (addr != end)
1134 		goto again;
1135 	return 0;
1136 }
1137 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1138 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1139 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1140 		unsigned long addr, unsigned long end)
1141 {
1142 	pmd_t *src_pmd, *dst_pmd;
1143 	unsigned long next;
1144 
1145 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1146 	if (!dst_pmd)
1147 		return -ENOMEM;
1148 	src_pmd = pmd_offset(src_pud, addr);
1149 	do {
1150 		next = pmd_addr_end(addr, end);
1151 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1152 			|| pmd_devmap(*src_pmd)) {
1153 			int err;
1154 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1155 			err = copy_huge_pmd(dst_mm, src_mm,
1156 					    dst_pmd, src_pmd, addr, vma);
1157 			if (err == -ENOMEM)
1158 				return -ENOMEM;
1159 			if (!err)
1160 				continue;
1161 			/* fall through */
1162 		}
1163 		if (pmd_none_or_clear_bad(src_pmd))
1164 			continue;
1165 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1166 						vma, addr, next))
1167 			return -ENOMEM;
1168 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1169 	return 0;
1170 }
1171 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1172 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1174 		unsigned long addr, unsigned long end)
1175 {
1176 	pud_t *src_pud, *dst_pud;
1177 	unsigned long next;
1178 
1179 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1180 	if (!dst_pud)
1181 		return -ENOMEM;
1182 	src_pud = pud_offset(src_p4d, addr);
1183 	do {
1184 		next = pud_addr_end(addr, end);
1185 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1186 			int err;
1187 
1188 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1189 			err = copy_huge_pud(dst_mm, src_mm,
1190 					    dst_pud, src_pud, addr, vma);
1191 			if (err == -ENOMEM)
1192 				return -ENOMEM;
1193 			if (!err)
1194 				continue;
1195 			/* fall through */
1196 		}
1197 		if (pud_none_or_clear_bad(src_pud))
1198 			continue;
1199 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1200 						vma, addr, next))
1201 			return -ENOMEM;
1202 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1203 	return 0;
1204 }
1205 
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1206 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1207 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1208 		unsigned long addr, unsigned long end)
1209 {
1210 	p4d_t *src_p4d, *dst_p4d;
1211 	unsigned long next;
1212 
1213 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 	if (!dst_p4d)
1215 		return -ENOMEM;
1216 	src_p4d = p4d_offset(src_pgd, addr);
1217 	do {
1218 		next = p4d_addr_end(addr, end);
1219 		if (p4d_none_or_clear_bad(src_p4d))
1220 			continue;
1221 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1222 						vma, addr, next))
1223 			return -ENOMEM;
1224 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 	return 0;
1226 }
1227 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1228 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1229 		struct vm_area_struct *vma)
1230 {
1231 	pgd_t *src_pgd, *dst_pgd;
1232 	unsigned long next;
1233 	unsigned long addr = vma->vm_start;
1234 	unsigned long end = vma->vm_end;
1235 	unsigned long mmun_start;	/* For mmu_notifiers */
1236 	unsigned long mmun_end;		/* For mmu_notifiers */
1237 	bool is_cow;
1238 	int ret;
1239 
1240 	/*
1241 	 * Don't copy ptes where a page fault will fill them correctly.
1242 	 * Fork becomes much lighter when there are big shared or private
1243 	 * readonly mappings. The tradeoff is that copy_page_range is more
1244 	 * efficient than faulting.
1245 	 */
1246 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247 			!vma->anon_vma)
1248 		return 0;
1249 
1250 	if (is_vm_hugetlb_page(vma))
1251 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1252 
1253 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1254 		/*
1255 		 * We do not free on error cases below as remove_vma
1256 		 * gets called on error from higher level routine
1257 		 */
1258 		ret = track_pfn_copy(vma);
1259 		if (ret)
1260 			return ret;
1261 	}
1262 
1263 	/*
1264 	 * We need to invalidate the secondary MMU mappings only when
1265 	 * there could be a permission downgrade on the ptes of the
1266 	 * parent mm. And a permission downgrade will only happen if
1267 	 * is_cow_mapping() returns true.
1268 	 */
1269 	is_cow = is_cow_mapping(vma->vm_flags);
1270 	mmun_start = addr;
1271 	mmun_end   = end;
1272 	if (is_cow)
1273 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1274 						    mmun_end);
1275 
1276 	ret = 0;
1277 	dst_pgd = pgd_offset(dst_mm, addr);
1278 	src_pgd = pgd_offset(src_mm, addr);
1279 	do {
1280 		next = pgd_addr_end(addr, end);
1281 		if (pgd_none_or_clear_bad(src_pgd))
1282 			continue;
1283 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1284 					    vma, addr, next))) {
1285 			ret = -ENOMEM;
1286 			break;
1287 		}
1288 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289 
1290 	if (is_cow)
1291 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1292 	return ret;
1293 }
1294 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1295 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1296 				struct vm_area_struct *vma, pmd_t *pmd,
1297 				unsigned long addr, unsigned long end,
1298 				struct zap_details *details)
1299 {
1300 	struct mm_struct *mm = tlb->mm;
1301 	int force_flush = 0;
1302 	int rss[NR_MM_COUNTERS];
1303 	spinlock_t *ptl;
1304 	pte_t *start_pte;
1305 	pte_t *pte;
1306 	swp_entry_t entry;
1307 
1308 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1309 again:
1310 	init_rss_vec(rss);
1311 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1312 	pte = start_pte;
1313 	flush_tlb_batched_pending(mm);
1314 	arch_enter_lazy_mmu_mode();
1315 	do {
1316 		pte_t ptent = *pte;
1317 		if (pte_none(ptent))
1318 			continue;
1319 
1320 		if (pte_present(ptent)) {
1321 			struct page *page;
1322 
1323 			page = _vm_normal_page(vma, addr, ptent, true);
1324 			if (unlikely(details) && page) {
1325 				/*
1326 				 * unmap_shared_mapping_pages() wants to
1327 				 * invalidate cache without truncating:
1328 				 * unmap shared but keep private pages.
1329 				 */
1330 				if (details->check_mapping &&
1331 				    details->check_mapping != page_rmapping(page))
1332 					continue;
1333 			}
1334 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1335 							tlb->fullmm);
1336 			tlb_remove_tlb_entry(tlb, pte, addr);
1337 			if (unlikely(!page))
1338 				continue;
1339 
1340 			if (!PageAnon(page)) {
1341 				if (pte_dirty(ptent)) {
1342 					force_flush = 1;
1343 					set_page_dirty(page);
1344 				}
1345 				if (pte_young(ptent) &&
1346 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1347 					mark_page_accessed(page);
1348 			}
1349 			rss[mm_counter(page)]--;
1350 			page_remove_rmap(page, false);
1351 			if (unlikely(page_mapcount(page) < 0))
1352 				print_bad_pte(vma, addr, ptent, page);
1353 			if (unlikely(__tlb_remove_page(tlb, page))) {
1354 				force_flush = 1;
1355 				addr += PAGE_SIZE;
1356 				break;
1357 			}
1358 			continue;
1359 		}
1360 
1361 		entry = pte_to_swp_entry(ptent);
1362 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1363 			struct page *page = device_private_entry_to_page(entry);
1364 
1365 			if (unlikely(details && details->check_mapping)) {
1366 				/*
1367 				 * unmap_shared_mapping_pages() wants to
1368 				 * invalidate cache without truncating:
1369 				 * unmap shared but keep private pages.
1370 				 */
1371 				if (details->check_mapping !=
1372 				    page_rmapping(page))
1373 					continue;
1374 			}
1375 
1376 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377 			rss[mm_counter(page)]--;
1378 			page_remove_rmap(page, false);
1379 			put_page(page);
1380 			continue;
1381 		}
1382 
1383 		/* If details->check_mapping, we leave swap entries. */
1384 		if (unlikely(details))
1385 			continue;
1386 
1387 		entry = pte_to_swp_entry(ptent);
1388 		if (!non_swap_entry(entry))
1389 			rss[MM_SWAPENTS]--;
1390 		else if (is_migration_entry(entry)) {
1391 			struct page *page;
1392 
1393 			page = migration_entry_to_page(entry);
1394 			rss[mm_counter(page)]--;
1395 		}
1396 		if (unlikely(!free_swap_and_cache(entry)))
1397 			print_bad_pte(vma, addr, ptent, NULL);
1398 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399 	} while (pte++, addr += PAGE_SIZE, addr != end);
1400 
1401 	add_mm_rss_vec(mm, rss);
1402 	arch_leave_lazy_mmu_mode();
1403 
1404 	/* Do the actual TLB flush before dropping ptl */
1405 	if (force_flush)
1406 		tlb_flush_mmu_tlbonly(tlb);
1407 	pte_unmap_unlock(start_pte, ptl);
1408 
1409 	/*
1410 	 * If we forced a TLB flush (either due to running out of
1411 	 * batch buffers or because we needed to flush dirty TLB
1412 	 * entries before releasing the ptl), free the batched
1413 	 * memory too. Restart if we didn't do everything.
1414 	 */
1415 	if (force_flush) {
1416 		force_flush = 0;
1417 		tlb_flush_mmu_free(tlb);
1418 		if (addr != end)
1419 			goto again;
1420 	}
1421 
1422 	return addr;
1423 }
1424 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1425 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1426 				struct vm_area_struct *vma, pud_t *pud,
1427 				unsigned long addr, unsigned long end,
1428 				struct zap_details *details)
1429 {
1430 	pmd_t *pmd;
1431 	unsigned long next;
1432 
1433 	pmd = pmd_offset(pud, addr);
1434 	do {
1435 		next = pmd_addr_end(addr, end);
1436 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1437 			if (next - addr != HPAGE_PMD_SIZE)
1438 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1439 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1440 				goto next;
1441 			/* fall through */
1442 		}
1443 		/*
1444 		 * Here there can be other concurrent MADV_DONTNEED or
1445 		 * trans huge page faults running, and if the pmd is
1446 		 * none or trans huge it can change under us. This is
1447 		 * because MADV_DONTNEED holds the mmap_sem in read
1448 		 * mode.
1449 		 */
1450 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1451 			goto next;
1452 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1453 next:
1454 		cond_resched();
1455 	} while (pmd++, addr = next, addr != end);
1456 
1457 	return addr;
1458 }
1459 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1460 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1461 				struct vm_area_struct *vma, p4d_t *p4d,
1462 				unsigned long addr, unsigned long end,
1463 				struct zap_details *details)
1464 {
1465 	pud_t *pud;
1466 	unsigned long next;
1467 
1468 	pud = pud_offset(p4d, addr);
1469 	do {
1470 		next = pud_addr_end(addr, end);
1471 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1472 			if (next - addr != HPAGE_PUD_SIZE) {
1473 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1474 				split_huge_pud(vma, pud, addr);
1475 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1476 				goto next;
1477 			/* fall through */
1478 		}
1479 		if (pud_none_or_clear_bad(pud))
1480 			continue;
1481 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1482 next:
1483 		cond_resched();
1484 	} while (pud++, addr = next, addr != end);
1485 
1486 	return addr;
1487 }
1488 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1489 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1490 				struct vm_area_struct *vma, pgd_t *pgd,
1491 				unsigned long addr, unsigned long end,
1492 				struct zap_details *details)
1493 {
1494 	p4d_t *p4d;
1495 	unsigned long next;
1496 
1497 	p4d = p4d_offset(pgd, addr);
1498 	do {
1499 		next = p4d_addr_end(addr, end);
1500 		if (p4d_none_or_clear_bad(p4d))
1501 			continue;
1502 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1503 	} while (p4d++, addr = next, addr != end);
1504 
1505 	return addr;
1506 }
1507 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1508 void unmap_page_range(struct mmu_gather *tlb,
1509 			     struct vm_area_struct *vma,
1510 			     unsigned long addr, unsigned long end,
1511 			     struct zap_details *details)
1512 {
1513 	pgd_t *pgd;
1514 	unsigned long next;
1515 
1516 	BUG_ON(addr >= end);
1517 	tlb_start_vma(tlb, vma);
1518 	pgd = pgd_offset(vma->vm_mm, addr);
1519 	do {
1520 		next = pgd_addr_end(addr, end);
1521 		if (pgd_none_or_clear_bad(pgd))
1522 			continue;
1523 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1524 	} while (pgd++, addr = next, addr != end);
1525 	tlb_end_vma(tlb, vma);
1526 }
1527 
1528 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1529 static void unmap_single_vma(struct mmu_gather *tlb,
1530 		struct vm_area_struct *vma, unsigned long start_addr,
1531 		unsigned long end_addr,
1532 		struct zap_details *details)
1533 {
1534 	unsigned long start = max(vma->vm_start, start_addr);
1535 	unsigned long end;
1536 
1537 	if (start >= vma->vm_end)
1538 		return;
1539 	end = min(vma->vm_end, end_addr);
1540 	if (end <= vma->vm_start)
1541 		return;
1542 
1543 	if (vma->vm_file)
1544 		uprobe_munmap(vma, start, end);
1545 
1546 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1547 		untrack_pfn(vma, 0, 0);
1548 
1549 	if (start != end) {
1550 		if (unlikely(is_vm_hugetlb_page(vma))) {
1551 			/*
1552 			 * It is undesirable to test vma->vm_file as it
1553 			 * should be non-null for valid hugetlb area.
1554 			 * However, vm_file will be NULL in the error
1555 			 * cleanup path of mmap_region. When
1556 			 * hugetlbfs ->mmap method fails,
1557 			 * mmap_region() nullifies vma->vm_file
1558 			 * before calling this function to clean up.
1559 			 * Since no pte has actually been setup, it is
1560 			 * safe to do nothing in this case.
1561 			 */
1562 			if (vma->vm_file) {
1563 				i_mmap_lock_write(vma->vm_file->f_mapping);
1564 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1565 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1566 			}
1567 		} else
1568 			unmap_page_range(tlb, vma, start, end, details);
1569 	}
1570 }
1571 
1572 /**
1573  * unmap_vmas - unmap a range of memory covered by a list of vma's
1574  * @tlb: address of the caller's struct mmu_gather
1575  * @vma: the starting vma
1576  * @start_addr: virtual address at which to start unmapping
1577  * @end_addr: virtual address at which to end unmapping
1578  *
1579  * Unmap all pages in the vma list.
1580  *
1581  * Only addresses between `start' and `end' will be unmapped.
1582  *
1583  * The VMA list must be sorted in ascending virtual address order.
1584  *
1585  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1586  * range after unmap_vmas() returns.  So the only responsibility here is to
1587  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1588  * drops the lock and schedules.
1589  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1590 void unmap_vmas(struct mmu_gather *tlb,
1591 		struct vm_area_struct *vma, unsigned long start_addr,
1592 		unsigned long end_addr)
1593 {
1594 	struct mm_struct *mm = vma->vm_mm;
1595 
1596 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1597 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1598 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1599 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1600 }
1601 
1602 /**
1603  * zap_page_range - remove user pages in a given range
1604  * @vma: vm_area_struct holding the applicable pages
1605  * @start: starting address of pages to zap
1606  * @size: number of bytes to zap
1607  *
1608  * Caller must protect the VMA list
1609  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1610 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1611 		unsigned long size)
1612 {
1613 	struct mm_struct *mm = vma->vm_mm;
1614 	struct mmu_gather tlb;
1615 	unsigned long end = start + size;
1616 
1617 	lru_add_drain();
1618 	tlb_gather_mmu(&tlb, mm, start, end);
1619 	update_hiwater_rss(mm);
1620 	mmu_notifier_invalidate_range_start(mm, start, end);
1621 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1622 		unmap_single_vma(&tlb, vma, start, end, NULL);
1623 	mmu_notifier_invalidate_range_end(mm, start, end);
1624 	tlb_finish_mmu(&tlb, start, end);
1625 }
1626 
1627 /**
1628  * zap_page_range_single - remove user pages in a given range
1629  * @vma: vm_area_struct holding the applicable pages
1630  * @address: starting address of pages to zap
1631  * @size: number of bytes to zap
1632  * @details: details of shared cache invalidation
1633  *
1634  * The range must fit into one VMA.
1635  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1636 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1637 		unsigned long size, struct zap_details *details)
1638 {
1639 	struct mm_struct *mm = vma->vm_mm;
1640 	struct mmu_gather tlb;
1641 	unsigned long end = address + size;
1642 
1643 	lru_add_drain();
1644 	tlb_gather_mmu(&tlb, mm, address, end);
1645 	update_hiwater_rss(mm);
1646 	mmu_notifier_invalidate_range_start(mm, address, end);
1647 	unmap_single_vma(&tlb, vma, address, end, details);
1648 	mmu_notifier_invalidate_range_end(mm, address, end);
1649 	tlb_finish_mmu(&tlb, address, end);
1650 }
1651 
1652 /**
1653  * zap_vma_ptes - remove ptes mapping the vma
1654  * @vma: vm_area_struct holding ptes to be zapped
1655  * @address: starting address of pages to zap
1656  * @size: number of bytes to zap
1657  *
1658  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1659  *
1660  * The entire address range must be fully contained within the vma.
1661  *
1662  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1663 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1664 		unsigned long size)
1665 {
1666 	if (address < vma->vm_start || address + size > vma->vm_end ||
1667 	    		!(vma->vm_flags & VM_PFNMAP))
1668 		return;
1669 
1670 	zap_page_range_single(vma, address, size, NULL);
1671 }
1672 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1673 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1674 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1675 			spinlock_t **ptl)
1676 {
1677 	pgd_t *pgd;
1678 	p4d_t *p4d;
1679 	pud_t *pud;
1680 	pmd_t *pmd;
1681 
1682 	pgd = pgd_offset(mm, addr);
1683 	p4d = p4d_alloc(mm, pgd, addr);
1684 	if (!p4d)
1685 		return NULL;
1686 	pud = pud_alloc(mm, p4d, addr);
1687 	if (!pud)
1688 		return NULL;
1689 	pmd = pmd_alloc(mm, pud, addr);
1690 	if (!pmd)
1691 		return NULL;
1692 
1693 	VM_BUG_ON(pmd_trans_huge(*pmd));
1694 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1695 }
1696 
1697 /*
1698  * This is the old fallback for page remapping.
1699  *
1700  * For historical reasons, it only allows reserved pages. Only
1701  * old drivers should use this, and they needed to mark their
1702  * pages reserved for the old functions anyway.
1703  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1704 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1705 			struct page *page, pgprot_t prot)
1706 {
1707 	struct mm_struct *mm = vma->vm_mm;
1708 	int retval;
1709 	pte_t *pte;
1710 	spinlock_t *ptl;
1711 
1712 	retval = -EINVAL;
1713 	if (PageAnon(page))
1714 		goto out;
1715 	retval = -ENOMEM;
1716 	flush_dcache_page(page);
1717 	pte = get_locked_pte(mm, addr, &ptl);
1718 	if (!pte)
1719 		goto out;
1720 	retval = -EBUSY;
1721 	if (!pte_none(*pte))
1722 		goto out_unlock;
1723 
1724 	/* Ok, finally just insert the thing.. */
1725 	get_page(page);
1726 	inc_mm_counter_fast(mm, mm_counter_file(page));
1727 	page_add_file_rmap(page, false);
1728 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1729 
1730 	retval = 0;
1731 	pte_unmap_unlock(pte, ptl);
1732 	return retval;
1733 out_unlock:
1734 	pte_unmap_unlock(pte, ptl);
1735 out:
1736 	return retval;
1737 }
1738 
1739 /**
1740  * vm_insert_page - insert single page into user vma
1741  * @vma: user vma to map to
1742  * @addr: target user address of this page
1743  * @page: source kernel page
1744  *
1745  * This allows drivers to insert individual pages they've allocated
1746  * into a user vma.
1747  *
1748  * The page has to be a nice clean _individual_ kernel allocation.
1749  * If you allocate a compound page, you need to have marked it as
1750  * such (__GFP_COMP), or manually just split the page up yourself
1751  * (see split_page()).
1752  *
1753  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1754  * took an arbitrary page protection parameter. This doesn't allow
1755  * that. Your vma protection will have to be set up correctly, which
1756  * means that if you want a shared writable mapping, you'd better
1757  * ask for a shared writable mapping!
1758  *
1759  * The page does not need to be reserved.
1760  *
1761  * Usually this function is called from f_op->mmap() handler
1762  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1763  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1764  * function from other places, for example from page-fault handler.
1765  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1766 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1767 			struct page *page)
1768 {
1769 	if (addr < vma->vm_start || addr >= vma->vm_end)
1770 		return -EFAULT;
1771 	if (!page_count(page))
1772 		return -EINVAL;
1773 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1774 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1775 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1776 		vma->vm_flags |= VM_MIXEDMAP;
1777 	}
1778 	return insert_page(vma, addr, page, vma->vm_page_prot);
1779 }
1780 EXPORT_SYMBOL(vm_insert_page);
1781 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1782 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1783 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1784 {
1785 	struct mm_struct *mm = vma->vm_mm;
1786 	int retval;
1787 	pte_t *pte, entry;
1788 	spinlock_t *ptl;
1789 
1790 	retval = -ENOMEM;
1791 	pte = get_locked_pte(mm, addr, &ptl);
1792 	if (!pte)
1793 		goto out;
1794 	retval = -EBUSY;
1795 	if (!pte_none(*pte)) {
1796 		if (mkwrite) {
1797 			/*
1798 			 * For read faults on private mappings the PFN passed
1799 			 * in may not match the PFN we have mapped if the
1800 			 * mapped PFN is a writeable COW page.  In the mkwrite
1801 			 * case we are creating a writable PTE for a shared
1802 			 * mapping and we expect the PFNs to match. If they
1803 			 * don't match, we are likely racing with block
1804 			 * allocation and mapping invalidation so just skip the
1805 			 * update.
1806 			 */
1807 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1808 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1809 				goto out_unlock;
1810 			}
1811 			entry = pte_mkyoung(*pte);
1812 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1813 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1814 				update_mmu_cache(vma, addr, pte);
1815 		}
1816 		goto out_unlock;
1817 	}
1818 
1819 	/* Ok, finally just insert the thing.. */
1820 	if (pfn_t_devmap(pfn))
1821 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1822 	else
1823 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1824 
1825 	if (mkwrite) {
1826 		entry = pte_mkyoung(entry);
1827 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828 	}
1829 
1830 	set_pte_at(mm, addr, pte, entry);
1831 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1832 
1833 	retval = 0;
1834 out_unlock:
1835 	pte_unmap_unlock(pte, ptl);
1836 out:
1837 	return retval;
1838 }
1839 
1840 /**
1841  * vm_insert_pfn - insert single pfn into user vma
1842  * @vma: user vma to map to
1843  * @addr: target user address of this page
1844  * @pfn: source kernel pfn
1845  *
1846  * Similar to vm_insert_page, this allows drivers to insert individual pages
1847  * they've allocated into a user vma. Same comments apply.
1848  *
1849  * This function should only be called from a vm_ops->fault handler, and
1850  * in that case the handler should return NULL.
1851  *
1852  * vma cannot be a COW mapping.
1853  *
1854  * As this is called only for pages that do not currently exist, we
1855  * do not need to flush old virtual caches or the TLB.
1856  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1858 			unsigned long pfn)
1859 {
1860 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1861 }
1862 EXPORT_SYMBOL(vm_insert_pfn);
1863 
1864 /**
1865  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866  * @vma: user vma to map to
1867  * @addr: target user address of this page
1868  * @pfn: source kernel pfn
1869  * @pgprot: pgprot flags for the inserted page
1870  *
1871  * This is exactly like vm_insert_pfn, except that it allows drivers to
1872  * to override pgprot on a per-page basis.
1873  *
1874  * This only makes sense for IO mappings, and it makes no sense for
1875  * cow mappings.  In general, using multiple vmas is preferable;
1876  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1877  * impractical.
1878  */
vm_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1880 			unsigned long pfn, pgprot_t pgprot)
1881 {
1882 	int ret;
1883 	/*
1884 	 * Technically, architectures with pte_special can avoid all these
1885 	 * restrictions (same for remap_pfn_range).  However we would like
1886 	 * consistency in testing and feature parity among all, so we should
1887 	 * try to keep these invariants in place for everybody.
1888 	 */
1889 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1890 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1891 						(VM_PFNMAP|VM_MIXEDMAP));
1892 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1893 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1894 
1895 	if (addr < vma->vm_start || addr >= vma->vm_end)
1896 		return -EFAULT;
1897 
1898 	if (!pfn_modify_allowed(pfn, pgprot))
1899 		return -EACCES;
1900 
1901 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1902 
1903 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1904 			false);
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL(vm_insert_pfn_prot);
1909 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)1910 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1911 {
1912 	/* these checks mirror the abort conditions in vm_normal_page */
1913 	if (vma->vm_flags & VM_MIXEDMAP)
1914 		return true;
1915 	if (pfn_t_devmap(pfn))
1916 		return true;
1917 	if (pfn_t_special(pfn))
1918 		return true;
1919 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1920 		return true;
1921 	return false;
1922 }
1923 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1924 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1925 			pfn_t pfn, bool mkwrite)
1926 {
1927 	pgprot_t pgprot = vma->vm_page_prot;
1928 
1929 	BUG_ON(!vm_mixed_ok(vma, pfn));
1930 
1931 	if (addr < vma->vm_start || addr >= vma->vm_end)
1932 		return -EFAULT;
1933 
1934 	track_pfn_insert(vma, &pgprot, pfn);
1935 
1936 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1937 		return -EACCES;
1938 
1939 	/*
1940 	 * If we don't have pte special, then we have to use the pfn_valid()
1941 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1942 	 * refcount the page if pfn_valid is true (hence insert_page rather
1943 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1944 	 * without pte special, it would there be refcounted as a normal page.
1945 	 */
1946 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1947 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1948 		struct page *page;
1949 
1950 		/*
1951 		 * At this point we are committed to insert_page()
1952 		 * regardless of whether the caller specified flags that
1953 		 * result in pfn_t_has_page() == false.
1954 		 */
1955 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1956 		return insert_page(vma, addr, page, pgprot);
1957 	}
1958 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1959 }
1960 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1961 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1962 			pfn_t pfn)
1963 {
1964 	return __vm_insert_mixed(vma, addr, pfn, false);
1965 
1966 }
1967 EXPORT_SYMBOL(vm_insert_mixed);
1968 
1969 /*
1970  *  If the insertion of PTE failed because someone else already added a
1971  *  different entry in the mean time, we treat that as success as we assume
1972  *  the same entry was actually inserted.
1973  */
1974 
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1975 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1976 		unsigned long addr, pfn_t pfn)
1977 {
1978 	int err;
1979 
1980 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1981 	if (err == -ENOMEM)
1982 		return VM_FAULT_OOM;
1983 	if (err < 0 && err != -EBUSY)
1984 		return VM_FAULT_SIGBUS;
1985 	return VM_FAULT_NOPAGE;
1986 }
1987 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1988 
1989 /*
1990  * maps a range of physical memory into the requested pages. the old
1991  * mappings are removed. any references to nonexistent pages results
1992  * in null mappings (currently treated as "copy-on-access")
1993  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1994 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1995 			unsigned long addr, unsigned long end,
1996 			unsigned long pfn, pgprot_t prot)
1997 {
1998 	pte_t *pte;
1999 	spinlock_t *ptl;
2000 	int err = 0;
2001 
2002 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2003 	if (!pte)
2004 		return -ENOMEM;
2005 	arch_enter_lazy_mmu_mode();
2006 	do {
2007 		BUG_ON(!pte_none(*pte));
2008 		if (!pfn_modify_allowed(pfn, prot)) {
2009 			err = -EACCES;
2010 			break;
2011 		}
2012 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2013 		pfn++;
2014 	} while (pte++, addr += PAGE_SIZE, addr != end);
2015 	arch_leave_lazy_mmu_mode();
2016 	pte_unmap_unlock(pte - 1, ptl);
2017 	return err;
2018 }
2019 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2020 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2021 			unsigned long addr, unsigned long end,
2022 			unsigned long pfn, pgprot_t prot)
2023 {
2024 	pmd_t *pmd;
2025 	unsigned long next;
2026 	int err;
2027 
2028 	pfn -= addr >> PAGE_SHIFT;
2029 	pmd = pmd_alloc(mm, pud, addr);
2030 	if (!pmd)
2031 		return -ENOMEM;
2032 	VM_BUG_ON(pmd_trans_huge(*pmd));
2033 	do {
2034 		next = pmd_addr_end(addr, end);
2035 		err = remap_pte_range(mm, pmd, addr, next,
2036 				pfn + (addr >> PAGE_SHIFT), prot);
2037 		if (err)
2038 			return err;
2039 	} while (pmd++, addr = next, addr != end);
2040 	return 0;
2041 }
2042 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2043 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2044 			unsigned long addr, unsigned long end,
2045 			unsigned long pfn, pgprot_t prot)
2046 {
2047 	pud_t *pud;
2048 	unsigned long next;
2049 	int err;
2050 
2051 	pfn -= addr >> PAGE_SHIFT;
2052 	pud = pud_alloc(mm, p4d, addr);
2053 	if (!pud)
2054 		return -ENOMEM;
2055 	do {
2056 		next = pud_addr_end(addr, end);
2057 		err = remap_pmd_range(mm, pud, addr, next,
2058 				pfn + (addr >> PAGE_SHIFT), prot);
2059 		if (err)
2060 			return err;
2061 	} while (pud++, addr = next, addr != end);
2062 	return 0;
2063 }
2064 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2065 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2066 			unsigned long addr, unsigned long end,
2067 			unsigned long pfn, pgprot_t prot)
2068 {
2069 	p4d_t *p4d;
2070 	unsigned long next;
2071 	int err;
2072 
2073 	pfn -= addr >> PAGE_SHIFT;
2074 	p4d = p4d_alloc(mm, pgd, addr);
2075 	if (!p4d)
2076 		return -ENOMEM;
2077 	do {
2078 		next = p4d_addr_end(addr, end);
2079 		err = remap_pud_range(mm, p4d, addr, next,
2080 				pfn + (addr >> PAGE_SHIFT), prot);
2081 		if (err)
2082 			return err;
2083 	} while (p4d++, addr = next, addr != end);
2084 	return 0;
2085 }
2086 
2087 /**
2088  * remap_pfn_range - remap kernel memory to userspace
2089  * @vma: user vma to map to
2090  * @addr: target user address to start at
2091  * @pfn: physical address of kernel memory
2092  * @size: size of map area
2093  * @prot: page protection flags for this mapping
2094  *
2095  *  Note: this is only safe if the mm semaphore is held when called.
2096  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2097 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2098 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2099 {
2100 	pgd_t *pgd;
2101 	unsigned long next;
2102 	unsigned long end = addr + PAGE_ALIGN(size);
2103 	struct mm_struct *mm = vma->vm_mm;
2104 	unsigned long remap_pfn = pfn;
2105 	int err;
2106 
2107 	/*
2108 	 * Physically remapped pages are special. Tell the
2109 	 * rest of the world about it:
2110 	 *   VM_IO tells people not to look at these pages
2111 	 *	(accesses can have side effects).
2112 	 *   VM_PFNMAP tells the core MM that the base pages are just
2113 	 *	raw PFN mappings, and do not have a "struct page" associated
2114 	 *	with them.
2115 	 *   VM_DONTEXPAND
2116 	 *      Disable vma merging and expanding with mremap().
2117 	 *   VM_DONTDUMP
2118 	 *      Omit vma from core dump, even when VM_IO turned off.
2119 	 *
2120 	 * There's a horrible special case to handle copy-on-write
2121 	 * behaviour that some programs depend on. We mark the "original"
2122 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2123 	 * See vm_normal_page() for details.
2124 	 */
2125 	if (is_cow_mapping(vma->vm_flags)) {
2126 		if (addr != vma->vm_start || end != vma->vm_end)
2127 			return -EINVAL;
2128 		vma->vm_pgoff = pfn;
2129 	}
2130 
2131 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2132 	if (err)
2133 		return -EINVAL;
2134 
2135 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2136 
2137 	BUG_ON(addr >= end);
2138 	pfn -= addr >> PAGE_SHIFT;
2139 	pgd = pgd_offset(mm, addr);
2140 	flush_cache_range(vma, addr, end);
2141 	do {
2142 		next = pgd_addr_end(addr, end);
2143 		err = remap_p4d_range(mm, pgd, addr, next,
2144 				pfn + (addr >> PAGE_SHIFT), prot);
2145 		if (err)
2146 			break;
2147 	} while (pgd++, addr = next, addr != end);
2148 
2149 	if (err)
2150 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2151 
2152 	return err;
2153 }
2154 EXPORT_SYMBOL(remap_pfn_range);
2155 
2156 /**
2157  * vm_iomap_memory - remap memory to userspace
2158  * @vma: user vma to map to
2159  * @start: start of area
2160  * @len: size of area
2161  *
2162  * This is a simplified io_remap_pfn_range() for common driver use. The
2163  * driver just needs to give us the physical memory range to be mapped,
2164  * we'll figure out the rest from the vma information.
2165  *
2166  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2167  * whatever write-combining details or similar.
2168  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2169 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2170 {
2171 	unsigned long vm_len, pfn, pages;
2172 
2173 	/* Check that the physical memory area passed in looks valid */
2174 	if (start + len < start)
2175 		return -EINVAL;
2176 	/*
2177 	 * You *really* shouldn't map things that aren't page-aligned,
2178 	 * but we've historically allowed it because IO memory might
2179 	 * just have smaller alignment.
2180 	 */
2181 	len += start & ~PAGE_MASK;
2182 	pfn = start >> PAGE_SHIFT;
2183 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2184 	if (pfn + pages < pfn)
2185 		return -EINVAL;
2186 
2187 	/* We start the mapping 'vm_pgoff' pages into the area */
2188 	if (vma->vm_pgoff > pages)
2189 		return -EINVAL;
2190 	pfn += vma->vm_pgoff;
2191 	pages -= vma->vm_pgoff;
2192 
2193 	/* Can we fit all of the mapping? */
2194 	vm_len = vma->vm_end - vma->vm_start;
2195 	if (vm_len >> PAGE_SHIFT > pages)
2196 		return -EINVAL;
2197 
2198 	/* Ok, let it rip */
2199 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2200 }
2201 EXPORT_SYMBOL(vm_iomap_memory);
2202 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2203 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2204 				     unsigned long addr, unsigned long end,
2205 				     pte_fn_t fn, void *data)
2206 {
2207 	pte_t *pte;
2208 	int err;
2209 	pgtable_t token;
2210 	spinlock_t *uninitialized_var(ptl);
2211 
2212 	pte = (mm == &init_mm) ?
2213 		pte_alloc_kernel(pmd, addr) :
2214 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2215 	if (!pte)
2216 		return -ENOMEM;
2217 
2218 	BUG_ON(pmd_huge(*pmd));
2219 
2220 	arch_enter_lazy_mmu_mode();
2221 
2222 	token = pmd_pgtable(*pmd);
2223 
2224 	do {
2225 		err = fn(pte++, token, addr, data);
2226 		if (err)
2227 			break;
2228 	} while (addr += PAGE_SIZE, addr != end);
2229 
2230 	arch_leave_lazy_mmu_mode();
2231 
2232 	if (mm != &init_mm)
2233 		pte_unmap_unlock(pte-1, ptl);
2234 	return err;
2235 }
2236 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2237 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2238 				     unsigned long addr, unsigned long end,
2239 				     pte_fn_t fn, void *data)
2240 {
2241 	pmd_t *pmd;
2242 	unsigned long next;
2243 	int err;
2244 
2245 	BUG_ON(pud_huge(*pud));
2246 
2247 	pmd = pmd_alloc(mm, pud, addr);
2248 	if (!pmd)
2249 		return -ENOMEM;
2250 	do {
2251 		next = pmd_addr_end(addr, end);
2252 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2253 		if (err)
2254 			break;
2255 	} while (pmd++, addr = next, addr != end);
2256 	return err;
2257 }
2258 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2259 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2260 				     unsigned long addr, unsigned long end,
2261 				     pte_fn_t fn, void *data)
2262 {
2263 	pud_t *pud;
2264 	unsigned long next;
2265 	int err;
2266 
2267 	pud = pud_alloc(mm, p4d, addr);
2268 	if (!pud)
2269 		return -ENOMEM;
2270 	do {
2271 		next = pud_addr_end(addr, end);
2272 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2273 		if (err)
2274 			break;
2275 	} while (pud++, addr = next, addr != end);
2276 	return err;
2277 }
2278 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2279 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2280 				     unsigned long addr, unsigned long end,
2281 				     pte_fn_t fn, void *data)
2282 {
2283 	p4d_t *p4d;
2284 	unsigned long next;
2285 	int err;
2286 
2287 	p4d = p4d_alloc(mm, pgd, addr);
2288 	if (!p4d)
2289 		return -ENOMEM;
2290 	do {
2291 		next = p4d_addr_end(addr, end);
2292 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2293 		if (err)
2294 			break;
2295 	} while (p4d++, addr = next, addr != end);
2296 	return err;
2297 }
2298 
2299 /*
2300  * Scan a region of virtual memory, filling in page tables as necessary
2301  * and calling a provided function on each leaf page table.
2302  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2303 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2304 			unsigned long size, pte_fn_t fn, void *data)
2305 {
2306 	pgd_t *pgd;
2307 	unsigned long next;
2308 	unsigned long end = addr + size;
2309 	int err;
2310 
2311 	if (WARN_ON(addr >= end))
2312 		return -EINVAL;
2313 
2314 	pgd = pgd_offset(mm, addr);
2315 	do {
2316 		next = pgd_addr_end(addr, end);
2317 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2318 		if (err)
2319 			break;
2320 	} while (pgd++, addr = next, addr != end);
2321 
2322 	return err;
2323 }
2324 EXPORT_SYMBOL_GPL(apply_to_page_range);
2325 
2326 /*
2327  * handle_pte_fault chooses page fault handler according to an entry which was
2328  * read non-atomically.  Before making any commitment, on those architectures
2329  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2330  * parts, do_swap_page must check under lock before unmapping the pte and
2331  * proceeding (but do_wp_page is only called after already making such a check;
2332  * and do_anonymous_page can safely check later on).
2333  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2334 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2335 				pte_t *page_table, pte_t orig_pte)
2336 {
2337 	int same = 1;
2338 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2339 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2340 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2341 		spin_lock(ptl);
2342 		same = pte_same(*page_table, orig_pte);
2343 		spin_unlock(ptl);
2344 	}
2345 #endif
2346 	pte_unmap(page_table);
2347 	return same;
2348 }
2349 
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2350 static inline bool cow_user_page(struct page *dst, struct page *src,
2351 				 struct vm_fault *vmf)
2352 {
2353 	bool ret;
2354 	void *kaddr;
2355 	void __user *uaddr;
2356 	bool locked = false;
2357 	struct vm_area_struct *vma = vmf->vma;
2358 	struct mm_struct *mm = vma->vm_mm;
2359 	unsigned long addr = vmf->address;
2360 
2361 	debug_dma_assert_idle(src);
2362 
2363 	if (likely(src)) {
2364 		copy_user_highpage(dst, src, addr, vma);
2365 		return true;
2366 	}
2367 
2368 	/*
2369 	 * If the source page was a PFN mapping, we don't have
2370 	 * a "struct page" for it. We do a best-effort copy by
2371 	 * just copying from the original user address. If that
2372 	 * fails, we just zero-fill it. Live with it.
2373 	 */
2374 	kaddr = kmap_atomic(dst);
2375 	uaddr = (void __user *)(addr & PAGE_MASK);
2376 
2377 	/*
2378 	 * On architectures with software "accessed" bits, we would
2379 	 * take a double page fault, so mark it accessed here.
2380 	 */
2381 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2382 		pte_t entry;
2383 
2384 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2385 		locked = true;
2386 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2387 			/*
2388 			 * Other thread has already handled the fault
2389 			 * and we don't need to do anything. If it's
2390 			 * not the case, the fault will be triggered
2391 			 * again on the same address.
2392 			 */
2393 			ret = false;
2394 			goto pte_unlock;
2395 		}
2396 
2397 		entry = pte_mkyoung(vmf->orig_pte);
2398 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2399 			update_mmu_cache(vma, addr, vmf->pte);
2400 	}
2401 
2402 	/*
2403 	 * This really shouldn't fail, because the page is there
2404 	 * in the page tables. But it might just be unreadable,
2405 	 * in which case we just give up and fill the result with
2406 	 * zeroes.
2407 	 */
2408 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2409 		if (locked)
2410 			goto warn;
2411 
2412 		/* Re-validate under PTL if the page is still mapped */
2413 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2414 		locked = true;
2415 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2416 			/* The PTE changed under us. Retry page fault. */
2417 			ret = false;
2418 			goto pte_unlock;
2419 		}
2420 
2421 		/*
2422 		 * The same page can be mapped back since last copy attampt.
2423 		 * Try to copy again under PTL.
2424 		 */
2425 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2426 			/*
2427 			 * Give a warn in case there can be some obscure
2428 			 * use-case
2429 			 */
2430 warn:
2431 			WARN_ON_ONCE(1);
2432 			clear_page(kaddr);
2433 		}
2434 	}
2435 
2436 	ret = true;
2437 
2438 pte_unlock:
2439 	if (locked)
2440 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2441 	kunmap_atomic(kaddr);
2442 	flush_dcache_page(dst);
2443 
2444 	return ret;
2445 }
2446 
__get_fault_gfp_mask(struct vm_area_struct * vma)2447 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2448 {
2449 	struct file *vm_file = vma->vm_file;
2450 
2451 	if (vm_file)
2452 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2453 
2454 	/*
2455 	 * Special mappings (e.g. VDSO) do not have any file so fake
2456 	 * a default GFP_KERNEL for them.
2457 	 */
2458 	return GFP_KERNEL;
2459 }
2460 
2461 /*
2462  * Notify the address space that the page is about to become writable so that
2463  * it can prohibit this or wait for the page to get into an appropriate state.
2464  *
2465  * We do this without the lock held, so that it can sleep if it needs to.
2466  */
do_page_mkwrite(struct vm_fault * vmf)2467 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2468 {
2469 	vm_fault_t ret;
2470 	struct page *page = vmf->page;
2471 	unsigned int old_flags = vmf->flags;
2472 
2473 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2474 
2475 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2476 	/* Restore original flags so that caller is not surprised */
2477 	vmf->flags = old_flags;
2478 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2479 		return ret;
2480 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2481 		lock_page(page);
2482 		if (!page->mapping) {
2483 			unlock_page(page);
2484 			return 0; /* retry */
2485 		}
2486 		ret |= VM_FAULT_LOCKED;
2487 	} else
2488 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2489 	return ret;
2490 }
2491 
2492 /*
2493  * Handle dirtying of a page in shared file mapping on a write fault.
2494  *
2495  * The function expects the page to be locked and unlocks it.
2496  */
fault_dirty_shared_page(struct vm_area_struct * vma,struct page * page)2497 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2498 				    struct page *page)
2499 {
2500 	struct address_space *mapping;
2501 	bool dirtied;
2502 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2503 
2504 	dirtied = set_page_dirty(page);
2505 	VM_BUG_ON_PAGE(PageAnon(page), page);
2506 	/*
2507 	 * Take a local copy of the address_space - page.mapping may be zeroed
2508 	 * by truncate after unlock_page().   The address_space itself remains
2509 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2510 	 * release semantics to prevent the compiler from undoing this copying.
2511 	 */
2512 	mapping = page_rmapping(page);
2513 	unlock_page(page);
2514 
2515 	if ((dirtied || page_mkwrite) && mapping) {
2516 		/*
2517 		 * Some device drivers do not set page.mapping
2518 		 * but still dirty their pages
2519 		 */
2520 		balance_dirty_pages_ratelimited(mapping);
2521 	}
2522 
2523 	if (!page_mkwrite)
2524 		file_update_time(vma->vm_file);
2525 }
2526 
2527 /*
2528  * Handle write page faults for pages that can be reused in the current vma
2529  *
2530  * This can happen either due to the mapping being with the VM_SHARED flag,
2531  * or due to us being the last reference standing to the page. In either
2532  * case, all we need to do here is to mark the page as writable and update
2533  * any related book-keeping.
2534  */
wp_page_reuse(struct vm_fault * vmf)2535 static inline void wp_page_reuse(struct vm_fault *vmf)
2536 	__releases(vmf->ptl)
2537 {
2538 	struct vm_area_struct *vma = vmf->vma;
2539 	struct page *page = vmf->page;
2540 	pte_t entry;
2541 	/*
2542 	 * Clear the pages cpupid information as the existing
2543 	 * information potentially belongs to a now completely
2544 	 * unrelated process.
2545 	 */
2546 	if (page)
2547 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2548 
2549 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2550 	entry = pte_mkyoung(vmf->orig_pte);
2551 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2552 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2553 		update_mmu_cache(vma, vmf->address, vmf->pte);
2554 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2555 }
2556 
2557 /*
2558  * Handle the case of a page which we actually need to copy to a new page.
2559  *
2560  * Called with mmap_sem locked and the old page referenced, but
2561  * without the ptl held.
2562  *
2563  * High level logic flow:
2564  *
2565  * - Allocate a page, copy the content of the old page to the new one.
2566  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2567  * - Take the PTL. If the pte changed, bail out and release the allocated page
2568  * - If the pte is still the way we remember it, update the page table and all
2569  *   relevant references. This includes dropping the reference the page-table
2570  *   held to the old page, as well as updating the rmap.
2571  * - In any case, unlock the PTL and drop the reference we took to the old page.
2572  */
wp_page_copy(struct vm_fault * vmf)2573 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2574 {
2575 	struct vm_area_struct *vma = vmf->vma;
2576 	struct mm_struct *mm = vma->vm_mm;
2577 	struct page *old_page = vmf->page;
2578 	struct page *new_page = NULL;
2579 	pte_t entry;
2580 	int page_copied = 0;
2581 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2582 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2583 	struct mem_cgroup *memcg;
2584 
2585 	if (unlikely(anon_vma_prepare(vma)))
2586 		goto oom;
2587 
2588 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2589 		new_page = alloc_zeroed_user_highpage_movable(vma,
2590 							      vmf->address);
2591 		if (!new_page)
2592 			goto oom;
2593 	} else {
2594 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2595 				vmf->address);
2596 		if (!new_page)
2597 			goto oom;
2598 
2599 		if (!cow_user_page(new_page, old_page, vmf)) {
2600 			/*
2601 			 * COW failed, if the fault was solved by other,
2602 			 * it's fine. If not, userspace would re-fault on
2603 			 * the same address and we will handle the fault
2604 			 * from the second attempt.
2605 			 */
2606 			put_page(new_page);
2607 			if (old_page)
2608 				put_page(old_page);
2609 			return 0;
2610 		}
2611 	}
2612 
2613 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2614 		goto oom_free_new;
2615 
2616 	__SetPageUptodate(new_page);
2617 
2618 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2619 
2620 	/*
2621 	 * Re-check the pte - we dropped the lock
2622 	 */
2623 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2624 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2625 		if (old_page) {
2626 			if (!PageAnon(old_page)) {
2627 				dec_mm_counter_fast(mm,
2628 						mm_counter_file(old_page));
2629 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2630 			}
2631 		} else {
2632 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2633 		}
2634 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2635 		entry = mk_pte(new_page, vma->vm_page_prot);
2636 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2637 		/*
2638 		 * Clear the pte entry and flush it first, before updating the
2639 		 * pte with the new entry. This will avoid a race condition
2640 		 * seen in the presence of one thread doing SMC and another
2641 		 * thread doing COW.
2642 		 */
2643 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2644 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2645 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2646 		lru_cache_add_active_or_unevictable(new_page, vma);
2647 		/*
2648 		 * We call the notify macro here because, when using secondary
2649 		 * mmu page tables (such as kvm shadow page tables), we want the
2650 		 * new page to be mapped directly into the secondary page table.
2651 		 */
2652 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2653 		update_mmu_cache(vma, vmf->address, vmf->pte);
2654 		if (old_page) {
2655 			/*
2656 			 * Only after switching the pte to the new page may
2657 			 * we remove the mapcount here. Otherwise another
2658 			 * process may come and find the rmap count decremented
2659 			 * before the pte is switched to the new page, and
2660 			 * "reuse" the old page writing into it while our pte
2661 			 * here still points into it and can be read by other
2662 			 * threads.
2663 			 *
2664 			 * The critical issue is to order this
2665 			 * page_remove_rmap with the ptp_clear_flush above.
2666 			 * Those stores are ordered by (if nothing else,)
2667 			 * the barrier present in the atomic_add_negative
2668 			 * in page_remove_rmap.
2669 			 *
2670 			 * Then the TLB flush in ptep_clear_flush ensures that
2671 			 * no process can access the old page before the
2672 			 * decremented mapcount is visible. And the old page
2673 			 * cannot be reused until after the decremented
2674 			 * mapcount is visible. So transitively, TLBs to
2675 			 * old page will be flushed before it can be reused.
2676 			 */
2677 			page_remove_rmap(old_page, false);
2678 		}
2679 
2680 		/* Free the old page.. */
2681 		new_page = old_page;
2682 		page_copied = 1;
2683 	} else {
2684 		mem_cgroup_cancel_charge(new_page, memcg, false);
2685 	}
2686 
2687 	if (new_page)
2688 		put_page(new_page);
2689 
2690 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2691 	/*
2692 	 * No need to double call mmu_notifier->invalidate_range() callback as
2693 	 * the above ptep_clear_flush_notify() did already call it.
2694 	 */
2695 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2696 	if (old_page) {
2697 		/*
2698 		 * Don't let another task, with possibly unlocked vma,
2699 		 * keep the mlocked page.
2700 		 */
2701 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2702 			lock_page(old_page);	/* LRU manipulation */
2703 			if (PageMlocked(old_page))
2704 				munlock_vma_page(old_page);
2705 			unlock_page(old_page);
2706 		}
2707 		put_page(old_page);
2708 	}
2709 	return page_copied ? VM_FAULT_WRITE : 0;
2710 oom_free_new:
2711 	put_page(new_page);
2712 oom:
2713 	if (old_page)
2714 		put_page(old_page);
2715 	return VM_FAULT_OOM;
2716 }
2717 
2718 /**
2719  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2720  *			  writeable once the page is prepared
2721  *
2722  * @vmf: structure describing the fault
2723  *
2724  * This function handles all that is needed to finish a write page fault in a
2725  * shared mapping due to PTE being read-only once the mapped page is prepared.
2726  * It handles locking of PTE and modifying it. The function returns
2727  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2728  * lock.
2729  *
2730  * The function expects the page to be locked or other protection against
2731  * concurrent faults / writeback (such as DAX radix tree locks).
2732  */
finish_mkwrite_fault(struct vm_fault * vmf)2733 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2734 {
2735 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2736 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2737 				       &vmf->ptl);
2738 	/*
2739 	 * We might have raced with another page fault while we released the
2740 	 * pte_offset_map_lock.
2741 	 */
2742 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2743 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 		return VM_FAULT_NOPAGE;
2745 	}
2746 	wp_page_reuse(vmf);
2747 	return 0;
2748 }
2749 
2750 /*
2751  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2752  * mapping
2753  */
wp_pfn_shared(struct vm_fault * vmf)2754 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2755 {
2756 	struct vm_area_struct *vma = vmf->vma;
2757 
2758 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2759 		vm_fault_t ret;
2760 
2761 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 		vmf->flags |= FAULT_FLAG_MKWRITE;
2763 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2764 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2765 			return ret;
2766 		return finish_mkwrite_fault(vmf);
2767 	}
2768 	wp_page_reuse(vmf);
2769 	return VM_FAULT_WRITE;
2770 }
2771 
wp_page_shared(struct vm_fault * vmf)2772 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2773 	__releases(vmf->ptl)
2774 {
2775 	struct vm_area_struct *vma = vmf->vma;
2776 
2777 	get_page(vmf->page);
2778 
2779 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2780 		vm_fault_t tmp;
2781 
2782 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2783 		tmp = do_page_mkwrite(vmf);
2784 		if (unlikely(!tmp || (tmp &
2785 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2786 			put_page(vmf->page);
2787 			return tmp;
2788 		}
2789 		tmp = finish_mkwrite_fault(vmf);
2790 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2791 			unlock_page(vmf->page);
2792 			put_page(vmf->page);
2793 			return tmp;
2794 		}
2795 	} else {
2796 		wp_page_reuse(vmf);
2797 		lock_page(vmf->page);
2798 	}
2799 	fault_dirty_shared_page(vma, vmf->page);
2800 	put_page(vmf->page);
2801 
2802 	return VM_FAULT_WRITE;
2803 }
2804 
2805 /*
2806  * This routine handles present pages, when users try to write
2807  * to a shared page. It is done by copying the page to a new address
2808  * and decrementing the shared-page counter for the old page.
2809  *
2810  * Note that this routine assumes that the protection checks have been
2811  * done by the caller (the low-level page fault routine in most cases).
2812  * Thus we can safely just mark it writable once we've done any necessary
2813  * COW.
2814  *
2815  * We also mark the page dirty at this point even though the page will
2816  * change only once the write actually happens. This avoids a few races,
2817  * and potentially makes it more efficient.
2818  *
2819  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2820  * but allow concurrent faults), with pte both mapped and locked.
2821  * We return with mmap_sem still held, but pte unmapped and unlocked.
2822  */
do_wp_page(struct vm_fault * vmf)2823 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2824 	__releases(vmf->ptl)
2825 {
2826 	struct vm_area_struct *vma = vmf->vma;
2827 
2828 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2829 	if (!vmf->page) {
2830 		/*
2831 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2832 		 * VM_PFNMAP VMA.
2833 		 *
2834 		 * We should not cow pages in a shared writeable mapping.
2835 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2836 		 */
2837 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2838 				     (VM_WRITE|VM_SHARED))
2839 			return wp_pfn_shared(vmf);
2840 
2841 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2842 		return wp_page_copy(vmf);
2843 	}
2844 
2845 	/*
2846 	 * Take out anonymous pages first, anonymous shared vmas are
2847 	 * not dirty accountable.
2848 	 */
2849 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2850 		int total_map_swapcount;
2851 		if (!trylock_page(vmf->page)) {
2852 			get_page(vmf->page);
2853 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2854 			lock_page(vmf->page);
2855 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2856 					vmf->address, &vmf->ptl);
2857 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2858 				unlock_page(vmf->page);
2859 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2860 				put_page(vmf->page);
2861 				return 0;
2862 			}
2863 			put_page(vmf->page);
2864 		}
2865 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2866 			if (total_map_swapcount == 1) {
2867 				/*
2868 				 * The page is all ours. Move it to
2869 				 * our anon_vma so the rmap code will
2870 				 * not search our parent or siblings.
2871 				 * Protected against the rmap code by
2872 				 * the page lock.
2873 				 */
2874 				page_move_anon_rmap(vmf->page, vma);
2875 			}
2876 			unlock_page(vmf->page);
2877 			wp_page_reuse(vmf);
2878 			return VM_FAULT_WRITE;
2879 		}
2880 		unlock_page(vmf->page);
2881 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2882 					(VM_WRITE|VM_SHARED))) {
2883 		return wp_page_shared(vmf);
2884 	}
2885 
2886 	/*
2887 	 * Ok, we need to copy. Oh, well..
2888 	 */
2889 	get_page(vmf->page);
2890 
2891 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2892 	return wp_page_copy(vmf);
2893 }
2894 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2895 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2896 		unsigned long start_addr, unsigned long end_addr,
2897 		struct zap_details *details)
2898 {
2899 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2900 }
2901 
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2902 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2903 					    struct zap_details *details)
2904 {
2905 	struct vm_area_struct *vma;
2906 	pgoff_t vba, vea, zba, zea;
2907 
2908 	vma_interval_tree_foreach(vma, root,
2909 			details->first_index, details->last_index) {
2910 
2911 		vba = vma->vm_pgoff;
2912 		vea = vba + vma_pages(vma) - 1;
2913 		zba = details->first_index;
2914 		if (zba < vba)
2915 			zba = vba;
2916 		zea = details->last_index;
2917 		if (zea > vea)
2918 			zea = vea;
2919 
2920 		unmap_mapping_range_vma(vma,
2921 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2922 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2923 				details);
2924 	}
2925 }
2926 
2927 /**
2928  * unmap_mapping_pages() - Unmap pages from processes.
2929  * @mapping: The address space containing pages to be unmapped.
2930  * @start: Index of first page to be unmapped.
2931  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2932  * @even_cows: Whether to unmap even private COWed pages.
2933  *
2934  * Unmap the pages in this address space from any userspace process which
2935  * has them mmaped.  Generally, you want to remove COWed pages as well when
2936  * a file is being truncated, but not when invalidating pages from the page
2937  * cache.
2938  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2939 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2940 		pgoff_t nr, bool even_cows)
2941 {
2942 	struct zap_details details = { };
2943 
2944 	details.check_mapping = even_cows ? NULL : mapping;
2945 	details.first_index = start;
2946 	details.last_index = start + nr - 1;
2947 	if (details.last_index < details.first_index)
2948 		details.last_index = ULONG_MAX;
2949 
2950 	i_mmap_lock_write(mapping);
2951 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2952 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2953 	i_mmap_unlock_write(mapping);
2954 }
2955 
2956 /**
2957  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2958  * address_space corresponding to the specified byte range in the underlying
2959  * file.
2960  *
2961  * @mapping: the address space containing mmaps to be unmapped.
2962  * @holebegin: byte in first page to unmap, relative to the start of
2963  * the underlying file.  This will be rounded down to a PAGE_SIZE
2964  * boundary.  Note that this is different from truncate_pagecache(), which
2965  * must keep the partial page.  In contrast, we must get rid of
2966  * partial pages.
2967  * @holelen: size of prospective hole in bytes.  This will be rounded
2968  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2969  * end of the file.
2970  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2971  * but 0 when invalidating pagecache, don't throw away private data.
2972  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2973 void unmap_mapping_range(struct address_space *mapping,
2974 		loff_t const holebegin, loff_t const holelen, int even_cows)
2975 {
2976 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2977 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2978 
2979 	/* Check for overflow. */
2980 	if (sizeof(holelen) > sizeof(hlen)) {
2981 		long long holeend =
2982 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2983 		if (holeend & ~(long long)ULONG_MAX)
2984 			hlen = ULONG_MAX - hba + 1;
2985 	}
2986 
2987 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2988 }
2989 EXPORT_SYMBOL(unmap_mapping_range);
2990 
2991 /*
2992  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2993  * but allow concurrent faults), and pte mapped but not yet locked.
2994  * We return with pte unmapped and unlocked.
2995  *
2996  * We return with the mmap_sem locked or unlocked in the same cases
2997  * as does filemap_fault().
2998  */
do_swap_page(struct vm_fault * vmf)2999 vm_fault_t do_swap_page(struct vm_fault *vmf)
3000 {
3001 	struct vm_area_struct *vma = vmf->vma;
3002 	struct page *page = NULL, *swapcache;
3003 	struct mem_cgroup *memcg;
3004 	swp_entry_t entry;
3005 	pte_t pte;
3006 	int locked;
3007 	int exclusive = 0;
3008 	vm_fault_t ret = 0;
3009 
3010 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3011 		goto out;
3012 
3013 	entry = pte_to_swp_entry(vmf->orig_pte);
3014 	if (unlikely(non_swap_entry(entry))) {
3015 		if (is_migration_entry(entry)) {
3016 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3017 					     vmf->address);
3018 		} else if (is_device_private_entry(entry)) {
3019 			/*
3020 			 * For un-addressable device memory we call the pgmap
3021 			 * fault handler callback. The callback must migrate
3022 			 * the page back to some CPU accessible page.
3023 			 */
3024 			ret = device_private_entry_fault(vma, vmf->address, entry,
3025 						 vmf->flags, vmf->pmd);
3026 		} else if (is_hwpoison_entry(entry)) {
3027 			ret = VM_FAULT_HWPOISON;
3028 		} else {
3029 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3030 			ret = VM_FAULT_SIGBUS;
3031 		}
3032 		goto out;
3033 	}
3034 
3035 
3036 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3037 	page = lookup_swap_cache(entry, vma, vmf->address);
3038 	swapcache = page;
3039 
3040 	if (!page) {
3041 		struct swap_info_struct *si = swp_swap_info(entry);
3042 
3043 		if (si->flags & SWP_SYNCHRONOUS_IO &&
3044 				__swap_count(si, entry) == 1) {
3045 			/* skip swapcache */
3046 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3047 							vmf->address);
3048 			if (page) {
3049 				__SetPageLocked(page);
3050 				__SetPageSwapBacked(page);
3051 				set_page_private(page, entry.val);
3052 				lru_cache_add_anon(page);
3053 				swap_readpage(page, true);
3054 			}
3055 		} else {
3056 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3057 						vmf);
3058 			swapcache = page;
3059 		}
3060 
3061 		if (!page) {
3062 			/*
3063 			 * Back out if somebody else faulted in this pte
3064 			 * while we released the pte lock.
3065 			 */
3066 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3067 					vmf->address, &vmf->ptl);
3068 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3069 				ret = VM_FAULT_OOM;
3070 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3071 			goto unlock;
3072 		}
3073 
3074 		/* Had to read the page from swap area: Major fault */
3075 		ret = VM_FAULT_MAJOR;
3076 		count_vm_event(PGMAJFAULT);
3077 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3078 	} else if (PageHWPoison(page)) {
3079 		/*
3080 		 * hwpoisoned dirty swapcache pages are kept for killing
3081 		 * owner processes (which may be unknown at hwpoison time)
3082 		 */
3083 		ret = VM_FAULT_HWPOISON;
3084 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3085 		goto out_release;
3086 	}
3087 
3088 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3089 
3090 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3091 	if (!locked) {
3092 		ret |= VM_FAULT_RETRY;
3093 		goto out_release;
3094 	}
3095 
3096 	/*
3097 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3098 	 * release the swapcache from under us.  The page pin, and pte_same
3099 	 * test below, are not enough to exclude that.  Even if it is still
3100 	 * swapcache, we need to check that the page's swap has not changed.
3101 	 */
3102 	if (unlikely((!PageSwapCache(page) ||
3103 			page_private(page) != entry.val)) && swapcache)
3104 		goto out_page;
3105 
3106 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3107 	if (unlikely(!page)) {
3108 		ret = VM_FAULT_OOM;
3109 		page = swapcache;
3110 		goto out_page;
3111 	}
3112 
3113 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3114 					&memcg, false)) {
3115 		ret = VM_FAULT_OOM;
3116 		goto out_page;
3117 	}
3118 
3119 	/*
3120 	 * Back out if somebody else already faulted in this pte.
3121 	 */
3122 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3123 			&vmf->ptl);
3124 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3125 		goto out_nomap;
3126 
3127 	if (unlikely(!PageUptodate(page))) {
3128 		ret = VM_FAULT_SIGBUS;
3129 		goto out_nomap;
3130 	}
3131 
3132 	/*
3133 	 * The page isn't present yet, go ahead with the fault.
3134 	 *
3135 	 * Be careful about the sequence of operations here.
3136 	 * To get its accounting right, reuse_swap_page() must be called
3137 	 * while the page is counted on swap but not yet in mapcount i.e.
3138 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3139 	 * must be called after the swap_free(), or it will never succeed.
3140 	 */
3141 
3142 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3143 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3144 	pte = mk_pte(page, vma->vm_page_prot);
3145 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3146 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3147 		vmf->flags &= ~FAULT_FLAG_WRITE;
3148 		ret |= VM_FAULT_WRITE;
3149 		exclusive = RMAP_EXCLUSIVE;
3150 	}
3151 	flush_icache_page(vma, page);
3152 	if (pte_swp_soft_dirty(vmf->orig_pte))
3153 		pte = pte_mksoft_dirty(pte);
3154 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3155 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3156 	vmf->orig_pte = pte;
3157 
3158 	/* ksm created a completely new copy */
3159 	if (unlikely(page != swapcache && swapcache)) {
3160 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3161 		mem_cgroup_commit_charge(page, memcg, false, false);
3162 		lru_cache_add_active_or_unevictable(page, vma);
3163 	} else {
3164 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3165 		mem_cgroup_commit_charge(page, memcg, true, false);
3166 		activate_page(page);
3167 	}
3168 
3169 	swap_free(entry);
3170 	if (mem_cgroup_swap_full(page) ||
3171 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3172 		try_to_free_swap(page);
3173 	unlock_page(page);
3174 	if (page != swapcache && swapcache) {
3175 		/*
3176 		 * Hold the lock to avoid the swap entry to be reused
3177 		 * until we take the PT lock for the pte_same() check
3178 		 * (to avoid false positives from pte_same). For
3179 		 * further safety release the lock after the swap_free
3180 		 * so that the swap count won't change under a
3181 		 * parallel locked swapcache.
3182 		 */
3183 		unlock_page(swapcache);
3184 		put_page(swapcache);
3185 	}
3186 
3187 	if (vmf->flags & FAULT_FLAG_WRITE) {
3188 		ret |= do_wp_page(vmf);
3189 		if (ret & VM_FAULT_ERROR)
3190 			ret &= VM_FAULT_ERROR;
3191 		goto out;
3192 	}
3193 
3194 	/* No need to invalidate - it was non-present before */
3195 	update_mmu_cache(vma, vmf->address, vmf->pte);
3196 unlock:
3197 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3198 out:
3199 	return ret;
3200 out_nomap:
3201 	mem_cgroup_cancel_charge(page, memcg, false);
3202 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 out_page:
3204 	unlock_page(page);
3205 out_release:
3206 	put_page(page);
3207 	if (page != swapcache && swapcache) {
3208 		unlock_page(swapcache);
3209 		put_page(swapcache);
3210 	}
3211 	return ret;
3212 }
3213 
3214 /*
3215  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3216  * but allow concurrent faults), and pte mapped but not yet locked.
3217  * We return with mmap_sem still held, but pte unmapped and unlocked.
3218  */
do_anonymous_page(struct vm_fault * vmf)3219 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3220 {
3221 	struct vm_area_struct *vma = vmf->vma;
3222 	struct mem_cgroup *memcg;
3223 	struct page *page;
3224 	vm_fault_t ret = 0;
3225 	pte_t entry;
3226 
3227 	/* File mapping without ->vm_ops ? */
3228 	if (vma->vm_flags & VM_SHARED)
3229 		return VM_FAULT_SIGBUS;
3230 
3231 	/*
3232 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3233 	 * pte_offset_map() on pmds where a huge pmd might be created
3234 	 * from a different thread.
3235 	 *
3236 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3237 	 * parallel threads are excluded by other means.
3238 	 *
3239 	 * Here we only have down_read(mmap_sem).
3240 	 */
3241 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3242 		return VM_FAULT_OOM;
3243 
3244 	/* See the comment in pte_alloc_one_map() */
3245 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3246 		return 0;
3247 
3248 	/* Use the zero-page for reads */
3249 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3250 			!mm_forbids_zeropage(vma->vm_mm)) {
3251 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3252 						vma->vm_page_prot));
3253 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3254 				vmf->address, &vmf->ptl);
3255 		if (!pte_none(*vmf->pte))
3256 			goto unlock;
3257 		ret = check_stable_address_space(vma->vm_mm);
3258 		if (ret)
3259 			goto unlock;
3260 		/* Deliver the page fault to userland, check inside PT lock */
3261 		if (userfaultfd_missing(vma)) {
3262 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 			return handle_userfault(vmf, VM_UFFD_MISSING);
3264 		}
3265 		goto setpte;
3266 	}
3267 
3268 	/* Allocate our own private page. */
3269 	if (unlikely(anon_vma_prepare(vma)))
3270 		goto oom;
3271 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3272 	if (!page)
3273 		goto oom;
3274 
3275 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3276 					false))
3277 		goto oom_free_page;
3278 
3279 	/*
3280 	 * The memory barrier inside __SetPageUptodate makes sure that
3281 	 * preceeding stores to the page contents become visible before
3282 	 * the set_pte_at() write.
3283 	 */
3284 	__SetPageUptodate(page);
3285 
3286 	entry = mk_pte(page, vma->vm_page_prot);
3287 	if (vma->vm_flags & VM_WRITE)
3288 		entry = pte_mkwrite(pte_mkdirty(entry));
3289 
3290 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3291 			&vmf->ptl);
3292 	if (!pte_none(*vmf->pte))
3293 		goto release;
3294 
3295 	ret = check_stable_address_space(vma->vm_mm);
3296 	if (ret)
3297 		goto release;
3298 
3299 	/* Deliver the page fault to userland, check inside PT lock */
3300 	if (userfaultfd_missing(vma)) {
3301 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3302 		mem_cgroup_cancel_charge(page, memcg, false);
3303 		put_page(page);
3304 		return handle_userfault(vmf, VM_UFFD_MISSING);
3305 	}
3306 
3307 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3308 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3309 	mem_cgroup_commit_charge(page, memcg, false, false);
3310 	lru_cache_add_active_or_unevictable(page, vma);
3311 setpte:
3312 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3313 
3314 	/* No need to invalidate - it was non-present before */
3315 	update_mmu_cache(vma, vmf->address, vmf->pte);
3316 unlock:
3317 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3318 	return ret;
3319 release:
3320 	mem_cgroup_cancel_charge(page, memcg, false);
3321 	put_page(page);
3322 	goto unlock;
3323 oom_free_page:
3324 	put_page(page);
3325 oom:
3326 	return VM_FAULT_OOM;
3327 }
3328 
3329 /*
3330  * The mmap_sem must have been held on entry, and may have been
3331  * released depending on flags and vma->vm_ops->fault() return value.
3332  * See filemap_fault() and __lock_page_retry().
3333  */
__do_fault(struct vm_fault * vmf)3334 static vm_fault_t __do_fault(struct vm_fault *vmf)
3335 {
3336 	struct vm_area_struct *vma = vmf->vma;
3337 	vm_fault_t ret;
3338 
3339 	/*
3340 	 * Preallocate pte before we take page_lock because this might lead to
3341 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3342 	 *				lock_page(A)
3343 	 *				SetPageWriteback(A)
3344 	 *				unlock_page(A)
3345 	 * lock_page(B)
3346 	 *				lock_page(B)
3347 	 * pte_alloc_pne
3348 	 *   shrink_page_list
3349 	 *     wait_on_page_writeback(A)
3350 	 *				SetPageWriteback(B)
3351 	 *				unlock_page(B)
3352 	 *				# flush A, B to clear the writeback
3353 	 */
3354 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3355 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3356 						  vmf->address);
3357 		if (!vmf->prealloc_pte)
3358 			return VM_FAULT_OOM;
3359 		smp_wmb(); /* See comment in __pte_alloc() */
3360 	}
3361 
3362 	ret = vma->vm_ops->fault(vmf);
3363 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3364 			    VM_FAULT_DONE_COW)))
3365 		return ret;
3366 
3367 	if (unlikely(PageHWPoison(vmf->page))) {
3368 		if (ret & VM_FAULT_LOCKED)
3369 			unlock_page(vmf->page);
3370 		put_page(vmf->page);
3371 		vmf->page = NULL;
3372 		return VM_FAULT_HWPOISON;
3373 	}
3374 
3375 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3376 		lock_page(vmf->page);
3377 	else
3378 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3379 
3380 	return ret;
3381 }
3382 
3383 /*
3384  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3385  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3386  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3387  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3388  */
pmd_devmap_trans_unstable(pmd_t * pmd)3389 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3390 {
3391 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3392 }
3393 
pte_alloc_one_map(struct vm_fault * vmf)3394 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3395 {
3396 	struct vm_area_struct *vma = vmf->vma;
3397 
3398 	if (!pmd_none(*vmf->pmd))
3399 		goto map_pte;
3400 	if (vmf->prealloc_pte) {
3401 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3402 		if (unlikely(!pmd_none(*vmf->pmd))) {
3403 			spin_unlock(vmf->ptl);
3404 			goto map_pte;
3405 		}
3406 
3407 		mm_inc_nr_ptes(vma->vm_mm);
3408 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3409 		spin_unlock(vmf->ptl);
3410 		vmf->prealloc_pte = NULL;
3411 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3412 		return VM_FAULT_OOM;
3413 	}
3414 map_pte:
3415 	/*
3416 	 * If a huge pmd materialized under us just retry later.  Use
3417 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3418 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3419 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3420 	 * running immediately after a huge pmd fault in a different thread of
3421 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3422 	 * All we have to ensure is that it is a regular pmd that we can walk
3423 	 * with pte_offset_map() and we can do that through an atomic read in
3424 	 * C, which is what pmd_trans_unstable() provides.
3425 	 */
3426 	if (pmd_devmap_trans_unstable(vmf->pmd))
3427 		return VM_FAULT_NOPAGE;
3428 
3429 	/*
3430 	 * At this point we know that our vmf->pmd points to a page of ptes
3431 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3432 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3433 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3434 	 * be valid and we will re-check to make sure the vmf->pte isn't
3435 	 * pte_none() under vmf->ptl protection when we return to
3436 	 * alloc_set_pte().
3437 	 */
3438 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3439 			&vmf->ptl);
3440 	return 0;
3441 }
3442 
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3444 
3445 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
transhuge_vma_suitable(struct vm_area_struct * vma,unsigned long haddr)3446 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3447 		unsigned long haddr)
3448 {
3449 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3450 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3451 		return false;
3452 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3453 		return false;
3454 	return true;
3455 }
3456 
deposit_prealloc_pte(struct vm_fault * vmf)3457 static void deposit_prealloc_pte(struct vm_fault *vmf)
3458 {
3459 	struct vm_area_struct *vma = vmf->vma;
3460 
3461 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3462 	/*
3463 	 * We are going to consume the prealloc table,
3464 	 * count that as nr_ptes.
3465 	 */
3466 	mm_inc_nr_ptes(vma->vm_mm);
3467 	vmf->prealloc_pte = NULL;
3468 }
3469 
do_set_pmd(struct vm_fault * vmf,struct page * page)3470 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3471 {
3472 	struct vm_area_struct *vma = vmf->vma;
3473 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3474 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3475 	pmd_t entry;
3476 	int i;
3477 	vm_fault_t ret;
3478 
3479 	if (!transhuge_vma_suitable(vma, haddr))
3480 		return VM_FAULT_FALLBACK;
3481 
3482 	ret = VM_FAULT_FALLBACK;
3483 	page = compound_head(page);
3484 
3485 	/*
3486 	 * Archs like ppc64 need additonal space to store information
3487 	 * related to pte entry. Use the preallocated table for that.
3488 	 */
3489 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3490 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3491 		if (!vmf->prealloc_pte)
3492 			return VM_FAULT_OOM;
3493 		smp_wmb(); /* See comment in __pte_alloc() */
3494 	}
3495 
3496 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3497 	if (unlikely(!pmd_none(*vmf->pmd)))
3498 		goto out;
3499 
3500 	for (i = 0; i < HPAGE_PMD_NR; i++)
3501 		flush_icache_page(vma, page + i);
3502 
3503 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3504 	if (write)
3505 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3506 
3507 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3508 	page_add_file_rmap(page, true);
3509 	/*
3510 	 * deposit and withdraw with pmd lock held
3511 	 */
3512 	if (arch_needs_pgtable_deposit())
3513 		deposit_prealloc_pte(vmf);
3514 
3515 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3516 
3517 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3518 
3519 	/* fault is handled */
3520 	ret = 0;
3521 	count_vm_event(THP_FILE_MAPPED);
3522 out:
3523 	spin_unlock(vmf->ptl);
3524 	return ret;
3525 }
3526 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3527 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3528 {
3529 	BUILD_BUG();
3530 	return 0;
3531 }
3532 #endif
3533 
3534 /**
3535  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3536  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3537  *
3538  * @vmf: fault environment
3539  * @memcg: memcg to charge page (only for private mappings)
3540  * @page: page to map
3541  *
3542  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3543  * return.
3544  *
3545  * Target users are page handler itself and implementations of
3546  * vm_ops->map_pages.
3547  */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3548 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3549 		struct page *page)
3550 {
3551 	struct vm_area_struct *vma = vmf->vma;
3552 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3553 	pte_t entry;
3554 	vm_fault_t ret;
3555 
3556 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3557 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3558 		/* THP on COW? */
3559 		VM_BUG_ON_PAGE(memcg, page);
3560 
3561 		ret = do_set_pmd(vmf, page);
3562 		if (ret != VM_FAULT_FALLBACK)
3563 			return ret;
3564 	}
3565 
3566 	if (!vmf->pte) {
3567 		ret = pte_alloc_one_map(vmf);
3568 		if (ret)
3569 			return ret;
3570 	}
3571 
3572 	/* Re-check under ptl */
3573 	if (unlikely(!pte_none(*vmf->pte)))
3574 		return VM_FAULT_NOPAGE;
3575 
3576 	flush_icache_page(vma, page);
3577 	entry = mk_pte(page, vma->vm_page_prot);
3578 	if (write)
3579 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3580 	/* copy-on-write page */
3581 	if (write && !(vma->vm_flags & VM_SHARED)) {
3582 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3583 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3584 		mem_cgroup_commit_charge(page, memcg, false, false);
3585 		lru_cache_add_active_or_unevictable(page, vma);
3586 	} else {
3587 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3588 		page_add_file_rmap(page, false);
3589 	}
3590 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3591 
3592 	/* no need to invalidate: a not-present page won't be cached */
3593 	update_mmu_cache(vma, vmf->address, vmf->pte);
3594 
3595 	return 0;
3596 }
3597 
3598 
3599 /**
3600  * finish_fault - finish page fault once we have prepared the page to fault
3601  *
3602  * @vmf: structure describing the fault
3603  *
3604  * This function handles all that is needed to finish a page fault once the
3605  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3606  * given page, adds reverse page mapping, handles memcg charges and LRU
3607  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3608  * error.
3609  *
3610  * The function expects the page to be locked and on success it consumes a
3611  * reference of a page being mapped (for the PTE which maps it).
3612  */
finish_fault(struct vm_fault * vmf)3613 vm_fault_t finish_fault(struct vm_fault *vmf)
3614 {
3615 	struct page *page;
3616 	vm_fault_t ret = 0;
3617 
3618 	/* Did we COW the page? */
3619 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3620 	    !(vmf->vma->vm_flags & VM_SHARED))
3621 		page = vmf->cow_page;
3622 	else
3623 		page = vmf->page;
3624 
3625 	/*
3626 	 * check even for read faults because we might have lost our CoWed
3627 	 * page
3628 	 */
3629 	if (!(vmf->vma->vm_flags & VM_SHARED))
3630 		ret = check_stable_address_space(vmf->vma->vm_mm);
3631 	if (!ret)
3632 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3633 	if (vmf->pte)
3634 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 	return ret;
3636 }
3637 
3638 static unsigned long fault_around_bytes __read_mostly =
3639 	rounddown_pow_of_two(65536);
3640 
3641 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3642 static int fault_around_bytes_get(void *data, u64 *val)
3643 {
3644 	*val = fault_around_bytes;
3645 	return 0;
3646 }
3647 
3648 /*
3649  * fault_around_bytes must be rounded down to the nearest page order as it's
3650  * what do_fault_around() expects to see.
3651  */
fault_around_bytes_set(void * data,u64 val)3652 static int fault_around_bytes_set(void *data, u64 val)
3653 {
3654 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3655 		return -EINVAL;
3656 	if (val > PAGE_SIZE)
3657 		fault_around_bytes = rounddown_pow_of_two(val);
3658 	else
3659 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3660 	return 0;
3661 }
3662 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3663 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3664 
fault_around_debugfs(void)3665 static int __init fault_around_debugfs(void)
3666 {
3667 	void *ret;
3668 
3669 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3670 			&fault_around_bytes_fops);
3671 	if (!ret)
3672 		pr_warn("Failed to create fault_around_bytes in debugfs");
3673 	return 0;
3674 }
3675 late_initcall(fault_around_debugfs);
3676 #endif
3677 
3678 /*
3679  * do_fault_around() tries to map few pages around the fault address. The hope
3680  * is that the pages will be needed soon and this will lower the number of
3681  * faults to handle.
3682  *
3683  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3684  * not ready to be mapped: not up-to-date, locked, etc.
3685  *
3686  * This function is called with the page table lock taken. In the split ptlock
3687  * case the page table lock only protects only those entries which belong to
3688  * the page table corresponding to the fault address.
3689  *
3690  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3691  * only once.
3692  *
3693  * fault_around_bytes defines how many bytes we'll try to map.
3694  * do_fault_around() expects it to be set to a power of two less than or equal
3695  * to PTRS_PER_PTE.
3696  *
3697  * The virtual address of the area that we map is naturally aligned to
3698  * fault_around_bytes rounded down to the machine page size
3699  * (and therefore to page order).  This way it's easier to guarantee
3700  * that we don't cross page table boundaries.
3701  */
do_fault_around(struct vm_fault * vmf)3702 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3703 {
3704 	unsigned long address = vmf->address, nr_pages, mask;
3705 	pgoff_t start_pgoff = vmf->pgoff;
3706 	pgoff_t end_pgoff;
3707 	int off;
3708 	vm_fault_t ret = 0;
3709 
3710 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3711 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3712 
3713 	vmf->address = max(address & mask, vmf->vma->vm_start);
3714 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3715 	start_pgoff -= off;
3716 
3717 	/*
3718 	 *  end_pgoff is either the end of the page table, the end of
3719 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3720 	 */
3721 	end_pgoff = start_pgoff -
3722 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3723 		PTRS_PER_PTE - 1;
3724 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3725 			start_pgoff + nr_pages - 1);
3726 
3727 	if (pmd_none(*vmf->pmd)) {
3728 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3729 						  vmf->address);
3730 		if (!vmf->prealloc_pte)
3731 			goto out;
3732 		smp_wmb(); /* See comment in __pte_alloc() */
3733 	}
3734 
3735 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3736 
3737 	/* Huge page is mapped? Page fault is solved */
3738 	if (pmd_trans_huge(*vmf->pmd)) {
3739 		ret = VM_FAULT_NOPAGE;
3740 		goto out;
3741 	}
3742 
3743 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3744 	if (!vmf->pte)
3745 		goto out;
3746 
3747 	/* check if the page fault is solved */
3748 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3749 	if (!pte_none(*vmf->pte))
3750 		ret = VM_FAULT_NOPAGE;
3751 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3752 out:
3753 	vmf->address = address;
3754 	vmf->pte = NULL;
3755 	return ret;
3756 }
3757 
do_read_fault(struct vm_fault * vmf)3758 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3759 {
3760 	struct vm_area_struct *vma = vmf->vma;
3761 	vm_fault_t ret = 0;
3762 
3763 	/*
3764 	 * Let's call ->map_pages() first and use ->fault() as fallback
3765 	 * if page by the offset is not ready to be mapped (cold cache or
3766 	 * something).
3767 	 */
3768 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3769 		ret = do_fault_around(vmf);
3770 		if (ret)
3771 			return ret;
3772 	}
3773 
3774 	ret = __do_fault(vmf);
3775 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3776 		return ret;
3777 
3778 	ret |= finish_fault(vmf);
3779 	unlock_page(vmf->page);
3780 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3781 		put_page(vmf->page);
3782 	return ret;
3783 }
3784 
do_cow_fault(struct vm_fault * vmf)3785 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3786 {
3787 	struct vm_area_struct *vma = vmf->vma;
3788 	vm_fault_t ret;
3789 
3790 	if (unlikely(anon_vma_prepare(vma)))
3791 		return VM_FAULT_OOM;
3792 
3793 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3794 	if (!vmf->cow_page)
3795 		return VM_FAULT_OOM;
3796 
3797 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3798 				&vmf->memcg, false)) {
3799 		put_page(vmf->cow_page);
3800 		return VM_FAULT_OOM;
3801 	}
3802 
3803 	ret = __do_fault(vmf);
3804 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3805 		goto uncharge_out;
3806 	if (ret & VM_FAULT_DONE_COW)
3807 		return ret;
3808 
3809 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3810 	__SetPageUptodate(vmf->cow_page);
3811 
3812 	ret |= finish_fault(vmf);
3813 	unlock_page(vmf->page);
3814 	put_page(vmf->page);
3815 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3816 		goto uncharge_out;
3817 	return ret;
3818 uncharge_out:
3819 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3820 	put_page(vmf->cow_page);
3821 	return ret;
3822 }
3823 
do_shared_fault(struct vm_fault * vmf)3824 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3825 {
3826 	struct vm_area_struct *vma = vmf->vma;
3827 	vm_fault_t ret, tmp;
3828 
3829 	ret = __do_fault(vmf);
3830 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3831 		return ret;
3832 
3833 	/*
3834 	 * Check if the backing address space wants to know that the page is
3835 	 * about to become writable
3836 	 */
3837 	if (vma->vm_ops->page_mkwrite) {
3838 		unlock_page(vmf->page);
3839 		tmp = do_page_mkwrite(vmf);
3840 		if (unlikely(!tmp ||
3841 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3842 			put_page(vmf->page);
3843 			return tmp;
3844 		}
3845 	}
3846 
3847 	ret |= finish_fault(vmf);
3848 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3849 					VM_FAULT_RETRY))) {
3850 		unlock_page(vmf->page);
3851 		put_page(vmf->page);
3852 		return ret;
3853 	}
3854 
3855 	fault_dirty_shared_page(vma, vmf->page);
3856 	return ret;
3857 }
3858 
3859 /*
3860  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3861  * but allow concurrent faults).
3862  * The mmap_sem may have been released depending on flags and our
3863  * return value.  See filemap_fault() and __lock_page_or_retry().
3864  * If mmap_sem is released, vma may become invalid (for example
3865  * by other thread calling munmap()).
3866  */
do_fault(struct vm_fault * vmf)3867 static vm_fault_t do_fault(struct vm_fault *vmf)
3868 {
3869 	struct vm_area_struct *vma = vmf->vma;
3870 	struct mm_struct *vm_mm = vma->vm_mm;
3871 	vm_fault_t ret;
3872 
3873 	/*
3874 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3875 	 */
3876 	if (!vma->vm_ops->fault) {
3877 		/*
3878 		 * If we find a migration pmd entry or a none pmd entry, which
3879 		 * should never happen, return SIGBUS
3880 		 */
3881 		if (unlikely(!pmd_present(*vmf->pmd)))
3882 			ret = VM_FAULT_SIGBUS;
3883 		else {
3884 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3885 						       vmf->pmd,
3886 						       vmf->address,
3887 						       &vmf->ptl);
3888 			/*
3889 			 * Make sure this is not a temporary clearing of pte
3890 			 * by holding ptl and checking again. A R/M/W update
3891 			 * of pte involves: take ptl, clearing the pte so that
3892 			 * we don't have concurrent modification by hardware
3893 			 * followed by an update.
3894 			 */
3895 			if (unlikely(pte_none(*vmf->pte)))
3896 				ret = VM_FAULT_SIGBUS;
3897 			else
3898 				ret = VM_FAULT_NOPAGE;
3899 
3900 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3901 		}
3902 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3903 		ret = do_read_fault(vmf);
3904 	else if (!(vma->vm_flags & VM_SHARED))
3905 		ret = do_cow_fault(vmf);
3906 	else
3907 		ret = do_shared_fault(vmf);
3908 
3909 	/* preallocated pagetable is unused: free it */
3910 	if (vmf->prealloc_pte) {
3911 		pte_free(vm_mm, vmf->prealloc_pte);
3912 		vmf->prealloc_pte = NULL;
3913 	}
3914 	return ret;
3915 }
3916 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3917 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3918 				unsigned long addr, int page_nid,
3919 				int *flags)
3920 {
3921 	get_page(page);
3922 
3923 	count_vm_numa_event(NUMA_HINT_FAULTS);
3924 	if (page_nid == numa_node_id()) {
3925 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3926 		*flags |= TNF_FAULT_LOCAL;
3927 	}
3928 
3929 	return mpol_misplaced(page, vma, addr);
3930 }
3931 
do_numa_page(struct vm_fault * vmf)3932 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3933 {
3934 	struct vm_area_struct *vma = vmf->vma;
3935 	struct page *page = NULL;
3936 	int page_nid = -1;
3937 	int last_cpupid;
3938 	int target_nid;
3939 	bool migrated = false;
3940 	pte_t pte;
3941 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3942 	int flags = 0;
3943 
3944 	/*
3945 	 * The "pte" at this point cannot be used safely without
3946 	 * validation through pte_unmap_same(). It's of NUMA type but
3947 	 * the pfn may be screwed if the read is non atomic.
3948 	 */
3949 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3950 	spin_lock(vmf->ptl);
3951 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3952 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3953 		goto out;
3954 	}
3955 
3956 	/*
3957 	 * Make it present again, Depending on how arch implementes non
3958 	 * accessible ptes, some can allow access by kernel mode.
3959 	 */
3960 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3961 	pte = pte_modify(pte, vma->vm_page_prot);
3962 	pte = pte_mkyoung(pte);
3963 	if (was_writable)
3964 		pte = pte_mkwrite(pte);
3965 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3966 	update_mmu_cache(vma, vmf->address, vmf->pte);
3967 
3968 	page = vm_normal_page(vma, vmf->address, pte);
3969 	if (!page) {
3970 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 		return 0;
3972 	}
3973 
3974 	/* TODO: handle PTE-mapped THP */
3975 	if (PageCompound(page)) {
3976 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3977 		return 0;
3978 	}
3979 
3980 	/*
3981 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3982 	 * much anyway since they can be in shared cache state. This misses
3983 	 * the case where a mapping is writable but the process never writes
3984 	 * to it but pte_write gets cleared during protection updates and
3985 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3986 	 * background writeback, dirty balancing and application behaviour.
3987 	 */
3988 	if (!pte_write(pte))
3989 		flags |= TNF_NO_GROUP;
3990 
3991 	/*
3992 	 * Flag if the page is shared between multiple address spaces. This
3993 	 * is later used when determining whether to group tasks together
3994 	 */
3995 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3996 		flags |= TNF_SHARED;
3997 
3998 	last_cpupid = page_cpupid_last(page);
3999 	page_nid = page_to_nid(page);
4000 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4001 			&flags);
4002 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 	if (target_nid == -1) {
4004 		put_page(page);
4005 		goto out;
4006 	}
4007 
4008 	/* Migrate to the requested node */
4009 	migrated = migrate_misplaced_page(page, vma, target_nid);
4010 	if (migrated) {
4011 		page_nid = target_nid;
4012 		flags |= TNF_MIGRATED;
4013 	} else
4014 		flags |= TNF_MIGRATE_FAIL;
4015 
4016 out:
4017 	if (page_nid != -1)
4018 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4019 	return 0;
4020 }
4021 
create_huge_pmd(struct vm_fault * vmf)4022 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4023 {
4024 	if (vma_is_anonymous(vmf->vma))
4025 		return do_huge_pmd_anonymous_page(vmf);
4026 	if (vmf->vma->vm_ops->huge_fault)
4027 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4028 	return VM_FAULT_FALLBACK;
4029 }
4030 
4031 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4032 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4033 {
4034 	if (vma_is_anonymous(vmf->vma))
4035 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4036 	if (vmf->vma->vm_ops->huge_fault)
4037 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4038 
4039 	/* COW handled on pte level: split pmd */
4040 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
4041 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4042 
4043 	return VM_FAULT_FALLBACK;
4044 }
4045 
vma_is_accessible(struct vm_area_struct * vma)4046 static inline bool vma_is_accessible(struct vm_area_struct *vma)
4047 {
4048 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
4049 }
4050 
create_huge_pud(struct vm_fault * vmf)4051 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4052 {
4053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4054 	/* No support for anonymous transparent PUD pages yet */
4055 	if (vma_is_anonymous(vmf->vma))
4056 		return VM_FAULT_FALLBACK;
4057 	if (vmf->vma->vm_ops->huge_fault)
4058 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4060 	return VM_FAULT_FALLBACK;
4061 }
4062 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4063 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4064 {
4065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4066 	/* No support for anonymous transparent PUD pages yet */
4067 	if (vma_is_anonymous(vmf->vma))
4068 		return VM_FAULT_FALLBACK;
4069 	if (vmf->vma->vm_ops->huge_fault)
4070 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4071 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4072 	return VM_FAULT_FALLBACK;
4073 }
4074 
4075 /*
4076  * These routines also need to handle stuff like marking pages dirty
4077  * and/or accessed for architectures that don't do it in hardware (most
4078  * RISC architectures).  The early dirtying is also good on the i386.
4079  *
4080  * There is also a hook called "update_mmu_cache()" that architectures
4081  * with external mmu caches can use to update those (ie the Sparc or
4082  * PowerPC hashed page tables that act as extended TLBs).
4083  *
4084  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4085  * concurrent faults).
4086  *
4087  * The mmap_sem may have been released depending on flags and our return value.
4088  * See filemap_fault() and __lock_page_or_retry().
4089  */
handle_pte_fault(struct vm_fault * vmf)4090 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4091 {
4092 	pte_t entry;
4093 
4094 	if (unlikely(pmd_none(*vmf->pmd))) {
4095 		/*
4096 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4097 		 * want to allocate huge page, and if we expose page table
4098 		 * for an instant, it will be difficult to retract from
4099 		 * concurrent faults and from rmap lookups.
4100 		 */
4101 		vmf->pte = NULL;
4102 	} else {
4103 		/* See comment in pte_alloc_one_map() */
4104 		if (pmd_devmap_trans_unstable(vmf->pmd))
4105 			return 0;
4106 		/*
4107 		 * A regular pmd is established and it can't morph into a huge
4108 		 * pmd from under us anymore at this point because we hold the
4109 		 * mmap_sem read mode and khugepaged takes it in write mode.
4110 		 * So now it's safe to run pte_offset_map().
4111 		 */
4112 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4113 		vmf->orig_pte = *vmf->pte;
4114 
4115 		/*
4116 		 * some architectures can have larger ptes than wordsize,
4117 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4118 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4119 		 * accesses.  The code below just needs a consistent view
4120 		 * for the ifs and we later double check anyway with the
4121 		 * ptl lock held. So here a barrier will do.
4122 		 */
4123 		barrier();
4124 		if (pte_none(vmf->orig_pte)) {
4125 			pte_unmap(vmf->pte);
4126 			vmf->pte = NULL;
4127 		}
4128 	}
4129 
4130 	if (!vmf->pte) {
4131 		if (vma_is_anonymous(vmf->vma))
4132 			return do_anonymous_page(vmf);
4133 		else
4134 			return do_fault(vmf);
4135 	}
4136 
4137 	if (!pte_present(vmf->orig_pte))
4138 		return do_swap_page(vmf);
4139 
4140 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4141 		return do_numa_page(vmf);
4142 
4143 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4144 	spin_lock(vmf->ptl);
4145 	entry = vmf->orig_pte;
4146 	if (unlikely(!pte_same(*vmf->pte, entry)))
4147 		goto unlock;
4148 	if (vmf->flags & FAULT_FLAG_WRITE) {
4149 		if (!pte_write(entry))
4150 			return do_wp_page(vmf);
4151 		entry = pte_mkdirty(entry);
4152 	}
4153 	entry = pte_mkyoung(entry);
4154 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4155 				vmf->flags & FAULT_FLAG_WRITE)) {
4156 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4157 	} else {
4158 		/*
4159 		 * This is needed only for protection faults but the arch code
4160 		 * is not yet telling us if this is a protection fault or not.
4161 		 * This still avoids useless tlb flushes for .text page faults
4162 		 * with threads.
4163 		 */
4164 		if (vmf->flags & FAULT_FLAG_WRITE)
4165 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4166 	}
4167 unlock:
4168 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 	return 0;
4170 }
4171 
4172 /*
4173  * By the time we get here, we already hold the mm semaphore
4174  *
4175  * The mmap_sem may have been released depending on flags and our
4176  * return value.  See filemap_fault() and __lock_page_or_retry().
4177  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4178 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4179 		unsigned long address, unsigned int flags)
4180 {
4181 	struct vm_fault vmf = {
4182 		.vma = vma,
4183 		.address = address & PAGE_MASK,
4184 		.flags = flags,
4185 		.pgoff = linear_page_index(vma, address),
4186 		.gfp_mask = __get_fault_gfp_mask(vma),
4187 	};
4188 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4189 	struct mm_struct *mm = vma->vm_mm;
4190 	pgd_t *pgd;
4191 	p4d_t *p4d;
4192 	vm_fault_t ret;
4193 
4194 	pgd = pgd_offset(mm, address);
4195 	p4d = p4d_alloc(mm, pgd, address);
4196 	if (!p4d)
4197 		return VM_FAULT_OOM;
4198 
4199 	vmf.pud = pud_alloc(mm, p4d, address);
4200 	if (!vmf.pud)
4201 		return VM_FAULT_OOM;
4202 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4203 		ret = create_huge_pud(&vmf);
4204 		if (!(ret & VM_FAULT_FALLBACK))
4205 			return ret;
4206 	} else {
4207 		pud_t orig_pud = *vmf.pud;
4208 
4209 		barrier();
4210 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4211 
4212 			/* NUMA case for anonymous PUDs would go here */
4213 
4214 			if (dirty && !pud_write(orig_pud)) {
4215 				ret = wp_huge_pud(&vmf, orig_pud);
4216 				if (!(ret & VM_FAULT_FALLBACK))
4217 					return ret;
4218 			} else {
4219 				huge_pud_set_accessed(&vmf, orig_pud);
4220 				return 0;
4221 			}
4222 		}
4223 	}
4224 
4225 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4226 	if (!vmf.pmd)
4227 		return VM_FAULT_OOM;
4228 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4229 		ret = create_huge_pmd(&vmf);
4230 		if (!(ret & VM_FAULT_FALLBACK))
4231 			return ret;
4232 	} else {
4233 		pmd_t orig_pmd = *vmf.pmd;
4234 
4235 		barrier();
4236 		if (unlikely(is_swap_pmd(orig_pmd))) {
4237 			VM_BUG_ON(thp_migration_supported() &&
4238 					  !is_pmd_migration_entry(orig_pmd));
4239 			if (is_pmd_migration_entry(orig_pmd))
4240 				pmd_migration_entry_wait(mm, vmf.pmd);
4241 			return 0;
4242 		}
4243 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4244 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4245 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4246 
4247 			if (dirty && !pmd_write(orig_pmd)) {
4248 				ret = wp_huge_pmd(&vmf, orig_pmd);
4249 				if (!(ret & VM_FAULT_FALLBACK))
4250 					return ret;
4251 			} else {
4252 				huge_pmd_set_accessed(&vmf, orig_pmd);
4253 				return 0;
4254 			}
4255 		}
4256 	}
4257 
4258 	return handle_pte_fault(&vmf);
4259 }
4260 
4261 /*
4262  * By the time we get here, we already hold the mm semaphore
4263  *
4264  * The mmap_sem may have been released depending on flags and our
4265  * return value.  See filemap_fault() and __lock_page_or_retry().
4266  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4267 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4268 		unsigned int flags)
4269 {
4270 	vm_fault_t ret;
4271 
4272 	__set_current_state(TASK_RUNNING);
4273 
4274 	count_vm_event(PGFAULT);
4275 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4276 
4277 	/* do counter updates before entering really critical section. */
4278 	check_sync_rss_stat(current);
4279 
4280 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4281 					    flags & FAULT_FLAG_INSTRUCTION,
4282 					    flags & FAULT_FLAG_REMOTE))
4283 		return VM_FAULT_SIGSEGV;
4284 
4285 	/*
4286 	 * Enable the memcg OOM handling for faults triggered in user
4287 	 * space.  Kernel faults are handled more gracefully.
4288 	 */
4289 	if (flags & FAULT_FLAG_USER)
4290 		mem_cgroup_enter_user_fault();
4291 
4292 	if (unlikely(is_vm_hugetlb_page(vma)))
4293 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4294 	else
4295 		ret = __handle_mm_fault(vma, address, flags);
4296 
4297 	if (flags & FAULT_FLAG_USER) {
4298 		mem_cgroup_exit_user_fault();
4299 		/*
4300 		 * The task may have entered a memcg OOM situation but
4301 		 * if the allocation error was handled gracefully (no
4302 		 * VM_FAULT_OOM), there is no need to kill anything.
4303 		 * Just clean up the OOM state peacefully.
4304 		 */
4305 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4306 			mem_cgroup_oom_synchronize(false);
4307 	}
4308 
4309 	return ret;
4310 }
4311 EXPORT_SYMBOL_GPL(handle_mm_fault);
4312 
4313 #ifndef __PAGETABLE_P4D_FOLDED
4314 /*
4315  * Allocate p4d page table.
4316  * We've already handled the fast-path in-line.
4317  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4318 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4319 {
4320 	p4d_t *new = p4d_alloc_one(mm, address);
4321 	if (!new)
4322 		return -ENOMEM;
4323 
4324 	smp_wmb(); /* See comment in __pte_alloc */
4325 
4326 	spin_lock(&mm->page_table_lock);
4327 	if (pgd_present(*pgd))		/* Another has populated it */
4328 		p4d_free(mm, new);
4329 	else
4330 		pgd_populate(mm, pgd, new);
4331 	spin_unlock(&mm->page_table_lock);
4332 	return 0;
4333 }
4334 #endif /* __PAGETABLE_P4D_FOLDED */
4335 
4336 #ifndef __PAGETABLE_PUD_FOLDED
4337 /*
4338  * Allocate page upper directory.
4339  * We've already handled the fast-path in-line.
4340  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4341 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4342 {
4343 	pud_t *new = pud_alloc_one(mm, address);
4344 	if (!new)
4345 		return -ENOMEM;
4346 
4347 	smp_wmb(); /* See comment in __pte_alloc */
4348 
4349 	spin_lock(&mm->page_table_lock);
4350 #ifndef __ARCH_HAS_5LEVEL_HACK
4351 	if (!p4d_present(*p4d)) {
4352 		mm_inc_nr_puds(mm);
4353 		p4d_populate(mm, p4d, new);
4354 	} else	/* Another has populated it */
4355 		pud_free(mm, new);
4356 #else
4357 	if (!pgd_present(*p4d)) {
4358 		mm_inc_nr_puds(mm);
4359 		pgd_populate(mm, p4d, new);
4360 	} else	/* Another has populated it */
4361 		pud_free(mm, new);
4362 #endif /* __ARCH_HAS_5LEVEL_HACK */
4363 	spin_unlock(&mm->page_table_lock);
4364 	return 0;
4365 }
4366 #endif /* __PAGETABLE_PUD_FOLDED */
4367 
4368 #ifndef __PAGETABLE_PMD_FOLDED
4369 /*
4370  * Allocate page middle directory.
4371  * We've already handled the fast-path in-line.
4372  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4373 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4374 {
4375 	spinlock_t *ptl;
4376 	pmd_t *new = pmd_alloc_one(mm, address);
4377 	if (!new)
4378 		return -ENOMEM;
4379 
4380 	smp_wmb(); /* See comment in __pte_alloc */
4381 
4382 	ptl = pud_lock(mm, pud);
4383 #ifndef __ARCH_HAS_4LEVEL_HACK
4384 	if (!pud_present(*pud)) {
4385 		mm_inc_nr_pmds(mm);
4386 		pud_populate(mm, pud, new);
4387 	} else	/* Another has populated it */
4388 		pmd_free(mm, new);
4389 #else
4390 	if (!pgd_present(*pud)) {
4391 		mm_inc_nr_pmds(mm);
4392 		pgd_populate(mm, pud, new);
4393 	} else /* Another has populated it */
4394 		pmd_free(mm, new);
4395 #endif /* __ARCH_HAS_4LEVEL_HACK */
4396 	spin_unlock(ptl);
4397 	return 0;
4398 }
4399 #endif /* __PAGETABLE_PMD_FOLDED */
4400 
__follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4401 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4402 			    unsigned long *start, unsigned long *end,
4403 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4404 {
4405 	pgd_t *pgd;
4406 	p4d_t *p4d;
4407 	pud_t *pud;
4408 	pmd_t *pmd;
4409 	pte_t *ptep;
4410 
4411 	pgd = pgd_offset(mm, address);
4412 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4413 		goto out;
4414 
4415 	p4d = p4d_offset(pgd, address);
4416 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4417 		goto out;
4418 
4419 	pud = pud_offset(p4d, address);
4420 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4421 		goto out;
4422 
4423 	pmd = pmd_offset(pud, address);
4424 	VM_BUG_ON(pmd_trans_huge(*pmd));
4425 
4426 	if (pmd_huge(*pmd)) {
4427 		if (!pmdpp)
4428 			goto out;
4429 
4430 		if (start && end) {
4431 			*start = address & PMD_MASK;
4432 			*end = *start + PMD_SIZE;
4433 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4434 		}
4435 		*ptlp = pmd_lock(mm, pmd);
4436 		if (pmd_huge(*pmd)) {
4437 			*pmdpp = pmd;
4438 			return 0;
4439 		}
4440 		spin_unlock(*ptlp);
4441 		if (start && end)
4442 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4443 	}
4444 
4445 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4446 		goto out;
4447 
4448 	if (start && end) {
4449 		*start = address & PAGE_MASK;
4450 		*end = *start + PAGE_SIZE;
4451 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4452 	}
4453 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4454 	if (!pte_present(*ptep))
4455 		goto unlock;
4456 	*ptepp = ptep;
4457 	return 0;
4458 unlock:
4459 	pte_unmap_unlock(ptep, *ptlp);
4460 	if (start && end)
4461 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4462 out:
4463 	return -EINVAL;
4464 }
4465 
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4466 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4467 			     pte_t **ptepp, spinlock_t **ptlp)
4468 {
4469 	int res;
4470 
4471 	/* (void) is needed to make gcc happy */
4472 	(void) __cond_lock(*ptlp,
4473 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4474 						    ptepp, NULL, ptlp)));
4475 	return res;
4476 }
4477 
follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4478 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4479 			     unsigned long *start, unsigned long *end,
4480 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4481 {
4482 	int res;
4483 
4484 	/* (void) is needed to make gcc happy */
4485 	(void) __cond_lock(*ptlp,
4486 			   !(res = __follow_pte_pmd(mm, address, start, end,
4487 						    ptepp, pmdpp, ptlp)));
4488 	return res;
4489 }
4490 EXPORT_SYMBOL(follow_pte_pmd);
4491 
4492 /**
4493  * follow_pfn - look up PFN at a user virtual address
4494  * @vma: memory mapping
4495  * @address: user virtual address
4496  * @pfn: location to store found PFN
4497  *
4498  * Only IO mappings and raw PFN mappings are allowed.
4499  *
4500  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4501  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4502 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4503 	unsigned long *pfn)
4504 {
4505 	int ret = -EINVAL;
4506 	spinlock_t *ptl;
4507 	pte_t *ptep;
4508 
4509 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4510 		return ret;
4511 
4512 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4513 	if (ret)
4514 		return ret;
4515 	*pfn = pte_pfn(*ptep);
4516 	pte_unmap_unlock(ptep, ptl);
4517 	return 0;
4518 }
4519 EXPORT_SYMBOL(follow_pfn);
4520 
4521 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4522 int follow_phys(struct vm_area_struct *vma,
4523 		unsigned long address, unsigned int flags,
4524 		unsigned long *prot, resource_size_t *phys)
4525 {
4526 	int ret = -EINVAL;
4527 	pte_t *ptep, pte;
4528 	spinlock_t *ptl;
4529 
4530 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4531 		goto out;
4532 
4533 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4534 		goto out;
4535 	pte = *ptep;
4536 
4537 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4538 		goto unlock;
4539 
4540 	*prot = pgprot_val(pte_pgprot(pte));
4541 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4542 
4543 	ret = 0;
4544 unlock:
4545 	pte_unmap_unlock(ptep, ptl);
4546 out:
4547 	return ret;
4548 }
4549 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4550 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4551 			void *buf, int len, int write)
4552 {
4553 	resource_size_t phys_addr;
4554 	unsigned long prot = 0;
4555 	void __iomem *maddr;
4556 	int offset = addr & (PAGE_SIZE-1);
4557 
4558 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4559 		return -EINVAL;
4560 
4561 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4562 	if (!maddr)
4563 		return -ENOMEM;
4564 
4565 	if (write)
4566 		memcpy_toio(maddr + offset, buf, len);
4567 	else
4568 		memcpy_fromio(buf, maddr + offset, len);
4569 	iounmap(maddr);
4570 
4571 	return len;
4572 }
4573 EXPORT_SYMBOL_GPL(generic_access_phys);
4574 #endif
4575 
4576 /*
4577  * Access another process' address space as given in mm.  If non-NULL, use the
4578  * given task for page fault accounting.
4579  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4580 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4581 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4582 {
4583 	struct vm_area_struct *vma;
4584 	void *old_buf = buf;
4585 	int write = gup_flags & FOLL_WRITE;
4586 
4587 	if (down_read_killable(&mm->mmap_sem))
4588 		return 0;
4589 
4590 	/* ignore errors, just check how much was successfully transferred */
4591 	while (len) {
4592 		int bytes, ret, offset;
4593 		void *maddr;
4594 		struct page *page = NULL;
4595 
4596 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4597 				gup_flags, &page, &vma, NULL);
4598 		if (ret <= 0) {
4599 #ifndef CONFIG_HAVE_IOREMAP_PROT
4600 			break;
4601 #else
4602 			/*
4603 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4604 			 * we can access using slightly different code.
4605 			 */
4606 			vma = find_vma(mm, addr);
4607 			if (!vma || vma->vm_start > addr)
4608 				break;
4609 			if (vma->vm_ops && vma->vm_ops->access)
4610 				ret = vma->vm_ops->access(vma, addr, buf,
4611 							  len, write);
4612 			if (ret <= 0)
4613 				break;
4614 			bytes = ret;
4615 #endif
4616 		} else {
4617 			bytes = len;
4618 			offset = addr & (PAGE_SIZE-1);
4619 			if (bytes > PAGE_SIZE-offset)
4620 				bytes = PAGE_SIZE-offset;
4621 
4622 			maddr = kmap(page);
4623 			if (write) {
4624 				copy_to_user_page(vma, page, addr,
4625 						  maddr + offset, buf, bytes);
4626 				set_page_dirty_lock(page);
4627 			} else {
4628 				copy_from_user_page(vma, page, addr,
4629 						    buf, maddr + offset, bytes);
4630 			}
4631 			kunmap(page);
4632 			put_page(page);
4633 		}
4634 		len -= bytes;
4635 		buf += bytes;
4636 		addr += bytes;
4637 	}
4638 	up_read(&mm->mmap_sem);
4639 
4640 	return buf - old_buf;
4641 }
4642 
4643 /**
4644  * access_remote_vm - access another process' address space
4645  * @mm:		the mm_struct of the target address space
4646  * @addr:	start address to access
4647  * @buf:	source or destination buffer
4648  * @len:	number of bytes to transfer
4649  * @gup_flags:	flags modifying lookup behaviour
4650  *
4651  * The caller must hold a reference on @mm.
4652  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4653 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4654 		void *buf, int len, unsigned int gup_flags)
4655 {
4656 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4657 }
4658 
4659 /*
4660  * Access another process' address space.
4661  * Source/target buffer must be kernel space,
4662  * Do not walk the page table directly, use get_user_pages
4663  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4664 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4665 		void *buf, int len, unsigned int gup_flags)
4666 {
4667 	struct mm_struct *mm;
4668 	int ret;
4669 
4670 	mm = get_task_mm(tsk);
4671 	if (!mm)
4672 		return 0;
4673 
4674 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4675 
4676 	mmput(mm);
4677 
4678 	return ret;
4679 }
4680 EXPORT_SYMBOL_GPL(access_process_vm);
4681 
4682 /*
4683  * Print the name of a VMA.
4684  */
print_vma_addr(char * prefix,unsigned long ip)4685 void print_vma_addr(char *prefix, unsigned long ip)
4686 {
4687 	struct mm_struct *mm = current->mm;
4688 	struct vm_area_struct *vma;
4689 
4690 	/*
4691 	 * we might be running from an atomic context so we cannot sleep
4692 	 */
4693 	if (!down_read_trylock(&mm->mmap_sem))
4694 		return;
4695 
4696 	vma = find_vma(mm, ip);
4697 	if (vma && vma->vm_file) {
4698 		struct file *f = vma->vm_file;
4699 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4700 		if (buf) {
4701 			char *p;
4702 
4703 			p = file_path(f, buf, PAGE_SIZE);
4704 			if (IS_ERR(p))
4705 				p = "?";
4706 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4707 					vma->vm_start,
4708 					vma->vm_end - vma->vm_start);
4709 			free_page((unsigned long)buf);
4710 		}
4711 	}
4712 	up_read(&mm->mmap_sem);
4713 }
4714 
4715 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4716 void __might_fault(const char *file, int line)
4717 {
4718 	/*
4719 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4720 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4721 	 * get paged out, therefore we'll never actually fault, and the
4722 	 * below annotations will generate false positives.
4723 	 */
4724 	if (uaccess_kernel())
4725 		return;
4726 	if (pagefault_disabled())
4727 		return;
4728 	__might_sleep(file, line, 0);
4729 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4730 	if (current->mm)
4731 		might_lock_read(&current->mm->mmap_sem);
4732 #endif
4733 }
4734 EXPORT_SYMBOL(__might_fault);
4735 #endif
4736 
4737 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4738 /*
4739  * Process all subpages of the specified huge page with the specified
4740  * operation.  The target subpage will be processed last to keep its
4741  * cache lines hot.
4742  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)4743 static inline void process_huge_page(
4744 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4745 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4746 	void *arg)
4747 {
4748 	int i, n, base, l;
4749 	unsigned long addr = addr_hint &
4750 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4751 
4752 	/* Process target subpage last to keep its cache lines hot */
4753 	might_sleep();
4754 	n = (addr_hint - addr) / PAGE_SIZE;
4755 	if (2 * n <= pages_per_huge_page) {
4756 		/* If target subpage in first half of huge page */
4757 		base = 0;
4758 		l = n;
4759 		/* Process subpages at the end of huge page */
4760 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4761 			cond_resched();
4762 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4763 		}
4764 	} else {
4765 		/* If target subpage in second half of huge page */
4766 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4767 		l = pages_per_huge_page - n;
4768 		/* Process subpages at the begin of huge page */
4769 		for (i = 0; i < base; i++) {
4770 			cond_resched();
4771 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4772 		}
4773 	}
4774 	/*
4775 	 * Process remaining subpages in left-right-left-right pattern
4776 	 * towards the target subpage
4777 	 */
4778 	for (i = 0; i < l; i++) {
4779 		int left_idx = base + i;
4780 		int right_idx = base + 2 * l - 1 - i;
4781 
4782 		cond_resched();
4783 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4784 		cond_resched();
4785 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4786 	}
4787 }
4788 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4789 static void clear_gigantic_page(struct page *page,
4790 				unsigned long addr,
4791 				unsigned int pages_per_huge_page)
4792 {
4793 	int i;
4794 	struct page *p = page;
4795 
4796 	might_sleep();
4797 	for (i = 0; i < pages_per_huge_page;
4798 	     i++, p = mem_map_next(p, page, i)) {
4799 		cond_resched();
4800 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4801 	}
4802 }
4803 
clear_subpage(unsigned long addr,int idx,void * arg)4804 static void clear_subpage(unsigned long addr, int idx, void *arg)
4805 {
4806 	struct page *page = arg;
4807 
4808 	clear_user_highpage(page + idx, addr);
4809 }
4810 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4811 void clear_huge_page(struct page *page,
4812 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4813 {
4814 	unsigned long addr = addr_hint &
4815 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4816 
4817 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4818 		clear_gigantic_page(page, addr, pages_per_huge_page);
4819 		return;
4820 	}
4821 
4822 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4823 }
4824 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4825 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4826 				    unsigned long addr,
4827 				    struct vm_area_struct *vma,
4828 				    unsigned int pages_per_huge_page)
4829 {
4830 	int i;
4831 	struct page *dst_base = dst;
4832 	struct page *src_base = src;
4833 
4834 	for (i = 0; i < pages_per_huge_page; ) {
4835 		cond_resched();
4836 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4837 
4838 		i++;
4839 		dst = mem_map_next(dst, dst_base, i);
4840 		src = mem_map_next(src, src_base, i);
4841 	}
4842 }
4843 
4844 struct copy_subpage_arg {
4845 	struct page *dst;
4846 	struct page *src;
4847 	struct vm_area_struct *vma;
4848 };
4849 
copy_subpage(unsigned long addr,int idx,void * arg)4850 static void copy_subpage(unsigned long addr, int idx, void *arg)
4851 {
4852 	struct copy_subpage_arg *copy_arg = arg;
4853 
4854 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4855 			   addr, copy_arg->vma);
4856 }
4857 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4858 void copy_user_huge_page(struct page *dst, struct page *src,
4859 			 unsigned long addr_hint, struct vm_area_struct *vma,
4860 			 unsigned int pages_per_huge_page)
4861 {
4862 	unsigned long addr = addr_hint &
4863 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4864 	struct copy_subpage_arg arg = {
4865 		.dst = dst,
4866 		.src = src,
4867 		.vma = vma,
4868 	};
4869 
4870 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4871 		copy_user_gigantic_page(dst, src, addr, vma,
4872 					pages_per_huge_page);
4873 		return;
4874 	}
4875 
4876 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4877 }
4878 
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4879 long copy_huge_page_from_user(struct page *dst_page,
4880 				const void __user *usr_src,
4881 				unsigned int pages_per_huge_page,
4882 				bool allow_pagefault)
4883 {
4884 	void *src = (void *)usr_src;
4885 	void *page_kaddr;
4886 	unsigned long i, rc = 0;
4887 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4888 
4889 	for (i = 0; i < pages_per_huge_page; i++) {
4890 		if (allow_pagefault)
4891 			page_kaddr = kmap(dst_page + i);
4892 		else
4893 			page_kaddr = kmap_atomic(dst_page + i);
4894 		rc = copy_from_user(page_kaddr,
4895 				(const void __user *)(src + i * PAGE_SIZE),
4896 				PAGE_SIZE);
4897 		if (allow_pagefault)
4898 			kunmap(dst_page + i);
4899 		else
4900 			kunmap_atomic(page_kaddr);
4901 
4902 		ret_val -= (PAGE_SIZE - rc);
4903 		if (rc)
4904 			break;
4905 
4906 		cond_resched();
4907 	}
4908 	return ret_val;
4909 }
4910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4911 
4912 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4913 
4914 static struct kmem_cache *page_ptl_cachep;
4915 
ptlock_cache_init(void)4916 void __init ptlock_cache_init(void)
4917 {
4918 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4919 			SLAB_PANIC, NULL);
4920 }
4921 
ptlock_alloc(struct page * page)4922 bool ptlock_alloc(struct page *page)
4923 {
4924 	spinlock_t *ptl;
4925 
4926 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4927 	if (!ptl)
4928 		return false;
4929 	page->ptl = ptl;
4930 	return true;
4931 }
4932 
ptlock_free(struct page * page)4933 void ptlock_free(struct page *page)
4934 {
4935 	kmem_cache_free(page_ptl_cachep, page->ptl);
4936 }
4937 #endif
4938